Data Mining: Data



INFO 523 - Lecture 2

Dr. Greg Chism

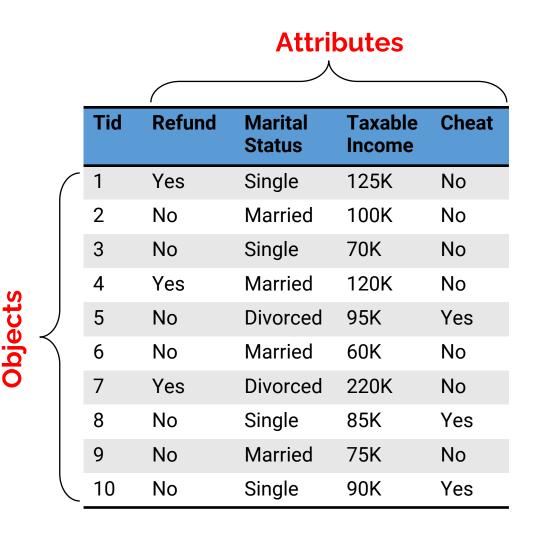
Topics

Attributes/Features

- Types of Data Sets
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Density

What is Data?

- Collection of data objects and their attributes
- An attribute (in Data Mining and Machine learning often "feature") is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance



Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Types of Attributes - Scales

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Categorical, Qualitative

Quantitative

Attribute Type	Description	Examples	Operations	
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: { <i>male</i> , <i>female</i> }	mode, entropy, contingency correlation, χ² test	
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, { <i>good,</i> <i>better, best</i> }, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests	
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests	
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation	

Attribute Level	Transformation	Comments
Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., <i>new_value = f(old_value)</i> where <i>f</i> is a monotonic function.	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Interval	<i>new_value =a * old_value + b</i> where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	new_value = a * old_value	Length can be measured in meters or feet.

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Examples

• What is the scale of measurement of:

- Number of cars per minute (count data)
- Age data grouped in:

0-4 years, 5-9, 10-14, ...

• Age data grouped in: <20 years, 21-30, 31-40, 41+

Topics

- Attributes/Features
- Types of Data Sets
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Density

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes (e.g., from a relational database)

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Yes Single		No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute n attributes

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	
10	5.6	<u></u>	2.7	4.2	1.3
cts	6.5	5	3.0	5.8	2.2
objec	6.8	3	2.8	4.8	1.4
qo	5.7	7	3.8	1.7	0.3
Э З	5.5	5	2.5	4.0	1.3
	4.8	3	3.0	1.4	0.1
	5.2	2	4.1	1.5	0.1

Document Data

Each document becomes a `term' vector,

- each term is a component (attribute) of the vector,
- the value of each component is the number of times the corresponding term occurs in the document.

					Ie	rms				
	team	coach	pla y	ball	score	game	ם <u>א</u>	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Tormo

Transaction Data

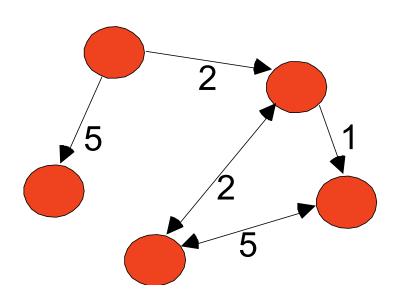
• A special type of record data, where

- each record (transaction) involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph and HTML Links



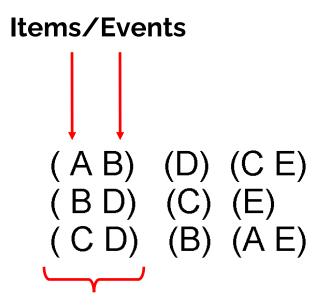
 Data Mining Graph Partitioning Parallel Solution of Sparse Linear System of Equations N-Body Computation and Dense Linear System Solvers

Chemical Data

Benzene Molecule: C6H6

Ordered Data

Sequences of transactions



An element of the sequence

Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCGCC CGCAGGGCCCGCCCGCGCGCGTC GAGAAGGGCCCGCCCGCCGGGGCG GGGGGAGGCGGGGGCCGCCCGAGC CCAACCGAGT'CCGAC CAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Subsequences

Ordered Data: Time Series Data

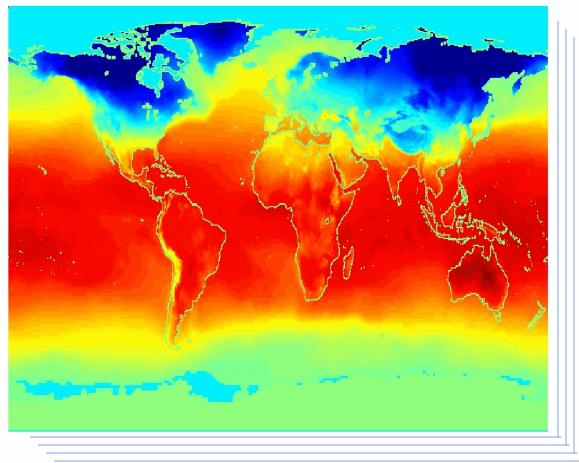
S&P 500 Index

April 1, 2016 – March 31, 2017

Ordered Data: Spatio-Temporal

Jan, Feb, Mar, ...

Average Monthly Temperature of land and ocean



Topics

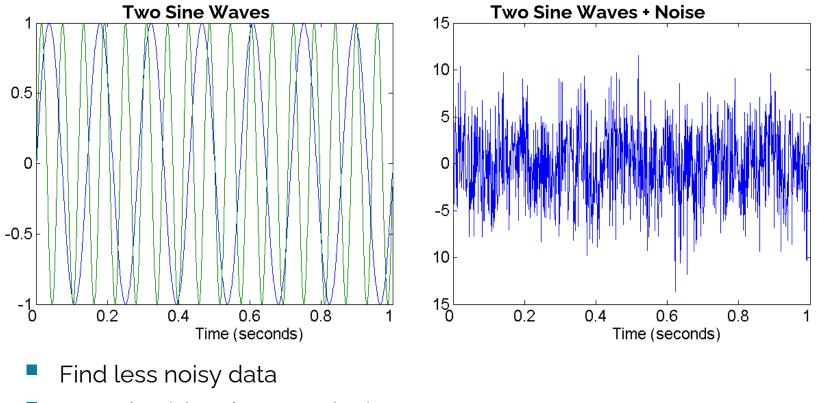
- Attributes/Features
- Types of Data Sets
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Density

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

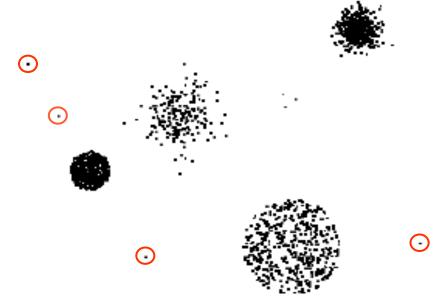
Noise

- Noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone, "snow" on television screen, measurement errors.



De-noise (signal processing)

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set



Outlier detection + remove outliers

Missing Values

Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handling missing values

- Eliminate data objects with missing value
- Eliminate feature with missing values
- Ignore the missing value during analysis
- Estimate missing values = Imputation

 (e.g., replace with mean or weighted mean where all possible values are weighted by their probabilities)

Duplicate Data

 Data set may include data objects that are duplicates, or "close duplicates" of one another

• Major issue when merging data from heterogeneous sources

Examples:

- Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues
 - ETL tools typically support deduplication

Topics

- Attributes/Features
- Types of Data Sets
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Density

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

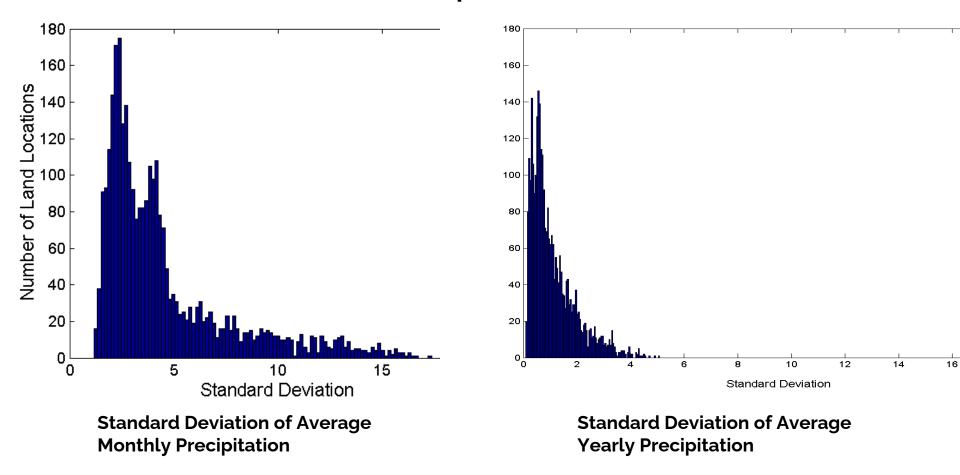
 Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc
- More "stable" data
 - Aggregated data tends to have less variability (e.g., reduce seasonality by aggregation to yearly data)

Aggregation

Variation of Precipitation in Australia



Sampling

Sampling is the main technique employed for data selection.

- It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive (e.g., does not fit into memory or is too slow).

Sampling ...

The key principle for effective sampling is the following:

- using a sample will work almost as well as using the entire data sets, if the sample is **representative**.
- A sample is representative if it has approximately the same property (of interest) as the original set of data.

Types of Sampling

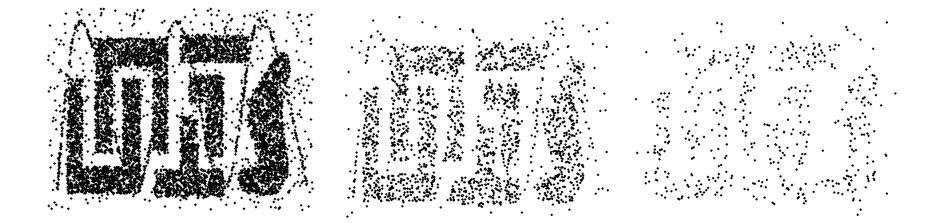
Replacement?

- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample. Note: the same object can be picked up more than once

Selection?

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sample Size



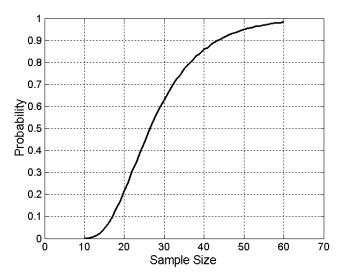
8000 points

2000 Points

500 Points

Sample Size

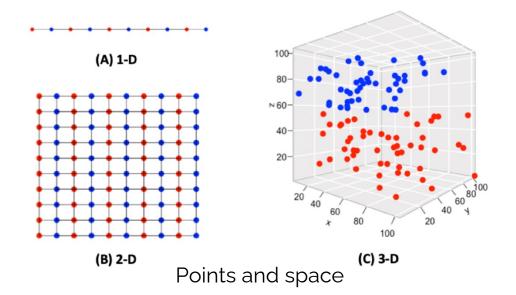
 What sample size is necessary to get at least one object from each of 10 groups.



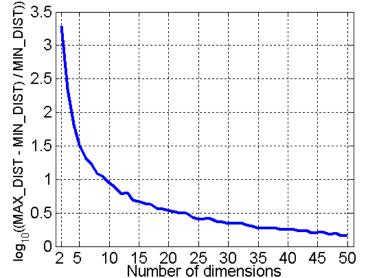
- Sample size determination:
 - Statistics: confidence interval for parameter estimate or desired statistical power of test.
 - Machine learning: often more is better, cross-validated accuracy.

Curse of Dimensionality

- When dimensionality increases, the size of the data space grows exponentially.
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful
 - Density \rightarrow 0
 - All points tend to have the same Euclidean distance to each other.



Experiment: Randomly generate 500 points. Compute difference between max and min distance between any pair of points



Dimensionality Reduction

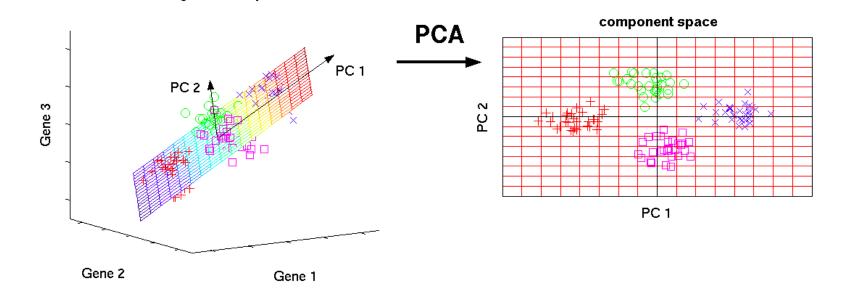
Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise
- Techniques
 - Principle Component Analysis
 - Singular Value Decomposition
 - Others: supervised and non-linear techniques

Dimensionality Reduction: Principal Components Analysis (PCA)

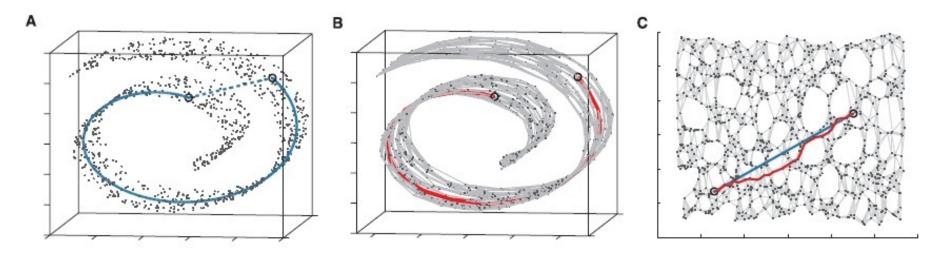
• **Goal**: Map points to a lower dimensional space while preserving distance information.

original data space



 Method: Find a projection (new axes) that captures the largest amount of variation in data. This can be done using eigenvectors of the covariance matrix or SVD (singular value decomposition).

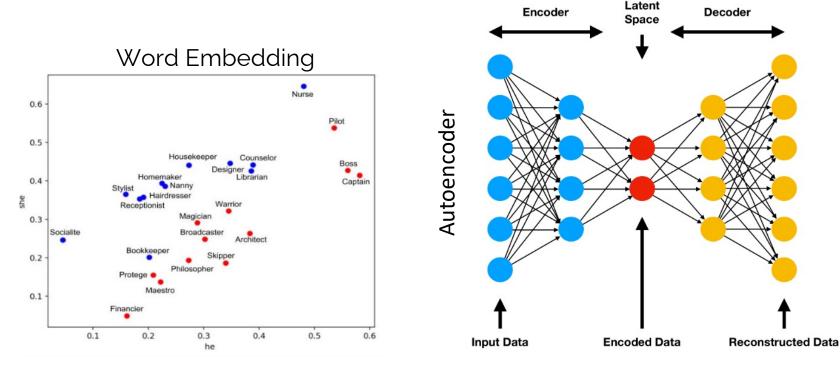
Dimensionality Reduction: ISOMAP



- Goal: Unroll the "swiss roll!" (i.e., preserve distances on the roll)
- Method: Use a non-metric space, i.e., distances are not measured by Euclidean distance, but along the surface of the roll (geodesic distances).
 - 1. Construct a neighbourhood graph (k-nearest neighbors or within a radius).
 - 2. For each pair of points in the graph, compute the shortest path distances = geodesic distances.
 - 3. Create a lower dimensional embedding using the geodesic distances (multidimensional scaling; MDS)

Low-dimensional Embedding

- General notion of representing objects described in one space (i.e., set of features) in a different space using a map $f: X \to Y$
- PCA is an example where Y is the space spanned by the principal components and objects close in the original space X are embedded in space Y.
- Low-dimensional embeddings can be produced with various other methods:
 - T-SNA: T-distributed Stochastic Neighbor Embedding; non-linear for visualization of high-dimensional datasets.
 - Autoencoders (deep learning): non-linear
 - Word embedding: Word2vec, GloVe, BERT



Feature Subset Selection

Another way to reduce dimensionality of data

Redundant features

- duplicate much or all of the information contained in one or more other attributes (are correlated)
- Example: purchase price of a product and the amount of sales tax paid

Irrelevant features

- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection

Embedded approaches:

- Feature selection occurs naturally as part of the data mining algorithm (e.g., regression, decision trees).
- Filter approaches:
 - Features are selected before data mining algorithm is run
 - (e.g., highly correlated features)
- Brute-force approach:
 - Try all possible feature subsets as input to data mining algorithm and choose the best.
- Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset of attributes (often using greedy search)

Feature Creation

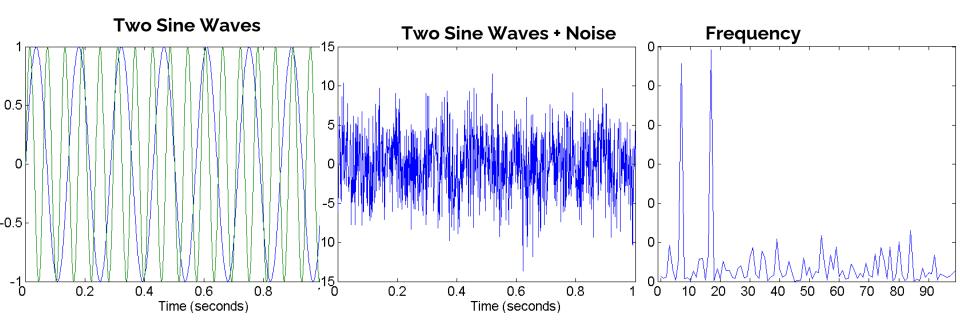
 Create new attributes that can capture the important information in a data set much more efficiently than the original attributes

Three general methodologies:

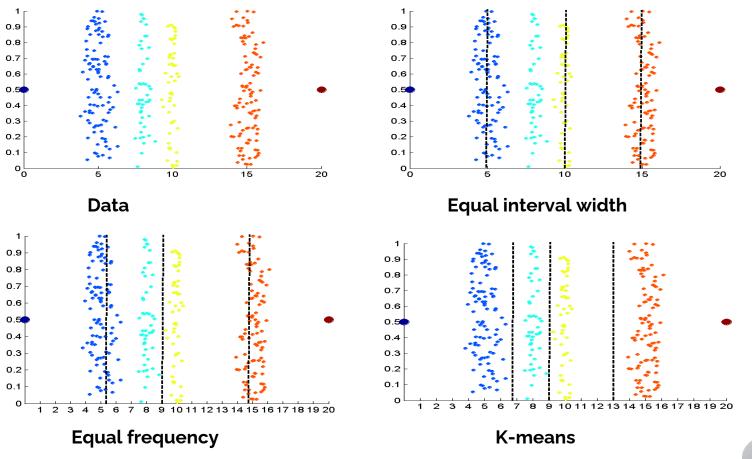
- Feature Extraction
 - Domain-specific (e.g., face recognition in image mining)
- Feature Construction / Feature Engineering
 - combining features (interactions: multiply features)
- Mapping Data to New Space

Mapping Data to a New Space

- Fourier transform
- Wavelet transform



Unsupervised Discretization



Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k , $\log(x)$, e^x , |x|
 - Standardization and Normalization
 The z-score normalizes data roughly to an interval of [-3,3].

$$x' = \frac{x - \bar{x}}{s_x}$$

- $ar{x}$... column (attribute) mean
- s_x ... column (attribute) standard deviation

Topics

- Attributes/Features
- Types of Data Sets
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Density

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

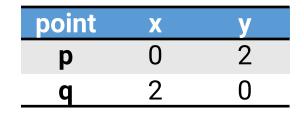
p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \left\{egin{array}{ccc} 0 & ext{if} \ p = q \ 1 & ext{if} \ p eq q \end{array} ight.$	$s = \left\{egin{array}{ccc} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d = rac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio		$s=-d,s=rac{1}{1+d}\mathrm{or}\ s=1-rac{d-min_d}{max_d-min_d}$	

s = f(d)

f can be any strictly decreasing function.

Euclidean Distance

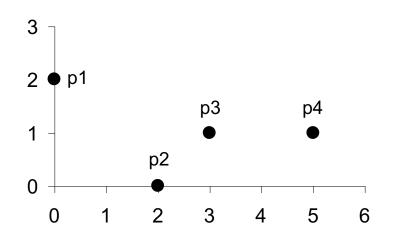


Euclidean Distance (for quantitative attribute vectors)

$$d_E = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2} = \|\mathbf{p} - \mathbf{q}\|_2$$

- Where p and q are two objects represented by vectors. n is the number of dimensions (attributes) of the vectors and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.
- $\|\cdot\|_2$ is the L^2 vector norm (i.e., length of a vector in Euclidean space).
- Note: If ranges differ between components of p then standardization (z-scores) is necessary to avoid one variable to dominate the distance.

Euclidean Distance



point	X	у
p1	0	2
p2	2	0
p2 p3 p4	3	1
p4	5	1

	р1	p2	р3	p4	
p1	0.00	2.83	3.16	5.10	
p2	2.83	0.00	1.41	3.16	
р3	3.16	1.41	0.00	2.00	
p4	5.10	3.16	2.00	0.00	
Distance Matrix					

Minkowski Distance

point	X	У
р	0	2
q	2	0

Minkowski Distance is a generalization of Euclidean Distance

$$d_{M} = \left(\sum_{k=1}^{n} |p_{k} - q_{k}|^{r} \right)^{\frac{1}{r}} = \|\boldsymbol{p} - \boldsymbol{q}\|_{r}$$

- Where p and q are two objects represented by vectors. n is the number of dimensions (attributes) of the vectors and and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.
- **Note**: If ranges differ then standardization (z-scores) is necessary to avoid one variable to dominate the distance.

Minkowski Distance: Examples

• r = 1. City block (Manhattan, taxicab, L^1 norm) distance.

• A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors

• r = 2. Euclidean distance (L^2 norm)

- $r = \infty$. "supremum" (maximum norm, L^{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distances

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

Distance Matrix

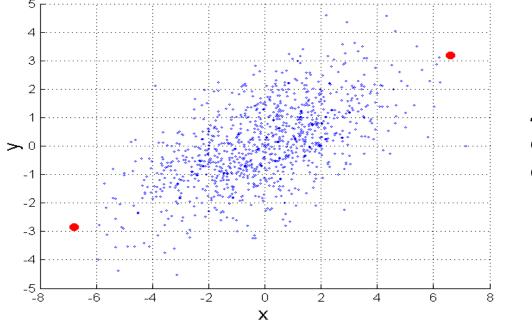
L ¹	р1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
рЗ	4	2	0	2
p4	6	4	2	0

L ²	р1	p2	р3	p4
р1	0.00	2.83	3.16	5.10
p2	2.83	0.00	1.41	3.16
р3	3.16	1.41	0.00	2.00
p4	5.10	3.16	2.00	0.00

L^{∞}	р1	p2	р3	р4
p1	0	2	3	5
p2	2	0	1	3
рЗ	3	1	0	2
p4	5	3	2	0

Mahalanobis Distance

$$d_{mahalanobis}(\boldsymbol{p},\boldsymbol{q}) = \sqrt{(\boldsymbol{p}-\boldsymbol{q})^T S^{-1}(\boldsymbol{p}-\boldsymbol{q})}$$

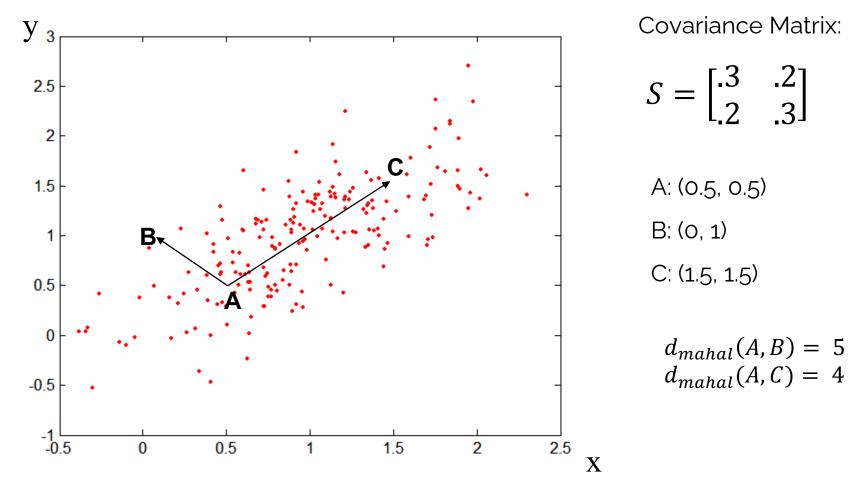


 S^{-1} is the inverse of the covariance matrix of the input data

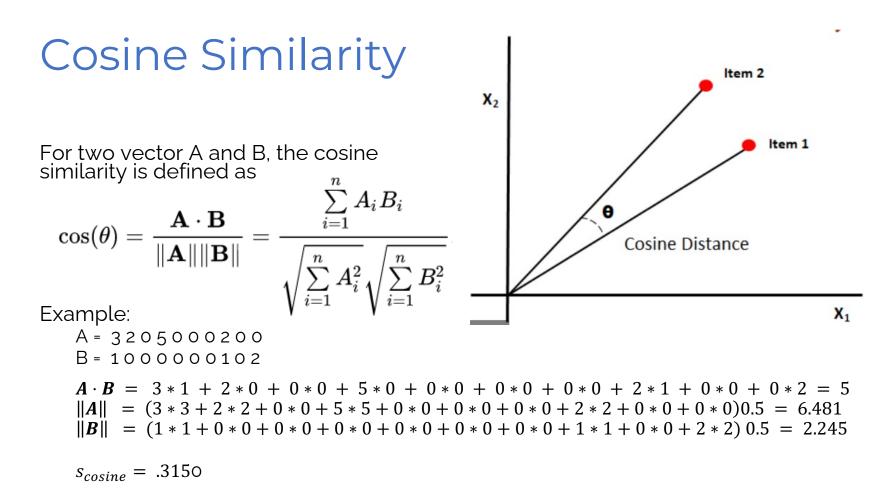
Measures how many standard deviations two points are away from each other \rightarrow scale invariant measure

Example: For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Mahalanobis Distance



Data varies in direction A-C more than in A-B!



Cosine similarity is often used for word count vectors to compare documents.

Similarity Between Binary Vectors

Common situation is that objects, p and q, have only binary attributes

Compute similarities using the following quantities
 M01 = the number of attributes where p was 0 and q was 1
 M10 = the number of attributes where p was 1 and q was 0
 M00 = the number of attributes where p was 0 and q was 0
 M11 = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients
 s_{SMC} = number of matches / number of attributes
 = (M11 + M00) / (M01 + M10 + M11 + M00)

 s_J = number of 11 matches / number of not-both-zero attribute values

= (M11) / (M01 + M10 + M11)

Note: Jaccard ignores os!

SMC versus Jaccard: Example

- p = 10000000000
- q = 0 0 0 0 0 0 1 0 0 1

M01 = 2 (the number of attributes where p was 0 and q was 1) M10 = 1 (the number of attributes where p was 1 and q was 0) M00 = 7 (the number of attributes where p was 0 and q was 0) M11 = 0 (the number of attributes where p was 1 and q was 1)

$$S_{SMC} = (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$S_I = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Extended Jaccard Coefficient (Tanimoto)

Variation of Jaccard for continuous or count attributes:

$$T(p,q) = \frac{p \bullet q}{\|p\|^2 + \|q\|^2 - p \bullet q}$$

where \cdot is the dot product between two vectors and $\|\cdot\|_2$ is the Euclidean norm (length of the vector).

Reduces to Jaccard for binary attributes

Dis(similarities) With Mixed Types

- Sometimes attributes are of many different types (nominal, ordinal, ratio, etc.), but an overall similarity is needed.
- Gower's (dis)similarity:
 - Ignores missing values
 - Final (dis)similarity is a weighted sum of variable-wise (dis)similarities
 - 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0, 1].
 - 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:

 $\delta_k = \begin{cases} 0 & \text{if the } k^{th} \text{ attribute is a binary asymmetric attribute and both objects have} \\ & a \text{ value of } 0, \text{ or if one of the objects has a missing values for the } k^{th} \text{ attribute} \\ & 1 & \text{otherwise} \end{cases}$

3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^n \delta_k s_k}{\sum_{k=1}^n \delta_k}$$

Common Properties of a Distance

 Distances, such as the Euclidean distance, have some wellknown properties.

- 1. $d(p,q) \ge 0$ for all p and q and d(p,q) = 0 only if p = q. (Positive definiteness)
- 2. d(p,q) = d(q,p) for all p and q. (Symmetry)
- 3. $d(p,r) \le d(p,q) + d(q,r)$ for all points p, q, and r. (Triangle Inequality)

where d(p,q) is the distance (dissimilarity) between points (data objects), p and q.

 A distance that satisfies these properties is a metric and forms a metric space.

Common Properties of a Similarity

Similarities, also have some well-known properties.

- s(p,q) = 1 (or maximum similarity) only if p = q.
- s(p,q) = s(q,p) for all p and q. (Symmetry)

where s(p,q) is the similarity between points (data objects), p and q.

Correlation

- Correlation measures the (linear) relationship between two variables.
- To compute Pearson correlation (Pearson's Product Moment Correlation), we standardize data objects, p and q, and then take their dot product cov(X, Y)

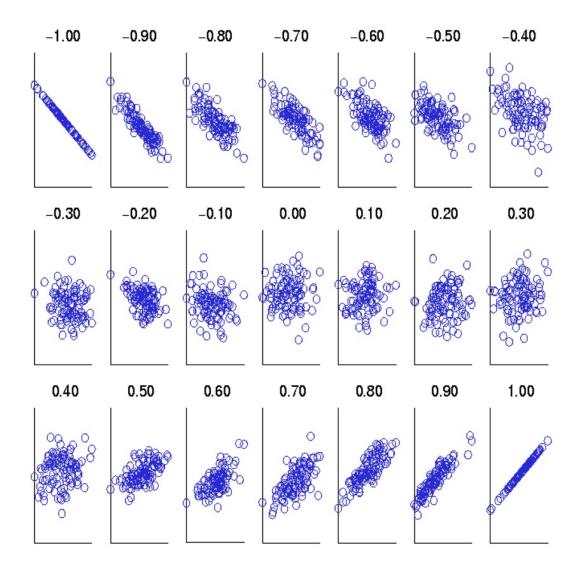
$$D = \frac{cov(X, T)}{sd(X)sd(Y)}$$

Estimation:

$$r = rac{\sum \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Correlation is often used as a measure of similarity.

Visually Evaluating Correlation



Scatter plots showing the similarity from –1 to 1.

Rank Correlation

- Measure the degree of similarity between two ratings (e.g., ordinal data).
- Is more robust against outliers and does not assume normality of data or linear relationship like Pearson Correlation.
- Measures (all are between -1 and 1)
 - Spearman's Rho: Pearson correlation between ranked variables.
 - Kendall's Tau

$$\tau = \frac{N_s - N_d}{\frac{1}{2}n(n-1)}$$

• Goodman and Kruskal's Gamma

$$\gamma = \frac{N_s - N_d}{N_s + N_d}$$

 N_s ... concordant pair N_d ... discordant pair

Topics

- Attributes/Features
- Types of Data Sets
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Density

Density

Density-based clustering require a notion of density

- Examples:
 - Probability density (function) = describes the likelihood of a random variable taking a given value
 - Euclidean density = number of points per unit volume
 - Graph-based density = number of edges compared to a complete graph
 - Density of a matrix = proportion of non-zero entries.

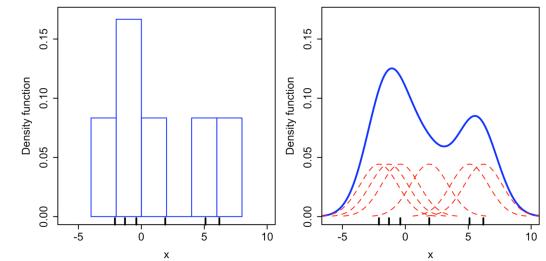
Kernel Density Estimation (KDE)

 KDE is a non-parametric way to estimate the probability density function of a random variable.

$${\widehat{f}}_h(x) = rac{1}{n}\sum_{i=1}^n K_h(x-x_i) = rac{1}{nh}\sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big),$$

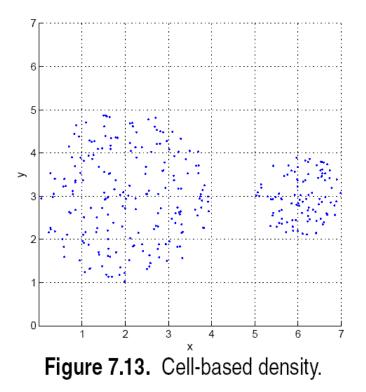
 K is the kernel (a non-negative function that integrates to one) and h > 0 is a smoothing parameter called the bandwidth. Often a Gaussian kernel is used.

Example:

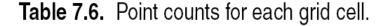


Euclidean Density – Cell-based

 Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as # of points the cell contains.



0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0



Euclidean Density – Center-based

 Euclidean density is the number of points within a specified radius of the point

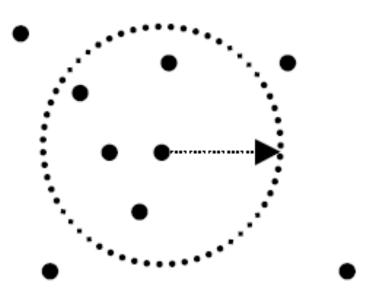


Figure 7.14. Illustration of center-based density.

You should know now about...

- Attributes/Features
- Types of Data Sets
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Density

