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Correlations of 2 time series

§ The correlation of two time series gives you an indication of 
how similar their behavior is 

§ Two completely unrelated time series (say, two sequences 
of random numbers) will have a Pearson correlation 
coefficient of 0 

§Correlation != Causation!
§Adding a trend to both series we immediately observe a 

significant correlation

The Pearson correlation of two trending 
series is overwhelmed by the trend
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