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Machine Learning

• Supervised: We are given input samples (X) and 
output samples (y) of a function y = f(X). We would like 
to “learn” f and evaluate it on new data. Types:
• Classification: y is discrete (class labels).
• Regression: y is continuous, e.g., linear regression



What are regression models?
Set of methods that are used to predict a response variable 

from one or more predictor variables
Key terms: dependent and independent variables!



Simple linear model

Let’s discuss its mathematical structure:

!𝑌! = $𝛽" +$𝛽#𝑋$! +⋯+	$𝛽%𝑋%! 	 𝑖 = 1…𝑛

Ŷi   is the predicted value of the dependent variable for observation i 
!𝛽!	 is the intercept 
!𝛽" 	 is the regression coefficient for the jth predictor

n is the number of observations 
k is the number of predictor variables



Simple linear model (model 
parameters)

We are going to focus on four main regression parameters

Slope
Intercept

R2
P-values

We will review these concepts using a simple linear regression

Activity 4. Interpreting simple regression models?



Simple linear model (model 
parameters)

• Slope: Change in Y units given a change in X of a single unit. 

Activity 4. Interpreting simple regression models?



Simple linear model (model 
parameters)

• Intercept: Adjustment constant. The Y value when X, the 
predictor is 0.

Activity 4. Interpreting simple regression models?



Simple linear model (model 
parameters)

• R2: The fraction of variance in Y that is explained by X.

Activity 4. Interpreting simple regression models?



Simple linear model (model 
parameters)

• P-values: Indicates whether the slope is significantly different 
from zero. 

Activity 4. Interpreting simple regression models?



What are regressions used for?

Today we are going to review specific examples of how to use 
regression models.

• For now, remember that regressions can be used to:
identify explanatory variables
describe the form of the relationships involved
predicting the response variable from the explanatory variables



Types of regression models?
• Linear Regression: Predicting a quantitative response variable from 

a quantitative explanatory variable.
• Polynomial: Predicting a quantitative response variable from a 

quantitative explanatory variable, where the relationship is modeled 
as an nth order polynomial. 
• Ridge Rregression: adds L2 regularization to linear regression, 

handles collinearity, prevents overfitting
• Lasso Regression: L1 regularization, known for feature selection, 

pushes less important variables to zero 
• Elastic Net Regression: Combines L2 and L1 regularization, 

balancing Ridge and Lasso regression techniques
• Multiple linear: Predicting a quantitative response variable from two 

or more explanatory variables.
• Multilevel: Predicting a response variable from data that have a 

hierarchical structure 
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Assumptions of Linear Regression
Linearity
(Linear relationship between Y ~ X)

Homoscedasticity
(Equal variance)

Multivariate Normality
(Normally distributed residuals)

Independence
(of observations)

Lack of Multicollinearity
(Predictors are not correlates)

Outlier check
(Technically not an assumption)



Ordinary Least Squares (OLS)

• Estimate coefficients of 
linear equation
• Finds the line that minimizes 

sum of square residuals 



Model evaluation
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Ridge Regression
Extension of linear regression with L2 regularization to address 
issues like multicollinearity



L2 Regularization
Penalizes large coefficients, controlled by a hyperparameter λ
(lambda) 
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• Stabilizes coefficient 
estimates, making them 
less sensitive
• Reduces the magnitude 

of OLS coefficients, but 
doesn’t set them to 0



Lasso Regression
Least Absolute Shrinkage and Select Operator: uses L1 
regularization penalty



L1 Regularization
Adds a penalty term to OLS regression, encouraging sparsity by 
pushing some coefficients to 0
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• Eliminated less 
important variables
• Sensitive to outliers



Elastic Net Regression
Combines L2 (Ridge) and L1 (Lasso) regularization techniques 
(balance)



Elastic Net Regression

• Robust and flexible
• Feature selection & 

multicollinearity
• Must balance two 

hyperparameters 
(randomization)

Combines L2 (Ridge) and L1 (Lasso) regularization techniques 
(balance)



Use cases

• Risk Assessment: Predicting credit risk or financial market 
volatility.
• Marketing Spend Optimization: Allocating marketing 

resources to maximize return on investment.
• Healthcare Cost Prediction: Estimating medical treatment 

costs based on patient characteristics.
• Customer Churn Prediction: Identifying factors influencing 

customer churn in a subscription-based service.
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Polynomial Regression
Extends linear regression to capture non-linear relationships

• Models curved 
relationships (squared, 
cubed, etc.)
• High-degree polynomials 

can overfit
• Need to balance 

complexity and overfitting



Decision Trees
Provides tree-like structure to recursively partition the data

• Partition data based on 
independent variables, 
minimizing variance
• Trees can be overly 

complex (hence pruning)
• Sensitive to small changes 

in data -> different trees



Ensemble Methods (Random Forest)
Combines multiple decision trees for increased accuracy

• Bootstrap samples 
(bagging) of data, selects 
random subsets of 
features for each tree
• Known for robustness, 

ability to handle high-
dimensional data, 
resistance to outliers



Use cases

• Stock Price Prediction: Capturing complex stock price 
movements that aren't linear.
• Customer Lifetime Value: Estimating the long-term value of 

customers for business strategy.
• Demand Forecasting: Predicting demand for products with 

non-linear trends.
• Environmental Modeling: Modeling environmental factors 

with complex interactions.
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Support Vector Machine Regression
Minimize the vector space around points

• Effective in high-dimensional 
spaces
• Kernel functions to map data
• Sensitive to Kernel choices
• Requires careful 

hyperparameter tuning



Support Vector Machine Regression
Deals with complex data well through multiple hidden layers

• Deep Learning enables models to 
learn complex non-linear 
relationships
• Need to understand architecture 

and training algorithms
• Requires large amounts of data
• Challenging to interpret (black box)



Gradient Boosting for Regression
Combines predictions of multiple weak models à strong 
regression model

• Iteratively adds weak 
learners (trees) to improve 
accuracy
• Effective hyperparameter 

tuning is crucial for optimal 
performance
• E.g., AdaBoost, XGBoost, 

LightGBM



Use cases

• Financial Market Forecasting: SVR for predicting stock 
prices or volatility.
• Image Analysis: Neural networks for image denoising or 

object recognition.
• Click-through Rate Prediction: Gradient boosting for 

optimizing online ad campaigns.
• Housing Market Forecasting: Predicting housing prices in 

dynamic real estate markets.
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RANSAC Regression
Random Sample Concensus: used for handling data with outliers

• Follows an iterative process, 
identifying outliers and inliers
• Fits models until best inlier fit 

is achieved



Huber Regression
Balances Mean Squared Error (MSE) and Mean Absolute Error 
(MAE)

• Robust to outliers (MSE is 
sensitive, MAE is robust)
• Hyperparameter (𝛿) controls 

the balance between MSE 
and MAE
• Useful with normally 

distributed data with outliers
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Quantile Regression
Estimates conditional quantiles of the dependent variable

• More comprehensive view of 
variable relationships 
(median, 25th percentile, 75th 
percentile)
• Useful when the relationship 

varies at different points of a 
distribution



Quantile Regression
Estimates conditional quantiles of the dependent variable

• Separate coefficients for 
each quantile of interest.
• Quantile-specific coefficients 

show how changes in 
independent variables affect 
conditional distribution of 
dependent variable at 
different points





Use cases

• Income Prediction: Quantile regression estimates income 
quantiles, revealing income disparities and aiding financial 
decisions.

• Risk Assessment: Quantile regression is valuable in 
insurance for estimating claim quantiles, assessing risk 
exposure, and setting premiums or reserves.



Advantages of Quantile Regression

• Robustness: Quantile regression is robust to outliers because 
it estimates conditional quantiles rather than means. Outliers 
have a more limited impact on quantile estimates.

• Comprehensive Insights: It provides a complete picture of 
the relationship between variables, including extreme cases, 
which can be crucial for decision-making.

• Handling Heteroscedasticity: Quantile regression can be 
more suitable than linear regression when the variance of the 
dependent variable varies across levels of the independent 
variables.



Challenges & Considerations

• Interpretation: Interpreting quantile-specific coefficients 
may require a deeper understanding of the data and domain 
knowledge.
• Computational Complexity: Estimating multiple quantiles 

can be computationally intensive, especially with large 
datasets.
• Model Selection: Choosing the right quantiles to estimate 

depends on the problem and goals.
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Selecting among competing models

We will review a few commonly used methods!

AIC
Stepwise regression
All subset regression



Selecting among competing models

AIC (Akaike Information Criterion)

AIC = 2k – 2 ln(L), where k is the number of parameters and L the 
likelihood.

Index that takes into account model complexity (number of parameters) 
and fit. The lowest the AIC score, the better!

Activity 5. Selecting among competing models



Selecting among competing models

Stepwise regression

Y might depend on many variables! Which combination of variables 
explains better Y?

Two alternative approaches. First, in a ”forward” approach, variables 
are added until no improvement is noted. In a “backward” approach, 

variables reducing model quality are deleted from a full model.

Activity 5. Selecting among competing models



Selecting among competing models

All subset regression

Exhaustive approach that is likely only useful when the number of 
variable combinations is reduced. All the possible models are 

examined.

Similar to stepwise regressions but instead of examining predictor 
combinations in an alternative fashion, this approach examines *all* 

possible combinations!

Activity 5. Selecting among competing models


