
CHAPTER 1

Time Series:
An Overview and a Quick History

Time series data and its analysis are increasingly important due to the massive pro‐
duction of such data through, for example, the internet of things, the digitalization of
healthcare, and the rise of smart cities. In the coming years we can expect the quan‐
tity, quality, and importance of time series data to grow rapidly.

As continuous monitoring and data collection become more common, the need for
competent time series analysis with both statistical and machine learning techniques
will increase. Indeed, the most promising new models combine both of these meth‐
odologies. For this reason, we will discuss each at length. We will study and use a
broad range of time series techniques useful for analyzing and predicting human
behavior, scientific phenomena, and private sector data, as all these areas offer rich
arrays of time series data.

Let’s start with a definition. Time series analysis is the endeavor of extracting mean‐
ingful summary and statistical information from points arranged in chronological
order. It is done to diagnose past behavior as well as to predict future behavior. In
this book we will use a variety of approaches, ranging from hundred-year-old statisti‐
cal models to newly developed neural network architectures.

None of the techniques has developed in a vacuum or out of purely theoretical inter‐
est. Innovations in time series analysis result from new ways of collecting, recording,
and visualizing data. Next we briefly discuss the emergence of time series analysis in a
variety of applications.
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The History of Time Series in Diverse Applications
Time series analysis often comes down to the question of causality: how did the past
influence the future? At times, such questions (and their answers) are treated strictly
within their discipline rather than as part of the general discipline of time series anal‐
ysis. As a result, a variety of disciplines have contributed novel ways of thinking
about time series data sets.

In this section we will survey a few historical examples of time series data and analy‐
sis in these disciplines:

• Medicine
• Weather
• Economics
• Astronomy

As we will see, the pace of development in these disciplines and the contributions
originating in each field were strongly tied to the nature of the contemporaneous
time series data available.

Medicine as a Time Series Problem
Medicine is a data-driven field that has contributed interesting time series analysis to
human knowledge for a few centuries. Now, let’s study a few examples of time series
data sources in medicine and how they emerged over time.

Medicine got a surprisingly slow start to thinking about the mathematics of predict‐
ing the future, despite the fact that prognoses are an essential part of medical practice.
This was the case for many reasons. Statistics and a probabilistic way of thinking
about the world are recent phenomena, and these disciplines were not available for
many centuries even as the practice of medicine developed. Also, most doctors prac‐
ticed in isolation, without easy professional communication and without a formal
recordkeeping infrastructure for patient or population health. Hence, even if physi‐
cians in earlier times had been trained as statistical thinkers, they likely wouldn’t have
had reasonable data from which to draw conclusions.

This is not at all to criticize early physicians but to explain why it is not too surprising
that one of the early time series innovations in population health came from a seller
of hats rather than from a physician. When you think about it, this makes sense: in
earlier centuries, an urban hat seller would likely have had more practice in record‐
keeping and the art of spotting trends than would a physician.

The innovator was John Graunt, a 17th-century London haberdasher. Graunt under‐
took a study of the death records that had been kept in London parishes since the
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early 1500s. In doing so, he originated the discipline of demography. In 1662, he pub‐
lished Natural and Political Observations . . . Made upon the Bills of Mortality (See
Figure 1-1).

Figure 1-1. John Graunt’s actuarial tables were one of the first results of time-series-
style thinking applied to medical questions. Source: Wikipedia.

In this book, Graunt presented the first life tables, which you may know as actuarial
tables. These tables show the probability that a person of a given age will die before
their next birthday. Graunt, as the first person known to have formulated and pub‐
lished life tables, was also the first documented statistician of human health. His life
tables looked something like Table 1-1, which is taken from some Rice University sta‐
tistics course notes.

Table 1-1. A sample of John Graunt’s life tables
Age Proportion of deaths in the interval Proportion surviving until start of interval
0–6 0.36 1.0
7–16 0.24 0.64
17–26 0.15 0.40
27–36 0.09 0.25

Unfortunately, Graunt’s way of thinking mathematically about human survival did
not take. A more connected and data-driven world began to form—complete with
nation states, accreditation, professional societies, scientific journals, and, much later,
government-mandated health recordkeeping—but medicine continued to focus on
physiology rather than statistics.

There were understandable reasons for this. First, the study of anatomy and physiol‐
ogy in small numbers of subjects had provided the major advances in medicine for
centuries, and most humans (even scientists) hew to what works for them as long as
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1 Examples include the British Doctors Study and the Nurses’ Health Study.

possible. While a focus on physiology was so successful, there was no reason to look
further afield. Second, there was very little reporting infrastructure in place for physi‐
cians to tabulate and share information on the scale that would make statistical meth‐
ods superior to clinical observations.

Time series analysis has been even slower to come into mainstream medicine than
other branches of statistics and data analysis, likely because time series analysis is
more demanding of recordkeeping systems. Records must be linked together over
time, and preferably collected at regular intervals. For this reason, time series as an
epidemiological practice has only emerged very recently and incrementally, once suf‐
ficient governmental and scientific infrastructure was in place to ensure reasonably
good and lengthy temporal records.

Likewise, individualized healthcare using time series analysis remains a young and
challenging field because it can be quite difficult to create data sets that are consistent
over time. Even for small case-study-based research, maintaining both contact with
and participation from a group of individuals is excruciatingly difficult and expen‐
sive. When such studies are conducted for long periods of time, they tend to become
canonical in their fields—and repeatedly, or even excessively researched—because
their data can address important questions despite the challenges of funding and
management.1

Medical instruments
Time series analysis for individual patients has a far earlier and more successful his‐
tory than that of population-level health studies. Time series analysis made its way
into medicine when the first practical electrocardiograms (ECGs), which can diag‐
nose cardiac conditions by recording the electrical signals passing through the heart,
were invented in 1901 (see Figure 1-2). Another time series machine, the electroence‐
phalogram (EEG), which noninvasively measures electrical impulses in the brain, was
introduced into medicine in 1924, creating more opportunities for medical practi‐
tioners to apply time series analysis to medical diagnosis (see Figure 1-3).

Both of these time series machines were part of a larger trend of enhancing medicine
with repurposed ideas and technologies coming out of the second Industrial
Revolution.
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Figure 1-2. An early ECG recording from the original 1877 paper by Augustus D. Wal‐
ler, M.D, “A Demonstration on Man of Electromotive Changes Accompanying the
Heart’s Beat”. The earliest ECGs were difficult to construct and use, so it was a few
more decades before they became a practical tool for physicians.

Figure 1-3. The first human EEG recording, from 1924. Source: Wikipedia.

ECG and EEG time series classification tools remain active areas of research for very
practical purposes, such as estimating the risk of a sudden cardiac crisis or a seizure.
These measurements are rich sources of data, but one “problem” with such data is
that it tends to be available only for patients with specific ailments. These machines
do not generate long-range time series that can tell us more broadly about human
health and behavior, as their measurements are seldom applied for long periods of
time or before a disease has emerged in a patient.

Luckily, from a data analysis point of view, we are moving past the era where ECGs
and the like are the dominant medical time series available. With the advent of wear‐
able sensors and “smart” electronic medical devices, many healthy humans take rou‐
tine measurements automatically or with minimal manual input, leading to the
ongoing collection of good longitudinal data about both sick and healthy people. This
is in stark contrast to the last century’s medical time series data, which was almost
exclusively measured on sick people and which was very limited in access.

As recent news coverage has shown, a variety of nontraditional players are entering
the medical field, ranging from enormous social media companies to financial
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2 See, for example, Darrell Etherington, Amazon, JPMorgan and Berkshire Hathaway to Build Their Own
Healthcare Company,” TechCrunch, January 30, 2018, https://perma.cc/S789-EQGW; Christina Farr, Face‐
book Sent a Doctor on a Secret Mission to Ask Hospitals to Share Patient Data,” CNBC, April 5, 2018, https://
perma.cc/65GF-M2SJ.

3 This same Robert FitzRoy was captain of the HMS Beagle during the voyage that took Charles Darwin around
the world. This voyage was instrumental in providing evidence to Darwin for the theory of evolution by natu‐
ral selection.

institutions to retail giants.2 They likely all plan to use large data sets to streamline
healthcare. There aren’t just new players in the healthcare field—there are also new
techniques. The personalized DNA-driven medicine means that time series data is
increasingly measured and valued. Thanks to burgeoning modern healthcare data
sets, both healthcare and time series analysis will likely evolve in the coming years,
particularly in response to the lucrative data sets of the healthcare sector. Hopefully
this will happen in such a way that time series can benefit everyone.

Forecasting Weather
For obvious reasons, predicting the weather has long been a preoccupation to many. 
The ancient Greek philosopher Aristotle delved into weather with an entire treatise
(Meteorology), and his ideas about the causes and sequencing of the weather
remained dominant until the Renaissance. At that time, scientists began to collect
weather-related data with the help of newly invented instruments, such as the barom‐
eter, to measure the state of the atmosphere. They used these instruments to record
time series at daily or even hourly intervals. The records were kept in a variety of
locations, including private diaries and local town logbooks. For centuries this
remained the only way that Western civilization tracked the weather.

Greater formalization and infrastructure for weather recording arrived in the 1850s
when Robert FitzRoy was appointed the head of a new British government depart‐
ment to record and publish weather-related data for sailors.3 FitzRoy coined the term
weather forecast. At the time, he was criticized for the quality of his forecasts, but he
is now regarded to have been well ahead of his time in the science he used to develop
them. He established the custom of printing weather forecasts in the newspaper; they
were the first forecasts printed in The Times of London. FitzRoy is now celebrated as
the “father of forecasting.”

In the late 19th century—hundreds of years after many atmospheric measurements
had come into use—the telegraph allowed for fast compilations of atmospheric con‐
ditions in time series from many different locations. This practice became standard in
many parts of the world by the 1870s and led to the creation of the first meaningful
data sets for predicting local weather based on what was happening in other geo‐
graphic locations.
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By the turn of the 20th century, the idea of forecasting the weather with computa‐
tional methods was vigorously pursued with the help of these compiled data sets.
Early endeavors at computing the weather required a spectacular amount of effort
but gave poor results. While physicists and chemists had well-proven ideas about the
relevant natural laws, there were too many natural laws to apply all at once. The
resulting system of equations was so complex that it was a notable scientific break‐
through the first time someone even attempted to do the calculations.

Several decades of research followed to simplify the physical equations in a way that
increased accuracy and computational efficiency. These tricks of the trade have been
handed down even to current weather prediction models, which operate on a mix of
known physical principles and proven heuristics.

Nowadays many governments make highly granular weather measurements from
hundreds or even thousands of weather stations around the world, and these predic‐
tions are grounded in data with precise information about weather station locations
and equipment. The roots of these efforts trace back to the coordinated data sets of
the 1870s and even earlier to the Renaissance practice of keeping local weather
diaries.

Unfortunately, weather forecasting is an example of the increasing attacks on science
that reach even into the domain of time series forecasting. Not only have time series
debates about global temperatures been politicized, but so have more mundane time
series forecasting tasks, such as predicting the path of a hurricane.

Forecasting Economic Growth
Indicators of production and efficiency in markets have long provided interesting
data to study from a time series analysis. Most interesting and urgent has been the
question of forecasting future economic states based on the past. Such forecasts aren’t
merely useful for making money—they also help promote prosperity and avert social
catastrophes. Let’s discuss some important developments in the history of economic
forecasting.

Economic forecasting grew out of the anxiety triggered by episodic banking crises in
the United States and Europe in the late 19th and early 20th centuries. At that time,
entrepreneurs and researchers alike drew inspiration from the idea that the economy
could be likened to a cyclical system, just as the weather was thought to behave. With
the right measurements, it was thought, predictions could be made and crashes
averted.

Even the language of early economic forecasting mirrored the language of weather
forecasting. This was unintentionally apt. In the early 20th century, economic and
weather forecasting were indeed alike: both were pretty terrible. But economists’
aspirations created an environment in which progress could at least be hoped for,
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and so a variety of public and private institutions were formed for tracking economic
data. Early economic forecasting efforts led to the creation of economic indicators
and tabulated, publicly available histories of those indicators that are still in use
today. We will even use some of these in this book.

Nowadays, the United States and most other nations have thousands of government
researchers and recordkeepers whose jobs are to record data as accurately as possible
and make it available to the public (see Figure 1-4). This practice has proven invalua‐
ble to economic growth and the avoidance of economic catastrophe and painful
boom and bust cycles. What’s more, businesses benefit from a data-rich atmosphere,
as these public data sets permit transportation providers, manufacturers, small busi‐
ness owners, and even farmers to anticipate likely future market conditions. This all
grew out of the attempt to identify “business cycles” that were thought to be the
causes of cyclical banking failures, an early form of time series analysis in economics.

Figure 1-4. The US federal government funds many government agencies and related
nonprofits that record vital statistics as well as formulate economic indicators. Source:
National Bureau of Economic Research.

Much of the economic data collected by the government, particularly the most news‐
worthy, tends to be a proxy for the population’s overall economic well-being. One
example of such vital information comes from the number of people requesting
unemployment benefits. Examples include the government’s estimates of the gross
domestic product and of the total tax returns received in a given year.

Thanks to this desire for economic forecasting, the government has become a curator
of data as well as a collector of taxes. The collection of this data enabled modern eco‐
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nomics, the modern finance industry, and data science generally to blossom. Thanks
to time series analysis growing out of economic questions, we now safely avert many
more banking and financial crises than any government could have in past centuries.
Also, hundreds of time series textbooks have been written in the form of economics
textbooks devoted to understanding the rhythms of these financial indicators.

Trading markets
Let’s get back to the historical side of things. As government efforts at data collection
met with great success, private organizations began to copy government recordkeep‐
ing. Over time, commodities and stock exchanges became increasingly technical.
Financial almanacs became popular, too. This happened both because market partici‐
pants became more sophisticated and because emerging technologies enabled greater
automation and new ways of competing and thinking about prices.

All this minute recordkeeping gave rise to the pursuit of making money off the mar‐
kets via math rather than intuition, in a way driven entirely by statistics (and, more
recently, by machine learning). Early pioneers did this mathematical work by hand,
whereas current “quants” do this by very complicated and proprietary time series
analytic methods.

One of the pioneers of mechanical trading, or time series forecasting via algorithm,
was Richard Dennis. Dennis was a self-made millionaire who famously turned ordi‐
nary people, called the Turtles, into star traders by teaching them a few select rules
about how and when to trade. These rules were developed in the 1970s and 1980s and
mirrored the “AI” thinking of the 1980s, in which heuristics still strongly ruled the
paradigm of how to build intelligent machines to work in the real world.

Since then many “mechanical” traders have adapted these rules, which as a result
have become less profitable in a crowded automated market. Mechanical traders con‐
tinue to grow in number and wealth, they are continually in search of the next best
thing because there is so much competition.

Astronomy
Astronomy has always relied heavily on plotting objects, trajectories, and measure‐
ments over time. For this reason, astronomers are masters of time series, both for cal‐
ibrating instruments and for studying their objects of interest. As an example of the
long history of time series data, consider that sunspot time series were recorded in
ancient China as early as 800 BC, making sunspot data collection one of the most
well-recorded natural phenomena ever.

Some of the most exciting astronomy of the past century relates to time series analy‐
sis. The discovery of variable stars (which can be used to deduce galactic distances)
and the observation of transitory events such as supernovae (which enhance our
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4 The Box-Jenkins method has become a canonical technique for choosing the best parameters for an ARMA
or ARIMA model to model a time series. More on this in Chapter 6.

understanding of how the universe changes over time) are the result of monitoring
live streams of time series data based on the wavelengths and intensities of light.
Time series have had a fundamental impact on what we can know and measure about
the universe.

Incidentally, this monitoring of astronomical images has even allowed astronomers
to catch events as they are happening (or rather as we are able to observe them, which
may take millions of years).

In the last few decades, the availability of explicitly timestamped data, as formal time
series, has exploded in astronomy with a wide array of new kinds of telescopes col‐
lecting all sorts of celestial data. Some astronomers have even referred to a time series
“data deluge.”

Time Series Analysis Takes Off
George Box, a pioneering statistician who helped develop a popular time series
model, was a great pragmatist. He famously said, “All models are wrong, but some
are useful.”

Box made this statement in response to a common attitude that proper time series
modeling was a matter of finding the best model to fit the data. As he explained, the
idea that any model can describe the real world is very unlikely. Box made this pro‐
nouncement in 1978, which seems bizarrely late into the history of a field as impor‐
tant as time series analysis, but in fact the formal discipline was surprisingly young.

For example, one of the achievements that made George Box famous, the Box-
Jenkins method—considered a fundamental contribution to time series analysis—
appeared only in 1970.4 Interestingly, this method first appeared not in an academic
journal but rather in a statistics textbook, Time Series Analysis: Forecasting and Con‐
trol (Wiley). Incidentally this textbook remains popular and is now in its fifth edition.

The original Box-Jenkins model was applied to a data set of carbon dioxide levels
emitted from a gas furnace. While there is nothing quaint about a gas furnace, the
300-point data set that was used to demonstrate the method does feel somewhat out‐
moded. Certainly, larger data sets were available in the 1970s, but remember that they
were exceptionally difficult to work with then. This was a time that predated
conveniences such as R, Python, and even C++. Researchers had good reasons to
focus on small data sets and methods that minimized computing resources.

Time series analysis and forecasting developed as computers did, with larger data sets
and easier coding tools paving the way for more experimentation and the ability to
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5 That is, 100 separate data sets in different domains of various time series of different lengths.

6 Given the array of gadgets humans carry around with them as well as the timestamps they create as they shop
for groceries, log in to a computer portal at work, browse the internet, check a health indicator, make a phone
call, or navigate traffic with GPS, we can safely say that an average American likely produces thousands of
time series data points every year of their life.

answer more interesting questions. Professor Rob Hyndman’s history of forecasting
competitions provides apt examples of how time series forecasting competitions
developed at a rate parallel to that of computers.

Professor Hyndman places the “earliest non-trivial study of time series forecast accu‐
racy” as occurring in a 1969 doctoral dissertation at the University of Nottingham,
just a year before the publication of the Box-Jenkins method. That first effort was
soon followed by organized time series forecasting competitions, the earliest ones fea‐
turing around 100 data sets in the early 1970s.5 Not bad, but surely something that
could be done by hand if absolutely necessary.

By the end of the 1970s, researchers had put together a competition with around
1,000 data sets, an impressive scaling up. Incidentally, this era was also marked by the
first commercial microprocessor, the development of floppy disks, Apple’s early per‐
sonal computers, and the computer language Pascal. It’s likely some of these innova‐
tions were helpful. A time series forecasting competition of the late 1990s included
3,000 data sets. While these collections of data sets were substantial and no doubt
reflected tremendous amounts of work and ingenuity to collect and curate, they are
dwarfed by the amount of data now available. Time series data is everywhere, and
soon everything will be a time series.

This rapid growth in the size and quality of data sets owes its origins to the tremen‐
dous advances that have been made in computing in the past few decades. Hardware
engineers succeeded in continuing the trend described by Moore’s Law—a prediction
of exponential growth in computing capacity—during this time. As hardware became
smaller, more powerful, and more efficient, it was easy to have much more of it,
affordably—to create everything from miniature portable computers with attached
sensors to massive data centers powering the modern internet in its data-hungry
form. Most recently, wearables, machine learning techniques, and GPUs have revolu‐
tionized the quantity and quality of data available for study.6

Time series will no doubt benefit as computing power increases because many
aspects of time series data are computationally demanding. With ramped-up
computational and data resources, time series analysis can be expected to continue its
rapid pace of development.
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The Origins of Statistical Time Series Analysis
Statistics is a very young science. Progress in statistics, data analysis, and time series
has always depended strongly on when, where, and how data was available and in
what quantity. The emergence of time series analysis as a discipline is linked not only
to developments in probability theory but equally to the development of stable nation
states, where recordkeeping first became a realizable and interesting goal. We cov‐
ered this earlier with respect to a variety of disciplines. Now we’ll think about time
series itself as a discipline.

One benchmark for the beginning of time series analysis as a discipline is the applica‐
tion of autoregressive models to real data. This didn’t happen until the 1920s. Udny
Yule, an experimental physicist turned statistical lecturer at Cambridge University,
applied an autoregressive model to sunspot data, offering a novel way to think about
the data in contrast to methods designed to fit the frequency of an oscillation. Yule
pointed out that an autoregressive model did not begin with a model that assumed
periodicity:

When periodogram analysis is applied to data respecting any physical phenomenon in
the expectation of eliciting one or more true periodicities, there is usually, as it seems
to me, a tendency to start from the initial hypothesis that the periodicity or periodici‐
ties are masked solely by such more or less random superposed fluctuations—fluctua‐
tions which do not in any way disturb the steady course of the underlying periodic
function or functions…there seems no reason for assuming it to be the hypothesis
most likely a priori.

Yule’s thinking was his own, but it’s likely that some historical influences led him to
notice that the traditional model presupposed its own outcome. As a former experi‐
mental physicist who had worked abroad in Germany (the epicenter for the burgeon‐
ing theory of quantum mechanics), Yule would certainly have been aware of the
recent developments that highlighted the probabilistic nature of quantum mechanics.
He also would have recognized the dangers of narrowing one’s thinking to a model
that presupposes too much, as classical physicists had done before the discovery of
quantum mechanics.

As the world became a more orderly, recorded, and predictable place, particularly
after World War II, early problems in practical time series analysis were presented by
the business sector. Business-oriented time series problems were important and not
overly theoretical in their origins. These included forecasting demand, estimating
future raw materials prices, and hedging on manufacturing costs. In these industrial
use cases, techniques were adopted when they worked and rejected when they didn’t.
It probably helped that industrial workers had access to larger data sets than were
available to academics at the time (as continues to be the case now). This meant that
sometimes practical but theoretically underexplored techniques came into wide‐
spread use before they were well understood.
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The Origins of Machine Learning Time Series Analysis
Early machine learning in time series analysis dates back many decades. An oft-cited
paper from 1969, “The Combination of Forecasts,” analyzed the idea of combining
forecasts rather than choosing a “best one” as a way to improve forecast performance. 
This idea was, at first, abhorrent to traditional statisticians, but ensemble methods
have come to be the gold standard in many forecasting problems. Ensembling rejects
the idea of a perfect or even significantly superior forecasting model relative to all
possible models.

More recently, practical uses for time series analysis and machine learning emerged
as early as the 1980s, and included a wide variety of scenarios:

• Computer security specialists proposed anomaly detection as a method of identi‐
fying hackers/intrusions.

• Dynamic time warping, one of the dominant methods for “measuring” the simi‐
larity of time series, came into use because the computing power would finally
allow reasonably fast computation of “distances,” say between different audio
recordings.

• Recursive neural networks were invented and shown to be useful for extracting
patterns from corrupted data.

Time series analysis and forecasting have yet to reach their golden period, and, to
date, time series analysis remains dominated by traditional statistical methods as well
as simpler machine learning techniques, such as ensembles of trees and linear fits.
We are still waiting for a great leap forward for predicting the future.

More Resources
• On the history of time series analysis and forecasting:

Kenneth F. Wallis, “Revisiting Francis Galton’s Forecasting Competition,” Statisti‐
cal Science 29, no. 3 (2014): 420–24, https://perma.cc/FJ6V-8HUY.

This is a historical and statistical discussion of a very early paper on forecast‐
ing the weight of a butchered ox while the animal was still alive at a county
fair.

G. Udny Yule, “On a Method of Investigating Periodicities in Disturbed Series,
with Special Reference to Wolfer’s Sunspot Numbers,” Philosophical Transactions
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of the Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character 226 (1927): 267–98, https://perma.cc/D6SL-7UZS.

Udny Yule’s seminal paper, one of the first applications of autoregressive
moving average analysis to real data, illustrates a way to remove the assump‐
tion of periodicity from analysis of a putatively periodic phenomenon.

J.M. Bates and C. W. J. Granger, “The Combination of Forecasts,” Organizational
Research Quarterly 20, No. 4 (1969): 451–68, https://perma.cc/9AEE-QZ2J.

This seminal paper describes the use of ensembling for time series forecast‐
ing. The idea that averaging models was better for forecasting than looking
for a perfect model was both new and controversial to many traditional
statisticians.

Jan De Gooijer and Rob Hyndman, “25 Years of Time Series Forecasting,” Interna‐
tional Journal of Forecasting 22, no. 3 (2006): 443–73, https://perma.cc/
84RG-58BU.

This is a thorough statistical summary of time series forecasting research in
the 20th century.

Rob Hyndman, “A Brief History of Time Series Forecasting Competitions,”
Hyndsight blog, April 11, 2018, https://perma.cc/32LJ-RFJW.

This shorter and more specific history gives specific numbers, locations, and
authors of prominent time series forecasting competitions in the last 50
years.

• On domain-specific time series histories and commentary:

NASA, “Weather Forecasting Through the Ages,” Nasa.gov, February 22, 2002,
https://perma.cc/8GK5-JAVT.

NASA gives a history of how weather forecasting came to be, with emphasis
on specific research challenges and successes in the 20th century.

Richard C. Cornes, “Early Meteorological Data from London and Paris: Extending
the North Atlantic Oscillation Series,” PhD diss., School of Environmental Sciences,
University of East Anglia, Norwich, UK, May 2010, https://perma.cc/NJ33-
WVXH.

This doctoral thesis offers a fascinating account of the kinds of weather
information available for two of Europe’s most important cities, complete
with extensive listings of the locations and nature of historic weather in time
series format.
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Dan Mayer, “A Brief History of Medicine and Statistics,” in Essential Evidence-
Based Medicine (Cambridge, UK: Cambridge University Press, 2004), https://
perma.cc/WKU3-9SUX.

This chapter of Mayer’s book highlights how the relationship between medi‐
cine and statistics depended greatly on social and political factors that made
data and statistical training available for medical practitioners.

Simon Vaughan, “Random Time Series in Astronomy”, Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no.
1984 (2013): 1–28, https://perma.cc/J3VS-6JYB.

Vaughan summarizes the many ways time series analysis is relevant to
astronomy and warns about the danger of astronomers rediscovering time
series principles or missing out on extremely promising collaborations with
statisticians.
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CHAPTER 2

Finding and Wrangling Time Series Data

In this chapter we discuss problems that might arise while you are preprocessing time
series data. Some of these problems will be familiar to experienced data analysts, but
there are specific difficulties posed by timestamps. As with any data analysis task,
cleaning and properly processing data is often the most important step of a time‐
stamp pipeline. Fancy techniques can’t fix messy data.

Most data analysts will need to find, align, scrub, and smooth their own data either to
learn time series analysis or to do meaningful work in their organizations. As you
prepare data, you’ll need to do a variety of tasks, from joining disparate columns to
resampling irregular or missing data to aligning time series with different time axes.
This chapter helps you along the path to an interesting and properly prepared time
series data set.

We discuss the following skills useful for finding and cleaning up time series data:

• Finding time series data from online repositories
• Discovering and preparing time series data from sources not originally intended

for time series
• Addressing common conundrums you will encounter with time series data, espe‐

cially the difficulties that arise from timestamps

After reading this chapter, you will have the skills needed to identify and prepare
interesting sources of time series data for downstream analysis.
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Where to Find Time Series Data
If you are interested in where to find time series data and how to clean it, the best
resource for you in this chapter depends on which of these is your main goal:

• Finding an appropriate data set for learning or experimentation purposes
• Creating a time series data set out of existing data that is not stored in an explic‐

itly time-oriented form

In the first case, you should find existing data sets with known benchmarks so you
can see whether you are doing your analysis correctly. These are most often found as
contest data sets (such as Kaggle) or repository data sets. In these cases, you will likely
need to clean your data for a specific purpose even if some preliminary work has been
done for you.

In the second case, you should think about effective ways to identify interesting time‐
stamped data, turn it into a series, clean it, and align it with other timestamped data
to make interesting time series data. I will refer to these found in the wild data sets as
found time series (this is my own term and not technical language).

We discuss both prepared data sets and found time series next.

Prepared Data Sets
The best way to learn an analytical or modeling technique is to run through it on a
variety of data sets and see both how to apply it and whether it helps you reach a con‐
crete goal. In such cases it is helpful to have prepared options.

While time series data is everywhere, it is not always easy to find the kind of data you
want when you want it. If you often find yourself in this position, you will want to get
familiar with some commonly used time series data repositories, so we’ll discuss a
few options you should consider.

The UCI Machine Learning Repository
The UCI Machine Learning Repository (see Figure 2-1) contains around 80 time ser‐
ies data sets, ranging from hourly air quality samples in an Italian city to Amazon file
access logs to diabetes patients’ records of activity, food, and blood glucose informa‐
tion. These are very different kinds of data, and a look at the files shows they reflect
distinct ways of tracking information across time, yet each is a time series.
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Figure 2-1. The UCI Machine Learning Repository includes an annotated list of time
series data sets.

Consider the very first data set listed under the Time Series section in the UCI reposi‐
tory, which is a data set about absenteeism at work (see Figure 2-2).

A quick look at the data reveals that the time columns are limited to “Month of
absence,” “Day of the week,” and “Seasons,” with no column for year. There are
duplicate time indices, but there is also a column indicating employee identity so that
we can differentiate between these duplicate time points. Finally, there are various
employee attribute columns.
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Figure 2-2. The absenteeism at work data set is the first in the list of time series data
sets in the UCI Machine Learning Repository.

This data set could be quite challenging to process, because you would first need to
determine whether the data was all from one year or whether the cycling of months
from 1 to 12 several times through the row progressions indicates that the year is
changing. You would also need to decide whether to look at the problem in the
aggregate, from a total absenteeism per unit time perspective, or to look at absentee‐
ism per ID for those reported in the data set (see Figure 2-3). In the first case you
would have a single time series, whereas in the latter case you would have multiple
time series with overlapping timestamps. How you looked at the data would depend
on what question you wanted to answer.

Figure 2-3. The first few lines of one file in the Australian sign language data set. As
you can see, this is a wide file format.

Contrast the absenteeism data set with another data set early on in the list, the Aus‐
tralian Sign Language signs data set, which includes recordings from a Nintendo
PowerGlove as subjects signed in Australian Sign Language. The data is formatted as
wide CSV files, each within a folder indicating the individual measured and with a
filename indicating the sign.

In this data set, the columns are unlabeled and do not have a timestamp. This is
nonetheless time series data; the time axis counts the time steps forward, regardless of
when the actual events happened. Notice that for the purpose of thinking about signs
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as time series, it doesn’t matter what the unit of time is; the point is the sequencing
rather than the exact time. In that case, all you would care about is the ordering of the
event, and whether you could assume or confirm from reading the data description
that the measurements were taken at regular intervals.

As we can see from inspecting these two data sets, you will run into all sorts of data
munging challenges. Some of the problems we’ve already noticed are:

• Incomplete timestamps
• Time axes can be horizontal or vertical in your data
• Varying notions of time

The UEA and UCR Time Series Classification Repository
The UEA and UCR Time Series Classification Repository is a newer effort providing
a common set of time series data available for experimentation and research in time
series classification tasks. It also shows a very diverse set of data. We can see this by
looking at two data sets.

One data set is a yoga movement classification task. The classification task involves
distinguishing between two individual actors who performed a series of transitions
between yoga poses while images were recorded. The images were converted to a
one-dimensional series. The data is stored in a CSV file, with the label as the leftmost
column and the remaining columns representing time steps. Time passes from left to
right across the columns, rather than from top to bottom across the rows.

Plots of two sample time series per gender are shown in Figure 2-4.

Univariate Versus Multivariate Time Series

The data sets we have looked at so far are univariate time series;
that is, they have just one variable measured against time.
Multivariate time series are series with multiple variables measured
at each timestamp. They are particularly rich for analysis because
often the measured variables are interrelated and show temporal
dependencies between one another. We will encounter multivari‐
ate time series data later.
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1 To learn more about this kind of data analysis, also see references on

Figure 2-4. Plots of a male and a female actor performing a yoga move repeatedly. We
plot two sample time series per actor. There are no explicit time labels on the x-axis.
Rather than the unit of time, what is important is whether the x-axis data points are
evenly spaced, as they are presented here.

Also consider the wine data set, in which wines were classified by region according to
the shapes of their spectra. So what makes this relevant to time series analysis? A
spectrum is a plot of light wavelength versus intensity. Here we see a time series clas‐
sification task where there is no passage of time at all. Time series analysis applies,
however, because there is a unique and meaningful ordering of the x-axis, with a con‐
crete meaning of distance along that axis. Time series analysis distinguishes itself
from cross-sectional analysis by using the additional information provided by order‐
ing on the x-axis, whether it is time or wavelength or something else. We can see a
plot of such a “time” series in Figure 2-5. There is no temporal element, but we are
nonetheless looking at an ordered series of data, so the usual ideas of time series
apply.1
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Figure 2-5. A sample spectrum of the wine sampled in the UCI wine data set. Peaks in
the curve indicate wavelength regions that have particularly high rates of absorption.
The wavelengths are uniformly spaced along the x-axis, whereas the y-axis indicates the
rate of absorption, also on a linear scale. We can use time series analysis to compare
curves, such as the one above, to one another.

Government time series data sets
The US government has been a reliable provider of time series data for decades, or
even centuries. For example, the NOAA National Centers for Environmental Infor‐
mation publishes a variety of time series data relating to temperatures and precipita‐
tion at granularities as fine as every 15 minutes for all weather stations across the
country. The Bureau of Labor Statistics publishes a monthly index of the national
unemployment rate. The Centers for Disease Control and Prevention publishes
weekly flu case counts during the flu season. The Federal Reserve Bank of St. Louis
offers a particularly generous and helpful set of economic time series data.

For initial forays into time series analysis, I recommend that you access these real-
world government data sets only for exploratory analysis and visualization. It can be
difficult to learn on these data sets because they present extremely complicated prob‐
lems. For example, many economists spend their entire careers trying to predict the
unemployment rate in advance of its official publication, with only limited success.

For the important but intractable problems faced by governments, predicting the
future would not only be socially beneficial but also highly remunerative. Many smart
and well-trained people are attacking these problems even as the state of the art
remains somewhat disappointing. It is great to work on difficult problems, but it is
not a good idea to learn on such problems.
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Found Time Series in Government Data
It’s not difficult to find a variety of timely and promising data sets from government
websites, such as those just mentioned. However, there is also a lot of potential for
found time series in government data. For example, imagine laying out parallel time
series for economics and climate, or correlating different crimes with government
spending patterns. That data would come from a variety of sources, and you would
need to integrate them.

You should be wary of working with found time series in government data sets for a
number of reasons. Recording conventions, column names, or even column defini‐
tions shift over time without accompanying documentation. Projects start and stop
depending on politics, budgets, and other exogenous considerations. Also data for‐
mats from government websites can be very messy, and are usually messier and less
continuous than comparable data sets in the private sector. This makes it particularly
challenging to construct found time series.

Additional helpful sources
While we cannot extensively cover all good sources of time series data, there are sev‐
eral other repositories that you should explore:

CompEngine
This “self organizing database of time-series data” has more than 25,000 time
series databases that total almost 140 million individual data points. The empha‐
sis of this repository, and the associated software it offers on its web interface, is
to facilitate and promote highly comparative time-series analysis (hctsa). The goal
of such analysis is to generate high-level insights and understanding of how
many kinds of temporal behavior can be understood without discipline-specific
data.

Mcomp and M4comp2018 R packages
These R packages provide the competition data from the 1982 M-competition
(1,001 time series), the M3 competition in 2000 (3,003 time series), and the M4
competition in 2018 (100,000 time series). These time series forecasting competi‐
tions were previously discussed in the Chapter 1 mention of Professor Rob
Hyndman’s history of time series forecasting. Additional time series forecasting
competition data is included in R’s tscompdata package. Finally, more specialized
time series data sets can also be found in a variety of packages described in the
CRAN repository listing of time series packages under the “Time Series Data”
header.
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2 SQL databases are traditional databases using a table-based mechanism of storing data. For example, if you
wanted to store customer transactions in a SQL database, you might have a table with customer information,
including a unique identifier, and another table with transactions, each one including one of those unique
customer identifiers.

Found Time Series
Earlier in the chapter, we discussed the concept of a found time series, which is time
series data we put together ourselves from data sources in the wild. More specifically,
such time series would be put together from individual data points recorded without
any special allowances for time series analysis but with enough information to con‐
struct a time series. Putting together a time series of transactions for a particular cus‐
tomer from a SQL database that stores a company’s transactions is a clean example.
In such a case, the time series could be constructed so long as a timestamp, or some
proxy for a timestamp, was saved in the database.2 We can also imagine other time
series constructed from the same data, such as a time series of total transaction vol‐
ume per day for the company or total dollar volume for female customers per week.
We can even imagine generating multivariate time series data, such as a time series
that would separately indicate total volume of all customers under 18 per week, total
dollars spent by women over 65 per week, and total ad spend by the company per
week. This would give us three indicators at each time step, a multivariate time series.

Finding time series data in structured data not explicitly stored as a time series can be
easy in the sense that timestamping is ubiquitous. Here are a few examples of where
you’ll see timestamps in your database:

Timestamped recordings of events
If there is a timestamp on your data, you have the potential to construct a time
series. Even if all you do is record the time a file was accessed with no other
information, you have a time series. For example, in that case, you could model
the delta time between timestamps with each marked according to its later time‐
stamp, so that your time series would consist of time on your temporal axis and
delta time on your value axis. You could go further, aggregating these delta times
as means or totals over larger periods, or you could keep them individually
recorded.

“Timeless” measurements where another measurement substitutes for time
In some cases, time is not explicit in data but is accounted for in the underlying
logic of the data set. For example, you may think of your data as “distance versus
value” when the distance is being caused by a known experimental parameter,
such as retracting a sensor from a position at a known rate. If you can map one of
your variables to time, you have a time series. Alternately, if one of your axes has
a known distance and ordering relationship (such as wavelength), you are also
looking at time series data such as the case of the wine spectra mentioned earlier.
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Physical traces
Many scientific disciplines record physical traces, be it for medicine, audiology,
or weather. These used to be physically generated traces collected via analog pro‐
cesses, but nowadays they are stored in a digital format. These are also time ser‐
ies, although they may stored in a format that doesn’t make this obvious, such as
in an image file or in a single vector within a single field of a database.

Retrofitting a Time Series Data Collection from a
Collection of Tables
The quintessential example of a found time series is one extracted from state-type
and event-type data stored in a SQL database. This is also the most relevant example
because so much data continues to be stored in traditional structured SQL databases.

Imagine working for a large nonprofit organization. You have been tracking a variety
of factors that could lend themselves to time series analysis:

• An email recipient’s reaction to emails over time: Did they open the emails or
not?

• A membership history: Were there periods when a member let their membership
lapse?

• Transaction history: When does an individual buy and can we predict this?

You could look at the data with several time series techniques:

• You can generate a 2D histogram of member responses to emails over time with
a member-specific time line to get an idea of whether members develop fatigue
from emails. (We’ll illustrate the use of 2D histograms for understanding time
series in Chapter 3.)

• You can turn donation predictions into a time series forecasting problem. (We’ll
discuss classic statistical forecasting in Chapter 4.)

• You could examine whether there are typical patterns of trajectories for member
behavior in important situations. For example, is there a typical pattern of events
that indicates when a member is about to leave your organization (perhaps three
email deletes in a row)? In time series analysis, you could frame this as detecting
a member’s underlying state based on external actions. (We’ll cover this when we
discuss state space methods of time series analysis in Chapter 7.)

As we can see, there are many time series questions and answers in a simple SQL
database. In many cases, organizations don’t plan for time series analysis when they
are designing their database schema. In such examples, we need to collect and assem‐
ble time series from disparate tables and sources.
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A Worked Example: Assembling a Time Series Data Collection
If you are lucky enough to have several related data sources available, you will need to
line them up together, possibly dealing with disparate timestamping conventions or
different levels of granularity in the data. Let’s create some numbers for the nonprofit
example we were using. Suppose you have data shown in Table 2-1 through
Table 2-3:

Table 2-1. The year each member joined and current status of membership
MemberId YearJoined MemberStatus
1 2017 gold
2 2018 silver
3 2016 inactive

Table 2-2. Number of emails you sent out in a given week that were opened by the member
MemberId Week EmailsOpened
2 2017-01-08 3
2 2017-01-15 2
1 2017-01-15 1

Table 2-3. Time a member donated to your organization
MemberId Timestamp DonationAmount
2 2017-05-22 11:27:49 1,000
2 2017-04-13 09:19:02 350
1 2018-01-01 00:15:45 25

You have likely worked with data in this tabular form. With such data, you can
answer many questions, such as how the overall number of emails opened by a mem‐
ber correlates with the overall donations.

You can also answer time-oriented questions, such as whether a member donates
soon after joining or long after. Without putting this data into a more time-series-
friendly format, however, you cannot get at more granular behaviors that might help
you predict when someone is likely to make a donation (say, based on whether they
have recently been opening emails).

You need to put this data into a sensible format for time series analysis. There are a
number of challenges you will need to address.

You should start by considering the temporal axes of the data we have. In the preced‐
ing tables we have three levels of temporal resolution:

• A yearly member status
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• A weekly tally of emails opened
• Instantaneous timestamps of donations

You will also need to examine whether the data means what you think it means. For
example, you would want to determine whether the member status is a yearly status
or just the most recent status. One way to answer this is to check whether any mem‐
ber has more than one entry:

## python 
>>> YearJoined.groupby('memberId').count().
                   groupby('memberStats').count()

1000

Here we can see that all 1,000 members have only one status, so that the year they
joined is indeed likely to be the YearJoined, accompanied by a status that may be the
member’s current status or status when they joined. This distinction affects how you
would use the status variable, so if you were going to analyze this data further you’d
want to clarify with someone who knows the data pipeline. If you were applying a
member’s current status to an analysis of past data, that would be a lookahead
because you would be inputting something into a time series model that could not be
known at the time. This is why you would not want to use a status variable, such as
YearJoined, without knowing when it was assigned.

What Is a Lookahead?
The term lookahead is used in time series analysis to denote any knowledge of the
future. You shouldn’t have such knowledge when designing, training, or evaluating a
model. A lookahead is a way, through data, to find out something about the future
earlier than you ought to know it.

A lookahead is any way that information about what will happen in the future might
propagate back in time in your modeling and affect how your model behaves earlier
in time. For example, when choosing hyperparameters for a model, you might test
the model at various times in your data set, then choose the best model and start at
the beginning of your data to test this model. This is problematic because you chose
the model for one time knowing things that would happen at a subsequent time—a
lookahead.

Unfortunately, there is no automated code or statistical test for a lookahead, so it is
something you must be vigilant and thoughtful about.

Looking at the emails table, both the column name week and its contents suggest that
the data is a weekly timestamp or time period. This must be an aggregate over the
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week, so we should think of these timestamps as weekly periods rather than time‐
stamps occurring one week apart.

You should assess some important characteristics. For example, you could start by
asking how the weeks are reported in time. While we may not have information to
restructure the table, if the week is divided in a somewhat strange way relative to our
industry, we might want to know about this too. For analyzing human activities, it
generally makes sense to look at the calendar week of Sunday through Saturday or
Monday through Sunday rather than weeks that are less in line with the cycle of
human activity. So, for example, don’t arbitrarily start your week with January 1st.

You could also ask whether null weeks are reported? That is, do the weeks in which
the member opened 0 emails have a place in the table? This matters when we want to
do time-oriented modeling. In such cases we need to always have the null weeks
present in the data because a 0 week is still a data point.

## python
>>> emails[emails.EmailsOpened < 1]

Empty DataFrame
Columns: [EmailsOpened, member, week]
Index: []

There are two possibilities: either nulls are not reported or members always have at
least one email event. Anyone who has worked with email data knows that it’s diffi‐
cult to get people to open emails, so the hypothesis that members always open at least
one email per week is quite unlikely. In this case, we can resolve this by looking at the
history of just one user:

## python
>>> emails[emails.member == 998]
      EmailsOpened member  week
25464  1           998   2017-12-04
25465  3           998 2017-12-11
25466  3           998 2017-12-18
25467  3           998 2018-01-01
25468  3           998 2018-01-08
25469  2           998 2018-01-15
25470  3           998 2018-01-22
25471  2           998 2018-01-29
25472  3           998 2018-02-05
25473  3           998 2018-02-12
25474  3           998 2018-02-19
25475  2           998 2018-02-26
25476  2           998 2018-03-05

We can see that some weeks are missing. There aren’t any December 2017 email
events after December 18, 2017.
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We can check this more mathematically by calculating how many weekly observa‐
tions we should have between the first and last event for that member. First we calcu‐
late the length of the member’s tenure, in weeks:

## python
>>> (max(emails[emails.member == 998].week) - 
                     min(emails[emails.member == 998].week)).days/7
25.0

Then we see how many weeks of data we have for that member:
## python
>>> emails[emails.member == 998].shape
(24, 3)

We have 24 rows here, but we should have 26. This shows some weeks of data are
missing for this member. Incidentally, we could also run this calculation on all mem‐
bers simultaneously with group-by operations, but it’s more approachable to think
about just one member for example purposes.

Why 26 Rows?
You may be surprised that we need 26 instead of 25 given the subtraction we just per‐
formed, but that was an incomplete calculation. When you work with time series
data, one thing you should always ask yourself after doing this kind of subtraction is
whether you should add 1 to account for the offset at the end. In other words, did you
subtract the positions you wanted to count?

Consider this example. Let’s say I have information for April 7th, 14th, 21st, and
28th. I want to know how many data points I should have in total. Subtracting 7 from
28 and dividing by 7 yields 21/7 or 3. However, I should obviously have four data
points. I subtracted out April 7th and need to put it back in, so the proper calculation
is the difference between the first and last days divided by 7, plus 1 to account for the
subtracted start date.

We’ll move on to filling in the blanks so that we have a complete data set now that we
have confirmed we do indeed have missing weeks. We can’t be sure of identifying all
missing weeks, since some may have occurred before our earliest recorded date or
after our last recorded date. What we can do, however, is fill in the missing values
between the first and last time a member had a non-null event.

It’s a lot easier to fill in all missing weeks for all members by exploiting Pandas’
indexing functionality, rather than writing our own solution. We can generate a
MultiIndex for a Pandas data frame, which will create all combinations of weeks and
members—that is, a Cartesian product:
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## python
>>> complete_idx = pd.MultiIndex.from_product((set(emails.week),
                                      set(emails.member)))

We use this index to reindex the original table and fill in the missing values—in this
case with 0 on the assumption that nothing recorded means there was nothing to
record. We also reset the index to make the member and week information available
as columns, and then name those columns:

## python
>>> all_email = emails.set_index(['week', 'member']).
                             reindex(complete_idx, fill_value = 0).
                             reset_index()
>>> all_email.columns = ['week', 'member', 'EmailsOpened']

Let’s take a look at member 998 again:
## python
>>> all_email[all_email.member == 998].sort_values('week')
  week     member EmailsOpened
2015-02-09 998    0
2015-02-16 998    0
2015-02-23 998    0
2015-03-02 998    0
2015-03-09 998    0

Python’s Pandas
Pandas is a data frame analysis package in Python that is used widely in the data sci‐
ence community. Its very name indicates its suitability for time series analysis: “Pan‐
das” refers to “panel data,” which is what social scientists call time series data.

Pandas is based on tables of data with row and column indices. It has SQL-like opera‐
tions built in, such as group by, row selection, and key indexing. It also has time ser‐
ies–specific functionality, such as indexing by time period, downsampling, and time-
based grouping operations.

If you are unfamiliar with Pandas, I strongly recommend looking at a brief overview,
such as that provided in the official documentation.

Notice that we have a large number of zeros at the start. These are likely before the
member joined the organization, so they would not have been on an email list. There
are not too many kinds of analyses where we’d want to keep the member’s truly null
weeks around—specifically those weeks before the member ever indicated opening
an email. If we had the precise date a member started receiving emails, we would
have an objective cutoff. As it is, we will let the data guide us. For each member we
determine the start_date and end_date cutoffs by grouping the email DataFrame
per member and selecting the maximum and minimum week values:
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## python
>>> cutoff_dates = emails.groupby('member').week.
                           agg(['min', 'max']).reset_index)
>>> cutoff_dates = cutoff_dates.reset_index()

We drop rows from the DataFrame that don’t contribute sensibly to the chronology,
specifically 0 rows before each member’s first nonzero count:

## python
>>> for _, row in cutoff_dates.iterrows(): 
>>>   member     = row['member']
>>>   start_date = row['min']
>>>   end_date   = row['max'] 
>>>   all_email.drop(
              all_email[all_email.member == member]
             [all_email.week < start_date].index, inplace=True) 
>>>   all_email.drop(all_email[all_email.member == member]
             [all_email.week > end_date].index, inplace=True)

< or <= ?

We use the < and > operations, without equality, because the
start_date and end_date are inclusive of the meaningful data
points and because we are dropping data, not retaining data, as our
code is written. In this case we want to include those weeks in our
analysis because they were the first and last meaningful data points.

You will do well to work with your data engineers and database administrators to
convince them to store the data in a time aware manner, especially with respect to
how timestamps are created and what they mean. The more you can solve problems
upstream, the less work you have to do downstream in the data pipeline.

Now that we have cleaned up our email data, we can consider new questions. For
example, if we want to think about the relationship of member email behavior to
donations, we can do a few things:

• Aggregate the DonationAmount to weekly so that the time periods are compara‐
ble. Then it becomes reasonable to ask whether donations correlate in some way
to member responses to emails.

• Treat the prior week’s EmailsOpened as a predictor for a given week’s DonationA
mount. Note that we have to use the prior week because EmailsOpened is a sum‐
mary statistic for the week. If we want to predict a Wednesday donation, and our
EmailsOpened summarizes email opening behavior from Monday to Sunday,
then using the same week’s information will potentially give us information
about what the member did subsequent to when we could have known it (for
example, whether they opened an email on the Friday after the donation).
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Constructing a Found Time Series
Consider how to relate the email and donations data to one another. We can down‐
sample the donation data to turn it into a weekly time series, comparable to the email
data. As an organization, we are interested in the total weekly amounts, so we aggre‐
gate the timestamps into weekly periods by summing. More than one donation in a
week is unlikely, so the weekly donation amounts will reflect the individual donation
amounts for most donors.

## python
>>> donations.timestamp = pd.to_datetime(donations.timestamp)
>>> donations.set_index('timestamp', inplace = True)
>>> agg_don = donations.groupby('member').apply(
              lambda df: df.amount.resample("W-MON").sum().dropna())

In this code we first convert a string character to a proper timestamped data class so
as to benefit from Pandas’ built-in date-related indexing. We set the timestamp as an
index, as is necessary for resampling a data frame. Finally for the data frame that we
obtain from subsetting down to each member, we group and sum donations by week,
drop weeks that do not have donations, and then collect these together.

Note that we resampled with an anchored week so that we will match the same
weekly dates we already have in our email table. Note also that a week anchored to
“Monday” makes sense from a human perspective.

We now have donation information and email information sampled at the same fre‐
quency, and we can join them. Pandas makes this simple so long as we anchor the
weeks to the same day of the week, as we’ve done already. We can iterate through
each member and merge the data frames per member:

## python
>>> for member, member_email in all_email.groupby('member'):
>>>     member_donations = agg_donations[agg_donations.member 
                                         == member]

>>>   member_donations.set_index('timestamp', inplace = True) 
>>>   member_email.set_index    ('week', inplace = True) 

>>>   member_email = all_email[all_email.member == member]
>>>   member_email.sort_values('week').set_index('week') 

>>>   df = pd.merge(member_email, member_donations, how = 'left', 
                      left_index = True, 
                      right_index = True)
>>>   df.fillna(0) 

>>>   df['member'] = df.member_x 
>>>   merged_df = merged_df.append(df.reset_index()
                       [['member', 'week', 'emailsOpened', 'amount']])
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We now have our email and donations data lined up per member. For each member
we include only meaningful weeks, and not weeks that appear to be before or after
their membership period.

We might treat the email behavior as a “state” variable relative to the donation behav‐
ior, but we probably want to carry forward the state from the previous week so as to
avoid a lookahead. Suppose, for example, we were building a model that uses email
behavior to predict a member’s next donation. In this case we might consider looking
at the pattern of email opening over time as a possible indicator. We would need to
line up a given week’s donation with the previous week’s email behavior. We can
easily take our data, processed to align week-to-week, and then shift by the appropri‐
ate number of weeks. If, say, we want to shift the donation a week forward, we can
easily do so with the shift operator, although we would need to be sure to do this on a
per-member basis:

## python
>>> df = merged_df[merged_df.member == 998]
>>> df['target'] = df.amount.shift(1)
>>> df = df.fillna(0)
>>> df

It’s good practice to store this target in a new column rather than overwrite the old,
particularly if you are not also bringing forward the timestamp for the donation
amount separately. We have shifted the donation amount one week into the future
using Pandas’ built-in shift functionality. You can also shift back in time with nega‐
tive numbers. Generally you will have more predictors than targets, so it makes sense
to shift your targets. We can see the outcome of the code here:

amount   emailsOpened   member    week         target
 0        1            998   2017-12-04      0
 0        3            998   2017-12-11      0
 0        3            998   2017-12-18      0
 0        0            998   2017-12-25      0
 0        3            998   2018-01-01      0
50        3            998   2018-01-08      0
 0        2            998   2018-01-15     50

Now that we have filled in the missing rows, we have the desired 26 rows for member
998. Our data is now cleaner and more complete.

To recap, these are the time-series-specific techniques we used to restructure the
data:

1. Recalibrate the resolution of our data to suit our question. Often data comes with
more specific time information than we need.

2. Understand how we can avoid lookahead by not using data for timestamps that
produce the data’s availability.
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3. Record all relevant time periods even if “nothing happened.” A zero count is just
as informative as any other count.

4. Avoid lookahead by not using data for timestamps that produce information we
shouldn’t yet know about.

So far, we have created raw found time series by aligning our donation and email
time series to be sampled for the same points in time and at the same frequency.
However, we haven’t done a thorough job of cleaning up this data or fully exploring
before analysis. That’s something we’ll do in Chapter 3.

Timestamping Troubles
Timestamps are quite helpful for time series analysis. From timestamps, we can
extrapolate a number of interesting features, such as time of day or day of the week.
Such features can be important to understanding your data, especially for data con‐
cerning human behavior. However, timestamps are tricky. Here we discuss some of
the difficulties of timestamped data.

Whose Timestamp?
The first question you should ask when seeing a timestamp is what process generated
the timestamp, how, and when. Often an event happening is not coincident with an
event being recorded. For example, a researcher might write something down in their
notebook and later transcribe it to a CSV file used as a log. Does the timestamp indi‐
cate when they wrote it down or when they transcribed it to the CSV file? Or a
mobile app user may take actions that trigger logging when their phone is offline, so
that the data is only later uploaded to your server with some combination of time‐
stamps. Such timestamps could reflect when the behavior took place, when the action
was recorded by the app, when the metadata was uploaded to the server, or when the
data was last accessed for download from the server back to the app (or any number
of other events along the data pipeline).

Timestamps may appear at first to offer clarity but this quickly falls away if proper
documentation is lacking. When you’re looking at novel timestamps, your first step
should always be to find out as best you can what established the time of an event.

A concrete example will illustrate these difficulties. Suppose you are looking at data
taken from a mobile app for weight loss and see a meal diary with entries such as
those in Table 2-4.
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Table 2-4. Sample meal diary from a weight loss app
Time Intake
Mon, April 7, 11:14:32 pancakes
Mon, April 7, 11:14:32 sandwich
Mon, April 7, 11:14:32 pizza

It’s possible this user had pancakes, a sandwich, and a pizza all at once, but there are
more likely scenarios. Did the user specify this time or was it automatically created?
Does the interface perhaps offer an automatic time that the user can adjust or choose
to ignore? Some answers to these questions would explain the identical timestamps
better than the possibility that a user trying to lose weight would have had pancakes
with a side of pizza and a sandwich appetizer.

Even if the user did have all these foods at 11:14, where in the world was it 11:14?
Was this the user’s local time or a global clock? Even in the unlikely case that the user
had all this food at one meal, we still don’t know very much about the temporal
aspect of the meal from these rows alone. We don’t know if this was breakfast, lunch,
dinner, or a snack. To say something interesting to the user, we’d want to be able to
talk in concrete terms about local hour of the day, which we can’t do without time
zone information.

The best way to address these questions is to see all the code that collects and stores
the data or talk to the people who wrote that code. After going through all available
human and technical data specifications on the system, you should also try the full
system out yourself to ensure that the data behaves as you have been told it does. The
better you understand your data pipeline, the less likely you are to ask the wrong
questions because your timestamps don’t really mean what you think they do.

You bear the ultimate responsibility for understanding the data. People who work
upstream in the pipeline don’t know what you have in mind for analysis. Try to be as
hands-on as possible in assessing how timestamps are generated. So, if you are ana‐
lyzing data from a mobile app pipeline, download the app, trigger an event in a vari‐
ety of scenarios, and see what your own data looks like. You’re likely to be surprised
about how your actions were recorded after speaking to those who manage the data
pipeline. It’s hard to track multiple clocks and contingencies, so most data sets will
flatten the temporal realities. You need to know exactly how they do so.

Guesstimating Timestamps to Make Sense of Data
If you are dealing with legacy data pipelines or undocumented data, you may not
have the option of exploring a working pipeline and talking to those who maintain it.
You will need to do some empirical investigation to understand whether you can
make inferences about what the timestamps mean:
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• Reading the data as we did in the previous example, you can generate initial
hypotheses about what the timestamps mean. In the preceding case, look at data
for multiple users to see whether the same pattern (multiple rows with identical
timestamps and improbable single meal contents) held or whether this was an
anomaly.

• Using aggregate-level analyses, you can test hypotheses about what timestamps
mean or probably mean. For the preceding data, there are a couple of open
questions:
— Is the timestamp local or universal time?
— Does the time reflect a user action or some external constraint, such as

connectivity?

Local or Universal Time?
Most timestamps are stored in universal (UTC) time or in a single time zone,
depending on the server’s location but independent of the user’s location. It is quite
unusual to store data according to local time. However, we should consider both pos‐
sibilities, because both are found in “the wild.”

We form the hypothesis that if the time is a local timestamp (local to each user), we
should see daily trends in the data reflecting daytime and nighttime behavior. More
specifically, we should expect not to see much activity during the night when our
users are sleeping. For our mobile app example, if we create a histogram of meal time
counts per hour, there should be hours with significantly fewer meals logged, because
in most cultures people don’t eat in the middle of the night.

If we did not see a day-oriented pattern in the hours as displayed, we could conclude
that the data was most likely timestamped by some universal clock and that the user
base must be spread out across many time zones. In such a case, it would be quite
challenging to extrapolate individual users’ local hours (assuming time zone informa‐
tion wasn’t available). We might consider individual explorations per user to see if we
could code heuristics to label users approximately by time zone, but such work is
both computationally taxing and also not always accurate.

Even if you cannot pinpoint an exact user time zone, it’s still useful to have a global
timestamp available. For starters, you can determine likely usage patterns for your
app’s servers, knowing when meals are most frequently logged at a given time of day
and day of the week. You can also calculate the time differential between each meal
the user recorded, knowing that since the timestamps are in absolute time, you don’t
need to worry about whether the user changed time zones. In addition to sleuthing,
this would be interesting as a form of feature generation:
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## python
>>> df['dt'] = df.time - df.time.shift(-1)

The dt column would be a feature you could pass forward in your analysis. Using this
time differential could also give you an opportunity to estimate each user’s time zone.
You could look at the time of day when the user generally had a long dt, which could
point to when nighttime occurs for that user. From there you could begin to figure
out each individual’s “nighttime” without having to do peak-to-peak-style analysis.

User behavior or network behavior?
To return to another question posed by our short data sample, we asked whether our
user had a strange meal or whether our timestamps relate to upload activity.

The same analyses used to pinpoint a user’s time zone are applicable to determining
whether the timestamps are a function of user or network behavior. Once you had a
dt column (as previously calculated), you could look for clusters of 0s and qualita‐
tively determine whether they were likely a single behavioral event or a single net‐
work event. You could also look at whether the dts appeared to be periodic across
different days. If they were a function of user behavior, they would be more likely to
be periodic than if they were a function of network connectivity or other software-
related behaviors.

To summarize, here are some questions you could likely address with the available
data set, even with little or no information about how timestamps are generated:

• Use differences in timestamps per user to get a sense of spacing between meals or
spacing between data entries (depending on your working hypothesis of what the
times indicate, a user behavior or a network behavior).

• Describe aggregate user behavior to determine when your servers are most likely
to be active in the 24-hour cycle.

Time Zones
In the best-case scenario, your data is timestamped in UTC time. Most databases and
other storage systems will default to this. However, there are some situations in which
you are likely to run into data that is not UTC timestamped:

• Timestamps created in ways that did not use date-specific data objects, such as
API calls. Such API calls use strings rather than time-specific objects.

• Data created “by hand” in small, local organizations where time zones are not
relevant, such as spreadsheets generated by business analysts or field biologists.
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What’s a Meaningful Time Scale?
You should take the temporal resolution of the timestamping you receive with a grain
of salt, based on domain knowledge about the behavior you are studying and also
based on the details you can determine relating to how the data was collected.

For example, imagine you are looking at daily sales data, but you know that in many
cases managers wait until the end of the week to report figures, estimating rough
daily numbers rather than recording them each day. The measurement error is likely
to be substantial due to recall problems and innate cognitive biases. You might con‐
sider changing the resolution of your sales data from daily to weekly to reduce or
average out this systematic error. Otherwise, you should build a model that factors in
the possibility of biased errors across different days of the week. For example, it may
be that managers systematically overestimate their Monday performance when they
report the numbers on a Friday.

Psychological Time Discounting

Time discounting is a manifestation of a phenomenon known as
psychological distance, which names our tendency to be more opti‐
mistic (and less realistic) when making estimates or assessments
that are more “distant” from us. Time discounting predicts that
data reported from further in the past will be biased systematically
compared to data reported from more recent memory. This is dis‐
tinct from the more general problem of forgetting and implies a
nonrandom error. You should keep this in mind whenever you are
looking at human-generated data that was entered manually but
not contemporaneously with the event recorded.

Another situation involves physical knowledge of the system. For example, there is a
limit to how quickly a person’s blood glucose can change, so if you are looking at a
series of blood glucose measurements within seconds of one another, you should
probably average them rather than treating them as distinct data points. Any physi‐
cian will tell you that you are studying the error of the device rather than the rate of
change of blood glucose if you are looking at many measurements within a few sec‐
onds of one another.

Humans Know Time Is Passing

Whenever you are measuring humans, keep in mind that people
respond in more than one way to the passage of time. For example,
recent research shows how manipulating the speed of a clock that
is in a person’s view influences how quickly that person’s blood
glucose level changes.
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Cleaning Your Data
In this section we will tackle the following common problems in time series data sets:

• Missing data
• Changing the frequency of a time series (that is, upsampling and downsampling)
• Smoothing data
• Addressing seasonality in data
• Preventing unintentional lookaheads

Handling Missing Data
Missing data is surprisingly common. For example, in healthcare, missing data in
medical time series can have a number of causes:

• The patient didn’t comply with a desired measurement.
• The patient’s health stats were in good shape, so there was no need to take a par‐

ticular measurement.
• The patient was forgotten or undertreated.
• A medical device had a random technical malfunction.
• There was a data entry error.

To generalize at great peril, missing data is even more common in time series analysis
than it is in cross-sectional data analysis because the burden of longitudinal sampling
is particularly heavy: incomplete time series are quite common and so methods have
been developed to deal with holes in what is recorded.

The most common methods to address missing data in time series are:

Imputation
When we fill in missing data based on observations about the entire data set.

Interpolation
When we use neighboring data points to estimate the missing value. Interpola‐
tion can also be a form of imputation.

Deletion of affected time periods
When we choose not to use time periods that have missing data at all.

We will discuss imputations and interpolations as well as illustrate the mechanics of
these methods soon. We focus on preserving data, whereas a method such as deleting
time periods with missing data will result in less data for your model. Whether to
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preserve the data or throw out problematic time periods will depend on your use case
and whether you can afford to sacrifice the time periods in question given the data
needs of your model.

Preparing a data set to test missing data imputation methodologies
We will work with monthly unemployment data that has been released by the US
government since 1948 (this is freely available for download). We will then generate
two data sets from this baseline data: one in which data is truly missing at random,
and one in which are the highest unemployment months in the history of the time
series. This will give us two test cases to see how imputation behaves in the presence
of both random and systematic missing data.

We move to R for the next example. We will freely switch between
R and Python throughout the book. I assume you have some back‐
ground in working with data frames, as well as matrices, in both R
and Python.

## R
> require(zoo)        ## zoo provides time series functionality 
> require(data.table) ## data.table is a high performance data frame

> unemp <- fread("UNRATE.csv")
> unemp[, DATE := as.Date(DATE)]
> setkey(unemp, DATE)

> ## generate a data set where data is randomly missing
> rand.unemp.idx <- sample(1:nrow(unemp), .1*nrow(unemp))
> rand.unemp     <- unemp[-rand.unemp.idx]

> ## generate a data set where data is more likely 
> ## to be missing when unemployment is high
> high.unemp.idx <- which(unemp$UNRATE > 8)
> num.to.select  <- .2 * length(high.unemp.idx)
> high.unemp.idx <- sample(high.unemp.idx,)
> bias.unemp     <- unemp[-high.unemp.idx]

Because we have deleted rows from our data tables to create a data set with missing
data, we will need to read the missing dates and NA values, and for this the
data.table package’s rolling join functionality is quite useful.
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R’s data.table Package
R’s data.table package is a highly performant but woefully underutilized alternative
to R’s mainstream data.frame functionality. While many users are familiar with the
tidyverse selection of packages, data.table is a standalone package built only on
top of data.frame. It has many helpful functions for time series analysis. This is likely
due to its origins as a package developed by software engineers who worked in
finance and who needed highly performant R operations to work with financial data,
most often time series data.

While there is a steeper learning curve for data.table than for data.frame, I have
found this package invaluable in working with time series data in R, and so I use it
heavily throughout the book. I’ve provided a few quick examples of how data.table
works and may differ from data.frame here:

dt[, new.col := old.col + 7]

In this example, we assume that the original data.table has an old column called
old.col. We make a new column, in place, which means that we add a column to the
data.table without copying the entire data.table over to a new object, thereby
reducing memory use. You will see this operator := used frequently throughout the
book.

To access a subset of columns in a data.table, we will usually simply put them in a
list in the column indexing argument, which is the second argument to a data.table:

dt[, .(col1, col2, col3)]

This will return a subsetted data.table including only the col1, col2, and col3 val‐
ues. Notice the .() operator surrounding the column names. This is shorthand for
writing out list().

If we wish to do row selection rather than column selection, we use the first argument
to the data.table to subset on rows like so:

dt[col1 < 3 & col2 > 5]

This will return all columns of the data.table for which the two logic conditions
were met. And of course we can combine row and column selection, as follows:

dt[col1 < 3 & col2 > 5, .(col1, col2, col3)]

Finally, group-by operations are quite performant and fast. For example, to count the
number of rows in each group among the groups designated in col1, we could use
the following code.

dt[, .N, col1]

And if we wanted to do multiple operations on our grouped objects, we would again
make a list and could even name the columns:
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dt[, .(total = .N, mean = mean(col2), col1]

The above would, by groups as designated by col1, return the total number of rows
in the group and the mean of col2 for each group.

The data.table package is under active development, and it’s an invaluable tool for
time series analysis, particularly for large data sets. I strongly recommend reading the
official introduction to data.table.

## R
> all.dates <- seq(from = unemp$DATE[1], to = tail(unemp$DATE, 1), 
                                                  by = "months")
> rand.unemp = rand.unemp[J(all.dates), roll=0]
> bias.unemp = bias.unemp[J(all.dates), roll=0]
> rand.unemp[, rpt := is.na(UNRATE)]
## here we label the missing data for easy plotting

With a rolling join, we generate the sequence of all dates that should be available
between the start and end date of the data set. This gives us rows in the data set to fill
in as NA.

Now that we have data sets with missing values, we will take a look at a few specific
ways to fill in numbers for those missing values:

• Forward fill
• Moving average
• Interpolation

We will compare the performance of these methods in both the randomly missing
and systematically missing data sets. Since we have generated these data sets from a
complete data set, we can in fact determine how they did instead of speculating. In
the real world, of course, we will never have the missing data to check our data
imputation.

Rolling Joins
In data.table’s rolling join, we enjoy the benefit of a special spatially aware SQL-like
join designed for timestamps. Although tables will not always match exactly on their
timestamps, rolling joins can deal with timestamps intelligently.

## R
> ## we have a small data.table of donation dates
> donations <- data.table(
>   amt = c(99, 100, 5, 15, 11, 1200),
>   dt = as.Date(c("2019-2-27", "2019-3-2", "2019-6-13", 
>                  "2019-8-1", "2019-8-31", "2019-9-15"))
> )
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> ## we also have information on the dates of each
> ## publicity campaign
> publicity <- data.table(
>                 identifier = c("q4q42", "4299hj", "bbg2"),
>                 dt         = as.Date(c("2019-1-1", 
>                                         "2019-4-1", 
>                                         "2019-7-1")))
 

> ## we set the primary key on each data.table
> setkey(publicity, "dt")
> setkey(donations, "dt")

> ## we wish to label each donation according to
> ## what publicity campaign most recently preceded it
> ## we can easily see this with roll = TRUE
> publicity[donations, roll = TRUE]

This yields the following delightful output:
## R
> publicity[donations, roll = TRUE]
   identifier         dt  amt
1:      q4q42 2019-02-27   99
2:      q4q42 2019-03-02  100
3:     4299hj 2019-06-13    5
4:       bbg2 2019-08-01   15
5:       bbg2 2019-08-31   11
6:       bbg2 2019-09-15 1200

Each donation now is paired with the publicity identifier that indicates the campaign
that most immediately preceded the donation.

Forward fill
One of the simplest ways to fill in missing values is to carry forward the last known
value prior to the missing one, an approach known as forward fill. No mathematics or
complicated logic is required. Simply consider the experience of moving forward in
time with the data that was available, and you can see that at a missing point in time,
all you can be confident of is what data has already been recorded. In such a case, it
makes sense to use the most recent known measurement.

Forward fill can be accomplished easily using na.locf from the zoo package:
## R
> rand.unemp[, impute.ff := na.locf(UNRATE, na.rm = FALSE)]
> bias.unemp[, impute.ff := na.locf(UNRATE, na.rm = FALSE)]
> 
> ## to plot a sample graph showing the flat portions
> unemp[350:400, plot (DATE, UNRATE,    
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                          col = 1, lwd = 2, type = 'b')]
> rand.unemp[350:400, lines(DATE, impute.ff, 
                          col = 2, lwd = 2, lty = 2)]
> rand.unemp[350:400][rpt == TRUE, points(DATE, impute.ff, 
                          col = 2, pch = 6, cex = 2)]

This will result in a plot that looks natural except where you see repeated values to
account for missing data, as in Figure 2-6. As you will notice in the plot, the forward-
filled values usually do not deviate far from the true values.

Figure 2-6. The original time series plotted with a solid line and the time series with
forward filled values for randomly missing points plotted with a dashed line. The for‐
ward filled values are marked with downward pointing triangles.

We can also compare the values in the series by plotting the values of the series
against one another. That is, for each time step, we plot the true known value against
the value at the same time from the series with imputed values. Most values should
match exactly since most data is present. We see that manifested in the 1:1 line in
Figure 2-7. We also see scattered points off this line, but they do not appear to be
systematically off.
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Figure 2-7. Plotting the true unemployment rate versus the forward-filled series. This
plot shows that forward fill did not systematically distort the data.

Backward Fill

Just as you can bring values from the past forward to fill in missing
data, you can also choose to propagate values backward. However,
this is a case of a lookahead, so you should only do this when you
are not looking to predict the future from the data and when, from
domain knowledge, it makes more sense to fill in data backward
rather than forward in time.

In some settings, forward fill makes sense as the best way to complete missing data,
even if “fancier methods” are possible. For example, in medical settings, a missing
value often indicates that a medical worker did not think it necessary to remeasure a
value, likely because the patient’s measurement was expected to be normal. In many
medical cases, this means we could apply forward fill to missing values with the last
known value since this was the presumption motivating the medical worker not to
retake a measurement.

There are many advantages to forward fill: it is not computationally demanding, it
can be easily applied to live-streamed data, and it does a respectable job with imputa‐
tion. We will see an example soon.

Moving average
We can also impute data with either a rolling mean or median. Known as a moving
average, this is similar to a forward fill in that you are using past values to “predict”
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missing future values (imputation can be a form of prediction). With a moving aver‐
age, however, you are using input from multiple recent times in the past.

There are many situations where a moving average data imputation is a better fit for
the task than a forward fill. For example, if the data is noisy, and you have reason to
doubt the value of any individual data point relative to an overall mean, you should
use a moving average rather than a forward fill. Forward filling could include random
noise more than the “true” metric that interests you, whereas averaging can remove
some of this noise.

To prevent a lookahead, use only the data that occurred before the missing data
point. So, your implementation would like something like this:

## R
> ## rolling mean without a lookahead
> rand.unemp[, impute.rm.nolookahead := rollapply(c(NA, NA, UNRATE), 3,
>              function(x) {
>                          if (!is.na(x[3])) x[3] else mean(x, na.rm = TRUE)
>                          })]         
> bias.unemp[, impute.rm.nolookahead := rollapply(c(NA, NA, UNRATE), 3,
>              function(x) {
>                          if (!is.na(x[3])) x[3] else mean(x, na.rm = TRUE)
>                          })]        

We set the value of the missing data to the mean of the values that come before it
(because we index off the final value and use this value to determine whether it is
missing and how to replace it).

A moving average doesn’t have to be an arithmetic average. For
example, exponentially weighted moving averages would give more
weight to recent data than to past data. Alternately, a geometric
mean can be helpful for time series that exhibit strong serial corre‐
lation and in cases where values compound over time.

When imputing missing data with a moving average, consider whether you need to
know the value of the moving average with only forward-looking data, or whether
you are comfortable building in a lookahead. If you are unconcerned about a look‐
ahead, your best estimate will include points both before and after the missing data
because this will maximize the information that goes into your estimates. In that case,
you can implement a rolling window, as illustrated here with the zoo package’s roll
apply() functionality:

## R
> ## rolling mean with a lookahead
> rand.unemp[, complete.rm := rollapply(c(NA, UNRATE, NA), 3,
>             function(x) {
>                         if (!is.na(x[2])) 
>                             x[2]                               

Cleaning Your Data | 47



>                         else 
>                             mean(x, na.rm = TRUE)
>                         })]         

Using both past and future information is useful for visualizations and recordkeeping
applications, but, as mentioned before, it is not appropriate if you are preparing your
data to be fed into a predictive model.

The results for both a forward-looking moving average and a moving average com‐
puted with future and past data are shown in Figure 2-8.

Figure 2-8. The dotted line shows the moving average imputation without a lookahead,
while the dashed line shows the moving average imputation with a lookahead. Like‐
wise, the squares show the nonlookahead imputed points while the upside down trian‐
gles show the moving average with a lookahead.

A rolling mean data imputation reduces variance in the data set. This is something
you need to keep in mind when calculating accuracy, R² statistics, or other error met‐
rics. Your calculation may overestimate your model’s performance, a frequent prob‐
lem when building time series models.

Using a Data Set’s Mean to Impute Missing Data

In a cross-sectional context, it is common to impute missing data
by filling in the mean or median for that variable where it is miss‐
ing. While this can be done with time series data, it is not appropri‐
ate for most cases. Knowing the mean for the data set involves
looking into the future…and that’s a lookahead!
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Interpolation
Interpolation is a method of determining the values of missing data points based on
geometric constraints regarding how we want the overall data to behave. For exam‐
ple, a linear interpolation constrains the missing data to a linear fit consistent with
known neighboring points.

Linear interpolation is particularly useful and interesting because it allows you to use
your knowledge of how your system behaves over time. For example, if you know a
system behaves in a linear fashion, you can build that knowledge in so that only lin‐
ear trends will be used to impute missing data. In Bayesian speak, it allows you to
inject a prior into your imputation.

As with a moving average, interpolation can be done such that it is looking at both
past and future data or looking in only one direction. The usual caveats apply: allow
your interpolation to have access to future data only if you accept that this creates a
lookahead and you are sure this is not a problem for your task.

Here we apply interpolation using both past and future data points (see Figure 2-9):
## R
> ## linear interpolation
> rand.unemp[, impute.li := na.approx(UNRATE)]
> bias.unemp[, impute.li := na.approx(UNRATE)]
> 
> ## polynomial interpolation
> rand.unemp[, impute.sp := na.spline(UNRATE)]
> bias.unemp[, impute.sp := na.spline(UNRATE)]
> 
> use.idx = 90:120
> unemp[use.idx, plot(DATE, UNRATE, col = 1, type = 'b')]
> rand.unemp[use.idx, lines(DATE, impute.li, col = 2, lwd = 2, lty = 2)]
> rand.unemp[use.idx, lines(DATE, impute.sp, col = 3, lwd = 2, lty = 3)]
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Figure 2-9. The dashed line shows the linear interpolation while the dotted line shows
the spline interpolation.

There are many situations where a linear (or spline) interpolation is appropriate.
Consider mean average weekly temperature where there is a known trend of rising or
falling temperatures depending on the time of year. Or consider yearly sales data for a
growing business. If the trend has been for business volume to increase linearly from
year to year, it is a reasonable data imputation to fill in missing data based on that
trend. In other words, we could use a linear interpolation, which would account for
the trend, rather than a moving average, which would not. If there were a trend of
increasing values, the moving average would systematically underestimate the miss‐
ing values.

There are also plenty of situations for which linear (or spline) interpolation is not
appropriate. For example, if you are missing precipitation data in a weather data set,
you should not extrapolate linearly between the known days; as we all know, that’s
not how precipitation works. Similarly, if we are looking at someone’s hours of sleep
per day but are missing a few days of data, we should not linearly extrapolate the
hours of sleep between the last known days. As an example, one of the known end‐
points might include an all-nighter of studying followed by a 30-minute catnap. This
is unlikely to estimate the missing data.

Overall comparison
Now that we have performed a few different kinds of imputations, we can take a look
at the results to compare how the different data imputations behaved on this data set.
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We generated two data sets with missing data, one in which data was missing at ran‐
dom and another in which unfavorable data points (high unemployment) were miss‐
ing. When we compare the methods we employed to see which yields the best results,
we can see that the mean square error can differ by a high percentage:

## R
> sort(rand.unemp[ , lapply(.SD, function(x) mean((x - unemp$UNRATE)^2,
>              na.rm = TRUE)),
>          .SDcols = c("impute.ff", "impute.rm.lookahead", 
>                      "impute.rm.nolookahead", "impute.li", 
>                      "impute.sp")])
impute.li   impute.rm.lookahead   impute.sp   impute.ff   impute.rm.nolookahead
0.0017      0.0019           0.0021      0.0056      0.0080
         
> sort(bias.unemp[ , lapply(.SD, function(x) mean((x - unemp$UNRATE)^2,
>               na.rm = TRUE)),
>          .SDcols = c("impute.ff", "impute.rm.lookahead", 
>                      "impute.rm.nolookahead", "impute.li", 
>                      "impute.sp")])
impute.sp    impute.li   impute.rm.lookahead  impute.rm.nolookahead   impute.ff
0.0012       0.0013      0.0017               0.0030                  0.0052

Remember that many of the preceding methods include a lookahead. The only meth‐
ods that do not are the forward fill and the moving average without a lookahead
(there is also a moving average with a lookahead). For this reason, it’s not surprising
that there is a range of difference in errors and that the methods without a lookahead
do not perform as well as the others.

Final notes
Here we covered the simplest and most often-used methods of missing data imputa‐
tion for time series applications. Data imputation remains an important area of data
science research. The more significant the decisions you are making, the more
important it is to carefully consider to the potential reasons for data to be missing
and the potential ramifications of your corrections. Here are a few cautionary tips
you should keep in mind:

• It is impossible to prove that data is truly missing at random, and it is unlikely
that missingness is truly random in most real-world occurrences.

• Sometimes the probability that a measurement is missing is explainable by the
variables you have measured, but sometimes not. Wide data sets with many fea‐
tures are the best way to investigate possible explanations for patterns of missing
data, but these are not the norm for time series analysis.

• When you need to understand the uncertainty introduced by imputing values to
missing data, you should run through a variety of scenarios and also speak to as
many people involved in the data collection process as possible.
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• How you handle missing data should account for your downstream use of that
data. You must guard carefully against lookaheads or decide how seriously a
lookahead will affect the validity of your subsequent work.

Upsampling and Downsampling
Often, related time series data from different sources will not have the same sampling
frequency. This is one reason, among many, that you might wish to change the sam‐
pling frequency of your data. Of course you cannot change the actual rate at which
information was measured, but you can change the frequency of the timestamps in
your data collection. This is called upsampling and downsampling, for increasing or
decreasing the timestamp frequency, respectively.

We downsampled temporal data in “Retrofitting a Time Series Data Collection from
a Collection of Tables” on page 26. Here, we address the topic more generally, learn‐
ing the how’s and why’s of both downsampling and upsampling.

Downsampling is subsetting data such that the timestamps occur at
a lower frequency than in the original time series. Upsampling is
representing data as if it were collected more frequently than was
actually the case.

Downsampling
Anytime you reduce frequency of your data, you are downsampling. This is most
often done in the following cases.

The original resolution of the data isn’t sensible.    There can be many reasons that the
original granularity of the data isn’t sensible. For example, you may be measuring
something too often. Suppose you have a data set where someone had measured the
outside air temperature every second. Common experience dictates that this meas‐
urement is unduly frequent and likely offers very little new information relative to
the additional data storage and processing burden. In fact, it’s likely the measurement
error could be as large as the second-to-second air temperature variation. So, you
likely don’t want to store such excessive and uninformative data. In this case—that is,
for regularly sampled data—downsampling is as simple as selecting out every nth
element.

Focus on a particular portion of a seasonal cycle.    Instead of worrying about seasonal data
in a time series, you might choose to create a subseries focusing on only one season. 
For example, we can apply downsampling to create a subseries, as in this case, where
we generate a time series of January measurements out of what was originally a
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monthly time series. In the process, we have downsampled the data to a yearly
frequency.

## R
> unemp[seq.int(from = 1, to = nrow(unemp), by = 12)]
DATE         UNRATE
1948-01-01    3.4
1949-01-01    4.3
1950-01-01    6.5
1951-01-01    3.7
1952-01-01    3.2
1953-01-01    2.9
1954-01-01    4.9
1955-01-01    4.9
1956-01-01    4.0
1957-01-01    4.2

Match against data at a lower frequency.    You may want to downsample data so that you
can match it with other low-frequency data. In such cases you likely want to aggre‐
gate the data or downsample rather than simply dropping points. This can be some‐
thing simple like a mean or a sum, or something more complicated like a weighted
mean, with later values given more weight. We saw earlier in the donation data the
idea of summing all donations over a single week, since it was the total amount dona‐
ted that was likely to be most interesting.

In contrast, for our economic data, what is most likely to be interesting is a yearly
average. We use a mean instead of a rolling mean because we want to summarize the
year rather than get the latest value of that year to emphasize recency. (Note the dif‐
ference from data imputation.) We group by formatting the date into a string, repre‐
senting its year as an example of how you can creatively exploit SQL-like operations
for time series functionality:

## R
> unemp[, mean(UNRATE), by = format(DATE, "%Y")]
format   V1
1948    3.75
1949    6.05
1950    5.21
1951    3.28
1952    3.03
1953    2.93
1954    5.59
1955    4.37
1956    4.13
1957    4.30

Upsampling
Upsampling is not simply the inverse of downsampling. Downsampling makes inher‐
ent sense as something that can be done in the real world; it’s simple to decide to

Cleaning Your Data | 53



measure less often. In contrast, upsampling can be like trying to get something for
free—that is, not taking a measurement but still somehow thinking you can get high-
resolution data from infrequent measurements. To quote the author of the popular R
time series package XTS:

It is not possible to convert a series from a lower periodicity to a higher periodicity -
e.g., weekly to daily or daily to 5 minute bars, as that would require magic.

However, there are legitimate reasons to want to label data at a higher frequency than
its default frequency. You simply need to keep in mind the data’s limitations as you
do so. Remember that you are adding more time labels but not more information.

Let’s discuss a few situations where upsampling can make sense.

Irregular time series.    A very common reason to upsample is that you have an irregu‐
larly sampled time series and you want to convert it to a regularly timed one. This is a
form of upsampling because you are converting all the data to a frequency that is
likely higher than indicated by the lags between your data. If you are upsampling for
this reason, you already know how to do it with a rolling join, as we did this in the
case of filling in missing economic data, via R:

## R
> all.dates <- seq(from = unemp$DATE[1], to = tail(unemp$DATE, 1),
>                  by = "months")
> rand.unemp = rand.unemp[J(all.dates), roll=0]

Inputs sampled at different frequencies.    Sometimes you need to upsample low-
frequency information simply to carry it forward with your higher-frequency infor‐
mation in a model that requires your inputs to be aligned and sampled
contemporaneously. You must be vigilant with respect to lookahead, but if we
assume that known states are true until a new known state comes into the picture, we
can safely upsample and carry our data forward. For example, suppose we know it’s
(relatively) true that most new jobs start on the first of the month. We might decide
we feel comfortable using the unemployment rate for a given month indicated by the
jobs report for the entire month (not considering it a lookahead because we make the
assumption that the unemployment rate stays steady for the month).

## R
> daily.unemployment = unemp[J(all.dates), roll = 31]
> daily.unemployment
   DATE      UNRATE
1948-01-01    3.4
1948-01-02    3.4
1948-01-03    3.4
1948-01-04    3.4
1948-01-05    3.4
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Knowledge of time series dynamics.    If you have underlying knowledge of the usual tem‐
poral behavior of a variable, you may also be able to treat an upsampling problem as a
missing data problem. In that case, all the techniques we’ve discussed already still
apply. An interpolation is the most likely way to produce new data points, but you
would need to be sure the dynamics of your system could justify your interpolation
decision.

As discussed earlier, upsampling and downsampling will routinely happen even in
the cleanest data set because you will almost always want to compare variables of dif‐
ferent timescales. It should also be noted that Pandas has particularly handy upsam‐
pling and downsampling functionality with the resample method.

Smoothing Data
Smoothing data can be done for a variety of reasons, and often real-world time series
data is smoothed before analysis, especially for visualizations that aim to tell an
understandable story about the data. In this section we discuss further why smooth‐
ing is done, as well as the most common time series smoothing technique: exponen‐
tial smoothing.

Purposes of smoothing
While outlier detection is a topic in and of itself, if you have reason to believe your
data should be smoothed, you can do so with a moving average to eliminate measure‐
ment spikes, errors of measurement, or both. Even if the spikes are accurate, they
may not reflect the underlying process and may be more a matter of instrumentation
problems; this is why it’s quite common to smooth data.

Smoothing data is strongly related to imputing missing data, and so some of those
techniques are relevant here as well. For example, you can smooth data by applying a
rolling mean, with or without a lookahead, as that is simply a matter of the point’s
position relative to the window used to calculate its smoothed value.

When you are smoothing, you want to think about a number of questions:

• Why are you smoothing? Smoothing can serve a number of purposes:

Data preparation
Is your raw data unsuitable? For example, you may know very high values
are unlikely or unphysical, but you need a principled way to deal with them.
Smoothing is the most straightforward solution.

Feature generation
The practice of taking a sample of data, be it many characteristics about a
person, image, or anything else, and summarizing it with a few metrics. In
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this way a fuller sample is collapsed along a few dimensions or down to a few
traits. Feature generation is especially important for machine learning.

Prediction
The simplest form of prediction for some kinds of processes is mean rever‐
sion, which you get by making predictions from a smoothed feature.

Visualization
Do you want to add some signal to what seems like a noisy scatter plot? If so,
what is your intention in doing so?

• How will your outcomes be affected by smoothing or not smoothing?
— Does your model assume noisy and uncorrelated data, whereby your smooth‐

ing could compromise this assumption?
— Will you need to smooth in a live production model? If so, you need to choose

a smoothing method that does not employ a lookahead.
— Do you have a principled way to smooth, or will you simply do a hyperpara‐

meter grid search? If the latter, how will you make sure that you use a time-
aware form of cross-validation such that future data does not leak backward
in time?

What Are Hyperparameters?
The term hyperparameters can sound awfully scary, but they are simply the numbers
you use to tune, or adjust, the performance of a statistical or machine learning model. 
To optimize a model, you try several variations of the hyperparameters of that model,
often performing a grid search to identify these parameters. A grid search is exactly
that: you construct a “grid” of all possible combinations of hyperparameters in a
search space and try them all.

For example, imagine an algorithm takes hyperparameters A and B, where we think
reasonable values for A are 0, 1, or 2, and we think reasonable values for B are 0.7,
0.75, or 0.8. Then we would have nine possible hyperparameter options for our grid:
every possible combination of potential A values (of which there are 3) with every
possible B value (of which there are 3) for a total of 3 × 3 = 9 possibilities. As you can
see, hyperparameter tuning can quickly get quite labor-intensive.

Exponential smoothing
You often won’t want to treat all time points equally when smoothing. In particular,
you may want to treat more recent data as more informative data, in which case
exponential smoothing is a good option. In contrast to the moving average we looked
at before—where each point where data was missing could be imputed to the mean of
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its surrounding points—exponential smoothing is geared to be more temporally
aware, weighting more recent points higher than less recent points. So, for a given
window, the nearest point in time is weighted most heavily and each point earlier in
time is weighted exponentially less (hence the name).

The mechanics of exponential smoothing work as follows. For a given time period t,
you find the smoothed value of a series by computing:

Smoothed value at time t = St = d × ; St -1 + (1 – d) × xt

Think about how this propagates over time. The smoothed value at time (t – 1) is
itself a product of the same thing:

St -1 = d × St -2 + (1 – d) × xt -1

So we can see a more complex expression for the smoothed value at time t:

d × (d × St –2 + (1 – d) × xt -1) + (1 - d) × xt

Mathematically inclined readers will notice that we have a series of the form:

d 3 × xt -3 + d 2 × xt -2 + d × xt -1

In fact, it is thanks to this form that exponential moving averages are quite tractable.
More details are widely available online and in textbooks; see my favorite summaries
in “More Resources” on page 69.

I will illustrate smoothing in Python, as Pandas includes a variety of smoothing
options. Smoothing options are also widely available in R, including base R, as well as
many time series packages.

While we have been looking at US unemployment rate data, we will switch to another
commonly used data set: the airline passenger data set (which dates back to Box and
Jenkins’s famous time series book and is widely available). The original data set is an
account of the thousands of monthly airline passengers broken down by month:

## python
>>> air
       Date  Passengers    
0    1949-01       112  
1    1949-02       118  
2    1949-03       132  
3    1949-04       129 
4    1949-05       121 
5    1949-06       135  
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3 You can specify the alpha smoothing factor, the halflife, the span, or the center of mass according to which
you feel comfortable with. Details are available in the documentation.

6    1949-07       148  
7    1949-08       148  
8    1949-09       136  
9    1949-10       119  
10   1949-11       104 

We can easily smooth the values of passengers using a variety of decay factors and
applying the Pandas ewma() function, like so:

## python
>>> air['Smooth.5'] = pd.ewma(air, alpha = .5).Passengers
>>> air['Smooth.9'] = pd.ewma(air, alpha = .9).Passengers

As we can see, the level of the alpha parameter, also called the smoothing factor,
affects how much the value is updated to its current value versus retaining informa‐
tion from the existing average. The higher the alpha value, the more quickly the
value is updated closer to its current price. Pandas accepts a number of parameters,
all of which plug into the same equation, but they offer multiple ways to think about
specifying an exponential moving average.3

## python
>>> air
       Date  Passengers    Smooth.5  Smooth.9
0    1949-01       112  112.000000  112.000000
1    1949-02       118  116.000000  117.454545
2    1949-03       132  125.142857  130.558559
3    1949-04       129  127.200000  129.155716
4    1949-05       121  124.000000  121.815498
5    1949-06       135  129.587302  133.681562
6    1949-07       148  138.866142  146.568157
7    1949-08       148  143.450980  147.856816
8    1949-09       136  139.718200  137.185682
9    1949-10       119  129.348974  120.818568
10   1949-11       104  116.668295  105.681857

However, simple exponential smoothing does not perform well (for prediction) in
the case of data with a long-term trend. Holt’s Method and Holt–Winters smooth‐
ing , are two exponential smoothing methods applied to data with a trend, or with a
trend and seasonality.

There are many other widely used smoothing techniques. For example, Kalman fil‐
ters smooth the data by modeling a time series process as a combination of known
dynamics and measurement error. LOESS (short for “locally estimated scatter plot
smoothing”) is a nonparametric method of locally smoothing data. These methods,
and others, gradually offer more complex ways of understanding smoothing but at
increased computational cost. Of note, Kalman and LOESS incorporate data both

58 | Chapter 2: Finding and Wrangling Time Series Data

https://perma.cc/4265-4U8L


earlier and later in time, so if you use these methods keep in mind the leak of infor‐
mation backward in time, as well as the fact that they are usually not appropriate for
preparing data to be used in forecasting applications.

Smoothing is a commonly used form of forecasting, and you can use a smoothed
time series (without lookahead) as one easy null model when you are testing whether
a fancier method is actually producing a successful forecast.

How to Start a Smoothing Calculation
One important reason to use a packaged exponential smoothing function is that it is
difficult to get the start of your smoothed series correct. Imagine that the first point in
your series is equal to 3 and the second point is equal to 6. Also imagine that your
discounting factor (which you set according to how quickly you want the average to
adapt to the most recent information) is equal to 0.7, so that you would compute the
second point in your series as:

3 × 0.7 + 6 × (1 – 0.7) = 3.9

In fact, you would be wrong. The reason is that multiplying your discounting factor
of 0.7 by 3 implicitly assumes that 3 is the sum of your knowledge going back in time
to infinity, rather than a mere single data point you just measured. Therefore, it
unduly weighs 3 relative to 6 as though 3 has a significantly more longstanding set of
knowledge than it actually does.

The algebra to derive the correct expression is too complicated for a short sidebar,
but check the additional resources at the end of this book for more details. In the
meantime, I will leave you with the general guidance that 6 should be weighed a little
more heavily than it is here, and 3 a little less. As you get further along in a time ser‐
ies, your older values should be weighted closer to your true discounting factor of 0.7.
How soon this happens can be seen in the algebra, so take a look at the additional
resources if you are interested.
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Seasonal Data
Seasonality in data is any kind of recurring behavior in which the frequency of the
behavior is stable. It can occur at many different frequencies at the same time. For
example, human behavior tends to have a daily seasonality (lunch at the same time
every day), a weekly seasonality (Mondays are similar to other Mondays), and a
yearly seasonality (New Year’s Day has low traffic). Physical systems also demon‐
strate seasonality, such as the period the Earth takes to revolve around the sun.

Identifying and dealing with seasonality is part of the modeling process. On the other
hand, it’s also a form of data cleaning, such as the economically important US Jobs
Report. Indeed, many government statistics, particularly economic ones, are desea‐
sonalized in their released form.

To see what seasonal data smoothing can do, we return to the canonical data set on
airline passenger counts. A plot quickly reveals that this is highly seasonal data, but
only if you make the right plot.

Notice the difference between using R’s default plot (which uses points; see
Figure 2-10) versus adding the argument to indicate that you want a line
(Figure 2-11).

Figure 2-10. The increasing mean and variance of the data are apparent from a scatter
plot, but we do not see an obvious seasonal trend.
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Figure 2-11. A line plot makes the seasonality abundantly clear.

If you were looking only at the default R plot, the seasonal nature of the data might
elude you. Hopefully that wouldn’t remain the case for long, as no doubt you would
also do things to explore your data more fully, perhaps with an autocorrelation plot
(discussed in Chapter 3) or other diagnostics.

Humans Are Creatures of Habit

With human behavior data there is almost always some form of
seasonality, even with several cycles (an hourly pattern, a weekly
pattern, a summer-winter pattern, etc.).

The scatter plot does show some information more clearly than the line plot. The var‐
iance of our data is increasing, as is the mean, which is most obvious when we see a
cloud of data points beaming outward in a conical shape, tilted upward. This data
clearly has a trend, and so we would likely transform it with a log transform or differ‐
encing, depending on the demands of our model. This data also clearly has a trend of
increasing variance. We’ll talk more about model-specific data transformations on
seasonal data in the modeling chapters, so we won’t elaborate here.

We also get useful information apart from the evidence for seasonality from the line
plot. We get information about what kind of seasonality. That is, we see that the data
is not only seasonal, but seasonal in a multiplicative way. As the overall values get
larger, so do the season swings (think of this as sizing from peak to trough).
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We can decompose the data into its seasonal, trend, and remainder components very
easily as shown here with just one line of R:

## R
> plot(stl(AirPassengers, "periodic"))

The resulting plot seems very sensible based on the original data (see Figure 2-12).
We can imagine adding the seasonal, trend, and remainder data back together to get
the original series. We can also see that this particular decomposition did not take
into account the fact that this series shows a multiplicative seasonality rather than an
additive one because the residuals are greatest at the beginning and end of the time
series. It seems like this decomposition settled on the average seasonal variance as the
variance for the seasonal component.

Figure 2-12. A decomposition of the original time series into a seasonal component, a
trend, and the residuals. Pay attention to each plot’s y-axis, as they are quite different.
Note that this is the reason for the gray bars on the right side of each plot. These gray
bars are all the same absolute size (in units of the y-axis), so that their relatively differ‐
ent display is a visual reminder of the different y-axis scales across different
components.

To get an initial understanding of how this works, we can look at the official R
documentation:

The seasonal component is found by LOESS smoothing the seasonal subseries (the ser‐
ies of all January values, ...). If s.window = “periodic” smoothing is effectively replaced
by taking the mean. The seasonal values are removed, the remainder smoothed to find
the trend. The overall level is removed from the seasonal component and added to the
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trend component. This process is iterated a few times. The remainder component is
the residuals from the seasonal plus trend fit.

LOESS, introduced earlier, is a computationally taxing method for smoothing data
points that involves a moving window to estimate the smoothed value of each point
based on its neighbors (I hope your lookahead alarm is sounding!).

Seasonal Data and Cyclical Data
Seasonal time series are time series in which behaviors recur over a fixed period.
There can be multiple periodicities reflecting different tempos of seasonality, such as
the seasonality of the 24-hour day versus the 12-month calendar season, both of
which exhibit strong features in most time series relating to human behavior.

Cyclical time series also exhibit recurring behaviors, but they have a variable period.
A common example is a business cycle, such as the stock market’s boom and bust
cycles, which have an uncertain duration. Likewise, volcanoes show cyclic but not
seasonal behaviors. We know the approximate periods of eruption, but these are not
precise and vary over time.

Time Zones
Time zones are intrinsically tedious, painful, and difficult to get right even with a lot
of effort. That is why you should never use your own solution. From their very inven‐
tion, time zones have been complicated, and they have only gotten more so with the
advent of personal computers. There are many reasons for this:

• Time zones are shaped by political and social decisions.
• There is no standard way to transport time zone information between languages

or via an HTTP protocol.
• There is no single protocol for naming time zones or for determining start and

end dates of daylight savings offsets.
• Because of daylight savings, some times occur twice a year in their time zones!

Most languages rely on the underlying operating system to get time zone informa‐
tion. Unfortunately, the built-in automatic time retrieval function in Python, date
time.datetime.now(), does not return a time zone–aware timestamp. Part of this is
by design. Some decisions made in the standard library include forbidding time zone
information in the datetime module (because this information changes so often) and
allowing datetime objects both with and without time zone information. However,
comparing an object with a time zone to one without a time zone will cause a
TypeError.
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4 Pickling is the process of storing Python objects in byte format. This is done via the popular built-in pickle
module. Most of the time pickling will work well, but sometimes time related objects can be difficult to pickle.

Some bloggers claim that a majority of libraries are written with the assumption that
tzinfo==None. Although this is a difficult claim to substantiate, it is consistent with
much experience. People also report difficulty pickling time zone–stamped objects,
so this is also something to check on early if you plan to use pickling.4

So let’s have a look at working with time zones in Python. The main libraries you are
likely to use are datetime, pytz, and dateutil. Additionally Pandas offers conve‐
nient time zone–related functionality built on top of the latter two libraries.

We’ll cover the most important time zone functionality next.

First, notice that when you retrieve a “now” from the datetime module, it does not
come with time zone information, even though it will give you the appropriate time
for your time zone. Note, for example, the difference in the responses for now() and
utcnow():

## python
>>> datetime.datetime.utcnow()
datetime.datetime(2018, 5, 31, 14, 49, 43, 187680)

>>> datetime.datetime.now()
datetime.datetime(2018, 5, 31, 10, 49, 59, 984947)
>>> # as we can see, my computer does not return UTC 
>>> # even though there is no time zone attached

>>> datetime.datetime.now(datetime.timezone.utc)
datetime.datetime(2018, 5, 31, 14, 51, 35, 601355, 
                  tzinfo=datetime.timezone.utc)

Notice that if we do pass in a time zone, we will get the correct information, but this
is not the default behavior. To work with time zones in Python, we create a time zone
object, such western as for the US Pacific time zone:

## python
>>> western = pytz.timezone('US/Pacific')
>>> western.zone
'US/Pacific'

We can then use these objects to localize a time zone as follows:
## python
>>> ## the API supports two ways of building a time zone–aware time, 
>>> ## either via 'localize' or to convert a time zone from one locale 
>>> ## to another
>>> # here we localize
>>> loc_dt = western.localize(datetime.datetime(2018, 5, 15, 12, 34, 0))
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datetime.datetime(2018, 5, 15, 12, 34, 
            tzinfo=<DstTzInfo 'US/Pacific' PDT-1 day, 17:00:00 DST>)

Note, however, that passing the time zone directly into the datetime constructor will
often not produce the result we were expecting:

## python
>>> london_tz = pytz.timezone('Europe/London')
>>> london_dt = loc_dt.astimezone(london_tz)

>>> london_dt
datetime.datetime(2018, 5, 15, 20, 34, 
               tzinfo=<DstTzInfo 'Europe/London' BST+1:00:00 DST>)

>>> f = '%Y-%m-%d %H:%M:%S %Z%z'
>>> datetime.datetime(2018, 5, 12, 12, 15, 0, 
                       tzinfo = london_tz).strftime(f)
'2018-05-12 12:15:00 LMT-0001'

>>> ## as highlighted in the pytz documentation using the tzinfo of
>>> ## the datetime.datetime initializer does not always lead to the 
>>> ## desired outcome, such as with the London example

>>> ## according to the pytz documentation, this method does lead to 
>>> ## the desired results in time zones without daylight savings

This is important, such as when you are calculating time deltas. The first example of
the following three is the gotcha:

## python
>>> # generally you want to store data in UTC and convert only when 
>>> # generating human-readable output
>>> # you can also do date arithmetic with time zones
>>> event1 = datetime.datetime(2018, 5, 12, 12, 15, 0, 
                               tzinfo = london_tz)
>>> event2 = datetime.datetime(2018, 5, 13, 9, 15, 0, 
                               tzinfo = western)
>>> event2 - event1
>>> ## this will yield the wrong time delta because the time zones 
>>> ## haven't been labelled properly

>>> event1 = london_tz.localize(
                 datetime.datetime(2018, 5, 12, 12, 15, 0))
>>> event2 = western.localize(
                 datetime.datetime(2018, 5, 13, 9, 15, 0))
>>> event2 - event1

>>> event1 = london_tz.localize(
               (datetime.datetime(2018, 5, 12, 12, 15, 0))).
                  astimezone(datetime.timezone.utc)
>>> event2 = western.localize(
               datetime.datetime(2018, 5, 13, 9, 15, 0)).

Time Zones | 65



                  astimezone(datetime.timezone.utc)
>>> event2 - event1

pytz provides a list of common time zones and time zones by country, both of which
can be handy references:

## python
## have a look at pytz.common_timezones
>>> pytz.common_timezones
(long output...)

## or country specific
>>> pytz.country_timezones('RU')
['Europe/Kaliningrad', 'Europe/Moscow', 'Europe/Simferopol', 
'Europe/Volgograd', 'Europe/Kirov', 'Europe/Astrakhan', 
'Europe/Saratov', 'Europe/Ulyanovsk', 'Europe/Samara', 
'Asia/Yekaterinburg', 'Asia/Omsk', 'Asia/Novosibirsk', 
'Asia/Barnaul', 'Asia/Tomsk', 'Asia/Novokuznetsk', 
'Asia/Krasnoyarsk', 'Asia/Irkutsk', 'Asia/Chita', 
'Asia/Yakutsk', 'Asia/Khandyga', 'Asia/Vladivostok', 
'Asia/Ust-Nera', 'Asia/Magadan', 'Asia/Sakhalin', 
'Asia/Srednekolymsk', 'Asia/Kamchatka', 'Asia/Anadyr']
>>>
>>> pytz.country_timezones('fr')
>>> ['Europe/Paris']

A particularly hairy issue is the matter of daylight savings. Certain human-readable
times exist twice (falling behind in the autumn), while others do not exist at all (skip
ahead in the spring):

## python
>>> ## time zones
>>> ambig_time = western.localize(
                    datetime.datetime(2002, 10, 27, 1, 30, 00)).
                       astimezone(datetime.timezone.utc)
>>> ambig_time_earlier = ambig_time - datetime.timedelta(hours=1)
>>> ambig_time_later = ambig_time + datetime.timedelta(hours=1)
>>> ambig_time_earlier.astimezone(western)
>>> ambig_time.astimezone(western)
>>> ambig_time_later.astimezone(western)

>>> #results in this output
datetime.datetime(2002, 10, 27, 1, 30, 
            tzinfo=<DstTzInfo 'US/Pacific' PDT-1 day, 17:00:00 DST>)
datetime.datetime(2002, 10, 27, 1, 30, 
            tzinfo=<DstTzInfo 'US/Pacific' PST-1 day, 16:00:00 STD>)
datetime.datetime(2002, 10, 27, 2, 30, 
            tzinfo=<DstTzInfo 'US/Pacific' PST-1 day, 16:00:00 STD>)
>>> # notice that the last two timestamps are identical, no good!

>>> ## in this case you need to use is_dst to indicate whether daylight 
>>> ## savings is in effect
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>>> ambig_time = western.localize(
        datetime.datetime(2002, 10, 27, 1, 30, 00), is_dst = True).
          astimezone(datetime.timezone.utc)
>>> ambig_time_earlier = ambig_time - datetime.timedelta(hours=1)
>>> ambig_time_later = ambig_time + datetime.timedelta(hours=1)
>>> ambig_time_earlier.astimezone(western)
>>> ambig_time.astimezone(western)
>>> ambig_time_later.astimezone(western)

datetime.datetime(2002, 10, 27, 0, 30, 
           tzinfo=<DstTzInfo 'US/Pacific' PDT-1 day, 17:00:00 DST>)
datetime.datetime(2002, 10, 27, 1, 30, 
           tzinfo=<DstTzInfo 'US/Pacific' PDT-1 day, 17:00:00 DST>)
datetime.datetime(2002, 10, 27, 1, 30, 
           tzinfo=<DstTzInfo 'US/Pacific' PST-1 day, 16:00:00 STD>)
## notice that now we don't have the same time happening twice. 
## it may appear that way until you check the offset from UTC

Time zone concerns may not be important to your work, so the utility of this knowl‐
edge will depend on the nature of your data. There are certainly situations where get‐
ting this wrong could be catastrophic (say, generating weather forecasts for
commercial airliners flying during the time change and suddenly finding their posi‐
tions drastically altered). 

Preventing Lookahead
Lookahead is dangerously easy to introduce into a modeling pipeline, especially with
vectorized functional data manipulation interfaces, such as those offered by R and
Python. It is easy to shift a variable in the wrong direction, shift it more or less than
you intended, or otherwise find yourself with data that is not entirely “honest” in that
you have data available before it would have been known in your system.

Unfortunately, there isn’t a definitive statistical diagnosis for lookahead—after all, the
whole endeavor of time series analysis is modeling the unknown. Unless a system is
somewhat deterministic with known dynamical laws, it can be difficult to distinguish
a very good model from a model with lookahead—that is, until you put a model into
production and realize either that you are missing data when you planned to have it,
or simply that your results in production do not reflect what you see during training.

The best way to prevent this embarrassment is constant vigilance. Whenever you are
time-shifting data, smoothing data, imputing data, or upsampling data, ask yourself
whether you could know something at a given time. Remember that doesn’t just
include calendar time. It also includes realistic time lags to reflect how long a delay
there is between something happening and your organization having that data avail‐
able. For example, if your organization scrapes Twitter only weekly to gather its sen‐
timent analysis data, you need to include this weekly periodicity in your training and
validation data segmentation. Similarly, if you can retrain your model only once a
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month, you need to figure out what model would apply to what data over time. You
can’t, for example, train a model for July and then apply it to July for testing, because
in a real situation, you wouldn’t have that model trained up in time if training takes
you a long time.

Here are some other ideas to use as a general checklist. Keep them in mind both
when planning to build a model and when auditing your process after the fact:

• If you are smoothing data or imputing missing data, think carefully about
whether it might impact your results by introducing a lookahead. And don’t just
think about it—experiment as we did earlier and see how the imputations and
smoothing work. Do they seem to be forward looking? If so, can you justify using
them? (Probably not.)

• Build your entire process with a very small data set (only a few rows in a
data.table or a few row time steps in whatever data format). Then, do random
spot checks at each step in the process and see whether you accidentally shift any
information temporally to an inappropriate place.

• For each kind of data, find out what the lag is for it relative to its own timestamp.
For example, if the timestamp is when the data “happened” but not when it was
uploaded to your servers, you need to know that. Different columns of a data
frame may have different lags. To address this, you can either customize your lag
per data frame or (better and more realistic) pick the biggest lag and apply that to
everything. While you won’t want to unduly pessimize your model, it’s a good
starting point after which you can relax these overly constrained rules one at a
time, carefully!

• Use time-aware error (rolling) testing or cross-validation. This will be discussed
in Chapter 11, but remember that randomizing your training versus testing data
sets does not work with time series data. You do not want information from the
future to leak into models for the past.

• Intentionally introduce a lookahead and see how your model behaves. Try vari‐
ous degrees of lookahead, so you have an idea how it shifts accuracy. If you have
some idea of the accuracy with lookahead, you have an idea of what the ceiling
on a real model without unfair knowledge of the future will do. Remember that
many time series problems are extremely difficult, so a model with a lookahead
may seem great until you realize you are dealing with a high-noise/low-signal
data set.

• Add features slowly, particularly features you might be processing, so that you
can look for jumps. One sign of a lookahead is when a particular feature is unex‐
pectedly good, and there isn’t a very good explanation. At the top of your explan‐
ation list should always be “lookahead.”
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Processing and cleaning time-related data can be a tedious and
detail-oriented process.
There is tremendous danger in data cleaning and processing of
introducing a lookahead! You should have lookaheads only if they
are intentional, and this is rarely appropriate.

More Resources
• On missing data:

Steffen Moritz et al., “Comparison of Different Methods for Univariate Time Series
Imputation in R,” unpublished research paper, October 13, 2015, https://perma.cc/
M4LJ-2DFB.

This thorough summary from 2015 outlines available methods for imputing
time series data in the case of univariate time series data. Univariate time
series data is a particular challenge because many advanced missing data
imputation methods rely on looking at distributions among covariates, an
option that is not available in the case of a univariate time series. This paper
summarizes both the usability and performance of various R packages as
well as empirical results of the methods available on a variety of data sets.

James Honaker and Gary King, “What to Do About Missing Values in Time-Series
Cross-Section Data,” American Journal of Political Science 54, no. 2 (2010): 561–
81, https://perma.cc/8ZLG-SMSX.

This article explores best practices for missing data in time series with wide
panels of covariates.

Léo Belzile, “Notes on Irregular Time Series and Missing Values,” n.d. https://
perma.cc/8LHP-92FP.

The author provides examples of working with irregular data as a missing
data problem and an overview of some commonly used R packages.

• On time zones:

Tom Scott, The Problem with Time & Timezones, Computerphile video, December
30, 2013, https://oreil.ly/iKHkp.

This 10-minute YouTube video with over 1.5 million views outlies the perils
and challenges of dealing with time zones, particularly in the context of a
web application.

Wikipedia, “Time Zone,” https://perma.cc/J6PB-232C.
This is a fascinating history in short form that gives some insight into how
timekeeping worked before the last century and how technology advance‐
ments (beginning with the railway) led to the increasing need for people in
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different locations to coordinate their time. There are also some fun maps of
time zones.

Declan Butler, “GPS Glitch Threatens Thousands of Scientific Instruments,”
Nature, April 3, 2019, https://perma.cc/RPT6-AQBC.

This article is not directly related to time zones but to the problem of time‐
stamping more generally. It describes a recent problem in which a bug in the
US Global Positioning System could cause a problem with timestamped data
because it transmits a binary 10-digit “week number” that began counting
from January 6, 1980. This system can cover only 1,024 weeks total (2 raised
to the power of 10). This count was reached for the second time in April
2019. Devices that were not designed to accommodate this limitation reset to
zero and incorrectly timestamped scientific and industrial data. This article
describes some of the difficulties with a fairly limited representation of time
combined with scientific devices that were not future-proofed to account for
this problem.

• On smoothing and seasonality:

Rob J. Hyndman and George Athanasopoulos,“Exponential Smoothing,” in Fore‐
casting: Principles and Practices, 2nd ed. (Melbourne: OTexts, 2018), https://
perma.cc/UX4K-2V5N.

This chapter of Hyndman and Athanasopoulos’s introductory academic
textbook covers exponential smoothing methods for time series data, includ‐
ing a helpful taxonomy of exponential smoothing and extensions of expo‐
nential smoothing to forecasting applications.

David Owen, “The Correct Way to Start an Exponential Moving Average,” For‐
ward Motion blog, January 31, 2017, https://perma.cc/ZPJ4-DJJK.

As highlighted in a side note earlier, exponential moving averages are con‐
ceptually simple and easy to calculate, with the complication that how to
“start” off the calculation is a little complicated. We want to make sure our
moving average adapts to new information in a way that recognizes how
long it has been recording information. If we start a moving average without
giving consideration to this, even a new moving average will behave as
though it has infinite lookback and unduly discount new information rela‐
tive to what it should do. More details and a computational solution are pre‐
sented in this blog post.
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Avner Abrami, Aleksandr Arovkin, and Younghun Kim, “Time Series Using Expo‐
nential Smoothing Cells,” unpublished research paper, last revised September 29,
2017, https://perma.cc/2JRX-K2JZ.

This is an extremely accessible time series research paper elaborating on the
idea of simple exponential smoothing to develop “exponential smoothing
cells.”

• On functional data analysis:

Jane-Ling Wang, Jeng-Min Chiou, and Hans-Georg Müller, “Review of Functional
Data Analysis,” Annual Reviews of Statistics and its Application, 2015, https://
perma.cc/3DNT-J9EZ.

This statistics article offers an approachable mathematical overview of
important functional data analysis techniques. There are also helpful visuali‐
zation techniques illustrated throughout the article.

Shahid Ullah and Caroline F. Finch, “Applications of Functional Data Analysis: A
Systematic Review,” BMC Medical Research Methodologyv, 13, no. 43 (2013),
https://perma.cc/VGK5-ZEUX.

This review takes a multidisciplinary approach to surveying recently pub‐
lished analyses using functional data analysis. The authors argue that the
techniques of functional data analysis have much wider applicability than is
currently appreciated and make the case that the biological and health scien‐
ces could benefit from more use of these techniques to look at medical time
series data.
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