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3
Linear Regression

This chapter is about linear regression, a very simple approach for super-
vised learning. In particular, linear regression is a useful tool for predicting
a quantitative response. It has been around for a long time and is the topic
of innumerable textbooks. Though it may seem somewhat dull compared to
some of the more modern statistical learning approaches described in later
chapters of this book, linear regression is still a useful and widely used sta-
tistical learning method. Moreover, it serves as a good jumping-off point for
newer approaches: as we will see in later chapters, many fancy statistical
learning approaches can be seen as generalizations or extensions of linear
regression. Consequently, the importance of having a good understanding
of linear regression before studying more complex learning methods cannot
be overstated. In this chapter, we review some of the key ideas underlying
the linear regression model, as well as the least squares approach that is
most commonly used to fit this model.

Recall the Advertising data from Chapter 2. Figure 2.1 displays sales
(in thousands of units) for a particular product as a function of advertis-
ing budgets (in thousands of dollars) for TV, radio, and newspaper media.
Suppose that in our role as statistical consultants we are asked to suggest,
on the basis of this data, a marketing plan for next year that will result in
high product sales. What information would be useful in order to provide
such a recommendation? Here are a few important questions that we might
seek to address:
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1. Is there a relationship between advertising budget and sales?
Our first goal should be to determine whether the data provide evi-
dence of an association between advertising expenditure and sales. If
the evidence is weak, then one might argue that no money should be
spent on advertising!

2. How strong is the relationship between advertising budget and sales?
Assuming that there is a relationship between advertising and sales,
we would like to know the strength of this relationship. Does knowl-
edge of the advertising budget provide a lot of information about
product sales?

3. Which media are associated with sales?
Are all three media—TV, radio, and newspaper—associated with
sales, or are just one or two of the media associated? To answer this
question, we must find a way to separate out the individual contribu-
tion of each medium to sales when we have spent money on all three
media.

4. How large is the association between each medium and sales?
For every dollar spent on advertising in a particular medium, by
what amount will sales increase? How accurately can we predict this
amount of increase?

5. How accurately can we predict future sales?
For any given level of television, radio, or newspaper advertising, what
is our prediction for sales, and what is the accuracy of this prediction?

6. Is the relationship linear?
If there is approximately a straight-line relationship between advertis-
ing expenditure in the various media and sales, then linear regression
is an appropriate tool. If not, then it may still be possible to trans-
form the predictor or the response so that linear regression can be
used.

7. Is there synergy among the advertising media?
Perhaps spending $50,000 on television advertising and $50,000 on ra-
dio advertising is associated with higher sales than allocating $100,000
to either television or radio individually. In marketing, this is known
as a synergy effect, while in statistics it is called an interaction effect. synergy

interactionIt turns out that linear regression can be used to answer each of these
questions. We will first discuss all of these questions in a general context,
and then return to them in this specific context in Section 3.4.
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3.1 Simple Linear Regression
Simple linear regression lives up to its name: it is a very straightforward simple linear

regressionapproach for predicting a quantitative response Y on the basis of a sin-
gle predictor variable X. It assumes that there is approximately a linear
relationship between X and Y . Mathematically, we can write this linear
relationship as

Y ≈ β0 + β1X. (3.1)
You might read “≈” as “is approximately modeled as”. We will sometimes
describe (3.1) by saying that we are regressing Y on X (or Y onto X).
For example, X may represent TV advertising and Y may represent sales.
Then we can regress sales onto TV by fitting the model

sales ≈ β0 + β1 × TV.

In Equation 3.1, β0 and β1 are two unknown constants that represent
the intercept and slope terms in the linear model. Together, β0 and β1 are intercept

slopeknown as the model coefficients or parameters. Once we have used our
coefficient
parameter

training data to produce estimates β̂0 and β̂1 for the model coefficients, we
can predict future sales on the basis of a particular value of TV advertising
by computing

ŷ = β̂0 + β̂1x, (3.2)
where ŷ indicates a prediction of Y on the basis of X = x. Here we use a
hat symbol, ˆ , to denote the estimated value for an unknown parameter
or coefficient, or to denote the predicted value of the response.

3.1.1 Estimating the Coefficients
In practice, β0 and β1 are unknown. So before we can use (3.1) to make
predictions, we must use data to estimate the coefficients. Let

(x1, y1), (x2, y2), . . . , (xn, yn)

represent n observation pairs, each of which consists of a measurement of
X and a measurement of Y . In the Advertising example, this data set con-
sists of the TV advertising budget and product sales in n = 200 different
markets. (Recall that the data are displayed in Figure 2.1.) Our goal is to
obtain coefficient estimates β̂0 and β̂1 such that the linear model (3.1) fits
the available data well—that is, so that yi ≈ β̂0 + β̂1xi for i = 1, . . . , n. In
other words, we want to find an intercept β̂0 and a slope β̂1 such that the
resulting line is as close as possible to the n = 200 data points. There are
a number of ways of measuring closeness. However, by far the most com-
mon approach involves minimizing the least squares criterion, and we take least squaresthat approach in this chapter. Alternative approaches will be considered in
Chapter 6.
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the residual sum of
squares. Each grey line segment represents a residual. In this case a linear fit
captures the essence of the relationship, although it overestimates the trend in the
left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X.
Then ei = yi− ŷi represents the ith residual—this is the difference between residualthe ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as residual sum

of squaresRSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ · · ·+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.

Figure 3.1 displays the simple linear regression fit to the Advertising
data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates β̂0 and β̂1, given by (3.4).

this approximation, an additional $1,000 spent on TV advertising is asso-
ciated with selling approximately 47.5 additional units of the product. In
Figure 3.2, we have computed RSS for a number of values of β0 and β1,
using the advertising data with sales as the response and TV as the predic-
tor. In each plot, the red dot represents the pair of least squares estimates
(β̂0, β̂1) given by (3.4). These values clearly minimize the RSS.

3.1.2 Assessing the Accuracy of the Coefficient Estimates
Recall from (2.1) that we assume that the true relationship between X and
Y takes the form Y = f(X) + ε for some unknown function f , where ε
is a mean-zero random error term. If f is to be approximated by a linear
function, then we can write this relationship as

Y = β0 + β1X + ε. (3.5)

Here β0 is the intercept term—that is, the expected value of Y when X = 0,
and β1 is the slope—the average increase in Y associated with a one-unit
increase in X. The error term is a catch-all for what we miss with this
simple model: the true relationship is probably not linear, there may be
other variables that cause variation in Y , and there may be measurement
error. We typically assume that the error term is independent of X.

The model given by (3.5) defines the population regression line, which population
regression
line

is the best linear approximation to the true relationship between X and
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

Y .1 The least squares regression coefficient estimates (3.4) characterize the
least squares line (3.2). The left-hand panel of Figure 3.3 displays these least squares

linetwo lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ε, (3.6)
where ε was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X, while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.

1The assumption of linearity is often a useful working model. However, despite what
many textbooks might tell us, we seldom believe that the true relationship is linear.
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At first glance, the difference between the population regression line and
the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the
concept of these two lines is a natural extension of the standard statistical
approach of using information from a sample to estimate characteristics of a
large population. For example, suppose that we are interested in knowing
the population mean µ of some random variable Y . Unfortunately, µ is
unknown, but we do have access to n observations from Y , y1, . . . , yn,
which we can use to estimate µ. A reasonable estimate is µ̂ = ȳ, where
ȳ = 1

n

∑n
i=1 yi is the sample mean. The sample mean and the population

mean are different, but in general the sample mean will provide a good
estimate of the population mean. In the same way, the unknown coefficients
β0 and β1 in linear regression define the population regression line. We seek
to estimate these unknown coefficients using β̂0 and β̂1 given in (3.4). These
coefficient estimates define the least squares line.

The analogy between linear regression and estimation of the mean of a
random variable is an apt one based on the concept of bias. If we use the biassample mean µ̂ to estimate µ, this estimate is unbiased, in the sense that unbiasedon average, we expect µ̂ to equal µ. What exactly does this mean? It means
that on the basis of one particular set of observations y1, . . . , yn, µ̂ might
overestimate µ, and on the basis of another set of observations, µ̂ might
underestimate µ. But if we could average a huge number of estimates of
µ obtained from a huge number of sets of observations, then this average
would exactly equal µ. Hence, an unbiased estimator does not systematically
over- or under-estimate the true parameter. The property of unbiasedness
holds for the least squares coefficient estimates given by (3.4) as well: if
we estimate β0 and β1 on the basis of a particular data set, then our
estimates won’t be exactly equal to β0 and β1. But if we could average
the estimates obtained over a huge number of data sets, then the average
of these estimates would be spot on! In fact, we can see from the right-
hand panel of Figure 3.3 that the average of many least squares lines, each
estimated from a separate data set, is pretty close to the true population
regression line.

We continue the analogy with the estimation of the population mean
µ of a random variable Y . A natural question is as follows: how accurate
is the sample mean µ̂ as an estimate of µ? We have established that the
average of µ̂’s over many data sets will be very close to µ, but that a
single estimate µ̂ may be a substantial underestimate or overestimate of µ.
How far off will that single estimate of µ̂ be? In general, we answer this
question by computing the standard error of µ̂, written as SE(µ̂). We have standard

errorthe well-known formula

Var(µ̂) = SE(µ̂)2 =
σ2

n
, (3.7)
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where σ is the standard deviation of each of the realizations yi of Y .2
Roughly speaking, the standard error tells us the average amount that this
estimate µ̂ differs from the actual value of µ. Equation 3.7 also tells us how
this deviation shrinks with n—the more observations we have, the smaller
the standard error of µ̂. In a similar vein, we can wonder how close β̂0

and β̂1 are to the true values β0 and β1. To compute the standard errors
associated with β̂0 and β̂1, we use the following formulas:

SE(β̂0)
2
= σ2

[
1

n
+

x̄2

∑n
i=1(xi − x̄)2

]
, SE(β̂1)

2
=

σ2

∑n
i=1(xi − x̄)2

, (3.8)

where σ2 = Var(ε). For these formulas to be strictly valid, we need to
assume that the errors εi for each observation have common variance σ2 and
are uncorrelated. This is clearly not true in Figure 3.1, but the formula still
turns out to be a good approximation. Notice in the formula that SE(β̂1) is
smaller when the xi are more spread out; intuitively we have more leverage
to estimate a slope when this is the case. We also see that SE(β̂0) would be
the same as SE(µ̂) if x̄ were zero (in which case β̂0 would be equal to ȳ). In
general, σ2 is not known, but can be estimated from the data. This estimate
of σ is known as the residual standard error, and is given by the formula residual

standard
error

RSE =
√
RSS/(n− 2). Strictly speaking, when σ2 is estimated from the

data we should write ŜE(β̂1) to indicate that an estimate has been made,
but for simplicity of notation we will drop this extra “hat”.

Standard errors can be used to compute confidence intervals. A 95 % confidence
intervalconfidence interval is defined as a range of values such that with 95 %

probability, the range will contain the true unknown value of the param-
eter. The range is defined in terms of lower and upper limits computed
from the sample of data. A 95% confidence interval has the following prop-
erty: if we take repeated samples and construct the confidence interval for
each sample, 95% of the intervals will contain the true unknown value of
the parameter. For linear regression, the 95 % confidence interval for β1

approximately takes the form

β̂1 ± 2 · SE(β̂1). (3.9)

That is, there is approximately a 95 % chance that the interval

[
β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)

]
(3.10)

2This formula holds provided that the n observations are uncorrelated.
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will contain the true value of β1.3 Similarly, a confidence interval for β0

approximately takes the form

β̂0 ± 2 · SE(β̂0). (3.11)

In the case of the advertising data, the 95 % confidence interval for β0

is [6.130, 7.935] and the 95 % confidence interval for β1 is [0.042, 0.053].
Therefore, we can conclude that in the absence of any advertising, sales will,
on average, fall somewhere between 6,130 and 7,935 units. Furthermore,
for each $1,000 increase in television advertising, there will be an average
increase in sales of between 42 and 53 units.

Standard errors can also be used to perform hypothesis tests on the hypothesis
testcoefficients. The most common hypothesis test involves testing the null

hypothesis of null
hypothesis

H0 : There is no relationship between X and Y (3.12)

versus the alternative hypothesis alternative
hypothesis

Ha : There is some relationship between X and Y . (3.13)

Mathematically, this corresponds to testing

H0 : β1 = 0

versus
Ha : β1 %= 0,

since if β1 = 0 then the model (3.5) reduces to Y = β0 + ε, and X is
not associated with Y . To test the null hypothesis, we need to determine
whether β̂1, our estimate for β1, is sufficiently far from zero that we can
be confident that β1 is non-zero. How far is far enough? This of course
depends on the accuracy of β̂1—that is, it depends on SE(β̂1). If SE(β̂1) is
small, then even relatively small values of β̂1 may provide strong evidence
that β1 %= 0, and hence that there is a relationship between X and Y . In
contrast, if SE(β̂1) is large, then β̂1 must be large in absolute value in order
for us to reject the null hypothesis. In practice, we compute a t-statistic,

t-statisticgiven by

t =
β̂1 − 0

SE(β̂1)
, (3.14)

3�TT`QtBK�i2Hv for several reasons. Equation 3.10 relies on the assumption that the
errors are Gaussian. Also, the factor of 2 in front of the SE(β̂1) term will vary slightly
depending on the number of observations n in the linear regression. To be precise, rather
than the number 2, (3.10) should contain the 97.5 % quantile of a t-distribution with
n−2 degrees of freedom. Details of how to compute the 95 % confidence interval precisely
in R will be provided later in this chapter.



68 3. Linear Regression

Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units. (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars.)

which measures the number of standard deviations that β̂1 is away from 0. If
there really is no relationship between X and Y , then we expect that (3.14)
will have a t-distribution with n− 2 degrees of freedom. The t-distribution
has a bell shape and for values of n greater than approximately 30 it is
quite similar to the standard normal distribution. Consequently, it is a
simple matter to compute the probability of observing any number equal
to |t| or larger in absolute value, assuming β1 = 0. We call this probability
the p-value. Roughly speaking, we interpret the p-value as follows: a small

p-value
p-value indicates that it is unlikely to observe such a substantial association
between the predictor and the response due to chance, in the absence of
any real association between the predictor and the response. Hence, if we
see a small p-value, then we can infer that there is an association between
the predictor and the response. We reject the null hypothesis—that is, we
declare a relationship to exist between X and Y —if the p-value is small
enough. Typical p-value cutoffs for rejecting the null hypothesis are 5% or
1%, although this topic will be explored in much greater detail in Chap-
ter 13. When n = 30, these correspond to t-statistics (3.14) of around 2
and 2.75, respectively.

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for β̂0 and β̂1 are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if H0 is true are virtually zero. Hence we can conclude that
β0 %= 0 and β1 %= 0.4

3.1.3 Assessing the Accuracy of the Model
Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that β0 = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that β1 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.
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Quantity Value
Residual standard error 3.26
R2 0.612
F -statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

using two related quantities: the residual standard error (RSE) and the R2

R2

statistic.
Table 3.2 displays the RSE, the R2 statistic, and the F -statistic (to be

described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error
Recall from the model (3.5) that associated with each observation is an
error term ε. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if β0 and β1 were known), we would not be
able to perfectly predict Y from X. The RSE is an estimate of the standard
deviation of ε. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2. (3.15)

Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =
n∑

i=1

(yi − ŷi)
2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.

The RSE is considered a measure of the lack of fit of the model (3.5) to
the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On



70 3. Linear Regression

the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic
The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .

To calculate R2, we use the formula

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.17)

where TSS =
∑

(yi − ȳ)2 is the total sum of squares, and RSS is defined total sum of
squaresin (3.16). TSS measures the total variance in the response Y , and can be

thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, TSS−RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion of
variability in Y that can be explained using X. An R2 statistic that is close
to 1 indicates that a large proportion of the variability in the response is
explained by the regression. A number near 0 indicates that the regression
does not explain much of the variability in the response; this might occur
because the linear model is wrong, or the error variance σ2 is high, or both.
In Table 3.2, the R2 was 0.61, and so just under two-thirds of the variability
in sales is explained by a linear regression on TV.

The R2 statistic (3.17) has an interpretational advantage over the RSE
(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R2 value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R2 value that
is extremely close to 1, and a substantially smaller R2 value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R2 value well below 0.1 might be more realistic!
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The R2 statistic is a measure of the linear relationship between X and
Y . Recall that correlation, defined as correlation

Cor(X,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (3.18)

is also a measure of the linear relationship between X and Y .5 This sug-
gests that we might be able to use r = Cor(X,Y ) instead of R2 in order to
assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R2 = r2. In other words, the squared correlation
and the R2 statistic are identical. However, in the next section we will
discuss the multiple linear regression problem, in which we use several pre-
dictors simultaneously to predict the response. The concept of correlation
between the predictors and the response does not extend automatically to
this setting, since correlation quantifies the association between a single
pair of variables rather than between a larger number of variables. We will
see that R2 fills this role.
3.2 Multiple Linear Regression
Simple linear regression is a useful approach for predicting a response on the
basis of a single predictor variable. However, in practice we often have more
than one predictor. For example, in the Advertising data, we have examined
the relationship between sales and TV advertising. We also have data for
the amount of money spent advertising on the radio and in newspapers,
and we may want to know whether either of these two media is associated
with sales. How can we extend our analysis of the advertising data in order
to accommodate these two additional predictors?

One option is to run three separate simple linear regressions, each of
which uses a different advertising medium as a predictor. For instance,
we can fit a simple linear regression to predict sales on the basis of the
amount spent on radio advertisements. Results are shown in Table 3.3 (top
table). We find that a $1,000 increase in spending on radio advertising is
associated with an increase in sales of around 203 units. Table 3.3 (bottom
table) contains the least squares coefficients for a simple linear regression of
sales onto newspaper advertising budget. A $1,000 increase in newspaper
advertising budget is associated with an increase in sales of approximately
55 units.

However, the approach of fitting a separate simple linear regression model
for each predictor is not entirely satisfactory. First of all, it is unclear how to
make a single prediction of sales given the three advertising media budgets,
since each of the budgets is associated with a separate regression equation.

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,
it would be more correct to write ̂Cor(X,Y ); however, we omit the “hat” for ease of
notation.
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Simple regression of sales on radio
Coefficient Std. error t-statistic p-value

Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coefficient Std. error t-statistic p-value

Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115

TABLE 3.3. More simple linear regression models for the Advertising data.
Coefficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units. (Note
that the sales variable is in thousands of units, and the radio and newspaper
variables are in thousands of dollars.)

Second, each of the three regression equations ignores the other two media
in forming estimates for the regression coefficients. We will see shortly that
if the media budgets are correlated with each other in the 200 markets
in our data set, then this can lead to very misleading estimates of the
association between each media budget and sales.

Instead of fitting a separate simple linear regression model for each pre-
dictor, a better approach is to extend the simple linear regression model
(3.5) so that it can directly accommodate multiple predictors. We can do
this by giving each predictor a separate slope coefficient in a single model.
In general, suppose that we have p distinct predictors. Then the multiple
linear regression model takes the form

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε, (3.19)

where Xj represents the jth predictor and βj quantifies the association
between that variable and the response. We interpret βj as the average
effect on Y of a one unit increase in Xj , holding all other predictors fixed.
In the advertising example, (3.19) becomes

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper+ ε. (3.20)

3.2.1 Estimating the Regression Coefficients
As was the case in the simple linear regression setting, the regression coef-
ficients β0,β1, . . . ,βp in (3.19) are unknown, and must be estimated. Given
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estimates β̂0, β̂1, . . . , β̂p, we can make predictions using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp. (3.21)

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0,β1, . . . ,βp

to minimize the sum of squared residuals

RSS =
n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · ·− β̂pxip)
2. (3.22)

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression esti-
mates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV,
radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000 on
radio advertising is associated with approximately 189 units of additional
sales. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper
in the multiple regression model is close to zero, and the corresponding p-
value is no longer significant, with a value around 0.86. This illustrates that
the simple and multiple regression coefficients can be quite different. This
difference stems from the fact that in the simple regression case, the slope
term represents the average increase in product sales associated with a
$1,000 increase in newspaper advertising, ignoring other predictors such as
TV and radio. By contrast, in the multiple regression setting, the coefficient
for newspaper represents the average increase in product sales associated
with increasing newspaper spending by $1,000 while holding TV and radio
fixed.

Does it make sense for the multiple regression to suggest no relationship
between sales and newspaper while the simple linear regression implies the
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X1

X2

Y

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

opposite? In fact it does. Consider the correlation matrix for the three
predictor variables and response variable, displayed in Table 3.5. Notice
that the correlation between radio and newspaper is 0.35. This indicates
that markets with high newspaper advertising tend to also have high ra-
dio advertising. Now suppose that the multiple regression is correct and
newspaper advertising is not associated with sales, but radio advertising
is associated with sales. Then in markets where we spend more on radio
our sales will tend to be higher, and as our correlation matrix shows, we
also tend to spend more on newspaper advertising in those same mar-
kets. Hence, in a simple linear regression which only examines sales versus

Coefficient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper −0.001 0.0059 −0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on TV, radio, and newspaper
advertising budgets.
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TV radio newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the
Advertising data.

newspaper, we will observe that higher values of newspaper tend to be as-
sociated with higher values of sales, even though newspaper advertising is
not directly associated with sales. So newspaper advertising is a surrogate
for radio advertising; newspaper gets “credit” for the association between
radio on sales.

This slightly counterintuitive result is very common in many real life
situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one has (yet) suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of shark attacks onto ice cream sales
and temperature reveals that, as intuition implies, ice cream sales is no
longer a significant predictor after adjusting for temperature.

3.2.2 Some Important Questions
When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1. Is at least one of the predictors X1, X2, . . . , Xp useful in predicting
the response?

2. Do all the predictors help to explain Y , or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?
Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
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Quantity Value
Residual standard error 1.69
R2 0.897
F -statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

can simply check whether β1 = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether β1 = β2 = · · · = βp = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

Ha : at least one βj is non-zero.

This hypothesis test is performed by computing the F -statistic,
F -statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
, (3.23)

where, as with simple linear regression, TSS =
∑

(yi − ȳ)2 and RSS =∑
(yi− ŷi)2. If the linear model assumptions are correct, one can show that

E{RSS/(n− p− 1)} = σ2

and that, provided H0 is true,

E{(TSS− RSS)/p} = σ2.

Hence, when there is no relationship between the response and predictors,
one would expect the F -statistic to take on a value close to 1. On the other
hand, if Ha is true, then E{(TSS − RSS)/p} > σ2, so we expect F to be
greater than 1.

The F -statistic for the multiple linear regression model obtained by re-
gressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this
example the F -statistic is 570. Since this is far larger than 1, it provides
compelling evidence against the null hypothesis H0. In other words, the
large F -statistic suggests that at least one of the advertising media must
be related to sales. However, what if the F -statistic had been closer to
1? How large does the F -statistic need to be before we can reject H0 and
conclude that there is a relationship? It turns out that the answer depends
on the values of n and p. When n is large, an F -statistic that is just a
little larger than 1 might still provide evidence against H0. In contrast,
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a larger F -statistic is needed to reject H0 if n is small. When H0 is true
and the errors εi have a normal distribution, the F -statistic follows an
F -distribution.6 For any given value of n and p, any statistical software
package can be used to compute the p-value associated with the F -statistic
using this distribution. Based on this p-value, we can determine whether
or not to reject H0. For the advertising data, the p-value associated with
the F -statistic in Table 3.6 is essentially zero, so we have extremely strong
evidence that at least one of the media is associated with increased sales.

In (3.23) we are testing H0 that all the coefficients are zero. Sometimes
we want to test that a particular subset of q of the coefficients are zero.
This corresponds to a null hypothesis

H0 : βp−q+1 = βp−q+2 = · · · = βp = 0,

where for convenience we have put the variables chosen for omission at the
end of the list. In this case we fit a second model that uses all the variables
except those last q. Suppose that the residual sum of squares for that model
is RSS0. Then the appropriate F -statistic is

F =
(RSS0 − RSS)/q

RSS/(n− p− 1)
. (3.24)

Notice that in Table 3.4, for each individual predictor a t-statistic and
a p-value were reported. These provide information about whether each
individual predictor is related to the response, after adjusting for the other
predictors. It turns out that each of these is exactly equivalent7 to the F -
test that omits that single variable from the model, leaving all the others
in—i.e. q=1 in (3.24). So it reports the partial effect of adding that variable
to the model. For instance, as we discussed earlier, these p-values indicate
that TV and radio are related to sales, but that there is no evidence that
newspaper is associated with sales, when TV and radio are held fixed.

Given these individual p-values for each variable, why do we need to look
at the overall F -statistic? After all, it seems likely that if any one of the
p-values for the individual variables is very small, then at least one of the
predictors is related to the response. However, this logic is flawed, especially
when the number of predictors p is large.

For instance, consider an example in which p = 100 and H0 : β1 = β2 =
· · · = βp = 0 is true, so no variable is truly associated with the response. In
this situation, about 5 % of the p-values associated with each variable (of
the type shown in Table 3.4) will be below 0.05 by chance. In other words,
we expect to see approximately five small p-values even in the absence of

6Even if the errors are not normally-distributed, the F -statistic approximately follows
an F -distribution provided that the sample size n is large.

7The square of each t-statistic is the corresponding F -statistic.
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any true association between the predictors and the response.8 In fact, it
is likely that we will observe at least one p-value below 0.05 by chance!
Hence, if we use the individual t-statistics and associated p-values in order
to decide whether or not there is any association between the variables and
the response, there is a very high chance that we will incorrectly conclude
that there is a relationship. However, the F -statistic does not suffer from
this problem because it adjusts for the number of predictors. Hence, if H0

is true, there is only a 5 % chance that the F -statistic will result in a p-
value below 0.05, regardless of the number of predictors or the number of
observations.

The approach of using an F -statistic to test for any association between
the predictors and the response works when p is relatively small, and cer-
tainly small compared to n. However, sometimes we have a very large num-
ber of variables. If p > n then there are more coefficients βj to estimate
than observations from which to estimate them. In this case we cannot
even fit the multiple linear regression model using least squares, so the F -
statistic cannot be used, and neither can most of the other concepts that
we have seen so far in this chapter. When p is large, some of the approaches
discussed in the next section, such as forward selection, can be used. This
high-dimensional setting is discussed in greater detail in Chapter 6. high-

dimensional
Two: Deciding on Important Variables
As discussed in the previous section, the first step in a multiple regression
analysis is to compute the F -statistic and to examine the associated p-
value. If we conclude on the basis of that p-value that at least one of the
predictors is related to the response, then it is natural to wonder which are
the guilty ones! We could look at the individual p-values as in Table 3.4,
but as discussed (and as further explored in Chapter 13), if p is large we
are likely to make some false discoveries.

It is possible that all of the predictors are associated with the response,
but it is more often the case that the response is only associated with
a subset of the predictors. The task of determining which predictors are
associated with the response, in order to fit a single model involving only
those predictors, is referred to as variable selection. The variable selection variable

selectionproblem is studied extensively in Chapter 6, and so here we will provide
only a brief outline of some classical approaches.

Ideally, we would like to perform variable selection by trying out a lot of
different models, each containing a different subset of the predictors. For
instance, if p = 2, then we can consider four models: (1) a model contain-
ing no variables, (2) a model containing X1 only, (3) a model containing
X2 only, and (4) a model containing both X1 and X2. We can then se-

8This is related to the important concept of KmHiBTH2 i2biBM;, which is the focus of
Chapter 13.
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lect the best model out of all of the models that we have considered. How
do we determine which model is best? Various statistics can be used to
judge the quality of a model. These include Mallow’s Cp, Akaike informa- Mallow’s Cption criterion (AIC), Bayesian information criterion (BIC), and adjusted

Akaike
information
criterion
Bayesian
information
criterion

R2. These are discussed in more detail in Chapter 6. We can also deter-

adjusted R2

mine which model is best by plotting various model outputs, such as the
residuals, in order to search for patterns.

Unfortunately, there are a total of 2p models that contain subsets of p
variables. This means that even for moderate p, trying out every possible
subset of the predictors is infeasible. For instance, we saw that if p = 2, then
there are 22 = 4 models to consider. But if p = 30, then we must consider
230 = 1,073,741,824 models! This is not practical. Therefore, unless p is very
small, we cannot consider all 2p models, and instead we need an automated
and efficient approach to choose a smaller set of models to consider. There
are three classical approaches for this task:

• Forward selection. We begin with the null model—a model that con- forward
selection
null model

tains an intercept but no predictors. We then fit p simple linear re-
gressions and add to the null model the variable that results in the
lowest RSS. We then add to that model the variable that results
in the lowest RSS for the new two-variable model. This approach is
continued until some stopping rule is satisfied.

• Backward selection. We start with all variables in the model, and backward
selectionremove the variable with the largest p-value—that is, the variable

that is the least statistically significant. The new (p − 1)-variable
model is fit, and the variable with the largest p-value is removed. This
procedure continues until a stopping rule is reached. For instance, we
may stop when all remaining variables have a p-value below some
threshold.

• Mixed selection. This is a combination of forward and backward se- mixed
selectionlection. We start with no variables in the model, and as with forward

selection, we add the variable that provides the best fit. We con-
tinue to add variables one-by-one. Of course, as we noted with the
Advertising example, the p-values for variables can become larger as
new predictors are added to the model. Hence, if at any point the
p-value for one of the variables in the model rises above a certain
threshold, then we remove that variable from the model. We con-
tinue to perform these forward and backward steps until all variables
in the model have a sufficiently low p-value, and all variables outside
the model would have a large p-value if added to the model.

Backward selection cannot be used if p > n, while forward selection can
always be used. Forward selection is a greedy approach, and might include
variables early that later become redundant. Mixed selection can remedy
this.
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Three: Model Fit
Two of the most common numerical measures of model fit are the RSE and
R2, the fraction of variance explained. These quantities are computed and
interpreted in the same fashion as for simple linear regression.

Recall that in simple regression, R2 is the square of the correlation of the
response and the variable. In multiple linear regression, it turns out that it
equals Cor(Y, Ŷ )2, the square of the correlation between the response and
the fitted linear model; in fact one property of the fitted linear model is
that it maximizes this correlation among all possible linear models.

An R2 value close to 1 indicates that the model explains a large por-
tion of the variance in the response variable. As an example, we saw in
Table 3.6 that for the Advertising data, the model that uses all three ad-
vertising media to predict sales has an R2 of 0.8972. On the other hand,
the model that uses only TV and radio to predict sales has an R2 value
of 0.89719. In other words, there is a small increase in R2 if we include
newspaper advertising in the model that already contains TV and radio
advertising, even though we saw earlier that the p-value for newspaper ad-
vertising in Table 3.4 is not significant. It turns out that R2 will always
increase when more variables are added to the model, even if those vari-
ables are only weakly associated with the response. This is due to the fact
that adding another variable always results in a decrease in the residual
sum of squares on the training data (though not necessarily the testing
data). Thus, the R2 statistic, which is also computed on the training data,
must increase. The fact that adding newspaper advertising to the model
containing only TV and radio advertising leads to just a tiny increase in
R2 provides additional evidence that newspaper can be dropped from the
model. Essentially, newspaper provides no real improvement in the model
fit to the training samples, and its inclusion will likely lead to poor results
on independent test samples due to overfitting.

By contrast, the model containing only TV as a predictor had an R2 of
0.61 (Table 3.2). Adding radio to the model leads to a substantial improve-
ment in R2. This implies that a model that uses TV and radio expenditures
to predict sales is substantially better than one that uses only TV advertis-
ing. We could further quantify this improvement by looking at the p-value
for the radio coefficient in a model that contains only TV and radio as
predictors.

The model that contains only TV and radio as predictors has an RSE
of 1.681, and the model that also contains newspaper as a predictor has
an RSE of 1.686 (Table 3.6). In contrast, the model that contains only TV
has an RSE of 3.26 (Table 3.2). This corroborates our previous conclusion
that a model that uses TV and radio expenditures to predict sales is much
more accurate (on the training data) than one that only uses TV spending.
Furthermore, given that TV and radio expenditures are used as predictors,
there is no point in also using newspaper spending as a predictor in the
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Radio

TV

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data. The positive residuals
(those visible above the surface), tend to lie along the 45-degree line, where TV
and Radio budgets are split evenly. The negative residuals (most not visible), tend
to lie away from this line, where budgets are more lopsided.

model. The observant reader may wonder how RSE can increase when
newspaper is added to the model given that RSS must decrease. In general
RSE is defined as

RSE =

√
1

n− p− 1
RSS, (3.25)

which simplifies to (3.15) for a simple linear regression. Thus, models with
more variables can have higher RSE if the decrease in RSS is small relative
to the increase in p.

In addition to looking at the RSE and R2 statistics just discussed, it
can be useful to plot the data. Graphical summaries can reveal problems
with a model that are not visible from numerical statistics. For example,
Figure 3.5 displays a three-dimensional plot of TV and radio versus sales.
We see that some observations lie above and some observations lie below
the least squares regression plane. In particular, the linear model seems to
overestimate sales for instances in which most of the advertising money
was spent exclusively on either TV or radio. It underestimates sales for
instances where the budget was split between the two media. This pro-
nounced non-linear pattern suggests a synergy or interaction effect between interactionthe advertising media, whereby combining the media together results in a
bigger boost to sales than using any single medium. In Section 3.3.2, we
will discuss extending the linear model to accommodate such synergistic
effects through the use of interaction terms.
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Four: Predictions
Once we have fit the multiple regression model, it is straightforward to
apply (3.21) in order to predict the response Y on the basis of a set of
values for the predictors X1, X2, . . . , Xp. However, there are three sorts of
uncertainty associated with this prediction.

1. The coefficient estimates β̂0, β̂1, . . . , β̂p are estimates for β0,β1, . . . ,βp.
That is, the least squares plane

Ŷ = β̂0 + β̂1X1 + · · ·+ β̂pXp

is only an estimate for the true population regression plane

f(X) = β0 + β1X1 + · · ·+ βpXp.

The inaccuracy in the coefficient estimates is related to the reducible
error from Chapter 2. We can compute a confidence interval in order
to determine how close Ŷ will be to f(X).

2. Of course, in practice assuming a linear model for f(X) is almost
always an approximation of reality, so there is an additional source of
potentially reducible error which we call model bias. So when we use a
linear model, we are in fact estimating the best linear approximation
to the true surface. However, here we will ignore this discrepancy,
and operate as if the linear model were correct.

3. Even if we knew f(X)—that is, even if we knew the true values
for β0,β1, . . . ,βp—the response value cannot be predicted perfectly
because of the random error ε in the model (3.20). In Chapter 2, we
referred to this as the irreducible error. How much will Y vary from
Ŷ ? We use prediction intervals to answer this question. Prediction
intervals are always wider than confidence intervals, because they
incorporate both the error in the estimate for f(X) (the reducible
error) and the uncertainty as to how much an individual point will
differ from the population regression plane (the irreducible error).

We use a confidence interval to quantify the uncertainty surrounding confidence
intervalthe average sales over a large number of cities. For example, given that

$100,000 is spent on TV advertising and $20,000 is spent on radio advertising
in each city, the 95 % confidence interval is [10,985, 11,528]. We interpret
this to mean that 95 % of intervals of this form will contain the true value of
f(X).9 On the other hand, a prediction interval can be used to quantify the prediction

interval
9In other words, if we collect a large number of data sets like the Advertising data

set, and we construct a confidence interval for the average sales on the basis of each
data set (given $100,000 in TV and $20,000 in radio advertising), then 95 % of these
confidence intervals will contain the true value of average sales.
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uncertainty surrounding sales for a particular city. Given that $100,000 is
spent on TV advertising and $20,000 is spent on radio advertising in that city
the 95 % prediction interval is [7,930, 14,580]. We interpret this to mean
that 95 % of intervals of this form will contain the true value of Y for this
city. Note that both intervals are centered at 11,256, but that the prediction
interval is substantially wider than the confidence interval, reflecting the
increased uncertainty about sales for a given city in comparison to the
average sales over many locations.

3.3 Other Considerations in the Regression Model
3.3.1 Qualitative Predictors
In our discussion so far, we have assumed that all variables in our linear
regression model are quantitative. But in practice, this is not necessarily
the case; often some predictors are qualitative.

For example, the Credit data set displayed in Figure 3.6 records variables
for a number of credit card holders. The response is balance (average credit
card debt for each individual) and there are several quantitative predictors:
age, cards (number of credit cards), education (years of education), income
(in thousands of dollars), limit (credit limit), and rating (credit rating).
Each panel of Figure 3.6 is a scatterplot for a pair of variables whose iden-
tities are given by the corresponding row and column labels. For example,
the scatterplot directly to the right of the word “Balance” depicts balance
versus age, while the plot directly to the right of “Age” corresponds to
age versus cards. In addition to these quantitative variables, we also have
four qualitative variables: own (house ownership), student (student status),
status (marital status), and region (East, West or South).

Predictors with Only Two Levels
Suppose that we wish to investigate differences in credit card balance be-
tween those who own a house and those who don’t, ignoring the other vari-
ables for the moment. If a qualitative predictor (also known as a factor) factoronly has two levels, or possible values, then incorporating it into a regres- levelsion model is very simple. We simply create an indicator or dummy variable dummy

variablethat takes on two possible numerical values.10 For example, based on the
own variable, we can create a new variable that takes the form

xi =

{
1 if ith person owns a house
0 if ith person does not own a house,

(3.26)

10In the machine learning community, the creation of dummy variables to handle
qualitative predictors is known as “one-hot encoding”.
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.

and use this variable as a predictor in the regression equation. This results
in the model

yi = β0 +β1xi + εi =

{
β0 + β1 + εi if ith person owns a house
β0 + εi if ith person does not.

(3.27)

Now β0 can be interpreted as the average credit card balance among those
who do not own, β0 + β1 as the average credit card balance among those
who do own their house, and β1 as the average difference in credit card
balance between owners and non-owners.

Table 3.7 displays the coefficient estimates and other information asso-
ciated with the model (3.27). The average credit card debt for non-owners
is estimated to be $509.80, whereas owners are estimated to carry $19.73
in additional debt for a total of $509.80 + $19.73 = $529.53. However, we
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Coefficient Std. error t-statistic p-value
Intercept 509.80 33.13 15.389 < 0.0001
own[Yes] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression
of balance onto own in the Credit data set. The linear model is given in (3.27).
That is, ownership is encoded as a dummy variable, as in (3.26).

notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance based on house ownership.

The decision to code owners as 1 and non-owners as 0 in (3.27) is ar-
bitrary, and has no effect on the regression fit, but does alter the inter-
pretation of the coefficients. If we had coded non-owners as 1 and own-
ers as 0, then the estimates for β0 and β1 would have been 529.53 and
−19.73, respectively, leading once again to a prediction of credit card debt
of $529.53 − $19.73 = $509.80 for non-owners and a prediction of $529.53
for owners. Alternatively, instead of a 0/1 coding scheme, we could create
a dummy variable

xi =

{
1 if ith person owns a house
−1 if ith person does not own a house

and use this variable in the regression equation. This results in the model

yi = β0+β1xi+εi =

{
β0 + β1 + εi if ith person owns a house
β0 − β1 + εi if ith person does not own a house.

Now β0 can be interpreted as the overall average credit card balance (ig-
noring the house ownership effect), and β1 is the amount by which house
owners and non-owners have credit card balances that are above and below
the average, respectively.11 In this example, the estimate for β0 is $519.665,
halfway between the non-owner and owner averages of $509.80 and $529.53.
The estimate for β1 is $9.865, which is half of $19.73, the average difference
between owners and non-owners. It is important to note that the final pre-
dictions for the credit balances of owners and non-owners will be identical
regardless of the coding scheme used. The only difference is in the way that
the coefficients are interpreted.

Qualitative Predictors with More than Two Levels
When a qualitative predictor has more than two levels, a single dummy
variable cannot represent all possible values. In this situation, we can create

11Technically β0 is half the sum of the average debt for house owners and the average
debt for non-house owners. Hence, β0 is exactly equal to the overall average only if the
two groups have an equal number of members.
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additional dummy variables. For example, for the region variable we create
two dummy variables. The first could be

xi1 =

{
1 if ith person is from the South
0 if ith person is not from the South,

(3.28)

and the second could be

xi2 =

{
1 if ith person is from the West
0 if ith person is not from the West.

(3.29)

Then both of these variables can be used in the regression equation, in
order to obtain the model

yi = β0+β1xi1+β2xi2+εi =






β0+β1+εi if ith person is from the South
β0+β2+εi if ith person is from the West
β0+εi if ith person is from the East.

(3.30)
Now β0 can be interpreted as the average credit card balance for individuals
from the East, β1 can be interpreted as the difference in the average balance
between people from the South versus the East, and β2 can be interpreted
as the difference in the average balance between those from the West versus
the East. There will always be one fewer dummy variable than the number
of levels. The level with no dummy variable—East in this example—is
known as the baseline. baselineFrom Table 3.8, we see that the estimated balance for the baseline, East,
is $531.00. It is estimated that those in the South will have $18.69 less
debt than those in the East, and that those in the West will have $12.50
less debt than those in the East. However, the p-values associated with the
coefficient estimates for the two dummy variables are very large, suggesting
no statistical evidence of a real difference in average credit card balance
between South and East or between West and East.12 Once again, the
level selected as the baseline category is arbitrary, and the final predictions
for each group will be the same regardless of this choice. However, the
coefficients and their p-values do depend on the choice of dummy variable
coding. Rather than rely on the individual coefficients, we can use an F -test
to test H0 : β1 = β2 = 0; this does not depend on the coding. This F -test
has a p-value of 0.96, indicating that we cannot reject the null hypothesis
that there is no relationship between balance and region.

Using this dummy variable approach presents no difficulties when in-
corporating both quantitative and qualitative predictors. For example, to
regress balance on both a quantitative variable such as income and a qual-
itative variable such as student, we must simply create a dummy variable

12There could still in theory be a difference between South and West, although the
data here does not suggest any difference.
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Coefficient Std. error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
region[South] −12.50 56.68 −0.221 0.8260
region[West] −18.69 65.02 −0.287 0.7740

TABLE 3.8. Least squares coefficient estimates associated with the regression of
balance onto region in the Credit data set. The linear model is given in (3.30).
That is, region is encoded via two dummy variables (3.28) and (3.29).

for student and then fit a multiple regression model using income and the
dummy variable as predictors for credit card balance.

There are many different ways of coding qualitative variables besides
the dummy variable approach taken here. All of these approaches lead to
equivalent model fits, but the coefficients are different and have different
interpretations, and are designed to measure particular contrasts. This topic contrastis beyond the scope of the book.

3.3.2 Extensions of the Linear Model
The standard linear regression model (3.19) provides interpretable results
and works quite well on many real-world problems. However, it makes sev-
eral highly restrictive assumptions that are often violated in practice. Two
of the most important assumptions state that the relationship between the
predictors and response are additive and linear. The additivity assumption additive

linearmeans that the association between a predictor Xj and the response Y does
not depend on the values of the other predictors. The linearity assumption
states that the change in the response Y associated with a one-unit change
in Xj is constant, regardless of the value of Xj . In later chapters of this
book, we examine a number of sophisticated methods that relax these two
assumptions. Here, we briefly examine some common classical approaches
for extending the linear model.

Removing the Additive Assumption
In our previous analysis of the Advertising data, we concluded that both TV
and radio seem to be associated with sales. The linear models that formed
the basis for this conclusion assumed that the effect on sales of increasing
one advertising medium is independent of the amount spent on the other
media. For example, the linear model (3.20) states that the average increase
in sales associated with a one-unit increase in TV is always β1, regardless
of the amount spent on radio.

However, this simple model may be incorrect. Suppose that spending
money on radio advertising actually increases the effectiveness of TV ad-
vertising, so that the slope term for TV should increase as radio increases.
In this situation, given a fixed budget of $100,000, spending half on radio
and half on TV may increase sales more than allocating the entire amount
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to either TV or to radio. In marketing, this is known as a synergy effect,
and in statistics it is referred to as an interaction effect. Figure 3.5 sug-
gests that such an effect may be present in the advertising data. Notice
that when levels of either TV or radio are low, then the true sales are lower
than predicted by the linear model. But when advertising is split between
the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

Y = β0 + β1X1 + β2X2 + ε.

According to this model, a one-unit increase in X1 is associated with an
average increase in Y of β1 units. Notice that the presence of X2 does
not alter this statement—that is, regardless of the value of X2, a one-
unit increase in X1 is associated with a β1-unit increase in Y . One way of
extending this model is to include a third predictor, called an interaction
term, which is constructed by computing the product of X1 and X2. This
results in the model

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε. (3.31)

How does inclusion of this interaction term relax the additive assumption?
Notice that (3.31) can be rewritten as

Y = β0 + (β1 + β3X2)X1 + β2X2 + ε (3.32)
= β0 + β̃1X1 + β2X2 + ε

where β̃1 = β1 + β3X2. Since β̃1 is now a function of X2, the association
between X1 and Y is no longer constant: a change in the value of X2 will
change the association between X1 and Y . A similar argument shows that
a change in the value of X1 changes the association between X2 and Y .

For example, suppose that we are interested in studying the productiv-
ity of a factory. We wish to predict the number of units produced on the
basis of the number of production lines and the total number of workers.
It seems likely that the effect of increasing the number of production lines
will depend on the number of workers, since if no workers are available
to operate the lines, then increasing the number of lines will not increase
production. This suggests that it would be appropriate to include an inter-
action term between lines and workers in a linear model to predict units.
Suppose that when we fit the model, we obtain

units ≈ 1.2 + 3.4× lines+ 0.22× workers+ 1.4× (lines× workers)
= 1.2 + (3.4 + 1.4× workers)× lines+ 0.22× workers.

In other words, adding an additional line will increase the number of units
produced by 3.4 + 1.4 × workers. Hence the more workers we have, the
stronger will be the effect of lines.
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Coefficient Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TV×radio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).

We now return to the Advertising example. A linear model that uses
radio, TV, and an interaction between the two to predict sales takes the
form

sales = β0 + β1 × TV+ β2 × radio+ β3 × (radio× TV) + ε

= β0 + (β1 + β3 × radio)× TV+ β2 × radio+ ε. (3.33)

We can interpret β3 as the increase in the effectiveness of TV advertising
associated with a one-unit increase in radio advertising (or vice-versa). The
coefficients that result from fitting the model (3.33) are given in Table 3.9.

The results in Table 3.9 strongly suggest that the model that includes the
interaction term is superior to the model that contains only main effects. main effectThe p-value for the interaction term, TV×radio, is extremely low, indicating
that there is strong evidence for Ha : β3 %= 0. In other words, it is clear that
the true relationship is not additive. The R2 for the model (3.33) is 96.8 %,
compared to only 89.7 % for the model that predicts sales using TV and
radio without an interaction term. This means that (96.8 − 89.7)/(100 −
89.7) = 69% of the variability in sales that remains after fitting the ad-
ditive model has been explained by the interaction term. The coefficient
estimates in Table 3.9 suggest that an increase in TV advertising of $1,000 is
associated with increased sales of (β̂1+β̂3×radio)×1,000 = 19+1.1×radio
units. And an increase in radio advertising of $1,000 will be associated with
an increase in sales of (β̂2 + β̂3 × TV)× 1,000 = 29 + 1.1× TV units.

In this example, the p-values associated with TV, radio, and the interac-
tion term all are statistically significant (Table 3.9), and so it is obvious
that all three variables should be included in the model. However, it is
sometimes the case that an interaction term has a very small p-value, but
the associated main effects (in this case, TV and radio) do not. The hier-
archical principle states that if we include an interaction in a model, we hierarchical

principleshould also include the main effects, even if the p-values associated with
their coefficients are not significant. In other words, if the interaction be-
tween X1 and X2 seems important, then we should include both X1 and
X2 in the model even if their coefficient estimates have large p-values. The
rationale for this principle is that if X1 × X2 is related to the response,
then whether or not the coefficients of X1 or X2 are exactly zero is of lit-
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tle interest. Also X1 ×X2 is typically correlated with X1 and X2, and so
leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and
radio, both of which are quantitative variables. However, the concept of
interactions applies just as well to qualitative variables, or to a combination
of quantitative and qualitative variables. In fact, an interaction between
a qualitative variable and a quantitative variable has a particularly nice
interpretation. Consider the Credit data set from Section 3.3.1, and suppose
that we wish to predict balance using the income (quantitative) and student
(qualitative) variables. In the absence of an interaction term, the model
takes the form

balancei ≈ β0 + β1 × incomei +

{
β2 if ith person is a student
0 if ith person is not a student

= β1 × incomei +

{
β0 + β2 if ith person is a student
β0 if ith person is not a student.

(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, β0 + β2 versus β0, but the same slope, β1. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, cre-
ated by multiplying income with the dummy variable for student. Our
model now becomes

balancei ≈ β0 + β1 × incomei +

{
β2 + β3 × incomei if student
0 if not student

=

{
(β0 + β2) + (β1 + β3)× incomei if student
β0 + β1 × incomei if not student.

(3.35)

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,
β0+β2 versus β0, as well as different slopes, β1+β3 versus β1. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-linear Relationships
As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In polynomial

regressionlater chapters, we will present more complex approaches for performing
non-linear fits in more general settings.

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)
versus horsepower is shown for a number of cars in the Auto data set. The
orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors. For example, the points in
Figure 3.8 seem to have a quadratic shape, suggesting that a model of the quadraticform

mpg = β0 + β1 × horsepower+ β2 × horsepower2 + ε (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X1 = horsepower
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower2 is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

Coefficient Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower −0.4662 0.0311 −15.0 < 0.0001
horsepower2 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower2.

and X2 = horsepower2. So we can use standard linear regression software to
estimate β0,β1, and β2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R2 of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.

If including horsepower2 led to such a big improvement in the model, why
not include horsepower3, horsepower4, or even horsepower5? The green curve
in Figure 3.8 displays the fit that results from including all polynomials up
to fifth degree in the model (3.36). The resulting fit seems unnecessarily
wiggly—that is, it is unclear that including the additional terms really has
led to a better fit to the data.
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The approach that we have just described for extending the linear model
to accommodate non-linear relationships is known as polynomial regres-
sion, since we have included polynomial functions of the predictors in the
regression model. We further explore this approach and other non-linear
extensions of the linear model in Chapter 7.

3.3.3 Potential Problems
When we fit a linear regression model to a particular data set, many prob-
lems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.

2. Correlation of error terms.

3. Non-constant variance of error terms.

4. Outliers.

5. High-leverage points.

6. Collinearity.

In practice, identifying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.

1. Non-linearity of the Data
The linear regression model assumes that there is a straight-line relation-
ship between the predictors and the response. If the true relationship is
far from linear, then virtually all of the conclusions that we draw from the
fit are suspect. In addition, the prediction accuracy of the model can be
significantly reduced.

Residual plots are a useful graphical tool for identifying non-linearity. residual plotGiven a simple linear regression model, we can plot the residuals, ei =
yi − ŷi, versus the predictor xi. In the case of a multiple regression model,
since there are multiple predictors, we instead plot the residuals versus
the predicted (or fitted) values ŷi. Ideally, the residual plot will show no fitteddiscernible pattern. The presence of a pattern may indicate a problem with
some aspect of the linear model.

The left panel of Figure 3.9 displays a residual plot from the linear re-
gression of mpg onto horsepower on the Auto data set that was illustrated in
Figure 3.8. The red line is a smooth fit to the residuals, which is displayed in
order to make it easier to identify any trends. The residuals exhibit a clear
U-shape, which provides a strong indication of non-linearity in the data.
In contrast, the right-hand panel of Figure 3.9 displays the residual plot
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FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto
data set. In each plot, the red line is a smooth fit to the residuals, intended to make
it easier to identify a trend. Left: A linear regression of mpg on horsepower. A
strong pattern in the residuals indicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower2. There is little pattern in the
residuals.

that results from the model (3.36), which contains a quadratic term. There
appears to be little pattern in the residuals, suggesting that the quadratic
term improves the fit to the data.

If the residual plot indicates that there are non-linear associations in the
data, then a simple approach is to use non-linear transformations of the
predictors, such as logX,

√
X, and X2, in the regression model. In the

later chapters of this book, we will discuss other more advanced non-linear
approaches for addressing this issue.

2. Correlation of Error Terms
An important assumption of the linear regression model is that the error
terms, ε1, ε2, . . . , εn, are uncorrelated. What does this mean? For instance,
if the errors are uncorrelated, then the fact that εi is positive provides
little or no information about the sign of εi+1. The standard errors that
are computed for the estimated regression coefficients or the fitted values
are based on the assumption of uncorrelated error terms. If in fact there is
correlation among the error terms, then the estimated standard errors will
tend to underestimate the true standard errors. As a result, confidence and
prediction intervals will be narrower than they should be. For example,
a 95 % confidence interval may in reality have a much lower probability
than 0.95 of containing the true value of the parameter. In addition, p-
values associated with the model will be lower than they should be; this
could cause us to erroneously conclude that a parameter is statistically
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significant. In short, if the error terms are correlated, we may have an
unwarranted sense of confidence in our model.

As an extreme example, suppose we accidentally doubled our data, lead-
ing to observations and error terms identical in pairs. If we ignored this, our
standard error calculations would be as if we had a sample of size 2n, when
in fact we have only n samples. Our estimated parameters would be the
same for the 2n samples as for the n samples, but the confidence intervals
would be narrower by a factor of

√
2!

Why might correlations among the error terms occur? Such correlations
frequently occur in the context of time series data, which consists of ob- time seriesservations for which measurements are obtained at discrete points in time.
In many cases, observations that are obtained at adjacent time points will
have positively correlated errors. In order to determine if this is the case for
a given data set, we can plot the residuals from our model as a function of
time. If the errors are uncorrelated, then there should be no discernible pat-
tern. On the other hand, if the error terms are positively correlated, then
we may see tracking in the residuals—that is, adjacent residuals may have trackingsimilar values. Figure 3.10 provides an illustration. In the top panel, we see
the residuals from a linear regression fit to data generated with uncorre-
lated errors. There is no evidence of a time-related trend in the residuals.
In contrast, the residuals in the bottom panel are from a data set in which
adjacent errors had a correlation of 0.9. Now there is a clear pattern in the
residuals—adjacent residuals tend to take on similar values. Finally, the
center panel illustrates a more moderate case in which the residuals had a
correlation of 0.5. There is still evidence of tracking, but the pattern is less
clear.

Many methods have been developed to properly take account of corre-
lations in the error terms in time series data. Correlation among the error
terms can also occur outside of time series data. For instance, consider a
study in which individuals’ heights are predicted from their weights. The
assumption of uncorrelated errors could be violated if some of the indi-
viduals in the study are members of the same family, eat the same diet,
or have been exposed to the same environmental factors. In general, the
assumption of uncorrelated errors is extremely important for linear regres-
sion as well as for other statistical methods, and good experimental design
is crucial in order to mitigate the risk of such correlations.

3. Non-constant Variance of Error Terms
Another important assumption of the linear regression model is that the
error terms have a constant variance, Var(εi) = σ2. The standard errors,
confidence intervals, and hypothesis tests associated with the linear model
rely upon this assumption.

Unfortunately, it is often the case that the variances of the error terms are
non-constant. For instance, the variances of the error terms may increase
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FIGURE 3.10. Plots of residuals from simulated time series data sets generated
with differing levels of correlation ρ between error terms for adjacent time points.

with the value of the response. One can identify non-constant variances in
the errors, or heteroscedasticity, from the presence of a funnel shape in hetero-

scedasticitythe residual plot. An example is shown in the left-hand panel of Figure 3.11,
in which the magnitude of the residuals tends to increase with the fitted
values. When faced with this problem, one possible solution is to trans-
form the response Y using a concave function such as log Y or

√
Y . Such

a transformation results in a greater amount of shrinkage of the larger re-
sponses, leading to a reduction in heteroscedasticity. The right-hand panel
of Figure 3.11 displays the residual plot after transforming the response
using log Y . The residuals now appear to have constant variance, though
there is some evidence of a slight non-linear relationship in the data.

Sometimes we have a good idea of the variance of each response. For
example, the ith response could be an average of ni raw observations. If
each of these raw observations is uncorrelated with variance σ2, then their
average has variance σ2

i = σ2/ni. In this case a simple remedy is to fit our
model by weighted least squares, with weights proportional to the inverse weighted

least squares
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FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The response has been log transformed, and
there is now no evidence of heteroscedasticity.

variances—i.e. wi = ni in this case. Most linear regression software allows
for observation weights.

4. Outliers
An outlier is a point for which yi is far from the value predicted by the outliermodel. Outliers can arise for a variety of reasons, such as incorrect recording
of an observation during data collection.

The red point (observation 20) in the left-hand panel of Figure 3.12
illustrates a typical outlier. The red solid line is the least squares regression
fit, while the blue dashed line is the least squares fit after removal of the
outlier. In this case, removing the outlier has little effect on the least squares
line: it leads to almost no change in the slope, and a miniscule reduction
in the intercept. It is typical for an outlier that does not have an unusual
predictor value to have little effect on the least squares fit. However, even
if an outlier does not have much effect on the least squares fit, it can cause
other problems. For instance, in this example, the RSE is 1.09 when the
outlier is included in the regression, but it is only 0.77 when the outlier
is removed. Since the RSE is used to compute all confidence intervals and
p-values, such a dramatic increase caused by a single data point can have
implications for the interpretation of the fit. Similarly, inclusion of the
outlier causes the R2 to decline from 0.892 to 0.805.

Residual plots can be used to identify outliers. In this example, the out-
lier is clearly visible in the residual plot illustrated in the center panel of
Figure 3.12. But in practice, it can be difficult to decide how large a resid-
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FIGURE 3.12. Left: The least squares regression line is shown in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between −3 and 3.
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FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its X2 value, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.

ual needs to be before we consider the point to be an outlier. To address
this problem, instead of plotting the residuals, we can plot the studentized
residuals, computed by dividing each residual ei by its estimated standard studentized

residualerror. Observations whose studentized residuals are greater than 3 in abso-
lute value are possible outliers. In the right-hand panel of Figure 3.12, the
outlier’s studentized residual exceeds 6, while all other observations have
studentized residuals between −2 and 2.

If we believe that an outlier has occurred due to an error in data collec-
tion or recording, then one solution is to simply remove the observation.
However, care should be taken, since an outlier may instead indicate a
deficiency with the model, such as a missing predictor.

5. High Leverage Points
We just saw that outliers are observations for which the response yi is
unusual given the predictor xi. In contrast, observations with high leverage high

leverage
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have an unusual value for xi. For example, observation 41 in the left-hand
panel of Figure 3.13 has high leverage, in that the predictor value for this
observation is large relative to the other observations. (Note that the data
displayed in Figure 3.13 are the same as the data displayed in Figure 3.12,
but with the addition of a single high leverage observation.) The red solid
line is the least squares fit to the data, while the blue dashed line is the
fit produced when observation 41 is removed. Comparing the left-hand
panels of Figures 3.12 and 3.13, we observe that removing the high leverage
observation has a much more substantial impact on the least squares line
than removing the outlier. In fact, high leverage observations tend to have
a sizable impact on the estimated regression line. It is cause for concern if
the least squares line is heavily affected by just a couple of observations,
because any problems with these points may invalidate the entire fit. For
this reason, it is important to identify high leverage observations.

In a simple linear regression, high leverage observations are fairly easy to
identify, since we can simply look for observations for which the predictor
value is outside of the normal range of the observations. But in a multiple
linear regression with many predictors, it is possible to have an observation
that is well within the range of each individual predictor’s values, but that
is unusual in terms of the full set of predictors. An example is shown in
the center panel of Figure 3.13, for a data set with two predictors, X1 and
X2. Most of the observations’ predictor values fall within the blue dashed
ellipse, but the red observation is well outside of this range. But neither its
value for X1 nor its value for X2 is unusual. So if we examine just X1 or
just X2, we will fail to notice this high leverage point. This problem is more
pronounced in multiple regression settings with more than two predictors,
because then there is no simple way to plot all dimensions of the data
simultaneously.

In order to quantify an observation’s leverage, we compute the leverage
statistic. A large value of this statistic indicates an observation with high leverage

statisticleverage. For a simple linear regression,

hi =
1

n
+

(xi − x̄)2∑n
i′=1(xi′ − x̄)2

. (3.37)

It is clear from this equation that hi increases with the distance of xi from x̄.
There is a simple extension of hi to the case of multiple predictors, though
we do not provide the formula here. The leverage statistic hi is always
between 1/n and 1, and the average leverage for all the observations is
always equal to (p+1)/n. So if a given observation has a leverage statistic
that greatly exceeds (p+1)/n, then we may suspect that the corresponding
point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized
residuals versus hi for the data in the left-hand panel of Figure 3.13. Ob-
servation 41 stands out as having a very high leverage statistic as well as a
high studentized residual. In other words, it is an outlier as well as a high



100 3. Linear Regression

2000 4000 6000 8000 12000

3
0

4
0

5
0

6
0

7
0

8
0

Limit

A
g
e

2000 4000 6000 8000 12000

2
0
0

4
0
0

6
0
0

8
0
0

Limit
R

a
tin

g

FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left:
A plot of age versus limit. These two variables are not collinear. Right: A plot
of rating versus limit. There is high collinearity.

leverage observation. This is a particularly dangerous combination! This
plot also reveals the reason that observation 20 had relatively little effect
on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity
Collinearity refers to the situation in which two or more predictor variables collinearityare closely related to one another. The concept of collinearity is illustrated
in Figure 3.14 using the Credit data set. In the left-hand panel of Fig-
ure 3.14, the two predictors limit and age appear to have no obvious rela-
tionship. In contrast, in the right-hand panel of Figure 3.14, the predictors
limit and rating are very highly correlated with each other, and we say
that they are collinear. The presence of collinearity can pose problems in
the regression context, since it can be difficult to separate out the indi-
vidual effects of collinear variables on the response. In other words, since
limit and rating tend to increase or decrease together, it can be difficult to
determine how each one separately is associated with the response, balance.

Figure 3.15 illustrates some of the difficulties that can result from collinear-
ity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22)
associated with different possible coefficient estimates for the regression
of balance on limit and age. Each ellipse represents a set of coefficients
that correspond to the same RSS, with ellipses nearest to the center tak-
ing on the lowest values of RSS. The black dots and associated dashed
lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
β for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (βLimit,βRating) with a similar value for RSS.

coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.

In contrast, the right-hand panel of Figure 3.15 displays contour plots
of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the limit coefficient now runs
from roughly −0.2 to 0.2; this is an eight-fold increase over the plausible
range of the limit coefficient in the regression with age. Interestingly, even
though the limit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the limit and rating
coefficients to be −0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.

Since collinearity reduces the accuracy of the estimates of the regression
coefficients, it causes the standard error for β̂j to grow. Recall that the
t-statistic for each predictor is calculated by dividing β̂j by its standard
error. Consequently, collinearity results in a decline in the t-statistic. As a
result, in the presence of collinearity, we may fail to reject H0 : βj = 0. This
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Coefficient Std. error t-statistic p-value
Intercept −173.411 43.828 −3.957 < 0.0001

Model 1 age −2.292 0.672 −3.407 0.0007
limit 0.173 0.005 34.496 < 0.0001
Intercept −377.537 45.254 −8.343 < 0.0001

Model 2 rating 2.202 0.952 2.312 0.0213
limit 0.025 0.064 0.384 0.7012

TABLE 3.11. The results for two multiple regression models involving the Credit
data set are shown. Model 1 is a regression of balance on age and limit, and
Model 2 a regression of balance on rating and limit. The standard error of
β̂limit increases 12-fold in the second regression, due to collinearity.

means that the power of the hypothesis test—the probability of correctly power
detecting a non-zero coefficient—is reduced by collinearity.

Table 3.11 compares the coefficient estimates obtained from two separate
multiple regression models. The first is a regression of balance on age and
limit, and the second is a regression of balance on rating and limit. In the
first regression, both age and limit are highly significant with very small p-
values. In the second, the collinearity between limit and rating has caused
the standard error for the limit coefficient estimate to increase by a factor
of 12 and the p-value to increase to 0.701. In other words, the importance
of the limit variable has been masked due to the presence of collinearity.
To avoid such a situation, it is desirable to identify and address potential
collinearity problems while fitting the model.

A simple way to detect collinearity is to look at the correlation matrix
of the predictors. An element of this matrix that is large in absolute value
indicates a pair of highly correlated variables, and therefore a collinearity
problem in the data. Unfortunately, not all collinearity problems can be
detected by inspection of the correlation matrix: it is possible for collinear-
ity to exist between three or more variables even if no pair of variables
has a particularly high correlation. We call this situation multicollinearity. multi-

collinearityInstead of inspecting the correlation matrix, a better way to assess multi-
collinearity is to compute the variance inflation factor (VIF). The VIF is variance

inflation
factor

the ratio of the variance of β̂j when fitting the full model divided by the
variance of β̂j if fit on its own. The smallest possible value for VIF is 1,
which indicates the complete absence of collinearity. Typically in practice
there is a small amount of collinearity among the predictors. As a rule of
thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of
collinearity. The VIF for each variable can be computed using the formula

VIF(β̂j) =
1

1−R2
Xj |X−j

,
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where R2
Xj |X−j

is the R2 from a regression of Xj onto all of the other
predictors. If R2

Xj |X−j
is close to one, then collinearity is present, and so

the VIF will be large.
In the Credit data, a regression of balance on age, rating, and limit

indicates that the predictors have VIF values of 1.01, 160.67, and 160.59.
As we suspected, there is considerable collinearity in the data!

When faced with the problem of collinearity, there are two simple solu-
tions. The first is to drop one of the problematic variables from the regres-
sion. This can usually be done without much compromise to the regression
fit, since the presence of collinearity implies that the information that this
variable provides about the response is redundant in the presence of the
other variables. For instance, if we regress balance onto age and limit,
without the rating predictor, then the resulting VIF values are close to
the minimum possible value of 1, and the R2 drops from 0.754 to 0.75.
So dropping rating from the set of predictors has effectively solved the
collinearity problem without compromising the fit. The second solution is
to combine the collinear variables together into a single predictor. For in-
stance, we might take the average of standardized versions of limit and
rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan
We now briefly return to the seven questions about the Advertising data
that we set out to answer at the beginning of this chapter.

1. Is there a relationship between sales and advertising budget?
This question can be answered by fitting a multiple regression model
of sales onto TV, radio, and newspaper, as in (3.20), and testing the
hypothesis H0 : βTV = βradio = βnewspaper = 0. In Section 3.2.2,
we showed that the F -statistic can be used to determine whether
or not we should reject this null hypothesis. In this case the p-value
corresponding to the F -statistic in Table 3.6 is very low, indicating
clear evidence of a relationship between advertising and sales.

2. How strong is the relationship?
We discussed two measures of model accuracy in Section 3.1.3. First,
the RSE estimates the standard deviation of the response from the
population regression line. For the Advertising data, the RSE is 1.69
units while the mean value for the response is 14.022, indicating a
percentage error of roughly 12 %. Second, the R2 statistic records
the percentage of variability in the response that is explained by
the predictors. The predictors explain almost 90 % of the variance in
sales. The RSE and R2 statistics are displayed in Table 3.6.
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3. Which media are associated with sales?
To answer this question, we can examine the p-values associated with
each predictor’s t-statistic (Section 3.1.2). In the multiple linear re-
gression displayed in Table 3.4, the p-values for TV and radio are low,
but the p-value for newspaper is not. This suggests that only TV and
radio are related to sales. In Chapter 6 we explore this question in
greater detail.

4. How large is the association between each medium and sales?
We saw in Section 3.1.2 that the standard error of β̂j can be used to
construct confidence intervals for βj . For the Advertising data, we
can use the results in Table 3.4 to compute the 95 % confidence inter-
vals for the coefficients in a multiple regression model using all three
media budgets as predictors. The confidence intervals are as follows:
(0.043, 0.049) for TV, (0.172, 0.206) for radio, and (−0.013, 0.011) for
newspaper. The confidence intervals for TV and radio are narrow and
far from zero, providing evidence that these media are related to
sales. But the interval for newspaper includes zero, indicating that
the variable is not statistically significant given the values of TV and
radio.
We saw in Section 3.3.3 that collinearity can result in very wide stan-
dard errors. Could collinearity be the reason that the confidence in-
terval associated with newspaper is so wide? The VIF scores are 1.005,
1.145, and 1.145 for TV, radio, and newspaper, suggesting no evidence
of collinearity.
In order to assess the association of each medium individually on
sales, we can perform three separate simple linear regressions. Re-
sults are shown in Tables 3.1 and 3.3. There is evidence of an ex-
tremely strong association between TV and sales and between radio
and sales. There is evidence of a mild association between newspaper
and sales, when the values of TV and radio are ignored.

5. How accurately can we predict future sales?
The response can be predicted using (3.21). The accuracy associ-
ated with this estimate depends on whether we wish to predict an
individual response, Y = f(X) + ε, or the average response, f(X)
(Section 3.2.2). If the former, we use a prediction interval, and if
the latter, we use a confidence interval. Prediction intervals will al-
ways be wider than confidence intervals because they account for the
uncertainty associated with ε, the irreducible error.

6. Is the relationship linear?
In Section 3.3.3, we saw that residual plots can be used in order to
identify non-linearity. If the relationships are linear, then the residual
plots should display no pattern. In the case of the Advertising data,
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we observe a non-linear effect in Figure 3.5, though this effect could
also be observed in a residual plot. In Section 3.3.2, we discussed the
inclusion of transformations of the predictors in the linear regression
model in order to accommodate non-linear relationships.

7. Is there synergy among the advertising media?
The standard linear regression model assumes an additive relation-
ship between the predictors and the response. An additive model
is easy to interpret because the association between each predictor
and the response is unrelated to the values of the other predictors.
However, the additive assumption may be unrealistic for certain data
sets. In Section 3.3.2, we showed how to include an interaction term
in the regression model in order to accommodate non-additive rela-
tionships. A small p-value associated with the interaction term indi-
cates the presence of such relationships. Figure 3.5 suggested that the
Advertising data may not be additive. Including an interaction term
in the model results in a substantial increase in R2, from around 90 %
to almost 97 %.

3.5 Comparison of Linear Regression
with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric
approach because it assumes a linear functional form for f(X). Parametric
methods have several advantages. They are often easy to fit, because one
need estimate only a small number of coefficients. In the case of linear re-
gression, the coefficients have simple interpretations, and tests of statistical
significance can be easily performed. But parametric methods do have a
disadvantage: by construction, they make strong assumptions about the
form of f(X). If the specified functional form is far from the truth, and
prediction accuracy is our goal, then the parametric method will perform
poorly. For instance, if we assume a linear relationship between X and Y
but the true relationship is far from linear, then the resulting model will
provide a poor fit to the data, and any conclusions drawn from it will be
suspect.

In contrast, non-parametric methods do not explicitly assume a para-
metric form for f(X), and thereby provide an alternative and more flexi-
ble approach for performing regression. We discuss various non-parametric
methods in this book. Here we consider one of the simplest and best-known
non-parametric methods, K-nearest neighbors regression (KNN regression).

K-nearest
neighbors
regression

The KNN regression method is closely related to the KNN classifier dis-
cussed in Chapter 2. Given a value for K and a prediction point x0, KNN
regression first identifies the K training observations that are closest to
x0, represented by N0. It then estimates f(x0) using the average of all the
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FIGURE 3.16. Plots of f̂(X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K = 1 results in a rough step function
fit. Right: K = 9 produces a much smoother fit.

training responses in N0. In other words,

f̂(x0) =
1

K

∑

xi∈N0

yi.

Figure 3.16 illustrates two KNN fits on a data set with p = 2 predictors. The
fit with K = 1 is shown in the left-hand panel, while the right-hand panel
corresponds to K = 9. We see that when K = 1, the KNN fit perfectly
interpolates the training observations, and consequently takes the form
of a step function. When K = 9, the KNN fit still is a step function, but
averaging over nine observations results in much smaller regions of constant
prediction, and consequently a smoother fit. In general, the optimal value
for K will depend on the bias-variance tradeoff, which we introduced in
Chapter 2. A small value for K provides the most flexible fit, which will
have low bias but high variance. This variance is due to the fact that the
prediction in a given region is entirely dependent on just one observation.
In contrast, larger values of K provide a smoother and less variable fit; the
prediction in a region is an average of several points, and so changing one
observation has a smaller effect. However, the smoothing may cause bias by
masking some of the structure in f(X). In Chapter 5, we introduce several
approaches for estimating test error rates. These methods can be used to
identify the optimal value of K in KNN regression.

In what setting will a parametric approach such as least squares linear re-
gression outperform a non-parametric approach such as KNN regression?
The answer is simple: the parametric approach will outperform the non-
parametric approach if the parametric form that has been selected is close
to the true form of f . Figure 3.17 provides an example with data generated
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from a one-dimensional linear regression model. The black solid lines rep-
resent f(X), while the blue curves correspond to the KNN fits using K = 1
and K = 9. In this case, the K = 1 predictions are far too variable, while
the smoother K = 9 fit is much closer to f(X). However, since the true
relationship is linear, it is hard for a non-parametric approach to compete
with linear regression: a non-parametric approach incurs a cost in variance
that is not offset by a reduction in bias. The blue dashed line in the left-
hand panel of Figure 3.18 represents the linear regression fit to the same
data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that
linear regression outperforms KNN for this data. The green solid line, plot-
ted as a function of 1/K, represents the test set mean squared error (MSE)
for KNN. The KNN errors are well above the black dashed line, which is
the test MSE for linear regression. When the value of K is large, then KNN
performs only a little worse than least squares regression in terms of MSE.
It performs far worse when K is small.

In practice, the true relationship between X and Y is rarely exactly lin-
ear. Figure 3.19 examines the relative performances of least squares regres-
sion and KNN under increasing levels of non-linearity in the relationship
between X and Y . In the top row, the true relationship is nearly linear.
In this case we see that the test MSE for linear regression is still superior
to that of KNN for low values of K. However, for K ≥ 4, KNN out-
performs linear regression. The second row illustrates a more substantial
deviation from linearity. In this situation, KNN substantially outperforms
linear regression for all values of K. Note that as the extent of non-linearity
increases, there is little change in the test set MSE for the non-parametric
KNN method, but there is a large increase in the test set MSE of linear
regression.

Figures 3.18 and 3.19 display situations in which KNN performs slightly
worse than linear regression when the relationship is linear, but much bet-
ter than linear regression for nonlinear situations. In a real life situation
in which the true relationship is unknown, one might suspect that KNN
should be favored over linear regression because it will at worst be slightly
inferior to linear regression if the true relationship is linear, and may give
substantially better results if the true relationship is non-linear. But in re-
ality, even when the true relationship is highly non-linear, KNN may still
provide inferior results to linear regression. In particular, both Figures 3.18
and 3.19 illustrate settings with p = 1 predictor. But in higher dimensions,
KNN often performs worse than linear regression.

Figure 3.20 considers the same strongly non-linear situation as in the
second row of Figure 3.19, except that we have added additional noise
predictors that are not associated with the response. When p = 1 or p = 2,
KNN outperforms linear regression. But for p = 3 the results are mixed,
and for p ≥ 4 linear regression is superior to KNN. In fact, the increase in
dimension has only caused a small deterioration in the linear regression test
set MSE, but it has caused more than a ten-fold increase in the MSE for
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FIGURE 3.17. Plots of f̂(X) using KNN regression on a one-dimensional data
set with 50 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K = 1 (blue) and K = 9
(red) are displayed. Top Right: For the slightly non-linear data, the test set MSE
for least squares regression (horizontal black) and KNN with various values of
1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel,
but with a strongly non-linear relationship between X and Y .
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FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN
(green curves) as the number of variables p increases. The true function is non-
linear in the first variable, as in the lower panel in Figure 3.19, and does not
depend on the additional variables. The performance of linear regression deteri-
orates slowly in the presence of these additional noise variables, whereas KNN’s
performance degrades much more quickly as p increases.

KNN. This decrease in performance as the dimension increases is a common
problem for KNN, and results from the fact that in higher dimensions
there is effectively a reduction in sample size. In this data set there are
50 training observations; when p = 1, this provides enough information to
accurately estimate f(X). However, spreading 50 observations over p = 20
dimensions results in a phenomenon in which a given observation has no
nearby neighbors—this is the so-called curse of dimensionality. That is, curse of di-

mensionalitythe K observations that are nearest to a given test observation x0 may be
very far away from x0 in p-dimensional space when p is large, leading to a
very poor prediction of f(x0) and hence a poor KNN fit. As a general rule,
parametric methods will tend to outperform non-parametric approaches
when there is a small number of observations per predictor.

Even when the dimension is small, we might prefer linear regression to
KNN from an interpretability standpoint. If the test MSE of KNN is only
slightly lower than that of linear regression, we might be willing to forego
a little bit of prediction accuracy for the sake of a simple model that can
be described in terms of just a few coefficients, and for which p-values are
available.

3.6 Lab: Linear Regression
3.6.1 Libraries
The library() function is used to load libraries, or groups of functions library()and data sets that are not included in the base R distribution. Basic func-
tions that perform least squares linear regression and other simple analyses
come standard with the base distribution, but more exotic functions require
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6
Linear Model Selection
and Regularization

In the regression setting, the standard linear model

Y = β0 + β1X1 + · · ·+ βpXp + ε (6.1)

is commonly used to describe the relationship between a response Y and
a set of variables X1, X2, . . . , Xp. We have seen in Chapter 3 that one
typically fits this model using least squares.

In the chapters that follow, we consider some approaches for extending
the linear model framework. In Chapter 7 we generalize (6.1) in order to
accommodate non-linear, but still additive, relationships, while in Chap-
ters 8 and 10 we consider even more general non-linear models. However,
the linear model has distinct advantages in terms of inference and, on real-
world problems, is often surprisingly competitive in relation to non-linear
methods. Hence, before moving to the non-linear world, we discuss in this
chapter some ways in which the simple linear model can be improved, by re-
placing plain least squares fitting with some alternative fitting procedures.

Why might we want to use another fitting procedure instead of least
squares? As we will see, alternative fitting procedures can yield better pre-
diction accuracy and model interpretability.

• Prediction Accuracy: Provided that the true relationship between the
response and the predictors is approximately linear, the least squares
estimates will have low bias. If n ( p—that is, if n, the number of
observations, is much larger than p, the number of variables—then the
least squares estimates tend to also have low variance, and hence will
perform well on test observations. However, if n is not much larger
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than p, then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future
observations not used in model training. And if p > n, then there is no
longer a unique least squares coefficient estimate: there are infinitely
many solutions. Each of these least squares solutions gives zero error
on the training data, but typically very poor test set performance
due to extremely high variance.1 By constraining or shrinking the
estimated coefficients, we can often substantially reduce the variance
at the cost of a negligible increase in bias. This can lead to substantial
improvements in the accuracy with which we can predict the response
for observations not used in model training.

• Model Interpretability: It is often the case that some or many of the
variables used in a multiple regression model are in fact not associ-
ated with the response. Including such irrelevant variables leads to
unnecessary complexity in the resulting model. By removing these
variables—that is, by setting the corresponding coefficient estimates
to zero—we can obtain a model that is more easily interpreted. Now
least squares is extremely unlikely to yield any coefficient estimates
that are exactly zero. In this chapter, we see some approaches for au-
tomatically performing feature selection or variable selection—that is, feature

selection
variable
selection

for excluding irrelevant variables from a multiple regression model.
There are many alternatives, both classical and modern, to using least

squares to fit (6.1). In this chapter, we discuss three important classes of
methods.

• Subset Selection. This approach involves identifying a subset of the p
predictors that we believe to be related to the response. We then fit
a model using least squares on the reduced set of variables.

• Shrinkage. This approach involves fitting a model involving all p pre-
dictors. However, the estimated coefficients are shrunken towards zero
relative to the least squares estimates. This shrinkage (also known as
regularization) has the effect of reducing variance. Depending on what
type of shrinkage is performed, some of the coefficients may be esti-
mated to be exactly zero. Hence, shrinkage methods can also perform
variable selection.

• Dimension Reduction. This approach involves projecting the p predic-
tors into an M -dimensional subspace, where M < p. This is achieved
by computing M different linear combinations, or projections, of the
variables. Then these M projections are used as predictors to fit a
linear regression model by least squares.

1When p " n, the least squares solution that has the smallest sum of squared coeffi-
cients can sometimes perform quite well. See Section 10.8 for a more detailed discussion.
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In the following sections we describe each of these approaches in greater de-
tail, along with their advantages and disadvantages. Although this chapter
describes extensions and modifications to the linear model for regression
seen in Chapter 3, the same concepts apply to other methods, such as the
classification models seen in Chapter 4.

6.1 Subset Selection
In this section we consider some methods for selecting subsets of predictors.
These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection
To perform best subset selection, we fit a separate least squares regression best subset

selectionfor each possible combination of the p predictors. That is, we fit all p models
that contain exactly one predictor, all

(p
2

)
= p(p−1)/2 models that contain

exactly two predictors, and so forth. We then look at all of the resulting
models, with the goal of identifying the one that is best.

The problem of selecting the best model from among the 2p possibilities
considered by best subset selection is not trivial. This is usually broken up
into two stages, as described in Algorithm 6.1.

Algorithm 6.1 Best subset selection
1. Let M0 denote the null model, which contains no predictors. This

model simply predicts the sample mean for each observation.

2. For k = 1, 2, . . . p:

(a) Fit all
(p
k

)
models that contain exactly k predictors.

(b) Pick the best among these
(p
k

)
models, and call it Mk. Here best

is defined as having the smallest RSS, or equivalently largest R2.

3. Select a single best model from among M0, . . . ,Mp using using the
prediction error on a validation set, Cp (AIC), BIC, or adjusted R2.
Or use the cross-validation method.

In Algorithm 6.1, Step 2 identifies the best model (on the training data)
for each subset size, in order to reduce the problem from one of 2p possible
models to one of p + 1 possible models. In Figure 6.1, these models form
the lower frontier depicted in red.

Now in order to select a single best model, we must simply choose among
these p + 1 options. This task must be performed with care, because the
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RSS of these p + 1 models decreases monotonically, and the R2 increases
monotonically, as the number of features included in the models increases.
Therefore, if we use these statistics to select the best model, then we will
always end up with a model involving all of the variables. The problem is
that a low RSS or a high R2 indicates a model with a low training error,
whereas we wish to choose a model that has a low test error. (As shown in
Chapter 2 in Figures 2.9–2.11, training error tends to be quite a bit smaller
than test error, and a low training error by no means guarantees a low test
error.) Therefore, in Step 3, we use the error on a validation set, Cp, BIC, or
adjusted R2 in order to select among M0,M1, . . . ,Mp. If cross-validation
is used to select the best model, then Step 2 is repeated on each training
fold, and the validation errors are averaged to select the best value of k.
Then the model Mk fit on the full training set is delivered for the chosen
k. These approaches are discussed in Section 6.1.3.

An application of best subset selection is shown in Figure 6.1. Each
plotted point corresponds to a least squares regression model fit using a
different subset of the 10 predictors in the Credit data set, discussed in
Chapter 3. Here the variable region is a three-level qualitative variable,
and so is represented by two dummy variables, which are selected sepa-
rately in this case. Hence, there are a total of 11 possible variables which
can be included in the model. We have plotted the RSS and R2 statistics
for each model, as a function of the number of variables. The red curves
connect the best models for each model size, according to RSS or R2. The
figure shows that, as expected, these quantities improve as the number of
variables increases; however, from the three-variable model on, there is little
improvement in RSS and R2 as a result of including additional predictors.

Although we have presented best subset selection here for least squares
regression, the same ideas apply to other types of models, such as logistic
regression. In the case of logistic regression, instead of ordering models by
RSS in Step 2 of Algorithm 6.1, we instead use the deviance, a measure deviancethat plays the role of RSS for a broader class of models. The deviance is
negative two times the maximized log-likelihood; the smaller the deviance,
the better the fit.

While best subset selection is a simple and conceptually appealing ap-
proach, it suffers from computational limitations. The number of possible
models that must be considered grows rapidly as p increases. In general,
there are 2p models that involve subsets of p predictors. So if p = 10,
then there are approximately 1,000 possible models to be considered, and if
p = 20, then there are over one million possibilities! Consequently, best sub-
set selection becomes computationally infeasible for values of p greater than
around 40, even with extremely fast modern computers. There are compu-
tational shortcuts—so called branch-and-bound techniques—for eliminat-
ing some choices, but these have their limitations as p gets large. They also
only work for least squares linear regression. We present computationally
efficient alternatives to best subset selection next.



6.1 Subset Selection 229

2 4 6 8 10

2
e
+

0
7

4
e
+

0
7

6
e
+

0
7

8
e
+

0
7

Number of Predictors

R
e
si

d
u
a
l S

u
m

 o
f 
S

q
u
a
re

s

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of Predictors
R

2

FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R2 are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R2. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.

6.1.2 Stepwise Selection
For computational reasons, best subset selection cannot be applied with
very large p. Best subset selection may also suffer from statistical problems
when p is large. The larger the search space, the higher the chance of finding
models that look good on the training data, even though they might not
have any predictive power on future data. Thus an enormous search space
can lead to overfitting and high variance of the coefficient estimates.

For both of these reasons, stepwise methods, which explore a far more
restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection
Forward stepwise selection is a computationally efficient alternative to best forward

stepwise
selection

subset selection. While the best subset selection procedure considers all
2p possible models containing subsets of the p predictors, forward step-
wise considers a much smaller set of models. Forward stepwise selection
begins with a model containing no predictors, and then adds predictors
to the model, one-at-a-time, until all of the predictors are in the model.
In particular, at each step the variable that gives the greatest additional
improvement to the fit is added to the model. More formally, the forward
stepwise selection procedure is given in Algorithm 6.2.
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Algorithm 6.2 Forward stepwise selection
1. Let M0 denote the null model, which contains no predictors.

2. For k = 0, . . . , p− 1:

(a) Consider all p − k models that augment the predictors in Mk

with one additional predictor.
(b) Choose the best among these p − k models, and call it Mk+1.

Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using the pre-
diction error on a validation set, Cp (AIC), BIC, or adjusted R2. Or
use the cross-validation method.

Unlike best subset selection, which involved fitting 2p models, forward
stepwise selection involves fitting one null model, along with p− k models
in the kth iteration, for k = 0, . . . , p − 1. This amounts to a total of 1 +∑p−1

k=0(p−k) = 1+p(p+1)/2 models. This is a substantial difference: when
p = 20, best subset selection requires fitting 1,048,576 models, whereas
forward stepwise selection requires fitting only 211 models.2

In Step 2(b) of Algorithm 6.2, we must identify the best model from
among those p−k that augment Mk with one additional predictor. We can
do this by simply choosing the model with the lowest RSS or the highest
R2. However, in Step 3, we must identify the best model among a set of
models with different numbers of variables. This is more challenging, and
is discussed in Section 6.1.3.

Forward stepwise selection’s computational advantage over best subset
selection is clear. Though forward stepwise tends to do well in practice,
it is not guaranteed to find the best possible model out of all 2p mod-
els containing subsets of the p predictors. For instance, suppose that in a
given data set with p = 3 predictors, the best possible one-variable model
contains X1, and the best possible two-variable model instead contains X2

and X3. Then forward stepwise selection will fail to select the best possible
two-variable model, because M1 will contain X1, so M2 must also contain
X1 together with one additional variable.

Table 6.1, which shows the first four selected models for best subset
and forward stepwise selection on the Credit data set, illustrates this phe-
nomenon. Both best subset selection and forward stepwise selection choose
rating for the best one-variable model and then include income and student
for the two- and three-variable models. However, best subset selection re-
places rating by cards in the four-variable model, while forward stepwise

2Though forward stepwise selection considers p(p + 1)/2 + 1 models, it performs a
;mB/2/ search over model space, and so the 2z2+iBp2 model space considered contains
substantially more than p(p+ 1)/2 + 1 models.
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# Variables Best subset Forward stepwise
One rating rating
Two rating, income rating, income
Three rating, income, student rating, income, student
Four cards, income rating, income,

student, limit student, limit
TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.

selection must maintain rating in its four-variable model. In this example,
Figure 6.1 indicates that there is not much difference between the three-
and four-variable models in terms of RSS, so either of the four-variable
models will likely be adequate.

Forward stepwise selection can be applied even in the high-dimensional
setting where n < p; however, in this case, it is possible to construct sub-
models M0, . . . ,Mn−1 only, since each submodel is fit using least squares,
which will not yield a unique solution if p ≥ n.

Backward Stepwise Selection
Like forward stepwise selection, backward stepwise selection provides an backward

stepwise
selection

efficient alternative to best subset selection. However, unlike forward step-
wise selection, it begins with the full least squares model containing all p
predictors, and then iteratively removes the least useful predictor, one-at-
a-time. Details are given in Algorithm 6.3.

Algorithm 6.3 Backward stepwise selection
1. Let Mp denote the full model, which contains all p predictors.

2. For k = p, p− 1, . . . , 1:

(a) Consider all k models that contain all but one of the predictors
in Mk, for a total of k − 1 predictors.

(b) Choose the best among these k models, and call it Mk−1. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using the pre-
diction error on a validation set, Cp (AIC), BIC, or adjusted R2. Or
use the cross-validation method.

Like forward stepwise selection, the backward selection approach searches
through only 1+p(p+1)/2 models, and so can be applied in settings where
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p is too large to apply best subset selection.3 Also like forward stepwise
selection, backward stepwise selection is not guaranteed to yield the best
model containing a subset of the p predictors.

Backward selection requires that the number of samples n is larger than
the number of variables p (so that the full model can be fit). In contrast,
forward stepwise can be used even when n < p, and so is the only viable
subset method when p is very large.

Hybrid Approaches
The best subset, forward stepwise, and backward stepwise selection ap-
proaches generally give similar but not identical models. As another al-
ternative, hybrid versions of forward and backward stepwise selection are
available, in which variables are added to the model sequentially, in analogy
to forward selection. However, after adding each new variable, the method
may also remove any variables that no longer provide an improvement in
the model fit. Such an approach attempts to more closely mimic best sub-
set selection while retaining the computational advantages of forward and
backward stepwise selection.

6.1.3 Choosing the Optimal Model
Best subset selection, forward selection, and backward selection result in
the creation of a set of models, each of which contains a subset of the p
predictors. To apply these methods, we need a way to determine which of
these models is best. As we discussed in Section 6.1.1, the model containing
all of the predictors will always have the smallest RSS and the largest R2,
since these quantities are related to the training error. Instead, we wish to
choose a model with a low test error. As is evident here, and as we show
in Chapter 2, the training error can be a poor estimate of the test error.
Therefore, RSS and R2 are not suitable for selecting the best model among
a collection of models with different numbers of predictors.

In order to select the best model with respect to test error, we need to
estimate this test error. There are two common approaches:

1. We can indirectly estimate test error by making an adjustment to the
training error to account for the bias due to overfitting.

2. We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

3Like forward stepwise selection, backward stepwise selection performs a ;mB/2/ search
over model space, and so effectively considers substantially more than 1 + p(p + 1)/2
models.
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FIGURE 6.2. Cp, BIC, and adjusted R2 are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.

Cp, AIC, BIC, and Adjusted R2

We show in Chapter 2 that the training set MSE is generally an under-
estimate of the test MSE. (Recall that MSE = RSS/n.) This is because
when we fit a model to the training data using least squares, we specifi-
cally estimate the regression coefficients such that the training RSS (but
not the test RSS) is as small as possible. In particular, the training error
will decrease as more variables are included in the model, but the test error
may not. Therefore, training set RSS and training set R2 cannot be used
to select from among a set of models with different numbers of variables.

However, a number of techniques for adjusting the training error for the
model size are available. These approaches can be used to select among a set
of models with different numbers of variables. We now consider four such
approaches: Cp, Akaike information criterion (AIC), Bayesian information

Cp

Akaike
information
criterion

criterion (BIC), and adjusted R2. Figure 6.2 displays Cp, BIC, and adjusted

Bayesian
information
criterion
adjusted R2

R2 for the best model of each size produced by best subset selection on the
Credit data set.

For a fitted least squares model containing d predictors, the Cp estimate
of test MSE is computed using the equation

Cp =
1

n

(
RSS + 2dσ̂2

)
, (6.2)

where σ̂2 is an estimate of the variance of the error ε associated with each
response measurement in (6.1).4 Typically σ̂2 is estimated using the full

4Mallow’s Cp is sometimes defined as C′
p = RSS/σ̂2 + 2d − n. This is equivalent to

the definition given above in the sense that Cp = 1
n σ̂2(C′

p + n), and so the model with
smallest Cp also has smallest C′

p.
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model containing all predictors. Essentially, the Cp statistic adds a penalty
of 2dσ̂2 to the training RSS in order to adjust for the fact that the training
error tends to underestimate the test error. Clearly, the penalty increases as
the number of predictors in the model increases; this is intended to adjust
for the corresponding decrease in training RSS. Though it is beyond the
scope of this book, one can show that if σ̂2 is an unbiased estimate of σ2 in
(6.2), then Cp is an unbiased estimate of test MSE. As a consequence, the
Cp statistic tends to take on a small value for models with a low test error,
so when determining which of a set of models is best, we choose the model
with the lowest Cp value. In Figure 6.2, Cp selects the six-variable model
containing the predictors income, limit, rating, cards, age and student.

The AIC criterion is defined for a large class of models fit by maximum
likelihood. In the case of the model (6.1) with Gaussian errors, maximum
likelihood and least squares are the same thing. In this case AIC is given by

AIC =
1

n

(
RSS + 2dσ̂2

)
,

where, for simplicity, we have omitted irrelevant constants.5 Hence for least
squares models, Cp and AIC are proportional to each other, and so only
Cp is displayed in Figure 6.2.

BIC is derived from a Bayesian point of view, but ends up looking similar
to Cp (and AIC) as well. For the least squares model with d predictors, the
BIC is, up to irrelevant constants, given by

BIC =
1

n

(
RSS + log(n)dσ̂2

)
. (6.3)

Like Cp, the BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the lowest
BIC value. Notice that BIC replaces the 2dσ̂2 used by Cp with a log(n)dσ̂2

term, where n is the number of observations. Since log n > 2 for any n > 7,
the BIC statistic generally places a heavier penalty on models with many
variables, and hence results in the selection of smaller models than Cp.
In Figure 6.2, we see that this is indeed the case for the Credit data set;
BIC chooses a model that contains only the four predictors income, limit,
cards, and student. In this case the curves are very flat and so there does
not appear to be much difference in accuracy between the four-variable and
six-variable models.

The adjusted R2 statistic is another popular approach for selecting among
a set of models that contain different numbers of variables. Recall from

5There are two formulas for AIC for least squares regression. The formula that we
provide here requires an expression for σ2, which we obtain using the full model con-
taining all predictors. The second formula is appropriate when σ2 is unknown and we do
not want to explicitly estimate it; that formula has a log(RSS) term instead of an RSS
term. Detailed derivations of these two formulas are outside of the scope of this book.
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Chapter 3 that the usual R2 is defined as 1 − RSS/TSS, where TSS =∑
(yi − y)2 is the total sum of squares for the response. Since RSS always

decreases as more variables are added to the model, the R2 always increases
as more variables are added. For a least squares model with d variables,
the adjusted R2 statistic is calculated as

Adjusted R2 = 1− RSS/(n− d− 1)

TSS/(n− 1)
. (6.4)

Unlike Cp, AIC, and BIC, for which a small value indicates a model with
a low test error, a large value of adjusted R2 indicates a model with a
small test error. Maximizing the adjusted R2 is equivalent to minimizing
RSS

n−d−1 . While RSS always decreases as the number of variables in the model
increases, RSS

n−d−1 may increase or decrease, due to the presence of d in the
denominator.

The intuition behind the adjusted R2 is that once all of the correct
variables have been included in the model, adding additional noise variables
will lead to only a very small decrease in RSS. Since adding noise variables
leads to an increase in d, such variables will lead to an increase in RSS

n−d−1 ,
and consequently a decrease in the adjusted R2. Therefore, in theory, the
model with the largest adjusted R2 will have only correct variables and
no noise variables. Unlike the R2 statistic, the adjusted R2 statistic pays
a price for the inclusion of unnecessary variables in the model. Figure 6.2
displays the adjusted R2 for the Credit data set. Using this statistic results
in the selection of a model that contains seven variables, adding own to the
model selected by Cp and AIC.
Cp, AIC, and BIC all have rigorous theoretical justifications that are

beyond the scope of this book. These justifications rely on asymptotic ar-
guments (scenarios where the sample size n is very large). Despite its pop-
ularity, and even though it is quite intuitive, the adjusted R2 is not as well
motivated in statistical theory as AIC, BIC, and Cp. All of these measures
are simple to use and compute. Here we have presented their formulas in
the case of a linear model fit using least squares; however, AIC and BIC
can also be defined for more general types of models.

Validation and Cross-Validation
As an alternative to the approaches just discussed, we can directly esti-
mate the test error using the validation set and cross-validation methods
discussed in Chapter 5. We can compute the validation set error or the
cross-validation error for each model under consideration, and then select
the model for which the resulting estimated test error is smallest. This pro-
cedure has an advantage relative to AIC, BIC, Cp, and adjusted R2, in that
it provides a direct estimate of the test error, and makes fewer assumptions
about the true underlying model. It can also be used in a wider range of
model selection tasks, even in cases where it is hard to pinpoint the model
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left: Square
root of BIC. Center: Validation set errors. Right: Cross-validation errors.

degrees of freedom (e.g. the number of predictors in the model) or hard
to estimate the error variance σ2. Note that when cross-validation is used,
the sequence of models Mk in Algorithms 6.1–6.3 is determined separately
for each training fold, and the validation errors are averaged over all folds
for each model size k. This means, for example with best-subset regression,
that Mk, the best subset of size k, can differ across the folds. Once the
best size k is chosen, we find the best model of that size on the full data
set.

In the past, performing cross-validation was computationally prohibitive
for many problems with large p and/or large n, and so AIC, BIC, Cp,
and adjusted R2 were more attractive approaches for choosing among a
set of models. However, nowadays with fast computers, the computations
required to perform cross-validation are hardly ever an issue. Thus, cross-
validation is a very attractive approach for selecting from among a number
of models under consideration.

Figure 6.3 displays, as a function of d, the BIC, validation set errors, and
cross-validation errors on the Credit data, for the best d-variable model.
The validation errors were calculated by randomly selecting three-quarters
of the observations as the training set, and the remainder as the valida-
tion set. The cross-validation errors were computed using k = 10 folds.
In this case, the validation and cross-validation methods both result in a
six-variable model. However, all three approaches suggest that the four-,
five-, and six-variable models are roughly equivalent in terms of their test
errors.

In fact, the estimated test error curves displayed in the center and right-
hand panels of Figure 6.3 are quite flat. While a three-variable model clearly
has lower estimated test error than a two-variable model, the estimated test
errors of the 3- to 11-variable models are quite similar. Furthermore, if we
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repeated the validation set approach using a different split of the data into
a training set and a validation set, or if we repeated cross-validation using
a different set of cross-validation folds, then the precise model with the
lowest estimated test error would surely change. In this setting, we can
select a model using the one-standard-error rule. We first calculate the one-

standard-
error
rule

standard error of the estimated test MSE for each model size, and then
select the smallest model for which the estimated test error is within one
standard error of the lowest point on the curve. The rationale here is that
if a set of models appear to be more or less equally good, then we might
as well choose the simplest model—that is, the model with the smallest
number of predictors. In this case, applying the one-standard-error rule
to the validation set or cross-validation approach leads to selection of the
three-variable model.

6.2 Shrinkage Methods
The subset selection methods described in Section 6.1 involve using least
squares to fit a linear model that contains a subset of the predictors. As an
alternative, we can fit a model containing all p predictors using a technique
that constrains or regularizes the coefficient estimates, or equivalently, that
shrinks the coefficient estimates towards zero. It may not be immediately
obvious why such a constraint should improve the fit, but it turns out that
shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression
Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

.

Ridge regression is very similar to least squares, except that the coefficients ridge
regressionare estimated by minimizing a slightly different quantity. In particular, the

ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa- tuning
parameter
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for
the Credit data set, as a function of λ and ‖β̂R

λ ‖2/‖β̂‖2.

tion 6.5 trades off two different criteria. As with least squares, ridge regres-
sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is shrinkage

penaltysmall when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.

Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but
not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables—that is,
the columns of the data matrix X—have been centered to have mean zero
before ridge regression is performed, then the estimated intercept will take
the form β̂0 = ȳ =

∑n
i=1 yi/n.

An Application to the Credit Data
In Figure 6.4, the ridge regression coefficient estimates for the Credit data
set are displayed. In the left-hand panel, each curve corresponds to the
ridge regression coefficient estimate for one of the ten variables, plotted
as a function of λ. For example, the black solid line represents the ridge
regression estimate for the income coefficient, as λ is varied. At the extreme
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left-hand side of the plot, λ is essentially zero, and so the corresponding
ridge coefficient estimates are the same as the usual least squares esti-
mates. But as λ increases, the ridge coefficient estimates shrink towards
zero. When λ is extremely large, then all of the ridge coefficient estimates
are basically zero; this corresponds to the null model that contains no pre-
dictors. In this plot, the income, limit, rating, and student variables are
displayed in distinct colors, since these variables tend to have by far the
largest coefficient estimates. While the ridge coefficient estimates tend to
decrease in aggregate as λ increases, individual coefficients, such as rating
and income, may occasionally increase as λ increases.

The right-hand panel of Figure 6.4 displays the same ridge coefficient
estimates as the left-hand panel, but instead of displaying λ on the x-axis,
we now display ‖β̂R

λ ‖2/‖β̂‖2, where β̂ denotes the vector of least squares
coefficient estimates. The notation ‖β‖2 denotes the %2 norm (pronounced

#2 norm
“ell 2”) of a vector, and is defined as ‖β‖2 =

√∑p
j=1 βj

2. It measures the
distance of β from zero. As λ increases, the %2 norm of β̂R

λ will always
decrease, and so will ‖β̂R

λ ‖2/‖β̂‖2. The latter quantity ranges from 1 (when
λ = 0, in which case the ridge regression coefficient estimate is the same
as the least squares estimate, and so their %2 norms are the same) to 0
(when λ = ∞, in which case the ridge regression coefficient estimate is a
vector of zeros, with %2 norm equal to zero). Therefore, we can think of the
x-axis in the right-hand panel of Figure 6.4 as the amount that the ridge
regression coefficient estimates have been shrunken towards zero; a small
value indicates that they have been shrunken very close to zero.

The standard least squares coefficient estimates discussed in Chapter 3
are scale equivariant: multiplying Xj by a constant c simply leads to a scale

equivariantscaling of the least squares coefficient estimates by a factor of 1/c. In other
words, regardless of how the jth predictor is scaled, Xj β̂j will remain the
same. In contrast, the ridge regression coefficient estimates can change sub-
stantially when multiplying a given predictor by a constant. For instance,
consider the income variable, which is measured in dollars. One could rea-
sonably have measured income in thousands of dollars, which would result
in a reduction in the observed values of income by a factor of 1,000. Now due
to the sum of squared coefficients term in the ridge regression formulation
(6.5), such a change in scale will not simply cause the ridge regression co-
efficient estimate for income to change by a factor of 1,000. In other words,
Xj β̂R

j,λ will depend not only on the value of λ, but also on the scaling of the
jth predictor. In fact, the value of Xj β̂R

j,λ may even depend on the scaling
of the other predictors! Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula

x̃ij =
xij√

1
n

∑n
i=1(xij − xj)2

, (6.6)
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FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of λ and ‖β̂R

λ ‖2/‖β̂‖2. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which
the MSE is smallest.

so that they are all on the same scale. In (6.6), the denominator is the
estimated standard deviation of the jth predictor. Consequently, all of the
standardized predictors will have a standard deviation of one. As a re-
sult the final fit will not depend on the scale on which the predictors are
measured. In Figure 6.4, the y-axis displays the standardized ridge regres-
sion coefficient estimates—that is, the coefficient estimates that result from
performing ridge regression using standardized predictors.

Why Does Ridge Regression Improve Over Least Squares?
Ridge regression’s advantage over least squares is rooted in the bias-variance
trade-off. As λ increases, the flexibility of the ridge regression fit decreases,
leading to decreased variance but increased bias. This is illustrated in the
left-hand panel of Figure 6.5, using a simulated data set containing p = 45
predictors and n = 50 observations. The green curve in the left-hand panel
of Figure 6.5 displays the variance of the ridge regression predictions as a
function of λ. At the least squares coefficient estimates, which correspond
to ridge regression with λ = 0, the variance is high but there is no bias. But
as λ increases, the shrinkage of the ridge coefficient estimates leads to a
substantial reduction in the variance of the predictions, at the expense of a
slight increase in bias. Recall that the test mean squared error (MSE), plot-
ted in purple, is closely related to the variance plus the squared bias. For
values of λ up to about 10, the variance decreases rapidly, with very little
increase in bias, plotted in black. Consequently, the MSE drops consider-
ably as λ increases from 0 to 10. Beyond this point, the decrease in variance
due to increasing λ slows, and the shrinkage on the coefficients causes them
to be significantly underestimated, resulting in a large increase in the bias.
The minimum MSE is achieved at approximately λ = 30. Interestingly,
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because of its high variance, the MSE associated with the least squares
fit, when λ = 0, is almost as high as that of the null model for which all
coefficient estimates are zero, when λ = ∞. However, for an intermediate
value of λ, the MSE is considerably lower.

The right-hand panel of Figure 6.5 displays the same curves as the left-
hand panel, this time plotted against the %2 norm of the ridge regression
coefficient estimates divided by the %2 norm of the least squares estimates.
Now as we move from left to right, the fits become more flexible, and so
the bias decreases and the variance increases.

In general, in situations where the relationship between the response
and the predictors is close to linear, the least squares estimates will have
low bias but may have high variance. This means that a small change in
the training data can cause a large change in the least squares coefficient
estimates. In particular, when the number of variables p is almost as large
as the number of observations n, as in the example in Figure 6.5, the
least squares estimates will be extremely variable. And if p > n, then the
least squares estimates do not even have a unique solution, whereas ridge
regression can still perform well by trading off a small increase in bias for a
large decrease in variance. Hence, ridge regression works best in situations
where the least squares estimates have high variance.

Ridge regression also has substantial computational advantages over best
subset selection, which requires searching through 2p models. As we dis-
cussed previously, even for moderate values of p, such a search can be
computationally infeasible. In contrast, for any fixed value of λ, ridge re-
gression only fits a single model, and the model-fitting procedure can be
performed quite quickly. In fact, one can show that the computations re-
quired to solve (6.5), simultaneously for all values of λ, are almost identical
to those for fitting a model using least squares.

6.2.2 The Lasso
Ridge regression does have one obvious disadvantage. Unlike best subset,
forward stepwise, and backward stepwise selection, which will generally
select models that involve just a subset of the variables, ridge regression
will include all p predictors in the final model. The penalty λ

∑
β2
j in (6.5)

will shrink all of the coefficients towards zero, but it will not set any of them
exactly to zero (unless λ =∞). This may not be a problem for prediction
accuracy, but it can create a challenge in model interpretation in settings in
which the number of variables p is quite large. For example, in the Credit
data set, it appears that the most important variables are income, limit,
rating, and student. So we might wish to build a model including just
these predictors. However, ridge regression will always generate a model
involving all ten predictors. Increasing the value of λ will tend to reduce
the magnitudes of the coefficients, but will not result in exclusion of any of
the variables.
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The lasso is a relatively recent alternative to ridge regression that over- lassocomes this disadvantage. The lasso coefficients, β̂L
λ , minimize the quantity

n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

+ λ
p∑

j=1

|βj | = RSS + λ
p∑

j=1

|βj |. (6.7)

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have
similar formulations. The only difference is that the β2

j term in the ridge
regression penalty (6.5) has been replaced by |βj | in the lasso penalty (6.7).
In statistical parlance, the lasso uses an %1 (pronounced “ell 1”) penalty
instead of an %2 penalty. The %1 norm of a coefficient vector β is given by
‖β‖1 =

∑
|βj |.

As with ridge regression, the lasso shrinks the coefficient estimates to-
wards zero. However, in the case of the lasso, the %1 penalty has the effect
of forcing some of the coefficient estimates to be exactly equal to zero when
the tuning parameter λ is sufficiently large. Hence, much like best subset se-
lection, the lasso performs variable selection. As a result, models generated
from the lasso are generally much easier to interpret than those produced
by ridge regression. We say that the lasso yields sparse models—that is, sparse
models that involve only a subset of the variables. As in ridge regression,
selecting a good value of λ for the lasso is critical; we defer this discussion
to Section 6.2.3, where we use cross-validation.

As an example, consider the coefficient plots in Figure 6.6, which are gen-
erated from applying the lasso to the Credit data set. When λ = 0, then
the lasso simply gives the least squares fit, and when λ becomes sufficiently
large, the lasso gives the null model in which all coefficient estimates equal
zero. However, in between these two extremes, the ridge regression and
lasso models are quite different from each other. Moving from left to right
in the right-hand panel of Figure 6.6, we observe that at first the lasso re-
sults in a model that contains only the rating predictor. Then student and
limit enter the model almost simultaneously, shortly followed by income.
Eventually, the remaining variables enter the model. Hence, depending on
the value of λ, the lasso can produce a model involving any number of vari-
ables. In contrast, ridge regression will always include all of the variables in
the model, although the magnitude of the coefficient estimates will depend
on λ.
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of λ and ‖β̂L

λ ‖1/‖β̂‖1.

Another Formulation for Ridge Regression and the Lasso
One can show that the lasso and ridge regression coefficient estimates solve
the problems

minimize
β






n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2




subject to

p∑

j=1

|βj | ≤ s

(6.8)
and

minimize
β






n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2




subject to

p∑

j=1

β2
j ≤ s,

(6.9)
respectively. In other words, for every value of λ, there is some s such that
the Equations (6.7) and (6.8) will give the same lasso coefficient estimates.
Similarly, for every value of λ there is a corresponding s such that Equa-
tions (6.5) and (6.9) will give the same ridge regression coefficient estimates.
When p = 2, then (6.8) indicates that the lasso coefficient estimates have
the smallest RSS out of all points that lie within the diamond defined by
|β1| + |β2| ≤ s. Similarly, the ridge regression estimates have the smallest
RSS out of all points that lie within the circle defined by β2

1 + β2
2 ≤ s.

We can think of (6.8) as follows. When we perform the lasso we are trying
to find the set of coefficient estimates that lead to the smallest RSS, subject
to the constraint that there is a budget s for how large

∑p
j=1 |βj | can be.

When s is extremely large, then this budget is not very restrictive, and so
the coefficient estimates can be large. In fact, if s is large enough that the
least squares solution falls within the budget, then (6.8) will simply yield
the least squares solution. In contrast, if s is small, then

∑p
j=1 |βj | must be
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small in order to avoid violating the budget. Similarly, (6.9) indicates that
when we perform ridge regression, we seek a set of coefficient estimates
such that the RSS is as small as possible, subject to the requirement that∑p

j=1 β
2
j not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the
lasso, ridge regression, and best subset selection. Consider the problem

minimize
β






n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2




subject to

p∑

j=1

I(βj %= 0) ≤ s.

(6.10)
Here I(βj %= 0) is an indicator variable: it takes on a value of 1 if βj %= 0, and
equals zero otherwise. Then (6.10) amounts to finding a set of coefficient
estimates such that RSS is as small as possible, subject to the constraint
that no more than s coefficients can be nonzero. The problem (6.10) is
equivalent to best subset selection. Unfortunately, solving (6.10) is com-
putationally infeasible when p is large, since it requires considering all

(p
s

)

models containing s predictors. Therefore, we can interpret ridge regression
and the lasso as computationally feasible alternatives to best subset selec-
tion that replace the intractable form of the budget in (6.10) with forms
that are much easier to solve. Of course, the lasso is much more closely
related to best subset selection, since the lasso performs feature selection
for s sufficiently small in (6.8), while ridge regression does not.

The Variable Selection Property of the Lasso
Why is it that the lasso, unlike ridge regression, results in coefficient esti-
mates that are exactly equal to zero? The formulations (6.8) and (6.9) can
be used to shed light on the issue. Figure 6.7 illustrates the situation. The
least squares solution is marked as β̂, while the blue diamond and circle
represent the lasso and ridge regression constraints in (6.8) and (6.9), re-
spectively. If s is sufficiently large, then the constraint regions will contain
β̂, and so the ridge regression and lasso estimates will be the same as the
least squares estimates. (Such a large value of s corresponds to λ = 0 in
(6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie out-
side of the diamond and the circle, and so the least squares estimates are
not the same as the lasso and ridge regression estimates.

Each of the ellipses centered around β̂ represents a contour: this means contourthat all of the points on a particular ellipse have the same RSS value. As
the ellipses expand away from the least squares coefficient estimates, the
RSS increases. Equations (6.8) and (6.9) indicate that the lasso and ridge
regression coefficient estimates are given by the first point at which an
ellipse contacts the constraint region. Since ridge regression has a circular
constraint with no sharp points, this intersection will not generally occur on
an axis, and so the ridge regression coefficient estimates will be exclusively
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint regions,
|β1|+ |β2| ≤ s and β2

1 +β2
2 ≤ s, while the red ellipses are the contours of the RSS.

non-zero. However, the lasso constraint has corners at each of the axes, and
so the ellipse will often intersect the constraint region at an axis. When this
occurs, one of the coefficients will equal zero. In higher dimensions, many of
the coefficient estimates may equal zero simultaneously. In Figure 6.7, the
intersection occurs at β1 = 0, and so the resulting model will only include
β2.

In Figure 6.7, we considered the simple case of p = 2. When p = 3,
then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the
constraint for ridge regression becomes a hypersphere, and the constraint
for the lasso becomes a polytope. However, the key ideas depicted in Fig-
ure 6.7 still hold. In particular, the lasso leads to feature selection when
p > 2 due to the sharp corners of the polyhedron or polytope.

Comparing the Lasso and Ridge Regression
It is clear that the lasso has a major advantage over ridge regression, in
that it produces simpler and more interpretable models that involve only a
subset of the predictors. However, which method leads to better prediction
accuracy? Figure 6.8 displays the variance, squared bias, and test MSE of
the lasso applied to the same simulated data as in Figure 6.5. Clearly the
lasso leads to qualitatively similar behavior to ridge regression, in that as λ
increases, the variance decreases and the bias increases. In the right-hand
panel of Figure 6.8, the dotted lines represent the ridge regression fits.
Here we plot both against their R2 on the training data. This is another
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance, and test MSE between lasso (solid) and ridge (dotted). Both are plotted
against their R2 on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.

useful way to index models, and can be used to compare models with
different types of regularization, as is the case here. In this example, the
lasso and ridge regression result in almost identical biases. However, the
variance of ridge regression is slightly lower than the variance of the lasso.
Consequently, the minimum MSE of ridge regression is slightly smaller than
that of the lasso.

However, the data in Figure 6.8 were generated in such a way that all 45
predictors were related to the response—that is, none of the true coefficients
β1, . . . ,β45 equaled zero. The lasso implicitly assumes that a number of the
coefficients truly equal zero. Consequently, it is not surprising that ridge
regression outperforms the lasso in terms of prediction error in this setting.
Figure 6.9 illustrates a similar situation, except that now the response is a
function of only 2 out of 45 predictors. Now the lasso tends to outperform
ridge regression in terms of bias, variance, and MSE.

These two examples illustrate that neither ridge regression nor the lasso
will universally dominate the other. In general, one might expect the lasso
to perform better in a setting where a relatively small number of predictors
have substantial coefficients, and the remaining predictors have coefficients
that are very small or that equal zero. Ridge regression will perform better
when the response is a function of many predictors, all with coefficients of
roughly equal size. However, the number of predictors that is related to the
response is never known a priori for real data sets. A technique such as
cross-validation can be used in order to determine which approach is better
on a particular data set.

As with ridge regression, when the least squares estimates have exces-
sively high variance, the lasso solution can yield a reduction in variance
at the expense of a small increase in bias, and consequently can gener-
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance, and test MSE between lasso (solid) and ridge (dotted).
Both are plotted against their R2 on the training data, as a common form of
indexing. The crosses in both plots indicate the lasso model for which the MSE is
smallest.

ate more accurate predictions. Unlike ridge regression, the lasso performs
variable selection, and hence results in models that are easier to interpret.

There are very efficient algorithms for fitting both ridge and lasso models;
in both cases the entire coefficient paths can be computed with about the
same amount of work as a single least squares fit. We will explore this
further in the lab at the end of this chapter.

A Simple Special Case for Ridge Regression and the Lasso
In order to obtain a better intuition about the behavior of ridge regression
and the lasso, consider a simple special case with n = p, and X a diag-
onal matrix with 1’s on the diagonal and 0’s in all off-diagonal elements.
To simplify the problem further, assume also that we are performing regres-
sion without an intercept. With these assumptions, the usual least squares
problem simplifies to finding β1, . . . ,βp that minimize

p∑

j=1

(yj − βj)
2. (6.11)

In this case, the least squares solution is given by

β̂j = yj .

And in this setting, ridge regression amounts to finding β1, . . . ,βp such that
p∑

j=1

(yj − βj)
2 + λ

p∑

j=1

β2
j (6.12)
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matrix with 1’s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.

is minimized, and the lasso amounts to finding the coefficients such that
p∑

j=1

(yj − βj)
2 + λ

p∑

j=1

|βj | (6.13)

is minimized. One can show that in this setting, the ridge regression esti-
mates take the form

β̂R
j = yj/(1 + λ), (6.14)

and the lasso estimates take the form

β̂L
j =






yj − λ/2 if yj > λ/2;

yj + λ/2 if yj < −λ/2;
0 if |yj | ≤ λ/2.

(6.15)

Figure 6.10 displays the situation. We can see that ridge regression and
the lasso perform two very different types of shrinkage. In ridge regression,
each least squares coefficient estimate is shrunken by the same proportion.
In contrast, the lasso shrinks each least squares coefficient towards zero by
a constant amount, λ/2; the least squares coefficients that are less than
λ/2 in absolute value are shrunken entirely to zero. The type of shrink-
age performed by the lasso in this simple setting (6.15) is known as soft-
thresholding. The fact that some lasso coefficients are shrunken entirely to soft-

thresholdingzero explains why the lasso performs feature selection.
In the case of a more general data matrix X, the story is a little more

complicated than what is depicted in Figure 6.10, but the main ideas still
hold approximately: ridge regression more or less shrinks every dimension
of the data by the same proportion, whereas the lasso more or less shrinks
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FIGURE 6.11. Left: Ridge regression is the posterior mode for β under a Gaus-
sian prior. Right: The lasso is the posterior mode for β under a double-exponential
prior.

all coefficients toward zero by a similar amount, and sufficiently small co-
efficients are shrunken all the way to zero.

Bayesian Interpretation of Ridge Regression and the Lasso

We now show that one can view ridge regression and the lasso through
a Bayesian lens. A Bayesian viewpoint for regression assumes that the
coefficient vector β has some prior distribution, say p(β), where β =
(β0,β1, . . . ,βp)T . The likelihood of the data can be written as f(Y |X,β),
where X = (X1, . . . , Xp). Multiplying the prior distribution by the likeli-
hood gives us (up to a proportionality constant) the posterior distribution, posterior

distributionwhich takes the form

p(β|X,Y ) ∝ f(Y |X,β)p(β|X) = f(Y |X,β)p(β),

where the proportionality above follows from Bayes’ theorem, and the
equality above follows from the assumption that X is fixed.

We assume the usual linear model,

Y = β0 +X1β1 + · · ·+Xpβp + ε,

and suppose that the errors are independent and drawn from a normal dis-
tribution. Furthermore, assume that p(β) =

∏p
j=1 g(βj), for some density

function g. It turns out that ridge regression and the lasso follow naturally
from two special cases of g:

• If g is a Gaussian distribution with mean zero and standard deviation
a function of λ, then it follows that the posterior mode for β—that posterior

modeis, the most likely value for β, given the data—is given by the ridge
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various values of λ. Right: The coefficient
estimates as a function of λ. The vertical dashed lines indicate the value of λ
selected by cross-validation.

regression solution. (In fact, the ridge regression solution is also the
posterior mean.)

• If g is a double-exponential (Laplace) distribution with mean zero
and scale parameter a function of λ, then it follows that the posterior
mode for β is the lasso solution. (However, the lasso solution is not
the posterior mean, and in fact, the posterior mean does not yield a
sparse coefficient vector.)

The Gaussian and double-exponential priors are displayed in Figure 6.11.
Therefore, from a Bayesian viewpoint, ridge regression and the lasso follow
directly from assuming the usual linear model with normal errors, together
with a simple prior distribution for β. Notice that the lasso prior is steeply
peaked at zero, while the Gaussian is flatter and fatter at zero. Hence, the
lasso expects a priori that many of the coefficients are (exactly) zero, while
ridge assumes the coefficients are randomly distributed about zero.

6.2.3 Selecting the Tuning Parameter
Just as the subset selection approaches considered in Section 6.1 require
a method to determine which of the models under consideration is best,
implementing ridge regression and the lasso requires a method for selecting
a value for the tuning parameter λ in (6.5) and (6.7), or equivalently, the
value of the constraint s in (6.9) and (6.8). Cross-validation provides a sim-
ple way to tackle this problem. We choose a grid of λ values, and compute
the cross-validation error for each value of λ, as described in Chapter 5. We
then select the tuning parameter value for which the cross-validation error
is smallest. Finally, the model is re-fit using all of the available observations
and the selected value of the tuning parameter.
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The two signal variables are shown in color,
and the noise variables are in gray. The vertical dashed lines indicate the lasso
fit for which the cross-validation error is smallest.

Figure 6.12 displays the choice of λ that results from performing leave-
one-out cross-validation on the ridge regression fits from the Credit data
set. The dashed vertical lines indicate the selected value of λ. In this case
the value is relatively small, indicating that the optimal fit only involves a
small amount of shrinkage relative to the least squares solution. In addition,
the dip is not very pronounced, so there is rather a wide range of values
that would give a very similar error. In a case like this we might simply use
the least squares solution.

Figure 6.13 provides an illustration of ten-fold cross-validation applied to
the lasso fits on the sparse simulated data from Figure 6.9. The left-hand
panel of Figure 6.13 displays the cross-validation error, while the right-hand
panel displays the coefficient estimates. The vertical dashed lines indicate
the point at which the cross-validation error is smallest. The two colored
lines in the right-hand panel of Figure 6.13 represent the two predictors
that are related to the response, while the grey lines represent the unre-
lated predictors; these are often referred to as signal and noise variables, signalrespectively. Not only has the lasso correctly given much larger coeffi-
cient estimates to the two signal predictors, but also the minimum cross-
validation error corresponds to a set of coefficient estimates for which only
the signal variables are non-zero. Hence cross-validation together with the
lasso has correctly identified the two signal variables in the model, even
though this is a challenging setting, with p = 45 variables and only n = 50
observations. In contrast, the least squares solution—displayed on the far
right of the right-hand panel of Figure 6.13—assigns a large coefficient
estimate to only one of the two signal variables.
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7
Moving Beyond Linearity

So far in this book, we have mostly focused on linear models. Linear models
are relatively simple to describe and implement, and have advantages over
other approaches in terms of interpretation and inference. However, stan-
dard linear regression can have significant limitations in terms of predic-
tive power. This is because the linearity assumption is almost always an
approximation, and sometimes a poor one. In Chapter 6 we see that we can
improve upon least squares using ridge regression, the lasso, principal com-
ponents regression, and other techniques. In that setting, the improvement
is obtained by reducing the complexity of the linear model, and hence the
variance of the estimates. But we are still using a linear model, which can
only be improved so far! In this chapter we relax the linearity assumption
while still attempting to maintain as much interpretability as possible. We
do this by examining very simple extensions of linear models like polyno-
mial regression and step functions, as well as more sophisticated approaches
such as splines, local regression, and generalized additive models.

• Polynomial regression extends the linear model by adding extra pre-
dictors, obtained by raising each of the original predictors to a power.
For example, a cubic regression uses three variables, X, X2, and X3,
as predictors. This approach provides a simple way to provide a non-
linear fit to data.

• Step functions cut the range of a variable into K distinct regions in
order to produce a qualitative variable. This has the effect of fitting
a piecewise constant function.
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• Regression splines are more flexible than polynomials and step func-
tions, and in fact are an extension of the two. They involve dividing
the range of X into K distinct regions. Within each region, a poly-
nomial function is fit to the data. However, these polynomials are
constrained so that they join smoothly at the region boundaries, or
knots. Provided that the interval is divided into enough regions, this
can produce an extremely flexible fit.

• Smoothing splines are similar to regression splines, but arise in a
slightly different situation. Smoothing splines result from minimizing
a residual sum of squares criterion subject to a smoothness penalty.

• Local regression is similar to splines, but differs in an important way.
The regions are allowed to overlap, and indeed they do so in a very
smooth way.

• Generalized additive models allow us to extend the methods above to
deal with multiple predictors.

In Sections 7.1–7.6, we present a number of approaches for modeling the
relationship between a response Y and a single predictor X in a flexible
way. In Section 7.7, we show that these approaches can be seamlessly in-
tegrated in order to model a response Y as a function of several predictors
X1, . . . , Xp.

7.1 Polynomial Regression
Historically, the standard way to extend linear regression to settings in
which the relationship between the predictors and the response is non-
linear has been to replace the standard linear model

yi = β0 + β1xi + εi

with a polynomial function

yi = β0 + β1xi + β2x
2
i + β3x

3
i + · · ·+ βdx

d
i + εi, (7.1)

where εi is the error term. This approach is known as polynomial regression, polynomial
regressionand in fact we saw an example of this method in Section 3.3.2. For large

enough degree d, a polynomial regression allows us to produce an extremely
non-linear curve. Notice that the coefficients in (7.1) can be easily estimated
using least squares linear regression because this is just a standard linear
model with predictors xi, x2

i , x
3
i , . . . , x

d
i . Generally speaking, it is unusual

to use d greater than 3 or 4 because for large values of d, the polynomial
curve can become overly flexible and can take on some very strange shapes.
This is especially true near the boundary of the X variable.
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FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial
of wage (in thousands of dollars) as a function of age, fit by least squares. The
dashed curves indicate an estimated 95 % confidence interval. Right: We model the
binary event wage>250 using logistic regression, again with a degree-4 polynomial.
The fitted posterior probability of wage exceeding $250,000 is shown in blue, along
with an estimated 95 % confidence interval.

The left-hand panel in Figure 7.1 is a plot of wage against age for the
Wage data set, which contains income and demographic information for
males who reside in the central Atlantic region of the United States. We
see the results of fitting a degree-4 polynomial using least squares (solid
blue curve). Even though this is a linear regression model like any other,
the individual coefficients are not of particular interest. Instead, we look at
the entire fitted function across a grid of 63 values for age from 18 to 80 in
order to understand the relationship between age and wage.

In Figure 7.1, a pair of dashed curves accompanies the fit; these are (2×)
standard error curves. Let’s see how these arise. Suppose we have computed
the fit at a particular value of age, x0:

f̂(x0) = β̂0 + β̂1x0 + β̂2x
2
0 + β̂3x

3
0 + β̂4x

4
0. (7.2)

What is the variance of the fit, i.e. Varf̂(x0)? Least squares returns variance
estimates for each of the fitted coefficients β̂j , as well as the covariances
between pairs of coefficient estimates. We can use these to compute the
estimated variance of f̂(x0).1 The estimated pointwise standard error of

1If Ĉ is the 5 × 5 covariance matrix of the β̂j , and if #T0 = (1, x0, x2
0, x

3
0, x

4
0), then

Var[f̂(x0)] = #T0 Ĉ#0.
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f̂(x0) is the square-root of this variance. This computation is repeated
at each reference point x0, and we plot the fitted curve, as well as twice
the standard error on either side of the fitted curve. We plot twice the
standard error because, for normally distributed error terms, this quantity
corresponds to an approximate 95 % confidence interval.

It seems like the wages in Figure 7.1 are from two distinct populations:
there appears to be a high earners group earning more than $250,000 per
annum, as well as a low earners group. We can treat wage as a binary
variable by splitting it into these two groups. Logistic regression can then
be used to predict this binary response, using polynomial functions of age
as predictors. In other words, we fit the model

Pr(yi > 250|xi) =
exp(β0 + β1xi + β2x2

i + · · ·+ βdxd
i )

1 + exp(β0 + β1xi + β2x2
i + · · ·+ βdxd

i )
. (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks
on the top and bottom of the panel indicate the ages of the high earners
and the low earners. The solid blue curve indicates the fitted probabilities
of being a high earner, as a function of age. The estimated 95 % confidence
interval is shown as well. We see that here the confidence intervals are fairly
wide, especially on the right-hand side. Although the sample size for this
data set is substantial (n = 3,000), there are only 79 high earners, which
results in a high variance in the estimated coefficients and consequently
wide confidence intervals.

7.2 Step Functions
Using polynomial functions of the features as predictors in a linear model
imposes a global structure on the non-linear function of X. We can instead
use step functions in order to avoid imposing such a global structure. Here step

functionwe break the range of X into bins, and fit a different constant in each bin.
This amounts to converting a continuous variable into an ordered categorical
variable. ordered

categorical
variable

In greater detail, we create cutpoints c1, c2, . . . , cK in the range of X,
and then construct K + 1 new variables

C0(X) = I(X < c1),
C1(X) = I(c1 ≤ X < c2),
C2(X) = I(c2 ≤ X < c3),

...
CK−1(X) = I(cK−1 ≤ X < cK),
CK(X) = I(cK ≤ X),

(7.4)

where I(·) is an indicator function that returns a 1 if the condition is true, indicator
function
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dashed curves indicate an estimated 95 % confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95 % confidence interval.

and returns a 0 otherwise. For example, I(cK ≤ X) equals 1 if cK ≤ X, and
equals 0 otherwise. These are sometimes called dummy variables. Notice
that for any value of X, C0(X) +C1(X) + · · ·+CK(X) = 1, since X must
be in exactly one of the K + 1 intervals. We then use least squares to fit a
linear model using C1(X), C2(X), . . . , CK(X) as predictors2:

yi = β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi) + εi. (7.5)

For a given value of X, at most one of C1, C2, . . . , CK can be non-zero.
Note that when X < c1, all of the predictors in (7.5) are zero, so β0 can
be interpreted as the mean value of Y for X < c1. By comparison, (7.5)
predicts a response of β0+βj for cj ≤ X < cj+1, so βj represents the average
increase in the response for X in cj ≤ X < cj+1 relative to X < c1.

An example of fitting step functions to the Wage data from Figure 7.1 is
shown in the left-hand panel of Figure 7.2. We also fit the logistic regression

2We exclude C0(X) as a predictor in (7.5) because it is redundant with the intercept.
This is similar to the fact that we need only two dummy variables to code a qualitative
variable with three levels, provided that the model will contain an intercept. The decision
to exclude C0(X) instead of some other Ck(X) in (7.5) is arbitrary. Alternatively, we
could include C0(X), C1(X), . . . , CK(X), and exclude the intercept.
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model

Pr(yi > 250|xi) =
exp(β0 + β1C1(xi) + · · ·+ βKCK(xi))

1 + exp(β0 + β1C1(xi) + · · ·+ βKCK(xi))
(7.6)

in order to predict the probability that an individual is a high earner on the
basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior
probabilities obtained using this approach.

Unfortunately, unless there are natural breakpoints in the predictors,
piecewise-constant functions can miss the action. For example, in the left-
hand panel of Figure 7.2, the first bin clearly misses the increasing trend
of wage with age. Nevertheless, step function approaches are very popular
in biostatistics and epidemiology, among other disciplines. For example,
5-year age groups are often used to define the bins.

7.3 Basis Functions
Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach. The idea is to have at hand a fam- basis

functionily of functions or transformations that can be applied to a variable X:
b1(X), b2(X), . . . , bK(X). Instead of fitting a linear model in X, we fit the
model

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + · · ·+ βKbK(xi) + εi. (7.7)

Note that the basis functions b1(·), b2(·), . . . , bK(·) are fixed and known.
(In other words, we choose the functions ahead of time.) For polynomial
regression, the basis functions are bj(xi) = xj

i , and for piecewise constant
functions they are bj(xi) = I(cj ≤ xi < cj+1). We can think of (7.7) as
a standard linear model with predictors b1(xi), b2(xi), . . . , bK(xi). Hence,
we can use least squares to estimate the unknown regression coefficients
in (7.7). Importantly, this means that all of the inference tools for linear
models that are discussed in Chapter 3, such as standard errors for the
coefficient estimates and F-statistics for the model’s overall significance,
are available in this setting.

Thus far we have considered the use of polynomial functions and piece-
wise constant functions for our basis functions; however, many alternatives
are possible. For instance, we can use wavelets or Fourier series to construct
basis functions. In the next section, we investigate a very common choice
for a basis function: regression splines. regression

spline
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! Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches
seen in this book.

! Additionally, trees can be very non-robust. In other words, a small
change in the data can cause a large change in the final estimated
tree.

However, by aggregating many decision trees, using methods like bagging,
random forests, and boosting, the predictive performance of trees can be
substantially improved. We introduce these concepts in the next section.

8.2 Bagging, Random Forests, Boosting, and
Bayesian Additive Regression Trees

An ensemble method is an approach that combines many simple “building ensembleblock” models in order to obtain a single and potentially very powerful
model. These simple building block models are sometimes known as weak
learners, since they may lead to mediocre predictions on their own. weak

learnersWe will now discuss bagging, random forests, boosting, and Bayesian
additive regression trees. These are ensemble methods for which the simple
building block is a regression or a classification tree.

8.2.1 Bagging
The bootstrap, introduced in Chapter 5, is an extremely powerful idea. It is
used in many situations in which it is hard or even impossible to directly
compute the standard deviation of a quantity of interest. We see here that
the bootstrap can be used in a completely different context, in order to
improve statistical learning methods such as decision trees.

The decision trees discussed in Section 8.1 suffer from high variance.
This means that if we split the training data into two parts at random,
and fit a decision tree to both halves, the results that we get could be
quite different. In contrast, a procedure with low variance will yield similar
results if applied repeatedly to distinct data sets; linear regression tends
to have low variance, if the ratio of n to p is moderately large. Bootstrap
aggregation, or bagging, is a general-purpose procedure for reducing the baggingvariance of a statistical learning method; we introduce it here because it is
particularly useful and frequently used in the context of decision trees.

Recall that given a set of n independent observations Z1, . . . , Zn, each
with variance σ2, the variance of the mean Z̄ of the observations is given
by σ2/n. In other words, averaging a set of observations reduces variance.
Hence a natural way to reduce the variance and increase the test set ac-
curacy of a statistical learning method is to take many training sets from
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the population, build a separate prediction model using each training set,
and average the resulting predictions. In other words, we could calculate
f̂1(x), f̂2(x), . . . , f̂B(x) using B separate training sets, and average them
in order to obtain a single low-variance statistical learning model, given by

f̂avg(x) =
1

B

B∑

b=1

f̂ b(x).

Of course, this is not practical because we generally do not have access
to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set. In this approach we generate
B different bootstrapped training data sets. We then train our method on
the bth bootstrapped training set in order to get f̂∗b(x), and finally average
all the predictions, to obtain

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x).

This is called bagging.
While bagging can improve predictions for many regression methods,

it is particularly useful for decision trees. To apply bagging to regression
trees, we simply construct B regression trees using B bootstrapped training
sets, and average the resulting predictions. These trees are grown deep,
and are not pruned. Hence each individual tree has high variance, but
low bias. Averaging these B trees reduces the variance. Bagging has been
demonstrated to give impressive improvements in accuracy by combining
together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression
context, to predict a quantitative outcome Y . How can bagging be extended
to a classification problem where Y is qualitative? In that situation, there
are a few possible approaches, but the simplest is as follows. For a given test
observation, we can record the class predicted by each of the B trees, and
take a majority vote: the overall prediction is the most commonly occurring majority

voteclass among the B predictions.
Figure 8.8 shows the results from bagging trees on the Heart data. The

test error rate is shown as a function of B, the number of trees constructed
using bootstrapped training data sets. We see that the bagging test error
rate is slightly lower in this case than the test error rate obtained from a
single tree. The number of trees B is not a critical parameter with bagging;
using a very large value of B will not lead to overfitting. In practice we
use a value of B sufficiently large that the error has settled down. Using
B = 100 is sufficient to achieve good performance in this example.
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FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m =

√
p. The dashed line

indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is — by chance — considerably
lower.

Out-of-Bag Error Estimation
It turns out that there is a very straightforward way to estimate the test
error of a bagged model, without the need to perform cross-validation or
the validation set approach. Recall that the key to bagging is that trees are
repeatedly fit to bootstrapped subsets of the observations. One can show
that on average, each bagged tree makes use of around two-thirds of the
observations.3 The remaining one-third of the observations not used to fit a
given bagged tree are referred to as the out-of-bag (OOB) observations. We out-of-bagcan predict the response for the ith observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions
for the ith observation. In order to obtain a single prediction for the ith
observation, we can average these predicted responses (if regression is the
goal) or can take a majority vote (if classification is the goal). This leads
to a single OOB prediction for the ith observation. An OOB prediction
can be obtained in this way for each of the n observations, from which the

3This relates to Exercise 2 of Chapter 5.
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overall OOB MSE (for a regression problem) or classification error (for a
classification problem) can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each
observation is predicted using only the trees that were not fit using that
observation. Figure 8.8 displays the OOB error on the Heart data. It can
be shown that with B sufficiently large, OOB error is virtually equivalent
to leave-one-out cross-validation error. The OOB approach for estimating
the test error is particularly convenient when performing bagging on large
data sets for which cross-validation would be computationally onerous.

Variable Importance Measures
As we have discussed, bagging typically results in improved accuracy over
prediction using a single tree. Unfortunately, however, it can be difficult to
interpret the resulting model. Recall that one of the advantages of decision
trees is the attractive and easily interpreted diagram that results, such as
the one displayed in Figure 8.1. However, when we bag a large number of
trees, it is no longer possible to represent the resulting statistical learning
procedure using a single tree, and it is no longer clear which variables
are most important to the procedure. Thus, bagging improves prediction
accuracy at the expense of interpretability.

Although the collection of bagged trees is much more difficult to interpret
than a single tree, one can obtain an overall summary of the importance of
each predictor using the RSS (for bagging regression trees) or the Gini index
(for bagging classification trees). In the case of bagging regression trees, we
can record the total amount that the RSS (8.1) is decreased due to splits
over a given predictor, averaged over all B trees. A large value indicates
an important predictor. Similarly, in the context of bagging classification
trees, we can add up the total amount that the Gini index (8.6) is decreased
by splits over a given predictor, averaged over all B trees.

A graphical representation of the variable importances in the Heart data variable
importanceis shown in Figure 8.9. We see the mean decrease in Gini index for each vari-

able, relative to the largest. The variables with the largest mean decrease
in Gini index are Thal, Ca, and ChestPain.

8.2.2 Random Forests
Random forests provide an improvement over bagged trees by way of a random

forestsmall tweak that decorrelates the trees. As in bagging, we build a number
of decision trees on bootstrapped training samples. But when building these
decision trees, each time a split in a tree is considered, a random sample of
m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors. A fresh sample of
m predictors is taken at each split, and typically we choose m ≈ √p—that
is, the number of predictors considered at each split is approximately equal
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FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the maximum.

to the square root of the total number of predictors (4 out of the 13 for the
Heart data).

In other words, in building a random forest, at each split in the tree,
the algorithm is not even allowed to consider a majority of the available
predictors. This may sound crazy, but it has a clever rationale. Suppose
that there is one very strong predictor in the data set, along with a num-
ber of other moderately strong predictors. Then in the collection of bagged
trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other.
Hence the predictions from the bagged trees will be highly correlated. Un-
fortunately, averaging many highly correlated quantities does not lead to
as large of a reduction in variance as averaging many uncorrelated quan-
tities. In particular, this means that bagging will not lead to a substantial
reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider
only a subset of the predictors. Therefore, on average (p − m)/p of the
splits will not even consider the strong predictor, and so other predictors
will have more of a chance. We can think of this process as decorrelating
the trees, thereby making the average of the resulting trees less variable
and hence more reliable.
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The main difference between bagging and random forests is the choice
of predictor subset size m. For instance, if a random forest is built using
m = p, then this amounts simply to bagging. On the Heart data, random
forests using m =

√
p leads to a reduction in both test error and OOB error

over bagging (Figure 8.8).
Using a small value of m in building a random forest will typically be

helpful when we have a large number of correlated predictors. We applied
random forests to a high-dimensional biological data set consisting of ex-
pression measurements of 4,718 genes measured on tissue samples from 349
patients. There are around 20,000 genes in humans, and individual genes
have different levels of activity, or expression, in particular cells, tissues,
and biological conditions. In this data set, each of the patient samples has
a qualitative label with 15 different levels: either normal or 1 of 14 different
types of cancer. Our goal was to use random forests to predict cancer type
based on the 500 genes that have the largest variance in the training set.
We randomly divided the observations into a training and a test set, and
applied random forests to the training set for three different values of the
number of splitting variables m. The results are shown in Figure 8.10. The
error rate of a single tree is 45.7%, and the null rate is 75.4%.4 We see that
using 400 trees is sufficient to give good performance, and that the choice
m =

√
p gave a small improvement in test error over bagging (m = p) in

this example. As with bagging, random forests will not overfit if we increase
B, so in practice we use a value of B sufficiently large for the error rate to
have settled down.

8.2.3 Boosting
We now discuss boosting, yet another approach for improving the predic- boostingtions resulting from a decision tree. Like bagging, boosting is a general
approach that can be applied to many statistical learning methods for re-
gression or classification. Here we restrict our discussion of boosting to the
context of decision trees.

Recall that bagging involves creating multiple copies of the original train-
ing data set using the bootstrap, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predic-
tive model. Notably, each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the trees are
grown sequentially: each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set.

4The null rate results from simply classifying each observation to the dominant class
overall, which is in this case the normal class.
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FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7 %.

Consider first the regression setting. Like bagging, boosting involves com-
bining a large number of decision trees, f̂1, . . . , f̂B . Boosting is described
in Algorithm 8.2.

What is the idea behind this procedure? Unlike fitting a single large deci-
sion tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current
model, we fit a decision tree to the residuals from the model. That is, we
fit a tree using the current residuals, rather than the outcome Y , as the re-
sponse. We then add this new decision tree into the fitted function in order
to update the residuals. Each of these trees can be rather small, with just
a few terminal nodes, determined by the parameter d in the algorithm. By
fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down
even further, allowing more and different shaped trees to attack the resid-
uals. In general, statistical learning approaches that learn slowly tend to
perform well. Note that in boosting, unlike in bagging, the construction of
each tree depends strongly on the trees that have already been grown.

We have just described the process of boosting regression trees. Boosting
classification trees proceeds in a similar but slightly more complex way, and
the details are omitted here.

Boosting has three tuning parameters:
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Algorithm 8.2 Boosting for Regression Trees

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, . . . , B, repeat:

(a) Fit a tree f̂ b with d splits (d+1 terminal nodes) to the training
data (X, r).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x). (8.10)

(c) Update the residuals,

ri ← ri − λf̂ b(xi). (8.11)

3. Output the boosted model,

f̂(x) =
B∑

b=1

λf̂ b(x). (8.12)

1. The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This controls
the rate at which boosting learns. Typical values are 0.01 or 0.001, and
the right choice can depend on the problem. Very small λ can require
using a very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity
of the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split. In this case, the boosted stumpensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls interaction

depththe interaction order of the boosted model, since d splits can involve
at most d variables.

In Figure 8.11, we applied boosting to the 15-class cancer gene expression
data set, in order to develop a classifier that can distinguish the normal
class from the 14 cancer classes. We display the test error as a function of
the total number of trees and the interaction depth d. We see that simple
stumps with an interaction depth of one perform well if enough of them
are included. This model outperforms the depth-two model, and both out-
perform a random forest. This highlights one difference between boosting
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FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The test
error is displayed as a function of the number of trees. For the two boosted models,
λ = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both outperform
the random forest, although the standard errors are around 0.02, making none of
these differences significant. The test error rate for a single tree is 24 %.

and random forests: in boosting, because the growth of a particular tree
takes into account the other trees that have already been grown, smaller
trees are typically sufficient. Using smaller trees can aid in interpretability
as well; for instance, using stumps leads to an additive model.

8.2.4 Bayesian Additive Regression Trees
Finally, we discuss Bayesian additive regression trees (BART), another en- Bayesian

additive
regression
trees

semble method that uses decision trees as its building blocks. For simplicity,
we present BART for regression (as opposed to classification).

Recall that bagging and random forests make predictions from an aver-
age of regression trees, each of which is built using a random sample of data
and/or predictors. Each tree is built separately from the others. By con-
trast, boosting uses a weighted sum of trees, each of which is constructed
by fitting a tree to the residual of the current fit. Thus, each new tree at-
tempts to capture signal that is not yet accounted for by the current set
of trees. BART is related to both approaches: each tree is constructed in
a random manner as in bagging and random forests, and each tree tries to
capture signal not yet accounted for by the current model, as in boosting.
The main novelty in BART is the way in which new trees are generated.

Before we introduce the BART algorithm, we define some notation. We
let K denote the number of regression trees, and B the number of iterations
for which the BART algorithm will be run. The notation f̂ b

k(x) represents
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(a): f̂ b−1
k (X) (b): Possibility #1 for f̂ b

k(X)

|X < 169.17

X < 114.305

X < 140.35
−0.5031

 0.2667 −0.2470

 0.4079

|X < 169.17

X < 114.305
X < 140.35

−0.5110

 0.2693 −0.2649

 0.4221

(c): Possibility #2 for f̂ b
k(X) (d): Possibility #3 for f̂ b

k(X)

|X < 169.17

−0.1218  0.4079

|X < 169.17

X < 114.305

X < 106.755 X < 140.35

−0.05089 −1.03100  0.26670 −0.24700

 0.40790

FIGURE 8.12. A schematic of perturbed trees from the BART algorithm. (a):
The kth tree at the (b− 1)st iteration, f̂ b−1

k (X), is displayed. Panels (b)–(d)
display three of many possibilities for f̂ b

k(X), given the form of f̂ b−1
k (X). (b): One

possibility is that f̂ b
k(X) has the same structure as f̂ b−1

k (X), but with different
predictions at the terminal nodes. (c): Another possibility is that f̂ b

k(X) results
from pruning f̂ b−1

k (X). (d): Alternatively, f̂ b
k(X) may have more terminal nodes

than f̂ b−1
k (X).

the prediction at x for the kth regression tree used in the bth iteration. At
the end of each iteration, the K trees from that iteration will be summed,
i.e. f̂ b(x) =

∑K
k=1 f̂

b
k(x) for b = 1, . . . , B.

In the first iteration of the BART algorithm, all trees are initialized to
have a single root node, with f̂1

k (x) =
1

nK

∑n
i=1 yi, the mean of the response

values divided by the total number of trees. Thus, f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

In subsequent iterations, BART updates each of the K trees, one at a
time. In the bth iteration, to update the kth tree, we subtract from each
response value the predictions from all but the kth tree, in order to obtain
a partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi)

for the ith observation, i = 1, . . . , n. Rather than fitting a fresh tree to this
partial residual, BART randomly chooses a perturbation to the tree from
the previous iteration (f̂ b−1

k ) from a set of possible perturbations, favoring
ones that improve the fit to the partial residual. There are two components
to this perturbation:
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1. We may change the structure of the tree by adding or pruning branches.

2. We may change the prediction in each terminal node of the tree.

Figure 8.12 illustrates examples of possible perturbations to a tree.
The output of BART is a collection of prediction models,

f̂ b(x) =
K∑

k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

We typically throw away the first few of these prediction models, since
models obtained in the earlier iterations — known as the burn-in period burn-in— tend not to provide very good results. We can let L denote the num-
ber of burn-in iterations; for instance, we might take L = 200. Then, to
obtain a single prediction, we simply take the average after the burn-in
iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x). However, it is also possible to com-
pute quantities other than the average: for instance, the percentiles of
f̂L+1(x), . . . , f̂B(x) provide a measure of uncertainty in the final predic-
tion. The overall BART procedure is summarized in Algorithm 8.3.

A key element of the BART approach is that in Step 3(a)ii., we do not fit
a fresh tree to the current partial residual: instead, we try to improve the fit
to the current partial residual by slightly modifying the tree obtained in the
previous iteration (see Figure 8.12). Roughly speaking, this guards against
overfitting since it limits how “hard” we fit the data in each iteration.
Furthermore, the individual trees are typically quite small. We limit the
tree size in order to avoid overfitting the data, which would be more likely
to occur if we grew very large trees.

Figure 8.13 shows the result of applying BART to the Heart data, using
K = 200 trees, as the number of iterations is increased to 10, 000. During
the initial iterations, the test and training errors jump around a bit. After
this initial burn-in period, the error rates settle down. We note that there
is only a small difference between the training error and the test error,
indicating that the tree perturbation process largely avoids overfitting.

The training and test errors for boosting are also displayed in Figure 8.13.
We see that the test error for boosting approaches that of BART, but then
begins to increase as the number of iterations increases. Furthermore, the
training error for boosting decreases as the number of iterations increases,
indicating that boosting has overfit the data.

Though the details are outside of the scope of this book, it turns out
that the BART method can be viewed as a Bayesian approach to fitting an
ensemble of trees: each time we randomly perturb a tree in order to fit the
residuals, we are in fact drawing a new tree from a posterior distribution.
(Of course, this Bayesian connection is the motivation for BART’s name.)
Furthermore, Algorithm 8.3 can be viewed as a Markov chain Monte Carlo Markov

chain Monte
Carlo

algorithm for fitting the BART model.
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Algorithm 8.3 Bayesian Additive Regression Trees

1. Let f̂1
1 (x) = f̂1

2 (x) = · · · = f̂1
K(x) = 1

nK

∑n
i=1 yi.

2. Compute f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

3. For b = 2, . . . , B:

(a) For k = 1, 2, . . . ,K:
i. For i = 1, . . . , n, compute the current partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi).

ii. Fit a new tree, f̂ b
k(x), to ri, by randomly perturbing the

kth tree from the previous iteration, f̂ b−1
k (x). Perturbations

that improve the fit are favored.
(b) Compute f̂ b(x) =

∑K
k=1 f̂

b
k(x).

4. Compute the mean after L burn-in samples,

f̂(x) =
1

B − L

B∑

b=L+1

f̂ b(x).

When we apply BART, we must select the number of trees K, the number
of iterations B, and the number of burn-in iterations L. We typically choose
large values for B and K, and a moderate value for L: for instance, K = 200,
B = 1,000, and L = 100 is a reasonable choice. BART has been shown to
have very impressive out-of-box performance — that is, it performs well
with minimal tuning.

8.2.5 Summary of Tree Ensemble Methods
Trees are an attractive choice of weak learner for an ensemble method
for a number of reasons, including their flexibility and ability to handle
predictors of mixed types (i.e. qualitative as well as quantitative). We have
now seen four approaches for fitting an ensemble of trees: bagging, random
forests, boosting, and BART.

• In bagging, the trees are grown independently on random samples of
the observations. Consequently, the trees tend to be quite similar to
each other. Thus, bagging can get caught in local optima and can fail
to thoroughly explore the model space.
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FIGURE 8.13. BART and boosting results for the Heart data. Both training
and test errors are displayed. After a burn-in period of 100 iterations (shown in
gray), the error rates for BART settle down. Boosting begins to overfit after a
few hundred iterations.

• In random forests, the trees are once again grown independently on
random samples of the observations. However, each split on each tree
is performed using a random subset of the features, thereby decorre-
lating the trees, and leading to a more thorough exploration of model
space relative to bagging.

• In boosting, we only use the original data, and do not draw any ran-
dom samples. The trees are grown successively, using a “slow” learn-
ing approach: each new tree is fit to the signal that is left over from
the earlier trees, and shrunken down before it is used.

• In BART, we once again only make use of the original data, and we
grow the trees successively. However, each tree is perturbed in order
to avoid local minima and achieve a more thorough exploration of
the model space.


