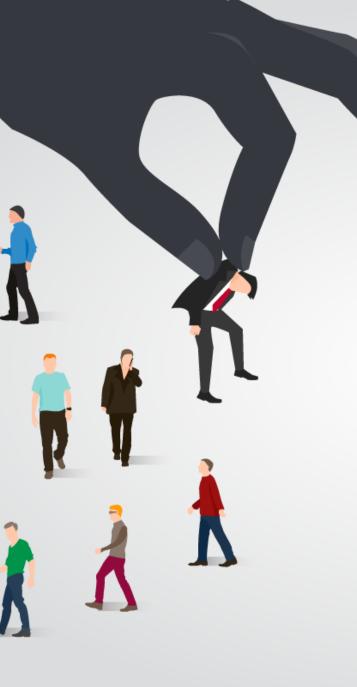
Classification -Alternative Techniques

INFO 523 – Lecture 5

Dr. Greg Chism



Topics

Rule-Based Classifier

- Nearest Neighbor Classifier
- Naive Bayes Classifier
- Artificial Neural Networks
- Support Vector Machines
- Ensemble Methods

Rule-Based Classifier

Classify records by using a collection of "if...then..." rules

• Rule: (Condition) $\rightarrow y$

where

- Condition is a conjunctions of attributes (calles LHS, antecedent or condition)
- y is the class label (called RHS or consequent)

Examples of classification rules:

- $(Blood Type = Warm) \land (Lay Eggs = Yes) \rightarrow Birds$
- $(Taxable Income < 50K) \land (Refund = Yes) \rightarrow Evade = No$

Rule-based Classifier (Example)

	Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
	human	warm	yes	no	no	mammals
	python	cold	no	no	no	reptiles
	salmon	cold	no	no	yes	fishes
	whale	warm	yes	no	yes	mammals
	frog	cold	no	no	sometimes	amphibians
	komodo	cold	no	no	no	reptiles
	bat	warm	yes	yes	no	mammals
	pigeon	warm	no	yes	no	birds
R1	cat	warm	yes	no	no	mammals
	leopard shark	cold	yes	no	yes	fishes
	turtle	cold	no	no	sometimes	reptiles
	penguin	warm	no	no	sometimes	birds
	porcupine	warm	yes	no	no	mammals
	eel	cold	no	no	yes	fishes
	salamander	cold	no	no	sometimes	amphibians
	gila monster	cold	no	no	no	reptiles
	platypus	warm	no	no	no	mammals
	owl	warm	no	yes	no	birds
	dolphin	warm	yes	no	yes	mammals
	leagle	warm	no	yes	no	birds

- R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
- R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
- R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
- R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
- R5: (Live in Water = sometimes) \rightarrow Amphibians

Application of Rule-Based Classifier

A rule R **covers** an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers: $hawk \rightarrow Bird$

The rule R3 covers: grizzly bear \rightarrow Mammal

Ordered Rule Set vs. Voting

- Rules are rank ordered according to their priority —An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - —If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no)
$$\land$$
 (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no)
$$\land$$
 (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
turtle	cold	no	no	sometimes	?

Alternative: (weighted) voting by all matching rules.

Rule Coverage and Accuracy

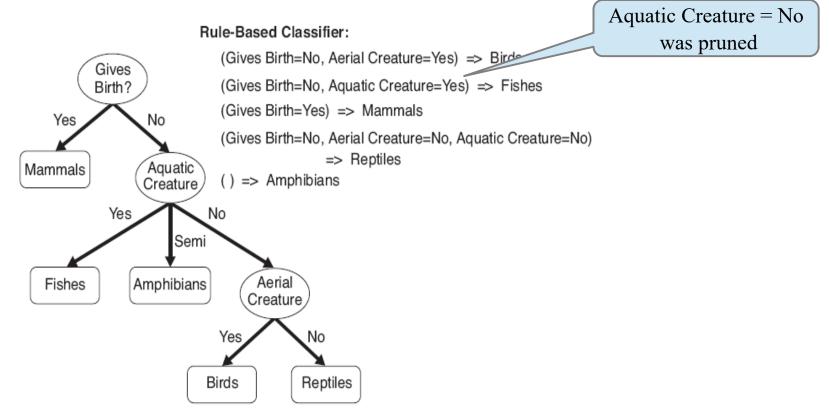
- Coverage of a rule: —Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
 - -Fraction of records that satisfy both the antecedent and consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 $(Status=Single) \rightarrow No$

Coverage = 40%, Accuracy = 50%

Rules From Decision Trees

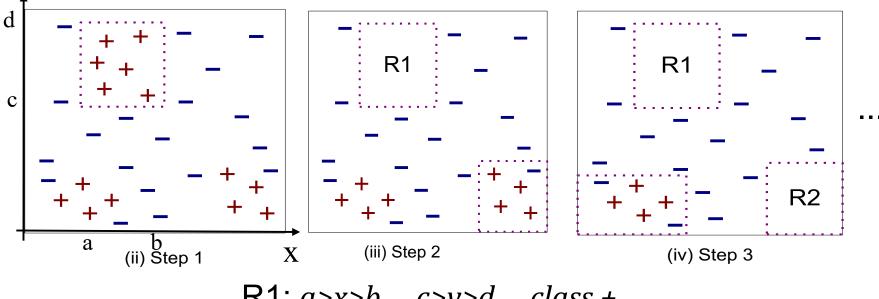


- Rules are mutually exclusive and exhaustive (cover all training cases)
- Rule set contains as much information as the tree
- Rules can be simplified (similar to pruning of the tree)
- Example: C4.5rules

Direct Methods of Rule Generation

Extract rules directly from the data

Sequential Covering (Example: try to cover class +)



R1: *a>x>b c>y>d* class +

Advantages of Rule-Based Classifiers

As highly expressive as decision trees

Easy to interpret

Easy to generate

Can classify new instances rapidly

Performance comparable to decision trees



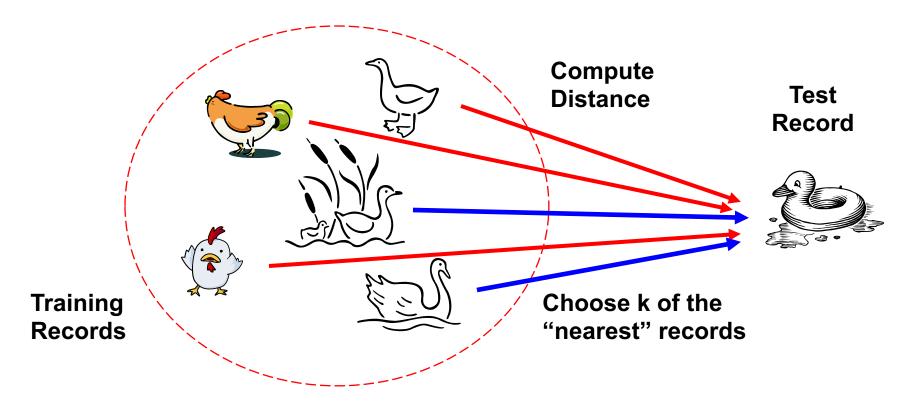
Topics

- Rule-Based Classifier
- Nearest Neighbor Classifier
- Naive Bayes Classifier
- Artificial Neural Networks
- Support Vector Machines
- Ensemble Methods

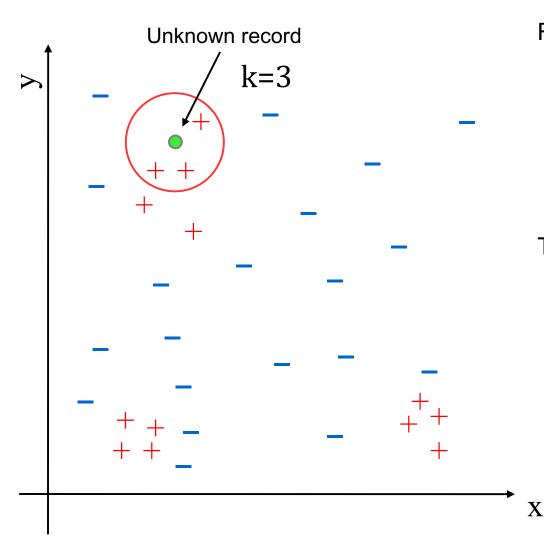
Nearest Neighbor Classifiers

Basic idea:

-If it walks like a duck, quacks like a duck, then it's probably a duck



Nearest-Neighbor Classifiers



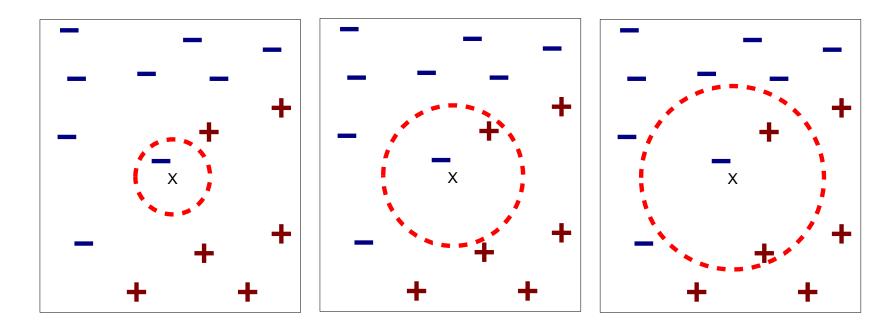
Requires three things

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

To classify an unknown record:

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor



(a) 1-nearest neighbor (b) 2-nea

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

Compute distance between two points:

-Euclidean distance

$$d(\boldsymbol{p},\boldsymbol{q}) = \sqrt{\sum_i (p_i - q_i)^2}$$

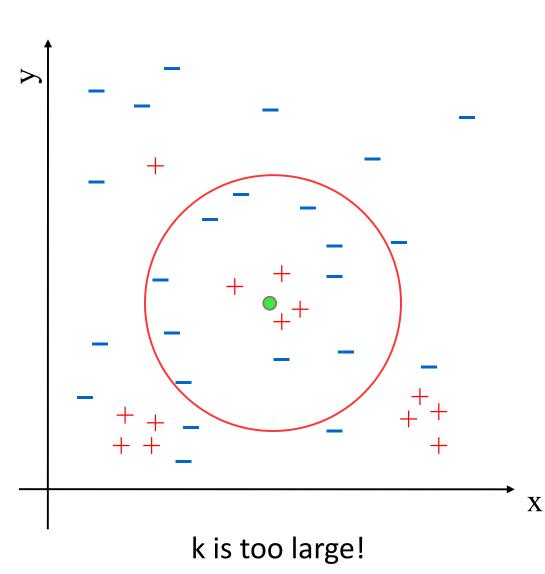
Determine the class from nearest neighbor list

- -take the majority vote of class labels among the k-nearest neighbors
- -Weigh the vote according to distance (e.g., weight factor $w = 1/d^2$)

Nearest Neighbor Classification...

- Choosing the value of k:

 If k is too small, sensitive to noise points
 If k is too large, neighborhood may include
 - points from other classes



Scaling issues

Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

Example:

- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M
 Income will dominate Euclidean distance!

Solution: scaling/standardization (Z-Score)

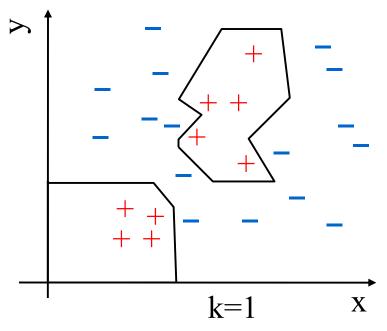
$$z = \frac{x - \bar{x}}{sd(x)}$$

Nearest neighbor Classification...

k-NN classifiers are lazy learners

- It does not build models explicitly (unlike eager learners such as decision trees)
- -Needs to store all the training data
- -Classifying unknown records are relatively expensive (find the knearest neighbors)

Advantage: Can create non-linear decision boundaries

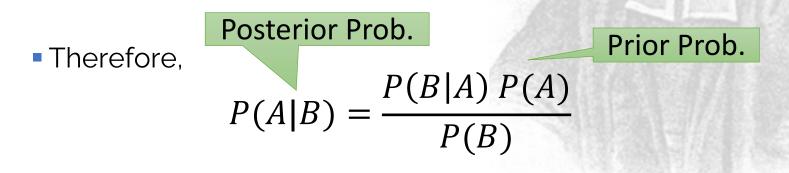


Topics

- Rule-Based Classifier
- Nearest Neighbor Classifier
- Naive Bayes Classifier
- Artificial Neural Networks
- Support Vector Machines
- Ensemble Methods

Bayes' Rule

• The product rule gives us two ways to factor a joint distribution: P(A,B) = P(A|B)P(B) = P(B|A)P(A)



• Why is this useful?

- —Can get diagnostic probability P(cavity | toothache) from causal probability P(toothache | cavity)
- -We can update our beliefs based on evidence.
- -Important tool for probabilistic inference .

Example of Bayes Theorem

- A doctor knows that meningitis causes stiff neck 50% of the time → P(S|M)=.5
- Prior probability of any patient having meningitis is P(M) = 1/50,000=0.00002
- Prior probability of any patient having stiff neck is P(S) = 1/20=0.05
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M) P(M)}{P(S)} = \frac{.5 \times 0.00002}{0.05} = 0.0002$$

Increases the probability by x10!

Bayesian Classifiers

Consider each attribute and class label as random variables

• Given a record with attributes $(A_1, A_2, ..., A_n)$

—Goal is to predict class C

—Specifically, we want to find the value of C that maximizes

 $P(C \mid A_1, A_2, \dots, A_n)$

Bayesian Classifiers

compute the posterior probability P(C | A1, A2, ..., An) for all values of C using the Bayes theorem

$$P(C | A_1, A_2, \dots, A_n) = \frac{P(A_1, A_2, \dots, A_n | C) P(C)}{P(A_1, A_2, \dots, A_n)}$$

• Choose value of C that maximizes $P(C | A_1, A_2, ..., A_n)$

this is a constant!

• Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$

• How to estimate $P(A_1, A_2, \dots, A_n \mid C)$?

Naïve Bayes Classifier

Assume independence among attributes A when class is given:

 $P(A_1, A_2, \dots, A_n | C) = P(A_1 | C) P(A_2 | C) \dots P(A_n | C) = \prod_i P(A_i | C)$

We can estimate $P(A_i | C_j)$ for all A_i and C_j .

New point is classified to C_i such that:

$$\max_{j} (P(C_j) \prod_{i} P(A_i | C_j))$$

Naïve Bayes Classifier

Probability estimation:

Original: $P(A_i | C_j) = \frac{N_{ij}}{N_j}$

Issue: If one of the conditional probabilities is zero, then the entire expression becomes zero.

Laplace:
$$P(A_i | C_j) = \frac{N_{ij}+1}{N_j+c}$$
 c: number of classes
p: prior probability
m-estimate: $P(A_i | C_j) = \frac{N_{ij}+mp}{N_j+m}$ m: parameter

Naïve Bayes (Summary)

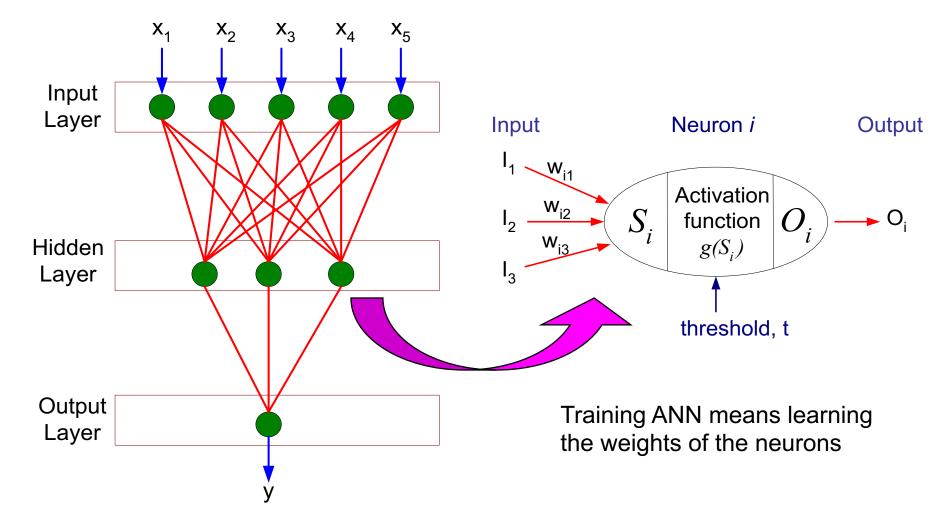
Robust to isolated noise points

- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 —Use other techniques such as Bayesian Belief Networks (BBN)

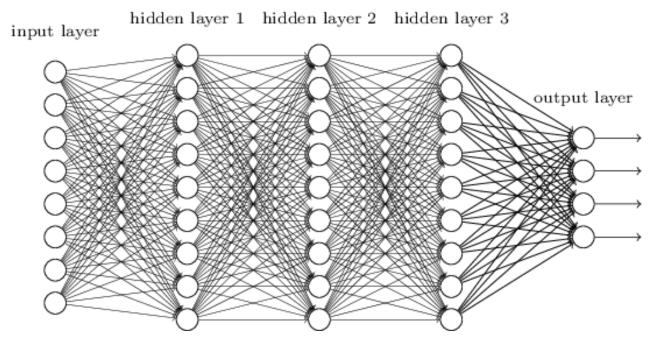
Topics

- Rule-Based Classifier
- Nearest Neighbor Classifier
- Naive Bayes Classifier
- Artificial Neural Networks
- Support Vector Machines
- Ensemble Methods

General Structure of ANN



Deep Learning / Deep Neural Networks

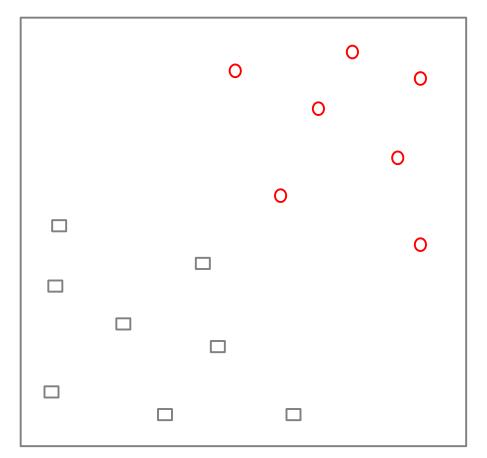


- Needs lots of data + computation (GPU)
- Applications: computer vision, speech recognition, natural language processing, audio recognition, machine translation, bioinformatics, ...
- Tools: Keras, Tensorflow and many others.
- Related: Deep belief networks, recurrent neural networks (RNN), convolutional neural network (CNN)

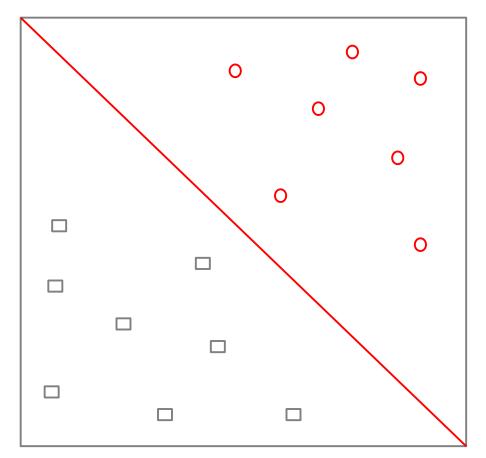


Topics

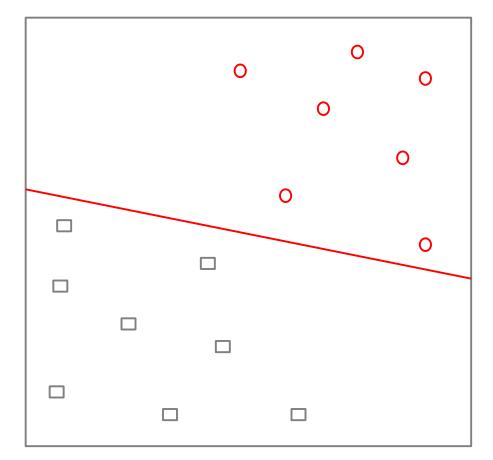
- Rule-Based Classifier
- Nearest Neighbor Classifier
- Naive Bayes Classifier
- Artificial Neural Networks
- Support Vector Machines
- Ensemble Methods



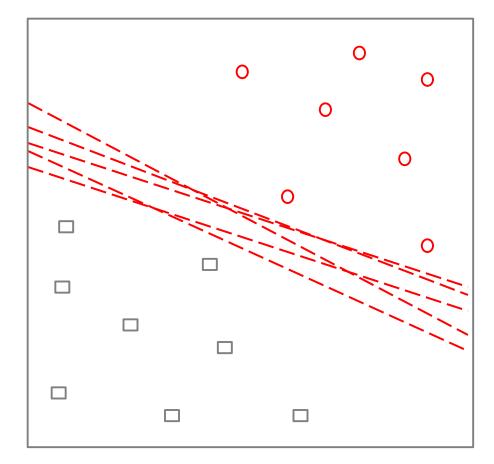
Find a linear hyperplane (decision boundary) that will separate the data



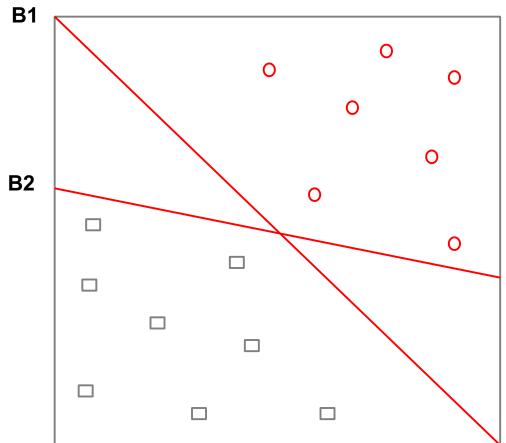
One Possible Solution



Another possible solution

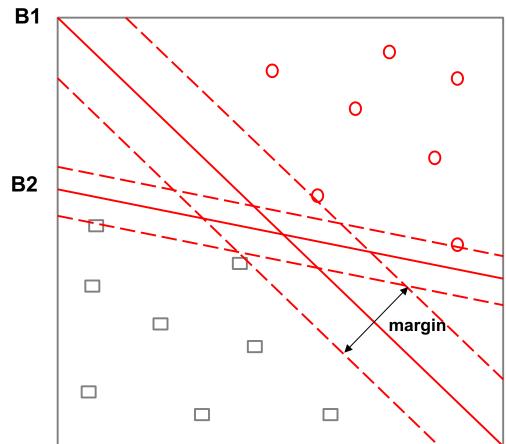


Other possible solutions



Which one is better? B1 or B2?

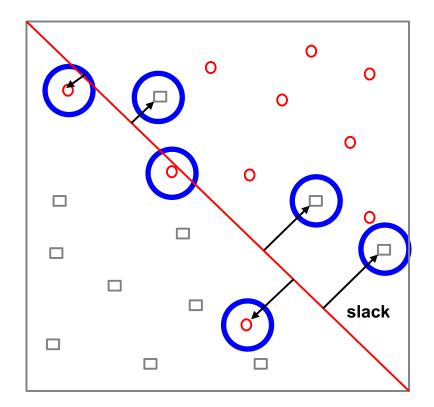
How do you define better?



Find hyperplane maximizes the margin => B1 is better than B2 Larger margin = more robust = less expected generalization error

Support Vector Machines

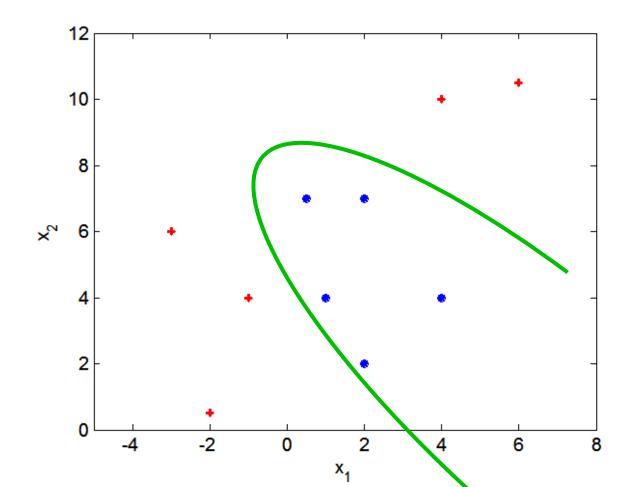
What if the problem is not linearly separable?



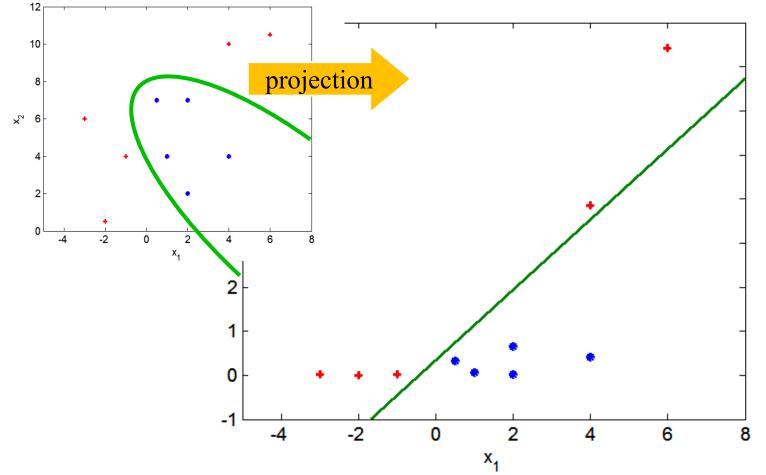
- Use slack variables to account for violations
- Use hyperplane that minimizes slack

Nonlinear Support Vector Machines

What if decision boundary is not linear?

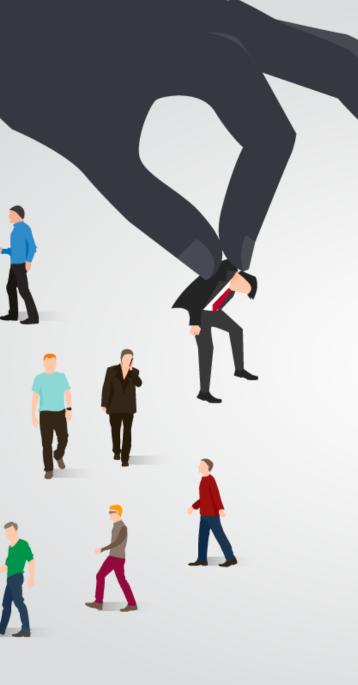


Nonlinear Support Vector Machines



Project data into higher dimensional space

Using the Kernel trick!



Topics

- Rule-Based Classifier
- Nearest Neighbor Classifier
- Naive Bayes Classifier
- Artificial Neural Networks
- Support Vector Machines
- Ensemble Methods

Ensemble Methods

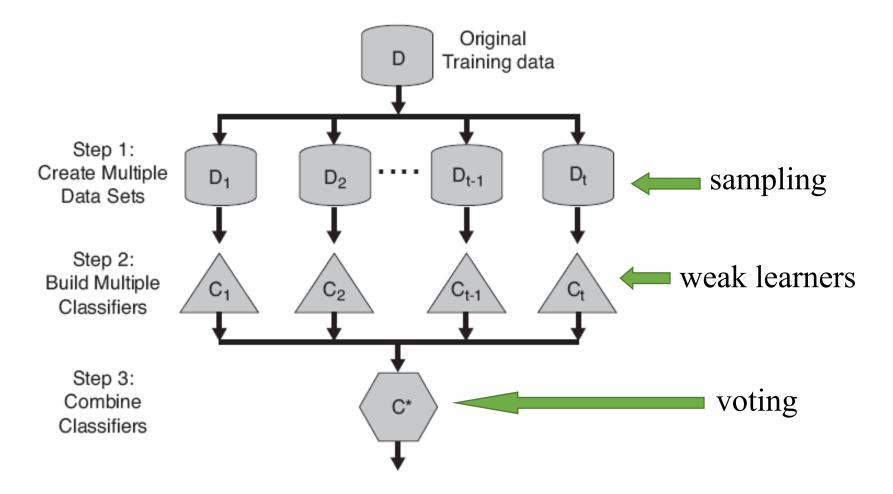
Method

- 1. Construct a set of (possibly weak) classifiers from the training data
- 2. Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

Advantages

- Improve the stability and often also the accuracy of classifiers.
- Reduces variance in the prediction
- Reduces overfitting

General Idea



Examples of Ensemble Methods

How to generate an ensemble of classifiers?

- -Bagging
- -Boosting
- -Random Forests

Bagging (Bootstrap Aggregation)

1. **Sampling** with replacement (bootstrap sampling)

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Note: some objects are chosen multiple times in a bootstrap sample while others are not chosen! A typical bootstrap sample contains about 63% of the objects in the original data.

2. **Build classifiers**, one for each bootstrap sample (classifiers are hopefully independent since they are learned from different subsets of the data)

3. Aggregate the classifiers' results by averaging or voting

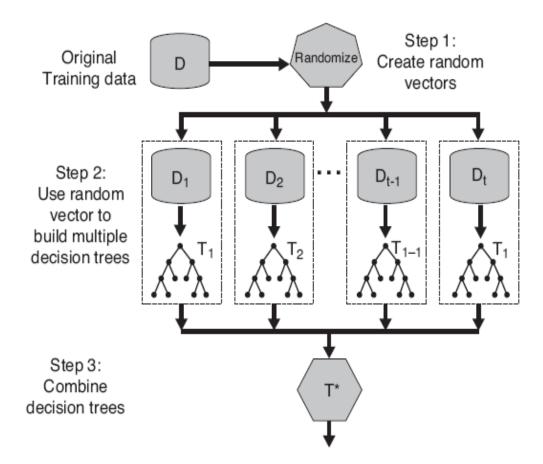
Boosting

 Records that are incorrectly classified in one round will have their weights increased in the next

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	(4)	10	6	3
Boosting (Round 2)	5	(4)	9	(4)	2	5	1	7	(4)	2
Boosting (Round 3)	(4)	(4)	8	10	(4)	5	(4)	6	3	(4)

- Example 4 is hard to classify. Its weight is increased; therefore it is more likely to be chosen again in subsequent rounds
- Popular algorithm: AdaBoost (Adaptive Boosting) typically uses decision trees as the weak learner.

Random Forests

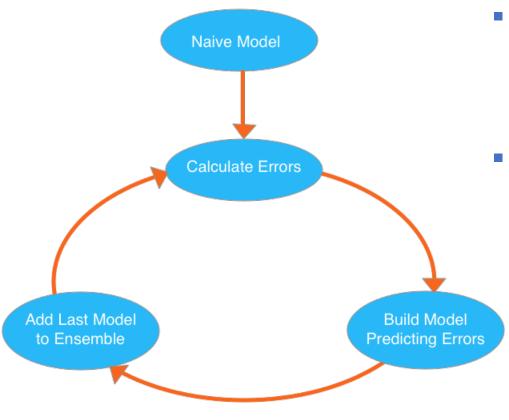


- Introduce two sources of randomness: "Bagging" and "Random input vectors"
- Bagging method: each tree is grown using a bootstrap sample of training data

Random vector

method: At each node, best split is chosen only from a random sample of the m possible attributes.

Gradient Boosted Decision Trees (XGBoost)



 Idea: build models to predict (correct) errors (= boosting).

Approach:

- 1. Start with a naive (weak) model
- 2. Calculate errors for each observation in the dataset.
- 3. Build a new model to predict these errors and add to the ensemble.

4. Go to 2.

Other Popular Approaches

- Logistic Regression
- Linear Discriminant Analysis
- Regularized Models (Shrinkage)
- Stacking