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6.7 Techniques to improve classification accuracy
In this section, you will learn some tricks for increasing classification accuracy. We focus on ensemble
methods. An ensemble for classification is a composite model, made up of a combination of classifiers.
The individual classifiers vote, and a class label prediction is returned by the ensemble based on the
collection of votes. Ensembles tend to be more accurate than their component classifiers. We start
off in Section 6.7.1 by introducing ensemble methods in general. Bagging (Section 6.7.2), boosting
(Section 6.7.3), and random forests (Section 6.7.4) are popular ensemble methods.

Traditional learning models assume that the data classes are well distributed. In many real-world
data domains, however, the data are class-imbalanced, where the main class of interest is represented
by only a few tuples. This is known as the class imbalance problem. We also study techniques for
improving the classification accuracy of class-imbalanced data. These are presented in Section 6.7.5.

6.7.1 Introducing ensemble methods
Bagging, boosting, and random forests are examples of ensemble methods (Fig. 6.23). An ensemble
combines a series of k learned models (or base classifiers), M1,M2, . . . ,Mk , with the aim of creating
an improved composite classification model, M∗. A given data set, D, is used to create k training
sets, D1,D2, . . . ,Dk , where Di (1 ≤ i ≤ k) is used to generate classifier Mi . Given a new data tuple
to classify, the base classifiers each vote by returning a class prediction. The ensemble returns a class
prediction based on the votes of the base classifiers.

An ensemble tends to be more accurate than its base classifiers. For example, consider an ensemble
that performs majority voting. That is, given a tuple X to classify, it collects the class label predic-
tions returned from the base classifiers and outputs the class in the majority. The base classifiers may
make mistakes, but the ensemble will misclassify X only if over half of the base classifiers are in error.
Ensembles yield better results when there is significant diversity among the models. That is, ideally,

FIGURE 6.23

Increasing classifier accuracy. Ensemble methods generate a set of classification models, M1,M2, . . . ,Mk . Given a
new data tuple to classify, each classifier “votes” for the class label of that tuple. The ensemble combines the votes to
return a class prediction.
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FIGURE 6.24

Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a linearly separable prob-
lem (i.e., where the actual decision boundary is a straight line). The decision tree struggles with approximating a
linear boundary. The decision boundary of the ensemble is closer to the true boundary. Source: From Seni and Elder
[SE10]. © 2010 Morgan & Claypool Publishers; used with permission.

there is little correlation among classifiers. The base classifiers should also perform better than ran-
dom guessing. Each base classifier can be allocated to a different CPU and so ensemble methods are
parallelizable.

To help illustrate the power of an ensemble, consider a simple two-class problem described by two
attributes, x1 and x2. The problem has a linear decision boundary. Fig. 6.24(a) shows the decision
boundary of a decision tree classifier on the problem. Fig. 6.24(b) shows the decision boundary of an
ensemble of decision tree classifiers on the same problem. Although the ensemble’s decision boundary
is still piecewise constant, it has a finer resolution and is better than that of a single tree.

6.7.2 Bagging
We now take an intuitive look at how bagging works as a method of increasing accuracy. Suppose that
you are a patient and would like to have a diagnosis made based on your symptoms. Instead of asking
one doctor, you may choose to ask several. If a certain diagnosis occurs more than any other, you may
choose this as the final or best diagnosis. That is, the final diagnosis is made based on a majority vote,
where each doctor gets an equal vote. Now replace each doctor by a classifier, and you have the basic
idea behind bagging. Intuitively, a majority vote made by a large group of doctors may be more reliable
than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i (i = 1,2, . . . , k), a training
set, Di , of d tuples is sampled with replacement from the original set of tuples, D. Note that the
term bagging stands for bootstrap aggregation. Each training set is a bootstrap sample, as described in
Section 6.6.4. Because sampling with replacement is used, some of the original tuples of D may not
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Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models for a learning scheme where each
model gives an equally weighted prediction.

Input:

• D, a set of d training tuples;
• k, the number of models in the ensemble;
• a classification learning scheme (e.g., decision tree algorithm, naïve Bayesian, etc.).

Output: The ensemble—a composite model, M∗.
Method:

(1) for i = 1 to k do // create k models:
(2) create bootstrap sample, Di , by sampling D with replacement;
(3) use Di and the learning scheme to derive a model, Mi .
(4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;

FIGURE 6.25

Bagging.

be included in Di , whereas others may occur more than once. A classifier model, Mi , is learned for
each training set, Di . To classify an unknown tuple, X, each classifier, Mi , returns its class prediction,
which counts as one vote. The bagged classifier, M∗, counts the votes and assigns the class with the
most votes to X. Bagging can be applied to the prediction of continuous values by taking the average
value of each prediction for a given test tuple. The algorithm is summarized in Fig. 6.25.

The bagged classifier often has significantly greater accuracy than a single classifier derived from
D, the original training data. It is often more robust to the effects of noisy data and overfitting. The in-
creased accuracy occurs because the composite model reduces the variance of the individual classifiers.

6.7.3 Boosting
We now look at the ensemble method of boosting. As in the previous section, suppose that as a patient,
you have certain symptoms. Instead of consulting one doctor, you choose to consult several. Suppose
you assign weights to the value or worth of each doctor’s diagnosis based on the accuracies of previous
diagnoses they have made. The final diagnosis is then a combination of the weighted diagnoses. This is
the essence behind boosting.

In boosting, weights are also assigned to each training tuple. A series of k classifiers is iteratively
learned. After a classifier, Mi , is learned, the weights are updated to allow the subsequent classifier,
Mi+1, to “pay more attention” to the training tuples that were misclassified by Mi . The final boosted
classifier, M∗, combines the votes of each individual classifier, where the weight of each classifier’s
vote is a function of its accuracy.

AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose we want to
boost the accuracy of a learning method. We are given D, a data set of d class-labeled tuples,
(X1, y1), (X2, y2), . . . , (Xd , yd), where yi is the class label of tuple Xi . Initially, AdaBoost assigns
each training tuple an equal weight of 1/d . Generating k classifiers for the ensemble requires k rounds
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Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote.

Input:

• D, a set of d class-labeled training tuples;
• k, the number of rounds (one classifier is generated per round);
• a classification learning scheme.

Output: A composite model.
Method:

(1) initialize the weight of each tuple in D to 1/d;
(2) for i = 1 to k do // for each round:
(3) sample D with replacement according to the tuple weights to obtain Di ;
(4) use training set Di to derive a model, Mi ;
(5) compute error(Mi), the error rate of Mi (Eq. (6.34))
(6) if error(Mi) > 0.5 then
(7) abort the loop;
(8) endif
(9) for each tuple in D that was correctly classified do
(10) multiply the weight of the tuple by error(Mi)/(1 − error(Mi)); // update weights
(11) normalize the weight of each tuple.
(12) endfor

To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;
(2) for i = 1 to k do // for each classifier:

(3) wi = log
1−error(Mi )
error(Mi )

; // weight of the classifier’s vote

(4) c = Mi(X); // get class prediction for X from Mi

(5) add wi to the weight for class c

(6) endfor
(7) return the class with the largest weight.

FIGURE 6.26

AdaBoost, a boosting algorithm.

through the rest of the algorithm. We can sample to form any sized training set, not necessarily of size
d . Sampling with replacement is used—the same tuple may be selected more than once. Each tuple’s
chance of being selected is based on its weight. A classifier model, Mi , is derived from the training
tuples of Di . Its error is then calculated using D as the test set. The weights of the tuples are then
adjusted according to how they were classified.

If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly classified, its
weight is decreased. A tuple’s weight reflects how difficult it is to classify—the higher the weight, the
more often it has been misclassified. These weights will be used to generate the training samples for the
classifier of the next round. The basic idea is that when we build a classifier, we want it to focus more
on the misclassified tuples of the previous round. Some classifiers may be better at classifying some
“difficult” tuples than others. In this way, we build a series of classifiers that complement each other.
The algorithm is summarized in Fig. 6.26.
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Now, let’s look at some of the math that’s involved in the algorithm. To compute the error rate of
model Mi , we sum the weights of each of the tuples in D that Mi misclassified. That is,

error(Mi) =
d∑

j=1

wj × err(Xj ), (6.34)

where err(Xj ) is the misclassification error of tuple Xj : If the tuple was misclassified, then err(Xj )
is 1; otherwise, it is 0. If the performance of classifier Mi is so poor that its error exceeds 0.5, then we
abandon it. Instead, we try again by generating a new Di training set, from which we derive a new Mi .

The error rate of Mi affects how the weights of the training tuples are updated. If a tuple in the round
i was correctly classified, its weight is multiplied by error(Mi)/(1 − error(Mi)). Once the weights of
all the correctly classified tuples are updated, the weights for all tuples (including the misclassified ones)
are normalized so that their sum remains the same as it was before. To normalize a weight, we multiply
it by the sum of the old weights, divided by the sum of the new weights. As a result, the weights
of misclassified tuples are increased, and the weights of correctly classified tuples are decreased, as
described before.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class label of a
tuple, X?” Unlike bagging, where each classifier was assigned an equal vote, boosting assigns a weight
to each classifier’s vote, based on how well the classifier performed. The lower a classifier’s error rate,
the more accurate it is, and therefore, the higher its weight for voting should be. The weight of classifier
Mi’s vote is

log
1 − error(Mi)

error(Mi)
. (6.35)

For each class, c, we sum the weights of each classifier that assigned class c to X. The class with the
highest sum is the “winner” and is returned as the class prediction for tuple X.

Gradient boosting is another powerful boosting technique, which can be used for classification,
regression, and ranking. If we use a tree (e.g., decision tree for classification, regression tree for regres-
sion) as the base model (i.e., the weak learner), it is called gradient tree boosting, or gradient boosted
tree. Fig. 6.27 presents the gradient tree boosting algorithm for the regression task. It works as follows.

Gradient tree boosting algorithm starts with a simple regression model F(x) (line 1), which outputs
a constant (i.e., the average output of all training tuples). Then, similar to Adaboost, it tries to find a
new base model (i.e., weak leaner) Mt(x) at each round (line 3). The newly constructed base model
Mt(x) is added to the regression model F(x) (line 8). In other words, the composite regression model
F(x) consists of k additive base models Mt(x) (t = 1, ..., k). When we search for a new base model
Mt(x), all the previously constructed base models (i.e., M1(x), ...Mt−1(x)) are kept unchanged.

In order to construct a new base model Mt(x), we first compute the predicted output ŷi of each
training tuple by the current regression model F(x) (line 4) and calculate the negative gradient ri of
the loss function with respect to the predicted output ŷi (line 5). Then, we fit a regression tree model
for the training set {(x1, r1), ..., (xn, rn)}, where the negative gradient ri is treated as the targeted output
value of the ith training tuple. Since the negative gradient ri (i = 1, ..., n) changes in different rounds,
we end up with different base models Mt(x) (t = 1, ..., k).

“But, why do we use the negative gradients to construct the new base model?” Suppose the loss
function L(yi,F (xi)) = 1

2 (yi − ŷi )
2 (recall that we have used the similar loss function for the regres-

sion tree and the least square linear regression model). Then, we can show that the negative gradient
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Algorithm: Gradient Tree Boosting for Regression.

Input:

• D, a set of n training tuples {(x1, y1), ..., (xn, yn)}, where xi is the attribute vector of the ith training tuple and yi is its true
target output value;

• k, the number of rounds (one base regression model is generated per round);
• a differential loss function Loss = ∑n

i=1 L(yi ,F (xi )).

Output: A composite regression model F(x).
Method:

(1) initialize the regression model F(x) =
∑n

i=1 yi
n ;

(2) for t = 1 to k do // construct a new weak learner Mt(x) for each round:
(3) for i = 1 to n //each training tuple:
(4) calculate ŷi = F(xi ); //predicted value by the current model F(x)

(5) calculate the negative gradient ri = − ∂L(yi ,ŷi )
∂ ŷi

;

(6) endfor
(7) fit a regression tree model Mt(x) for the training set {(x1, r1), ..., (xn, rn)};
(8) update the composite regression model F(x) ← F(x) + Mt(x).
(9) endfor

FIGURE 6.27

Gradient tree boosting for regression.

ri = yi − ŷi , which is the difference between the actual output value and predicted output value by the
current regression model F(x) (i.e., the residual). In other words, the negative gradient ri reveals the
“shortcoming” of the current regression model F(x) (i.e., how far away the predicted output is from
its actual output value). If we use other loss functions (e.g., the Huber loss in robust regression), the
negative gradient is no longer equal to the residual yi − ŷi , but still provides a good indicator in terms
of the prediction quality of the current regression model F(x) on the ith training tuple. For this rea-
son, the negative gradients are also referred to as pseudo residuals. By fitting a regression tree model
with respect to the negative gradients (i.e., where the “shortcoming” of the current regression model
F(x) is), the newly constructed base model, Mt(x), is expected to dramatically improve the composite
regression model F(x).

In addition to the algorithm in Fig. 6.27, several alternative design choices for gradient tree boosting
exist. For example, similar to Adaboost, we can learn a weight for each base model Mt(x), and then the
composite regression model F(x) becomes the weighted sum of the k base models. In practice, it was
found that shrinking the newly constructed base model helps improve the generalization performance
of the composite model F(x) (i.e. F(x) ← F(x) + ηMt(x) in line 8, where 0 < η < 1 is the shrinkage
constant.). The number of leaf nodes T of the regression tree Mt(x) plays an important role in the
learning performance of the composite model F(x). That is, F(x) might underfit the training set if T

is too small, but could overfit the training set with a large T . The typical choice for T is between 4 and
8. At a given round t , we could use a subsample of the entire training set to construct the base model
Mt(x). Gradient tree boosting equipped with such a subsampling strategy is referred to as stochastic
gradient (tree) boosting and it was found to significantly improve the accuracy of the composite model
F(x). A highly scalable end-to-end gradient tree boosting system is called XGBoost, which is capable
to handle a billion-scale training set. XGBoost has made a number of innovations for training gradient
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tree boosting, including a new tree construction algorithm designed for sparse data, feature subsampling
(as opposed to training tuple subsampling in stochastic gradient boosting), and a highly efficient cache-
aware block structure. XGBoost has been successfully used by data scientists in many data mining
challenges, often leading to top competitive results.

“How does boosting compare with bagging?” Because of the way boosting focuses on the mis-
classified tuples, it risks overfitting the resulting composite model to such data. Therefore sometimes
the resulting “boosted” model may be less accurate than a single model derived from the same data.
Bagging is less susceptible to model overfitting. While both can significantly improve accuracy in com-
parison to a single model, boosting tends to achieve greater accuracy.

6.7.4 Random forests
We now present another ensemble method called random forests. Imagine that each of the classifiers in
the ensemble is a decision tree classifier so that the collection of classifiers is a “forest.” The individual
decision trees are generated using a random selection of attributes at each node to determine the split.
More formally, each tree depends on the values of a random vector sampled independently and with the
same distribution for all trees in the forest. During classification, each tree votes, and the most popular
class is returned.

Random forests can be built using bagging (Section 6.7.2) in tandem with random attribute selec-
tion. A training set, D, of d tuples is given. The general procedure to generate k decision trees for the
ensemble is as follows. For each iteration, i (i = 1,2, . . . , k), a training set, Di , of d tuples is sampled
with replacement from D. That is, each Di is a bootstrap sample of D (Section 6.6.4), so that some tu-
ples may occur more than once in Di , while others may be excluded. Let F be the number of attributes
to be used to determine the split at each node, where F is much smaller than the number of available
attributes. To construct a decision tree classifier, Mi , randomly select, at each node, F attributes as can-
didates for the split at the node. The CART methodology is used to grow the trees. The trees are grown
to maximum size and are not pruned. Random forests formed this way, with random input selection,
are called Forest-RI.

Another form of random forest, called Forest-RC, uses random linear combinations of the input
attributes. Instead of randomly selecting a subset of the attributes, it creates new attributes (or features)
that are a linear combination of the existing attributes. That is, an attribute is generated by specifying
L, the number of original attributes to be combined. At a given node, L attributes are randomly selected
and added together with coefficients that are uniform random numbers on [−1,1]. F linear combina-
tions are generated, and a search is made over these for the best split. This form of random forest is
useful when there are only a few attributes available, so as to reduce the correlation between individual
classifiers.

Random forests are comparable in accuracy to AdaBoost, yet are more robust to errors and outliers.
The generalization error for a forest converges as long as the number of trees in the forest is large. Thus,
overfitting is less likely to be a problem. The accuracy of a random forest depends on the strength of
the individual classifiers and a measure of the dependence between them. The ideal is to maintain the
strength of individual classifiers without increasing their correlation. Random forests are insensitive to
the number of attributes selected for consideration at each split. Typically, up to log2d + 1 are chosen.
(An interesting empirical observation was that using a single random input attribute may result in good
accuracy that is often higher than when using several attributes.) Because random forests consider much
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fewer attributes for each split, they are efficient on very large databases. They can be faster than either
bagging or boosting. Random forests give internal estimates of variable importance.

6.7.5 Improving classification accuracy of class-imbalanced data
In this section, we revisit the class imbalance problem. In particular, we study approaches to improving
the classification accuracy of class-imbalanced data.

Given two-class data, the data are class-imbalanced if the main class of interest (the positive class)
is represented by only a few tuples, while the majority of tuples represent the negative class. For
multiclass-imbalanced data, the data distribution of each class differs substantially where, again, the
main class or classes of interest are rare. The class imbalance problem is closely related to cost-sensitive
learning, wherein the costs of errors per class are not equal. In medical diagnosis, for example, it is
much more costly to falsely diagnose a cancerous patient as healthy (a false negative) than to misdiag-
nose a healthy patient as having cancer (a false positive). A false negative error could lead to the loss
of life and therefore is much more expensive than a false positive error. Other applications involving
class-imbalanced data include fraud detection, the detection of oil spills from satellite radar images,
and fault monitoring.

Traditional classification algorithms aim to minimize the number of errors made during classifica-
tion. They assume that the costs of false positive and false negative errors are equal. By assuming
a balanced distribution of classes and equal error costs, they are therefore not suitable for class-
imbalanced data. Earlier parts of this chapter presented ways of addressing the class imbalance problem.
Although the accuracy measure assumes that the cost of classes are equal, alternative evaluation metrics
can be used that consider the different types of classifications. Section 6.6.1, for example, presented sen-
sitivity or recall (the true positive rate) and specificity (the true negative rate), which help to assess how
well a classifier can predict the class label of imbalanced data. Additional relevant measures discussed
include F1 and Fβ . Section 6.6.6 showed how ROC curves plot sensitivity vs. 1 − specificity (i.e., the
false positive rate). Such curves can provide insight when studying the performance of classifiers on
class-imbalanced data.

In this section, we look at general approaches for improving the classification accuracy of class-
imbalanced data. These approaches include (1) oversampling, (2) undersampling, (3) threshold moving,
and (4) ensemble techniques. The first three do not involve any changes to the construction of the
classification model. That is, oversampling and undersampling change the distribution of tuples in
the training set; threshold moving affects how the model makes decisions when classifying new data.
Ensemble methods follow the techniques described in Section 6.7.2 through Section 6.7.4. For ease
of explanation, we describe these general approaches with respect to the two-class imbalanced data
problem, where the higher-cost classes are rarer than the lower-cost classes.

Both oversampling and undersampling change the training data distribution so that the rare (pos-
itive) class is well represented. Oversampling works by resampling the positive tuples so that the
resulting training set contains an equal number of positive and negative tuples. Undersampling works
by decreasing the number of negative tuples. It randomly eliminates tuples from the majority (negative)
class until there are an equal number of positive and negative tuples.

Example 6.12. Oversampling and undersampling. Suppose the original training set contains 100
positive and 1000 negative tuples. In oversampling, we replicate tuples of the rare class to form a new
training set containing 1000 positive tuples and 1000 negative tuples. In undersampling, we randomly
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eliminate negative tuples so that the new training set contains 100 positive tuples and 100 negative
tuples.

Several variations to oversampling and undersampling exist. They may vary, for instance, in how
tuples are added or eliminated. For example, the SMOTE algorithm uses oversampling where synthetic
tuples are added, which are “close to” the given positive tuples in tuple space.

The threshold-moving approach to the class imbalance problem does not involve any sampling.
It applies to classifiers that, given an input tuple, return a continuous output value (just like in Sec-
tion 6.6.6, where we discussed how to construct ROC curves). That is, for an input tuple, X, such
a classifier returns as output a mapping, f (X) → [0,1]. Rather than manipulating the training tuples,
this method returns a classification decision based on the output values. In the simplest approach, tuples
for which f (X) ≥ t , for some threshold, t , are considered positive, while all other tuples are considered
negative. Other approaches may involve manipulating the outputs by weighting. In general, threshold
moving moves the threshold, t , so that the rare class tuples are easier to classify (and hence, there is less
chance of costly false negative errors). Examples of such classifiers include naïve Bayesian classifiers
(Section 6.3) and neural networks (Chapter 10). The threshold-moving method, although not as popular
as over- and undersampling, is simple and has shown some success for the two-class-imbalanced data.

Ensemble methods (Section 6.7.2 through Section 6.7.4) have also been applied to the class im-
balance problem. The individual classifiers making up the ensemble may include versions of the
approaches described here, such as oversampling and threshold moving.

These methods work relatively well for the class imbalance problem on two-class tasks. Threshold-
moving and ensemble methods were empirically observed to outperform oversampling and undersam-
pling. Threshold moving works well even on extremely imbalanced data sets. The class imbalance
problem on multiclass tasks is much more difficult where oversampling and threshold moving are less
effective. Although threshold-moving and ensemble methods show promise, finding a solution for the
multiclass imbalance problem remains an area of future work.

6.8 Summary
• Classification is a form of data analysis that extracts models describing data classes. A classifier, or

classification model, predicts categorical labels (classes). Numeric prediction models continuous-
valued functions. Classification and numeric prediction are the two major types of prediction prob-
lems.

• Decision tree induction is a top-down recursive tree induction algorithm, which uses an attribute
selection measure to select the attribute tested for each nonleaf node in the tree. ID3, C4.5, and
CART are examples of such algorithms using different attribute selection measures. Tree pruning
algorithms attempt to improve accuracy by removing tree branches reflecting noise in the data.

• Naïve Bayesian classification is based on Bayes’ theorem of the posterior probability. It assumes
class-conditional independence—that the effect of an attribute value on a given class is independent
of the values of other attributes.

• Linear classifiers compute a linear weighted combination of the input attribute values, based on
which it predicts the class label for a given tuple. Perceptron and logistic regression are two classic
examples of linear classifiers.
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CHAPTER

Classification: advanced methods

In this chapter, you will learn advanced techniques for data classification. We start with feature selec-
tion and engineering (Section 7.1). Then, we will introduce Bayesian belief networks (Section 7.2),
which unlike naïve Bayesian classifiers, do not assume class conditional independence. A powerful
approach to classification known as support vector machines is presented in Section 7.3. A support
vector machine transforms training data into a higher dimensional space, where it finds a hyperplane
that separates the data by class using essential training tuples called support vectors. Section 7.4 de-
scribes rule-based and pattern-based classification. For the former, our classifier is in the form of
a set of IF-THEN rules, whereas the latter explores relationships between attribute–value pairs that
occur frequently in data. This methodology builds on research on frequent pattern mining (Chapters 4
and 5). Classification with weak supervision is introduced in Section 7.5. Section 7.6 introduces var-
ious techniques for classification on rich data types, such as stream data, sequence data, and graph
data. Other related techniques to classification, such as multiclass classification, distance metric learn-
ing, interpretability of classification, reinforcement learning, and genetic algorithms are introduced in
Section 7.7.

7.1 Feature selection and engineering
For the classification setting introduced in Chapter 6, in order to train a classifier (e.g., naïve Bayes
Classifier, k-nearest-neighbor classifier), we assume that there exists a training set with n tuples, each
of which is represented by p attributes or features. “But, where do these p features come from at the
first place?” Let us consider two scenarios. In the first scenario (Feature Selection), you might have
collected a large number of (say hundreds or thousands or even more) features. However, most of them
might be irrelevant with respect to the classification task or redundant with each other. For example, in
order to predict whether an online student will drop out before finishing the program, the student ID
is an irrelevant feature. In another example of predicting whether a customer will buy a computer, one
of the two features, namely yearly income and monthly income, is redundant since one (e.g., yearly
income) can be inferred from the other (e.g., monthly income). Including such irrelevant or redundant
features during the classifier training process will not help improve the classification accuracy, yet they
are likely to make the trained classifier sensitive to noise, leading to degraded generalization perfor-
mance. “How can we select a subset of most relevant features from the initial p input features to train
a classification model? This is the main focus of this section.

In the second scenario (Feature Engineering), you might wonder “How can I construct p features
so that all of them are critical for the classification task I have?” or “Given the initial p features,
how can I transform them into another p′ attributes so that these transformed features will be more
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effective for the given classification task?” These are the questions that feature engineering tries to
answer. For example, in order to predict whether a regional disease outbreak will occur, one might
have collected a large number of features from the health surveillance data, including the number of
daily positive cases, the number of daily tests, and the number of daily hospitalization. It turns out a
powerful indicator (or feature) to predict the disease outbreak is weekly positive rate. In this example,
the weekly positive rate, which is the ratio of the number of positive cases and the number of tests
of a week, can be constructed (or engineered) based on the initial features (e.g., daily positive cases,
daily test cases). In practice, feature engineering plays a very important role in the performance of the
classification model. Traditionally, feature engineering requires substantial domain knowledge. Some
data transformation techniques (e.g., DWT, DFT, and PCA), that were introduced in Chapter 2 can
be viewed as feature engineering methods. The deep learning techniques that we will introduce in
Chapter 10 provide an automatic way for feature engineering, capable of generating powerful features
from the initial input features. The engineered features are often semantically more meaningful with a
significant classification performance improvement.

In this section, we will introduce three types of feature selection methods, namely filter methods,
wrapper methods, and embedded methods. A filter method selects features based on some goodness
measure that is independent of the specific classification model. A wrapper method combines the feature
selection and classifier model construction steps together, and it iteratively uses the currently selected
feature subset to construct a classification model, which is in turn used to update the selected feature
subset. An embedded method simultaneously constructs the classification model and selects the relevant
features. In other words, it embeds the feature selection step during the classification model construction
step. Fig. 7.1 provides a pictorial comparison of these three methods.

Feature selection can be used for both classification and regression. It can also be applied to unsu-
pervised data mining tasks, such as clustering. For both filter and wrapper methods, we will illustrate
them with classification tasks. We will mainly use the linear regression task, which was introduced in
Section 6.5, to explain the embedded methods.

7.1.1 Filter methods
A filter method selects “good” features based on a certain “goodness” measure of the input features.
A filter method is independent of the specific classification model and is often used as a preprocessing
step of other feature selection methods (e.g., wrapper or embedded methods). The idea is quite straight-
forward. Suppose we have p initial features and we wish to select k out of p features (where k < p). If
we have a goodness score for each feature, we can simply select k features with the highest goodness
scores.

“So, how shall we measure the goodness of a feature?” Intuitively, we might say that a feature is
good if it is highly correlated with the class label we want to predict. Suppose there are n training
tuples. We wish to measure the correlation between a feature (i.e., attribute) x and the class label y.
How can we measure the correlation between the given feature x and the class label y? If the given
feature x is a categorical attribute (e.g., job title), a natural choice is χ2 test, which was introduced
in Section 2.2.3. To be specific, a higher χ2 value indicates a stronger correlation between the given
feature x and the class label y. We select k features with the highest χ2 values.

“But, what if the given feature x is a continuous attribute (e.g., yearly income)?” We have two
choices. First, we can discretize the continuous attribute x into a categorical attribute (e.g., high,
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FIGURE 7.1

An overview of three feature selection methods.

medium vs. low income) and then use the χ2 test to measure the correlation between the discretized
attribute and the class label to select k most correlated features. Second, we can resort to Fisher score
to directly measure the correlation between a continuous variable (the given feature x) and a categorical
variable (the class label y).

Suppose we have a binary class label y (i.e., whether or not the customer will buy a computer).
Intuitively, the feature x (e.g., income) is strongly correlated with the class label y if (1) the average
income of all customers who buy a computer is significantly different from the average income of all
customers who do not buy a computer, (2) all customers who buy a computer share similar income, and
(3) all customers who do not buy a computer share similar income. Formally, Fisher score is defined as
follows:

s =
∑c

j=1 nj (µj − µ)2

∑c
j=1 njσ

2
j

, (7.1)

where c is the total number of classes (c = 2 in our example), nj is the number of training tuples in
class j , µj and σ 2

j are the mean value and variance of feature x among all tuples that belong to class
j , respectively, and µ is the mean value of feature x among all training tuples. Therefore a feature x

would have a high Fisher score if the following conditions hold. First, the class-specific mean values
uj (j = 1, ..., c) are dramatically different from each other (e.g., a large numerator of the Fisher score
in Eq. (7.1)). Intuitively, this implies that on average, the feature values from different classes are quite
different from each other. Second, the class-specific variance σ 2

j is small (e.g., a small denominator of
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FIGURE 7.2

Feature section by Fisher score. (a) Ten training tuples, each of which is represented by two attributes (attribute A
and attribute B) and a binary class label (+ vs. −). (b) Scatter-plot of training tuples. Intuitively, attribute B better
separates the positive training tuples from negative ones than attribute A. This is consistent with Fisher scores:
s(attribute B) = 200 > s(attribute A) = 0.125.

the Fisher score in Eq. (7.1)). This indicates that, within a class, different training tuples share similar
feature values.

Example 7.1. We are given 10 training tuples in Fig. 7.2(a), each of which is represented by two at-
tributes (attribute A and attribute B) and a binary class label (+ vs. −). We want to use Fisher scores to
decide which attribute is more correlated with the class label. There are five positive tuples and five neg-
ative tuples n1 = n2 = 5. For attribute A, the mean value among all training tuples µ = (1 + 2 + 3 +
4 + 5 + 2 + 3 + 4 + 5 + 6)/10 = 3.5, the mean value among positive training tuples µ1 = (1 + 2 +
3 + 4 + 5)/5 = 3, the mean value among negative training tuples µ2 = (2 + 3 + 4 + 5 + 6)/5 = 4, the
variance of the positive tuples σ 2

1 = ((1 − 3)2 + (2 − 3)2 + (3 − 3)2 + (4 − 3)2 + (5 − 3)2)/5 = 2, and
the variance of the negative tuples σ 2

2 = ((2 − 4)2 + (3 − 4)2 + (4 − 4)2 + (5 − 4)2 + (6 − 4)2)/5 = 2.
Therefore the Fisher score for attribute A is s(attribute A) = (5 × (3 − 3.5)2 + 5 × (4 − 3.5)2))/(5 ×
2 + 5 × 2) = 0.125. We compute the Fisher score for attribute B in a similar way and have that
s(attribute B) = 200. According to Fisher scores, attribute B is more correlated with the class label
than attribute A. This is consistent with the scatter-plot in Fig. 7.2(b), where the positive tuples are well
separated from negative tuples along the vertical axis (attribute B), whereas they are mixed together
along the horizontal axis (attribute A).

In addition to correlation measures (e.g., χ2 test for categorical feature, Fisher score for continuous
feature), we might say that a feature x is good if it contains “a lot of information” about the class
label y that we want to predict. This suggests information-theoretic goodness measures for feature
selection. For example, we can use information gain as the goodness measure for feature selection.
The information gain, entropy, and conditional entropy were introduced in Section 6.2. In a nutshell,
let H(y) be the entropy of the class label y and H(y|x) be the conditional entropy of the class label y
given the feature x. The information gain of the feature x is defined as the difference between H(y) and
H(y|x). The intuition is that a feature x with a larger information gain can better reduce the impurity
(e.g., entropy) of the class label y. Thus it contains “more information” about predicting the class label
y. In addition to information gain, another commonly used information theoretic goodness measure for
feature selection is mutual information (MI). Intuitively, the mutual information between a feature x and
the class label measures how much information the feature x provides to make the correct prediction of
the class label y. Therefore features with the largest mutual information should be selected. The details
about how to compute mutual information can be found in Appendix A.
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With filter methods, the general process of training a classification model is as follows (Fig. 7.1(a)).
Given a set of p initial features, we first use a filter method to select k features (e.g., k out of p
features with the highest Fisher scores). Then, using these k selected features, we build a classifier
(e.g., a logistic regression classifier). Finally, we evaluate the performance of the trained classifier,
such as cross-validation accuracy. Notice that during the feature selection process, a filter method is
independent of the specific classification model that will be trained with the selected features. Another
potential limitation with a filter method is that it does not consider the interaction between different
features, and thus might select redundant features.

7.1.2 Wrapper methods
A wrapper method adopts a different strategy for feature selection by combining the feature selection
step and classifier training step together. A wrapper method is often an iterative process (Fig. 7.1(b)).
At each iteration, it tries to build a classifier based on the currently selected feature subset, and then
based on the built classifier, it updates (e.g., add, remove, swap) the selected feature subset. In other
words, it wraps the feature selection and classifier training together, hence the name of wrapper.

The most important component of a wrapper method is how to search for the best feature subset.
A straightforward way (i.e., exhaustive search) is to try all the possible subsets of the p given features.
We use each subset of the feature to build a classification model and evaluate its performance, such
as the classification accuracy using either the held-out set or cross-validation. The best feature subset
is the one with the highest classification accuracy for the given classification model. This strategy is
optimal since it finds the best feature subset with the highest classification accuracy. However, it is very
expensive in terms of computation, since it needs to search and evaluate all (2p − 1) possible subsets
of the p given features—an exponential number!

In practice, a wrapper method often relies on some heuristic search strategy to avoid the (2p − 1)
exponential search space. Section 2.6.2 introduced different attribute subset selection strategies, which
can be applied here. For example, in the stepwise forward selection method, it starts with an empty
feature subset. At each iteration of the feature selection process, it selects an additional feature, which,
when added into the current feature subset, will improve the classification model performance most
(e.g., classification accuracy measured by the held-out method or cross-validation). The process will
terminate when adding the extra features can no longer improve the classification model performance.
In contrast, in the stepwise backward elimination method, it starts with all the p initial features, and then
iteratively eliminates features from the current subset whose removal would increase the classification
accuracy most. We can also combine these two strategies together. That is, at each iteration, we try to
select one additional feature and meanwhile might eliminate one existing feature that will improve the
classification accuracy most. In addition to these three typical search strategies, some wrapper methods
leverage more sophisticated techniques, such as simulated annealing and genetic algorithm. Simulated
annealing is a probabilistic optimization technique, often designed for complex (e.g., nonconvex) opti-
mization problems. The latter will be introduced in Section 7.7.

By “wrapping” the feature selection and the classification model construction steps together, a
wrapper method tends to have better performance than filtering methods. However, since it needs to
iteratively search for the feature subset and (re-)train the classification model, the computational cost
of a wrapper method is usually much more intense than filter methods. How can we simultaneously
enjoy the advantages of both filter methods and wrapper methods? That is what embedded methods try
to answer.
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7.1.3 Embedded methods
Embedded methods aim to combine the advantages of both filter methods and wrapper methods. On
the one hand, an embedded method performs feature selection and classification model construction
simultaneously, so that the two can mutually benefit from each other. On the other hand, an embedded
method tries to avoid the expensive, iterative search process in wrapper methods.

We actually have already seen an embedded method in Chapter 6! For decision tree induction that
was introduced in Section 6.2, it is possible that only a fraction of all d initial attributes are present
in the built decision tree model. For the example in Fig. 6.2, only three attributes (i.e., age, student,
credit_rating) are present in the decision tree model, albeit there might be tens of or hundreds of initial
attributes. This could happen if the decision tree induction algorithm terminates before it exhausts all d

initial attributes, or some attributes of the initially built decision tree are removed during tree pruning
process. In either case, all the attributes that appear on the nonleaf tree nodes can be viewed as the
selected feature subset, and decision tree induction itself can be viewed as an embedded method for
feature selection. In other words, the feature selection process (i.e., to decide which attribute(s) are
used as the nonleaf tree nodes) is embedded in the decision tree induction process. We simultaneously
accomplish both the feature selection step and the classification model construction (i.e., decision tree
induction) step. This is the essence of an embedded method.

Other powerful embedded methods often rely on a technique called sparse learning. Let us first
introduce its high-level idea, and then we will explain the details using linear regression as an example.
A handful of data mining models can be solved from the optimization perspective, such as the linear
regression model and logistic regression. In a nutshell, we build these data mining models by mini-
mizing some objective (or loss) function that directly or indirectly measures the performance of the
corresponding data mining model. For example, in least square linear regression, we find the optimal
weight vector w by minimizing the sum of the squared difference between the predicted output and the
actual output; in logistic regression, we find the optimal weight vector w by minimizing the negative
log likelihood. Now, let us modify the objective function so that it also “penalizes” the number of the
features it uses. By minimizing the modified objective function, the trained data mining model might
only use a subset of all the d initial features and thus accomplish the task of feature selection. In this
way, we will be able to embed the feature selection process (by penalizing the number of features used
in the final model) in the model training process.

“So, how can we penalize the number of features used in a data mining model, and how can we solve
the modified optimization problem accordingly?” Let us explain the details using least square linear
regression (which was introduced in Section 6.5) as an example. Recall that a multilinear regression
model assumes ŷi = wT xi = w0 + w1xi,1 + ... + wdxi,d , where ŷi is the predicted output for the ith
tuple, xi = (1, xi,1, ...xi,d ) is the attribute (feature) vector of the ith tuple, and w = (w0,w1, ...,wd)

is the weight vector. We find the optimal weight vector w by minimizing the loss function L(w) =
1
2
∑n

i=1(yi − ŷi )
2 = 1

2
∑n

i=1(yi − wT xi)
2, which measures the sum of the squared difference between

the predicted output (ŷi) and the actual output (yi). “How can we ‘embed’ the feature selection in
the process of training such a linear regression model?” For the j th feature, if the corresponding
weight wj = 0, then it has no contribution on the linear regression model. In other words, this feature
is “unselected.” This naturally suggests that we can use the l0 norm1 of the weight vector w, which

1 l0 is a special case of the lp norm when p approaches 0. lp norm was introduced in Chapter 2.
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counts the number of nonzero elements in the weight vector w, to measure how many features are used
(i.e., selected) in the trained linear regression model. Therefore if we train a linear regression model by
minimizing the following modified loss function L̃(w) = 1

2
∑n

i=1(yi − ŷi )
2 + λ‖w‖0 = 1

2
∑n

i=1(yi −
wT xi)

2 + λ‖w‖0, the optimal weight vector w is likely to contain some zero elements. Those features
whose corresponding weights in vector w are nonzero are selected. The parameter λ > 0 balances two
terms in the modified loss function. Generally speaking, the larger the λ, the less number of the features
are likely to be selected (i.e., more elements in the weight vector w are likely to be zeros).

However, finding the optimal weight vector w that minimizes the modified loss function L̃(w) is
very hard. This is because the l0 norm of the weight vector w, which tells how many features are
selected, is nonconvex. To address this issue, we replace the l0 norm by another norm that is convex. It
turns out the l1 norm ‖w‖1 = ∑d

j=0 |wj | is the best convex approximation of the l0 norm, where |wj |
is the absolute value of wj . Thus we have a new loss function as follows.

L̂(w) = 1
2

n∑

i=1

(yi − ŷi )
2 + λ‖w‖1 = 1

2

n∑

i=1

(yi − wT xi)
2 + λ

d∑

j=0

|wj | (7.2)

The regression model that minimizes the new loss function L̂(w) in Eq. (7.2) is called LASSO, which
stands for Least Absolute Shrinkage and Selection Operator. The optimal weight vector w of L̂ is often
sparse, meaning that some of its elements might be zeros. The nonzero elements of the optimal vector
w tell that the corresponding features are selected by the linear regression model. Fig. 7.3(a) presents
an illustration of the loss function of LASSO (Eq. (7.2)).

FIGURE 7.3

An illustration of LASSO. (a) Illustration of the loss function of LASSO (Eq. (7.2)). The training set is represented
by an n × d feature matrix X whose rows are tuples and columns are features, and an n × 1 output vector y. By min-
imizing the sum of the squared difference between the actual and predicted output (i.e., the first term of Eq. (7.2)),
the trained linear regression models try to make the predicted output ŷ to be as close as possible to the actual out-
put ŷ. By minimizing the l1 norm of the weight vector w (i.e., the second term of Eq. (7.2)), some elements of the
weight vector w are zeros (indicated by the arrows), and the corresponding features (the columns of the feature
matrix X) are “unselected.” (b) Soft thresholding pushes the coefficients with small magnitudes (between −λ and λ)
to be zeros while shrinking the remaining coefficients by λ in magnitude.
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“So, how can we find the optimal weight vector w that minimizes L̂ in Eq. (7.2)?” The good news
is that unlike function L̃ that is nonconvex, the loss function L̂ in Eq. (7.2) is a convex function. There
exist many numerical optimization packages that can be used to solve it. Here, we introduce one of
them, called coordinate descent.

Unlike the least square regression that has a closed-form solution, the closed-form solution for
LASSO does not exist. Coordinate descent finds the optimal weight vector w in an iterative way, and
it works as follows. First, we initialize the weight vector w. (We can simply set each element in w as
zero.) Then, the algorithm iterates until it converges or some stopping criterion is met, for example,
a maximum iteration number has been reached. At each iteration, the algorithm tries to update each
element in the weight vector w one-by-one, while fixing all the remaining elements in w. Therefore
it boils down to the following question. “How can we update a single element (say wt (0 ≤ t ≤ d))
while fixing all other elements?” We take the following three steps. First, we compute the residual
for each training tuple ri = yi − ∑d

j=0,j &=t wjxi,j . The intuition of the residual ri is that it measures
the prediction error for the ith tuple if we use all but the t th features. Second, we train a least square
regression model for all the input tuples, where each tuple is represented by a single input feature xi,t

and its output is the residual ri . The weight (i.e., coefficient) for the t th feature from such a least square
regression model is represented as βt . (Recall that we can use the closed-form solution of least square
regression to find the coefficient βt , which was introduced in Section 6.5.) The intuition is that if we fix
all but the t th features, the coefficient βt is the best coefficient that minimizes the overall least square
prediction error. Third, we update the weight wt as follows.

wt =






βt − λ if βt ≥ λ

βt + λ if βt ≤ −λ

0 otherwise

(7.3)

The third step is called soft thresholding, and its intuition is as follows. If |βt | is greater than the
regularization parameter λ, the soft thresholding step would reduce the magnitude of βt by λ, which is
used as the updated coefficient wt ; otherwise the coefficient wt is simply set as zeros. In other words, the
soft thresholding pushes the coefficients with small magnitude as zero while shrinking the remaining
coefficients. In this way, the final weight vector w is likely to be sparse with many zero elements, and
thus achieves the purpose of feature selection. Fig. 7.3(b) presents an illustration of soft thresholding.

An earlier method for solving LASSO is called LAR, which stands for least angle regression. Recall
that for linear regression introduced in Section 6.5, we could add the squared l2 norm of the weight
vector into the loss function to prevent overfitting (i.e., Ridge regression). We can add both l1 norm
and the squared l2 norm into the loss function L. Such a regression model is called Elastic net, and
the features selected by Elastic net tend to be less correlated with each other, compared with LASSO.
We can use a very similar idea as LASSO to embed the feature selection process in the classification
model. For example, we can introduce an l1 norm regularization term in the objective function of
logistic regression, so that the weight vector of the trained logistic regression classifier is likely to be
sparse. In other words, it only uses a few selected features.
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7.2 Bayesian belief networks
Chapter 6 introduced Bayes’ theorem and naïve Bayesian classification. In this chapter, we describe
Bayesian belief networks—probabilistic graphical models, which unlike naïve Bayesian classifiers al-
low the representation of dependencies among subsets of attributes. Bayesian belief networks can be
used for classification. Section 7.2.1 introduces the basic concepts of Bayesian belief networks. In
Section 7.2.2, you will learn how to train such models.

7.2.1 Concepts and mechanisms
The naïve Bayesian classifier makes the assumption of class conditional independence, that is, given
the class label of a tuple, the values of the attributes are assumed to be conditionally independent of
one another. The benefit of such an assumption is that it significantly simplifies computation. When the
assumption holds true, the naïve Bayesian classifier is the most accurate in comparison with all other
classifiers. In practice, however, dependencies can exist between variables (i.e., attributes). Bayesian
belief networks specify joint probability distributions. They allow class conditional independence to be
defined between subsets of variables. They provide a graphical model of causal relationships, on which
learning can be performed. Trained Bayesian belief networks can be used for classification. Bayesian
belief networks are also known as belief networks, Bayesian networks, and probabilistic networks.
For brevity, we will refer to them as belief networks.

A belief network is defined by two components—a directed acyclic graph and a set of conditional
probability tables (Fig. 7.4). Each node in the directed acyclic graph represents a random variable. The
variables may be discrete- or continuous-valued. They may correspond to actual attributes given in the
data or to “hidden variables” believed to form a relationship (e.g., in the case of medical data, a hidden
variable may indicate a syndrome, representing a number of symptoms that, together, characterize a
specific disease). Each arc represents a probabilistic dependence. If an arc is drawn from a node Y to a
node Z, then Y is a parent or immediate predecessor of Z, and Z is a descendant of Y . Each variable
is conditionally independent of its nondescendants in the graph, given its parents.

Fig. 7.4 is a simple belief network, adapted from Russell, Binder, Koller, and Kanazawa [RBKK95],
for six Boolean variables. The arcs in Fig. 7.4(a) allow a representation of causal knowledge. For exam-
ple, having lung cancer is influenced by a person’s family history of lung cancer, as well as whether or
not the person is a smoker. Note that the variable PositiveXRay is independent of whether the patient has
a family history of lung cancer or is a smoker, given that we know the patient has lung cancer. In other
words, once we know the outcome of the variable LungCancer, then the variables FamilyHistory and
Smoker do not provide any additional information regarding PositiveXRay. The arcs also show that the
variable LungCancer is conditionally independent of Emphysema, given its parents, FamilyHistory and
Smoker. On the other hand, we cannot say that LungCancer is conditionally independent of Dyspnea,
given its parents. Why? This is because Dyspnea is a child of LungCancer in the belief network.

A belief network has one conditional probability table (CPT) for each variable. The CPT for a
variable Y specifies the conditional distribution P(Y |Parents(Y )), where Parents(Y ) are the parents
of Y . Fig. 7.4(b) shows a CPT for the variable LungCancer. The conditional probability for each known
value of LungCancer is given for each possible combination of the values of its parents. For instance,
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FIGURE 7.4

Simple Bayesian belief network. (a) A proposed causal model, represented by a directed acyclic graph. (b) The
conditional probability table for the values of the variable LungCancer (LC) showing each possible combination of
the values of its parent nodes, FamilyHistory (FH) and Smoker (S). Source: Adapted from Russell, Binder, Koller,
and Kanazawa [RBKK95].

from the upper leftmost and bottom rightmost entries, respectively, we see that

P(LungCancer = yes |FamilyHistory = yes, Smoker = yes) = 0.8

P(LungCancer = no |FamilyHistory = no, Smoker = no) = 0.9.

Let X = (x1, . . . , xn) be a data tuple described by the variables or attributes Y1, . . . , Yn, respectively.
Recall that each variable is conditionally independent of its nondescendants, given its parents. This
allows the belief network to provide a complete representation of the joint probability distribution by
the following equation:

P(x1, . . . , xn) =
n∏

i=1

P(xi |Parents(Yi)), (7.4)

where P(x1, . . . , xn) is the probability of a particular combination of values of X, and the values for
P(xi |Parents(Yi)) correspond to the entries in the CPT for attribute Yi .

A node within the belief network can be selected as an “output” node, representing a class label
attribute. There may be more than one output node. Various algorithms for inference and learning can
be applied to the network. Rather than returning a single class label, the classification process can return
a probability distribution that gives the probability of each class. Belief networks can be used to answer
probability of evidence queries (e.g., what is the probability that an individual will have LungCancer,
given that they have both PositiveXRay and Dyspnea?) and most probable explanation queries (e.g.,
which group of the population is most likely to have both PositiveXRay and Dyspnea?).
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Belief networks have been used to model a number of well-known problems. One example is ge-
netic linkage analysis (e.g., the mapping of genes onto a chromosome). By casting the gene linkage
problem in terms of inference on Bayesian networks, and using efficient algorithms, the scalability of
such analysis has advanced considerably. Other applications that have benefited from the use of belief
networks include computer vision (e.g., image restoration and stereo vision), document and text anal-
ysis, decision-support systems, financial fraud detection, and sensitivity analysis. The ease with which
many applications can be reduced to Bayesian network inference is advantageous in that it curbs the
need to invent specialized algorithms for each such application.

7.2.2 Training Bayesian belief networks
“How does a Bayesian belief network learn?” In the learning or training of a belief network, a number
of scenarios are possible. The network topology (or “layout” of nodes and arcs) may be constructed
by human experts or inferred from the data. The network variables may be observable or hidden in all
or some of the training tuples. The hidden data case is also referred to as missing values or incomplete
data.

Several algorithms exist for learning the network topology from the training data given observable
variables. The problem is one of discrete optimization. For solutions, please see the bibliographic notes
at the end of this chapter. Human experts usually have a good grasp of the direct conditional depen-
dencies that hold in the domain under analysis, which helps in network design. Experts must specify
conditional probabilities for the nodes that participate in direct dependencies. These probabilities can
then be used to compute the remaining probability values.

If the network topology is known and the variables are observable, then training the network is
straightforward. It consists of computing the CPT entries, as is similarly done when computing the
probabilities involved in naïve Bayesian classification.

When the network topology is given and some of the variables are hidden, there are various methods
to choose from for training the belief network. We will describe an effective method based on gradient
descent, which was also used to train a logistic regression classifier in Chapter 6. For those without an
advanced math background, the description of a gradient descent method may look rather intimidating
with its calculus-packed formulae. However, packaged software exists to solve these equations. Let us
recap the general idea behind a gradient descent method.

Let D be a training set of data tuples, X1,X2, . . . ,X|D|. Training the belief network means that
we must learn the values of the CPT entries. Let wijk be a CPT entry for the variable Yi = yij having
the parents Ui = uik , where wijk ≡ P(Yi = yij |Ui = uik). For example, if wijk is the upper leftmost
CPT entry of Fig. 7.4(b), then Yi is LungCancer; yij is its value, “yes”; Ui lists the parent nodes of Yi ,
namely, {FamilyHistory, Smoker}; and uik lists the values of the parent nodes, namely, {“yes,” “yes”}.
The wijk are viewed as weights, analogous to the weights in logistic regression. The set of weights
is collectively referred to as W . The weights are initialized to random probability values. A gradient
descent strategy performs greedy hill-descending. At each iteration, the weights are updated and will
eventually converge to a local optimum solution.

A gradient descent strategy is used to search for the optimal values of certain variables that best
minimize an objective function, based on the assumption that each of the possible values is equally
likely. Such a strategy is iterative. It searches for a solution along the negative of the gradient (i.e.,
steepest descent) of an objective function. In our setting, we want to find the set of weights, W , that
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maximize an objective function.2 To start with, the weights are initialized to random probability val-
ues. The gradient ascent method performs greedy hill-climbing in that, at each iteration or step along
the way, the algorithm moves toward what appears to be the best solution at the moment, without
backtracking. The weights are updated at each iteration. Eventually, they converge to a local optimum
solution.

For our problem, we maximize the objective function Pw(D) = ∏|D|
d=1 Pw(Xd). This can be done

by following the gradient of lnPw(D), which makes the problem simpler. (Recall that we have used
the same trick to train a logistic regression classifier in Chapter 6.) Given the network topology and
initialized wijk , the algorithm proceeds as follows:

1. Compute the gradients: For each i, j, k, compute

∂lnPw(D)

∂wijk
=

|D|∑

d=1

∂ ln(P (Yi = yij ,Ui = uik|Xd))

∂wijk
. (7.5)

The probability on the right side of Eq. (7.5) is to be calculated for each training tuple, Xd , in D. For
brevity, let’s refer to this probability simply as p. When the variables represented by Yi and Ui are
hidden for some Xd , the corresponding probability p can be computed from the observed variables
of the tuple using standard algorithms for Bayesian network inference such as those available in the
commercial software package HUGIN (http://www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are updated by

wijk ← wijk + η
∂lnPw(D)

∂wijk
, (7.6)

where η is the learning rate representing the step size, and ∂lnPw(D)
∂wijk

is computed from Eq. (7.5).
The learning rate is set to a small constant and helps with convergence.

3. Renormalize the weights: Because the weights wijk are probability values, they must be between
0.0 and 1.0, and

∑
j wijk must equal 1 for all i, k. These criteria are achieved by renormalizing the

weights after they have been updated by Eq. (7.6).

Algorithms that follow this learning form are called adaptive probabilistic networks. Other methods
for training belief networks are referenced in the bibliographic notes at the end of this chapter. Belief
networks could be computationally intensive. Because belief networks provide explicit representations
of causal structure, a human expert can provide prior knowledge to the training process in the form of
network topology or conditional probability values. This can significantly improve the learning speed.

7.3 Support vector machines
In this section, we study support vector machines (SVMs), a method for the classification of both
linear and nonlinear data. In a nutshell, an SVM is an algorithm that works as follows. It uses a nonlinear

2 In order to apply gradient descent strategy to maximize, instead of minimize, an objective function, we actually do gradient
ascent where we update the current solution along the direction of the gradient (i.e., gradient ascent).

http://www.hugin.dk
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mapping to transform the original training data into a higher-dimensional space. Within this new space,
it searches for the linear optimal separating hyperplane (i.e., a “decision boundary” separating the tuples
of one class from another). With an appropriate nonlinear mapping to a sufficiently high-dimensional
space, data from two classes can always be separated by a hyperplane. The SVM finds this hyperplane
using support vectors (“essential” training tuples) and margins (defined by the support vectors). We
will delve more into these new concepts later.

“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first paper on sup-
port vector machines was presented in 1992 by Vladimir Vapnik and colleagues Bernhard Boser and
Isabelle Guyon, even though the groundwork for SVMs has been around since the 1960s (including
early work by Vapnik and Alexei Chervonenkis on statistical learning theory). Although the training of
even the fastest SVMs could be slow, they are highly accurate, owing to their ability to model complex
nonlinear decision boundaries. They are much less prone to overfitting than other methods. The sup-
port vectors also provide a compact description of the learned model. SVMs can be used for numeric
prediction and classification. They have been applied to a number of areas, including handwritten digit
recognition, object recognition, emotion recognition, and speaker identification, as well as benchmark
time-series prediction tasks.

7.3.1 Linear support vector machines
To explain the mystery of SVMs, let’s first look at the simplest case—a two-class problem where the
classes are linearly separable. Let the data set D be given as (X1, y1), (X2, y2), . . ., (X|D|, y|D|), where
Xi is the set of training tuples with associated class labels, yi . Each yi can take one of two values, either
+1 or −1 (i.e., yi ∈ {+1,−1}), corresponding to the classes buys_computer = yes and buys_computer
= no, respectively. To aid in visualization, let’s consider an example based on two input attributes, A1
and A2, as shown in Fig. 7.5. From the graph, we see that the 2-D data are linearly separable (or
“linear” for short), because a straight line can be drawn to separate all the tuples of class +1 from all
the tuples of class −1.

There are an infinite number of separating lines that could be drawn. We want to find the “best” one,
that is, one that (we hope) will have the minimum classification error on previously unseen tuples. How
can we find this best line? Note that if our data were 3-D (i.e., with three attributes), we would want to
find the best separating plane. Generalizing to n dimensions, we want to find the best hyperplane. We
will use “hyperplane” to refer to the decision boundary that we are seeking, regardless of the number
of input attributes.

An SVM approaches this problem by searching for the maximum margin hyperplane. Consider
Fig. 7.6, which shows two possible separating hyperplanes and their associated margins. Before we get
into the definition of margins, let’s take an intuitive look at this figure. Both hyperplanes can correctly
classify all the given data tuples. Intuitively, however, we expect the hyperplane with the larger margin
to be more accurate at classifying future data tuples than the hyperplane with the smaller margin. This
is why (during the learning or training phase) the SVM searches for the hyperplane with the largest
margin, that is, the maximum marginal hyperplane (MMH). The associated margin gives the largest
separation between classes.

Getting to an informal definition of margin, we can say that the shortest distance from a hyperplane
to one side of its margin is equal to the shortest distance from the hyperplane to the other side of its
margin, where the “sides” of the margin are parallel to the hyperplane. When dealing with the MMH,
this distance is, in fact, the shortest distance from the MMH to the closest training tuple of either class.
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FIGURE 7.5

The 2-D training data that are linearly separable. There are an infinite number of possible separating hyperplanes or
“decision boundaries,” some of which are shown here as dashed lines. Which one is best?

A separating hyperplane is essentially a linear classifier. Similar to other linear classifiers (such as
perceptron, logistic regression) that were introduced in Chapter 7, it can be written as

W · X + b = 0, (7.7)

where W is a weight vector, namely, W = {w1,w2, . . . ,wn}; n is the number of attributes; and b is a
scalar, often referred to as a bias. To aid in visualization, let’s consider two input attributes, A1 and
A2, as in Fig. 7.6(b). Training tuples are 2-D (e.g., X = (x1, x2)), where x1 and x2 are the values of
attributes A1 and A2, respectively, for X. Eq. (7.7) can be written as

b + w1x1 + w2x2 = 0. (7.8)

Thus any point that lies above the separating hyperplane satisfies

b + w1x1 + w2x2 > 0. (7.9)

Similarly, any point that lies below the separating hyperplane satisfies

b + w1x1 + w2x2 < 0. (7.10)
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FIGURE 7.6

Here we see just two possible separating hyperplanes and their associated margins. Which one is better? The one
with the larger margin (b) should have greater generalization accuracy.

The weights can be adjusted so that the hyperplanes defining the “sides” of the margin can be written
as

H1 : b + w1x1 + w2x2 ≥ 1 for yi = +1, (7.11)

H2 : b + w1x1 + w2x2 ≤ −1 for yi = −1. (7.12)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls on or below H2
belongs to class −1. Combining the two inequalities of Eqs. (7.11) and (7.12), we get

yi(b + w1x1 + w2x2) ≥ 1, ∀i. (7.13)

Any training tuples that fall on hyperplanes H1 or H2 (i.e., yi(b + w1x1 + w2x2) = 1) are called
support vectors. That is, they are equally close to the (separating) MMH. In Fig. 7.7, the support
vectors are shown encircled with a thicker border. Essentially, the support vectors are the most difficult
tuples to classify and give the most information regarding classification.

From this, we can obtain a formula for the size of the maximal margin. The distance from the
separating hyperplane to any point on H1 is 1

||W || , where ||W || is the Euclidean norm of W , that is,
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FIGURE 7.7

Support vectors. The SVM finds the maximum margin separating hyperplane, that is, the one with maximum dis-
tance between the nearest training tuples. The support vectors are shown with a thicker border.

√
W · W .3 By definition, this is equal to the distance from any point on H2 to the separating hyperplane.

Therefore the maximal margin is 2
||W || . This suggests that we should minimize ‖W‖2 in order to make

the margin as large as possible. Notice that if the tuples are in n dimensional space, Eq. (7.13) becomes
yi(W′Xi + b)) ≥ 1. Putting it together, we have the following mathematical formulation of SVM:

min ‖W‖2,

s.t. yi(W′Xi + b) ≥ 1, ∀i. (7.14)

The intuition of the above formulation is that we want to find a linear classifier (i.e., hyperplane),
such that (1) its margin is as large as possible (i.e., min‖W‖2), and (2) each training tuple is correctly
classified (i.e., yi(W′Xi + b)) ≥ 1, ∀i). The corresponding classifier is often called hard-margin linear
SVM.

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy math tricks,” we
can rewrite Eq. (7.14) so that it becomes what is known as a (convex) quadratic programming problem.
Such fancy math tricks are beyond the scope of this book. Advanced readers may be interested to
note that the tricks involve rewriting Eq. (7.14) as its dual form using Lagrangian formulation and
then solving for the solution using Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the
bibliographic notes at the end of this chapter (Section 7.10).

If the data are relatively small (say, with a few thousand training tuples), any optimization software
package for solving convex quadratic programming problems can then be used to find the support
vectors and MMH. For larger data, special and more efficient algorithms for training SVMs can be

3 If W = {w1,w2, . . . ,wn}, then
√

W · W =
√

w2
1 + w2

2 + · · · + w2
n.
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used instead, the details of which exceed the scope of this book. Once we’ve found the support vectors
and MMH (note that the support vectors define the MMH!), we have a trained support vector machine.
The MMH is a linear class boundary, and so the corresponding SVM can be used to classify linearly
separable data.

“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e., new) tuples?”
Based on the Lagrangian formulation mentioned before, the MMH can be rewritten as the decision
boundary

d(X) =
l∑

i=1

yiαiX
′Xi + b, (7.15)

where yi is the class label of support vector Xi ; X is a test tuple and ′ denotes the transpose of a
vector; αi and b are numeric parameters that were determined automatically by the optimization or
SVM algorithm noted before; and l is the number of support vectors, which is often much smaller than
the total number of training tuples. Interested readers may note that the αi are Lagrangian multipliers.
For linearly separable data, the support vectors are a subset of the actual training tuples. Slight twist
regarding this when dealing with nonlinearly separable data, as we shall see in the following.

Given a test tuple, X, we plug it into Eq. (7.15), and then check to see the sign of the result. This
tells us on which side of the hyperplane the test tuple falls. If the sign is positive, then X falls above the
MMH, and so the SVM predicts that X belongs to class +1 (representing buys_computer = yes, in our
case). If the sign is negative, then X falls below the MMH and the class prediction is −1 (representing
buys_computer = no).

Notice that the Lagrangian formulation of our problem Eq. (7.15) contains a dot product between
support vector Xi and test tuple X. This will prove very useful for finding the MMH and support
vectors of a nonlinear SVM when the given data are linearly inseparable, as described further in the
next section. However, before that, let’s briefly introduce how we can modify the formulation of hard-
margin linear SVM (Eq. (7.14)) for the nonlinear case. That is, we still wish to find a linear classifier
(i.e. a hyperplane) when the training tuples are linearly inseparable. Here, the trick is that we allow some
training tuples to be mis-classified. To be specific, we can introduce a nonnegative slack variable ξi ≥ 0
for each training tuple, Xi . If ξi = 0, it means that the corresponding tuple Xi is correctly classified
by the hyperplane (i.e., yi(W′Xi + b) ≥ 1). In other words, a training example with ξi = 0 is just like
the one in the hard-margin linear SVM. However, if ξi > 0, it means that the tuple Xi is incorrectly
classified by the hyperplane and its magnitude |ξ | indicates how far the training tuple is away from its
corresponding side (i.e., H1 for a positive training example, and H2 for a negative training example).
See Fig. 7.8(a) for an illustration.

Then we have the following alternative mathematical formulation of SVM. The corresponding clas-
sifier is often called soft-margin linear SVM. Different from hard-margin linear SVM, our new objective
function has two terms, including (1) ‖W‖2, which measures the size of margin (i.e., the smaller ‖W‖2,
the larger margin), and (2) the sum of all slack variables

∑N
i=1 ξi , which measures the (approximate)

number of incorrectly classified training tuples (i.e., the training error). In Eq. (7.16), N is the total
number of training tuples and C > 0 is a user-tuned parameter that balances the size of margin and the
training error. Note that we can use the same optimization technique (i.e., convex quadratic program-
ming) to solve Eq. (7.16) as for hard-margin linear SVM. Likewise, the resulting soft-margin linear
classifier uses the same equation (Eq. (7.15)) to classify a test tuple.
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FIGURE 7.8

A simple 2-D case showing linearly inseparable data, where each tuple is represented by two attributes (x1 and x2).
Unlike the linearly separable data of Fig. 7.5, here it is not possible to draw a straight line to perfectly separate the
two classes. We could use a soft-margin linear SVM, with the help of slack variables (ε1 and ε2), to produce a linear
decision boundary at the expense of two training tuples being mis-classified (a). Alternatively, we could seek for a
nonlinear decision boundary (b).

min ‖W‖2 + C

N∑

i=1

ξi ,

s.t. yi(W′Xi + b) ≥ 1 − ξi , ∀i. (7.16)

We end this section with two important things to note. The complexity of the learned classifier is
characterized by the number of support vectors rather than the dimensionality of the data. Hence SVMs
tend to be less prone to overfitting than some other methods. The support vectors are the essential or
critical training tuples—they lie closest to the decision boundary (MMH). If all other training tuples
were removed and training were repeated, the same separating hyperplane would be found. Further-
more, the number of support vectors found can be used to compute an (upper) bound on the expected
error rate of the SVM classifier, which is independent of the data dimensionality. An SVM with a small
number of support vectors can have good generalization, even when the dimensionality of the data is
high.

7.3.2 Nonlinear support vector machines
In Section 7.3.1, we learned about hard-margin linear SVMs for classifying linearly separable data. We
also learned about soft-margin linear SVMs when the training data are linearly inseparable, by allowing
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a small fraction of training tuples to be mis-classified. However, what if we want a “better” classifier
to avoid such mis-classifications? For linearly inseparable cases (e.g., Fig. 7.8), no straight line can be
found that would perfectly separate the classes.

The good news is that the approaches described for linear SVMs with both hard-margin and soft
margin can be extended to create nonlinear SVMs for the classification of linearly inseparable data
(also called nonlinearly separable data, or nonlinear data for short). Such SVMs are capable of finding
nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear SVM by
extending the approach for linear SVMs as follows. There are two main steps. In the first step, we
transform the original input data into a higher dimensional space using a nonlinear mapping. Several
common nonlinear mappings can be used in this step, as we will further describe next. Once the data
have been transformed into the new higher dimensional space, the second step searches for a linear
separating hyperplane in the new space. We again end up with an optimization problem that can be
solved using the linear SVM formulation (i.e., convex quadratic programming). The maximal margin
hyperplane found in the new space corresponds to a nonlinear separating hypersurface in the original
space.

Example 7.2. Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into a 6-D space,
Z, using the mappings φ1(X) = x1, φ2(X) = x2, φ3(X) = x3, φ4(X) = (x1)

2, φ5(X) = x1x2, and
φ6(X) = x1x3. A decision hyperplane in the new space is d(Z) = W ′Z + b, where W and Z are vec-
tors. This is linear with respect to the new features Z. We solve for W and b and then substitute back
so that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear second-order
polynomial in the original 3-D input space:

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)
2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b.

However, there are some problems. First, how do we choose the nonlinear mapping to a higher
dimensional space? Second, the computation involved will be costly. Refer to Eq. (7.15) for the classi-
fication of a test tuple, X. Given the test tuple, we have to compute its dot product with every one of the
support vectors.4 In training, we have to compute a similar dot product for each pair of training tuples
in order to find the MMH. This is especially expensive. Hence, the dot product computation required is
very heavy and costly. We need another trick!

Luckily, we can use another math trick. It so happens that in solving the quadratic optimization
problem of the linear SVM (i.e., when searching for a linear SVM in the new higher dimensional
space), the training tuples appear only in the form of dot products, φ(Xi ) · φ(Xj ), where φ(X) is
simply the nonlinear mapping function applied to transform the training tuples. Instead of computing
the dot product on the transformed data tuples, it turns out that it is mathematically equivalent to instead

4 The dot product of two vectors, X = (x1, x2, . . . , xn) and Xi = (xi1, xi2, . . . , xin) is x1xi1 + x2xi2 + · · · + xnxin. Note that
this involves one multiplication and one addition for each of the n dimensions.
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applying a kernel function, K(Xi , Xj ), to the original input data. That is,

K(Xi ,Xj ) = φ(Xi ) · φ(Xj ). (7.17)

In other words, everywhere that φ(Xi ) · φ(Xj ) appears in the training algorithm, we can replace it with
K(Xi ,Xj ). In this way, all calculations are made in the original input space, which is of potentially
much lower dimensionality! We can safely avoid the mapping—it turns out that we don’t even have to
know what the mapping is! We will talk more later about what kinds of functions can be used as kernel
functions for this problem. After applying this trick, we can then proceed to find a maximal margin
separating hyperplane. The procedure is similar to that described in Section 7.3.1.

Example 7.3. Fig. 7.9(a) shows a training set with four positive tuples and four negative tuples. In
the original feature space, each tuple is represented by two features (x1 and x2), where the training
set is linearly inseparable (Fig. 7.9(b)). If we transform the original feature space into a 3-D space:
+1 = x2

1 , +2 = x2
2 and +3 =

√
2x1x2. In the transformed feature space (Fig. 7.9(c)), the positive tuples

are linearly separable from the negative tuples. In other words, we can use a hyperplane +1 + +2 = 2.5
to perfectly separate all positive tuples from all negative tuples. The hyperplane in the transformed
feature space is equivalent to a nonlinear decision boundary in the original 2-D space x2

1 + x2
2 = 2.5.

Note that the dot product of two tuples (Xi and Xj ) in the transformed feature space can be computed
directly from the original feature space: +(Xi) · +(Xi) = (Xi · Xj)

2.

“What are some of the kernel functions that could be used?” Properties of the kinds of kernel func-
tions that could be used to replace the dot product have been studied. Three admissible kernel functions
are

Polynomial kernel of degree h: K(Xi ,Xj ) = (Xi · Xj + 1)h,

Gaussian radial basis function kernel: K(Xi ,Xj ) = e−‖Xi−Xj ‖2/2σ 2
,

Sigmoid kernel: K(Xi ,Xj ) = tanh(κXi · Xj − δ).

Each of these results in a different nonlinear classifier in (the original) input space. There are no
golden rules for determining which admissible kernel will result in the most accurate SVM. In practice,
the kernel chosen does not generally make a large difference in resulting accuracy.

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) classification. SVM
classifiers can be combined for the multiclass case. See Section 7.7.1 for some strategies, such as
training one classifier per class and the use of error-correcting codes.

A major research goal regarding SVMs is to improve the speed in training and testing so that
SVMs may become a more feasible option for very large data sets (e.g., millions of support vectors).
A very efficient strategy is to train SVMs in its prime form directly (e.g., Eqs. (7.14) and (7.16)) based
on stochastic subgradient descent. Recall that in Chapter 7, we have used a similar technique called
stochastic gradient descent to address the scalability issue of logistic regression classifier. Other issues
include (1) determining the best kernel for a given data set and finding more efficient methods for the
multiclass case, (2) making the SVMs more robust to the noise in the training data by using alternative
norms of the weight vector W (e.g., l1 norm SVM, l2,1 norm SVM, capped lp norm SVM). A key idea
behind nonlinear SVM is the kernel trick, where we find a nonlinear classifier without explicitly con-
structing the nonlinear mapping. The kernel trick has been broadly applied to other data mining tasks,
including regression, clustering, and so on.
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FIGURE 7.9

An example of kernel trick. (a) Training tuples in the original 2-D feature space and the transformed 3-D space
(shaded). Training tuples in the original feature space are linearly inseparable (b), but become linearly separable in
the transformed feature space (c). A linear decision boundary (i.e., a hyperplane) in the transformed feature space
is equivalent to a nonlinear decision boundary in the original feature space. The dot product of two tuples in the
transformed feature space can be computed directly from the original feature space.

7.4 Rule-based and pattern-based classification
In this section, we look at rule-based and pattern-based classifiers. For the former, the learned model
is represented as a set of IF-THEN rules. We first examine how such rules are used for classifica-
tion (Section 7.4.1). We then study ways in which they can be generated, either from a decision tree
(Section 7.4.2) or directly from the training data using a sequential covering algorithm (Section 7.4.3).
Based on that, we introduce pattern-based classifiers, where frequent patterns are used for classification.
Section 7.4.4 explores associative classification, where association rules are generated from frequent
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patterns and used for classification. The general idea is that we can search for strong associations
between frequent patterns (conjunctions of attribute–value pairs) and class labels. Associative classifi-
cation is a form of rule-based classifier, in that we often organize the mined association rule to form
a rule-based classifier. Section 7.4.5 explores discriminative frequent pattern–based classification,
where frequent patterns serve as combined features, which are considered in addition to single features
when building a classification model. Because frequent patterns explore highly confident associations
among multiple attributes, frequent pattern–based classification may overcome some constraints intro-
duced by decision tree induction, which often only considers one attribute at a time. Studies have shown
many frequent pattern–based classification methods to have greater accuracy and scalability than some
traditional classification methods such as C4.5.

7.4.1 Using IF-THEN rules for classification
Rules are a good way of representing information or bits of knowledge. A rule-based classifier uses a
set of IF-THEN rules for classification. An IF-THEN rule is an expression of the form

IF condition THEN conclusion.

An example is rule R1,

R1: IF age = youth AND student = yes THEN buys_computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition. The “THEN”
part (or right side) is the rule consequent. In the rule antecedent, the condition consists of one or more
attribute tests (e.g., age = youth and student = yes) that are logically ANDed. The rule’s consequent
contains a class prediction (in this case, we are predicting whether a customer will buy a computer). R1
can also be written as

R1: (age = youth) ∧ (student = yes) ⇒ (buys_computer = yes).

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given tuple, we say
that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that the rule covers the
tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-labeled data
set, D, let ncovers be the number of tuples covered by R; ncorrect be the number of tuples correctly
classified by R; and |D| be the number of tuples in D. We can define the coverage and accuracy of R

as

coverage(R) = ncovers

|D| (7.18)

accuracy(R) = ncorrect

ncovers
. (7.19)

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., their attribute
values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the tuples that it covers and
see what percentage of them the rule can correctly classify.
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Example 7.4. Rule accuracy and coverage. Let’s go back to our data in Section 6.2, Table 6.1. These
are class-labeled tuples from the AllElectronics customer database. Our task is to predict whether a
customer will buy a computer. Consider rule R1, which covers 2 of the 14 tuples. It can correctly
classify both tuples. Therefore coverage(R1) = 2/14 = 14.28% and accuracy(R1) = 2/2 = 100%.

Let’s see how we can use rule-based classification to predict the class label of a given tuple, X. If a
rule is satisfied by X, the rule is said to be triggered. For example, suppose we have

X = (age = youth, income = medium, student = yes, credit_rating = fair).

We would like to classify X according to buys_computer. X satisfies R1, which triggers the rule.
If R1 is the only rule satisfied, then the rule fires by returning the class prediction for X. Note that

triggering does not always mean firing because there may be more than one rule that is satisfied! If
more than one rule is triggered, we have a potential problem. What if each of them specifies a different
class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict resolution strat-
egy to figure out which rule gets to fire and assign its class prediction to X. There are many possible
strategies. We look at two, namely size ordering and rule ordering.

The size ordering scheme assigns the highest priority to the triggering rule that has the “toughest”
requirements, where toughness is measured by the rule antecedent size. That is, the triggering rule with
the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be class-based or
rule-based. With class-based ordering, the classes are sorted in order of decreasing “importance” such
as by decreasing order of prevalence. That is, all the rules for the most prevalent (or most frequent) class
come first, the rules for the next prevalent class come next, and so on. Alternatively, they may be sorted
based on the misclassification cost per class. Within each class, the rules are not ordered—they don’t
have to be because they all predict the same class (and so there can be no class conflict!).

With rule-based ordering, the rules are organized into one long priority list, according to some
measure of rule quality, such as accuracy, coverage, size (number of attribute tests in the rule an-
tecedent), or based on advice from domain experts. When rule ordering is used, the rule set is known
as a decision list. With rule ordering, the triggering rule that appears earliest in the list has the high-
est priority, and so it gets to fire its class prediction. Any other rule that satisfies X is ignored. Most
rule-based classification systems use a class-based rule-ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be applied in any order when
classifying a tuple. That is, a disjunction (logical OR) is implied between different rules. Each rule
represents a standalone nugget or piece of knowledge. This is in contrast to the rule ordering (decision
list) scheme for which rules must be applied in the prescribed order so as to avoid conflicts. Each rule in
a decision list implies the negation of the rules that come before it in the list. Hence rules in a decision
list are more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario where there is no
rule satisfied by X. How, then, can we determine the class label of X? In this case, a fallback or default
rule can be set up to specify a default class, based on a training set. This may be the class in majority
or the majority class of the tuples that were not covered by any rule. The default rule is evaluated at the
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end, if and only if no other rule covers X. The condition in the default rule is empty. In this way, the
rule fires when no other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

7.4.2 Rule extraction from a decision tree
In Section 6.2, we learned how to build a decision tree classifier from a set of training data. Decision
tree classifiers are a popular method of classification—it is easy to understand how decision trees work
and they are known for their accuracy. Decision trees can become large and difficult to interpret. In this
subsection, we look at how to build a rule-based classifier by extracting IF-THEN rules from a decision
tree. In comparison with a decision tree, the IF-THEN rules may be easier for humans to understand,
particularly if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root to a leaf node.
Each splitting criterion along a given path is logically ANDed to form the rule antecedent (“IF” part).
The leaf node holds the class prediction, forming the rule consequent (“THEN” part).

Example 7.5. Extracting classification rules from a decision tree. The decision tree of Fig. 6.2 can
be converted to classification IF-THEN rules by tracing the path from the root node to each leaf node
in the tree. The rules extracted from Fig. 6.2 are as follows:

R1 : IF age = youth AND student = no THEN buys_computer = no

R2 : IF age = youth AND student = yes THEN buys_computer = yes

R3 : IF age = middle_aged THEN buys_computer = yes

R4 : IF age = senior AND credit_rating = excellent THEN buys_computer = yes

R5 : IF age = senior AND credit_rating = fair THEN buys_computer = no.

A disjunction (logical OR) is implied between each of the extracted rules. Because the rules are
extracted directly from the tree, they are mutually exclusive and exhaustive. Mutually exclusive means
that we cannot have rule conflicts here because no two rules will be triggered for the same tuple. (We
have one rule per leaf, and any tuple can map to only one leaf.) Exhaustive means there is one rule
for each possible attribute–value combination, so that this set of rules does not require a default rule.
Therefore the order of the rules does not matter—they are unordered.

Since we end up with one rule per leaf, the set of extracted rules is not much simpler than the
corresponding decision tree! The extracted rules may be even more difficult to interpret than the original
trees in some cases. As an example, Fig. 6.7 shows decision trees that suffer from subtree repetition
and replication. The resulting set of rules extracted can be large and difficult to follow, because some
of the attribute tests may be irrelevant or redundant. So, the plot thickens. Although it is easy to extract
rules from a decision tree, we may need to do some more work by pruning the resulting rule set.

“How can we prune the rule set?” For a given rule antecedent, any condition that does not improve
the estimated accuracy of the rule can be pruned (i.e., removed), thereby generalizing the rule. C4.5
extracts rules from an unpruned tree, and then prunes the rules using a pessimistic approach similar to
its tree pruning method. The training tuples and their associated class labels are used to estimate rule
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accuracy. However, because this would result in an optimistic estimate, alternatively, the estimate is
adjusted to compensate for the bias, resulting in a pessimistic estimate. In addition, any rule that does
not contribute to the overall accuracy of the entire rule set can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer be mutually exclusive
and exhaustive. For conflict resolution, C4.5 adopts a class-based ordering scheme. It groups together
all rules for a single class, and then determines a ranking of these class rule sets. Within a rule set, the
rules are not ordered. C4.5 orders the class rule sets to minimize the number of false-positive errors
(i.e., where a rule predicts a class, C, but the actual class is not C). The class rule set with the least
number of false positives is examined first. Once pruning is complete, a final check is done to remove
any duplicates. When choosing a default class, C4.5 does not choose the majority class, because this
class will likely have many rules for its tuples. Instead, it selects the class that contains the most training
tuples that were not covered by any rule.

7.4.3 Rule induction using a sequential covering algorithm
IF-THEN rules can be extracted directly from the training data (i.e., without having to generate a
decision tree first) using a sequential covering algorithm. The name comes from the notion that the
rules are learned sequentially (one at a time), where each rule for a given class will ideally cover many
of the class’s tuples (and hopefully none of the tuples of other classes). Sequential covering algorithms
are the most widely used approach to mining disjunctive sets of classification rules and form the topic
of this subsection.

There are many sequential covering algorithms. Popular variations include AQ, CN2, and the more
recent RIPPER. The general strategy is as follows. Rules are learned one at a time. Each time a rule is
learned, the tuples covered by the rule are removed, and the process repeats on the remaining tuples.
This sequential learning of rules is in contrast to decision tree induction. Because the path to each leaf
in a decision tree corresponds to a rule, we can consider decision tree induction as learning a set of
rules simultaneously.

A basic sequential covering algorithm is shown in Fig. 7.10. Here, rules are learned for one class
at a time. Ideally, when learning a rule for a class, C, we would like the rule to cover all (or as many
as possible) of the training tuples of class C and none (or as few as possible) of the tuples from other
classes. In this way, the rules learned should be of high accuracy. The rules need not necessarily be of
high coverage. This is because we can have more than one rule for a class, so that different rules may
cover different tuples within the same class. The process continues until the terminating condition is
met, such as when there are no more training tuples or the quality of a rule returned is below a user-
specified threshold. The Learn_One_Rule procedure finds the “best” rule for the current class, given
the current set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner (Fig. 7.11).
We can think of this as a beam search, where we start off with an empty rule and then gradually keep
appending attribute tests to it. We append by adding the attribute test as a logical conjunction to the
existing condition of the rule antecedent. Suppose our training set, D, consists of loan application data.
Attributes regarding each applicant include their age, income, education level, residence, credit rating,
and the term of the loan. The classifying attribute is loan_decision, which indicates whether a loan is
accepted (considered safe) or rejected (considered risky). To learn a rule for the class “accept,” we start
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Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.

Input:

• D, a data set of class-labeled tuples;
• Att_vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.
Method:

(1) Rule_set = {}; // initial set of rules learned is empty
(2) for each class c do
(3) repeat
(4) Rule = Learn_One_Rule(D,Att_vals, c);
(5) remove tuples covered by Rule from D;
(6) Rule_set = Rule_set + Rule; // add new rule to rule set
(7) until terminating condition;
(8) endfor
(9) return Rule_Set ;

FIGURE 7.10

Basic sequential covering algorithm.

FIGURE 7.11

A general-to-specific search through rule space.

off with the most general rule possible, that is, the condition of the rule antecedent is empty. The rule is

IF THEN loan_decision = accept.
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We then consider each possible attribute test that may be added to the rule. These can be derived
from the parameter Att_vals, which contains a list of attributes with their associated values. For ex-
ample, for an attribute–value pair (att, val), we can consider attribute tests such as att = val, att ≤
val, att > val, and so on. Typically, the training data will contain many attributes, each of which may
have several possible values. Finding an optimal rule set becomes computationally explosive. Instead,
Learn_One_Rule adopts a greedy depth-first strategy. Each time it is faced with adding a new at-
tribute test (conjunction) to the current rule, it picks the one that improves the rule quality most, based
on the training samples. We will say more about rule quality measures in a minute. For now, let’s say
we use rule accuracy as our quality measure. Getting back to our example with Fig. 7.11, suppose
Learn_One_Rule finds that the attribute test income = high best improves the accuracy of our current
(empty) rule. We append it to the condition, so that the current rule becomes

IF income = high THEN loan_decision = accept.

Each time we add an attribute test to a rule, the resulting rule should cover relatively more of the
“accept” tuples. During the next iteration, we again consider the possible attribute tests and end up
selecting credit_rating = excellent. Our current rule grows to become

IF income = high AND credit_rating = excellent THEN loan_decision = accept.

The process repeats, where at each step we continue to greedily grow rules until the resulting rule meets
an acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically add what appears
to be the best choice at the moment. What if we unknowingly made a poor choice along the way? To
lessen the chance of this happening, instead of selecting the best attribute test to append to the current
rule, we can select the best k attribute tests. In this way, we perform a beam search of width k, wherein
we maintain the k best candidates overall at each step, rather than a single best candidate.

Rule quality measures
Learn_One_Rule needs a measure of rule quality. Every time it considers an attribute test, it must
check to see if appending such a test to the current rule’s condition will result in an improved rule.
Accuracy may seem like an obvious choice at first, but consider Example 7.6.

Example 7.6. Choosing between two rules based on accuracy. Consider the two rules as illustrated
in Fig. 7.12. Both are for the class loan_decision = accept. We use “a” to represent the tuples of class
“accept” and “r” for the tuples of class “reject.” Rule R1 correctly classifies 38 of the 40 tuples it
covers. Rule R2 covers only two tuples, which it correctly classifies. Their respective accuracies are
95% and 100%. Thus R2 has greater accuracy than R1, but it is not the better rule because of its small
coverage.

From this example, we see that accuracy on its own is not a reliable estimate of rule quality. Cover-
age on its own is not useful either—for a given class we could have a rule that covers many tuples, most
of which belong to other classes! Thus we seek other measures for evaluating rule quality, which may
integrate aspects of accuracy and coverage. Here we will look at some, namely entropy, another based
on information gain, and a statistical test that considers coverage. For our discussion, suppose we are
learning rules for the class c. Our current rule is R: IF condition THEN class = c. We want to see
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FIGURE 7.12

Rules for the class loan_decision = accept, showing accept (a) and reject (r) tuples.

if logically ANDing a given attribute test to condition would result in a better rule. We call the new
condition, condition′, where R′: IF condition′ THEN class = c is our potential new rule. In other
words, we want to see if R′ is any better than R.

We have already seen entropy in our discussion of the information gain measure used for attribute
selection in decision tree induction. It is also known as the expected information needed to classify a
tuple in data set, D. Here, D is the set of tuples covered by condition′ and pi is the probability of class
Ci in D. The lower the entropy, the better condition′ is. Entropy prefers conditions that cover a large
number of tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL (First-Order Inductive
Learner), a sequential covering algorithm that learns first-order logic rules. Learning first-order rules
is more complex because such rules contain variables, whereas the rules we are concerned with in this
section are propositional (i.e., variable-free).5 In machine learning, the tuples of the class for which we
are learning rules are called positive tuples, whereas the remaining tuples are negative. Let pos and
neg be the number of positive and negative tuples covered by R, respectively. Let pos′ and neg′ be the
number of positive (negative) tuples covered by R′, respectively. FOIL assesses the information gained
by extending condition′ as

FOIL_Gain = pos′ ×
(

log2
pos′

pos′ + neg′ − log2
pos

pos + neg

)
. (7.20)

It favors rules that have high accuracy and cover many positive tuples.
We can also use a statistical test of significance to determine if the apparent effect of a rule is

not attributed to chance but instead indicates a genuine correlation between attribute values and classes.
The test compares the observed distribution among classes of tuples covered by a rule with the expected
distribution that would result if the rule made predictions at random. We want to assess whether any

5 Incidentally, FOIL was also proposed by Quinlan, the father of ID3.
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observed differences between these two distributions may be attributed to chance. We can use the
likelihood ratio statistic,

Likelihood_Ratio = 2
m∑

i=1

fi log
(

fi

ei

)
, (7.21)

where m is the number of classes.
For tuples satisfying the rule, fi is the observed frequency of each class i among the tuples. ei is

what we would expect the frequency of each class i to be if the rule made random predictions. The
statistic has a χ2 distribution with m − 1 degrees of freedom. The higher the likelihood ratio, the more
likely that there is a significant difference in the number of correct predictions made by our rule in
comparison with a “random guesser.” That is, the performance of our rule is not due to chance. The
ratio helps identify rules with insignificant coverage.

CN2 uses entropy together with the likelihood ratio test, while FOIL’s information gain is used by
RIPPER.

Rule pruning
Learn_One_Rule does not employ a test set when evaluating rules. Assessments of rule quality as
described previously are made with tuples from the original training data. These assessments are opti-
mistic because the rules will likely overfit the data. That is, the rules may perform well on the training
data but less well on subsequent unseen data (i.e., test data). To compensate for this, we can prune the
rules. A rule is pruned by removing a conjunction (attribute test). We choose to prune a rule, R, if the
pruned version of R has greater quality, as assessed on an independent set of tuples. As in decision tree
pruning, we refer to this set as a pruning set.

FOIL uses a simple yet effective method. Given a rule, R,

FOIL_Prune(R) = pos − neg
pos + neg

, (7.22)

where pos and neg are the number of positive and negative tuples covered by R, respectively. This
value will increase with the accuracy of R on a pruning set. Therefore if the FOIL_Prune value is
higher for the pruned version of R, then we prune R.

By convention, RIPPER starts with the most recently added conjunction when considering pruning.
Conjunctions are pruned one at a time as long as this results in an improvement.

7.4.4 Associative classification
In this section, you will learn about associative classification. The methods discussed are CBA, CMAR,
and CPAR.

Before we begin, however, let’s look at association rule mining in general. Association rules are
mined in a two-step process consisting of frequent itemset mining followed by rule generation. The
first step searches for patterns of attribute–value pairs that occur repeatedly in a data set, where each
attribute–value pair is considered an item. The resulting attribute–value pairs form frequent itemsets
(also referred to as frequent patterns). The second step analyzes the frequent itemsets to generate associ-
ation rules. All association rules must satisfy certain criteria regarding their “accuracy” (or confidence)
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and the proportion of the data set that they actually represent (referred to as support). For example, the
following is an association rule mined from a data set, D, shown with its confidence and support:

age = youth ∧ credit = OK ⇒ buys_computer = yes

[support = 20%, confidence = 93%], (7.23)

where ∧ represents a logical “AND.” We will say more about confidence and support later.
More formally, let D be a data set of tuples. Each tuple in D is described by n attributes,

A1,A2, . . . ,An, and a class label attribute, Aclass . All continuous attributes are discretized and treated
as categorical (or nominal) attributes. An item, p, is an attribute–value pair of the form (Ai, v), where
Ai is an attribute taking a value, v. A data tuple X = (x1, x2, . . . , xn) satisfies an item, p = (Ai, v), if
and only if xi = v, where xi is the value of the ith attribute of X. Association rules can have any number
of items in the rule antecedent (left side) and any number of items in the rule consequent (right side).
However, when mining association rules for use in classification, we are only interested in association
rules of the form p1 ∧ p2 ∧ . . . pl ⇒ Aclass = C, where the rule antecedent is a conjunction of items,
p1,p2, . . . , pl (l ≤ n), associated with a class label, C. For a given rule, R, the percentage of tuples in
D satisfying the rule antecedent that also has the class label C is called the confidence of R.

From a classification point of view, this is akin to rule accuracy. For example, a confidence of 93%
for Rule in Eq. (7.23) means that 93% of the customers in D who are young and have an OK credit
rating belong to the class buys_computer = yes. The percentage of tuples in D satisfying the rule
antecedent and having class label C is called the support of R. A support of 20% for Rule in Eq. (7.23)
means that 20% of the customers in D are young, have an OK credit rating, and belong to the class
buys_computer = yes.

In general, associative classification consists of the following steps:

1. Mine the data for frequent itemsets, that is, find commonly occurring attribute–value pairs in the
data.

2. Analyze the frequent itemsets to generate association rules per class, which satisfy confidence and
support criteria.

3. Organize the rules to form a rule-based classifier.

Methods of associative classification differ primarily in the approach used for frequent itemset mining
and in how the derived rules are analyzed and used for classification. We now look at some of the
various methods for associative classification.

One of the earliest and simplest algorithms for associative classification is CBA (Classification
Based on Associations). CBA uses an iterative approach to frequent itemset mining, similar to that
described for Apriori in Section 4.2.1, where multiple passes are made over the data and the derived
frequent itemsets are used to generate and test longer itemsets. In general, the number of passes made is
equal to the length of the longest rule found. The complete set of rules satisfying minimum confidence
and minimum support thresholds are found and then analyzed for inclusion in the classifier. CBA uses a
heuristic method to construct the classifier, where the rules are ordered according to decreasing prece-
dence based on their confidence and support. If a set of rules has the same antecedent, then the rule
with the highest confidence is selected to represent the set. When classifying a new tuple, the first rule
satisfying the tuple is used to classify it. The classifier also contains a default rule, having the lowest
precedence, which specifies a default class for any new tuple that is not satisfied by any other rule in
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the classifier. In this way, the set of rules making up the classifier form a decision list. In general, CBA
was empirically found to be more accurate than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from CBA in its strategy for
frequent itemset mining and its construction of the classifier. It also employs several rule pruning strate-
gies with the help of a tree structure for efficient storage and retrieval of rules. CMAR adopts a variant
of the FP-growth algorithm to find the complete set of rules satisfying the minimum confidence and
minimum support thresholds. FP-growth was described in Section 4.2.4. FP-growth uses a tree struc-
ture, called an FP-tree, to register all the frequent itemset information contained in the given data set, D.
This requires only two scans of D. The frequent itemsets are then mined from the FP-tree. CMAR uses
an enhanced FP-tree that maintains the distribution of class labels among tuples satisfying each fre-
quent itemset. In this way, it is able to combine rule generation together with frequent itemset mining
in a single step.

CMAR employs another tree structure to store and retrieve rules efficiently and to prune rules based
on confidence, correlation, and database coverage. Rule pruning strategies are triggered whenever a
rule is inserted into the tree. For example, given two rules, R1 and R2, if the antecedent of R1 is more
general than that of R2 and conf (R1) ≥ conf (R2), then R2 is pruned. The rationale is that highly spe-
cialized rules with low confidence can be pruned if a more generalized version with higher confidence
exists. CMAR also prunes rules for which the rule antecedent and class are not positively correlated,
based on an χ2 test of statistical significance.

“If more than one rule applies, which one do we use?” As a classifier, CMAR operates differently
than CBA. Suppose that we are given a tuple X to classify and that only one rule satisfies or matches
X.6 This case is trivial—we simply assign the rule’s class label. Suppose, instead, that more than one
rule satisfies X. These rules form a set, S. Which rule would we use to determine the class label of
X? CBA would assign the class label of the most confident rule among the rule set, S. CMAR instead
considers multiple rules when making its class prediction. It divides the rules into groups according to
class labels. All rules within a group share the same class label and each group has a distinct class label.

CMAR uses a weighted χ2 measure to find the “strongest” group of rules, based on the statistical
correlation of rules within a group. It then assigns X the class label of the strongest group. In this way
it considers multiple rules, rather than a single rule with highest confidence, when predicting the class
label of a new tuple. In experiments, CMAR had slightly higher average accuracy in comparison with
CBA. Its runtime, scalability, and use of memory were found to be more efficient.

“Is there a way to cut down on the number of rules generated?” CBA and CMAR adopt methods
of frequent itemset mining to generate candidate association rules, which include all conjunctions of
attribute–value pairs (items) satisfying minimum support. These rules are then examined, and a subset is
chosen to represent the classifier. However, such methods generate quite a large number of rules. CPAR
(Classification based on Predictive Association Rules) takes a different approach to rule generation,
based on FOIL (a rule generation algorithm for classification). FOIL builds rules to distinguish positive
tuples (e.g., buys_computer = yes) from negative tuples (e.g., buys_computer = no). For multiclass
problems, FOIL is applied to each class. That is, for a class, C, all tuples of class C are considered
positive tuples, while the rest are considered negative tuples. Rules are generated to distinguish C

tuples from all others. Each time a rule is generated, the positive samples it satisfies (or covers) are

6 If a rule’s antecedent satisfies or matches X, then we say that the rule satisfies X.
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removed until all the positive tuples in the data set are covered. In this way, fewer rules are generated.
CPAR relaxes this step by allowing the covered tuples to remain under consideration, but reducing their
weight. The process is repeated for each class. The resulting rules are merged to form the classifier rule
set.

During classification, CPAR employs a somewhat different multirule strategy than CMAR. If more
than one rule satisfies a new tuple, X, the rules are divided into groups according to class, similar to
CMAR. However, CPAR uses the best k rules of each group to predict the class label of X, based
on expected accuracy. By considering the best k rules rather than all of a group’s rules, it avoids the
influence of lower-ranked rules. CPAR’s accuracy on numerous data sets was shown to be close to that
of CMAR. However, since CPAR generates far fewer rules than CMAR, it shows much better efficiency
with large sets of training data.

In summary, associative classification offers an alternative classification scheme by building rules
based on conjunctions of attribute–value pairs that occur frequently in data.

7.4.5 Discriminative frequent pattern–based classification
From work on associative classification, we see that frequent patterns reflect strong associations be-
tween attribute–value pairs (or items) in data and are useful for classification.

“But just how discriminative are frequent patterns for classification?” Frequent patterns represent
feature combinations. Let’s compare the discriminative power of frequent patterns and single features.
Fig. 7.13 plots the information gain of frequent patterns and single features (i.e., of pattern length 1) for
three UCI data sets.7 The discrimination power of some frequent patterns is higher than that of single
features. Frequent patterns map data to a higher-dimensional space. They capture more underlying
semantics of the data and thus can hold greater expressive power than single features.

“Why not consider frequent patterns as combined features, in addition to single features when build-
ing a classification model?” This notion is the basis of frequent pattern–based classification—the
learning of a classification model in the feature space of single attributes as well as frequent patterns.
In this way, we transfer the original feature space to a larger space. This will likely increase the chance
of including important features.

Let’s get back to our earlier question: How discriminative are frequent patterns? Many of the fre-
quent patterns generated in frequent itemset mining are indiscriminative because they are solely based
on support, without considering predictive power. That is, by definition, a pattern must satisfy a user-
specified minimum support threshold, min_sup, to be considered frequent. For example, if min_sup

is 5%, a pattern is frequent if it occurs in 5% of the data tuples. Consider Fig. 7.14, which plots in-
formation gain vs. pattern frequency (support) for three UCI data sets. A theoretical upper bound on
information gain, which was derived analytically, is also plotted. The figure shows that the discrimina-
tive power (assessed here as information gain) of low-frequency patterns is bounded by a small value.
This is due to the patterns’ limited coverage of the data set. Similarly, the discriminative power of very
high-frequency patterns is also bounded by a small value, which is due to their commonness in the
data. The upper bound of information gain is a function of pattern frequency. These observations can

7 The University of California at Irvine (UCI) archives several large data sets at http://kdd.ics.uci.edu/. These are commonly
used by researchers for the testing and comparison of machine learning and data mining algorithms.

http://kdd.ics.uci.edu/
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FIGURE 7.13

Single feature vs. frequent pattern: Information gain is plotted for single features (patterns of length 1, indicated by
arrows) and frequent patterns (combined features) for three UCI data sets. Source: Adapted from Cheng, Yan, Han,
and Hsu [CYHH07].

be confirmed analytically. Patterns with medium-large supports (e.g., support = 300 in Fig. 7.14(a))
may be discriminative or not. Thus not every frequent pattern is useful.

If we were to add all the frequent patterns to the feature space, the resulting feature space would be
huge. This slows down the model learning process and may also lead to decreased accuracy due to a
form of overfitting in which there are too many features. Many of the patterns may be also redundant.
Therefore, it’s a good idea to apply feature selection to eliminate the less discriminative and redun-
dant frequent patterns as features. The general framework for discriminative frequent pattern–based
classification is as follows.

1. Feature generation: The data, D, are partitioned according to class label. Use frequent itemset
mining to discover frequent patterns in each partition, satisfying minimum support. The collection
of frequent patterns, F , makes up the feature candidates.
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FIGURE 7.14

Information gain vs. pattern frequency (support) for three UCI data sets. A theoretical upper bound on information
gain (IGUpperBound ) is also shown. Source: Adapted from Cheng, Yan, Han, and Hsu [CYHH07].

2. Feature selection: Apply feature selection to F , resulting in FS , the set of selected (more discrim-
inating) frequent patterns. Information gain, Fisher score, or other evaluation measures can be used
for this step. Relevancy checking can also be incorporated into this step to weed out redundant pat-
terns. The data set D is transformed to D′, where the feature space now includes the single features
and the selected frequent patterns, FS . Commonly used feature selection methods were introduced
in Section 7.1.

3. Learning of classification model: A classifier is built on the data set D′. Any learning algorithm
can be used as the classification model.

The general framework is summarized in Fig. 7.15(a), where the discriminative patterns are rep-
resented by dark circles. Although the approach is straightforward, we can encounter a computational
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FIGURE 7.15

A framework for frequent pattern–based classification: (a) a two-step general approach vs. (b) the direct approach of
DDPMine.

bottleneck by having to first find all the frequent patterns and then analyze each one for selection. The
amount of frequent patterns found can be huge due to the explosive number of pattern combinations
between items.

To improve the efficiency of the general framework, consider condensing steps 1 and 2 into just
one step. That is, rather than generating the complete set of frequent patterns, it’s possible to mine only
the highly discriminative ones. This more direct approach is referred to as DDPMine (Direct Discrim-
inative Pattern Mining). The DDPMine algorithm follows this approach, as illustrated in Fig. 7.15(b).
It first transforms the training data into a compact tree structure known as a frequent pattern tree, or
FP-tree (Chapter 4), which holds all of the attribute–value (itemset) association information. It then
searches for discriminative patterns on the tree. The approach is direct in that it avoids generating a
large number of indiscriminative patterns. It incrementally reduces the problem by eliminating training
tuples, thereby progressively shrinking the FP-tree. This further speeds up the mining process.

By choosing to transform the original data to an FP-tree, DDPMine avoids generating redundant
patterns because an FP-tree stores only the closed frequent patterns. By definition, any subpattern, β,
of a closed pattern, α, is redundant with respect to α (Chapter 5). DDPMine directly mines the discrimi-
native patterns and integrates feature selection into the mining framework. The theoretical upper bound
on information gain is used to facilitate a branch-and-bound search, which prunes the search space
significantly. Experimental results show that DDPMine achieves orders of magnitude speedup over the
two-step approach without decline in classification accuracy. DDPMine also outperforms state-of-the-
art associative classification methods in terms of both accuracy and efficiency.

Compared with associative classifiers, DDPMine is able to prune a huge number of nondiscrimi-
native frequent patterns. However, DDPMine might still use hundreds or even thousands of frequent
patterns in the classification model. How can we further reduce the number of patterns to build a more
compact classifier? This will not only speed up the computation but also make the classifier more ex-
plainable to the end users. DPClass (Discriminative Pattern-based Classification) addresses this issue
by combining the strength of two methods, including tree-based classifiers (e.g., decision tree clas-
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sifier, random forest, etc., which were introduced in Section 6.2) and feature selection (e.g., forward
selection, LASSO, etc., which were introduced in Section 7.1). DPClass works as follows. First, it uses
random forest that contains multiple tree-based classifiers. Then, each prefix path from the root of a tree
in random forest to its nonleaf node is treated as a discriminative pattern. Finally, it leverages feature
selection, including forward feature selection and LASSO based method, to select a small subset of
highly discriminative patterns to construct a linear classifier, such as logistic regression classifier or lin-
ear SVMs. The empirical evaluations on a good number of UCI data sets show that DPClass performs
similarly as or better than DDPMine. On the other hand, DPClass uses a significantly less number of
discriminative patterns than DDPMine. Therefore the classifier generated by DPClass is more compact,
making itself faster in test and more explainable to end users.

7.5 Classification with weak supervision
The effectiveness of the classifiers we have introduced so far (e.g., SVMs, logistic regression, k-NN)
largely depends on “strong supervision.” It means that in order to train a highly accurate classifier, we
typically need a large number of high-quality training tuples, and the true class label for each training
tuple is accurately annotated, say by the domain experts. However, what if there is only a small number
of labeled training tuples? Document classification, speech recognition, computer vision, and informa-
tion extraction are just a few examples of applications in which unlabeled data are abundant. Consider
document classification, for example. Suppose we want to build a model to automatically classify text
documents like articles or web pages. In particular, we want the model to distinguish between hockey
and football documents. We have a vast amount of documents available, yet the documents are not
class-labeled. Recall that supervised learning requires a training set, that is, a set of class-labeled data.
To have a human examine and assign a class label to individual documents (to form a training set) is
time consuming and expensive. Speech recognition requires the accurate labeling of speech utterances
by trained linguists. It was reported that 1 minute of speech takes 10 minutes to label, and annotat-
ing phonemes (basic units of sound) can take 400 times as long. Information extraction systems are
trained using labeled documents with detailed annotations. These are obtained by having human ex-
perts highlight items or relations of interest in text such as the names of companies or individuals.
High-level expertise may be required for certain knowledge domains such as gene and disease men-
tions in biomedical information extraction. Clearly, the manual assignment of class labels to prepare a
training set can be extremely costly, time consuming, and tedious. In computer vision, a fundamental
task is to build a highly accurate classifier to automatically recognize various objects (i.e., class labels).
However, some objects (e.g., a new type of dog) might appear only after the classifier has been built. In
other words, there are no training tuples at all for the newly appeared class label. How can the classifier
still recognize the test image of such a new type of dog?

We study five approaches for classification that are suitable for situations where there is only a
limited number or no labeled training tuples. Section 7.5.1 introduces semisupervised classification,
which builds a classifier using both labeled and unlabeled data. Section 7.5.2 presents active learning,
where the learning algorithm carefully selects a few of the unlabeled data tuples and asks a human to
label only those tuples. Section 7.5.3 presents transfer learning, which aims to extract the knowledge
from one or more source classification tasks (e.g., classifying camera reviews) and apply the knowledge
to a target classification task (e.g., classifying TV reviews). Section 7.5.4 studies distant supervision
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whose key idea is to automatically obtain a large number of inexpensive, but potentially noisy labeled
training tuples. Finally, Section 7.5.5 introduces zero-shot learning, which deals with the case there are
no training tuples for certain class labels at all. Each of these strategies can reduce the need to annotate
large amounts of data, resulting in cost and time savings. In comparison to the traditional setting that
requires “strong supervision” (i.e., a large number of high-quality labeled tuples are available to train
the classifier), we collectively refer to these approaches as classification with weak supervision.

Other forms of weak supervision exist. To name a few, crowdsourcing learning aims to train a
classification model with a noisy training set. Here, the class labels are provided by workers on a
crowdsourcing platform (e.g., Amazon Mechanical Turk), where we can often obtain a large amount
of labeled training tuples with a relatively low cost. However, some (or many) labels provided by the
crowdsourcing workers might be wrong. How to infer the true label (i.e., the ground truth) from the
noisy labels is a major concern of crowdsourcing learning. Crowdsourcing learning can be viewed as
a form of weakly supervised learning in that the supervision (i.e., labels) is noisy or inaccurate. In
multi-instance learning, each training tuple (e.g., an image, a document) is called a bag, which consists
of a set of instances (e.g., different regions of an image, different sentences of a document). A bag is
labeled as a positive bag, as long as at least one of its instances is assigned with a positive class label.
A bag is labeled as a negative bag if none of its instances has a positive class label. For example, an
image is labeled as “beach” if at least one of its regions is about beach; and it is labeled as “nonbeach”
if none of its regions is about beach. Given a set of labeled bags, the goal of multi-instance learning
is to train a classifier to predict the label of a test (previously unseen) bag. Multi-instance learning can
be viewed as a form of weakly supervised learning, in that the label (i.e., supervision) is provided at
a coarse granularity (i.e., at the bag level instead of instance level). The label of a bag is also called
group-level label (e.g., a group of regions of an image, a group of sentences of a document).

7.5.1 Semisupervised classification
Semisupervised classification uses both labeled data and unlabeled data to build a classifier. Let Xl =
{(x1, y1), . . . , (xl, yl)} be the set of labeled data and Xu = {xl+1, . . . , xn} be the set of unlabeled data.
Here we describe a few examples of this approach for learning.

Self-training is the simplest form of semisupervised classification. It first builds a classifier using
the labeled data. The classifier then tries to label the unlabeled data. The tuple with the most confident
label prediction is added to the set of labeled data, and the process repeats (Fig. 7.16). Although the
method is easy to understand, a disadvantage is that it may reinforce errors.

Cotraining is another form of semisupervised classification, where two or more classifiers teach
each other. Each learner uses a different and ideally independent set of features for each tuple. Consider
web page data, for example, where attributes relating to the images on the page may be used as one
set of features, whereas attributes relating to the corresponding text constitute another set of features
for the same data. Each set of features (called “a view”) should be sufficient to train a good classifier.
Suppose we split the feature set into two sets and train two classifiers, f1 and f2, where each classifier
is trained on a different set. Then, f1 and f2 are used to predict the class labels for the unlabeled data,
Xu. Each classifier then teaches the other in that the tuple having the most confident prediction from f1
is added to the set of labeled data for f2 (along with its predicted label).

Similarly, the tuple having the most confident prediction from f2 is added to the set of labeled data
for f1. The method is summarized in Fig. 7.16. Cotraining is less sensitive to errors than self-training.



344 Chapter 7 Classification: advanced methods

Self-training

1. Select a learning method such as Bayesian classification. Build the classifier using the labeled data, Xl .
2. Use the classifier to label the unlabeled data, Xu.
3. Select the tuple x ∈ Xu having the highest confidence (most confident prediction). Add it and its predicted label to Xl .
4. Repeat (i.e., retrain the classifier using the augmented set of labeled data).

Cotraining

1. Define two separate nonoverlapping feature sets for the labeled data, Xl .
2. Train two classifiers, f1 and f2, on the labeled data, where f1 is trained using one of the feature sets and f2 is trained using

the other.
3. Classify Xu with f1 and f2 separately.
4. Add the most confident (x, f1(x)) to the set of labeled data used by f2, where x ∈ Xu. Similarly, add the most confident

(x, f2(x)) to the set of labeled data used by f1.
5. Repeat.

FIGURE 7.16

Self-training and cotraining methods of semisupervised classification.

A difficulty is that the assumptions for its usage may not hold true, that is, it may not be possible to
split the features into mutually exclusive and class-conditionally independent sets.

Alternate approaches to semisupervised learning exist. For example, we can model the joint prob-
ability distribution of the features and the labels. For the unlabeled data, the labels can then be treated
as missing data. The EM algorithm (Chapter 9) can be used to maximize the likelihood of the model.
Semisupervised classification methods using support vector machines have also been proposed.

“When does semisupervised classification work?” Generally speaking, there are two commonly
used assumptions behind semisupervised learning. The first assumption is clustering assumption, which
means that data tuples from the same cluster are likely to share the same class label. The clustering
algorithms will be introduced in Chapters 8 and 9. A representative example that utilizes the clustering
assumption is semisupervised support vector machines (S3VMs). Recall that in the standard SVMs
(Section 7.3), we seek a max-margin hyperplane that correctly separates the positive training tuples
from negative tuples with a large margin. In S3VMs, it considers two design objectives, including (1)
seeking a max-margin hyperplane to separate positive tuples from negative ones (which is the same as
standard SVMs) and (2) avoiding to disrupt the clustering structure of unlabeled tuples. For the latter,
this means that we favor a classifier (e.g., a hyperplane) that goes through the low-density region of the
unlabeled tuples. The second commonly used assumption behind semisupervised learning is manifold
assumption. We will not go into the technical details of manifold.8 Simply put, the manifold assumption
in the contexts of classification means that a pair of close tuples are likely to share the same class
label. A representative example that utilizes the manifold assumption is graph-based semisupervised
classification. It works as follows. First, we construct a graph whose nodes are input tuples, including
both labeled and unlabeled tuples, and the edges indicate the local proximity. For example, we can link
each data tuple to its k-nearest neighbors. In the constructed graph, only a small handful of nodes are

8 In mathematical terms, a manifold is a topological space that approximates the Euclidean space in the vicinity of each data
point.
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labeled and the vast majority are unlabeled. The classification method propagates the labels of these
labeled nodes (i.e., tuples) to the unlabeled nodes.

7.5.2 Active learning
Active learning is an iterative type of supervised learning that is suitable for situations where data are
abundant, yet the class labels are scarce or expensive to obtain. The learning algorithm is active in that
it can purposefully query a user (e.g., a human annotator) for labels. The number of tuples used to learn
a concept this way is often much smaller than the number required in typical supervised learning.

“How does active learning work to overcome the labeling bottleneck?” To keep costs down, the
active learner aims to achieve high accuracy using as few labeled instances as possible. Let D be all of
data under consideration. Various strategies exist for active learning on D. Fig. 7.17 illustrates a pool-
based approach to active learning. Suppose that a small subset of D is class-labeled. This set is denoted
L. U is the set of unlabeled data in D. It is also referred to as a pool of unlabeled data. An active learner
begins with L as the initial training set. It then uses a querying function to carefully select one or more
data samples from U and requests labels for them from an oracle (e.g., a human annotator). The newly
labeled samples are added to L, which the learner then uses in a standard supervised way. The process
repeats. The goal of active learning is to achieve high accuracy using as few labeled tuples as possible.
Active learning algorithms are typically evaluated with the use of learning curves, which plot accuracy
as a function of the number of instances queried.

Most of the active learning research focuses on how to choose the data tuples to be queried. Sev-
eral frameworks have been proposed. Uncertainty sampling is the most common strategy, where the
active learner chooses to query the tuples that it is the least certain how to label. Query-by-committee is

FIGURE 7.17

The pool-based active learning cycle. Source: From Settles [Set10], Burr Settles Computer Sciences Technical
Report 1648, University of Wisconsin–Madison; used with permission.



346 Chapter 7 Classification: advanced methods

another commonly used active learning strategy. In this method, it constructs multiple (say five) clas-
sification models and then selects the unlabeled tuple that constructed classification models have most
disagreement in terms of its predicted class labels (say three classifiers predict that it belongs to positive
class, whereas two classifiers predict it a negative tuple). Other strategies work to reduce the version
space, that is, the subset of all hypotheses (i.e., classifiers) that are consistent with the observed train-
ing tuples. Alternatively, we may follow a decision-theoretic approach that estimates expected error
reduction. This selects tuples that would result in the greatest reduction in the total number of incorrect
predictions such as by reducing the expected entropy over U . This latter approach tends to be more
computationally expensive.

7.5.3 Transfer learning
Suppose that an electronics store has collected a number of customer reviews on a product such as
a brand of camera. The classification task is to automatically label the reviews as either positive or
negative. This task is known as sentiment classification. We could examine each review and annotate
it by adding a positive or negative class label. The labeled reviews can then be used to train and test a
classifier to label future reviews of the product as either positive or negative. The manual effort involved
in annotating the review data can be expensive and time consuming.

Now, suppose that the same store has customer reviews for other products as well, such as TVs.
The distributions of review data for different types of products can vary greatly. We cannot assume that
the TV-review data will have the same distribution as the camera-review data; thus we must build a
separate classification model for the TV-review data. Examining and labeling the TV-review data to
form a training set will require a lot of effort. In fact, we would need to label a large amount of data to
train the review-classification models for each product. It would be nice if we could adapt an existing
classification model (e.g., the one we built for cameras) to help learn a classification model for TVs.
Such knowledge transfer would reduce the need to annotate a large amount of data, resulting in cost
and time savings. This is the essence behind transfer learning.

Transfer learning aims to extract the knowledge from one or more source tasks and apply the
knowledge to a target task. In our example, the source task is the classification of camera reviews, and
the target task is the classification of TV reviews. Fig. 7.18 illustrates a comparison between traditional
learning methods and transfer learning. Traditional learning methods build a new classifier for each new
classification task, based on available class-labeled training and test data. Transfer learning algorithms
apply knowledge about source tasks when building a classifier for a new (target) task. Construction
of the resulting classifier requires fewer training data and less training time. Traditional learning algo-
rithms assume that the training data and test data are drawn from the same distribution and the same
feature space. Thus if the distribution changes, such methods need to rebuild the models from scratch.

Transfer learning allows the distributions, tasks, and even the data domains used in training and
testing to be different. Transfer learning is analogous to the way humans may apply their knowledge of
a task to facilitate the learning of another task. For example, if we know how to play the recorder, we
may apply our knowledge of note reading and music to simplify the task of learning to play the piano.
Similarly, knowing Spanish may make it easier to learn Italian.

Transfer learning is useful for common applications where the data becomes outdated or the dis-
tribution changes. Here we give two more examples. Consider web-document classification, where we
may have trained a classifier to label, say, articles from various newsgroups according to predefined
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FIGURE 7.18

Transfer learning vs. traditional learning. (a) Traditional learning methods build a new classifier from scratch for
each classification task. (b) Transfer learning applies knowledge from a source classification task to simplify the
construction of a classifier for a new, target classification task. Source: From Pan and Yang [PY10]; used with
permission.

categories. The web data that were used to train the classifier can easily become outdated because the
topics on the Web change frequently. Another application area for transfer learning is email spam fil-
tering. We could train a classifier to label email as either “spam” or “not spam,” using email from a
group of users. If new users come along, the distribution of their email can be different from the original
group, hence the need to adapt the learned model to incorporate the new data.

There are various approaches to transfer learning, the most common of which is the instance-based
transfer learning approach. This approach reweights some of the data from the source task and uses
it to learn the target task. The TrAdaBoost (Transfer AdaBoost) algorithm exemplifies this approach.
Consider our previous example of web-document classification, where the distribution of the old data
on which the classifier was trained (the source data) is different from the newer data (the target data).
TrAdaBoost assumes that the source and target domain data are each described by the same set of
attributes (i.e., they have the same “feature space”) and the same set of class labels, but that the dis-
tributions of the data in the two domains are very different. It extends the AdaBoost ensemble method
described in Section 6.7.3. TrAdaBoost requires the labeling of only a small amount of the target data.
Rather than throwing out all the old source data, TrAdaBoost assumes that a large amount of it can be
useful in training the new classification model. The idea is to filter out the influence of any old data that
are very different from the new data by automatically adjusting weights assigned to the training tuples.

Recall that in boosting, an ensemble is created by learning a series of classifiers. To begin, each
tuple is assigned a weight. After a classifier Mi is learned, the weights are updated to allow the sub-
sequent classifier, Mi+1, to “pay more attention” to the training tuples that were misclassified by Mi .
TrAdaBoost follows this strategy for the target data. However, if a source data tuple is misclassified,
TrAdaBoost reasons that the tuple is probably very different from the target data. It therefore reduces
the weight of such tuples so that they will have less effect on the subsequent classifier. As a result,
TrAdaBoost can learn an accurate classification model using only a small amount of new data and a
large amount of old data, even when the new data alone are insufficient to train the model. Hence in
this way TrAdaBoost allows knowledge to be transferred from the old classifier to the new one.
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A major challenge with transfer learning is negative transfer, which occurs when the new classifier
performs worse than if there had been no transfer at all. Work on how to avoid negative transfer is an
area of active research, where the key is to quantify the difference between the source task and the target
task. Heterogeneous transfer learning, which involves transferring knowledge from different feature
spaces and multiple source domains, is another active research topic. Traditionally, transfer learning
has been used on small-scale applications. The use of transfer learning on larger applications, such as
social network analysis and video classification, is often built upon the deep learning models with a
“pretraining” plus “fine-tuning” strategy, which will be introduced in Chapter 10.

Transfer learning is closely related to another powerful weakly supervised learning method, namely
multitask learning.9 Let us use the sentiment classification example to illustrate the difference between
transfer learning and multitask learning. In the transfer learning setting, we assume that we have a
large number of manually labeled camera review data (i.e., the source task), but a very limited number
of manually labeled TV review data (i.e., the target task). The goal of transfer learning to transfer
the knowledge about the source task (camera review sentiment classification) to help build a better
classifier for TV review sentiment classification (i.e., the target task). Now, suppose for both TV review
and camera review, we only have a small amount of manually labeled data. How can we accurately build
both classifiers—one for TV review sentiment and the other for camera review sentiment? Multitask
learning addresses this challenge by training both classifiers simultaneously so that the knowledge from
one learning task (e.g., TV review sentiment) can be transferred to the other learning task (e.g., camera
review sentiment), and vice versa.

7.5.4 Distant supervision
Let us take another look at the sentiment classification example. Suppose that an electronics store
launches a new holiday sales campaign on social media platforms (e.g., Twitter), which goes viral with
hundreds of thousands tweets. The store manager wants to figure out the sentiment of these Tweets, so
that she can adjust the campaign strategy accordingly. We could manually label a large number of tweets
regarding their sentiment and then train a classifier to predict the sentiment (positive vs. negative) of
the remaining tweets. However, that would be time consuming. The manager wonders: “Can we train a
sentiment classifier about the tweets without any manual labels?” Distant supervision aims to answer
this question by automatically generate a large number of labeled tuples. In particular, the manager
notices that for a large subset of the tweets, its text content contains a “:)” sign or a “:(” sign, which are
often associated with positive and negative sentiments, respectively. Therefore we could treat all the
tweets with a “:)” sign as positive tuples and those with a ‘:(’ sign negative tuples and use them to train
a sentiment classifier. Once the classifier is trained, we can use it to predict the sentiment for any future
tweet even if it does not contain a “:)” or “:(” sign. Notice that in this case, we do not need to manually
label any tweet in terms of its sentiment, and such labels (regarding positive or negative sentiment) are
automatically generated.

In the tweet sentiment classification example above, we exploit the specific information (i.e., a “:)”
or “:(” sign) in the input data to automatically generate labeled training tuples. An alternative strategy
for classification with distant supervision often leverages the external knowledge base to automatically

9 In some machine learning literature, multitask learning is viewed as a special case of transfer learning, namely inductive
transfer learning where the source and target domains share the same feature (i.e., attribute) space.
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generate labels for the training tuples. For example, in order to classify tweets into different categories
(e.g., news, health, science, games, etc.), we could explore the Open Directory Project (ODP, http://
odp.org), which maintain a directory for web links by volunteers. Thus if a tweet contains a url (e.g.,
http://nytimes.com), we can automatically find its ODP category (e.g., news), which is treated as the
label of the corresponding tweet. In this way, we will be able to automatically generate a large labeled
training set. Once the classifier is trained, we can use it to predict the class label (i.e., the category) of
a test tweet, even if it does not contain a url. Another way to automatically generate labeled training
examples is to leverage YouTube video that is linked to the tweet. The method is based on the following
two observations. First, there are a large number of tweets, each of which contains a link to a YouTube
video. Second, for each YouTube video, it is always associated with one of 18 predefined class labels.
Therefore we can treat the label of YouTube video as the label of the associated tweet.

In addition to social media post classification tasks, distant supervision is also found useful for
relation extraction for natural language processing. An active research direction in distant supervision
is how to effectively ask users to write a labeling function, instead of manually label training tuples,
to automatically generate labels for a large number of unlabeled data. A major limitation of distant
supervision is that the automatically generated labels are often very noisy. For example, some tweets
with a “:)” sign could have neutral or even negative sentiment; the class labels of a tweet does not
always align with the label or category of the url (either a web page or a YouTube video) it contains.

7.5.5 Zero-shot learning
Suppose that we have a collection of animal images, each of which has a unique label, including “owl,”
“dog,” or “fish.” Using this training data set, we can build a classifier, say SVMs or logistic regression
classifier.10 Then, given a test image, we can use the trained classifier to predict its class label, that
is, which one of the three possible animals (owl, dog, or fish) this image is about. But, what if the
test image is actually about a cat? In other words, the class label of the test data never appears in the
training data. This is what zero-shot learning aims to address, where the classifier needs to predict a
test tuple whose class label was never observed during the training stage. In other words, there is zero
training tuples for the novel class label (e.g., cat in our example). The term “shot” here refers to data
tuple.

At the first glance, this seems to be an impossible mission. You might wonder: “If there is zero train-
ing tuples about the cat, how can I build a classifier to recognize an image about the cat?” However,
we might have some high-level description about the novel classes. For example, for “cat,” we can learn
from the Wikipedia that a cat has retractable claws and super night vision. Zero-shot learning tries to
leverage such external knowledge or side-information to build a classifier that can recognize such novel
class labels.

Let us use the animal classification example (Fig. 7.19) to explain how zero-shot learning works.
Formally, there are n training images each of which is represented by a d-D feature vector and a 3-D
label vector. The label vector indicates which of the three known classes the training image belongs to.
For example, for an image about a “dog,” its label vector is [1,0,0]. In addition, we have the external

10 Different from the classification tasks we have seen so far which typically involve two possible class labels (e.g., positive vs.
negative sentiment), in this setting, we have a multiclass classification problem since there are three possible class labels. The
techniques for multiclass classification will be introduced in Section 7.7.1.

http://odp.org
http://odp.org
http://nytimes.com
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FIGURE 7.19

Top left: input n training tuples in d-dimensional feature space, each of which is labeled by one of the three known
classes (i.e., “dog,” “owl,” and “fish”). Bottom left: external knowledge where each known and novel class is de-
scribed by four semantic attributes. Right: the trained semantic attribute classifier F .

knowledge about the class label, where each class label (animal) can be described by four semantic
attributes,11 including whether the animal “has four legs,” “has wings,” “has retractable claws,” and
“has super night vision.” For example, since a dog has four legs, but no wings or retractable claws or
super night vision, the class label “dog” can be described by a 4-D semantic attribute vector [1,0,0,0].
Likewise, the class label “cat” can be described by a 4-D semantic attribute vector [1,0,1,1], meaning
that a cat has four legs, retractable claws and super night vision but no wings. Notice that such external
knowledge is available for both known class labels (e.g., “owl,” “dog,” and “fish”) and novel class labels
(e.g., “cat” and “rooster”).

Then, using the input training tuples (i.e., the n × d feature matrix X and the n × 3 label matrix Y

in the upper left corner of Fig. 7.19) and the external knowledge about the three known class labels
(i.e., the information about four semantic attributes for the three known class labels in the bottom left
corner of Fig. 7.19), we train a semantic attribute classifier F , which predicts a 4-D semantic attribute
vector for an input image represented by a d-dimensional feature vector. In our example, the output of
the semantic attribute classifier F tells whether the given image has “four legs,” “wings,” “retractable
claws” and “super night vision,” respectively. We can use a two-layer neural network to train such a

11 In the literature, the semantic attribute is also referred to as semantic feature or semantic property or just attribute.
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semantic attribute classifier, which will be introduced in Chapter 10.12 Then, given a test image, we
predict which of the two novel classes (i.e., “cat” and “rooster”) it belongs to based on the following
two steps. First, given the d-D feature vector of the test image, we use the semantic attribute classifier
F to output a 4-D semantic attribute vector, whose elements indicate whether or not the test image has
the corresponding semantic attributes. For example, if the semantic attribute classifier output a vector
[1,0,0,1], it means that the classifier predicts that the test image (1) has four legs, (2) has no wings,
(3) has no retractable claws, and (4) has super night vision. Second, we compare the predicted semantic
attribute vector with the external knowledge about the two novel classes, respectively (i.e., the 4 × 2
green (dark gray in print version) table in the middle bottom of Fig. 7.19). We predict that the test image
belongs to the novel class whose semantic attribute vector is most similar to that of the test image. In
our example, since the predicted semantic attribute vector [1,0,0,1] is more similar to that of “cat”
([1,0,1,1]) than that of “rooster” ([0,1,1,0]), we predict that it is an image about “cat.”

The key of the method described above is that we leverage the semantic attributes as a bridge to
transfer the output of the semantic classifier that was trained on the known class labels to predict the
novel class labels. From this perspective, we can also view zero-shot learning as a special form of
transfer learning (i.e., to transfer the knowledge about the known class labels to novel classes). In
addition to the semantic attribute, there are other forms of external knowledge that can be harnessed for
zero-shot learning. An example is the class-class similarity between known and novel classes. In the
animal image classification application mentioned above, we can train a multiclass classifier to predict
which of the three known classes an image belongs to. Now, given a test image that comes from the
novel class (either “cat” or “rooster”), the trained classifier predicts it belongs to “dog,” and if we know
that “dog” is more similar to “cat” than “rooster,” it is safe to predict the test image is indeed a “cat,”
rather than a “rooster.” In the standard zero-shot learning setting, we always assume that the test image
must come from one of the novel classes. This assumption might be too strong in reality. For example,
the test image might come from either known classes (dog, owl, or fish) or novel classes (cat or rooster).
There have been research on generalized zero-shot learning to address such a more complicated setting.
Other applications of zero-shot learning include neural activity recognition, where the classifier needs
to recognize the word that a person is thinking about based her neural activity reflected on the fMRI
image. In this application, the class labels are words. It is impossible to construct a training data set that
covers all possible words that a human can think of. Zero-shot learning can effectively help extrapolate
the classifier trained on a limited number of words (known class labels) to the unseen words during the
training stage (i.e., the novel classes).

7.6 Classification with rich data type
The classification techniques we have seen so far assume the following setting. That is, given a training
set, where each training tuple is represented by a feature (or attribute) vector and a class label, we build

12 The input of this two-layer neural network is the d-D feature, the hidden layer corresponds to the four semantic attributes, and
output layer corresponds to the three known class labels. Unlike a typical neural network, the model parameter for the second
layer (from semantic attribute to the known class labels) can be directly obtained based on the external knowledge about four
semantic attributes for the three known class labels.
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