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§ The value of the time series at time t is given by xt
§ The values at a given lag l are given by xt-l 
§ The mean of the overall signal is µ and the corresponding 

running value is !!"
§ The variance of the overall signal is " and the corresponding 

running value is "!" 	
§Running values are calculated over a window of width w 
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Stationarity

Trend

Seasonality

⟨xt⟩ ≈ constant

⟨xt⟩ ≈ ct

Xt+T ≈ xt 
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§ A time series is said to be stationary if its basic statistical 
properties are independent of time 

§ In particular: 
•  Mean - Average value stays constant
•  Variance – The width of the curve is bounded
•  Covariance – Correlation between points is independent of time

§ Stationary processes are easier to analyze 
§ Many time series analysis algorithms assume the time series to 

be stationary 
§ Several rigorous tests for stationarity have been developed 

such as the (Augmented) Dickey-Fuller and Hurst Exponent 
§ Typically, the first step of any analysis is to transform the series 

to make it stationary 
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Trend

§Many time series have a clear trend or tendency:
• Stock market indices tend to go up over time
• Number of cases of preventable diseases tends to go down over time 

§ Trends can be additive or multiplicative: 

§ Trends can be removed by subtraction or division of the correct 
values

§ One way to determine the trend is to find the running average

# = %
10 + sin(%)

# = %
10 sin(%)
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§ Many of the phenomena we might be interested in vary in time 
in a cyclical or seasonal fashion 
• Ice-cream sales peak in the summer and drop in the winter
• Number of cell phone calls made is larger during the day than at 

night
• Many types of crime are more frequent at night than during the day
• Visits to museums are more frequent in the weekend than in 

weekdays
• The stock market grows during bull periods and shrinks during bear 

periods

§ Understanding the seasonality of a time series provides 
important information about its long-term behavior and is 
extremely useful in predicting future values 
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Seasonality
We can visualize the seasonal 

pattern by plotting all values that 
are 12 months apart in different 
subplots. One for each ‘season' 

Seasonality can be 
removed by using 
the average values 
for each season in 
a repeating pattern 
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Time Series Decomposition

§ A time series can be decomposed into three components:
• Trend, Tt
• Seasonality, St

• Residuals, Rt

§ Decompositions can be
• additive - xt =Tt + St + Rt 
• multiplicative - xt = Tt . St . Rt

§ The residuals are simply what is left of the original signal after 
we remove the trend and the seasonality

§ Residuals are typically stationary 
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Lagging Values

§While analyzing time series, we often refer to values that our 
time series took 1, 2, 3, etc., time steps in the past 

§ These are known as lagged values and denoted: 

Xt-l

§where l is the value of the lag we are considering. 
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Differences

§ Perhaps the most common use case for lagged values is for the 
calculation of differences of the form: 

Xt	-	Xt-l

§ Where !	 ≥ 1 is the value of the lag we are interested in.
§ Naturally, higher order differences can also be used, in which case, the 

difference of the difference is calculated: 

     yt	=	xt	–	xt-l
	 	 	 	 	 zt	=	yt	–	yt-l	≡	xt	–	2xt-l	+	xt	–	2l

§ This can be thought of as a discrete version of the usual derivative of a 
function. 

§ Differences are also a particularly simple way to detrend a time series 
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One common 
approach is to 
place all “lost 
values” at the 
beginning as it 
avoids “future 
leaking” when 

splitting the 
dataset 
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Running Values

§ In the first part of the lecture, we already used running averages 
to detrend a time series 

§ Other common metrics are: 
• Variance
• Maximum value 
• Minimum value 
• etc... 

§ One important detail to note is that while using windowing to 
calculate running values we “lose” a number of points equal to 
the width of the window 

§ Depending on the application we can choose to place the 
missing values in either or (or even both) extremes of the time 
interval 
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Bollinger Bands

§ A common use for application for running values is the calculation of 
Bollinger Bands. 

§ Introduced by John Bollinger in the 1980s as a complement to more 
traditional time series technical analysis techniques. 

§ Bollinger Bands are defined by two components: 
• A N period moving average, .%
• The area K standard deviations above and below the moving 

average .% ± 12%
§ Both .% and 2% are computed on a running window of size N
§ The values N		and K  are application specific. For stock trading, N	=	20	

and K	 =	2
§ Whenever the time series steps out of the Bollinger Band that’s a clear 

indication of a change in the temporal behavior. 
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Smaller values of 
4 result in 
smoother time 
series 
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Forecasting

§ We can also use the Exponential Moving Averages as a simple 
forecasting tool.

§ The value at time " + 1 is given by:

%&)( = 	'(! + 1	 − 	' %&'(

§ Which we can consider to be a prediction on the value of %!"#, 
based on the current value of &! and some factor of out current 
error value %! − &! :

%&)( = 5" + 4(7" − 5")
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The optimal value 
of 4 is that which 
minimize the 
prediction error
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§ Sometimes the time series is 
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•  interpolate – add values by interpolating between the previous and the next value
•  imputation – add values based on what we expect the missing values to be
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Resampling

§ Time series typically have an intrinsic time scale at which the 
data was collected: ticks, seconds, days, months, etc. 

§ In many cases, our analysis requires that we resample the data 
to a different time scale 

§ Resampling to a longer timescale is relatively simple and similar 
to aggregation: 
• Transforming from daily to weekly frequency requires simply aggregating 

by week 

§ Resampling to shorter timescales requires interpolation or 
imputation to make up for the missing values 
• Going from weekly to daily frequency requires specifying how to allocate 

the values for each day of the week 
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