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CHAPTER

Classification: basic concepts and
methods

Classification is a form of data analysis that extracts models describing important data classes. Such
models, called classifiers, predict categorical (discrete, unordered) class labels. For example, we can
build a classification model to categorize bank loan applications as either safe or risky, or identify the
early sign of cognitive impairment based on a patient’s functional magnetic resonance imaging (fMRI)
scan, or help a self-driving car automatically recognize various road signs. Such analysis can help pro-
vide us with a better understanding of the data at large. Many classification methods have been proposed
by researchers in machine learning, pattern recognition, and statistics. Traditional classification algo-
rithms typically assume a small or medium data size. Modern classification techniques have built on
such work, developing scalable classification and prediction techniques capable of handling very large
amounts of data. Classification belongs to supervised learning and is closely connected to many other
data mining tasks. Classification has numerous applications, including fraud detection, target market-
ing, performance prediction, manufacturing, medical diagnosis, and many more.

We start off by introducing the main ideas of classification in Section 6.1. In the rest of this chapter,
you will learn the basic techniques for data classification such as how to build decision tree classifiers
(Section 6.2), Bayes classifiers (Section 6.3), lazy learners (Section 6.4), and linear classifiers (Sec-
tion 6.5). Section 6.6 discusses how to evaluate and compare different classifiers. Various measures of
accuracy are given, as well as techniques for obtaining reliable accuracy estimates. Methods for improv-
ing classifier accuracy are presented in Section 6.7, including ensemble methods and class-imbalanced
data (i.e., where the main class of interest is rare).

6.1 Basic concepts
We introduce the concept of classification in Section 6.1.1. Section 6.1.2 describes the general approach
to classification as a two-step process. In the first step, we build a classification model based on previous
data. In the second step, we determine if the model’s accuracy is acceptable, and if so, we use the model
to classify new data.

6.1.1 What is classification?
A bank loans officer needs analysis of her data to learn which loan applicants are “safe” and which
are “risky” for the bank, and her colleague from the risk management department wishes to detect
fraudulent transactions. A marketing manager at an electronics store needs data analysis to help guess
whether a customer with a given profile will buy a new computer, or understand the sentiment of social
media posts regarding a newly released product, or detect fake reviews about a new product from an
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online review site, or identify a subscribed customer who is likely to switch to a competitive electronics
store (i.e., churn prediction). An IT security analyst wants to know if the network system is under
attack (intrusion detection) or if a given application is contaminated with malware (malware detection).
A teacher wishes to know if a student enrolled in an online course will drop out before she completes the
course. A talent recruiter wants to know if an individual is looking for the next career move. A medical
researcher wants to analyze breast cancer data to predict which one of three specific treatments a patient
should receive, a cardiologist wants to identify the patient who is likely to have a congestive heart failure
based on her chronic medical history, a neuroscientist wants to identify the early sign of cognitive
impairment (which could lead to, say Alzheimer’s disease) based on a patient’s functional magnetic
resonance imaging (fMRI) scan. An intelligent question-answering system needs to understand what
type of question the user is asking (question classification), as the first step to automatically provide
a high-quality answer. A self-driving car needs to automatically recognize various road signs (e.g.,
‘stop,’ ‘detour,’ etc.). A physicist needs to identify high energy event from massive experiment data,
which might lead to new discoveries. Law enforcement wishes to predict the crime hot spot so that the
precaution measures can be taken proactively.

In each of these examples, the data analysis task is classification, where a model or classifier is
constructed to predict class (categorical) labels, such as “safe” or “risky” for the loan application data;
or “positive” or “negative” for sentiment classification; or “yes” or “no” for the marketing data; or
“dropout” or “stay” for online course enrollment, or “treatment A,” “treatment B,” or “treatment C”
for the medical data; or various question types for a question-answering system. These categories can
be represented by discrete values, where the ordering among values has no meaning. For example, the
values 1, 2, and 3 may be used to represent treatments A, B, and C, where there is no ordering implied
among this group of treatment regimes.

Suppose that the marketing manager wants to predict how much a given customer will spend during
a sale; or a realtor might be interested in knowing the average house pricing of the next year in different
residential areas; or a career planner wants to forecast the average yearly income of students immedi-
ately after graduating from the college in different majors. This kind of data analysis task is an example
of numeric prediction, where the model constructed predicts a continuous-valued function, or ordered
value, as opposed to a class label. Regression analysis is a statistical methodology that is most often
used for numeric prediction; hence the two terms tend to be used synonymously, although other methods
for numeric prediction exist. Ranking is another type of numerical prediction where the model predicts
the ordered values (i.e., ranks), for example, a web search engine (e.g., Google) ranks the relevant web-
pages with respect to a given query, with the higher-ranked webpages being more relevant to the query.
Classification and numeric prediction are the two major types of prediction problems. This chapter
primarily focuses on classification. It is worth pointing out that classification and numerical prediction
(e.g., regression) are closely related to each other. Many classification techniques can be modified for
the purpose of regression. We will see some examples, including regression trees (Section 6.2), lazy
learners (Section 6.4.1), linear regression (Section 6.5), and gradient tree boosting (Section 6.7.1).

6.1.2 General approach to classification
“How does classification work?” Data classification is a two-step process, consisting of a learning
step (where a classification model is constructed) and a classification step (where the model is used
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FIGURE 6.1

The data classification process: (a) Learning: Training data are analyzed by a classification algorithm. Here, the class
label attribute is loan_decision, and the learned model or classifier is represented in the form of classification rules.
(b) Classification: Test data are used to estimate the accuracy of the classification rules. If the accuracy is acceptable,
the rules can be applied to the classification of new data tuples.

to predict class labels for given data). The process is shown for the loan application data in Fig. 6.1.
The data are simplified for illustrative purposes. In reality, we may expect many more attributes to be
considered.
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In the first step, a classifier is built describing a predetermined set of data classes or concepts. This
is the learning step (also known as the training phase), where a classification algorithm builds the clas-
sifier by analyzing or “learning from” a training set made up of database tuples and their associated
class labels. A tuple, X, is represented by an n-dimensional attribute vector, X = (x1, x2, . . . , xn),
depicting n measurements made on the tuple from n database attributes, respectively, A1,A2, . . . ,An.1

Each tuple, X, is assumed to belong to a predefined class as determined by another database attribute
called the class label attribute. The class label attribute is discrete-valued and unordered. It is cate-
gorical (or nominal) in that each value serves as a category or class. The individual tuples making up
the training set are referred to as training tuples and are randomly sampled from the database under
analysis. In the context of classification, data tuples can be referred to as samples, examples, instances,
data points, or objects.2

Because the class label of each training tuple is provided, this step belongs to supervised learning
(i.e., the learning of the classifier is “supervised” in that it is told to which class each training tuple
belongs). The scope of supervised learning is larger than classification, and it broadly encompasses
learning methods for training a numerical prediction model (e.g., regression, ranking) if the true target
values of training tuples are known during the learning step. Supervised learning contrasts with unsu-
pervised learning (e.g., clustering), in which the true target value (e.g., class label) of each training
tuple is not known, and the number or set of classes to be learned may not be known in advance. For
example, if we did not have the loan_decision data available for the training set, we could use clus-
tering to try to determine “groups of like tuples” which may correspond to risk groups within the loan
application data. Likewise, we could use clustering techniques to find social media posts sharing sim-
ilar topics without knowing their actual class labels. Clustering is the topic of Chapters 8 and 9. The
landscape of the prediction problem (e.g., classification, regression, ranking) has gone beyond super-
vised vs. unsupervised learning. To name a few, in semisupervised classification, it builds a classifier
based on a limited number of labeled training tuples (whose true class labels are given during training)
and a large number of unlabeled training tuples (whose class labels are unknown during training); in
zero-shot learning, some class label might appear after the classification model has been built. In other
words, during the training phase, there are no (i.e., zero) labeled training tuples for such a class label.
Both semisupervised learning and zero-shot learning belong to weakly supervised learning in that the
supervision information for training the model is weaker than the standard supervised learning. For
the classification task, this means that the supervision (i.e., the true class labels of training tuples) is
known only for a small fraction of the entire training set in semisupervised learning; or is absent for
certain class label(s) in zero-shot learning. Classification with weak supervision will be introduced in
Chapter 7.

The first step of the classification process can also be viewed as the learning of a mapping or func-
tion, y = f (X), that can predict the associated class label y of a given tuple X. In this view, we wish
to learn a mapping or function that separates the data classes. Typically, this mapping is represented
in the form of classification rules, decision trees, or mathematical formulae. In our example, the map-

1 Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term feature vector rather than
attribute vector. In our discussion, we use these two terms interchangeably. In our notation, any variable representing a vector is
typically shown in bold italic font; measurements depicting the vector are shown in italic font (e.g., X = (x1, x2, x3)).
2 In the machine learning literature, training tuples are commonly referred to as training samples. Throughout this text, we prefer
to use the term tuples instead of samples.
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ping is represented as classification rules that identify loan applications as being either safe or risky
(Fig. 6.1(a)). The rules can be used to categorize future data tuples, as well as provide deeper insight
into the data contents. They also provide a compressed data representation.

“What about classification accuracy?” In the second step (Fig. 6.1(b)), the model is used for clas-
sification. First, the predictive accuracy of the classifier is estimated. If we were to use the training set
to measure the classifier’s accuracy, this estimate would likely be too optimistic, because the classifier
tends to overfit the data (i.e., during learning it may incorporate some particular anomalies of the train-
ing data that do not represent the general data set). Therefore a test set is used, made up of test tuples
and their associated class labels. They are independent of the training tuples, meaning that they were
not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test tuples that are correctly
classified by the classifier. The associated class label of each test tuple is compared with the learned
classifier’s class prediction for that tuple. Section 6.6 describes several methods for estimating classifier
accuracy. If the accuracy of the classifier is considered acceptable, the classifier can be used to classify
future data tuples for which the class label is not known. Such data are also referred to in the machine
learning literature as “unknown” or “previously unseen” data. For example, the classification rules
learned in Fig. 6.1(a) from the analysis of data from previous loan applications can be used to approve
or reject new or future loan applicants.

6.2 Decision tree induction
Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision
tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an
attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds a
class label. The topmost node in a tree is the root node. A typical decision tree is shown in Fig. 6.2. It
represents the concept buys_computer; that is, it predicts whether a customer at an electronics store is

FIGURE 6.2

A decision tree for the concept buys_computer, indicating whether a customer is likely to purchase a computer. Each
internal (nonleaf) node represents a test on an attribute. Each leaf node represents a class (either buys_computer =
yes or buys_computer = no).
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likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes are denoted by
ovals (or circles). Some decision tree algorithms produce only binary trees (where each internal node
branches to exactly two other nodes), whereas others can produce nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the associated class
label is unknown, the attribute values of the tuple are tested against the decision tree. A path is traced
from the root to a leaf node, which holds the class prediction for that tuple. Decision trees can easily be
converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers does
not require any domain knowledge or parameter setting and therefore is appropriate for exploratory
knowledge discovery. Decision trees can handle multidimensional data. Their representation of ac-
quired knowledge in tree form is intuitive and generally easy to assimilate by humans. The learning
and classification steps of decision tree induction are simple and fast. In general, decision tree clas-
sifiers have good accuracy. However, successful use may depend on the data at hand. Decision tree
induction algorithms have been used for classification in many application areas such as medicine,
manufacturing and production, financial analysis, astronomy, and molecular biology. Decision trees are
the basis of several commercial rule induction systems.

In Section 6.2.1, we describe a basic algorithm for learning decision trees. During tree construction,
attribute selection measures are used to select the attribute that best partitions the tuples into distinct
classes. Popular measures of attribute selection are given in Section 6.2.2. When decision trees are
built, many of the branches may reflect noise or outliers in the training data. Tree pruning attempts to
identify and remove such branches, with the goal of improving classification accuracy on unseen data.
Tree pruning is described in Section 6.2.3.

6.2.1 Decision tree induction
During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning, developed a
decision tree algorithm known as ID3 (Iterative Dichotomizer). This work expanded on earlier work on
concept learning systems, described by E. B. Hunt, J. Marin, and P. T. Stone. Quinlan later presented
C4.5 (a successor of ID3), which became a benchmark to which newer supervised learning algorithms
are often compared. In 1984, a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone)
published the book Classification and Regression Trees (CART), which described the generation of bi-
nary decision trees. ID3 and CART were invented independent of one another at around the same time,
yet follow a similar approach for learning decision trees from training tuples. These two cornerstone
algorithms spawned a flurry of work on decision tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which decision trees are
constructed in a top-down recursive divide-and-conquer manner. Most algorithms for decision tree
induction also follow a top-down approach, which starts with a training set of tuples and their associated
class labels. The training set is recursively partitioned into smaller subsets as the tree is being built. A
basic decision tree algorithm is summarized in Fig. 6.3. At first glance, the algorithm may appear long,
but fear not! It is quite straightforward. The strategy is as follows.

• The algorithm is called with three parameters: D, attribute_list, and Attribute_selection_method. D
is a data partition. Initially, it is the complete set of training tuples and their associated class labels.
The parameter attribute_list is a list of attributes describing the tuples. Attribute_selection_method
specifies a heuristic procedure for selecting the attribute that “best” discriminates the given tuples
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Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition, D.

Input:

• Data partition, D, which is a set of training tuples and their associated class labels;
• attribute_list, the set of candidate attributes;
• Attribute_selection_method, a procedure to determine the splitting criterion that “best” partitions the data tuples into

individual classes. This criterion consists of a splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.
Method:

(1) create a node N ;
(2) if tuples in D are all of the same class, C, then
(3) return N as a leaf node labeled with the class C;
(4) if attribute_list is empty then
(5) return N as a leaf node labeled with the majority class in D; // majority voting
(6) apply Attribute_selection_method(D, attribute_list) to find the “best” splitting_criterion;
(7) label node N with splitting_criterion;
(8) if splitting_attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees
(9) attribute_list ← attribute_list − splitting_attribute; // remove splitting_attribute
(10) for each outcome j of splitting_criterion

// partition the tuples and grow subtrees for each partition
(11) let Dj be the set of data tuples in D satisfying outcome j ; // a partition
(12) if Dj is empty then
(13) attach a leaf labeled with the majority class in D to node N ;
(14) else attach the node returned by Generate_decision_tree(Dj , attribute_list) to node N ;

endfor
(15) return N .

FIGURE 6.3

Basic algorithm for inducing a decision tree from training tuples.

according to class. This procedure employs an attribute selection measure such as information gain
or the Gini impurity. (We will introduce these measures in the next subsection.) Whether the tree
is strictly binary is generally driven by the attribute selection measure. Some attribute selection
measures, such as the Gini impurity, enforce the resulting tree to be binary. Others, like information
gain, do not, therein allowing multiway splits (i.e., two or more branches to be grown from a node).

• The tree starts as a single node, N , representing the training tuples in D (step 1).3

• If the tuples in D are all of the same class, then node N becomes a leaf and is labeled with that class
(steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All terminating conditions are
explained at the end of the algorithm.

• Otherwise, the algorithm calls Attribute_selection_method to determine the splitting criterion. The
splitting criterion tells us which attribute to test at node N by determining the “best” way to separate

3 The partition of class-labeled training tuples at node N is the set of tuples that follow a path from the root of the tree to node
N when being processed by the tree. This set is sometimes referred to in the literature as the family of tuples at node N . We have
referred to this set as the “tuples represented at node N ,” “the tuples that reach node N ,” or simply “the tuples at node N .” Rather
than storing the actual tuples at a node, most implementations store pointers to these tuples.
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or partition the tuples in D into individual classes (step 6). The splitting criterion also tells us which
branches to grow from node N with respect to the outcomes of the chosen test. More specifically,
the splitting criterion indicates the splitting attribute and may also indicate either a split-point or a
splitting subset. The splitting criterion is determined so that, ideally, the resulting partitions at each
branch are as “pure” as possible. A partition is pure if all the tuples in it belong to the same class.
In other words, if we split up the tuples in D according to the mutually exclusive outcomes of the
splitting criterion, we hope for the resulting partitions to be as pure as possible.

• The node N is labeled with the splitting criterion, which serves as a test at the node (step 7). A
branch is grown from node N for each of the outcomes of the splitting criterion. The tuples in D are
partitioned accordingly (steps 10–11). There are three possible scenarios, as illustrated in Fig. 6.4.
Let A be the splitting attribute. A has v distinct values, {a1, a2, . . . , av}, based on the training data.

1. A is discrete-valued: In this case, the outcomes of the test at node N directly correspond to the
known values of A. A branch is created for each known value, aj , of A and labeled with that
value (Fig. 6.4(a)). Partition Dj is the subset of class-labeled tuples in D having value aj of
A. Because all the tuples in a given partition have the same value for A, A does not need to be

FIGURE 6.4

This figure shows three possibilities for partitioning tuples based on the splitting criterion, each with examples. Let
A be the splitting attribute. (a) If A is discrete-valued, then one branch is grown for each known value of A. (b) If A

is continuous-valued, then two branches are grown, corresponding to A ≤ split_point and A > split_point. (c) If A

is discrete-valued and a binary tree must be produced, then the test is of the form A ∈ SA, where SA is the splitting
subset for A.
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considered in any future partitioning of the tuples. Therefore it is removed from attribute_list
(steps 8 and 9).

2. A is continuous-valued: In this case, the test at node N has two possible outcomes, corresponding
to the conditions A ≤ split_point and A > split_point, respectively, where split_point is the split-
point returned by Attribute_selection_method as part of the splitting criterion. (In practice, the
split-point, a, is often taken as the midpoint of two known adjacent values of A and therefore
may not actually be a preexisting value of A from the training data.) Two branches are grown
from N and labeled according to the previous outcomes (Fig. 6.4(b)). The tuples are partitioned
such that D1 holds the subset of class-labeled tuples in D for which A ≤ split_point, while D2
holds the rest.

3. A is discrete-valued and a binary tree must be produced (as dictated by the attribute selection
measure or algorithm being used): The test at node N is of the form “A ∈ SA?,” where SA is the
splitting subset for A, returned by Attribute_selection_method as part of the splitting criterion. It
is a subset of the known values of A. If a given tuple has value aj of A, and if aj ∈ SA, then the
test at node N is satisfied. Two branches are grown from N (Fig. 6.4(c)). By convention, the left
branch out of N is labeled yes so that D1 corresponds to the subset of class-labeled tuples in D
that satisfy the test. The right branch out of N is labeled no so that D2 corresponds to the subset
of class-labeled tuples from D that do not satisfy the test.

• The algorithm uses the same process recursively to form a decision tree for the tuples at each result-
ing partition, Dj , of D (step 14).

• The recursive partitioning stops only when any one of the following terminating conditions is true:

1. All the tuples in partition D (represented at node N ) belong to the same class (steps 2 and 3).
2. There are no remaining attributes on which the tuples may be further partitioned (step 4). In this

case, majority voting is employed (step 5). This involves converting node N into a leaf and
labeling it with the most common class in D. Alternatively, the class distribution of the node
tuples may be stored.

3. There are no tuples for a given branch, that is, a partition Dj is empty (step 12). In this case, a
leaf is created with the majority class in D (step 13).

• The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n × |D| × log(|D|)),
where n is the number of attributes describing the tuples in D and |D| is the number of training tuples
in D. This means that the computational cost of growing a tree grows at most n × |D| × log(|D|) with
|D| tuples. The proof is left as an exercise for the reader.

Incremental versions of decision tree induction have also been proposed. When given new train-
ing data, it restructures the decision tree acquired from learning on previous training data rather than
relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in creating the tree
(Section 6.2.2) and the mechanisms used for pruning (Section 6.2.3).

Decision tree is closely related to another type of tree, called regression tree, which is used to
predict the continuous output value. A regression tree is very similar to a decision tree in that it also
partitions the entire attribute space into multiple subregions, each corresponding to a leaf node. The
main difference is as follows. In a regression tree, a leaf node holds a continuous value instead of a
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FIGURE 6.5

A regression tree for predicting the average yearly income based on an individual’s education. The values of the
three leaf nodes are calculated as follows. $50K is the average yearly income of all training individuals who do
not have a college degree; $60K is the average yearly income of all training individuals who have a college degree
with a GPA less than or equal to 3.5; and $100K is the average yearly income of all training individuals who have a
college degree with a GPA higher than 3.5. The leaf node values ($50K, $60K, and $100K) are used to predict the
yearly income of any test individual who falls into the corresponding leaf nodes.

categorical value (i.e., class label) in a decision tree. The continuous value of a leaf node is learned
during the training phase, which is set as the average output value of all training tuples fallen in the
corresponding subregions. CART uses residual sum of squares (RSS) as the objective function, which
is the sum of the squared difference between the actual and predicted output values of training tuples

RSS =
∑

i

(yi − ŷi )
2, (6.1)

where yi is the actual output value of the ith training tuple, and ŷi is the predicted output by the
regression tree. Choosing the average output of all training tuples in the corresponding subregion is
optimal in that it minimizes the RSS in Eq. (6.1). Each leaf node value is then used to predict the output
of a test tuple which falls into it. Fig. 6.5 presents an example of a regression tree for predicting the
average yearly income based on an individual’s education (e.g., whether or not the individual attended
the college, the average GPA at college, etc.).

6.2.2 Attribute selection measures
An attribute selection measure is a heuristic for selecting the splitting criterion that “best” separates
a given data partition, D, of class-labeled training tuples into individual classes. If we were to split D

into smaller partitions according to the outcomes of the splitting criterion, ideally, each partition would
be pure (i.e., all the tuples that fall into a given partition would belong to the same class). Conceptually,
the “best” splitting criterion is the one that most closely results in such a scenario. Attribute selection
measures are also known as splitting rules because they determine how the tuples at a given node are
to be split.
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The attribute selection measure provides a ranking for each attribute describing the given training
tuples. The attribute having the best score for the measure4 is chosen as the splitting attribute for the
given tuples. If the splitting attribute is continuous-valued or if we are restricted to binary trees, then,
respectively, either a split point or a splitting subset must also be determined as part of the splitting
criterion. The tree node created for partition D is labeled with the splitting criterion, branches are grown
for each outcome of the criterion, and the tuples are partitioned accordingly. This section describes three
popular attribute selection measures—information gain, gain ratio, and Gini impurity.

The notation used herein is as follows. Let D, the data partition, be a training set of class-labeled
tuples. Suppose the class label attribute has m distinct values defining m distinct classes, Ci (for i =
1, . . . ,m). Let Ci,D be the set of tuples of class Ci in D. Let |D| and |Ci,D| denote the number of tuples
in D and Ci,D , respectively.

Information gain
ID3 uses information gain as its attribute selection measure. This measure is based on pioneering
work by Claude Shannon on information theory, which studied the value or “information content”
of messages. Let node N represent or hold the tuples of partition D. The attribute with the highest
information gain is chosen as the splitting attribute for node N . This attribute minimizes the information
needed to classify the tuples in the resulting partitions and reflects the least randomness or “impurity”
in these partitions. Such an approach minimizes the expected number of tests needed to classify a given
tuple and guarantees that a simple (but not necessarily the simplest) tree is found.

The expected information needed to classify a tuple in D is given by

Info(D) = −
m∑

i=1

pi log2(pi), (6.2)

where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci and is estimated by
|Ci,D|/|D|. A log function to the base 2 is used, because the information is encoded in bits. Info(D) is
just the average amount of information needed to identify the class label of a tuple in D. Note that, at
this point, the information we have is based solely on the proportions of tuples of each class. Info(D) is
also known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A having v distinct values,
{a1, a2, . . . , av}, as observed from the training data. If A is discrete-valued, these values correspond
directly to the v outcomes of a test on A. Attribute A can be used to split D into v partitions or subsets,
{D1,D2, . . . ,Dv}, where Dj contains those tuples in D that have outcome aj of A. These partitions
would correspond to the branches grown from node N . Ideally, we would like this partitioning to
produce an exact classification of the tuples. That is, we would like for each partition to be pure.
However, it is quite likely that the partitions will be impure (e.g., where a partition may contain a
collection of tuples from different classes rather than from a single class).

4 Depending on the measure, either the highest or lowest score is chosen as the best (i.e., some measures strive to maximize,
whereas others strive to minimize).
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How much more information would we still need (after the partitioning) to arrive at an exact classi-
fication? This amount is measured by

InfoA(D) =
v∑

j=1

|Dj |
|D| × Info(Dj ). (6.3)

The term |Dj |
|D| acts as the weight of the j th partition. InfoA(D) is the expected information required

to classify a tuple from D based on the partitioning by A. The smaller the expected information (still)
required, the greater the purity of the partitions. InfoA(D) is also known as the conditional entropy of
D (conditioned on the attribute A).

Information gain is defined as the difference between the original information requirement (i.e.,
based on just the proportion of classes) and the new requirement (i.e., obtained after partitioning on A).
That is,

Gain(A) = Info(D) − InfoA(D). (6.4)

In other words, Gain(A) tells us how much would be gained by branching on A. It is the expected reduc-
tion in the information requirement caused by knowing the value of A. The attribute A with the highest
information gain, Gain(A), is chosen as the splitting attribute at node N . This is equivalent to saying
that we want to partition on the attribute A that would do the “best classification,” so that the amount
of information still required to finish classifying the tuples is minimal (i.e., minimum InfoA(D)).

Example 6.1. Induction of a decision tree using information gain. Table 6.1 presents a training set,
D, of class-labeled tuples randomly selected from the customer database of an electronics store. (The
data are adapted from Quinlan [Qui86]. In this example, each attribute is discrete-valued. Continuous-
valued attributes have been generalized.) The class label attribute, buys_computer, has two distinct

Table 6.1 Class-labeled training tuples from the customer database of
an electronics store.
RID age income student credit_rating Class: buys_computer

1 youth high no fair no
2 youth high no excellent no
3 middle_aged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes

10 senior medium yes fair yes
11 youth medium yes excellent yes
12 middle_aged medium no excellent yes
13 middle_aged high yes fair yes
14 senior medium no excellent no
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values (namely, {yes, no}); therefore, there are two distinct classes (i.e., m = 2). Let class C1 correspond
to yes and class C2 correspond to no. There are nine tuples of class yes and five tuples of class no.
A (root) node N is created for the tuples in D. To find the splitting criterion for these tuples, we
must compute the information gain of each attribute. We first use Eq. (6.2) to compute the expected
information needed to classify a tuple in D:

Info(D) = − 9
14

log2

(
9
14

)
− 5

14
log2

(
5
14

)
= 0.940 bits.

Next, we need to compute the expected information requirement for each attribute. Let’s start with
the attribute age. We need to look at the distribution of yes and no tuples for each category of age. For
the age category “youth” there are two yes tuples and three no tuples. For the category “middle_aged,”
there are four yes tuples and zero no tuples. For the category “senior,” there are three yes tuples and two
no tuples. Using Eq. (6.3), the expected information needed to classify a tuple in D if the tuples are
partitioned according to age is

Infoage(D) = 5
14

×
(

−2
5

log2
2
5

− 3
5

log2
3
5

)

+ 4
14

×
(

−4
4

log2
4
4

)

+ 5
14

×
(

−3
5

log2
3
5

− 2
5

log2
2
5

)

= 0.694 bits.

Hence, the gain in information from such partitioning would be

Gain(age) = Info(D) − Infoage(D) = 0.940 − 0.694 = 0.246 bits.

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits, and
Gain(credit_rating) = 0.048 bits. Because age has the highest information gain among the attributes,
it is selected as the splitting attribute. Node N is labeled with age, and branches are grown for each of
the attribute’s values. The tuples are then partitioned accordingly, as shown in Fig. 6.6. Notice that the
tuples falling into the partition for age = middle_aged all belong to the same class. Because they all
belong to class “yes,” a leaf should therefore be created at the end of this branch and labeled “yes.”
The final decision tree returned by the algorithm was shown earlier in Fig. 6.2.

“But how can we compute the information gain of an attribute that is continuous-valued, unlike
in the example?” Suppose, instead, that we have an attribute A that is continuous-valued rather than
discrete-valued. (For example, suppose that instead of the discretized version of age from the example,
we have the raw values for this attribute.) For such a scenario, we must determine the “best” split-point
for A, where the split-point is a threshold on A.

We first sort the values of A in the increasing order. Typically, the midpoint between each pair of
adjacent values is considered as a possible split-point. Therefore, given v values of A, (v − 1) possible
splits are evaluated. For example, the midpoint between the values ai and ai+1 of A is

ai + ai+1

2
. (6.5)
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FIGURE 6.6

The attribute age has the highest information gain and therefore becomes the splitting attribute at the root node of
the decision tree. Branches are grown for each outcome of age. The tuples are shown partitioned accordingly.

If the values of A are sorted in advance, then determining the best split for A requires only one pass
through the values. For each possible split-point for A, we evaluate InfoA(D), where the number of
partitions is two, that is, v = 2 (or j = 1,2) in Eq. (6.3). The point with the minimum expected infor-
mation requirement for A is selected as the split_point for A. D1 is the set of tuples in D satisfying
A ≤ split_point, and D2 is the set of tuples in D satisfying A > split_point.

Gain ratio
The information gain measure is biased toward tests with many outcomes. That is, it prefers to select
attributes having a large number of values. For example, consider an attribute that acts as a unique iden-
tifier, such as product_ID. A split on product_ID would result in a large number of partitions (as many
as there are values), each one containing just one tuple. Because each partition is pure, the information
required to classify data set D based on this partitioning would be Infoproduct_ID(D) = 0. Therefore the
information gained by partitioning on this attribute is maximal. Clearly, such a partitioning is useless
for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio, which attempts
to overcome this bias. It applies a kind of normalization to information gain using a “split information”
value defined analogously with Info(D) as

SplitInfoA(D) = −
v∑

j=1

|Dj |
|D| × log2

( |Dj |
|D|

)
. (6.6)
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This value represents the potential information generated by splitting the training data set, D, into
v partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each outcome, it
considers the number of tuples having that outcome with respect to the total number of tuples in D.
It differs from information gain, which measures the information with respect to classification that is
acquired based on the same partitioning. The gain ratio is defined as

GainRatio(A) = Gain(A)

SplitInfoA(D)
. (6.7)

The attribute with the maximum gain ratio is selected as the splitting attribute. Note, however, that
as the split information approaches 0, the ratio becomes unstable. A constraint is added to avoid this,
whereby the information gain of the test selected must be large—at least as great as the average gain
over all tests examined.

Example 6.2. Computation of gain ratio for the attribute income. A test on income splits the data
of Table 6.1 into three partitions, namely low, medium, and high, containing four, six, and four tuples,
respectively. To compute the gain ratio of income, we first use Eq. (6.6) to obtain

SplitInfoincome(D) = − 4
14

× log2

(
4
14

)
− 6

14
× log2

(
6

14

)
− 4

14
× log2

(
4

14

)

= 1.557.

From Example 6.1, we have Gain(income) = 0.029. Therefore GainRatio(income) = 0.029/1.557 =
0.019.

Gini impurity
The Gini impurity (or Gini in short) is used in CART. Using the notation previously described, the Gini
measures the impurity of D, a data partition or a set of training tuples, as

Gini(D) = 1 −
m∑

i=1

p2
i , (6.8)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by |Ci,D|/|D|. The
sum is computed over m classes.

The Gini impurity considers a binary split for each attribute. Let’s first consider the case where A

is a discrete-valued attribute having v distinct values, {a1, a2, . . . , av}, occurring in D. To determine
the best binary split on A, we examine all the possible subsets that can be formed using known val-
ues of A. Each subset, SA, can be considered as a binary test for attribute A of the form “A ∈ SA?”
Given a tuple, this test is satisfied if the value of A for the tuple is among the values listed in SA.
If A has v possible values, then there are 2v possible subsets. For example, if income has three pos-
sible values, namely {low, medium, high}, then the possible subsets are {low, medium, high}, {low,
medium}, {low, high}, {medium, high}, {low}, {medium}, {high}, and {}. We exclude the power set,
{low, medium, high}, and the empty set from consideration since, conceptually, they do not represent
a split. Therefore there are (2v − 2)/2 possible ways to form two partitions of the data, D, based on a
binary split on A.
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When considering a binary split, we compute a weighted sum of the impurity of each resulting
partition. For example, if a binary split on A partitions D into D1 and D2, the Gini impurity of D given
that partitioning is

GiniA(D) = |D1|
|D| Gini(D1) + |D2|

|D| Gini(D2). (6.9)

For each attribute, each of the possible binary splits is considered. For a discrete-valued attribute, the
subset that gives the minimum Gini impurity for that attribute is selected as its splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The strategy is sim-
ilar to that described earlier for information gain, where the midpoint between each pair of (sorted)
adjacent values is taken as a possible split-point. The point giving the minimum Gini impurity for a
given (continuous-valued) attribute is taken as the split-point of that attribute. Recall that for a possible
split-point of A, D1 is the set of tuples in D satisfying A ≤ split_point, and D2 is the set of tuples in D

satisfying A > split_point.
The reduction in impurity that would be incurred by a binary split on a discrete- or continuous-

valued attribute A is

!Gini(A) = Gini(D) − GiniA(D). (6.10)

The attribute that maximizes the reduction in impurity (or, equivalently, has the minimum Gini impu-
rity) is selected as the splitting attribute. This attribute and either its splitting subset (for a discrete-
valued splitting attribute) or split-point (for a continuous-valued splitting attribute) together form the
splitting criterion.

Example 6.3. Induction of a decision tree using the Gini impurity. Let D be the training data shown
earlier in Table 6.1, where there are nine tuples belonging to the class buys_computer = yes and the
remaining five tuples belong to the class buys_computer = no. A (root) node N is created for the tuples
in D. We first use Eq. (6.8) for the Gini impurity to compute the impurity of D:

Gini(D) = 1 −
(

9
14

)2

−
(

5
14

)2

= 0.459.

To find the splitting criterion for the tuples in D, we need to compute the Gini impurity for each
attribute. Let’s start with the attribute income and consider each of the possible splitting subsets. Con-
sider the subset {low, medium}. This would result in 10 tuples in partition D1 satisfying the condition
“income ∈ {low, medium}.” The remaining four tuples of D would be assigned to partition D2. The
Gini impurity value computed based on this partitioning is

Giniincome ∈ {low,medium}(D)

= 10
14

Gini(D1) + 4
14

Gini(D2)

= 10
14

(

1 −
(

7
10

)2

−
(

3
10

)2
)

+ 4
14

(

1 −
(

2
4

)2

−
(

2
4

)2
)

= 0.443

= Giniincome ∈ {high}(D).
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Similarly, the Gini impurity values for splits on the remaining subsets are 0.458 (for the subsets {low,
high} and {medium}) and 0.450 (for the subsets {medium, high} and {low}). Therefore the best binary
split for attribute income is on {low, medium} (or {high}) because it minimizes the Gini impurity.
Evaluating age, we obtain {youth, senior} (or {middle_aged}) as the best split for age with a Gini
impurity of 0.375; the attributes student and credit_rating are both binary, with Gini impurity values of
0.367 and 0.429, respectively.

The attribute age and splitting subset {youth, senior} therefore give the minimum Gini impurity
overall, with a reduction in impurity of 0.459 − 0.357 = 0.102. The binary split “age ∈ {youth, se-
nior?}” results in the maximum reduction in impurity of the tuples in D and is returned as the splitting
criterion. Node N is labeled with the criterion, two branches are grown from it, and the tuples are
partitioned accordingly.

“So, what is the relationship between Gini impurity and information gain?” Intuitively, both mea-
sures aim to quantify to what extent the impurity will be reduced if we split the current node based
on the given attribute. Information gain, rooted in information theory, measures the impurity based on
(the change of) the average amount of information needed to identify the class label of a tuple. Gini
impurity is related to mis-classification in the following way. Based on the class label distribution in
the current node, it tells how likely a randomly chosen tuple will be mis-classified if it is assigned to
a random class label. Gini impurity is always used for binary split, whereas information gain allows
multiway split. In terms of computation, Gini impurity is slightly more efficient than information gain,
since the latter involves the logarithm computation. In practice, however, both measures often lead to
very similar decision trees.

Other attribute selection measures
This section on attribute selection measures was not intended to be exhaustive. We have shown three
measures that are commonly used for building decision trees. These measures are not without their
biases. Information gain, as we saw, is biased toward multivalued attributes. Although the gain ratio
adjusts for this bias, it tends to prefer unbalanced splits in which one partition is much smaller than the
others. The Gini impurity is biased toward multivalued attributes and has difficulty when the number of
classes is large. It also tends to favor tests that result in equal-size partitions and purity in both partitions.
Although biased, these measures give reasonably good results in practice.

Many other attribute selection measures have been proposed. CHAID, a decision tree algorithm that
is popular in marketing, uses an attribute selection measure that is based on the statistical χ2 test for
independence. Other measures include C-SEP (which performs better than information gain and Gini
impurity in certain cases) and G-statistic (an information theoretic measure that is a close approximation
to χ2 distribution).

For regression tree, it is natural to use RSS (Eq. (6.1)) as the splitting criteria. That is, the best
split point for a given attribute is the one that leads the smallest RSS. We choose the attribute with the
minimum RSS to split the tree node into two nodes, including left leaf node and right leaf node.

Example 6.4. Let us look at an example in Table 6.2 on how to use RSS to find the best split point.
Suppose there are five training tuples at a regression tree node, and each training tuple has a true output
value yi and a continuous attribute xi(i = 1, ...,5). We want to find the best split point for attribute xi

to split the tree node into two leaf nodes. More specifically, all the tuples whose xi is less than or equal
to the split point will go to the left leaf node, and the remaining training tuples will go to the right leaf
node.
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Table 6.2 Training data for regression.

attribute xi 1 2 3 4 5
output yi 10 12 8 20 22

Given five training tuples at a regression tree node, each with a
true output value yi and a continuous attribute xi(i = 1, ...,5).
We want to find the best split point for attribute xi to split the tree
node into two nodes (left node and right node).

Table 6.3 Using RSS to choose the best split point for data
tuples in Table 6.2.

candidate split point xi 1.5 2.5 3.5 4.5
predicted value of left leaf node yl 10 11 10 12.5
predicted value of right leaf node yr 15.5 16.7 21 22
RSS 131 116.67 10 83

Since xi is a continuous attribute with five possible values, there are four candidate split points,
including xi = 1.5, xi = 2.5, xi = 3.5 and xi = 4.5. For each candidate split point, we partition the
current tree node into two leaf nodes. The average output value yl of the training tuples in the left
leaf node is used to predict the output of all tuples residing in the left leaf node. Likewise, the average
output value yr of the training tuples in the right leaf node is used to predict the output of all tuples
residing in the right leaf node. For example, if the split point xi = 1.5, only the first training tuple
goes to the left leaf node, and we have that yl = y1 = 10; and yr = (y2 + y3 + y4 + y5)/4 = (12 + 8 +
20 + 22)/4 = 15.5. Using the predicted output values for all five training tuples (yl or yr ), we can use
Eq. (6.1) to calculate RSS. Again, if the split point xi = 1.5, we have that RSS = ∑5

i=1(yi − ŷi )
2 =

(y1 − yl)
2 + (y2 − yr)

2 + (y3 − yr)
2 + (y4 − yr)

2 + (y5 − yr)
2 = 122.25. The computation results for

all four possible split points are summarized in Table 6.3. Since xi = 3.5 has the smallest RSS, it is
chosen as the split point.

Attribute selection measures based on the Minimum Description Length (MDL) principle have
the least bias toward multivalued attributes. MDL-based measures use encoding techniques to define
the “best” decision tree as the one that requires the fewest number of bits to both (1) encode the tree
and (2) encode the exceptions to the tree (i.e., cases that are not correctly classified by the tree). Its
main idea is that the simplest solution is preferred. The philosophy underlying the MLD principle is
Occam’s razor, also known as law of parsimony. In data mining and machine learning, Occam’s razor
is often translated into a design principle that one should favor a model with a shorter description (hence
minimum description length) for the data over a lengthier model, provided that everything else is equal
(e.g., both shorter and lengthier models share the same training set errors).

Other attribute selection measures consider multivariate splits (i.e., where the partitioning of tu-
ples is based on a combination of attributes, rather than on a single attribute). The CART system, for
example, can find multivariate splits based on a linear combination of attributes. Multivariate splits are
a form of attribute (or feature) construction, where new attributes are created based on the existing
ones. (Attribute construction was also discussed in Chapter 2 as a form of data transformation.) These
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other measures mentioned here are beyond the scope of this book. Additional references are given in
the bibliographic notes at the end of this chapter (Section 6.10).

“Which attribute selection measure is the best?” All measures have some bias. It has been shown
that the time complexity of decision tree induction generally increases exponentially with tree height.
Hence, measures that tend to produce shallower trees (e.g., with multiway rather than binary splits, and
that favor more balanced splits) may be preferred. However, some studies have found that shallow trees
tend to have a large number of leaves and higher error rates. Despite several comparative studies, no
single attribute selection measure has been found to be significantly superior to others. Most measures
give quite good results.

6.2.3 Tree pruning
When a decision tree is built, many of the branches will reflect anomalies in the training data due to
noise or outliers. Tree pruning methods address this problem of overfitting the data. Such methods
typically use statistical measures to remove the least-reliable branches. An unpruned tree and a pruned
version of it are shown in Fig. 6.7. Pruned trees tend to be smaller and less complex and, thus, easier
to comprehend. They are usually faster and better at correctly classifying independent test data (i.e., of
previously unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning: prepruning
and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g., by deciding
not to further split or partition the subset of training tuples at a given node). Upon halting, the node be-
comes a leaf. The leaf may hold the most frequent class label among the subset tuples or the probability
distribution of the class labels of those tuples.

When constructing a tree, measures such as statistical significance, information gain, Gini impurity,
and so on, can be used to assess the goodness of a split. If partitioning the tuples at a node would result
in a split that falls below a prespecified threshold, then further partitioning of the given subset is halted.

FIGURE 6.7

An unpruned decision tree (left) and a pruned version of it (right).
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There are difficulties, however, in choosing an appropriate threshold. High thresholds could result in
oversimplified trees, whereas low thresholds could result in very little simplification.

The second and more common approach is postpruning, which removes subtrees from a “fully
grown” tree. A subtree at a given node is pruned by removing its branches and replacing it with a leaf.
The leaf is labeled with the most frequent class label among the subtree being replaced. For example,
notice the subtree at node “A3?” in the unpruned tree of Fig. 6.7. Suppose that the most common class
within this subtree is “class B.” In the pruned version of the tree, the subtree in question is pruned by
replacing it with the leaf “class B.”

The cost complexity pruning algorithm used in CART is an example of the postpruning approach.
This approach considers the cost complexity of a tree to be a function of the number of leaves in the
tree and the error rate of the tree (where the error rate is the percentage of tuples misclassified by the
tree). It starts from the bottom of the tree. For each internal node, N , it computes the cost complexity
of the subtree at N , and the cost complexity of the subtree at N if it were to be pruned (i.e., replaced by
a leaf node). The two values are compared. If pruning the subtree at node N would result in a smaller
cost complexity, then the subtree is pruned; otherwise, it is kept.

A pruning set of class-labeled tuples is used to estimate the cost complexity. This set is independent
(1) of the training set used to build the unpruned tree and (2) of any test set used for accuracy estimation.
The algorithm generates a set of progressively pruned trees. In general, the smallest decision tree that
minimizes the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost complexity method in
that it also uses error rate estimates to make decisions regarding subtree pruning. Pessimistic pruning,
however, does not require the use of a pruning set. Instead, it uses the training set to estimate error rates.
Recall that an estimate of accuracy or error based on the training set is overly optimistic and therefore
strongly biased. The pessimistic pruning method, therefore, adjusts the error rates obtained from the
training set by adding a penalty, so as to counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based on the number of
bits required to encode them. The “best” pruned tree is the one that minimizes the number of encoding
bits. This method adopts the MDL principle, which was briefly introduced in Section 6.2.2. The basic
idea is that the simplest solution is preferred. Unlike cost complexity pruning, it does not require an
independent set of tuples (i.e., the pruning set).

Alternatively, prepruning and postpruning may be interleaved for a combined approach. Postprun-
ing requires more computation than prepruning, yet generally leads to a more reliable tree. No single
pruning method has been found to be superior over all others. Although some pruning methods do de-
pend on the availability of additional data for pruning, this is usually not a concern when dealing with
large databases.

Although pruned trees tend to be more compact than their unpruned counterparts, they may still be
rather large and complex. Decision trees can suffer from repetition and replication (Fig. 6.8), making
them overwhelming to interpret. Repetition occurs when an attribute is repeatedly tested along a given
branch of the tree (e.g., “age < 60?,” followed by “age < 45?,” and so on). In replication, duplicate
subtrees exist within the tree. These situations can impede the accuracy and comprehensibility of a
decision tree. The use of multivariate splits (splits based on a combination of attributes) can prevent
these problems. Another approach is to use a different form of knowledge representation, such as rules,
instead of decision trees. This is described in Chapter 7, which shows how a rule-based classifier can
be constructed by extracting IF-THEN rules from a decision tree.
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FIGURE 6.8

An example of (a) subtree repetition, where an attribute is repeatedly tested along a given branch of the tree (e.g.,
age), and (b) subtree replication, where duplicate subtrees exist within a tree (e.g., the subtree headed by the node
“credit_rating?”).

6.3 Bayes classification methods
“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can predict class
membership probabilities, such as the probability that a given tuple belongs to a particular class.

Bayesian classification is based on Bayes’ theorem, described next. Studies comparing classification
algorithms have found a simple Bayesian classifier known as the naïve Bayesian classifier to be com-
parable in performance with decision trees and selected neural network classifiers. Bayesian classifiers
have also exhibited high accuracy and speed when applied to large databases.
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6.4 Lazy learners (or learning from your neighbors)
The classification methods discussed so far in this book—decision tree induction and Bayesian
classification—are both examples of eager learners. Eager learners, when given a set of training
tuples, will construct a generalization (i.e., classification) model before receiving new (e.g., test) tuples
to classify. We can think of the learned model as being ready and eager to classify previously unseen
tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until the last minute before
doing any model construction to classify a given test tuple. That is, when given a training tuple, a lazy
learner simply stores it (or does only a little minor processing) and waits until it is given a test tuple.
Only when it sees the test tuple does it perform generalization to classify the tuple based on its similarity
to the stored training tuples. Unlike eager learning methods, lazy learners do less work when a training
tuple is presented and more work when making a classification or numeric prediction. Because lazy
learners store the training tuples or “instances,” they are also referred to as instance-based learners,
even though all learning is essentially based on instances.

When making a classification or numeric prediction, lazy learners can be computationally expen-
sive. They require efficient storage techniques and are well suited to implementation on parallel hard-
ware. They offer little explanation or insight into the data’s structure. Lazy learners, however, naturally
support incremental learning. They are able to model complex decision spaces having hyperpolygonal
shapes that may not be as easily describable by other learning algorithms (such as hyperrectangular
shapes modeled by decision trees). In this section, we look at two examples of lazy learners: k-nearest-
neighbor classifiers (Section 6.4.1) and case-based reasoning classifiers (Section 6.4.2).

6.4.1 k-nearest-neighbor classifiers
The k-nearest-neighbor method was first described in the early 1950s. The method is labor-intensive
when given a large training set, and did not gain popularity until the 1960s when increased computing
power became available. It has since been widely used in the area of pattern recognition.

Suppose you want to make a decision on whether or not you should buy a computer. What would
you do? One possible way to make such a decision is to find out your friends’ decision on this (whether
or not to buy a computer). If most of your close friends buy a computer, maybe you will decide to
buy a computer as well. Nearest-neighbor classifiers follow a very similar idea of learning by analogy,
that is, by comparing a given test tuple with training tuples that are similar to it. The training tuples
are described by n attributes. Each tuple represents a point in an n-dimensional space. In this way, all
the training tuples are stored in an n-dimensional attribute space. When given an unknown tuple, a
k-nearest-neighbor classifier searches the attribute space for the k training tuples that are closest to
the unknown tuple (i.e., to find your close friends in the above example). These k training tuples are
the k “nearest neighbors” of the unknown tuple. Then k-nearest-neighbor classifier chooses the most
common class label among the k nearest neighbors as the predicted class label of the unknown tuple
(i.e., to follow the majority decision of your friends in the above example).

“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The Euclidean
distance between two points or tuples, say, X1 = (x11, x12, . . . , x1n) and X2 = (x21, x22, . . . , x2n), is
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dist(X1,X2) =

√√√√
n∑

i=1

(x1i − x2i )2. (6.17)

In other words, for each numeric attribute, we take the difference between the corresponding values of
that attribute in tuple X1 and in tuple X2, square this difference, and accumulate it. The square root
is taken of the total accumulated distance count. Typically, we normalize the values of each attribute
before using Eq. (6.17). This helps prevent attributes with initially large ranges (e.g., income) from
outweighing attributes with initially smaller ranges (e.g., binary attributes). Min-max normalization,
for example, can be used to transform a value v of a numeric attribute A to v ′ in the range [0,1] by
computing

v ′ = v − minA

maxA − minA
, (6.18)

where minA and maxA are the minimum and maximum values of attribute A. Chapter 2 describes other
methods for data normalization as a form of data transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most common class label
among its k-nearest neighbors. When k = 1, the unknown tuple is assigned the class of the training
tuple that is closest to it in the attribute space. When k > 1, we can take a (weighted) majority voting
on the class labels among its k-nearest neighbors. Nearest-neighbor classifiers can also be used for
numeric prediction, that is, to return a real-valued prediction for a given unknown tuple. In this case,
the classifier returns the (weighted) average value of the real-valued labels associated with the k-nearest
neighbors of the unknown tuple.

“But how can distance be computed for attributes that are not numeric, but nominal (or categorical)
such as color?” The previous discussion assumes that the attributes used to describe the tuples are all
numeric. For nominal attributes, a simple method is to compare the corresponding value of the attribute
in tuple X1 with that in tuple X2. If the two are identical (e.g., tuples X1 and X2 both have the color
blue), then the difference between the two is taken as 0. If the two are different (e.g., tuple X1 is blue
but tuple X2 is red), then the difference is considered to be 1. Other methods may incorporate more
sophisticated schemes for differential grading (e.g., where a larger difference score is assigned, say, for
blue and white than for blue and black).

“What about missing values?” In general, if the value of a given attribute A is missing in tuple X1 or
in tuple X2, we assume the maximum possible difference. Suppose that each of the attributes has been
mapped to the range [0,1]. For nominal attributes, we take the difference value to be 1 if either one or
both of the corresponding values of A are missing. If A is numeric and missing from both tuples X1
and X2, then the difference is also taken to be 1. If only one value is missing and the other (which we
will call v ′) is present and normalized, then we can take the difference to be either |1 − v ′| or |0 − v ′|
(i.e., 1 − v ′ or v ′), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This can be determined
experimentally. Starting with k = 1, we use a test set to estimate the error rate of the classifier. This
process can be repeated each time by incrementing k to allow for one more neighbor. The k value that
gives the minimum error rate may be selected. In general, the larger the number of training tuples, the
larger the value of k will be (so that classification and numeric prediction decisions can be based on a
larger portion of the stored tuples). As the number of training tuples approaches infinity and k = 1, the
error rate can be no worse than twice the Bayes error rate (the latter being the theoretical minimum). In
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FIGURE 6.9

The impact of distance metrics on 1-nearest-neighbor classifier. Given two training examples, including a positive
example at (1,0) and a negative example at (−1,0). The decision boundaries of 1-nearest-neighbor classifier using
different distance metrics are quite different from each other. Using L2 norm (on the left), the decision boundary
is a vertical line at x2 = 0. Using L∞ norm (on the right), the decision boundary includes a line segment between
(0,−1) and (0,1) and two shaded areas.

other words, 1-nearest-neighbor classifier is asymptotically near-optimal. If k approaches infinity, the
error rate approaches the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign equal weight to
each attribute. They, therefore, can suffer from poor accuracy when given noisy or irrelevant attributes.
The method, however, has been modified to incorporate attribute weighting and the pruning of noisy
data tuples. The choice of a distance metric can be critical. The Manhattan (city block) distance (Sec-
tion 2.3), or other distance measurements, may also be used. Fig. 6.9 presents an illustrative example
in terms of the impact of distance metrics on the decision boundary of k-nearest-neighbor classifier.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D is a training
database of |D| tuples and k = 1, then O(|D|) comparisons are required to classify a given test tuple. By
presorting and arranging the stored tuples into search trees, the number of comparisons can be reduced
to O(log(|D|). Parallel implementation can reduce the running time to a constant, that is, O(1), which
is independent of |D|.

Other techniques to speed up classification time include the use of partial distance calculations and
editing the stored tuples. In the partial distance method, we compute the distance based on a subset
of the n attributes. If this distance exceeds a threshold, then further computation for the given stored
tuple is halted, and the process moves on to the next stored tuple. The editing method removes training
tuples that are proven useless. This method is also referred to as pruning or condensing because it
reduces the total number of tuples stored. Another technique to speed up nearest-neighbor search is
via locality-sensitive-hashing (LSH). The key idea is to hash the similar tuples into the same bucket
with a high probability via locality-preserving hash functions. Then, given a test tuple, we first identify
which bucket it belongs to, and then we only search the training tuples in the same bucket to identify
its nearest neighbors.
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6.4.2 Case-based reasoning
Case-based reasoning (CBR) classifiers use a database of problem solutions to solve new problems.
Unlike k-nearest-neighbor classifiers, which store training tuples as points in Euclidean space, CBR
stores the tuples or “cases” for problem solving as complex symbolic descriptions. Business appli-
cations of CBR include problem resolution for customer service help desks, where cases describe
product-related diagnostic problems. CBR has also been applied to areas, such as engineering and
law, where cases are either technical designs or legal rulings in the common law system, respectively.
Medical education is another area for CBR, where patient case histories and treatments are used to help
diagnose and treat new patients.

When given a new case to classify, a case-based reasoner will first check if an identical training case
exists. If one is found, then the accompanying solution to that case is returned. If no identical case is
found, then the case-based reasoner will search for training cases having components that are similar
to those of the new case. Conceptually, these training cases may be considered as neighbors of the
new case. If cases are represented as graphs, this involves searching for subgraphs that are similar to
subgraphs within the new case. The case-based reasoner tries to combine the solutions of the neighbor-
ing training cases to propose a solution for the new case. If incompatibilities arise with the individual
solutions, then backtracking to search for other solutions may be necessary. The case-based reasoner
may employ background knowledge and problem-solving strategies to propose a feasible combined
solution.

Key challenges in case-based reasoning include finding a good similarity metric (e.g., for matching
subgraphs) and suitable methods for combining solutions. Other challenges include the selection of
salient features for indexing training cases and the development of efficient indexing techniques. A
trade-off between accuracy and efficiency evolves as the number of stored cases becomes very large.
As this number increases, the case-based reasoner becomes more intelligent. After a certain point,
however, the system’s efficiency will suffer as the time required to search for and process relevant
cases increases. As with nearest-neighbor classifiers, one solution is to edit the training database. Cases
that are redundant or those that have not proved useful may be discarded for the sake of improved
performance. These decisions, however, are not clear-cut, and their automation remains an active area
of research.

6.5 Linear classifiers
So far, we have learned a few classifiers which are capable of generating complex decision bound-
aries. For example, a decision tree classifier might output a hyperrectangular-shaped decision bound-
ary (Fig. 6.10(a)), and a k-nearest-neighbor classifier might output a hyperpolygonal-shaped decision
boundary (Fig. 6.10(b)). However, what about a simple, linear decision boundary? For the example in
Fig. 6.10, intuitively, a linear decision boundary (the straight line in Fig. 6.10(c)) is (almost) as good
as decision tree classifiers and k-nearest-neighbor classifier in separating the positive training tuples
from the negative training ones. Yet, such a linear decision boundary might offer additional advantages,
such as efficient computation for training the classifier, better generalization performance, and better
interpretability.

In this section, we introduce basic techniques to learn such linear classifiers. We will start with
linear regression, which forms the basis for linear classifiers. Then, we will introduce two linear classi-
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FIGURE 6.10

Decision boundaries by different classifiers. Note that this example is linearly separable, meaning that a linear
classifier (c) can perfectly separate all the positive training tuples from all the negative training tuples. If the training
set is linearly inseparable, we could still use a linear classifier, at the expense that some training tuples are on the
‘wrong’ side of the decision boundary. In Chapter 7, we will introduce techniques (e.g., support vector machines) to
handle linearly inseparable case.

fiers, including (1) perception, which is one of the earliest linear classifiers, and (2) logistic regression
which is one of the most widely used linear classifiers. Additional linear classifiers will be introduced
in Chapter 7, such as linear support vector machines.

6.5.1 Linear regression
Linear regression is a statistical technique that predicts a continuous value based on one or more inde-
pendent attributes. For example, we might want to predict the housing price based on the living area
or to predict the future income of a student based on which college she attended, in which major and
the overall GPA, etc. Since linear regression aims to predict a continuous value, it cannot be directly
applied to the classification task, where the output is a categorical variable. Nonetheless, the core tech-
niques in linear regression form the basis of linear classifiers. Therefore, let us first briefly introduce
linear regression.

Suppose we have n tuples, each of which is represented by p attributes xi = (xi,1, ..., xi,p)T and a
continuous output value yi (i = 1, ..., n). In linear regression, we want to learn a linear function that
maps the p input attributes xi to the output variable yi , that is, ŷi = wT xi + b = ∑p

j=1 wjxi,j + b,
where ŷi is the predicted output value for the ith tuple, w = (w1, ...,wp)T is a p-dimensional weight
vector and b is the bias scalar. In other words, linear regression assumes that the output value is a linear
weighted summation of the p input attribute values, offset by the bias scalar b. The entries in the weight
vector wj (j = 1, ..., p) tell how important the corresponding attribute xi,j is in predicting the output
variable ŷi . In the aforementioned examples, a linear regression model would assume that the housing
prices are linearly correlated with the living area; the future income of a student can be predicted by a
linear weighted combination of the college she attended, the major, and the overall GPA (plus a bias
scalar b). If we know the weight vector w and the bias scalar b, we can make a prediction of the output
value based on its p input attribute values.

“So, how can we determine the weight vector w and the bias scalar b?” Intuitively, we want to
learn the “best” weight vector w and the “best” bias scalar b from the training data, so that the lin-
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FIGURE 6.11

An example of least square regression. (a) Four training tuples. (b) Scatter-plot of the training tuples (black dots) and
least square regression model (the blue line). Red diamonds are the predicted output ŷi (i = 1,2,3,4) and dashed
lines indicate the prediction errors (|yi − ŷi |) of the corresponding training tuples.

ear regression model can make the “best” prediction. That is, the predicted value ŷi = wT xi + b is
as close as possible to the actual observed value yi (i = 1, ..., n). One of the most common linear
regression methods is called least square regression, which aims to minimize the following loss func-
tion L(w,b) = ∑n

i=1(yi − ŷi )
2 = ∑n

i=1(yi − (wT xi + b))2. Therefore the best weight vector w and
the bias scalar b are the ones that minimize the loss function L(w,b), which measures the sum of the
squared difference between the predicted output value ŷi and the actual observed value yi . For exam-

ple, if there is only one input attribute (i.e., p = 1), the optimal weight w =
∑n

i=1 xi (yi−ȳ)∑n
i=1 x2

i − 1
n (

∑n
i=1 xi )2 and the

optimal bias scalar b = 1
n

∑n
i=1(yi − wxi), where ȳ = 1

n

∑n
i=1 yi is the average observed output value

among all n training tuples.

Example 6.7. Let us look at an example of least square regression in Fig. 6.11. There are four training
tuples, each represented by a single-dimensional attribute xi and an output variable yi (i = 1,2,3,4).
We want to find least square regression model y = wx + b that predicts the output y based on
the input attribute x. We use the two equations mentioned above to find the optimal weight w

and the optimal bias scalar b. We first find the optimal weight w as follows. The average out-
put of four training tuples is ȳ = (y1 + y2 + y3 + y4)/4 = (4 + 10 + 14 + 16)/4 = 11. Therefore we
have that

∑4
i=1 xi(yi − ȳ) = 1(4 − 11) + 3(10 − 11) + 5(14 − 11) + 7(16 − 11) = 40. In the mean-

while, we have that
∑4

i=1 x2
i = 12 + 32 + 52 + 72 = 84 and 1/4(

∑4
i=1 xi)

2 = (1 + 3 + 5 + 7)2/4 = 64.

Therefore the optimal weight w =
∑n

i=1 xi (yi−ȳ)∑n
i=1 x2

i − 1
n (

∑n
i=1 xi )2 = 40

84−64 = 2. Based on the optimal weight w, the

optimal bias scalar b =
∑4

i=1(yi−wxi)
4 = (4−2×1)+(10−2×3)+(14−2×5)+(16−2×7)

4 = 3.
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“But, what if there are multiple p (p > 1) attributes?” In this case (which is called multi-
linear regression), let us first change our notation a little bit. We assume there is an additional
“dummy” attribute which always takes the value of 1 for any tuple. Let the weight for this dummy
attribute be w0. Then the overall weight vector w = (w0,w1, ...,wp) and the new input attribute vector
xi = (1, xi,1, ..., xi,p) are both (p + 1)-dimensional vectors. The multilinear regression model can be
re-written as ŷi = wT xi = w0 + w1xi,1 + ... + wpxi,p. We use the same loss function as before, that is,
L(w) = ∑n

i=1(yi − ŷi )
2 = ∑n

i=1(yi − (wT xi))
2. It turns out the optimal weight vector w can be com-

puted as w = (XXT )−1Xy, where X = [x1, x2, ..., xn] is a (p + 1) × n matrix, and y = [y1, ..., yn]T
is an n × 1 vector. (How to derive the closed form solutions for single linear regression as well as
multilinear regression are left as exercises.)

In least square regression, we measure the “goodness” of the learned regression model by the
sum of the squared difference between predicted and actual output values. The squared loss might
be sensitive to the outliers in the training set. In robust regression, it uses alternative loss func-
tions that are less sensitive to such outliers. For example, the Huber method in robust regression
uses the following loss: L(w) = ∑n

i=1 lH (yi − ŷi ), where lH (yi − ŷi ) = (yi − ŷi )
2 if |yi − ŷi | < θ ,

lH (yi − ŷi ) = 2θ |yi − ŷi | − θ2 otherwise, and θ > 0 is a user-specified parameter. Notice that the opti-
mal weight vector w for multilinear regression involves a matrix inverse (i.e., (XXT )−1). In case p > n
(i.e., the number of attributes is more than the number of training tuples), such a matrix inverse does
not exist. An effective way to address this issue is to introduce a regularization term regarding the
norm of the weight vector w. For example, if we use l2 norm of the weight vector w, the corresponding
regression model is called Ridge regression; if we use l1 norm of the weight vector w instead, the cor-
responding regression model is called Lasso regression which often learns a sparse weight vector. This
means that some entries of the learned weight vector w are zeros, which indicates that those attributes
are not used in the regression model. In Section 7.1, we will use Lasso regression for feature selection.

6.5.2 Perceptron: turning linear regression to classification
“How can we modify a linear regression model to perform classification task?” Suppose we have a
binary classification task.10 The output value yi for a given tuple is a binary variable: y1 = +1 indicates
the ith tuple is a positive tuple (e.g., buy computer) and yi = 0 indicates the ith tuple is a negative one
(e.g., not buy computer). One way to modify the linear regression model for such a binary classification
task is to use the sign of the output of the linear regression model as the predicted class label, that is,
ŷi = sign(wT xi), where ŷi is the predicted class label for ith tuple, sign(z) = 1 if z > 0 and sign(z) = 0
otherwise. Notice that we use the same notation as multilinear regression where we have introduced a
“dummy” attribute which always takes the value of 1 for any tuple. Therefore if we know the weight
vector w, we can use it to predict the class label of a given tuple as follows. We compute a linear
combination of the attribute values of the given tuple, weighted by the corresponding entries of the
weight vector w. If the resulting value of such a linear combination is positive, we predict that the
given tuple is a positive tuple. Otherwise, we predict that it is a negative one.

“How can we find the optimal weight vector w from a set of training tuples?” The classic learning
algorithm to train a perceptron is as follows. We start with an initial guess of the weight vector w (e.g.,

10 For both perceptron and logistic regression classifiers that we will introduce next, we focus on binary classification task.
However, the techniques we introduce can be generalized to handle multiclass classification task for both classifiers.
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we can simply set w = 0). Then, the learning algorithm will iterate until it converges, or the maximum
iteration number or some other preset stopping criteria are met. In each iteration, we do the following
for each training tuple xi . We try to predict the class label of xi using the current weight vector w,
that is, ŷi = sign(wT xi). If the prediction is correct (i.e., ŷi = yi), we do nothing about the weight
vector. However, if the prediction is incorrect (i.e., ŷi (= yi), we update the current weight vector in one
of the following two ways. If yi = +1 (i.e., the ith tuple is a positive tuple, but the current classifier
predicts it is a negative tuple), we update weight vector as w ← w + ηxi . If yi = 0 (i.e., the ith tuple
is a negative tuple, which is wrongly predicted by the current classifier as a positive tuple), we update
weight vector as w ← w − ηxi , where η > 0 is the user-specified learning rate. So, the intuition is that
in each iteration of the training process, the algorithm will focus on those wrongly predicted training
tuples by the current weight vector w. If the wrongly predicted training tuple xi is a positive tuple,
we update the weight vector w by moving it towards the attribute vector xi of this training tuple (i.e.,
w ← w + ηxi). On the other hand, if the wrongly predicted training tuple xi is a negative tuple, we
update the weight vector w by moving it away from the attribute vector xi of this training tuple (i.e.,
w ← w − ηxi).

Example 6.8. Let us look at an example in Fig. 6.12 for training a perceptron classifier. In Fig. 6.12, we
assume the bias w0 = 0 for illustration clarity. Fig. 6.12(a) (left) shows the current decision boundary
and the weight vector w, where two training tuples are wrongly classified, including a positive tuple
x1 and a negative tuple x8. Therefore only these two tuples are used to update the weight vector in
the current iteration, that is, w ← w + ηx1 − ηx8. The updated weight vector w and the corresponding
decision boundary are shown in Fig. 6.12(b) (right), where all training tuples are correctly classified.

“How effective is the perceptron learning algorithm?” If the training tuples are linearly separable
(e.g., the example in Fig. 6.12), the perceptron algorithm is guaranteed to find a weight vector (i.e.,
a hyperplane decision boundary) that perfectly separates all the positive training tuples from all the
negative training tuples. However, if the training tuples are not linearly separable, this algorithm will
fail to converge.

FIGURE 6.12

Training a perceptron classifier.
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Perceptron, one of the earliest linear classifiers, was first invented back in 1958. It can also be used
as a building block (called a “neuron”) in deep neural networks that will be introduced in Chapter 10.

6.5.3 Logistic regression
Perceptron that we have just introduced in the previous section is capable of predicting the binary class
label of a given tuple. However, can we also tell how confident such a prediction is? Again, let us
consider a binary classification task, and we assume that there are two possible class labels, that is,
y = 1 for a positive tuple and y = 0 for a negative tuple. Recall that in (naïve) Bayes classifier, we can
estimate the posterior probability P(yi = 1|xi), which can be directly used to indicate how confident
the predicted classification result is. For example, if P(yi = 1|xi) is close to 1, the classifier is highly
confident that the tuple xi is a positive example.

How can we make a linear classifier not only predict which class label a tuple has, but also tell
how confident it is in making such a prediction? An effective way to this end is via logistic regression
classifier. Let us first introduce an important function called sigmoid function, which is defined as
σ (z) = 1

1+e−z = ez

1+ez . From Fig. 6.13, we can see that the sigmoid function maps a real number in
(−∞,+∞) (i.e., the x-axis of Fig. 6.13) to an output value in the range of (0,1) (i.e., the y-axis
of Fig. 6.13). Therefore if we leverage the sigmoid function to map the output of a linear regression
model to a number between 0 and 1, we can interpret the mapping result as the posterior probability of
observing a positive class label. This is exactly what logistic regression classifier tries to do!

Formally, we have P(ŷi = 1|xi,w) = σ (wT xi) = 1
1+e−wT xi

, where ŷi is the predicted class label for

the tuple with attributes xi , and w is the weight vector. Notice that we have absorbed the bias term
b into the weight vector w by introducing a dummy attribute to simplify the notation, as we did in
the multilinear regression model and in perceptron. Naturally, if P(ŷi = 1|xi,w) > 0.5, the classifier
predicts that the tuple xi is a positive tuple (i.e., ŷi = 1), otherwise, it predicts a negative tuple (i.e.,
ŷi = 0). This (details are left as an exercise) is equivalent to the following linear classifier: predict
ŷi = 1 (i.e., positive tuple) if wT xi > 0, and predict ŷi = 0 (i.e., negative tuple) if wT xi < 0. Therefore
if we know the weight vector w, the classification task for a given tuple is quite simple. That is, we

FIGURE 6.13

Illustration of sigmoid function. The sigmoid function “squashes” an input from a larger range (−∞,+∞) to a
smaller range (0,1). For this reason, sigmoid function is also called squash function. In Chapter 10, we will see
other types of squash functions, which are called activation functions in the deep learning terminology.
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only need to multiply the attribute vector xi of the given tuple with the weight vector w, and then make
a prediction based on the sign of wT xi . If wT xi is a positive number, we predict that the given tuple is
a positive tuple. Otherwise, we predict that it is a negative tuple.

“How can we determine the optimal weight vector w from a set of training tuples?” The classic
method to train a logistic regression classifier (i.e., to determine the best weight vector w from the
training set) is via maximum likelihood estimation (MLE). Again, let us assume there are n training
tuples (xi, yi) (i = 1, ..., n). Since we have a binary classification task, we can view the predicted
class label ŷi as a Bernoulli random variable, which can only take two possible values, including
P(ŷi = 1|xi,w) = pi and P(ŷi = 0|xi,w) = 1 − pi , where pi = σ (wT xi) = 1

1+e−wT xi
is determined by

the sigmoid function and it describes the probability of observing a positive outcome for the predicted
class label (i.e., ŷi = 1). Notice that the true class label yi for the ith tuple is a binary variable. Therefore
we have that P(ŷi = yi) = p

yi

i (1 − pi)
1−yi . The maximum likelihood estimation method aims to solve

the following optimization problem, which says that we should choose the best weight vector w that
maximizes the likelihood of the training set. The intuition is that we want to find the optimal model
parameter (i.e., the weight vector w) so that there is the highest “chance” (i.e., the likelihood or the
probability) of observing the entire training set.

w∗ = argmaxw L(w) = &n
i=1p

yi

i (1 − pi)
1−yi = &n

i=1(
ewT xi

1 + ewT xi
)yi (

1

1 + ewT xi
)1−yi (6.19)

“But, how can we develop an algorithm to solve this optimization problem to find the optimal
weight vector w?” First, we notice that the likelihood function L(w) has many nonnegative terms that
are multiplied with each other. In practice, it is often more convenient to work with the logarithm of
such a complicated function. Thus we have the following equivalent optimization problem, where l(w)

is called the log likelihood

w∗ = argmaxw l(w) =
n∑

i=1

yix
T
i w − log(1 + ewT xi ). (6.20)

From the optimization perspective, the good news is that the log likelihood function in Eq. (6.20) is
a strictly concave function, and therefore its maximum (the optimal solution) uniquely exists. However,
the bad news is that the closed-form solution for the above optimization problem does not exist. In
this case, a common strategy is to find the optimal solution w∗ iteratively as follows. In each iteration,
we try to improve the current weight vector w so that the objective function we wish to maximize
(the log likelihood function l(w)) is improved most. In order to increase the current objective function
l(w) most, it turns out the best direction to update the current estimation of the weight vector w is
to follow its gradient. This leads to the following algorithm to learn the optimal weight vector w∗

from the training set. We start with an initial guess of the weight vector w (e.g., we can simply set
w = 0). Then, the learning algorithm will iterate until it converges, or the maximum iteration number
or some other preset stopping criteria are met. In each iteration, it updates the weight vector w as
follows w ← w + η

∑n
i=1(yi − P(ŷi = 1|xi,w))xi , where η > 0 is the user-specified learning rate.

“So, what is the intuition of the above algorithm?” Let us analyze the impact of each training
tuple (xi, yi) on updating the estimation of the weight vector w. We consider two situations depending
on whether it is a positive tuple (i.e., yi = 1) or a negative tuple (i.e., yi = 0). For the former, the
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impact of the given tuple on updating the weight vector w can be calculated as w ← w + η(1 − P(ŷi =
1|xi,w))xi . The intuition is that we want update the current weight vector w towards the direction of
the attribute vector xi of this positive tuple. For the latter case (i.e., yi = 0), the impact of the given tuple
on updating the weight vector w can be calculated as w ← w − ηP(ŷi = 1|xi,w)xi . The intuition is
that we want update the current weight vector w away from the direction of the attribute vector xi of this
negative tuple. From this perspective, the learning algorithm for training a logistic regression classifier
bears some similarities to the perceptron algorithm. That is, both algorithms try to update the current
weight vector w so that is (1) more aligned with the attribute vectors of positive tuples and (2) more
mis-aligned with (i.e., towards the opposite direction of) the attribute vectors of negative tuples.

However, the two algorithms (perceptron vs. logistic regression) differ regarding to what extent the
algorithms update the weight vector w. In perceptron, it uses a fixed learning rate η for all wrongly
predicted tuples by the current weight vector w. On the other hand, in logistic regression, it depends
on the learning rate η as well as P(ŷi = 1|xi,w) (i.e., the probability that the given tuple belongs to
the positive class based on the current weight vector w). This makes the logistic regression algorithm
adaptive in the following sense. For example, if P(ŷi = 1|xi,w) is high for a positive tuple, it means
that the prediction by the current weight vector w for this positive tuple is not only correct (i.e., P(ŷi =
1|xi,w) > 0.5), but also quite confident (i.e., P(ŷi = 1|xi,w) is close to 1). Then, the impact of this
positive tuple (i.e., η(1 − P(ŷi = 1|xi,w))) on updating the weight vector is relatively small. On the
other hand, if P(ŷi = 1|xi,w) is high for a negative tuple, it means that the prediction by the current
weight vector w for this negative tuple is either wrong (i.e., P(ŷi = 1|xi,w) > 0.5), or correct but with
low confidence (i.e., P(ŷi = 1|xi,w) is barely below 0.5). Then, the impact of this negative tuple (i.e.,
ηP(ŷi = 1|xi,w)) on updating the weight vector will be relatively large. In other words, the logistic
regression learning algorithm pays more attention to those “hard” training tuples, which are either
wrongly predicted or correctly predicted with a low confidence by the current weight vector w. Recall
that for the example in Fig. 6.12(a), perceptron only uses x1 and x8 to update the current weight vector
w since these two tuples are wrongly classified by the current w. In contrast, logistic regression uses
all training tuples to update the weight vector w. Among them, x1 and x8 have the highest impact on
updating w since they are both wrongly classified by the current classifier; x2, x3, x5, x9 and x10 have the
least impact since they are all correctly classified by the current weight vector w with a high confidence;
x4, x6 and x7 have the moderate impact since they are correctly classified but with a relatively low
confidence.

“How good is the logistic regression algorithm? What are the potential limitations and how to miti-
gate?” Since the log likelihood function l(w) is a concave function, the algorithm for training a logistic
regression classifier described above is guaranteed to converge to its optimal solution. However, if the
training set is linearly separable, the algorithm might converge to a weight vector w with an infinitely
large norm. (See an illustrative example in Fig. 6.14.) A “large” weight vector w could make the trained
classifier prone to the noise of certain attributes of a given tuple. This will, in turn, lead to a poor gen-
eralization performance of the learned logistic regression classifier. In other words, the learned logistic
regression classifier overfits the training set. An effective way to mitigate the overfitting is to introduce
a regularization term ‖w‖2

2 into the objective function l(w) to prevent the learned weight vector from
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FIGURE 6.14

Illustration of the infinitely large weight vector of logistic regression in linearly separable case. There are
two training tuples in 2d space, with one positive training tuple x1 = (1,1) and one negative training tuple
x2 = (−1,−1). For simplicity, we let the bias scalar b = 0 and the learning rate η = 1. Suppose that at iteration
1, the weight vector w = (1,1). Then, logistic regression algorithm introduced above will update the weight vector
as wnew = wold + (1 − P (ŷ1 = 1|x1,wold))x1 − P (ŷ2 = 1|x2,wold)x2 = (0.5,0.5) + a(1,1) = (1 + 2a)wold, where
a = 1 − P (ŷ1 = 1|x1,wold) + P (ŷ2 = 1|x2,wold) > 0. As such, the new weight vector wnew shares the same direc-
tion as the old wold. Therefore, the decision boundary remains the same, but new weight vector wnew grows in the
magnitude by a factor of (1 + 2a). This trend will continue as the logistic regression algorithm progresses, leading to
a weight vector with an infinitely large magnitude.

becoming “too large.”11 The second potential limitation is the independence assumption behind logistic
regression. Recall that when we calculate the likelihood L(w) of the training set, we simply multiply the
likelihood of each training tuple together (Eq. (6.19)). This means that we have implicitly assumed that
different training tuples are independent of each other. However, this assumption might be violated in
some applications (e.g., users on a social network are interconnected with each other). The graph-based
classification might provide a natural remedy for this issue. The third potential limitation lies in the
computational challenge. Notice that in the updating rule w ← w + η

∑n
i=1(yi − P(ŷi = 1|xi,w))xi

described above, we need to calculate the gradients (yi − P(ŷi = 1|xi,w)) for all training tuples and
then sum them up to update the weight vector w. If there are millions of training tuples, it is compu-
tationally very expensive to perform such computation. An efficient way to address this issue is to use
stochastic gradient descent method to train a logistic regression classifier. That is, at each iteration, we
will randomly sample a small subset of training tuples (this is often referred to as a minibatch) and only
use the sampled tuples (instead of all training tuples) to update the weight vector. It is worth pointing
out that the stochastic gradient descent is extensively used in many other data mining algorithms, such
as deep learning methods, which will be introduced in Chapter 10.

11 From the statistical parameter estimation perspective, we are switching from the maximum likelihood estimation (MLE) to
maximum a posterior estimation (MAP). Adding a regularization term ‖w‖2

2 into l(w) is equivalent to imposing a Gaussian prior
with the mean vector at the origin for the weight vector w.
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6.6 Model evaluation and selection
Now that you may have built a classification model, there may be many questions going through your
mind. For example, suppose you have used data from previous sales to build a classifier to predict
customer purchasing behavior. You would like an estimate of how accurately the classifier can predict
the purchasing behavior of future customers, that is, future customer data on which the classifier has
not been trained. You may even have tried different methods to build more than one classifier and now
wish to compare their accuracy. But what is accuracy? How can we estimate it? Are some measures of
a classifier’s accuracy more appropriate than others? How can we obtain a reliable accuracy estimate?
These questions are addressed in this section.

Section 6.6.1 describes various evaluation metrics for the predictive accuracy of a classifier. Based
on randomly sampled partitions of the given data, holdout and random subsampling (Section 6.6.2),
cross-validation (Section 6.6.3), and bootstrap methods (Section 6.6.4) are common techniques for
assessing accuracy. What if we have more than one classifier and want to choose the “best” one? This is
referred to as model selection (i.e., choosing one classifier over another). The last two sections address
this issue. Section 6.6.5 discusses how to use tests of statistical significance to assess whether the
difference in accuracy between two classifiers is due to chance. Section 6.6.6 presents how to compare
classifiers based on cost–benefit and receiver operating characteristic (ROC) curves.

6.6.1 Metrics for evaluating classifier performance
This section presents measures for assessing how good or how “accurate” your classifier is at predict-
ing the class label of tuples. We will consider the case where the class tuples are more or less evenly
distributed, as well as the case where classes are unbalanced (e.g., where an important class of inter-
est is rare such as in medical tests). The classifier evaluation measures presented in this section are
summarized in Fig. 6.15. They include accuracy (also known as recognition rate), sensitivity (or re-
call), specificity, precision, F1, and Fβ . Note that although accuracy is a specific measure, the word
“accuracy” is also used as a general term to refer to a classifier’s predictive abilities.

Using training data to derive a classifier and then estimate the accuracy of the learned model can
result in misleading overoptimistic estimates due to overspecialization of the learning algorithm to the
data. (We will say more on this in a moment!) Instead, it is better to measure the classifier’s accuracy
on a test set consisting of class-labeled tuples that were not used to train the model.

Before we discuss the various measures, we need to become comfortable with some terminology.
Recall that we can talk in terms of positive tuples (tuples of the main class of interest) and negative
tuples (all other tuples).12 Given two classes, for example, the positive tuples may be buys_computer
= yes while the negative tuples are buys_computer = no. Suppose we use our classifier on a test set
of labeled tuples. P is the number of positive tuples, and N is the number of negative tuples. For each
tuple, we compare the classifier’s class label prediction with the tuple’s known class label.

There are four additional terms we need to know that are the “building blocks” used in computing
various evaluation measures. Understanding them will make it easy to grasp the meaning of the various
measures.

12 In the machine learning and pattern recognition literature, these are referred to as positive samples and negative samples,
respectively.
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Measure Formula
accuracy, recognition rate T P +T N

P +N

error rate, misclassification rate FP +FN
P +N

sensitivity, true positive rate, recall T P
P

specificity, true negative rate T N
N

precision T P
T P +FP

F , F1, F -score, harmonic mean of precision and recall 2×precision× recall
precision+ recall

Fβ , where β is a nonnegative real number (1+β2)×precision× recall

β2 ×precision+ recall

FIGURE 6.15

Evaluation measures. Note that some measures are known by more than one name. T P , T N , FP , FN , P , N refer
to the number of true positive, true negative, false positive, false negative, positive, and negative samples, respec-
tively (see text).

Predicted class
yes no Total

Actual class yes T P FN P

no FP T N N

Total P ′ N ′ P + N

FIGURE 6.16

Confusion matrix, shown with totals for positive and negative tuples.

• True positives (T P ): These refer to the positive tuples that were correctly labeled by the classifier.
Let T P be the number of true positives.

• True negatives (T N): These are the negative tuples that were correctly labeled by the classifier. Let
T N be the number of true negatives.

• False positives (FP ): These are the negative tuples that were incorrectly labeled as positive (e.g.,
tuples of class buys_computer = no for which the classifier predicted buys_computer = yes). Let
FP be the number of false positives.

• False negatives (FN): These are the positive tuples that were mislabeled as negative (e.g., tuples of
class buys_computer = yes for which the classifier predicted buys_computer = no). Let FN be the
number of false negatives.

These terms are summarized in the confusion matrix of Fig. 6.16.
A confusion matrix is a useful tool for analyzing how well your classifier can recognize tuples of

different classes. T P and T N tell us when the classifier is getting things right, whereas FP and FN

tell us when the classifier is getting things wrong (i.e., mislabeling). Given m classes (where m ≥ 2), a
confusion matrix is a table of at least size m by m. An entry, CMi,j at the ith row and the j th column
indicates the number of tuples of class i that were labeled by the classifier as class j . For a classifier to
have good accuracy, ideally most of the tuples would be represented along the diagonal of the confusion
matrix, from entry CM1,1 to entry CMm,m, with the rest of the entries being zero or close to zero. That
is, ideally, FP and FN are around zero.
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Classes buys_computer = yes buys_computer = no Total Recognition (%)
buys_computer = yes 6954 46 7000 99.34
buys_computer = no 412 2588 3000 86.27
Total 7366 2634 10,000 95.42

FIGURE 6.17

Confusion matrix for the classes buys_computer = yes and buys_computer = no, where an entry in row i and col-
umn j shows the number of tuples of class i that were labeled by the classifier as class j . Ideally, the nondiagonal
entries should be zero or close to zero.

The table may have additional rows or columns to provide totals. For example, in the confusion
matrix of Fig. 6.16, P and N are shown. In addition, P ′ is the number of tuples that were labeled
as positive (T P + FP), and N ′ is the number of tuples that were labeled as negative (T N + FN).
The total number of tuples is T P + T N + FP + T N , or P + N , or P ′ + N ′. Note that although the
confusion matrix shown is for a binary classification problem, confusion matrices can be easily drawn
for multiple classes in a similar manner.

Now let’s look at the evaluation measures, starting with accuracy. The accuracy of a classifier on a
given test set is the percentage of test set tuples that are correctly classified by the classifier. That is,

accuracy = T P + T N

P + N
. (6.21)

In the pattern recognition literature, this is also referred to as the overall recognition rate of the clas-
sifier; that is, it reflects how well the classifier recognizes tuples of the various classes. An example of
a confusion matrix for the two classes buys_computer = yes (positive) and buys_computer = no (neg-
ative) is given in Fig. 6.17. Totals are shown, as well as the recognition rates per class and overall. By
glancing at a confusion matrix, it is easy to see if the corresponding classifier is confusing two classes.

For example, we see that it mislabeled 412 “no” tuples as “yes.” Accuracy is most effective when
the class distribution is relatively balanced.

We can also speak of the error rate or misclassification rate of a classifier, M , which is simply
1 − accuracy(M), where accuracy(M) is the accuracy of M . This also can be computed as

error rate = FP + FN

P + N
. (6.22)

If we were to use the training set (instead of a test set) to estimate the error rate of a model, this quantity
is known as the resubstitution error.13 This error estimate is optimistic of the true error rate (and
similarly, the corresponding accuracy estimate is optimistic) because the model is not tested on any
samples that it has not already seen.

We now consider the class imbalance problem, where the main class of interest is rare. That is,
the data set distribution reflects a significant majority of the negative class and a minority positive
class. For example, in fraud detection applications, the class of interest (or positive class) is “fraud”
which occurs much less frequently than the negative “nonfraudulant” class. In medical data, there may

13 In machine learning literature, it is often referred to as the training error.
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Classes yes no Total Recognition (%)
yes 90 210 300 30.00
no 140 9560 9700 98.56
Total 230 9770 10,000 96.40

FIGURE 6.18

Confusion matrix for the classes cancer = yes and cancer = no.

be a rare class, such as “cancer.” Suppose that you have trained a classifier to classify medical data
tuples, where the class label attribute is “cancer” and the possible class values are “yes” and “no.” An
accuracy rate of, say, 97% may make the classifier seem quite accurate, but what if only, say, 3% of
the training tuples are actually cancer? Clearly, an accuracy rate of 97% may not be acceptable—the
classifier could be correctly labeling only the noncancer tuples, for instance, and misclassifying all the
cancer tuples. Instead, we need other measures, which assess how well the classifier can recognize the
positive tuples (cancer = yes) and how well it can recognize the negative tuples (cancer = no).

The sensitivity and specificity measures can be used, respectively, for this purpose. Sensitivity is
also referred to as the true positive (recognition) rate (i.e., the proportion of positive tuples that are
correctly identified), whereas specificity is the true negative rate (i.e., the proportion of negative tuples
that are correctly identified). These measures are defined as

sensitivity = T P

P
(6.23)

specificity = T N

N
. (6.24)

It can be shown that accuracy is a function of sensitivity and specificity:

accuracy = sensitivity
P

(P + N)
+ specificity

N

(P + N)
. (6.25)

Example 6.9. Sensitivity and specificity. Fig. 6.18 shows a confusion matrix for medical data
where the class values are yes and no for a class label attribute, cancer. The sensitivity of the classifier is
90
300 = 30.00%. The specificity is 9560

9700 = 98.56%. The classifier’s overall accuracy is 9650
10,000 = 96.50%.

Thus we note that although the classifier has a high accuracy, it’s ability to correctly label the positive
(rare) class is poor given its low sensitivity. It has high specificity, meaning that it can accurately rec-
ognize negative tuples. Techniques for handling class-imbalanced data are given in Section 6.7.5.

The precision and recall measures are also widely used in classification. Precision can be thought of
as a measure of exactness (i.e., what percentage of tuples labeled as positive are actually such), whereas
recall is a measure of completeness (what percentage of positive tuples are labeled as such). If recall
seems familiar, that’s because it is the same as sensitivity (or the true positive rate). These measures
can be computed as

precision = T P

T P + FP
(6.26)
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recall = T P

T P + FN
= T P

P
. (6.27)

Example 6.10. Precision and recall. The precision of the classifier in Fig. 6.18 for the yes class is
90
230 = 39.13%. The recall is 90

300 = 30.00%, which is the same calculation for sensitivity in Example 6.9.

A perfect precision score of 1.0 for a class C means that every tuple that the classifier labeled
as belonging to class C does indeed belong to class C. However, it does not tell us anything about
the number of class C tuples that the classifier mislabeled. A perfect recall score of 1.0 for C means
that every item from class C was labeled as such, but it does not tell us how many other tuples were
incorrectly labeled as belonging to class C. There tends to be an inverse relationship between precision
and recall, where it is possible to increase one at the cost of reducing the other. For example, our
medical classifier may achieve high precision by labeling all cancer tuples that present a certain way
as cancer but may have low recall if it mislabels many other instances of cancer tuples. Precision and
recall scores are typically used together, where precision values are compared for a fixed value of recall,
or vice versa. For example, we may compare precision values at a recall value of, say, 0.75.

An alternative way to use precision and recall is to combine them into a single measure. This is
the approach of the F measure (also known as the F1 score or F -score) and the Fβ measure. They are
defined as

F = 2 × precision × recall

precision + recall
(6.28)

Fβ = (1 + β2) × precision × recall

β2 × precision + recall
, (6.29)

where β is a nonnegative real number. The F measure is the harmonic mean of precision and recall (the
proof of which is left as an exercise). It gives equal weights to precision and recall. The Fβ measure is
a weighted measure of precision and recall. It assigns β times as much weight to recall as to precision.
Commonly used Fβ measures are F2 (which weights recall twice as much as precision) and F0.5 (which
weights precision twice as much as recall).

“Are there other cases where accuracy may not be appropriate?” In classification problems, it is
commonly assumed that all tuples are uniquely classifiable, that is, each training tuple can belong to
only one class. Yet, owing to the wide diversity of data in large databases, it is not always reasonable to
assume that all tuples are uniquely classifiable. Rather, it is more probable to assume that each tuple may
belong to more than one class. How then can the accuracy of classifiers on large databases be measured?
The accuracy measure is not appropriate, because it does not take into account the possibility of tuples
belonging to more than one class.

Rather than returning a class label, it is useful to return a class probability distribution. Accuracy
measures may then use a second guess heuristic, whereby a class prediction is judged as correct if it
agrees with the first or second most probable class. Although this does take into consideration, to some
degree, the nonunique classification of tuples, it is not a complete solution.

In addition to accuracy-based measures, classifiers can also be compared with respect to the follow-
ing additional aspects:

• Speed: This refers to the computational cost involved in generating and using the given classifier.
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FIGURE 6.19

Estimating accuracy with the holdout method.

• Robustness: This is the ability of the classifier to make correct predictions given noisy data or data
with missing values. Robustness is typically assessed with a series of synthetic data sets representing
increasing degrees of noise and missing values.

• Scalability: This refers to the ability to construct the classifier efficiently given large amounts of
data. Scalability is typically assessed with a series of data sets of increasing size.

• Interpretability: This refers to the level of understanding and insight that is provided by the classi-
fier or predictor. Interpretability could be subjective and therefore more difficult to assess. Decision
trees and classification rules can be easy to interpret, yet their interpretability may diminish the more
they become complex. We will introduce some basic techniques to improve the interpretability of
classification models in Chapter 7.

In summary, we have presented several evaluation measures. The accuracy measure works best
when the data classes are fairly evenly distributed. Other measures, such as sensitivity (or recall), speci-
ficity, precision, F , and Fβ , are better suited to the class imbalance problem, where the main class of
interest is rare. The remaining subsections focus on obtaining reliable classifier accuracy estimates.

6.6.2 Holdout method and random subsampling
The holdout method is what we have alluded to so far in our discussions about accuracy. In this method,
the given data are randomly partitioned into two independent sets, a training set and a test set. Typically,
two-thirds of the data are allocated to the training set, and the remaining one-third is allocated to the
test set. The training set is used to derive the model. The model’s accuracy is then estimated with the
test set (Fig. 6.19). The estimate is pessimistic because only a portion of the initial data is used to derive
the model.

Random subsampling is a variation of the holdout method in which the holdout method is repeated
k times. The overall accuracy estimate is taken as the average of the accuracies obtained from each
iteration.

6.6.3 Cross-validation
In k-fold cross-validation, the initial data are randomly partitioned into k mutually exclusive subsets
or “folds” D1,D2, . . . ,Dk , each of approximately equal size. Training and testing are performed k



284 Chapter 6 Classification: basic concepts and methods

times. In iteration i, partition Di is reserved as the test set, and the remaining partitions are collectively
used to train the model. That is, in the first iteration, subsets D2, . . . ,Dk collectively serve as the
training set to obtain the first model, which is tested on D1; the second iteration is trained on subsets
D1,D3, . . . ,Dk and tested on D2; and so on. Unlike the holdout and random subsampling methods,
here each sample is used the same number of times for training and once for testing. For classification,
the accuracy estimate is the overall number of correct classifications from the k iterations, divided by
the total number of tuples in the initial data.

Leave-one-out-cross-validation is a special case of k-fold cross-validation where k is set to the
number of initial tuples. That is, only one sample is “left out” at a time for the test set. Leave-one-out-
cross-validation is often used when the initial data set is small. In stratified cross-validation, the folds
are stratified so that the class distribution of the tuples in each fold is approximately the same as that in
the initial data.

In practice, stratified 10-fold cross-validation is recommended for estimating accuracy (even if com-
putation power allows using more folds) due to its relatively low bias and variance.

6.6.4 Bootstrap
Unlike the accuracy estimation methods just mentioned, the bootstrap method samples the given train-
ing tuples uniformly with replacement. That is, each time a tuple is selected, it is equally likely to be
selected again and re-added to the training set. For instance, imagine a machine that randomly selects
tuples for our training set. In sampling with replacement, the machine is allowed to select the same
tuple more than once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap, which works as
follows. Suppose we are given a data set of d tuples. The data set is sampled d times, with replacement,
resulting in a bootstrap sample or training set of d samples. Some of the original data tuples will likely
occur more than once in this sample. The data tuples that did not make it into the training set end up
forming the test set. Suppose we were to try this out several times. As it turns out, on average, 63.2%
of the original data tuples will end up in the bootstrap sample, and the remaining 36.8% will form the
test set (hence, the name, .632 bootstrap).

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of being selected,
so the probability of not being chosen is (1 − 1/d). We have to select d times, so the probability that a
tuple will not be chosen during this whole time is (1 − 1/d)d . If d is large, the probability approaches
e−1 = 0.368.14 Thus 36.8% of tuples will not be selected for training and thereby end up in the test set,
and the remaining 63.2% will form the training set.

We can repeat the sampling procedure k times, wherein each iteration, we use the current test set
to obtain an estimated accuracy of the model obtained from the current bootstrap sample. The overall
accuracy of the model, M , is then estimated as

Acc(M) = 1
k

k∑

i=1

(0.632 × Acc(Mi)test_set + 0.368 × Acc(Mi)train_set ), (6.30)

14 e is the base of natural logarithms, that is, e = 2.718.
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where Acc(Mi)test_set is the accuracy of the model obtained with bootstrap sample i when it is applied
to test set i. Acc(Mi)train_set is the accuracy of the model obtained with bootstrap sample i when it is
applied to the original set of data tuples. Bootstrapping tends to be overly optimistic. It works best with
small data sets.

6.6.5 Model selection using statistical tests of significance
Suppose that we have generated two classification models, M1 and M2, from our data. We have per-
formed 10-fold cross-validation to obtain a mean error rate15 for each. How can we determine which
model is best? It may seem intuitive to select the model with the lowest error rate; however, the mean
error rates are just estimates of the error on the true population of future data cases. There can be con-
siderable variance between error rates within any given 10-fold cross-validation experiment. Although
the mean error rates obtained for M1 and M2 may appear different, that difference may not be statisti-
cally significant. What if any difference between the two may just be attributed to chance? This section
addresses these questions.

To determine if there is any “real” difference in the mean error rates of two models, we need to
employ a test of statistical significance. In addition, we want to obtain some confidence limits for our
mean error rates so that we can make statements like, “Any observed mean will not vary by ± two
standard errors 95% of the time for future samples” or “One model is better than the other by a margin
of error of ± 4%.”

What do we need to perform the statistical test? Suppose that for each model, we did 10-fold cross-
validation, say, 10 times, each time using a different 10-fold data partitioning. Each partitioning is
independently drawn. We can average the 10 error rates obtained each for M1 and M2, respectively, to
obtain the mean error rate for each model. For a given model, the individual error rates calculated in
the cross-validations may be considered different, independent samples from a probability distribution.
In general, they follow a t-distribution with k − 1 degrees of freedom where, here, k = 10. (This distri-
bution looks very similar to a normal, or Gaussian, distribution even though the functions defining the
two are quite different. Both are unimodal, symmetric, and bell-shaped.) This allows us to do hypothe-
sis testing where the significance test used is the t-test, or Student’s t-test. Our hypothesis is that the
two models are the same, or in other words, that the difference in mean error rate between the two is
zero. If we can reject this hypothesis (referred to as the null hypothesis), then we can conclude that the
difference between the two models is statistically significant, in which case we can select the model
with the lower error rate.

In data mining practice, we may often employ a single test set, that is, the same test set can be used
for both M1 and M2. In such cases, we do a pairwise comparison of the two models for each 10-fold
cross-validation round. That is, for the ith round of 10-fold cross-validation, the same cross-validation
partitioning is used to obtain an error rate for M1 and M2. Let err(M1)i (or err(M2)i) be the error rate
of model M1 (or M2) on round i. The error rates for M1 are averaged to obtain a mean error rate for
M1, denoted err(M1). Similarly, we can obtain err(M2). The variance of the difference between the
two models is denoted var(M1 − M2). The t-test computes the t-statistic with k − 1 degrees of freedom
for k samples. In our example, we have k = 10 since, here, the k samples are our error rates obtained

15 Recall that the error rate of a model, M , is 1 − accuracy(M).
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from ten 10-fold cross-validations for each model. The t-statistic for pairwise comparison is computed
as follows:

t = err(M1) − err(M2)√
var(M1 − M2)/k

, (6.31)

where

var(M1 − M2) = 1
k

k∑

i=1

[err(M1)i − err(M2)i − (err(M1) − err(M2))]2 . (6.32)

To determine whether M1 and M2 are significantly different, we compute t and select a significance
level, sig. In practice, a significance level of 5% or 1% is typically used. We then consult a table for
the t-distribution, available in standard textbooks on statistics. This table is usually shown arranged by
degrees of freedom as rows and significance levels as columns. Suppose we want to ascertain whether
the difference between M1 and M2 is significantly different for 95% of the population, that is, sig = 5%
or 0.05. We need to find the t-distribution value corresponding to k − 1 degrees of freedom (or 9 degrees
of freedom for our example) from the table. However, because the t-distribution is symmetric, typically
only the upper percentage points of the distribution are shown. Therefore we look up the table value
for z = sig/2, which, in this case, is 0.025, where z is also referred to as a confidence limit. If t > z or
t < −z, then our value of t lies in the rejection region, within the distribution’s tails. This means that
we can reject the null hypothesis that the means of M1 and M2 are the same and conclude that there
is a statistically significant difference between the two models. Otherwise, if we cannot reject the null
hypothesis, we conclude that any difference between M1 and M2 can be attributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version of the t-test is used,
where the variance between the means of the two models is estimated as

var(M1 − M2) = var(M1)

k1
+ var(M2)

k2
, (6.33)

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross-validation rounds)
used for M1 and M2, respectively. This is also known as the two sample t-test. When consulting the
table of t-distribution, the number of degrees of freedom used is taken as the minimum number of
degrees of the two models.

6.6.6 Comparing classifiers based on cost–benefit and ROC curves
The true positives, true negatives, false positives, and false negatives are also useful in assessing the
costs and benefits (or risks and gains) associated with a classification model. The cost associated
with a false negative (such as incorrectly predicting that a cancerous patient is not cancerous) is far
greater than those of a false positive (incorrectly yet conservatively labeling a noncancerous patient as
cancerous). In such cases, we can outweigh one type of error over another by assigning a different cost
to each. These costs may consider the danger to the patient, financial costs of resulting therapies, and
other hospital costs. Similarly, the benefits associated with a true positive decision may be different
from those of a true negative. Up to now, to compute the classifier’s accuracy, we have assumed equal
costs and essentially divided the sum of true positives and true negatives by the total number of test
tuples.
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Alternatively, we can incorporate costs and benefits by computing the average cost (or benefit)
per decision. Other applications involving cost–benefit analysis include loan application decisions and
target marketing mailouts. For example, the cost of loaning to a defaulter greatly exceeds that of the lost
business incurred by denying a loan to a nondefaulter. Similarly, in an application that tries to identify
households that are likely to respond to mailouts of certain promotional material, the cost of mailouts
to numerous households that do not respond may outweigh the cost of lost business from not mailing to
households that would have responded. Other costs to consider in the overall analysis include the costs
to collect the data and to develop the classification tools.

Receiver operating characteristic curves are a useful visual tool for comparing two classification
models. ROC curves come from signal detection theory that was developed during World War II for the
analysis of radar images. A ROC curve for a given model shows the trade-off between the true positive
rate (T PR) and the false positive rate (FPR).16 Given a test set and a model, T PR is the proportion
of positive (or “yes”) tuples that are correctly labeled by the model; FPR is the proportion of negative
(or “no”) tuples that are mislabeled as positive. Recall that T P , FP , P , and N are the number of true
positive, false positive, positive, and negative tuples, respectively. From Section 6.6.1, we know that
T PR = T P

P , which is sensitivity. Furthermore, FPR = FP
N , which is 1 − specificity.

For a two-class problem, a ROC curve allows us to visualize the trade-off between the rate at which
the model can accurately recognize positive cases vs. the rate at which it mistakenly identifies negative
cases as positive for different portions of the test set. Any increase in T PR occurs at the cost of an
increase in FPR. The area under the ROC curve is a measure of the accuracy of the model.

To plot a ROC curve for a given classification model, M , the model must be able to return a proba-
bility of the predicted class for each test tuple. With this information, we rank and sort the tuples so that
the tuple that is most likely to belong to the positive or “yes” class appears at the top of the list, and the
tuple that is least likely to belong to the positive class lands at the bottom of the list. Naïve Bayesian
(Section 6.3) and logistic regression (Section 6.5) classifiers return a class probability distribution for
each prediction and, therefore, are appropriate, although other classifiers, such as decision tree classi-
fiers (Section 6.2), can easily be modified to return class probability predictions. Let the value that a
probabilistic classifier returns for a given tuple X be f (X) → [0,1]. For a binary problem, a threshold
t is typically selected so that tuples where f (X) ≥ t are considered positive and all the other tuples are
considered negative. Note that the number of true positives and the number of false positives are both
functions of t , so that we could write T P (t) and FP(t). Both are monotonic nonincreasing functions.

We first describe the general idea behind plotting a ROC curve and then follow up with an example.
The vertical axis of a ROC curve represents T PR. The horizontal axis represents FPR. To plot a ROC
curve for M , we begin as follows. Starting at the bottom left corner (where T PR = FPR = 0), we
check the tuple’s actual class label at the top of the list. If we have a true positive (i.e., a positive tuple
that was correctly classified), then T P and thus T PR increase. On the graph, we move up and plot a
point. If, instead, the model classifies a negative tuple as positive, we have a false positive, and so both
FP and FPR increase. On the graph, we move right and plot a point. This process is repeated for each
of the test tuples in ranked order, each time moving up on the graph for a true positive or toward the
right for a false positive.

16 T PR and FPR are the two operating characteristics being compared.
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Tuple # Class Prob. TP FP TN FN TPR FPR
1 P 0.90 1 0 5 4 0.2 0
2 P 0.80 2 0 5 3 0.4 0
3 N 0.70 2 1 4 3 0.4 0.2
4 P 0.60 3 1 4 2 0.6 0.2
5 P 0.55 4 1 4 1 0.8 0.2
6 N 0.54 4 2 3 1 0.8 0.4
7 N 0.53 4 3 2 1 0.8 0.6
8 N 0.51 4 4 1 1 0.8 0.8
9 P 0.50 5 4 1 0 1.0 0.8

10 N 0.40 5 5 0 0 1.0 1.0

FIGURE 6.20

Tuples sorted by decreasing score, where the score is the value returned by a probabilistic classifier.

Example 6.11. Plotting a ROC curve. Fig. 6.20 shows the probability value (column 3) returned by a
probabilistic classifier for each of the 10 tuples in a test set, sorted in the decreasing probability order.
Column 1 is merely a tuple identification number, which aids in our explanation. Column 2 is the actual
class label of the tuple. There are five positive tuples and five negative tuples; thus P = 5 and N = 5. As
we examine the known class label of each tuple, we can determine the values of the remaining columns,
T P , FP , T N , FN , T PR, and FPR. We start with tuple 1, which has the highest probability score, and
take that score as our threshold, that is, t = 0.9. Thus the classifier considers tuple 1 to be positive, and
all the other tuples are considered negative. Since the actual class label of tuple 1 is positive, we have a
true positive, hence T P = 1 and FP = 0. Among the remaining nine tuples, which are all classified as
negative, five actually are negative (thus, T N = 5). The remaining four are all actually positive; thus,
FN = 4. We can therefore compute T PR = T P

P = 1
5 = 0.2, whereas FPR = 0. Thus we have the point

(0.2,0) for the ROC curve.
Next, threshold t is set to 0.8, the probability value for tuple 2, so this tuple is now also considered

positive, whereas tuples 3 through 10 are considered negative. The actual class label of tuple 2 is
positive, thus now T P = 2. The rest of the row can easily be computed, resulting in the point (0.4,0).
Next, we examine the class label of tuple 3 and let t be 0.7, the probability value returned by the
classifier for that tuple. Thus tuple 3 is considered positive, yet its actual label is negative, and so it is
a false positive. Thus T P stays the same and FP increments so that FP = 1. The rest of the values
in the row can also be easily computed, yielding the point (0.4,0.2). The resulting ROC graph, from
examining each tuple, is the jagged line shown in Fig. 6.21.

There are many methods to obtain a curve out of these points, the most common of which is to use
a convex hull. The plot also shows a diagonal line where for every true positive of such a model, we are
just as likely to encounter a false positive. For comparison, this line represents random guessing.

Fig. 6.22 shows the ROC curves of two classification models. The diagonal line representing random
guessing is also shown. Thus the closer the ROC curve of a model is to the diagonal line, the less
accurate the model. If the model is really good, initially we are more likely to encounter true positives
as we move down the ranked list. Thus the curve moves steeply up from zero. Later, as we start to
encounter fewer and fewer true positives, and more and more false positives, the curve eases off and
becomes more horizontal.
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FIGURE 6.21

ROC curve for the data in Figure 6.20.

FIGURE 6.22

ROC curves of two classification models, M1 and M2. The diagonal shows where, for every true positive, we are
equally likely to encounter a false positive. The closer a ROC curve is to the diagonal line, the less accurate the
model is. Thus M1 is more accurate here.

To assess the accuracy of a model, we can measure the area under the curve (AUC). Several soft-
ware packages are able to perform such calculation. The closer the area is to 0.5, the less accurate the
corresponding model is. A model with perfect accuracy will have an AUC of 1.0.
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