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Time Series

= A set of values measured sequentially in time

= Values are typically (but not always) measured at equal
ntervals, x1, x2, x3, x3, etc..

= Values can be:
e continuous
« discrete or symbolic (words)

= Associated with empirical observation of time varying
phenomena:
» Stock market prices (day, hour, minute, tick, etc..)
« Temperatures (day, minute, second, etc...)
* Number of patients (week, month, etc...)
« GDP (quarter, year, etc..)

= Forecasting requires predicting future values based on past
behavior
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Time Series

= The value of the time series at time t is given by x;
= The values at a given lag [ are given by x;

= The mean of the overall signal is g and the corresponding
running value is uf

= The variance of the overall signal is “and the corresponding
running value is g

= Running values are calculated over a window of width w
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Stationarity

= A time series is said to be stationary if its basic statistical
properties are independent of time

= |n particular:
* Mean - Average value stays constant

« Variance - The width of the curve is bounded
« Covariance - Correlation between points is independent of time

= Stationary processes are to analyze

= Many time series analysis algorithms assume the time series to
be stationary

= Several rigorous tests for stationarity have been developed
such as the (Augmented) Dickey-Fuller and Hurst Exponent

= Typically, the first step of any analysis is to transform the series
to make it stationary
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= Many time series have a clear trend or tendency:

» Stock market indices tend to go up over time
« Number of cases of preventable diseases tends to go down over time

= Trends can be additive or multiplicative:
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Trend

= Many time series have a clear trend or tendency:

» Stock market indices tend to go up over time
« Number of cases of preventable diseases tends to go down over time

= Trends can be or multiplicative:
Additive Trend Multiplicative Trend
3 2
1
352 T t
t 2 2 0 .
x = —+sin(t) e = x = —sin(t)
10 O, £ 10

0 5 10 15 20 25 30 0 5 10 15 20 25 30
time

= Trends can be removed by subtraction or division of the correct
values

= One way to determine the trend is to find the running average
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Seasonality

= Many of the phenomena we might be interested in vary in time
in a cyclical or seasonal fashion

* lce-cream sales peak in the summer and drop in the winter

« Number of cell phone calls made is larger during the day than at
night

« Many types of crime are more frequent at night than during the day

* Visits to museums are more frequent in the weekend than in
weekdays

» The stock market grows during bull periods and shrinks during bear
periods

= Understanding the seasonality of a time series provides
important information about its long-term behavior and is
extremely useful in predicting future values
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Time Series Decomposition

= A time series can be decomposed into three components:
 Trend, T;
« Seasonality, S;
* Residuals, R;

= Decompositions can be
« additive - Xt =Tt"' St"' Rt
« multiplicative - x¢= Tt - St - Rt

= The residuals are simply what is left of the original signal after
we remove the trend and the seasonality

= Residuals are typically stationary
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Lagging Values

= \While analyzing time series, we often refer to values that our
time series took 1, 2, 3, etc,, time steps in the past

= These are known as lagged values and denoted:
Xt.t

=where L is the value of the lag we are considering.
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Differences

= Perhaps the most common use case for lagged values is for the
calculation of differences of the form:

Xe- KXot

= Where | =1 is the value of the lag we are interested in.

= Naturally, higher order differences can also be used, in which case, the
difference of the difference is calculated:

Y= Xt~ Xgg
Z=Yi= YVei= Xe— 2Xp+ X~ 21

= This can be thought of as a discrete version of the usual derivative of a
function.

= Differences are also a particularly simple way to detrend a time series
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Windowing

= When analyzing the temporal behavior of of a signal, we often
need to evaluate if specific quantities are time varying or not

= A common approach is to use sliding windows of a given length
to evaluate the required values

= SO, a sliding window of width 6 on a series of length 11 would
look like:

Xo | X1 | X2 | X3 X4 |X5 | X6 | X7 | Xg | X9 | X1
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Running Values

= [n the first part of the lecture, we already used running averages
to a time series

= Other common metrics are:
* Variance
* Maximum value
* Minimum value
* etc..

= One important detail to note is that while using windowing to
calculate running values we "lose” a number of points equal to
the width of the window

= Depending on the application we can choose to place the
missing values in either or (or even both) extremes of the time
interval
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Bollinger Bands

= A common use for application for running values is the calculation of
Bollinger Bands.

= Introduced by in the 1980s as a complement to more
traditional time series technical analysis techniques.
= Bollinger Bands are defined by two components:
* A Nperiod moving average, uy
« The area K standard deviations above and below the moving
average Uy + KO'N
= Both uy and gy are computed on a running window of size N
= The values N and K are application specific. For stock trading, N= 20
and K =2

= \Whenever the time series steps out of the Bollinger Band that's a clear
indication of a change in the temporal behavior,
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Exponential Running Average

= One alternative to a simple running average is Exponential
Smoothing

= The exponentially “smooth” version of a time series is given by:

Zt - axt + (1 - CZ)Zt_l

= The smaller the value of the weight a, the less influence each
point has on the transformed time series.

= Each point depends implicitly on all previous points
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Forecasting

= We can also use the Exponential Moving Averages as a simple
forecasting tool.

= The value at time t + 1 is given by:

Zepr = axe+ (1 — a)z4

= Which we can consider to be a prediction on the value of x;,1,
based on the current value of z, and some factor of out current

error value x; — z.

Zey1 = Zr + a(xe — Z;)
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Fill Methods

= Sometimes the time series is 1.0
Incomplete 0.8
= Missing data points can be due to
data corruption, data collection 0.5 How can we
Issues, etc. 0.3 handle missing
= Missing values are represented as ° data?
nan 0.0 © 00O
= Several techniques have been 0.3
developed to handle this case 0 2 4 6 8 10 12 14 16 18 20

forward fill - keep the last valid value
back fill - keep the next valid value

interpolate — add values by interpolating between the previous and the next value
imputation — add values based on what we expect the missing values to be
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Resampling

= Time series typically have an intrinsic time scale at which the
data was collected: ticks, seconds, days, months, etc.

= [n many cases, our analysis requires that we resample the data
to a different time scale

= Resampling to a longer timescale is relatively simple and similar

to aggregation:
» Transforming from daily to weekly frequency requires simply aggregating
by week
= Resampling to shorter timescales requires interpolation or
imputation to make up for the missing values

» Going from weekly to daily frequency requires specifying how to allocate
the values for each day of the week
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