3

Linear Regression

This chapter is about linear regression, a very simple approach for supervised learning. In particular, linear regression is a useful tool for predicting a quantitative response. It has been around for a long time and is the topic of innumerable textbooks. Though it may seem somewhat dull compared to some of the more modern statistical learning approaches described in later chapters of this book, linear regression is still a useful and widely used statistical learning method. Moreover, it serves as a good jumping-off point for newer approaches: as we will see in later chapters, many fancy statistical learning approaches can be seen as generalizations or extensions of linear regression. Consequently, the importance of having a good understanding of linear regression before studying more complex learning methods cannot be overstated. In this chapter, we review some of the key ideas underlying the linear regression model, as well as the least squares approach that is most commonly used to fit this model.

Recall the Advertising data from Chapter 2. Figure 2.1 displays sales (in thousands of units) for a particular product as a function of advertising budgets (in thousands of dollars) for TV, radio, and newspaper media. Suppose that in our role as statistical consultants we are asked to suggest, on the basis of this data, a marketing plan for next year that will result in high product sales. What information would be useful in order to provide such a recommendation? Here are a few important questions that we might seek to address:

1. Is there a relationship between advertising budget and sales? Our first goal should be to determine whether the data provide evidence of an association between advertising expenditure and sales. If the evidence is weak, then one might argue that no money should be spent on advertising!
2. How strong is the relationship between advertising budget and sales? Assuming that there is a relationship between advertising and sales, we would like to know the strength of this relationship. Does knowledge of the advertising budget provide a lot of information about product sales?
3. Which media are associated with sales?

Are all three media-TV, radio, and newspaper-associated with sales, or are just one or two of the media associated? To answer this question, we must find a way to separate out the individual contribution of each medium to sales when we have spent money on all three media.
4. How large is the association between each medium and sales?

For every dollar spent on advertising in a particular medium, by what amount will sales increase? How accurately can we predict this amount of increase?
5. How accurately can we predict future sales?

For any given level of television, radio, or newspaper advertising, what is our prediction for sales, and what is the accuracy of this prediction?
6. Is the relationship linear?

If there is approximately a straight-line relationship between advertising expenditure in the various media and sales, then linear regression is an appropriate tool. If not, then it may still be possible to transform the predictor or the response so that linear regression can be used.
7. Is there synergy among the advertising media?

Perhaps spending $\$ 50,000$ on television advertising and $\$ 50,000$ on radio advertising is associated with higher sales than allocating $\$ 100,000$ to either television or radio individually. In marketing, this is known as a synergy effect, while in statistics it is called an interaction effect.

It turns out that linear regression can be used to answer each of these
synergy
interaction questions. We will first discuss all of these questions in a general context, and then return to them in this specific context in Section 3.4.

3.1 Simple Linear Regression

Simple linear regression lives up to its name: it is a very straightforward approach for predicting a quantitative response Y on the basis of a single predictor variable X. It assumes that there is approximately a linear relationship between X and Y. Mathematically, we can write this linear relationship as

$$
\begin{equation*}
Y \approx \beta_{0}+\beta_{1} X \tag{3.1}
\end{equation*}
$$

You might read " \approx " as "is approximately modeled as". We will sometimes describe (3.1) by saying that we are regressing Y on X (or Y onto X). For example, X may represent TV advertising and Y may represent sales. Then we can regress sales onto TV by fitting the model

$$
\text { sales } \approx \beta_{0}+\beta_{1} \times \mathrm{TV}
$$

In Equation 3.1, β_{0} and β_{1} are two unknown constants that represent the intercept and slope terms in the linear model. Together, β_{0} and β_{1} are known as the model coefficients or parameters. Once we have used our training data to produce estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ for the model coefficients, we can predict future sales on the basis of a particular value of TV advertising by computing

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x \tag{3.2}
\end{equation*}
$$

where \hat{y} indicates a prediction of Y on the basis of $X=x$. Here we use a hat symbol, ^, to denote the estimated value for an unknown parameter or coefficient, or to denote the predicted value of the response.

3.1.1 Estimating the Coefficients

In practice, β_{0} and β_{1} are unknown. So before we can use (3.1) to make predictions, we must use data to estimate the coefficients. Let

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

represent n observation pairs, each of which consists of a measurement of X and a measurement of Y. In the Advertising example, this data set consists of the TV advertising budget and product sales in $n=200$ different markets. (Recall that the data are displayed in Figure 2.1.) Our goal is to obtain coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ such that the linear model (3.1) fits the available data well-that is, so that $y_{i} \approx \hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ for $i=1, \ldots, n$. In other words, we want to find an intercept $\hat{\beta}_{0}$ and a slope $\hat{\beta}_{1}$ such that the resulting line is as close as possible to the $n=200$ data points. There are a number of ways of measuring closeness. However, by far the most common approach involves minimizing the least squares criterion, and we take that approach in this chapter. Alternative approaches will be considered in Chapter 6.
simple linear regression
intercept slope
coefficient parameter

FIGURE 3.1. For the Advertising data, the least squares fit for the regression of sales onto TV is shown. The fit is found by minimizing the residual sum of squares. Each grey line segment represents a residual. In this case a linear fit captures the essence of the relationship, although it overestimates the trend in the left of the plot.

Let $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ be the prediction for Y based on the i th value of X. Then $e_{i}=y_{i}-\hat{y}_{i}$ represents the i th residual-this is the difference between the i th observed response value and the i th response value that is predicted by our linear model. We define the residual sum of squares (RSS) as

$$
\mathrm{RSS}=e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

residual
residual sum of squares
or equivalently as

$$
\begin{equation*}
\operatorname{RSS}=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\left(y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}\right)^{2}+\cdots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2} . \tag{3.3}
\end{equation*}
$$

The least squares approach chooses $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ to minimize the RSS. Using some calculus, one can show that the minimizers are

$$
\begin{align*}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{3.4}\\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{align*}
$$

where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}$ are the sample means. In other words, (3.4) defines the least squares coefficient estimates for simple linear regression.

Figure 3.1 displays the simple linear regression fit to the Advertising data, where $\hat{\beta}_{0}=7.03$ and $\hat{\beta}_{1}=0.0475$. In other words, according to

FIGURE 3.2. Contour and three-dimensional plots of the $R S S$ on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least squares estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, given by (3.4).
this approximation, an additional $\$ 1,000$ spent on TV advertising is associated with selling approximately 47.5 additional units of the product. In Figure 3.2, we have computed RSS for a number of values of β_{0} and β_{1}, using the advertising data with sales as the response and TV as the predictor. In each plot, the red dot represents the pair of least squares estimates ($\hat{\beta}_{0}, \hat{\beta}_{1}$) given by (3.4). These values clearly minimize the RSS.

3.1.2 Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and Y takes the form $Y=f(X)+\epsilon$ for some unknown function f, where ϵ is a mean-zero random error term. If f is to be approximated by a linear function, then we can write this relationship as

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\epsilon \tag{3.5}
\end{equation*}
$$

Here β_{0} is the intercept term - that is, the expected value of Y when $X=0$, and β_{1} is the slope - the average increase in Y associated with a one-unit increase in X. The error term is a catch-all for what we miss with this simple model: the true relationship is probably not linear, there may be other variables that cause variation in Y, and there may be measurement error. We typically assume that the error term is independent of X.

The model given by (3.5) defines the population regression line, which is the best linear approximation to the true relationship between X and

FIGURE 3.3. A simulated data set. Left: The red line represents the true relationship, $f(X)=2+3 X$, which is known as the population regression line. The blue line is the least squares line; it is the least squares estimate for $f(X)$ based on the observed data, shown in black. Right: The population regression line is again shown in red, and the least squares line in dark blue. In light blue, ten least squares lines are shown, each computed on the basis of a separate random set of observations. Each least squares line is different, but on average, the least squares lines are quite close to the population regression line.
$Y .{ }^{1}$ The least squares regression coefficient estimates (3.4) characterize the least squares line (3.2). The left-hand panel of Figure 3.3 displays these two lines in a simple simulated example. We created 100 random X s, and generated 100 corresponding Y s from the model

$$
\begin{equation*}
Y=2+3 X+\epsilon, \tag{3.6}
\end{equation*}
$$

where ϵ was generated from a normal distribution with mean zero. The red line in the left-hand panel of Figure 3.3 displays the true relationship, $f(X)=2+3 X$, while the blue line is the least squares estimate based on the observed data. The true relationship is generally not known for real data, but the least squares line can always be computed using the coefficient estimates given in (3.4). In other words, in real applications, we have access to a set of observations from which we can compute the least squares line; however, the population regression line is unobserved. In the right-hand panel of Figure 3.3 we have generated ten different data sets from the model given by (3.6) and plotted the corresponding ten least squares lines. Notice that different data sets generated from the same true model result in slightly different least squares lines, but the unobserved population regression line does not change.

[^0]At first glance, the difference between the population regression line and the least squares line may seem subtle and confusing. We only have one data set, and so what does it mean that two different lines describe the relationship between the predictor and the response? Fundamentally, the concept of these two lines is a natural extension of the standard statistical approach of using information from a sample to estimate characteristics of a large population. For example, suppose that we are interested in knowing the population mean μ of some random variable Y. Unfortunately, μ is unknown, but we do have access to n observations from Y, y_{1}, \ldots, y_{n}, which we can use to estimate μ. A reasonable estimate is $\hat{\mu}=\bar{y}$, where $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ is the sample mean. The sample mean and the population mean are different, but in general the sample mean will provide a good estimate of the population mean. In the same way, the unknown coefficients β_{0} and β_{1} in linear regression define the population regression line. We seek to estimate these unknown coefficients using $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ given in (3.4). These coefficient estimates define the least squares line.

The analogy between linear regression and estimation of the mean of a random variable is an apt one based on the concept of bias. If we use the sample mean $\hat{\mu}$ to estimate μ, this estimate is unbiased, in the sense that on average, we expect $\hat{\mu}$ to equal μ. What exactly does this mean? It means that on the basis of one particular set of observations $y_{1}, \ldots, y_{n}, \hat{\mu}$ might overestimate μ, and on the basis of another set of observations, $\hat{\mu}$ might underestimate μ. But if we could average a huge number of estimates of μ obtained from a huge number of sets of observations, then this average would exactly equal μ. Hence, an unbiased estimator does not systematically over- or under-estimate the true parameter. The property of unbiasedness holds for the least squares coefficient estimates given by (3.4) as well: if we estimate β_{0} and β_{1} on the basis of a particular data set, then our estimates won't be exactly equal to β_{0} and β_{1}. But if we could average the estimates obtained over a huge number of data sets, then the average of these estimates would be spot on! In fact, we can see from the righthand panel of Figure 3.3 that the average of many least squares lines, each estimated from a separate data set, is pretty close to the true population regression line.

We continue the analogy with the estimation of the population mean μ of a random variable Y. A natural question is as follows: how accurate is the sample mean $\hat{\mu}$ as an estimate of μ ? We have established that the average of $\hat{\mu}$'s over many data sets will be very close to μ, but that a single estimate $\hat{\mu}$ may be a substantial underestimate or overestimate of μ. How far off will that single estimate of $\hat{\mu}$ be? In general, we answer this question by computing the standard error of $\hat{\mu}$, written as $\operatorname{SE}(\hat{\mu})$. We have the well-known formula

$$
\begin{equation*}
\operatorname{Var}(\hat{\mu})=\operatorname{SE}(\hat{\mu})^{2}=\frac{\sigma^{2}}{n} \tag{3.7}
\end{equation*}
$$

where σ is the standard deviation of each of the realizations y_{i} of $Y .{ }^{2}$ Roughly speaking, the standard error tells us the average amount that this estimate $\hat{\mu}$ differs from the actual value of μ. Equation 3.7 also tells us how this deviation shrinks with n-the more observations we have, the smaller the standard error of $\hat{\mu}$. In a similar vein, we can wonder how close $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are to the true values β_{0} and β_{1}. To compute the standard errors associated with $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we use the following formulas:

$$
\begin{equation*}
\mathrm{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right], \quad \mathrm{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \tag{3.8}
\end{equation*}
$$

where $\sigma^{2}=\operatorname{Var}(\epsilon)$. For these formulas to be strictly valid, we need to assume that the errors ϵ_{i} for each observation have common variance σ^{2} and are uncorrelated. This is clearly not true in Figure 3.1, but the formula still turns out to be a good approximation. Notice in the formula that $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ is smaller when the x_{i} are more spread out; intuitively we have more leverage to estimate a slope when this is the case. We also see that $\operatorname{SE}\left(\hat{\beta}_{0}\right)$ would be the same as $\operatorname{SE}(\hat{\mu})$ if \bar{x} were zero (in which case $\hat{\beta}_{0}$ would be equal to \bar{y}). In general, σ^{2} is not known, but can be estimated from the data. This estimate of σ is known as the residual standard error, and is given by the formula $\operatorname{RSE}=\sqrt{\mathrm{RSS} /(n-2)}$. Strictly speaking, when σ^{2} is estimated from the data we should write $\widehat{\mathrm{SE}}\left(\hat{\beta}_{1}\right)$ to indicate that an estimate has been made, but for simplicity of notation we will drop this extra "hat".

Standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. The range is defined in terms of lower and upper limits computed from the sample of data. A 95% confidence interval has the following property: if we take repeated samples and construct the confidence interval for each sample, 95% of the intervals will contain the true unknown value of the parameter. For linear regression, the 95% confidence interval for β_{1} approximately takes the form

$$
\begin{equation*}
\hat{\beta}_{1} \pm 2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right) \tag{3.9}
\end{equation*}
$$

That is, there is approximately a 95% chance that the interval

$$
\begin{equation*}
\left[\hat{\beta}_{1}-2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right)\right] \tag{3.10}
\end{equation*}
$$

[^1]residual standard error
will contain the true value of $\beta_{1} .{ }^{3}$ Similarly, a confidence interval for β_{0} approximately takes the form
\[

$$
\begin{equation*}
\hat{\beta}_{0} \pm 2 \cdot \operatorname{SE}\left(\hat{\beta}_{0}\right) \tag{3.11}
\end{equation*}
$$

\]

In the case of the advertising data, the 95% confidence interval for β_{0} is $[6.130,7.935]$ and the 95% confidence interval for β_{1} is [0.042, 0.053]. Therefore, we can conclude that in the absence of any advertising, sales will, on average, fall somewhere between 6,130 and 7,935 units. Furthermore, for each $\$ 1,000$ increase in television advertising, there will be an average increase in sales of between 42 and 53 units.

Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

$$
\begin{equation*}
H_{0}: \text { There is no relationship between } X \text { and } Y \tag{3.12}
\end{equation*}
$$

versus the alternative hypothesis

$$
\begin{equation*}
H_{a}: \text { There is some relationship between } X \text { and } Y \text {. } \tag{3.13}
\end{equation*}
$$

Mathematically, this corresponds to testing

$$
H_{0}: \beta_{1}=0
$$

versus

$$
H_{a}: \beta_{1} \neq 0
$$

since if $\beta_{1}=0$ then the model (3.5) reduces to $Y=\beta_{0}+\epsilon$, and X is not associated with Y. To test the null hypothesis, we need to determine whether $\hat{\beta}_{1}$, our estimate for β_{1}, is sufficiently far from zero that we can be confident that β_{1} is non-zero. How far is far enough? This of course depends on the accuracy of $\hat{\beta}_{1}$-that is, it depends on $\operatorname{SE}\left(\hat{\beta}_{1}\right)$. If $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ is small, then even relatively small values of $\hat{\beta}_{1}$ may provide strong evidence that $\beta_{1} \neq 0$, and hence that there is a relationship between X and Y. In contrast, if $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ is large, then $\hat{\beta}_{1}$ must be large in absolute value in order for us to reject the null hypothesis. In practice, we compute a t-statistic, given by

$$
\begin{equation*}
t=\frac{\hat{\beta}_{1}-0}{\mathrm{SE}\left(\hat{\beta}_{1}\right)}, \tag{3.14}
\end{equation*}
$$

[^2]hypothesis
test
null
hypothesis
alternative hypothesis

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	<0.0001
TV	0.0475	0.0027	17.67	<0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model for the regression of number of units sold on TV advertising budget. An increase of $\$ 1,000$ in the $T V$ advertising budget is associated with an increase in sales by around 50 units. (Recall that the sales variable is in thousands of units, and the TV variable is in thousands of dollars.)
which measures the number of standard deviations that $\hat{\beta}_{1}$ is away from 0 . If there really is no relationship between X and Y, then we expect that (3.14) will have a t-distribution with $n-2$ degrees of freedom. The t-distribution has a bell shape and for values of n greater than approximately 30 it is quite similar to the standard normal distribution. Consequently, it is a simple matter to compute the probability of observing any number equal to $|t|$ or larger in absolute value, assuming $\beta_{1}=0$. We call this probability the p-value. Roughly speaking, we interpret the p-value as follows: a small p-value indicates that it is unlikely to observe such a substantial association between the predictor and the response due to chance, in the absence of any real association between the predictor and the response. Hence, if we see a small p-value, then we can infer that there is an association between the predictor and the response. We reject the null hypothesis - that is, we declare a relationship to exist between X and Y-if the p-value is small enough. Typical p-value cutoffs for rejecting the null hypothesis are 5% or 1%, although this topic will be explored in much greater detail in Chapter 13 . When $n=30$, these correspond to t-statistics (3.14) of around 2 and 2.75 , respectively.

Table 3.1 provides details of the least squares model for the regression of number of units sold on TV advertising budget for the Advertising data. Notice that the coefficients for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are very large relative to their standard errors, so the t-statistics are also large; the probabilities of seeing such values if H_{0} is true are virtually zero. Hence we can conclude that $\beta_{0} \neq 0$ and $\beta_{1} \neq 0 .{ }^{4}$

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative hypothesis (3.13), it is natural to want to quantify the extent to which the model fits the data. The quality of a linear regression fit is typically assessed

[^3]| Quantity | Value |
| :--- | :--- |
| Residual standard error | 3.26 |
| R^{2} | 0.612 |
| F-statistic | 312.1 |

TABLE 3.2. For the Advertising data, more information about the least squares model for the regression of number of units sold on TV advertising budget.
using two related quantities: the residual standard error (RSE) and the R^{2} statistic.

Table 3.2 displays the RSE, the R^{2} statistic, and the F-statistic (to be described in Section 3.2.2) for the linear regression of number of units sold on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an error term ϵ. Due to the presence of these error terms, even if we knew the true regression line (i.e. even if β_{0} and β_{1} were known), we would not be able to perfectly predict Y from X. The RSE is an estimate of the standard deviation of ϵ. Roughly speaking, it is the average amount that the response will deviate from the true regression line. It is computed using the formula

$$
\begin{equation*}
\operatorname{RSE}=\sqrt{\frac{1}{n-2} \mathrm{RSS}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}} . \tag{3.15}
\end{equation*}
$$

Note that RSS was defined in Section 3.1.1, and is given by the formula

$$
\begin{equation*}
\mathrm{RSS}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \tag{3.16}
\end{equation*}
$$

In the case of the advertising data, we see from the linear regression output in Table 3.2 that the RSE is 3.26 . In other words, actual sales in each market deviate from the true regression line by approximately 3,260 units, on average. Another way to think about this is that even if the model were correct and the true values of the unknown coefficients β_{0} and β_{1} were known exactly, any prediction of sales on the basis of TV advertising would still be off by about 3,260 units on average. Of course, whether or not 3,260 units is an acceptable prediction error depends on the problem context. In the advertising data set, the mean value of sales over all markets is approximately 14,000 units, and so the percentage error is $3,260 / 14,000=23 \%$.

The RSE is considered a measure of the lack of fit of the model (3.5) to the data. If the predictions obtained using the model are very close to the true outcome values - that is, if $\hat{y}_{i} \approx y_{i}$ for $i=1, \ldots, n$-then (3.15) will be small, and we can conclude that the model fits the data very well. On
the other hand, if \hat{y}_{i} is very far from y_{i} for one or more observations, then the RSE may be quite large, indicating that the model doesn't fit the data well.

R^{2} Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5) to the data. But since it is measured in the units of Y, it is not always clear what constitutes a good RSE. The R^{2} statistic provides an alternative measure of fit. It takes the form of a proportion - the proportion of variance explained-and so it always takes on a value between 0 and 1 , and is independent of the scale of Y.

To calculate R^{2}, we use the formula

$$
\begin{equation*}
R^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}} \tag{3.17}
\end{equation*}
$$

where TSS $=\sum\left(y_{i}-\bar{y}\right)^{2}$ is the total sum of squares, and RSS is defined in (3.16). TSS measures the total variance in the response Y, and can be thought of as the amount of variability inherent in the response before the regression is performed. In contrast, RSS measures the amount of variability that is left unexplained after performing the regression. Hence, TSS - RSS measures the amount of variability in the response that is explained (or removed) by performing the regression, and R^{2} measures the proportion of variability in Y that can be explained using X. An R^{2} statistic that is close to 1 indicates that a large proportion of the variability in the response is explained by the regression. A number near 0 indicates that the regression does not explain much of the variability in the response; this might occur because the linear model is wrong, or the error variance σ^{2} is high, or both. In Table 3.2, the R^{2} was 0.61 , and so just under two-thirds of the variability in sales is explained by a linear regression on TV.

The R^{2} statistic (3.17) has an interpretational advantage over the RSE (3.15), since unlike the RSE, it always lies between 0 and 1 . However, it can still be challenging to determine what is a good R^{2} value, and in general, this will depend on the application. For instance, in certain problems in physics, we may know that the data truly comes from a linear model with a small residual error. In this case, we would expect to see an R^{2} value that is extremely close to 1 , and a substantially smaller R^{2} value might indicate a serious problem with the experiment in which the data were generated. On the other hand, in typical applications in biology, psychology, marketing, and other domains, the linear model (3.5) is at best an extremely rough approximation to the data, and residual errors due to other unmeasured factors are often very large. In this setting, we would expect only a very small proportion of the variance in the response to be explained by the predictor, and an R^{2} value well below 0.1 might be more realistic!
total sum of squares

The R^{2} statistic is a measure of the linear relationship between X and Y. Recall that correlation, defined as
is also a measure of the linear relationship between X and $Y .{ }^{5}$ This suggests that we might be able to use $r=\operatorname{Cor}(X, Y)$ instead of R^{2} in order to assess the fit of the linear model. In fact, it can be shown that in the simple linear regression setting, $R^{2}=r^{2}$. In other words, the squared correlation and the R^{2} statistic are identical. However, in the next section we will discuss the multiple linear regression problem, in which we use several predictors simultaneously to predict the response. The concept of correlation between the predictors and the response does not extend automatically to this setting, since correlation quantifies the association between a single pair of variables rather than between a larger number of variables. We will see that R^{2} fills this role.

3.2 Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the basis of a single predictor variable. However, in practice we often have more than one predictor. For example, in the Advertising data, we have examined the relationship between sales and TV advertising. We also have data for the amount of money spent advertising on the radio and in newspapers, and we may want to know whether either of these two media is associated with sales. How can we extend our analysis of the advertising data in order to accommodate these two additional predictors?

One option is to run three separate simple linear regressions, each of which uses a different advertising medium as a predictor. For instance, we can fit a simple linear regression to predict sales on the basis of the amount spent on radio advertisements. Results are shown in Table 3.3 (top table). We find that a $\$ 1,000$ increase in spending on radio advertising is associated with an increase in sales of around 203 units. Table 3.3 (bottom table) contains the least squares coefficients for a simple linear regression of sales onto newspaper advertising budget. A $\$ 1,000$ increase in newspaper advertising budget is associated with an increase in sales of approximately 55 units.

However, the approach of fitting a separate simple linear regression model for each predictor is not entirely satisfactory. First of all, it is unclear how to make a single prediction of sales given the three advertising media budgets, since each of the budgets is associated with a separate regression equation.

[^4]Simple regression of sales on radio

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	<0.0001
radio	0.203	0.020	9.92	<0.0001

Simple regression of sales on newspaper

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	<0.0001
newspaper	0.055	0.017	3.30	0.00115

TABLE 3.3. More simple linear regression models for the Advertising data. Coefficients of the simple linear regression model for number of units sold on Top: radio advertising budget and Bottom: newspaper advertising budget. A \$1,000 increase in spending on radio advertising is associated with an average increase in sales by around 203 units, while the same increase in spending on newspaper advertising is associated with an average increase in sales by around 55 units. (Note that the sales variable is in thousands of units, and the radio and newspaper variables are in thousands of dollars.)

Second, each of the three regression equations ignores the other two media in forming estimates for the regression coefficients. We will see shortly that if the media budgets are correlated with each other in the 200 markets in our data set, then this can lead to very misleading estimates of the association between each media budget and sales.

Instead of fitting a separate simple linear regression model for each predictor, a better approach is to extend the simple linear regression model (3.5) so that it can directly accommodate multiple predictors. We can do this by giving each predictor a separate slope coefficient in a single model. In general, suppose that we have p distinct predictors. Then the multiple linear regression model takes the form

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+\epsilon \tag{3.19}
\end{equation*}
$$

where X_{j} represents the j th predictor and β_{j} quantifies the association between that variable and the response. We interpret β_{j} as the average effect on Y of a one unit increase in X_{j}, holding all other predictors fixed. In the advertising example, (3.19) becomes

$$
\begin{equation*}
\text { sales }=\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times \text { newspaper }+\epsilon \tag{3.20}
\end{equation*}
$$

3.2.1 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coefficients $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ in (3.19) are unknown, and must be estimated. Given
estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$, we can make predictions using the formula

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\cdots+\hat{\beta}_{p} x_{p} . \tag{3.21}
\end{equation*}
$$

The parameters are estimated using the same least squares approach that we saw in the context of simple linear regression. We choose $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ to minimize the sum of squared residuals

$$
\begin{align*}
\mathrm{RSS} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\cdots-\hat{\beta}_{p} x_{i p}\right)^{2} . \tag{3.22}
\end{align*}
$$

The values $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ that minimize (3.22) are the multiple least squares regression coefficient estimates. Unlike the simple linear regression estimates given in (3.4), the multiple regression coefficient estimates have somewhat complicated forms that are most easily represented using matrix algebra. For this reason, we do not provide them here. Any statistical software package can be used to compute these coefficient estimates, and later in this chapter we will show how this can be done in R. Figure 3.4 illustrates an example of the least squares fit to a toy data set with $p=2$ predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV, radio, and newspaper advertising budgets are used to predict product sales using the Advertising data. We interpret these results as follows: for a given amount of TV and newspaper advertising, spending an additional $\$ 1,000$ on radio advertising is associated with approximately 189 units of additional sales. Comparing these coefficient estimates to those displayed in Tables 3.1 and 3.3 , we notice that the multiple regression coefficient estimates for TV and radio are pretty similar to the simple linear regression coefficient estimates. However, while the newspaper regression coefficient estimate in Table 3.3 was significantly non-zero, the coefficient estimate for newspaper in the multiple regression model is close to zero, and the corresponding p value is no longer significant, with a value around 0.86 . This illustrates that the simple and multiple regression coefficients can be quite different. This difference stems from the fact that in the simple regression case, the slope term represents the average increase in product sales associated with a $\$ 1,000$ increase in newspaper advertising, ignoring other predictors such as TV and radio. By contrast, in the multiple regression setting, the coefficient for newspaper represents the average increase in product sales associated with increasing newspaper spending by $\$ 1,000$ while holding TV and radio fixed.

Does it make sense for the multiple regression to suggest no relationship between sales and newspaper while the simple linear regression implies the

FIGURE 3.4. In a three-dimensional setting, with two predictors and one response, the least squares regression line becomes a plane. The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the plane.
opposite? In fact it does. Consider the correlation matrix for the three predictor variables and response variable, displayed in Table 3.5. Notice that the correlation between radio and newspaper is 0.35 . This indicates that markets with high newspaper advertising tend to also have high radio advertising. Now suppose that the multiple regression is correct and newspaper advertising is not associated with sales, but radio advertising is associated with sales. Then in markets where we spend more on radio our sales will tend to be higher, and as our correlation matrix shows, we also tend to spend more on newspaper advertising in those same markets. Hence, in a simple linear regression which only examines sales versus

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	<0.0001
TV	0.046	0.0014	32.81	<0.0001
radio	0.189	0.0086	21.89	<0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on TV, radio, and newspaper advertising budgets.

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the Advertising data.
newspaper, we will observe that higher values of newspaper tend to be associated with higher values of sales, even though newspaper advertising is not directly associated with sales. So newspaper advertising is a surrogate for radio advertising; newspaper gets "credit" for the association between radio on sales.

This slightly counterintuitive result is very common in many real life situations. Consider an absurd example to illustrate the point. Running a regression of shark attacks versus ice cream sales for data collected at a given beach community over a period of time would show a positive relationship, similar to that seen between sales and newspaper. Of course no one has (yet) suggested that ice creams should be banned at beaches to reduce shark attacks. In reality, higher temperatures cause more people to visit the beach, which in turn results in more ice cream sales and more shark attacks. A multiple regression of shark attacks onto ice cream sales and temperature reveals that, as intuition implies, ice cream sales is no longer a significant predictor after adjusting for temperature.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in answering a few important questions.

1. Is at least one of the predictors $X_{1}, X_{2}, \ldots, X_{p}$ useful in predicting the response?
2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
3. How well does the model fit the data?
4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

We now address each of these questions in turn.
One: Is There a Relationship Between the Response and Predictors?
Recall that in the simple linear regression setting, in order to determine whether there is a relationship between the response and the predictor we

Quantity	Value
Residual standard error	1.69
R^{2}	0.897
F-statistic	570

TABLE 3.6. More information about the least squares model for the regression of number of units sold on TV, newspaper, and radio advertising budgets in the Advertising data. Other information about this model was displayed in Table 3.4.
can simply check whether $\beta_{1}=0$. In the multiple regression setting with p predictors, we need to ask whether all of the regression coefficients are zero, i.e. whether $\beta_{1}=\beta_{2}=\cdots=\beta_{p}=0$. As in the simple linear regression setting, we use a hypothesis test to answer this question. We test the null hypothesis,

$$
H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0
$$

versus the alternative

$$
H_{a}: \text { at least one } \beta_{j} \text { is non-zero. }
$$

This hypothesis test is performed by computing the F-statistic,

$$
\begin{equation*}
F=\frac{(\mathrm{TSS}-\mathrm{RSS}) / p}{\operatorname{RSS} /(n-p-1)}, \tag{3.23}
\end{equation*}
$$

where, as with simple linear regression, TSS $=\sum\left(y_{i}-\bar{y}\right)^{2}$ and RSS $=$ $\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$. If the linear model assumptions are correct, one can show that

$$
E\{\operatorname{RSS} /(n-p-1)\}=\sigma^{2}
$$

and that, provided H_{0} is true,

$$
E\{(\mathrm{TSS}-\mathrm{RSS}) / p\}=\sigma^{2}
$$

Hence, when there is no relationship between the response and predictors, one would expect the F-statistic to take on a value close to 1 . On the other hand, if H_{a} is true, then $E\{(\mathrm{TSS}-\mathrm{RSS}) / p\}>\sigma^{2}$, so we expect F to be greater than 1.

The F-statistic for the multiple linear regression model obtained by regressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this example the F-statistic is 570 . Since this is far larger than 1 , it provides compelling evidence against the null hypothesis H_{0}. In other words, the large F-statistic suggests that at least one of the advertising media must be related to sales. However, what if the F-statistic had been closer to 1? How large does the F-statistic need to be before we can reject H_{0} and conclude that there is a relationship? It turns out that the answer depends on the values of n and p. When n is large, an F-statistic that is just a little larger than 1 might still provide evidence against H_{0}. In contrast,
a larger F-statistic is needed to reject H_{0} if n is small. When H_{0} is true and the errors ϵ_{i} have a normal distribution, the F-statistic follows an F-distribution. ${ }^{6}$ For any given value of n and p, any statistical software package can be used to compute the p-value associated with the F-statistic using this distribution. Based on this p-value, we can determine whether or not to reject H_{0}. For the advertising data, the p-value associated with the F-statistic in Table 3.6 is essentially zero, so we have extremely strong evidence that at least one of the media is associated with increased sales.

In (3.23) we are testing H_{0} that all the coefficients are zero. Sometimes we want to test that a particular subset of q of the coefficients are zero. This corresponds to a null hypothesis

$$
H_{0}: \quad \beta_{p-q+1}=\beta_{p-q+2}=\cdots=\beta_{p}=0
$$

where for convenience we have put the variables chosen for omission at the end of the list. In this case we fit a second model that uses all the variables except those last q. Suppose that the residual sum of squares for that model is RSS_{0}. Then the appropriate F-statistic is

$$
\begin{equation*}
F=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}\right) / q}{\operatorname{RSS} /(n-p-1)} \tag{3.24}
\end{equation*}
$$

Notice that in Table 3.4, for each individual predictor a t-statistic and a p-value were reported. These provide information about whether each individual predictor is related to the response, after adjusting for the other predictors. It turns out that each of these is exactly equivalent ${ }^{7}$ to the F test that omits that single variable from the model, leaving all the others in-i.e. $q=1$ in (3.24). So it reports the partial effect of adding that variable to the model. For instance, as we discussed earlier, these p-values indicate that TV and radio are related to sales, but that there is no evidence that newspaper is associated with sales, when TV and radio are held fixed.

Given these individual p-values for each variable, why do we need to look at the overall F-statistic? After all, it seems likely that if any one of the p-values for the individual variables is very small, then at least one of the predictors is related to the response. However, this logic is flawed, especially when the number of predictors p is large.

For instance, consider an example in which $p=100$ and $H_{0}: \beta_{1}=\beta_{2}=$ $\cdots=\beta_{p}=0$ is true, so no variable is truly associated with the response. In this situation, about 5% of the p-values associated with each variable (of the type shown in Table 3.4) will be below 0.05 by chance. In other words, we expect to see approximately five small p-values even in the absence of

[^5]any true association between the predictors and the response. ${ }^{8}$ In fact, it is likely that we will observe at least one p-value below 0.05 by chance! Hence, if we use the individual t-statistics and associated p-values in order to decide whether or not there is any association between the variables and the response, there is a very high chance that we will incorrectly conclude that there is a relationship. However, the F-statistic does not suffer from this problem because it adjusts for the number of predictors. Hence, if H_{0} is true, there is only a 5% chance that the F-statistic will result in a p value below 0.05 , regardless of the number of predictors or the number of observations.

The approach of using an F-statistic to test for any association between the predictors and the response works when p is relatively small, and certainly small compared to n. However, sometimes we have a very large number of variables. If $p>n$ then there are more coefficients β_{j} to estimate than observations from which to estimate them. In this case we cannot even fit the multiple linear regression model using least squares, so the F statistic cannot be used, and neither can most of the other concepts that we have seen so far in this chapter. When p is large, some of the approaches discussed in the next section, such as forward selection, can be used. This high-dimensional setting is discussed in greater detail in Chapter 6.

Two: Deciding on Important Variables
As discussed in the previous section, the first step in a multiple regression analysis is to compute the F-statistic and to examine the associated p value. If we conclude on the basis of that p-value that at least one of the predictors is related to the response, then it is natural to wonder which are the guilty ones! We could look at the individual p-values as in Table 3.4, but as discussed (and as further explored in Chapter 13), if p is large we are likely to make some false discoveries.

It is possible that all of the predictors are associated with the response, but it is more often the case that the response is only associated with a subset of the predictors. The task of determining which predictors are associated with the response, in order to fit a single model involving only those predictors, is referred to as variable selection. The variable selection problem is studied extensively in Chapter 6, and so here we will provide
highdimensional only a brief outline of some classical approaches.

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For instance, if $p=2$, then we can consider four models: (1) a model containing no variables, (2) a model containing X_{1} only, (3) a model containing X_{2} only, and (4) a model containing both X_{1} and X_{2}. We can then se-

[^6]lect the best model out of all of the models that we have considered. How do we determine which model is best? Various statistics can be used to judge the quality of a model. These include Mallow's C_{p}, Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted R^{2}. These are discussed in more detail in Chapter 6 . We can also determine which model is best by plotting various model outputs, such as the residuals, in order to search for patterns.

Unfortunately, there are a total of 2^{p} models that contain subsets of p variables. This means that even for moderate p, trying out every possible subset of the predictors is infeasible. For instance, we saw that if $p=2$, then there are $2^{2}=4$ models to consider. But if $p=30$, then we must consider $2^{30}=1,073,741,824$ models! This is not practical. Therefore, unless p is very small, we cannot consider all 2^{p} models, and instead we need an automated and efficient approach to choose a smaller set of models to consider. There are three classical approaches for this task:

- Forward selection. We begin with the null model-a model that contains an intercept but no predictors. We then fit p simple linear regressions and add to the null model the variable that results in the lowest RSS. We then add to that model the variable that results in the lowest RSS for the new two-variable model. This approach is continued until some stopping rule is satisfied.
- Backward selection. We start with all variables in the model, and remove the variable with the largest p-value - that is, the variable that is the least statistically significant. The new $(p-1)$-variable model is fit, and the variable with the largest p-value is removed. This procedure continues until a stopping rule is reached. For instance, we may stop when all remaining variables have a p-value below some threshold.
- Mixed selection. This is a combination of forward and backward selection. We start with no variables in the model, and as with forward selection, we add the variable that provides the best fit. We continue to add variables one-by-one. Of course, as we noted with the Advertising example, the p-values for variables can become larger as new predictors are added to the model. Hence, if at any point the p-value for one of the variables in the model rises above a certain threshold, then we remove that variable from the model. We continue to perform these forward and backward steps until all variables in the model have a sufficiently low p-value, and all variables outside the model would have a large p-value if added to the model.

Backward selection cannot be used if $p>n$, while forward selection can always be used. Forward selection is a greedy approach, and might include variables early that later become redundant. Mixed selection can remedy this.

Mallow's C_{p}
Akaike information criterion
Bayesian information criterion adjusted R^{2}
forward selection null model
backward selection
mixed selection

Three: Model Fit

Two of the most common numerical measures of model fit are the RSE and R^{2}, the fraction of variance explained. These quantities are computed and interpreted in the same fashion as for simple linear regression.

Recall that in simple regression, R^{2} is the square of the correlation of the response and the variable. In multiple linear regression, it turns out that it equals $\operatorname{Cor}(Y, \hat{Y})^{2}$, the square of the correlation between the response and the fitted linear model; in fact one property of the fitted linear model is that it maximizes this correlation among all possible linear models.

An R^{2} value close to 1 indicates that the model explains a large portion of the variance in the response variable. As an example, we saw in Table 3.6 that for the Advertising data, the model that uses all three advertising media to predict sales has an R^{2} of 0.8972 . On the other hand, the model that uses only TV and radio to predict sales has an R^{2} value of 0.89719 . In other words, there is a small increase in R^{2} if we include newspaper advertising in the model that already contains TV and radio advertising, even though we saw earlier that the p-value for newspaper advertising in Table 3.4 is not significant. It turns out that R^{2} will always increase when more variables are added to the model, even if those variables are only weakly associated with the response. This is due to the fact that adding another variable always results in a decrease in the residual sum of squares on the training data (though not necessarily the testing data). Thus, the R^{2} statistic, which is also computed on the training data, must increase. The fact that adding newspaper advertising to the model containing only TV and radio advertising leads to just a tiny increase in R^{2} provides additional evidence that newspaper can be dropped from the model. Essentially, newspaper provides no real improvement in the model fit to the training samples, and its inclusion will likely lead to poor results on independent test samples due to overfitting.

By contrast, the model containing only TV as a predictor had an R^{2} of 0.61 (Table 3.2). Adding radio to the model leads to a substantial improvement in R^{2}. This implies that a model that uses TV and radio expenditures to predict sales is substantially better than one that uses only TV advertising. We could further quantify this improvement by looking at the p-value for the radio coefficient in a model that contains only TV and radio as predictors.

The model that contains only TV and radio as predictors has an RSE of 1.681 , and the model that also contains newspaper as a predictor has an RSE of 1.686 (Table 3.6). In contrast, the model that contains only TV has an RSE of 3.26 (Table 3.2). This corroborates our previous conclusion that a model that uses TV and radio expenditures to predict sales is much more accurate (on the training data) than one that only uses TV spending. Furthermore, given that TV and radio expenditures are used as predictors, there is no point in also using newspaper spending as a predictor in the

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using TV and radio as predictors. From the pattern of the residuals, we can see that there is a pronounced non-linear relationship in the data. The positive residuals (those visible above the surface), tend to lie along the 45-degree line, where TV and Radio budgets are split evenly. The negative residuals (most not visible), tend to lie away from this line, where budgets are more lopsided.
model. The observant reader may wonder how RSE can increase when newspaper is added to the model given that RSS must decrease. In general RSE is defined as

$$
\begin{equation*}
\mathrm{RSE}=\sqrt{\frac{1}{n-p-1} \mathrm{RSS}} \tag{3.25}
\end{equation*}
$$

which simplifies to (3.15) for a simple linear regression. Thus, models with more variables can have higher RSE if the decrease in RSS is small relative to the increase in p.

In addition to looking at the RSE and R^{2} statistics just discussed, it can be useful to plot the data. Graphical summaries can reveal problems with a model that are not visible from numerical statistics. For example, Figure 3.5 displays a three-dimensional plot of TV and radio versus sales. We see that some observations lie above and some observations lie below the least squares regression plane. In particular, the linear model seems to overestimate sales for instances in which most of the advertising money was spent exclusively on either TV or radio. It underestimates sales for instances where the budget was split between the two media. This pronounced non-linear pattern suggests a synergy or interaction effect between the advertising media, whereby combining the media together results in a bigger boost to sales than using any single medium. In Section 3.3.2, we will discuss extending the linear model to accommodate such synergistic effects through the use of interaction terms.

Four: Predictions

Once we have fit the multiple regression model, it is straightforward to apply (3.21) in order to predict the response Y on the basis of a set of values for the predictors $X_{1}, X_{2}, \ldots, X_{p}$. However, there are three sorts of uncertainty associated with this prediction.

1. The coefficient estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ are estimates for $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$. That is, the least squares plane

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1}+\cdots+\hat{\beta}_{p} X_{p}
$$

is only an estimate for the true population regression plane

$$
f(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
$$

The inaccuracy in the coefficient estimates is related to the reducible error from Chapter 2. We can compute a confidence interval in order to determine how close \hat{Y} will be to $f(X)$.
2. Of course, in practice assuming a linear model for $f(X)$ is almost always an approximation of reality, so there is an additional source of potentially reducible error which we call model bias. So when we use a linear model, we are in fact estimating the best linear approximation to the true surface. However, here we will ignore this discrepancy, and operate as if the linear model were correct.
3. Even if we knew $f(X)$ - that is, even if we knew the true values for $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$-the response value cannot be predicted perfectly because of the random error ϵ in the model (3.20). In Chapter 2, we referred to this as the irreducible error. How much will Y vary from \hat{Y} ? We use prediction intervals to answer this question. Prediction intervals are always wider than confidence intervals, because they incorporate both the error in the estimate for $f(X)$ (the reducible error) and the uncertainty as to how much an individual point will differ from the population regression plane (the irreducible error).

We use a confidence interval to quantify the uncertainty surrounding the average sales over a large number of cities. For example, given that $\$ 100,000$ is spent on TV advertising and $\$ 20,000$ is spent on radio advertising in each city, the 95% confidence interval is $[10,985,11,528]$. We interpret this to mean that 95% of intervals of this form will contain the true value of $f(X) .{ }^{9}$ On the other hand, a prediction interval can be used to quantify the
confidence interval
prediction interval

[^7]uncertainty surrounding sales for a particular city. Given that $\$ 100,000$ is spent on TV advertising and $\$ 20,000$ is spent on radio advertising in that city the 95% prediction interval is $[7,930,14,580]$. We interpret this to mean that 95% of intervals of this form will contain the true value of Y for this city. Note that both intervals are centered at 11,256 , but that the prediction interval is substantially wider than the confidence interval, reflecting the increased uncertainty about sales for a given city in comparison to the average sales over many locations.

3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

In our discussion so far, we have assumed that all variables in our linear regression model are quantitative. But in practice, this is not necessarily the case; often some predictors are qualitative.

For example, the Credit data set displayed in Figure 3.6 records variables for a number of credit card holders. The response is balance (average credit card debt for each individual) and there are several quantitative predictors: age, cards (number of credit cards), education (years of education), income (in thousands of dollars), limit (credit limit), and rating (credit rating). Each panel of Figure 3.6 is a scatterplot for a pair of variables whose identities are given by the corresponding row and column labels. For example, the scatterplot directly to the right of the word "Balance" depicts balance versus age, while the plot directly to the right of "Age" corresponds to age versus cards. In addition to these quantitative variables, we also have four qualitative variables: own (house ownership), student (student status), status (marital status), and region (East, West or South).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance between those who own a house and those who don't, ignoring the other variables for the moment. If a qualitative predictor (also known as a factor) only has two levels, or possible values, then incorporating it into a regression model is very simple. We simply create an indicator or dummy variable that takes on two possible numerical values. ${ }^{10}$ For example, based on the
factor
level
dummy
variable own variable, we can create a new variable that takes the form

$$
x_{i}= \begin{cases}1 & \text { if } i \text { th person owns a house } \tag{3.26}\\ 0 & \text { if } i \text { th person does not own a house }\end{cases}
$$

[^8]

FIGURE 3.6. The Credit data set contains information about balance, age, cards, education, income, limit, and rating for a number of potential customers.
and use this variable as a predictor in the regression equation. This results in the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\epsilon_{i} & \text { if } i \text { th person owns a house } \tag{3.27}\\ \beta_{0}+\epsilon_{i} & \text { if } i \text { th person does not. }\end{cases}
$$

Now β_{0} can be interpreted as the average credit card balance among those who do not own, $\beta_{0}+\beta_{1}$ as the average credit card balance among those who do own their house, and β_{1} as the average difference in credit card balance between owners and non-owners.

Table 3.7 displays the coefficient estimates and other information associated with the model (3.27). The average credit card debt for non-owners is estimated to be $\$ 509.80$, whereas owners are estimated to carry $\$ 19.73$ in additional debt for a total of $\$ 509.80+\$ 19.73=\$ 529.53$. However, we

	Coefficient	Std. error	t-statistic	p-value
Intercept	509.80	33.13	15.389	<0.0001
own[Yes]	19.73	46.05	0.429	0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of balance onto own in the Credit data set. The linear model is given in (3.27). That is, ownership is encoded as a dummy variable, as in (3.26).
notice that the p-value for the dummy variable is very high. This indicates that there is no statistical evidence of a difference in average credit card balance based on house ownership.

The decision to code owners as 1 and non-owners as 0 in (3.27) is arbitrary, and has no effect on the regression fit, but does alter the interpretation of the coefficients. If we had coded non-owners as 1 and owners as 0 , then the estimates for β_{0} and β_{1} would have been 529.53 and -19.73, respectively, leading once again to a prediction of credit card debt of $\$ 529.53-\$ 19.73=\$ 509.80$ for non-owners and a prediction of $\$ 529.53$ for owners. Alternatively, instead of a $0 / 1$ coding scheme, we could create a dummy variable

$$
x_{i}=\left\{\begin{aligned}
1 & \text { if } i \text { th person owns a house } \\
-1 & \text { if } i \text { th person does not own a house }
\end{aligned}\right.
$$

and use this variable in the regression equation. This results in the model
$y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\epsilon_{i} & \text { if } i \text { th person owns a house } \\ \beta_{0}-\beta_{1}+\epsilon_{i} & \text { if } i \text { th person does not own a house. }\end{cases}$
Now β_{0} can be interpreted as the overall average credit card balance (ignoring the house ownership effect), and β_{1} is the amount by which house owners and non-owners have credit card balances that are above and below the average, respectively. ${ }^{11}$ In this example, the estimate for β_{0} is $\$ 519.665$, halfway between the non-owner and owner averages of $\$ 509.80$ and $\$ 529.53$. The estimate for β_{1} is $\$ 9.865$, which is half of $\$ 19.73$, the average difference between owners and non-owners. It is important to note that the final predictions for the credit balances of owners and non-owners will be identical regardless of the coding scheme used. The only difference is in the way that the coefficients are interpreted.

Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy variable cannot represent all possible values. In this situation, we can create

[^9]additional dummy variables. For example, for the region variable we create two dummy variables. The first could be
\[

x_{i 1}= $$
\begin{cases}1 & \text { if } i \text { th person is from the South } \tag{3.28}\\ 0 & \text { if } i \text { th person is not from the South }\end{cases}
$$
\]

and the second could be

$$
x_{i 2}= \begin{cases}1 & \text { if } i \text { th person is from the West } \tag{3.29}\\ 0 & \text { if } i \text { th person is not from the West. }\end{cases}
$$

Then both of these variables can be used in the regression equation, in order to obtain the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\epsilon_{i} & \text { if } i \text { th person is from the South } \tag{3.30}\\ \beta_{0}+\beta_{2}+\epsilon_{i} & \text { if } i \text { th person is from the West } \\ \beta_{0}+\epsilon_{i} & \text { if } i \text { th person is from the East. }\end{cases}
$$

Now β_{0} can be interpreted as the average credit card balance for individuals from the East, β_{1} can be interpreted as the difference in the average balance between people from the South versus the East, and β_{2} can be interpreted as the difference in the average balance between those from the West versus the East. There will always be one fewer dummy variable than the number of levels. The level with no dummy variable - East in this example - is known as the baseline.

From Table 3.8, we see that the estimated balance for the baseline, East, is $\$ 531.00$. It is estimated that those in the South will have $\$ 18.69$ less debt than those in the East, and that those in the West will have $\$ 12.50$ less debt than those in the East. However, the p-values associated with the coefficient estimates for the two dummy variables are very large, suggesting no statistical evidence of a real difference in average credit card balance between South and East or between West and East. ${ }^{12}$ Once again, the level selected as the baseline category is arbitrary, and the final predictions for each group will be the same regardless of this choice. However, the coefficients and their p-values do depend on the choice of dummy variable coding. Rather than rely on the individual coefficients, we can use an F-test to test $H_{0}: \beta_{1}=\beta_{2}=0$; this does not depend on the coding. This F-test has a p-value of 0.96 , indicating that we cannot reject the null hypothesis that there is no relationship between balance and region.

Using this dummy variable approach presents no difficulties when incorporating both quantitative and qualitative predictors. For example, to regress balance on both a quantitative variable such as income and a qualitative variable such as student, we must simply create a dummy variable

[^10]| | Coefficient | Std. error | t-statistic | p-value |
| :--- | ---: | ---: | ---: | ---: |
| Intercept | 531.00 | 46.32 | 11.464 | <0.0001 |
| region [South] | -12.50 | 56.68 | -0.221 | 0.8260 |
| region[West] | -18.69 | 65.02 | -0.287 | 0.7740 |

TABLE 3.8. Least squares coefficient estimates associated with the regression of balance onto region in the Credit data set. The linear model is given in (3.30). That is, region is encoded via two dummy variables (3.28) and (3.29).
for student and then fit a multiple regression model using income and the dummy variable as predictors for credit card balance.

There are many different ways of coding qualitative variables besides the dummy variable approach taken here. All of these approaches lead to equivalent model fits, but the coefficients are different and have different interpretations, and are designed to measure particular contrasts. This topic is beyond the scope of the book.

3.3.2 Extensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results and works quite well on many real-world problems. However, it makes several highly restrictive assumptions that are often violated in practice. Two of the most important assumptions state that the relationship between the predictors and response are additive and linear. The additivity assumption means that the association between a predictor X_{j} and the response Y does not depend on the values of the other predictors. The linearity assumption states that the change in the response Y associated with a one-unit change in X_{j} is constant, regardless of the value of X_{j}. In later chapters of this book, we examine a number of sophisticated methods that relax these two assumptions. Here, we briefly examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV and radio seem to be associated with sales. The linear models that formed the basis for this conclusion assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media. For example, the linear model (3.20) states that the average increase in sales associated with a one-unit increase in TV is always β_{1}, regardless of the amount spent on radio.

However, this simple model may be incorrect. Suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases. In this situation, given a fixed budget of $\$ 100,000$, spending half on radio and half on TV may increase sales more than allocating the entire amount
to either TV or to radio. In marketing, this is known as a synergy effect, and in statistics it is referred to as an interaction effect. Figure 3.5 suggests that such an effect may be present in the advertising data. Notice that when levels of either TV or radio are low, then the true sales are lower than predicted by the linear model. But when advertising is split between the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\epsilon
$$

According to this model, a one-unit increase in X_{1} is associated with an average increase in Y of β_{1} units. Notice that the presence of X_{2} does not alter this statement-that is, regardless of the value of X_{2}, a oneunit increase in X_{1} is associated with a β_{1}-unit increase in Y. One way of extending this model is to include a third predictor, called an interaction term, which is constructed by computing the product of X_{1} and X_{2}. This results in the model

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\epsilon \tag{3.31}
\end{equation*}
$$

How does inclusion of this interaction term relax the additive assumption? Notice that (3.31) can be rewritten as

$$
\begin{align*}
Y & =\beta_{0}+\left(\beta_{1}+\beta_{3} X_{2}\right) X_{1}+\beta_{2} X_{2}+\epsilon \tag{3.32}\\
& =\beta_{0}+\tilde{\beta}_{1} X_{1}+\beta_{2} X_{2}+\epsilon
\end{align*}
$$

where $\tilde{\beta}_{1}=\beta_{1}+\beta_{3} X_{2}$. Since $\tilde{\beta}_{1}$ is now a function of X_{2}, the association between X_{1} and Y is no longer constant: a change in the value of X_{2} will change the association between X_{1} and Y. A similar argument shows that a change in the value of X_{1} changes the association between X_{2} and Y.

For example, suppose that we are interested in studying the productivity of a factory. We wish to predict the number of units produced on the basis of the number of production lines and the total number of workers. It seems likely that the effect of increasing the number of production lines will depend on the number of workers, since if no workers are available to operate the lines, then increasing the number of lines will not increase production. This suggests that it would be appropriate to include an interaction term between lines and workers in a linear model to predict units. Suppose that when we fit the model, we obtain

$$
\begin{aligned}
\text { units } & \approx 1.2+3.4 \times \text { lines }+0.22 \times \text { workers }+1.4 \times(\text { lines } \times \text { workers }) \\
& =1.2+(3.4+1.4 \times \text { workers }) \times \text { lines }+0.22 \times \text { workers } .
\end{aligned}
$$

In other words, adding an additional line will increase the number of units produced by $3.4+1.4 \times$ workers. Hence the more workers we have, the stronger will be the effect of lines.

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	<0.0001
TV	0.0191	0.002	12.70	<0.0001
radio	0.0289	0.009	3.24	0.0014
TV \times radio	0.0011	0.000	20.73	<0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates associated with the regression of sales onto TV and radio, with an interaction term, as in (3.33).

We now return to the Advertising example. A linear model that uses radio, TV, and an interaction between the two to predict sales takes the form

$$
\begin{align*}
\text { sales } & =\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times(\text { radio } \times \mathrm{TV})+\epsilon \\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} \times \text { radio }\right) \times \mathrm{TV}+\beta_{2} \times \text { radio }+\epsilon \tag{3.33}
\end{align*}
$$

We can interpret β_{3} as the increase in the effectiveness of TV advertising associated with a one-unit increase in radio advertising (or vice-versa). The coefficients that result from fitting the model (3.33) are given in Table 3.9.

The results in Table 3.9 strongly suggest that the model that includes the interaction term is superior to the model that contains only main effects. The p-value for the interaction term, $\mathrm{TV} \times$ radio, is extremely low, indicating that there is strong evidence for $H_{a}: \beta_{3} \neq 0$. In other words, it is clear that the true relationship is not additive. The R^{2} for the model (3.33) is 96.8%, compared to only 89.7% for the model that predicts sales using TV and radio without an interaction term. This means that $(96.8-89.7) /(100-$ $89.7)=69 \%$ of the variability in sales that remains after fitting the additive model has been explained by the interaction term. The coefficient estimates in Table 3.9 suggest that an increase in TV advertising of $\$ 1,000$ is associated with increased sales of $\left(\hat{\beta}_{1}+\hat{\beta}_{3} \times\right.$ radio $) \times 1,000=19+1.1 \times$ radio units. And an increase in radio advertising of $\$ 1,000$ will be associated with an increase in sales of $\left(\hat{\beta}_{2}+\hat{\beta}_{3} \times \mathrm{TV}\right) \times 1,000=29+1.1 \times \mathrm{TV}$ units.

In this example, the p-values associated with TV, radio, and the interaction term all are statistically significant (Table 3.9), and so it is obvious that all three variables should be included in the model. However, it is sometimes the case that an interaction term has a very small p-value, but the associated main effects (in this case, TV and radio) do not. The hierarchical principle states that if we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant. In other words, if the interaction between X_{1} and X_{2} seems important, then we should include both X_{1} and X_{2} in the model even if their coefficient estimates have large p-values. The rationale for this principle is that if $X_{1} \times X_{2}$ is related to the response, then whether or not the coefficients of X_{1} or X_{2} are exactly zero is of lit-
main effect
hierarchical principle
tle interest. Also $X_{1} \times X_{2}$ is typically correlated with X_{1} and X_{2}, and so leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and radio, both of which are quantitative variables. However, the concept of interactions applies just as well to qualitative variables, or to a combination of quantitative and qualitative variables. In fact, an interaction between a qualitative variable and a quantitative variable has a particularly nice interpretation. Consider the Credit data set from Section 3.3.1, and suppose that we wish to predict balance using the income (quantitative) and student (qualitative) variables. In the absence of an interaction term, the model takes the form

$$
\begin{align*}
\text { balance }_{i} & \approx \beta_{0}+\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{2} & \text { if } i \text { th person is a student } \\
0 & \text { if } i \text { th person is not a student }\end{cases} \\
& =\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{0}+\beta_{2} & \text { if } i \text { th person is a student } \\
\beta_{0} & \text { if } i \text { th person is not a student. }\end{cases} \tag{3.34}
\end{align*}
$$

Notice that this amounts to fitting two parallel lines to the data, one for students and one for non-students. The lines for students and non-students have different intercepts, $\beta_{0}+\beta_{2}$ versus β_{0}, but the same slope, β_{1}. This is illustrated in the left-hand panel of Figure 3.7. The fact that the lines are parallel means that the average effect on balance of a one-unit increase in income does not depend on whether or not the individual is a student. This represents a potentially serious limitation of the model, since in fact a change in income may have a very different effect on the credit card balance of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, created by multiplying income with the dummy variable for student. Our model now becomes

$$
\begin{align*}
\text { balance }_{i} & \approx \beta_{0}+\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{2}+\beta_{3} \times \text { income }_{i} & \text { if student } \\
0 & \text { if not student }\end{cases} \\
& = \begin{cases}\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) \times \text { income }_{i} & \text { if student } \\
\beta_{0}+\beta_{1} \times \text { income }_{i} & \text { if not student. }\end{cases} \tag{3.35}
\end{align*}
$$

Once again, we have two different regression lines for the students and the non-students. But now those regression lines have different intercepts, $\beta_{0}+\beta_{2}$ versus β_{0}, as well as different slopes, $\beta_{1}+\beta_{3}$ versus β_{1}. This allows for the possibility that changes in income may affect the credit card balances of students and non-students differently. The right-hand panel of Figure 3.7 shows the estimated relationships between income and balance for students

FIGURE 3.7. For the Credit data, the least squares lines are shown for prediction of balance from income for students and non-students. Left: The model (3.34) was fit. There is no interaction between income and student. Right: The model (3.35) was fit. There is an interaction term between income and student.
and non-students in the model (3.35). We note that the slope for students is lower than the slope for non-students. This suggests that increases in income are associated with smaller increases in credit card balance among students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear relationship between the response and predictors. But in some cases, the true relationship between the response and the predictors may be nonlinear. Here we present a very simple way to directly extend the linear model to accommodate non-linear relationships, using polynomial regression. In later chapters, we will present more complex approaches for performing non-linear fits in more general settings.

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon) versus horsepower is shown for a number of cars in the Auto data set. The orange line represents the linear regression fit. There is a pronounced relationship between mpg and horsepower, but it seems clear that this relationship is in fact non-linear: the data suggest a curved relationship. A simple approach for incorporating non-linear associations in a linear model is to include transformed versions of the predictors. For example, the points in Figure 3.8 seem to have a quadratic shape, suggesting that a model of the form

$$
\begin{equation*}
\operatorname{mpg}=\beta_{0}+\beta_{1} \times \text { horsepower }+\beta_{2} \times \text { horsepower }^{2}+\epsilon \tag{3.36}
\end{equation*}
$$

may provide a better fit. Equation 3.36 involves predicting mpg using a non-linear function of horsepower. But it is still a linear model! That is, (3.36) is simply a multiple linear regression model with $X_{1}=$ horsepower

FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are shown. The linear regression fit is shown in orange. The linear regression fit for a model that includes horsepower ${ }^{2}$ is shown as a blue curve. The linear regression fit for a model that includes all polynomials of horsepower up to fifth-degree is shown in green.

	Coefficient	Std. error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	<0.0001
horsepower	-0.4662	0.0311	-15.0	<0.0001
horsepower	0.0012	0.0001	10.1	<0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated with the regression of mpg onto horsepower and horsepower ${ }^{2}$.
and $X_{2}=$ horsepower ${ }^{2}$. So we can use standard linear regression software to estimate β_{0}, β_{1}, and β_{2} in order to produce a non-linear fit. The blue curve in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic fit appears to be substantially better than the fit obtained when just the linear term is included. The R^{2} of the quadratic fit is 0.688 , compared to 0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term is highly significant.

If including horsepower ${ }^{2}$ led to such a big improvement in the model, why not include horsepower ${ }^{3}$, horsepower ${ }^{4}$, or even horsepower ${ }^{5}$? The green curve in Figure 3.8 displays the fit that results from including all polynomials up to fifth degree in the model (3.36). The resulting fit seems unnecessarily wiggly-that is, it is unclear that including the additional terms really has led to a better fit to the data.

The approach that we have just described for extending the linear model to accommodate non-linear relationships is known as polynomial regression, since we have included polynomial functions of the predictors in the regression model. We further explore this approach and other non-linear extensions of the linear model in Chapter 7.

3.3.3 Potential Problems

When we fit a linear regression model to a particular data set, many problems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.
2. Correlation of error terms.
3. Non-constant variance of error terms.
4. Outliers.
5. High-leverage points.
6. Collinearity.

In practice, identifying and overcoming these problems is as much an art as a science. Many pages in countless books have been written on this topic. Since the linear regression model is not our primary focus here, we will provide only a brief summary of some key points.

1. Non-linearity of the Data

The linear regression model assumes that there is a straight-line relationship between the predictors and the response. If the true relationship is far from linear, then virtually all of the conclusions that we draw from the fit are suspect. In addition, the prediction accuracy of the model can be significantly reduced.

Residual plots are a useful graphical tool for identifying non-linearity. Given a simple linear regression model, we can plot the residuals, $e_{i}=$ $y_{i}-\hat{y}_{i}$, versus the predictor x_{i}. In the case of a multiple regression model, since there are multiple predictors, we instead plot the residuals versus the predicted (or fitted) values \hat{y}_{i}. Ideally, the residual plot will show no discernible pattern. The presence of a pattern may indicate a problem with
residual plot
fitted some aspect of the linear model.

The left panel of Figure 3.9 displays a residual plot from the linear regression of mpg onto horsepower on the Auto data set that was illustrated in Figure 3.8. The red line is a smooth fit to the residuals, which is displayed in order to make it easier to identify any trends. The residuals exhibit a clear U-shape, which provides a strong indication of non-linearity in the data. In contrast, the right-hand panel of Figure 3.9 displays the residual plot

FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto data set. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. Left: A linear regression of mpg on horsepower. A strong pattern in the residuals indicates non-linearity in the data. Right: A linear regression of mpg on horsepower and horsepower ${ }^{2}$. There is little pattern in the residuals.
that results from the model (3.36), which contains a quadratic term. There appears to be little pattern in the residuals, suggesting that the quadratic term improves the fit to the data.

If the residual plot indicates that there are non-linear associations in the data, then a simple approach is to use non-linear transformations of the predictors, such as $\log X, \sqrt{X}$, and X^{2}, in the regression model. In the later chapters of this book, we will discuss other more advanced non-linear approaches for addressing this issue.

2. Correlation of Error Terms

An important assumption of the linear regression model is that the error terms, $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$, are uncorrelated. What does this mean? For instance, if the errors are uncorrelated, then the fact that ϵ_{i} is positive provides little or no information about the sign of ϵ_{i+1}. The standard errors that are computed for the estimated regression coefficients or the fitted values are based on the assumption of uncorrelated error terms. If in fact there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors. As a result, confidence and prediction intervals will be narrower than they should be. For example, a 95% confidence interval may in reality have a much lower probability than 0.95 of containing the true value of the parameter. In addition, p values associated with the model will be lower than they should be; this could cause us to erroneously conclude that a parameter is statistically
significant. In short, if the error terms are correlated, we may have an unwarranted sense of confidence in our model.

As an extreme example, suppose we accidentally doubled our data, leading to observations and error terms identical in pairs. If we ignored this, our standard error calculations would be as if we had a sample of size $2 n$, when in fact we have only n samples. Our estimated parameters would be the same for the $2 n$ samples as for the n samples, but the confidence intervals would be narrower by a factor of $\sqrt{2}$!

Why might correlations among the error terms occur? Such correlations frequently occur in the context of time series data, which consists of observations for which measurements are obtained at discrete points in time. In many cases, observations that are obtained at adjacent time points will have positively correlated errors. In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time. If the errors are uncorrelated, then there should be no discernible pattern. On the other hand, if the error terms are positively correlated, then we may see tracking in the residuals - that is, adjacent residuals may have similar values. Figure 3.10 provides an illustration. In the top panel, we see the residuals from a linear regression fit to data generated with uncorrelated errors. There is no evidence of a time-related trend in the residuals. In contrast, the residuals in the bottom panel are from a data set in which adjacent errors had a correlation of 0.9. Now there is a clear pattern in the residuals-adjacent residuals tend to take on similar values. Finally, the center panel illustrates a more moderate case in which the residuals had a correlation of 0.5 . There is still evidence of tracking, but the pattern is less clear.

Many methods have been developed to properly take account of correlations in the error terms in time series data. Correlation among the error terms can also occur outside of time series data. For instance, consider a study in which individuals' heights are predicted from their weights. The assumption of uncorrelated errors could be violated if some of the individuals in the study are members of the same family, eat the same diet, or have been exposed to the same environmental factors. In general, the assumption of uncorrelated errors is extremely important for linear regression as well as for other statistical methods, and good experimental design is crucial in order to mitigate the risk of such correlations.

3. Non-constant Variance of Error Terms

Another important assumption of the linear regression model is that the error terms have a constant variance, $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$. The standard errors, confidence intervals, and hypothesis tests associated with the linear model rely upon this assumption.

Unfortunately, it is often the case that the variances of the error terms are non-constant. For instance, the variances of the error terms may increase

FIGURE 3.10. Plots of residuals from simulated time series data sets generated with differing levels of correlation ρ between error terms for adjacent time points.
with the value of the response. One can identify non-constant variances in the errors, or heteroscedasticity, from the presence of a funnel shape in the residual plot. An example is shown in the left-hand panel of Figure 3.11, in which the magnitude of the residuals tends to increase with the fitted values. When faced with this problem, one possible solution is to transform the response Y using a concave function such as $\log Y$ or \sqrt{Y}. Such a transformation results in a greater amount of shrinkage of the larger responses, leading to a reduction in heteroscedasticity. The right-hand panel of Figure 3.11 displays the residual plot after transforming the response using $\log Y$. The residuals now appear to have constant variance, though there is some evidence of a slight non-linear relationship in the data.

Sometimes we have a good idea of the variance of each response. For example, the i th response could be an average of n_{i} raw observations. If each of these raw observations is uncorrelated with variance σ^{2}, then their average has variance $\sigma_{i}^{2}=\sigma^{2} / n_{i}$. In this case a simple remedy is to fit our model by weighted least squares, with weights proportional to the inverse
heteroscedasticity
weighted least squares

FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. The blue lines track the outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape indicates heteroscedasticity. Right: The response has been log transformed, and there is now no evidence of heteroscedasticity.
variances-i.e. $w_{i}=n_{i}$ in this case. Most linear regression software allows for observation weights.

4. Outliers

An outlier is a point for which y_{i} is far from the value predicted by the model. Outliers can arise for a variety of reasons, such as incorrect recording of an observation during data collection.

The red point (observation 20) in the left-hand panel of Figure 3.12 illustrates a typical outlier. The red solid line is the least squares regression fit, while the blue dashed line is the least squares fit after removal of the outlier. In this case, removing the outlier has little effect on the least squares line: it leads to almost no change in the slope, and a miniscule reduction in the intercept. It is typical for an outlier that does not have an unusual predictor value to have little effect on the least squares fit. However, even if an outlier does not have much effect on the least squares fit, it can cause other problems. For instance, in this example, the RSE is 1.09 when the outlier is included in the regression, but it is only 0.77 when the outlier is removed. Since the RSE is used to compute all confidence intervals and p-values, such a dramatic increase caused by a single data point can have implications for the interpretation of the fit. Similarly, inclusion of the outlier causes the R^{2} to decline from 0.892 to 0.805 .

Residual plots can be used to identify outliers. In this example, the outlier is clearly visible in the residual plot illustrated in the center panel of Figure 3.12. But in practice, it can be difficult to decide how large a resid-

FIGURE 3.12. Left: The least squares regression line is shown in red, and the regression line after removing the outlier is shown in blue. Center: The residual plot clearly identifies the outlier. Right: The outlier has a studentized residual of 6; typically we expect values between -3 and 3 .

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not. The red line is the fit to all the data, and the blue line is the fit with observation 41 removed. Center: The red observation is not unusual in terms of its X_{1} value or its X_{2} value, but still falls outside the bulk of the data, and hence has high leverage. Right: Observation 41 has a high leverage and a high residual.
ual needs to be before we consider the point to be an outlier. To address this problem, instead of plotting the residuals, we can plot the studentized residuals, computed by dividing each residual e_{i} by its estimated standard error. Observations whose studentized residuals are greater than 3 in absolute value are possible outliers. In the right-hand panel of Figure 3.12, the outlier's studentized residual exceeds 6 , while all other observations have studentized residuals between -2 and 2 .

If we believe that an outlier has occurred due to an error in data collection or recording, then one solution is to simply remove the observation. However, care should be taken, since an outlier may instead indicate a deficiency with the model, such as a missing predictor.

5. High Leverage Points

We just saw that outliers are observations for which the response y_{i} is unusual given the predictor x_{i}. In contrast, observations with high leverage
studentized residual
have an unusual value for x_{i}. For example, observation 41 in the left-hand panel of Figure 3.13 has high leverage, in that the predictor value for this observation is large relative to the other observations. (Note that the data displayed in Figure 3.13 are the same as the data displayed in Figure 3.12, but with the addition of a single high leverage observation.) The red solid line is the least squares fit to the data, while the blue dashed line is the fit produced when observation 41 is removed. Comparing the left-hand panels of Figures 3.12 and 3.13, we observe that removing the high leverage observation has a much more substantial impact on the least squares line than removing the outlier. In fact, high leverage observations tend to have a sizable impact on the estimated regression line. It is cause for concern if the least squares line is heavily affected by just a couple of observations, because any problems with these points may invalidate the entire fit. For this reason, it is important to identify high leverage observations.

In a simple linear regression, high leverage observations are fairly easy to identify, since we can simply look for observations for which the predictor value is outside of the normal range of the observations. But in a multiple linear regression with many predictors, it is possible to have an observation that is well within the range of each individual predictor's values, but that is unusual in terms of the full set of predictors. An example is shown in the center panel of Figure 3.13, for a data set with two predictors, X_{1} and X_{2}. Most of the observations' predictor values fall within the blue dashed ellipse, but the red observation is well outside of this range. But neither its value for X_{1} nor its value for X_{2} is unusual. So if we examine just X_{1} or just X_{2}, we will fail to notice this high leverage point. This problem is more pronounced in multiple regression settings with more than two predictors, because then there is no simple way to plot all dimensions of the data simultaneously.

In order to quantify an observation's leverage, we compute the leverage statistic. A large value of this statistic indicates an observation with high leverage. For a simple linear regression,

$$
\begin{equation*}
h_{i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i^{\prime}=1}^{n}\left(x_{i^{\prime}}-\bar{x}\right)^{2}} . \tag{3.37}
\end{equation*}
$$

It is clear from this equation that h_{i} increases with the distance of x_{i} from \bar{x}. There is a simple extension of h_{i} to the case of multiple predictors, though we do not provide the formula here. The leverage statistic h_{i} is always between $1 / n$ and 1 , and the average leverage for all the observations is always equal to $(p+1) / n$. So if a given observation has a leverage statistic that greatly exceeds $(p+1) / n$, then we may suspect that the corresponding point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized residuals versus h_{i} for the data in the left-hand panel of Figure 3.13. Observation 41 stands out as having a very high leverage statistic as well as a high studentized residual. In other words, it is an outlier as well as a high

FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left: A plot of age versus limit. These two variables are not collinear. Right: A plot of rating versus limit. There is high collinearity.
leverage observation. This is a particularly dangerous combination! This plot also reveals the reason that observation 20 had relatively little effect on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables are closely related to one another. The concept of collinearity is illustrated in Figure 3.14 using the Credit data set. In the left-hand panel of Figure 3.14, the two predictors limit and age appear to have no obvious relationship. In contrast, in the right-hand panel of Figure 3.14, the predictors limit and rating are very highly correlated with each other, and we say that they are collinear. The presence of collinearity can pose problems in the regression context, since it can be difficult to separate out the individual effects of collinear variables on the response. In other words, since limit and rating tend to increase or decrease together, it can be difficult to determine how each one separately is associated with the response, balance.

Figure 3.15 illustrates some of the difficulties that can result from collinearity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22) associated with different possible coefficient estimates for the regression of balance on limit and age. Each ellipse represents a set of coefficients that correspond to the same RSS, with ellipses nearest to the center taking on the lowest values of RSS. The black dots and associated dashed lines represent the coefficient estimates that result in the smallest possible RSS - in other words, these are the least squares estimates. The axes for limit and age have been scaled so that the plot includes possible coefficient estimates that are up to four standard errors on either side of the least squares estimates. Thus the plot includes all plausible values for the

FIGURE 3.15. Contour plots for the RSS values as a function of the parameters β for various regressions involving the Credit data set. In each plot, the black dots represent the coefficient values corresponding to the minimum RSS. Left: A contour plot of $R S S$ for the regression of balance onto age and limit. The minimum value is well defined. Right: A contour plot of $R S S$ for the regression of balance onto rating and limit. Because of the collinearity, there are many pairs $\left(\beta_{\text {Limit }}, \beta_{\text {Rating }}\right)$ with a similar value for $R S S$.
coefficients. For example, we see that the true limit coefficient is almost certainly somewhere between 0.15 and 0.20 .

In contrast, the right-hand panel of Figure 3.15 displays contour plots of the RSS associated with possible coefficient estimates for the regression of balance onto limit and rating, which we know to be highly collinear. Now the contours run along a narrow valley; there is a broad range of values for the coefficient estimates that result in equal values for RSS. Hence a small change in the data could cause the pair of coefficient values that yield the smallest RSS-that is, the least squares estimates-to move anywhere along this valley. This results in a great deal of uncertainty in the coefficient estimates. Notice that the scale for the limit coefficient now runs from roughly -0.2 to 0.2 ; this is an eight-fold increase over the plausible range of the limit coefficient in the regression with age. Interestingly, even though the limit and rating coefficients now have much more individual uncertainty, they will almost certainly lie somewhere in this contour valley. For example, we would not expect the true value of the limit and rating coefficients to be -0.1 and 1 respectively, even though such a value is plausible for each coefficient individually.

Since collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for $\hat{\beta}_{j}$ to grow. Recall that the t-statistic for each predictor is calculated by dividing $\hat{\beta}_{j}$ by its standard error. Consequently, collinearity results in a decline in the t-statistic. As a result, in the presence of collinearity, we may fail to reject $H_{0}: \beta_{j}=0$. This

		Coefficient	Std. error	t-statistic	p-value
Model 1	Intercept	-173.411	43.828	-3.957	<0.0001
	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	<0.0001
	Intercept	-377.537	45.254	-8.343	<0.0001
Model 2	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012

TABLE 3.11. The results for two multiple regression models involving the Credit data set are shown. Model 1 is a regression of balance on age and limit, and Model 2 a regression of balance on rating and limit. The standard error of $\hat{\beta}_{\text {limit }}$ increases 12-fold in the second regression, due to collinearity.
means that the power of the hypothesis test - the probability of correctly detecting a non-zero coefficient - is reduced by collinearity.

Table 3.11 compares the coefficient estimates obtained from two separate multiple regression models. The first is a regression of balance on age and limit, and the second is a regression of balance on rating and limit. In the first regression, both age and limit are highly significant with very small p values. In the second, the collinearity between limit and rating has caused the standard error for the limit coefficient estimate to increase by a factor of 12 and the p-value to increase to 0.701 . In other words, the importance of the limit variable has been masked due to the presence of collinearity. To avoid such a situation, it is desirable to identify and address potential collinearity problems while fitting the model.

A simple way to detect collinearity is to look at the correlation matrix of the predictors. An element of this matrix that is large in absolute value indicates a pair of highly correlated variables, and therefore a collinearity problem in the data. Unfortunately, not all collinearity problems can be detected by inspection of the correlation matrix: it is possible for collinearity to exist between three or more variables even if no pair of variables has a particularly high correlation. We call this situation multicollinearity. Instead of inspecting the correlation matrix, a better way to assess multicollinearity is to compute the variance inflation factor (VIF). The VIF is the ratio of the variance of $\hat{\beta}_{j}$ when fitting the full model divided by the variance of $\hat{\beta}_{j}$ if fit on its own. The smallest possible value for VIF is 1 ,
multicollinearity
variance inflation factor which indicates the complete absence of collinearity. Typically in practice there is a small amount of collinearity among the predictors. As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of collinearity. The VIF for each variable can be computed using the formula

$$
\operatorname{VIF}\left(\hat{\beta}_{j}\right)=\frac{1}{1-R_{X_{j} \mid X_{-j}}^{2}}
$$

where $R_{X_{j} \mid X_{-j}}^{2}$ is the R^{2} from a regression of X_{j} onto all of the other predictors. If $R_{X_{j} \mid X_{-j}}^{2}$ is close to one, then collinearity is present, and so the VIF will be large.

In the Credit data, a regression of balance on age, rating, and limit indicates that the predictors have VIF values of 1.01, 160.67, and 160.59. As we suspected, there is considerable collinearity in the data!

When faced with the problem of collinearity, there are two simple solutions. The first is to drop one of the problematic variables from the regression. This can usually be done without much compromise to the regression fit, since the presence of collinearity implies that the information that this variable provides about the response is redundant in the presence of the other variables. For instance, if we regress balance onto age and limit, without the rating predictor, then the resulting VIF values are close to the minimum possible value of 1 , and the R^{2} drops from 0.754 to 0.75 . So dropping rating from the set of predictors has effectively solved the collinearity problem without compromising the fit. The second solution is to combine the collinear variables together into a single predictor. For instance, we might take the average of standardized versions of limit and rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan

We now briefly return to the seven questions about the Advertising data that we set out to answer at the beginning of this chapter.

1. Is there a relationship between sales and advertising budget? This question can be answered by fitting a multiple regression model of sales onto TV, radio, and newspaper, as in (3.20), and testing the hypothesis $H_{0}: \beta_{\mathrm{TV}}=\beta_{\text {radio }}=\beta_{\text {newspaper }}=0$. In Section 3.2.2, we showed that the F-statistic can be used to determine whether or not we should reject this null hypothesis. In this case the p-value corresponding to the F-statistic in Table 3.6 is very low, indicating clear evidence of a relationship between advertising and sales.
2. How strong is the relationship?

We discussed two measures of model accuracy in Section 3.1.3. First, the RSE estimates the standard deviation of the response from the population regression line. For the Advertising data, the RSE is 1.69 units while the mean value for the response is 14.022 , indicating a percentage error of roughly 12%. Second, the R^{2} statistic records the percentage of variability in the response that is explained by the predictors. The predictors explain almost 90% of the variance in sales. The RSE and R^{2} statistics are displayed in Table 3.6.
3. Which media are associated with sales?

To answer this question, we can examine the p-values associated with each predictor's t-statistic (Section 3.1.2). In the multiple linear regression displayed in Table 3.4, the p-values for TV and radio are low, but the p-value for newspaper is not. This suggests that only TV and radio are related to sales. In Chapter 6 we explore this question in greater detail.
4. How large is the association between each medium and sales?

We saw in Section 3.1.2 that the standard error of $\hat{\beta}_{j}$ can be used to construct confidence intervals for β_{j}. For the Advertising data, we can use the results in Table 3.4 to compute the 95% confidence intervals for the coefficients in a multiple regression model using all three media budgets as predictors. The confidence intervals are as follows: $(0.043,0.049)$ for TV, $(0.172,0.206)$ for radio, and $(-0.013,0.011)$ for newspaper. The confidence intervals for TV and radio are narrow and far from zero, providing evidence that these media are related to sales. But the interval for newspaper includes zero, indicating that the variable is not statistically significant given the values of TV and radio.

We saw in Section 3.3.3 that collinearity can result in very wide standard errors. Could collinearity be the reason that the confidence interval associated with newspaper is so wide? The VIF scores are 1.005, 1.145 , and 1.145 for TV, radio, and newspaper, suggesting no evidence of collinearity.
In order to assess the association of each medium individually on sales, we can perform three separate simple linear regressions. Results are shown in Tables 3.1 and 3.3. There is evidence of an extremely strong association between TV and sales and between radio and sales. There is evidence of a mild association between newspaper and sales, when the values of TV and radio are ignored.
5. How accurately can we predict future sales?

The response can be predicted using (3.21). The accuracy associated with this estimate depends on whether we wish to predict an individual response, $Y=f(X)+\epsilon$, or the average response, $f(X)$ (Section 3.2.2). If the former, we use a prediction interval, and if the latter, we use a confidence interval. Prediction intervals will always be wider than confidence intervals because they account for the uncertainty associated with ϵ, the irreducible error.
6. Is the relationship linear?

In Section 3.3.3, we saw that residual plots can be used in order to identify non-linearity. If the relationships are linear, then the residual plots should display no pattern. In the case of the Advertising data,
we observe a non-linear effect in Figure 3.5, though this effect could also be observed in a residual plot. In Section 3.3.2, we discussed the inclusion of transformations of the predictors in the linear regression model in order to accommodate non-linear relationships.
7. Is there synergy among the advertising media?

The standard linear regression model assumes an additive relationship between the predictors and the response. An additive model is easy to interpret because the association between each predictor and the response is unrelated to the values of the other predictors. However, the additive assumption may be unrealistic for certain data sets. In Section 3.3.2, we showed how to include an interaction term in the regression model in order to accommodate non-additive relationships. A small p-value associated with the interaction term indicates the presence of such relationships. Figure 3.5 suggested that the Advertising data may not be additive. Including an interaction term in the model results in a substantial increase in R^{2}, from around 90% to almost 97%.

3.5 Comparison of Linear Regression with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric approach because it assumes a linear functional form for $f(X)$. Parametric methods have several advantages. They are often easy to fit, because one need estimate only a small number of coefficients. In the case of linear regression, the coefficients have simple interpretations, and tests of statistical significance can be easily performed. But parametric methods do have a disadvantage: by construction, they make strong assumptions about the form of $f(X)$. If the specified functional form is far from the truth, and prediction accuracy is our goal, then the parametric method will perform poorly. For instance, if we assume a linear relationship between X and Y but the true relationship is far from linear, then the resulting model will provide a poor fit to the data, and any conclusions drawn from it will be suspect.

In contrast, non-parametric methods do not explicitly assume a parametric form for $f(X)$, and thereby provide an alternative and more flexible approach for performing regression. We discuss various non-parametric methods in this book. Here we consider one of the simplest and best-known non-parametric methods, K-nearest neighbors regression (KNN regression). The KNN regression method is closely related to the KNN classifier discussed in Chapter 2. Given a value for K and a prediction point x_{0}, KNN
K-nearest neighbors regression regression first identifies the K training observations that are closest to x_{0}, represented by \mathcal{N}_{0}. It then estimates $f\left(x_{0}\right)$ using the average of all the

FIGURE 3.16. Plots of $\hat{f}(X)$ using KNN regression on a two-dimensional data set with 64 observations (orange dots). Left: $K=1$ results in a rough step function fit. Right: $K=9$ produces a much smoother fit.
training responses in \mathcal{N}_{0}. In other words,

$$
\hat{f}\left(x_{0}\right)=\frac{1}{K} \sum_{x_{i} \in \mathcal{N}_{0}} y_{i}
$$

Figure 3.16 illustrates two KNN fits on a data set with $p=2$ predictors. The fit with $K=1$ is shown in the left-hand panel, while the right-hand panel corresponds to $K=9$. We see that when $K=1$, the KNN fit perfectly interpolates the training observations, and consequently takes the form of a step function. When $K=9$, the KNN fit still is a step function, but averaging over nine observations results in much smaller regions of constant prediction, and consequently a smoother fit. In general, the optimal value for K will depend on the bias-variance tradeoff, which we introduced in Chapter 2. A small value for K provides the most flexible fit, which will have low bias but high variance. This variance is due to the fact that the prediction in a given region is entirely dependent on just one observation. In contrast, larger values of K provide a smoother and less variable fit; the prediction in a region is an average of several points, and so changing one observation has a smaller effect. However, the smoothing may cause bias by masking some of the structure in $f(X)$. In Chapter 5 , we introduce several approaches for estimating test error rates. These methods can be used to identify the optimal value of K in KNN regression.

In what setting will a parametric approach such as least squares linear regression outperform a non-parametric approach such as KNN regression? The answer is simple: the parametric approach will outperform the nonparametric approach if the parametric form that has been selected is close to the true form of f. Figure 3.17 provides an example with data generated
from a one-dimensional linear regression model. The black solid lines represent $f(X)$, while the blue curves correspond to the KNN fits using $K=1$ and $K=9$. In this case, the $K=1$ predictions are far too variable, while the smoother $K=9$ fit is much closer to $f(X)$. However, since the true relationship is linear, it is hard for a non-parametric approach to compete with linear regression: a non-parametric approach incurs a cost in variance that is not offset by a reduction in bias. The blue dashed line in the lefthand panel of Figure 3.18 represents the linear regression fit to the same data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that linear regression outperforms KNN for this data. The green solid line, plotted as a function of $1 / K$, represents the test set mean squared error (MSE) for KNN. The KNN errors are well above the black dashed line, which is the test MSE for linear regression. When the value of K is large, then KNN performs only a little worse than least squares regression in terms of MSE. It performs far worse when K is small.

In practice, the true relationship between X and Y is rarely exactly linear. Figure 3.19 examines the relative performances of least squares regression and KNN under increasing levels of non-linearity in the relationship between X and Y. In the top row, the true relationship is nearly linear. In this case we see that the test MSE for linear regression is still superior to that of KNN for low values of K. However, for $K \geq 4$, KNN outperforms linear regression. The second row illustrates a more substantial deviation from linearity. In this situation, KNN substantially outperforms linear regression for all values of K. Note that as the extent of non-linearity increases, there is little change in the test set MSE for the non-parametric KNN method, but there is a large increase in the test set MSE of linear regression.

Figures 3.18 and 3.19 display situations in which KNN performs slightly worse than linear regression when the relationship is linear, but much better than linear regression for nonlinear situations. In a real life situation in which the true relationship is unknown, one might suspect that KNN should be favored over linear regression because it will at worst be slightly inferior to linear regression if the true relationship is linear, and may give substantially better results if the true relationship is non-linear. But in reality, even when the true relationship is highly non-linear, KNN may still provide inferior results to linear regression. In particular, both Figures 3.18 and 3.19 illustrate settings with $p=1$ predictor. But in higher dimensions, KNN often performs worse than linear regression.

Figure 3.20 considers the same strongly non-linear situation as in the second row of Figure 3.19, except that we have added additional noise predictors that are not associated with the response. When $p=1$ or $p=2$, KNN outperforms linear regression. But for $p=3$ the results are mixed, and for $p \geq 4$ linear regression is superior to KNN. In fact, the increase in dimension has only caused a small deterioration in the linear regression test set MSE, but it has caused more than a ten-fold increase in the MSE for

FIGURE 3.17. Plots of $\hat{f}(X)$ using KNN regression on a one-dimensional data set with 50 observations. The true relationship is given by the black solid line. Left: The blue curve corresponds to $K=1$ and interpolates (i.e. passes directly through) the training data. Right: The blue curve corresponds to $K=9$, and represents a smoother fit.

FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further. Left: The blue dashed line is the least squares fit to the data. Since $f(X)$ is in fact linear (displayed as the black line), the least squares regression line provides a very good estimate of $f(X)$. Right: The dashed horizontal line represents the least squares test set MSE, while the green solid line corresponds to the MSE for KNN as a function of $1 / K$ (on the log scale). Linear regression achieves a lower test MSE than does KNN regression, since $f(X)$ is in fact linear. For KNN regression, the best results occur with a very large value of K, corresponding to a small value of $1 / K$.

FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship between X and Y (solid black line), the KNN fits with $K=1$ (blue) and $K=9$ (red) are displayed. Top Right: For the slightly non-linear data, the test set MSE for least squares regression (horizontal black) and KNN with various values of $1 / K$ (green) are displayed. Bottom Left and Bottom Right: As in the top panel, but with a strongly non-linear relationship between X and Y.

FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN (green curves) as the number of variables p increases. The true function is nonlinear in the first variable, as in the lower panel in Figure 3.19, and does not depend on the additional variables. The performance of linear regression deteriorates slowly in the presence of these additional noise variables, whereas KNN's performance degrades much more quickly as p increases.

KNN. This decrease in performance as the dimension increases is a common problem for KNN, and results from the fact that in higher dimensions there is effectively a reduction in sample size. In this data set there are 50 training observations; when $p=1$, this provides enough information to accurately estimate $f(X)$. However, spreading 50 observations over $p=20$ dimensions results in a phenomenon in which a given observation has no nearby neighbors - this is the so-called curse of dimensionality. That is, the K observations that are nearest to a given test observation x_{0} may be very far away from x_{0} in p-dimensional space when p is large, leading to a very poor prediction of $f\left(x_{0}\right)$ and hence a poor KNN fit. As a general rule, parametric methods will tend to outperform non-parametric approaches when there is a small number of observations per predictor.

Even when the dimension is small, we might prefer linear regression to KNN from an interpretability standpoint. If the test MSE of KNN is only slightly lower than that of linear regression, we might be willing to forego a little bit of prediction accuracy for the sake of a simple model that can be described in terms of just a few coefficients, and for which p-values are available.

3.6 Lab: Linear Regression

3.6.1 Libraries

The library() function is used to load libraries, or groups of functions and data sets that are not included in the base R distribution. Basic func-
curse of dimensionality tions that perform least squares linear regression and other simple analyses come standard with the base distribution, but more exotic functions require

6

Linear Model Selection and Regularization

In the regression setting, the standard linear model

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\epsilon \tag{6.1}
\end{equation*}
$$

is commonly used to describe the relationship between a response Y and a set of variables $X_{1}, X_{2}, \ldots, X_{p}$. We have seen in Chapter 3 that one typically fits this model using least squares.

In the chapters that follow, we consider some approaches for extending the linear model framework. In Chapter 7 we generalize (6.1) in order to accommodate non-linear, but still additive, relationships, while in Chapters 8 and 10 we consider even more general non-linear models. However, the linear model has distinct advantages in terms of inference and, on realworld problems, is often surprisingly competitive in relation to non-linear methods. Hence, before moving to the non-linear world, we discuss in this chapter some ways in which the simple linear model can be improved, by replacing plain least squares fitting with some alternative fitting procedures.

Why might we want to use another fitting procedure instead of least squares? As we will see, alternative fitting procedures can yield better prediction accuracy and model interpretability.

- Prediction Accuracy: Provided that the true relationship between the response and the predictors is approximately linear, the least squares estimates will have low bias. If $n \gg p$ - that is, if n, the number of observations, is much larger than p, the number of variables - then the least squares estimates tend to also have low variance, and hence will perform well on test observations. However, if n is not much larger
than p, then there can be a lot of variability in the least squares fit, resulting in overfitting and consequently poor predictions on future observations not used in model training. And if $p>n$, then there is no longer a unique least squares coefficient estimate: there are infinitely many solutions. Each of these least squares solutions gives zero error on the training data, but typically very poor test set performance due to extremely high variance. ${ }^{1}$ By constraining or shrinking the estimated coefficients, we can often substantially reduce the variance at the cost of a negligible increase in bias. This can lead to substantial improvements in the accuracy with which we can predict the response for observations not used in model training.
- Model Interpretability: It is often the case that some or many of the variables used in a multiple regression model are in fact not associated with the response. Including such irrelevant variables leads to unnecessary complexity in the resulting model. By removing these variables-that is, by setting the corresponding coefficient estimates to zero-we can obtain a model that is more easily interpreted. Now least squares is extremely unlikely to yield any coefficient estimates that are exactly zero. In this chapter, we see some approaches for automatically performing feature selection or variable selection - that is, for excluding irrelevant variables from a multiple regression model.

There are many alternatives, both classical and modern, to using least squares to fit (6.1). In this chapter, we discuss three important classes of methods.

- Subset Selection. This approach involves identifying a subset of the p predictors that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.
- Shrinkage. This approach involves fitting a model involving all p predictors. However, the estimated coefficients are shrunken towards zero relative to the least squares estimates. This shrinkage (also known as regularization) has the effect of reducing variance. Depending on what type of shrinkage is performed, some of the coefficients may be estimated to be exactly zero. Hence, shrinkage methods can also perform variable selection.
- Dimension Reduction. This approach involves projecting the p predictors into an M-dimensional subspace, where $M<p$. This is achieved by computing M different linear combinations, or projections, of the variables. Then these M projections are used as predictors to fit a linear regression model by least squares.

[^11]feature selection variable selection

In the following sections we describe each of these approaches in greater detail, along with their advantages and disadvantages. Although this chapter describes extensions and modifications to the linear model for regression seen in Chapter 3, the same concepts apply to other methods, such as the classification models seen in Chapter 4.

6.1 Subset Selection

In this section we consider some methods for selecting subsets of predictors. These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection

To perform best subset selection, we fit a separate least squares regression for each possible combination of the p predictors. That is, we fit all p models that contain exactly one predictor, all $\binom{p}{2}=p(p-1) / 2$ models that contain exactly two predictors, and so forth. We then look at all of the resulting models, with the goal of identifying the one that is best.

The problem of selecting the best model from among the 2^{p} possibilities considered by best subset selection is not trivial. This is usually broken up into two stages, as described in Algorithm 6.1.

Algorithm 6.1 Best subset selection

1. Let \mathcal{M}_{0} denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
2. For $k=1,2, \ldots p$:
(a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
(b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_{k}. Here best is defined as having the smallest RSS, or equivalently largest R^{2}.
3. Select a single best model from among $\mathcal{M}_{0}, \ldots, \mathcal{M}_{p}$ using using the prediction error on a validation set, C_{p} (AIC), BIC, or adjusted R^{2}. Or use the cross-validation method.

In Algorithm 6.1, Step 2 identifies the best model (on the training data) for each subset size, in order to reduce the problem from one of 2^{p} possible models to one of $p+1$ possible models. In Figure 6.1, these models form the lower frontier depicted in red.

Now in order to select a single best model, we must simply choose among these $p+1$ options. This task must be performed with care, because the
best subset selection

RSS of these $p+1$ models decreases monotonically, and the R^{2} increases monotonically, as the number of features included in the models increases. Therefore, if we use these statistics to select the best model, then we will always end up with a model involving all of the variables. The problem is that a low RSS or a high R^{2} indicates a model with a low training error, whereas we wish to choose a model that has a low test error. (As shown in Chapter 2 in Figures 2.9-2.11, training error tends to be quite a bit smaller than test error, and a low training error by no means guarantees a low test error.) Therefore, in Step 3, we use the error on a validation set, C_{p}, BIC, or adjusted R^{2} in order to select among $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$. If cross-validation is used to select the best model, then Step 2 is repeated on each training fold, and the validation errors are averaged to select the best value of k. Then the model \mathcal{M}_{k} fit on the full training set is delivered for the chosen k. These approaches are discussed in Section 6.1.3.

An application of best subset selection is shown in Figure 6.1. Each plotted point corresponds to a least squares regression model fit using a different subset of the 10 predictors in the Credit data set, discussed in Chapter 3. Here the variable region is a three-level qualitative variable, and so is represented by two dummy variables, which are selected separately in this case. Hence, there are a total of 11 possible variables which can be included in the model. We have plotted the RSS and R^{2} statistics for each model, as a function of the number of variables. The red curves connect the best models for each model size, according to RSS or R^{2}. The figure shows that, as expected, these quantities improve as the number of variables increases; however, from the three-variable model on, there is little improvement in RSS and R^{2} as a result of including additional predictors.

Although we have presented best subset selection here for least squares regression, the same ideas apply to other types of models, such as logistic regression. In the case of logistic regression, instead of ordering models by RSS in Step 2 of Algorithm 6.1, we instead use the deviance, a measure that plays the role of RSS for a broader class of models. The deviance is negative two times the maximized log-likelihood; the smaller the deviance, the better the fit.

While best subset selection is a simple and conceptually appealing approach, it suffers from computational limitations. The number of possible models that must be considered grows rapidly as p increases. In general, there are 2^{p} models that involve subsets of p predictors. So if $p=10$, then there are approximately 1,000 possible models to be considered, and if $p=20$, then there are over one million possibilities! Consequently, best subset selection becomes computationally infeasible for values of p greater than around 40 , even with extremely fast modern computers. There are computational shortcuts - so called branch-and-bound techniques-for eliminating some choices, but these have their limitations as p gets large. They also only work for least squares linear regression. We present computationally efficient alternatives to best subset selection next.

FIGURE 6.1. For each possible model containing a subset of the ten predictors in the Credit data set, the RSS and R^{2} are displayed. The red frontier tracks the best model for a given number of predictors, according to RSS and R^{2}. Though the data set contains only ten predictors, the x-axis ranges from 1 to 11 , since one of the variables is categorical and takes on three values, leading to the creation of two dummy variables.

6.1.2 Stepwise Selection

For computational reasons, best subset selection cannot be applied with very large p. Best subset selection may also suffer from statistical problems when p is large. The larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data. Thus an enormous search space can lead to overfitting and high variance of the coefficient estimates.

For both of these reasons, stepwise methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection

Forward stepwise selection is a computationally efficient alternative to best subset selection. While the best subset selection procedure considers all 2^{p} possible models containing subsets of the p predictors, forward stepwise considers a much smaller set of models. Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model. In particular, at each step the variable that gives the greatest additional improvement to the fit is added to the model. More formally, the forward stepwise selection procedure is given in Algorithm 6.2.
forward stepwise selection

Algorithm 6.2 Forward stepwise selection

1. Let \mathcal{M}_{0} denote the null model, which contains no predictors.
2. For $k=0, \ldots, p-1$:
(a) Consider all $p-k$ models that augment the predictors in \mathcal{M}_{k} with one additional predictor.
(b) Choose the best among these $p-k$ models, and call it \mathcal{M}_{k+1}. Here best is defined as having smallest RSS or highest R^{2}.
3. Select a single best model from among $\mathcal{M}_{0}, \ldots, \mathcal{M}_{p}$ using the prediction error on a validation set, C_{p} (AIC), BIC, or adjusted R^{2}. Or use the cross-validation method.

Unlike best subset selection, which involved fitting 2^{p} models, forward stepwise selection involves fitting one null model, along with $p-k$ models in the k th iteration, for $k=0, \ldots, p-1$. This amounts to a total of $1+$ $\sum_{k=0}^{p-1}(p-k)=1+p(p+1) / 2$ models. This is a substantial difference: when $p=20$, best subset selection requires fitting $1,048,576$ models, whereas forward stepwise selection requires fitting only 211 models. ${ }^{2}$

In Step 2(b) of Algorithm 6.2, we must identify the best model from among those $p-k$ that augment \mathcal{M}_{k} with one additional predictor. We can do this by simply choosing the model with the lowest RSS or the highest R^{2}. However, in Step 3, we must identify the best model among a set of models with different numbers of variables. This is more challenging, and is discussed in Section 6.1.3.

Forward stepwise selection's computational advantage over best subset selection is clear. Though forward stepwise tends to do well in practice, it is not guaranteed to find the best possible model out of all 2^{p} models containing subsets of the p predictors. For instance, suppose that in a given data set with $p=3$ predictors, the best possible one-variable model contains X_{1}, and the best possible two-variable model instead contains X_{2} and X_{3}. Then forward stepwise selection will fail to select the best possible two-variable model, because \mathcal{M}_{1} will contain X_{1}, so \mathcal{M}_{2} must also contain X_{1} together with one additional variable.

Table 6.1, which shows the first four selected models for best subset and forward stepwise selection on the Credit data set, illustrates this phenomenon. Both best subset selection and forward stepwise selection choose rating for the best one-variable model and then include income and student for the two- and three-variable models. However, best subset selection replaces rating by cards in the four-variable model, while forward stepwise

[^12]| \# Variables | Best subset | Forward stepwise |
| :--- | :--- | :--- |
| One | rating | rating |
| Two | rating, income | rating, income |
| Three | rating, income, student | rating, income, student |
| Four | cards, income | rating, income, |
| | student, limit | student, limit |

TABLE 6.1. The first four selected models for best subset selection and forward stepwise selection on the Credit data set. The first three models are identical but the fourth models differ.
selection must maintain rating in its four-variable model. In this example, Figure 6.1 indicates that there is not much difference between the threeand four-variable models in terms of RSS, so either of the four-variable models will likely be adequate.

Forward stepwise selection can be applied even in the high-dimensional setting where $n<p$; however, in this case, it is possible to construct submodels $\mathcal{M}_{0}, \ldots, \mathcal{M}_{n-1}$ only, since each submodel is fit using least squares, which will not yield a unique solution if $p \geq n$.

Backward Stepwise Selection

Like forward stepwise selection, backward stepwise selection provides an efficient alternative to best subset selection. However, unlike forward stepwise selection, it begins with the full least squares model containing all p
backward stepwise selection predictors, and then iteratively removes the least useful predictor, one-at-a-time. Details are given in Algorithm 6.3.

Algorithm 6.3 Backward stepwise selection

1. Let \mathcal{M}_{p} denote the full model, which contains all p predictors.
2. For $k=p, p-1, \ldots, 1$:
(a) Consider all k models that contain all but one of the predictors in \mathcal{M}_{k}, for a total of $k-1$ predictors.
(b) Choose the best among these k models, and call it \mathcal{M}_{k-1}. Here best is defined as having smallest RSS or highest R^{2}.
3. Select a single best model from among $\mathcal{M}_{0}, \ldots, \mathcal{M}_{p}$ using the prediction error on a validation set, C_{p} (AIC), BIC, or adjusted R^{2}. Or use the cross-validation method.

Like forward stepwise selection, the backward selection approach searches through only $1+p(p+1) / 2$ models, and so can be applied in settings where
p is too large to apply best subset selection. ${ }^{3}$ Also like forward stepwise selection, backward stepwise selection is not guaranteed to yield the best model containing a subset of the p predictors.

Backward selection requires that the number of samples n is larger than the number of variables p (so that the full model can be fit). In contrast, forward stepwise can be used even when $n<p$, and so is the only viable subset method when p is very large.

Hybrid Approaches

The best subset, forward stepwise, and backward stepwise selection approaches generally give similar but not identical models. As another alternative, hybrid versions of forward and backward stepwise selection are available, in which variables are added to the model sequentially, in analogy to forward selection. However, after adding each new variable, the method may also remove any variables that no longer provide an improvement in the model fit. Such an approach attempts to more closely mimic best subset selection while retaining the computational advantages of forward and backward stepwise selection.

6.1.3 Choosing the Optimal Model

Best subset selection, forward selection, and backward selection result in the creation of a set of models, each of which contains a subset of the p predictors. To apply these methods, we need a way to determine which of these models is best. As we discussed in Section 6.1.1, the model containing all of the predictors will always have the smallest RSS and the largest R^{2}, since these quantities are related to the training error. Instead, we wish to choose a model with a low test error. As is evident here, and as we show in Chapter 2, the training error can be a poor estimate of the test error. Therefore, RSS and R^{2} are not suitable for selecting the best model among a collection of models with different numbers of predictors.

In order to select the best model with respect to test error, we need to estimate this test error. There are two common approaches:

1. We can indirectly estimate test error by making an adjustment to the training error to account for the bias due to overfitting.
2. We can directly estimate the test error, using either a validation set approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

[^13]

FIGURE 6.2. C_{p}, BIC, and adjusted R^{2} are shown for the best models of each size for the Credit data set (the lower frontier in Figure 6.1). C_{p} and BIC are estimates of test MSE. In the middle plot we see that the BIC estimate of test error shows an increase after four variables are selected. The other two plots are rather flat after four variables are included.

$C_{p}, \mathrm{AIC}, \mathrm{BIC}$, and Adjusted R^{2}

We show in Chapter 2 that the training set MSE is generally an underestimate of the test MSE. (Recall that MSE $=$ RSS $/ n$.) This is because when we fit a model to the training data using least squares, we specifically estimate the regression coefficients such that the training RSS (but not the test RSS) is as small as possible. In particular, the training error will decrease as more variables are included in the model, but the test error may not. Therefore, training set RSS and training set R^{2} cannot be used to select from among a set of models with different numbers of variables.

However, a number of techniques for adjusting the training error for the model size are available. These approaches can be used to select among a set of models with different numbers of variables. We now consider four such approaches: C_{p}, Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted R^{2}. Figure 6.2 displays C_{p}, BIC, and adjusted R^{2} for the best model of each size produced by best subset selection on the Credit data set.

For a fitted least squares model containing d predictors, the C_{p} estimate of test MSE is computed using the equation

$$
\begin{equation*}
C_{p}=\frac{1}{n}\left(\mathrm{RSS}+2 d \hat{\sigma}^{2}\right) \tag{6.2}
\end{equation*}
$$

where $\hat{\sigma}^{2}$ is an estimate of the variance of the error ϵ associated with each response measurement in (6.1). ${ }^{4}$ Typically $\hat{\sigma}^{2}$ is estimated using the full

[^14]model containing all predictors. Essentially, the C_{p} statistic adds a penalty of $2 d \hat{\sigma}^{2}$ to the training RSS in order to adjust for the fact that the training error tends to underestimate the test error. Clearly, the penalty increases as the number of predictors in the model increases; this is intended to adjust for the corresponding decrease in training RSS. Though it is beyond the scope of this book, one can show that if $\hat{\sigma}^{2}$ is an unbiased estimate of σ^{2} in (6.2), then C_{p} is an unbiased estimate of test MSE. As a consequence, the C_{p} statistic tends to take on a small value for models with a low test error, so when determining which of a set of models is best, we choose the model with the lowest C_{p} value. In Figure 6.2, C_{p} selects the six-variable model containing the predictors income, limit, rating, cards, age and student.

The AIC criterion is defined for a large class of models fit by maximum likelihood. In the case of the model (6.1) with Gaussian errors, maximum likelihood and least squares are the same thing. In this case AIC is given by

$$
\mathrm{AIC}=\frac{1}{n}\left(\mathrm{RSS}+2 d \hat{\sigma}^{2}\right)
$$

where, for simplicity, we have omitted irrelevant constants. ${ }^{5}$ Hence for least squares models, C_{p} and AIC are proportional to each other, and so only C_{p} is displayed in Figure 6.2.

BIC is derived from a Bayesian point of view, but ends up looking similar to C_{p} (and AIC) as well. For the least squares model with d predictors, the BIC is, up to irrelevant constants, given by

$$
\begin{equation*}
\mathrm{BIC}=\frac{1}{n}\left(\mathrm{RSS}+\log (n) d \hat{\sigma}^{2}\right) \tag{6.3}
\end{equation*}
$$

Like C_{p}, the BIC will tend to take on a small value for a model with a low test error, and so generally we select the model that has the lowest BIC value. Notice that BIC replaces the $2 d \hat{\sigma}^{2}$ used by C_{p} with a $\log (n) d \hat{\sigma}^{2}$ term, where n is the number of observations. Since $\log n>2$ for any $n>7$, the BIC statistic generally places a heavier penalty on models with many variables, and hence results in the selection of smaller models than C_{p}. In Figure 6.2, we see that this is indeed the case for the Credit data set; BIC chooses a model that contains only the four predictors income, limit, cards, and student. In this case the curves are very flat and so there does not appear to be much difference in accuracy between the four-variable and six-variable models.

The adjusted R^{2} statistic is another popular approach for selecting among a set of models that contain different numbers of variables. Recall from

[^15]Chapter 3 that the usual R^{2} is defined as $1-\operatorname{RSS} /$ TSS, where TSS $=$ $\sum\left(y_{i}-\bar{y}\right)^{2}$ is the total sum of squares for the response. Since RSS always decreases as more variables are added to the model, the R^{2} always increases as more variables are added. For a least squares model with d variables, the adjusted R^{2} statistic is calculated as

$$
\begin{equation*}
\text { Adjusted } R^{2}=1-\frac{\operatorname{RSS} /(n-d-1)}{\operatorname{TSS} /(n-1)} \tag{6.4}
\end{equation*}
$$

Unlike C_{p}, AIC, and BIC, for which a small value indicates a model with a low test error, a large value of adjusted R^{2} indicates a model with a small test error. Maximizing the adjusted R^{2} is equivalent to minimizing $\frac{\text { RSS }}{n-d-1}$. While RSS always decreases as the number of variables in the model increases, $\frac{\text { RSS }}{n-d-1}$ may increase or decrease, due to the presence of d in the denominator.

The intuition behind the adjusted R^{2} is that once all of the correct variables have been included in the model, adding additional noise variables will lead to only a very small decrease in RSS. Since adding noise variables leads to an increase in d, such variables will lead to an increase in $\frac{\text { RSS }}{n-d-1}$, and consequently a decrease in the adjusted R^{2}. Therefore, in theory, the model with the largest adjusted R^{2} will have only correct variables and no noise variables. Unlike the R^{2} statistic, the adjusted R^{2} statistic pays a price for the inclusion of unnecessary variables in the model. Figure 6.2 displays the adjusted R^{2} for the Credit data set. Using this statistic results in the selection of a model that contains seven variables, adding own to the model selected by C_{p} and AIC.
C_{p}, AIC, and BIC all have rigorous theoretical justifications that are beyond the scope of this book. These justifications rely on asymptotic arguments (scenarios where the sample size n is very large). Despite its popularity, and even though it is quite intuitive, the adjusted R^{2} is not as well motivated in statistical theory as AIC, BIC, and C_{p}. All of these measures are simple to use and compute. Here we have presented their formulas in the case of a linear model fit using least squares; however, AIC and BIC can also be defined for more general types of models.

Validation and Cross-Validation

As an alternative to the approaches just discussed, we can directly estimate the test error using the validation set and cross-validation methods discussed in Chapter 5. We can compute the validation set error or the cross-validation error for each model under consideration, and then select the model for which the resulting estimated test error is smallest. This procedure has an advantage relative to AIC, BIC, C_{p}, and adjusted R^{2}, in that it provides a direct estimate of the test error, and makes fewer assumptions about the true underlying model. It can also be used in a wider range of model selection tasks, even in cases where it is hard to pinpoint the model

FIGURE 6.3. For the Credit data set, three quantities are displayed for the best model containing d predictors, for d ranging from 1 to 11. The overall best model, based on each of these quantities, is shown as a blue cross. Left: Square root of BIC. Center: Validation set errors. Right: Cross-validation errors.
degrees of freedom (e.g. the number of predictors in the model) or hard to estimate the error variance σ^{2}. Note that when cross-validation is used, the sequence of models \mathcal{M}_{k} in Algorithms 6.1-6.3 is determined separately for each training fold, and the validation errors are averaged over all folds for each model size k. This means, for example with best-subset regression, that \mathcal{M}_{k}, the best subset of size k, can differ across the folds. Once the best size k is chosen, we find the best model of that size on the full data set.

In the past, performing cross-validation was computationally prohibitive for many problems with large p and/or large n, and so AIC, BIC, C_{p}, and adjusted R^{2} were more attractive approaches for choosing among a set of models. However, nowadays with fast computers, the computations required to perform cross-validation are hardly ever an issue. Thus, crossvalidation is a very attractive approach for selecting from among a number of models under consideration.

Figure 6.3 displays, as a function of d, the BIC, validation set errors, and cross-validation errors on the Credit data, for the best d-variable model. The validation errors were calculated by randomly selecting three-quarters of the observations as the training set, and the remainder as the validation set. The cross-validation errors were computed using $k=10$ folds. In this case, the validation and cross-validation methods both result in a six-variable model. However, all three approaches suggest that the four-, five-, and six-variable models are roughly equivalent in terms of their test errors.

In fact, the estimated test error curves displayed in the center and righthand panels of Figure 6.3 are quite flat. While a three-variable model clearly has lower estimated test error than a two-variable model, the estimated test errors of the 3 - to 11 -variable models are quite similar. Furthermore, if we
repeated the validation set approach using a different split of the data into a training set and a validation set, or if we repeated cross-validation using a different set of cross-validation folds, then the precise model with the lowest estimated test error would surely change. In this setting, we can select a model using the one-standard-error rule. We first calculate the standard error of the estimated test MSE for each model size, and then select the smallest model for which the estimated test error is within one standard error of the lowest point on the curve. The rationale here is that if a set of models appear to be more or less equally good, then we might as well choose the simplest model-that is, the model with the smallest number of predictors. In this case, applying the one-standard-error rule to the validation set or cross-validation approach leads to selection of the three-variable model.

6.2 Shrinkage Methods

The subset selection methods described in Section 6.1 involve using least squares to fit a linear model that contains a subset of the predictors. As an alternative, we can fit a model containing all p predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero. It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce their variance. The two best-known techniques for shrinking the regression coefficients towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ using the values that minimize

$$
\operatorname{RSS}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}
$$

Ridge regression is very similar to least squares, except that the coefficients are estimated by minimizing a slightly different quantity. In particular, the ridge regression coefficient estimates $\hat{\beta}^{R}$ are the values that minimize

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}=\operatorname{RSS}+\lambda \sum_{j=1}^{p} \beta_{j}^{2} \tag{6.5}
\end{equation*}
$$

where $\lambda \geq 0$ is a tuning parameter, to be determined separately. Equa-

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\left\|\hat{\beta}_{\lambda}^{R}\right\|_{2} /\|\hat{\beta}\|_{2}$.
tion 6.5 trades off two different criteria. As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small. However, the second term, $\lambda \sum_{j} \beta_{j}^{2}$, called a shrinkage penalty, is small when $\beta_{1}, \ldots, \beta_{p}$ are close to zero, and so it has the effect of shrinking the estimates of β_{j} towards zero. The tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates. When $\lambda=0$, the penalty term has no effect, and ridge regression will produce the least squares estimates. However, as $\lambda \rightarrow \infty$, the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach zero. Unlike least squares, which generates only one set of coefficient estimates, ridge regression will produce a different set of coefficient estimates, $\hat{\beta}_{\lambda}^{R}$, for each value of λ. Selecting a good value for λ is critical; we defer this discussion to Section 6.2.3, where we use cross-validation.

Note that in (6.5), the shrinkage penalty is applied to $\beta_{1}, \ldots, \beta_{p}$, but not to the intercept β_{0}. We want to shrink the estimated association of each variable with the response; however, we do not want to shrink the intercept, which is simply a measure of the mean value of the response when $x_{i 1}=x_{i 2}=\ldots=x_{i p}=0$. If we assume that the variables-that is, the columns of the data matrix \mathbf{X}-have been centered to have mean zero before ridge regression is performed, then the estimated intercept will take the form $\hat{\beta}_{0}=\bar{y}=\sum_{i=1}^{n} y_{i} / n$.

An Application to the Credit Data

In Figure 6.4, the ridge regression coefficient estimates for the Credit data set are displayed. In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of λ. For example, the black solid line represents the ridge regression estimate for the income coefficient, as λ is varied. At the extreme
left-hand side of the plot, λ is essentially zero, and so the corresponding ridge coefficient estimates are the same as the usual least squares estimates. But as λ increases, the ridge coefficient estimates shrink towards zero. When λ is extremely large, then all of the ridge coefficient estimates are basically zero; this corresponds to the null model that contains no predictors. In this plot, the income, limit, rating, and student variables are displayed in distinct colors, since these variables tend to have by far the largest coefficient estimates. While the ridge coefficient estimates tend to decrease in aggregate as λ increases, individual coefficients, such as rating and income, may occasionally increase as λ increases.

The right-hand panel of Figure 6.4 displays the same ridge coefficient estimates as the left-hand panel, but instead of displaying λ on the x-axis, we now display $\left\|\hat{\beta}_{\lambda}^{R}\right\|_{2} /\|\hat{\beta}\|_{2}$, where $\hat{\beta}$ denotes the vector of least squares coefficient estimates. The notation $\|\beta\|_{2}$ denotes the ℓ_{2} norm (pronounced "ell 2") of a vector, and is defined as $\|\beta\|_{2}=\sqrt{\sum_{j=1}^{p} \beta_{j}^{2}}$. It measures the distance of β from zero. As λ increases, the ℓ_{2} norm of $\hat{\beta}_{\lambda}^{R}$ will always decrease, and so will $\left\|\hat{\beta}_{\lambda}^{R}\right\|_{2} /\|\hat{\beta}\|_{2}$. The latter quantity ranges from 1 (when $\lambda=0$, in which case the ridge regression coefficient estimate is the same as the least squares estimate, and so their ℓ_{2} norms are the same) to 0 (when $\lambda=\infty$, in which case the ridge regression coefficient estimate is a vector of zeros, with ℓ_{2} norm equal to zero). Therefore, we can think of the x-axis in the right-hand panel of Figure 6.4 as the amount that the ridge regression coefficient estimates have been shrunken towards zero; a small value indicates that they have been shrunken very close to zero.

The standard least squares coefficient estimates discussed in Chapter 3 are scale equivariant: multiplying X_{j} by a constant c simply leads to a scaling of the least squares coefficient estimates by a factor of $1 / c$. In other words, regardless of how the j th predictor is scaled, $X_{j} \hat{\beta}_{j}$ will remain the same. In contrast, the ridge regression coefficient estimates can change substantially when multiplying a given predictor by a constant. For instance, consider the income variable, which is measured in dollars. One could reasonably have measured income in thousands of dollars, which would result in a reduction in the observed values of income by a factor of 1,000 . Now due to the sum of squared coefficients term in the ridge regression formulation (6.5), such a change in scale will not simply cause the ridge regression coefficient estimate for income to change by a factor of 1,000 . In other words, $X_{j} \hat{\beta}_{j, \lambda}^{R}$ will depend not only on the value of λ, but also on the scaling of the j th predictor. In fact, the value of $X_{j} \hat{\beta}_{j, \lambda}^{R}$ may even depend on the scaling of the other predictors! Therefore, it is best to apply ridge regression after standardizing the predictors, using the formula

$$
\begin{equation*}
\tilde{x}_{i j}=\frac{x_{i j}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}}} \tag{6.6}
\end{equation*}
$$

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\left\|\hat{\beta}_{\lambda}^{R}\right\|_{2} /\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.
so that they are all on the same scale. In (6.6), the denominator is the estimated standard deviation of the j th predictor. Consequently, all of the standardized predictors will have a standard deviation of one. As a result the final fit will not depend on the scale on which the predictors are measured. In Figure 6.4, the y-axis displays the standardized ridge regression coefficient estimates - that is, the coefficient estimates that result from performing ridge regression using standardized predictors.

Why Does Ridge Regression Improve Over Least Squares?

Ridge regression's advantage over least squares is rooted in the bias-variance trade-off. As λ increases, the flexibility of the ridge regression fit decreases, leading to decreased variance but increased bias. This is illustrated in the left-hand panel of Figure 6.5, using a simulated data set containing $p=45$ predictors and $n=50$ observations. The green curve in the left-hand panel of Figure 6.5 displays the variance of the ridge regression predictions as a function of λ. At the least squares coefficient estimates, which correspond to ridge regression with $\lambda=0$, the variance is high but there is no bias. But as λ increases, the shrinkage of the ridge coefficient estimates leads to a substantial reduction in the variance of the predictions, at the expense of a slight increase in bias. Recall that the test mean squared error (MSE), plotted in purple, is closely related to the variance plus the squared bias. For values of λ up to about 10, the variance decreases rapidly, with very little increase in bias, plotted in black. Consequently, the MSE drops considerably as λ increases from 0 to 10 . Beyond this point, the decrease in variance due to increasing λ slows, and the shrinkage on the coefficients causes them to be significantly underestimated, resulting in a large increase in the bias. The minimum MSE is achieved at approximately $\lambda=30$. Interestingly,
because of its high variance, the MSE associated with the least squares fit, when $\lambda=0$, is almost as high as that of the null model for which all coefficient estimates are zero, when $\lambda=\infty$. However, for an intermediate value of λ, the MSE is considerably lower.

The right-hand panel of Figure 6.5 displays the same curves as the lefthand panel, this time plotted against the ℓ_{2} norm of the ridge regression coefficient estimates divided by the ℓ_{2} norm of the least squares estimates. Now as we move from left to right, the fits become more flexible, and so the bias decreases and the variance increases.

In general, in situations where the relationship between the response and the predictors is close to linear, the least squares estimates will have low bias but may have high variance. This means that a small change in the training data can cause a large change in the least squares coefficient estimates. In particular, when the number of variables p is almost as large as the number of observations n, as in the example in Figure 6.5, the least squares estimates will be extremely variable. And if $p>n$, then the least squares estimates do not even have a unique solution, whereas ridge regression can still perform well by trading off a small increase in bias for a large decrease in variance. Hence, ridge regression works best in situations where the least squares estimates have high variance.

Ridge regression also has substantial computational advantages over best subset selection, which requires searching through 2^{p} models. As we discussed previously, even for moderate values of p, such a search can be computationally infeasible. In contrast, for any fixed value of λ, ridge regression only fits a single model, and the model-fitting procedure can be performed quite quickly. In fact, one can show that the computations required to solve (6.5), simultaneously for all values of λ, are almost identical to those for fitting a model using least squares.

6.2.2 The Lasso

Ridge regression does have one obvious disadvantage. Unlike best subset, forward stepwise, and backward stepwise selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model. The penalty $\lambda \sum \beta_{j}^{2}$ in (6.5) will shrink all of the coefficients towards zero, but it will not set any of them exactly to zero (unless $\lambda=\infty$). This may not be a problem for prediction accuracy, but it can create a challenge in model interpretation in settings in which the number of variables p is quite large. For example, in the Credit data set, it appears that the most important variables are income, limit, rating, and student. So we might wish to build a model including just these predictors. However, ridge regression will always generate a model involving all ten predictors. Increasing the value of λ will tend to reduce the magnitudes of the coefficients, but will not result in exclusion of any of the variables.

The lasso is a relatively recent alternative to ridge regression that overcomes this disadvantage. The lasso coefficients, $\hat{\beta}_{\lambda}^{L}$, minimize the quantity

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|=\mathrm{RSS}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right| . \tag{6.7}
\end{equation*}
$$

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have similar formulations. The only difference is that the β_{j}^{2} term in the ridge regression penalty (6.5) has been replaced by $\left|\beta_{j}\right|$ in the lasso penalty (6.7). In statistical parlance, the lasso uses an ℓ_{1} (pronounced "ell 1") penalty instead of an ℓ_{2} penalty. The ℓ_{1} norm of a coefficient vector β is given by $\|\beta\|_{1}=\sum\left|\beta_{j}\right|$.

As with ridge regression, the lasso shrinks the coefficient estimates towards zero. However, in the case of the lasso, the ℓ_{1} penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large. Hence, much like best subset selection, the lasso performs variable selection. As a result, models generated from the lasso are generally much easier to interpret than those produced by ridge regression. We say that the lasso yields sparse models-that is, models that involve only a subset of the variables. As in ridge regression, selecting a good value of λ for the lasso is critical; we defer this discussion to Section 6.2.3, where we use cross-validation.

As an example, consider the coefficient plots in Figure 6.6, which are generated from applying the lasso to the Credit data set. When $\lambda=0$, then the lasso simply gives the least squares fit, and when λ becomes sufficiently large, the lasso gives the null model in which all coefficient estimates equal zero. However, in between these two extremes, the ridge regression and lasso models are quite different from each other. Moving from left to right in the right-hand panel of Figure 6.6, we observe that at first the lasso results in a model that contains only the rating predictor. Then student and limit enter the model almost simultaneously, shortly followed by income. Eventually, the remaining variables enter the model. Hence, depending on the value of λ, the lasso can produce a model involving any number of variables. In contrast, ridge regression will always include all of the variables in the model, although the magnitude of the coefficient estimates will depend on λ.

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of λ and $\left\|\hat{\beta}_{\lambda}^{L}\right\|_{1} /\|\hat{\beta}\|_{1}$.

Another Formulation for Ridge Regression and the Lasso
One can show that the lasso and ridge regression coefficient estimates solve the problems

$$
\begin{equation*}
\underset{\beta}{\operatorname{minimize}}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}\right\} \quad \text { subject to } \quad \sum_{j=1}^{p}\left|\beta_{j}\right| \leq s \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\beta}{\operatorname{minimize}}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}\right\} \quad \text { subject to } \quad \sum_{j=1}^{p} \beta_{j}^{2} \leq s \tag{6.9}
\end{equation*}
$$

respectively. In other words, for every value of λ, there is some s such that the Equations (6.7) and (6.8) will give the same lasso coefficient estimates. Similarly, for every value of λ there is a corresponding s such that Equations (6.5) and (6.9) will give the same ridge regression coefficient estimates. When $p=2$, then (6.8) indicates that the lasso coefficient estimates have the smallest RSS out of all points that lie within the diamond defined by $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq s$. Similarly, the ridge regression estimates have the smallest RSS out of all points that lie within the circle defined by $\beta_{1}^{2}+\beta_{2}^{2} \leq s$.

We can think of (6.8) as follows. When we perform the lasso we are trying to find the set of coefficient estimates that lead to the smallest RSS, subject to the constraint that there is a budget s for how large $\sum_{j=1}^{p}\left|\beta_{j}\right|$ can be. When s is extremely large, then this budget is not very restrictive, and so the coefficient estimates can be large. In fact, if s is large enough that the least squares solution falls within the budget, then (6.8) will simply yield the least squares solution. In contrast, if s is small, then $\sum_{j=1}^{p}\left|\beta_{j}\right|$ must be
small in order to avoid violating the budget. Similarly, (6.9) indicates that when we perform ridge regression, we seek a set of coefficient estimates such that the RSS is as small as possible, subject to the requirement that $\sum_{j=1}^{p} \beta_{j}^{2}$ not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the lasso, ridge regression, and best subset selection. Consider the problem

$$
\begin{equation*}
\underset{\beta}{\operatorname{minimize}}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}\right\} \quad \text { subject to } \quad \sum_{j=1}^{p} I\left(\beta_{j} \neq 0\right) \leq s \tag{6.10}
\end{equation*}
$$

Here $I\left(\beta_{j} \neq 0\right)$ is an indicator variable: it takes on a value of 1 if $\beta_{j} \neq 0$, and equals zero otherwise. Then (6.10) amounts to finding a set of coefficient estimates such that RSS is as small as possible, subject to the constraint that no more than s coefficients can be nonzero. The problem (6.10) is equivalent to best subset selection. Unfortunately, solving (6.10) is computationally infeasible when p is large, since it requires considering all $\binom{p}{s}$ models containing s predictors. Therefore, we can interpret ridge regression and the lasso as computationally feasible alternatives to best subset selection that replace the intractable form of the budget in (6.10) with forms that are much easier to solve. Of course, the lasso is much more closely related to best subset selection, since the lasso performs feature selection for s sufficiently small in (6.8), while ridge regression does not.

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero? The formulations (6.8) and (6.9) can be used to shed light on the issue. Figure 6.7 illustrates the situation. The least squares solution is marked as $\hat{\beta}$, while the blue diamond and circle represent the lasso and ridge regression constraints in (6.8) and (6.9), respectively. If s is sufficiently large, then the constraint regions will contain $\hat{\beta}$, and so the ridge regression and lasso estimates will be the same as the least squares estimates. (Such a large value of s corresponds to $\lambda=0$ in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie outside of the diamond and the circle, and so the least squares estimates are not the same as the lasso and ridge regression estimates.

Each of the ellipses centered around $\hat{\beta}$ represents a contour: this means that all of the points on a particular ellipse have the same RSS value. As the ellipses expand away from the least squares coefficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate that the lasso and ridge regression coefficient estimates are given by the first point at which an ellipse contacts the constraint region. Since ridge regression has a circular constraint with no sharp points, this intersection will not generally occur on an axis, and so the ridge regression coefficient estimates will be exclusively

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq s$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq s$, while the red ellipses are the contours of the RSS.
non-zero. However, the lasso constraint has corners at each of the axes, and so the ellipse will often intersect the constraint region at an axis. When this occurs, one of the coefficients will equal zero. In higher dimensions, many of the coefficient estimates may equal zero simultaneously. In Figure 6.7, the intersection occurs at $\beta_{1}=0$, and so the resulting model will only include β_{2}.

In Figure 6.7, we considered the simple case of $p=2$. When $p=3$, then the constraint region for ridge regression becomes a sphere, and the constraint region for the lasso becomes a polyhedron. When $p>3$, the constraint for ridge regression becomes a hypersphere, and the constraint for the lasso becomes a polytope. However, the key ideas depicted in Figure 6.7 still hold. In particular, the lasso leads to feature selection when $p>2$ due to the sharp corners of the polyhedron or polytope.

Comparing the Lasso and Ridge Regression

It is clear that the lasso has a major advantage over ridge regression, in that it produces simpler and more interpretable models that involve only a subset of the predictors. However, which method leads to better prediction accuracy? Figure 6.8 displays the variance, squared bias, and test MSE of the lasso applied to the same simulated data as in Figure 6.5. Clearly the lasso leads to qualitatively similar behavior to ridge regression, in that as λ increases, the variance decreases and the bias increases. In the right-hand panel of Figure 6.8, the dotted lines represent the ridge regression fits. Here we plot both against their R^{2} on the training data. This is another

FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on a simulated data set. Right: Comparison of squared bias, variance, and test MSE between lasso (solid) and ridge (dotted). Both are plotted against their R^{2} on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.
useful way to index models, and can be used to compare models with different types of regularization, as is the case here. In this example, the lasso and ridge regression result in almost identical biases. However, the variance of ridge regression is slightly lower than the variance of the lasso. Consequently, the minimum MSE of ridge regression is slightly smaller than that of the lasso.

However, the data in Figure 6.8 were generated in such a way that all 45 predictors were related to the response - that is, none of the true coefficients $\beta_{1}, \ldots, \beta_{45}$ equaled zero. The lasso implicitly assumes that a number of the coefficients truly equal zero. Consequently, it is not surprising that ridge regression outperforms the lasso in terms of prediction error in this setting. Figure 6.9 illustrates a similar situation, except that now the response is a function of only 2 out of 45 predictors. Now the lasso tends to outperform ridge regression in terms of bias, variance, and MSE.

These two examples illustrate that neither ridge regression nor the lasso will universally dominate the other. In general, one might expect the lasso to perform better in a setting where a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero. Ridge regression will perform better when the response is a function of many predictors, all with coefficients of roughly equal size. However, the number of predictors that is related to the response is never known a priori for real data sets. A technique such as cross-validation can be used in order to determine which approach is better on a particular data set.

As with ridge regression, when the least squares estimates have excessively high variance, the lasso solution can yield a reduction in variance at the expense of a small increase in bias, and consequently can gener-

FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso. The simulated data is similar to that in Figure 6.8, except that now only two predictors are related to the response. Right: Comparison of squared bias, variance, and test MSE between lasso (solid) and ridge (dotted). Both are plotted against their R^{2} on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.
ate more accurate predictions. Unlike ridge regression, the lasso performs variable selection, and hence results in models that are easier to interpret.

There are very efficient algorithms for fitting both ridge and lasso models; in both cases the entire coefficient paths can be computed with about the same amount of work as a single least squares fit. We will explore this further in the lab at the end of this chapter.

A Simple Special Case for Ridge Regression and the Lasso

In order to obtain a better intuition about the behavior of ridge regression and the lasso, consider a simple special case with $n=p$, and \mathbf{X} a diagonal matrix with 1's on the diagonal and 0's in all off-diagonal elements. To simplify the problem further, assume also that we are performing regression without an intercept. With these assumptions, the usual least squares problem simplifies to finding $\beta_{1}, \ldots, \beta_{p}$ that minimize

$$
\begin{equation*}
\sum_{j=1}^{p}\left(y_{j}-\beta_{j}\right)^{2} . \tag{6.11}
\end{equation*}
$$

In this case, the least squares solution is given by

$$
\hat{\beta}_{j}=y_{j} .
$$

And in this setting, ridge regression amounts to finding $\beta_{1}, \ldots, \beta_{p}$ such that

$$
\begin{equation*}
\sum_{j=1}^{p}\left(y_{j}-\beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2} \tag{6.12}
\end{equation*}
$$

FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple setting with $n=p$ and \mathbf{X} a diagonal matrix with 1 's on the diagonal. Left: The ridge regression coefficient estimates are shrunken proportionally towards zero, relative to the least squares estimates. Right: The lasso coefficient estimates are soft-thresholded towards zero.
is minimized, and the lasso amounts to finding the coefficients such that

$$
\begin{equation*}
\sum_{j=1}^{p}\left(y_{j}-\beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right| \tag{6.13}
\end{equation*}
$$

is minimized. One can show that in this setting, the ridge regression estimates take the form

$$
\begin{equation*}
\hat{\beta}_{j}^{R}=y_{j} /(1+\lambda), \tag{6.14}
\end{equation*}
$$

and the lasso estimates take the form

$$
\hat{\beta}_{j}^{L}= \begin{cases}y_{j}-\lambda / 2 & \text { if } y_{j}>\lambda / 2 \tag{6.15}\\ y_{j}+\lambda / 2 & \text { if } y_{j}<-\lambda / 2 \\ 0 & \text { if }\left|y_{j}\right| \leq \lambda / 2\end{cases}
$$

Figure 6.10 displays the situation. We can see that ridge regression and the lasso perform two very different types of shrinkage. In ridge regression, each least squares coefficient estimate is shrunken by the same proportion. In contrast, the lasso shrinks each least squares coefficient towards zero by a constant amount, $\lambda / 2$; the least squares coefficients that are less than $\lambda / 2$ in absolute value are shrunken entirely to zero. The type of shrinkage performed by the lasso in this simple setting (6.15) is known as softthresholding. The fact that some lasso coefficients are shrunken entirely to zero explains why the lasso performs feature selection.

In the case of a more general data matrix \mathbf{X}, the story is a little more complicated than what is depicted in Figure 6.10, but the main ideas still hold approximately: ridge regression more or less shrinks every dimension of the data by the same proportion, whereas the lasso more or less shrinks

FIGURE 6.11. Left: Ridge regression is the posterior mode for β under a Gaussian prior. Right: The lasso is the posterior mode for β under a double-exponential prior.
all coefficients toward zero by a similar amount, and sufficiently small coefficients are shrunken all the way to zero.

Bayesian Interpretation of Ridge Regression and the Lasso

We now show that one can view ridge regression and the lasso through a Bayesian lens. A Bayesian viewpoint for regression assumes that the coefficient vector β has some prior distribution, say $p(\beta)$, where $\beta=$ $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{T}$. The likelihood of the data can be written as $f(Y \mid X, \beta)$, where $X=\left(X_{1}, \ldots, X_{p}\right)$. Multiplying the prior distribution by the likelihood gives us (up to a proportionality constant) the posterior distribution, which takes the form

$$
p(\beta \mid X, Y) \propto f(Y \mid X, \beta) p(\beta \mid X)=f(Y \mid X, \beta) p(\beta)
$$

where the proportionality above follows from Bayes' theorem, and the equality above follows from the assumption that X is fixed.

We assume the usual linear model,

$$
Y=\beta_{0}+X_{1} \beta_{1}+\cdots+X_{p} \beta_{p}+\epsilon,
$$

and suppose that the errors are independent and drawn from a normal distribution. Furthermore, assume that $p(\beta)=\prod_{j=1}^{p} g\left(\beta_{j}\right)$, for some density function g. It turns out that ridge regression and the lasso follow naturally from two special cases of g :

- If g is a Gaussian distribution with mean zero and standard deviation a function of λ, then it follows that the posterior mode for β-that is, the most likely value for β, given the data-is given by the ridge

FIGURE 6.12. Left: Cross-validation errors that result from applying ridge regression to the Credit data set with various values of λ. Right: The coefficient estimates as a function of λ. The vertical dashed lines indicate the value of λ selected by cross-validation.
regression solution. (In fact, the ridge regression solution is also the posterior mean.)

- If g is a double-exponential (Laplace) distribution with mean zero and scale parameter a function of λ, then it follows that the posterior mode for β is the lasso solution. (However, the lasso solution is not the posterior mean, and in fact, the posterior mean does not yield a sparse coefficient vector.)

The Gaussian and double-exponential priors are displayed in Figure 6.11. Therefore, from a Bayesian viewpoint, ridge regression and the lasso follow directly from assuming the usual linear model with normal errors, together with a simple prior distribution for β. Notice that the lasso prior is steeply peaked at zero, while the Gaussian is flatter and fatter at zero. Hence, the lasso expects a priori that many of the coefficients are (exactly) zero, while ridge assumes the coefficients are randomly distributed about zero.

6.2.3 Selecting the Tuning Parameter

Just as the subset selection approaches considered in Section 6.1 require a method to determine which of the models under consideration is best, implementing ridge regression and the lasso requires a method for selecting a value for the tuning parameter λ in (6.5) and (6.7), or equivalently, the value of the constraint s in (6.9) and (6.8). Cross-validation provides a simple way to tackle this problem. We choose a grid of λ values, and compute the cross-validation error for each value of λ, as described in Chapter 5. We then select the tuning parameter value for which the cross-validation error is smallest. Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.

FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set from Figure 6.9. Right: The corresponding lasso coefficient estimates are displayed. The two signal variables are shown in color, and the noise variables are in gray. The vertical dashed lines indicate the lasso fit for which the cross-validation error is smallest.

Figure 6.12 displays the choice of λ that results from performing leave-one-out cross-validation on the ridge regression fits from the Credit data set. The dashed vertical lines indicate the selected value of λ. In this case the value is relatively small, indicating that the optimal fit only involves a small amount of shrinkage relative to the least squares solution. In addition, the dip is not very pronounced, so there is rather a wide range of values that would give a very similar error. In a case like this we might simply use the least squares solution.

Figure 6.13 provides an illustration of ten-fold cross-validation applied to the lasso fits on the sparse simulated data from Figure 6.9. The left-hand panel of Figure 6.13 displays the cross-validation error, while the right-hand panel displays the coefficient estimates. The vertical dashed lines indicate the point at which the cross-validation error is smallest. The two colored lines in the right-hand panel of Figure 6.13 represent the two predictors that are related to the response, while the grey lines represent the unrelated predictors; these are often referred to as signal and noise variables, respectively. Not only has the lasso correctly given much larger coefficient estimates to the two signal predictors, but also the minimum crossvalidation error corresponds to a set of coefficient estimates for which only the signal variables are non-zero. Hence cross-validation together with the lasso has correctly identified the two signal variables in the model, even though this is a challenging setting, with $p=45$ variables and only $n=50$ observations. In contrast, the least squares solution-displayed on the far right of the right-hand panel of Figure 6.13-assigns a large coefficient estimate to only one of the two signal variables.

7

Moving Beyond Linearity

So far in this book, we have mostly focused on linear models. Linear models are relatively simple to describe and implement, and have advantages over other approaches in terms of interpretation and inference. However, standard linear regression can have significant limitations in terms of predictive power. This is because the linearity assumption is almost always an approximation, and sometimes a poor one. In Chapter 6 we see that we can improve upon least squares using ridge regression, the lasso, principal components regression, and other techniques. In that setting, the improvement is obtained by reducing the complexity of the linear model, and hence the variance of the estimates. But we are still using a linear model, which can only be improved so far! In this chapter we relax the linearity assumption while still attempting to maintain as much interpretability as possible. We do this by examining very simple extensions of linear models like polynomial regression and step functions, as well as more sophisticated approaches such as splines, local regression, and generalized additive models.

- Polynomial regression extends the linear model by adding extra predictors, obtained by raising each of the original predictors to a power. For example, a cubic regression uses three variables, X, X^{2}, and X^{3}, as predictors. This approach provides a simple way to provide a nonlinear fit to data.
- Step functions cut the range of a variable into K distinct regions in order to produce a qualitative variable. This has the effect of fitting a piecewise constant function.
- Regression splines are more flexible than polynomials and step functions, and in fact are an extension of the two. They involve dividing the range of X into K distinct regions. Within each region, a polynomial function is fit to the data. However, these polynomials are constrained so that they join smoothly at the region boundaries, or $k n o t s$. Provided that the interval is divided into enough regions, this can produce an extremely flexible fit.
- Smoothing splines are similar to regression splines, but arise in a slightly different situation. Smoothing splines result from minimizing a residual sum of squares criterion subject to a smoothness penalty.
- Local regression is similar to splines, but differs in an important way. The regions are allowed to overlap, and indeed they do so in a very smooth way.
- Generalized additive models allow us to extend the methods above to deal with multiple predictors.

In Sections 7.1-7.6, we present a number of approaches for modeling the relationship between a response Y and a single predictor X in a flexible way. In Section 7.7, we show that these approaches can be seamlessly integrated in order to model a response Y as a function of several predictors X_{1}, \ldots, X_{p}.

7.1 Polynomial Regression

Historically, the standard way to extend linear regression to settings in which the relationship between the predictors and the response is nonlinear has been to replace the standard linear model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

with a polynomial function

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\beta_{3} x_{i}^{3}+\cdots+\beta_{d} x_{i}^{d}+\epsilon_{i}, \tag{7.1}
\end{equation*}
$$

where ϵ_{i} is the error term. This approach is known as polynomial regression, and in fact we saw an example of this method in Section 3.3.2. For large enough degree d, a polynomial regression allows us to produce an extremely non-linear curve. Notice that the coefficients in (7.1) can be easily estimated using least squares linear regression because this is just a standard linear model with predictors $x_{i}, x_{i}^{2}, x_{i}^{3}, \ldots, x_{i}^{d}$. Generally speaking, it is unusual to use d greater than 3 or 4 because for large values of d, the polynomial curve can become overly flexible and can take on some very strange shapes. This is especially true near the boundary of the X variable.

Degree-4 Polynomial

FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial of wage (in thousands of dollars) as a function of age, fit by least squares. The dashed curves indicate an estimated 95% confidence interval. Right: We model the binary event wage >250 using logistic regression, again with a degree- 4 polynomial. The fitted posterior probability of wage exceeding $\$ 250,000$ is shown in blue, along with an estimated 95% confidence interval.

The left-hand panel in Figure 7.1 is a plot of wage against age for the Wage data set, which contains income and demographic information for males who reside in the central Atlantic region of the United States. We see the results of fitting a degree-4 polynomial using least squares (solid blue curve). Even though this is a linear regression model like any other, the individual coefficients are not of particular interest. Instead, we look at the entire fitted function across a grid of 63 values for age from 18 to 80 in order to understand the relationship between age and wage.

In Figure 7.1, a pair of dashed curves accompanies the fit; these are $(2 \times)$ standard error curves. Let's see how these arise. Suppose we have computed the fit at a particular value of age, x_{0} :

$$
\begin{equation*}
\hat{f}\left(x_{0}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}+\hat{\beta}_{2} x_{0}^{2}+\hat{\beta}_{3} x_{0}^{3}+\hat{\beta}_{4} x_{0}^{4} . \tag{7.2}
\end{equation*}
$$

What is the variance of the fit, i.e. $\operatorname{Var} \hat{f}\left(x_{0}\right)$? Least squares returns variance estimates for each of the fitted coefficients $\hat{\beta}_{j}$, as well as the covariances between pairs of coefficient estimates. We can use these to compute the estimated variance of $\hat{f}\left(x_{0}\right) .{ }^{1}$ The estimated pointwise standard error of

[^16]$\hat{f}\left(x_{0}\right)$ is the square-root of this variance. This computation is repeated at each reference point x_{0}, and we plot the fitted curve, as well as twice the standard error on either side of the fitted curve. We plot twice the standard error because, for normally distributed error terms, this quantity corresponds to an approximate 95% confidence interval.

It seems like the wages in Figure 7.1 are from two distinct populations: there appears to be a high earners group earning more than $\$ 250,000$ per annum, as well as a low earners group. We can treat wage as a binary variable by splitting it into these two groups. Logistic regression can then be used to predict this binary response, using polynomial functions of age as predictors. In other words, we fit the model

$$
\begin{equation*}
\operatorname{Pr}\left(y_{i}>250 \mid x_{i}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{d} x_{i}^{d}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{d} x_{i}^{d}\right)} \tag{7.3}
\end{equation*}
$$

The result is shown in the right-hand panel of Figure 7.1. The gray marks on the top and bottom of the panel indicate the ages of the high earners and the low earners. The solid blue curve indicates the fitted probabilities of being a high earner, as a function of age. The estimated 95% confidence interval is shown as well. We see that here the confidence intervals are fairly wide, especially on the right-hand side. Although the sample size for this data set is substantial ($n=3,000$), there are only 79 high earners, which results in a high variance in the estimated coefficients and consequently wide confidence intervals.

7.2 Step Functions

Using polynomial functions of the features as predictors in a linear model imposes a global structure on the non-linear function of X. We can instead use step functions in order to avoid imposing such a global structure. Here we break the range of X into bins, and fit a different constant in each bin. This amounts to converting a continuous variable into an ordered categorical variable.

In greater detail, we create cutpoints $c_{1}, c_{2}, \ldots, c_{K}$ in the range of X, and then construct $K+1$ new variables

$$
\begin{array}{ll}
C_{0}(X) & =I\left(X<c_{1}\right) \\
C_{1}(X) & =I\left(c_{1} \leq X<c_{2}\right) \\
C_{2}(X) & =I\left(c_{2} \leq X<c_{3}\right) \tag{7.4}\\
& \vdots \\
C_{K-1}(X) & =I\left(c_{K-1} \leq X<c_{K}\right) \\
C_{K}(X) & =I\left(c_{K} \leq X\right)
\end{array}
$$

where $I(\cdot)$ is an indicator function that returns a 1 if the condition is true,

FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from a least squares regression of wage (in thousands of dollars) using step functions of age. The dashed curves indicate an estimated 95% confidence interval. Right: We model the binary event wage >250 using logistic regression, again using step functions of age. The fitted posterior probability of wage exceeding $\$ 250,000$ is shown, along with an estimated 95% confidence interval.
and returns a 0 otherwise. For example, $I\left(c_{K} \leq X\right)$ equals 1 if $c_{K} \leq X$, and equals 0 otherwise. These are sometimes called dummy variables. Notice that for any value of $X, C_{0}(X)+C_{1}(X)+\cdots+C_{K}(X)=1$, since X must be in exactly one of the $K+1$ intervals. We then use least squares to fit a linear model using $C_{1}(X), C_{2}(X), \ldots, C_{K}(X)$ as predictors ${ }^{2}$:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} C_{1}\left(x_{i}\right)+\beta_{2} C_{2}\left(x_{i}\right)+\cdots+\beta_{K} C_{K}\left(x_{i}\right)+\epsilon_{i} . \tag{7.5}
\end{equation*}
$$

For a given value of X, at most one of $C_{1}, C_{2}, \ldots, C_{K}$ can be non-zero. Note that when $X<c_{1}$, all of the predictors in (7.5) are zero, so β_{0} can be interpreted as the mean value of Y for $X<c_{1}$. By comparison, (7.5) predicts a response of $\beta_{0}+\beta_{j}$ for $c_{j} \leq X<c_{j+1}$, so β_{j} represents the average increase in the response for X in $c_{j} \leq X<c_{j+1}$ relative to $X<c_{1}$.

An example of fitting step functions to the Wage data from Figure 7.1 is shown in the left-hand panel of Figure 7.2. We also fit the logistic regression

[^17]model
\[

$$
\begin{equation*}
\operatorname{Pr}\left(y_{i}>250 \mid x_{i}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} C_{1}\left(x_{i}\right)+\cdots+\beta_{K} C_{K}\left(x_{i}\right)\right)}{1+\exp \left(\beta_{0}+\beta_{1} C_{1}\left(x_{i}\right)+\cdots+\beta_{K} C_{K}\left(x_{i}\right)\right)} \tag{7.6}
\end{equation*}
$$

\]

in order to predict the probability that an individual is a high earner on the basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior probabilities obtained using this approach.

Unfortunately, unless there are natural breakpoints in the predictors, piecewise-constant functions can miss the action. For example, in the lefthand panel of Figure 7.2, the first bin clearly misses the increasing trend of wage with age. Nevertheless, step function approaches are very popular in biostatistics and epidemiology, among other disciplines. For example, 5 -year age groups are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special cases of a basis function approach. The idea is to have at hand a family of functions or transformations that can be applied to a variable X : $b_{1}(X), b_{2}(X), \ldots, b_{K}(X)$. Instead of fitting a linear model in X, we fit the model

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} b_{1}\left(x_{i}\right)+\beta_{2} b_{2}\left(x_{i}\right)+\beta_{3} b_{3}\left(x_{i}\right)+\cdots+\beta_{K} b_{K}\left(x_{i}\right)+\epsilon_{i} . \tag{7.7}
\end{equation*}
$$

Note that the basis functions $b_{1}(\cdot), b_{2}(\cdot), \ldots, b_{K}(\cdot)$ are fixed and known. (In other words, we choose the functions ahead of time.) For polynomial regression, the basis functions are $b_{j}\left(x_{i}\right)=x_{i}^{j}$, and for piecewise constant functions they are $b_{j}\left(x_{i}\right)=I\left(c_{j} \leq x_{i}<c_{j+1}\right)$. We can think of (7.7) as a standard linear model with predictors $b_{1}\left(x_{i}\right), b_{2}\left(x_{i}\right), \ldots, b_{K}\left(x_{i}\right)$. Hence, we can use least squares to estimate the unknown regression coefficients in (7.7). Importantly, this means that all of the inference tools for linear models that are discussed in Chapter 3, such as standard errors for the coefficient estimates and F-statistics for the model's overall significance, are available in this setting.

Thus far we have considered the use of polynomial functions and piecewise constant functions for our basis functions; however, many alternatives are possible. For instance, we can use wavelets or Fourier series to construct basis functions. In the next section, we investigate a very common choice for a basis function: regression splines.
∇ Unfortunately, trees generally do not have the same level of predictive accuracy as some of the other regression and classification approaches seen in this book.
$\boldsymbol{\nabla}$ Additionally, trees can be very non-robust. In other words, a small change in the data can cause a large change in the final estimated tree.

However, by aggregating many decision trees, using methods like bagging, random forests, and boosting, the predictive performance of trees can be substantially improved. We introduce these concepts in the next section.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees

An ensemble method is an approach that combines many simple "building block" models in order to obtain a single and potentially very powerful model. These simple building block models are sometimes known as weak learners, since they may lead to mediocre predictions on their own.

We will now discuss bagging, random forests, boosting, and Bayesian additive regression trees. These are ensemble methods for which the simple building block is a regression or a classification tree.

8.2.1 Bagging

The bootstrap, introduced in Chapter 5, is an extremely powerful idea. It is used in many situations in which it is hard or even impossible to directly compute the standard deviation of a quantity of interest. We see here that the bootstrap can be used in a completely different context, in order to improve statistical learning methods such as decision trees.

The decision trees discussed in Section 8.1 suffer from high variance. This means that if we split the training data into two parts at random, and fit a decision tree to both halves, the results that we get could be quite different. In contrast, a procedure with low variance will yield similar results if applied repeatedly to distinct data sets; linear regression tends to have low variance, if the ratio of n to p is moderately large. Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the variance of a statistical learning method; we introduce it here because it is particularly useful and frequently used in the context of decision trees.

Recall that given a set of n independent observations Z_{1}, \ldots, Z_{n}, each with variance σ^{2}, the variance of the mean \bar{Z} of the observations is given by σ^{2} / n. In other words, averaging a set of observations reduces variance. Hence a natural way to reduce the variance and increase the test set accuracy of a statistical learning method is to take many training sets from
the population, build a separate prediction model using each training set, and average the resulting predictions. In other words, we could calculate $\hat{f}^{1}(x), \hat{f}^{2}(x), \ldots, \hat{f}^{B}(x)$ using B separate training sets, and average them in order to obtain a single low-variance statistical learning model, given by

$$
\hat{f}_{\mathrm{avg}}(x)=\frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(x)
$$

Of course, this is not practical because we generally do not have access to multiple training sets. Instead, we can bootstrap, by taking repeated samples from the (single) training data set. In this approach we generate B different bootstrapped training data sets. We then train our method on the b th bootstrapped training set in order to get $\hat{f}^{* b}(x)$, and finally average all the predictions, to obtain

$$
\hat{f}_{\mathrm{bag}}(x)=\frac{1}{B} \sum_{b=1}^{B} \hat{f}^{* b}(x)
$$

This is called bagging.
While bagging can improve predictions for many regression methods, it is particularly useful for decision trees. To apply bagging to regression trees, we simply construct B regression trees using B bootstrapped training sets, and average the resulting predictions. These trees are grown deep, and are not pruned. Hence each individual tree has high variance, but low bias. Averaging these B trees reduces the variance. Bagging has been demonstrated to give impressive improvements in accuracy by combining together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression context, to predict a quantitative outcome Y. How can bagging be extended to a classification problem where Y is qualitative? In that situation, there are a few possible approaches, but the simplest is as follows. For a given test observation, we can record the class predicted by each of the B trees, and take a majority vote: the overall prediction is the most commonly occurring class among the B predictions.

Figure 8.8 shows the results from bagging trees on the Heart data. The test error rate is shown as a function of B, the number of trees constructed using bootstrapped training data sets. We see that the bagging test error rate is slightly lower in this case than the test error rate obtained from a single tree. The number of trees B is not a critical parameter with bagging; using a very large value of B will not lead to overfitting. In practice we use a value of B sufficiently large that the error has settled down. Using $B=100$ is sufficient to achieve good performance in this example.
majority vote

FIGURE 8.8. Bagging and random forest results for the Heart data. The test error (black and orange) is shown as a function of B, the number of bootstrapped training sets used. Random forests were applied with $m=\sqrt{p}$. The dashed line indicates the test error resulting from a single classification tree. The green and blue traces show the $O O B$ error, which in this case is - by chance - considerably lower.

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the test error of a bagged model, without the need to perform cross-validation or the validation set approach. Recall that the key to bagging is that trees are repeatedly fit to bootstrapped subsets of the observations. One can show that on average, each bagged tree makes use of around two-thirds of the observations. ${ }^{3}$ The remaining one-third of the observations not used to fit a given bagged tree are referred to as the out-of-bag (OOB) observations. We can predict the response for the i th observation using each of the trees in which that observation was OOB. This will yield around $B / 3$ predictions for the i th observation. In order to obtain a single prediction for the i th observation, we can average these predicted responses (if regression is the goal) or can take a majority vote (if classification is the goal). This leads to a single OOB prediction for the i th observation. An OOB prediction can be obtained in this way for each of the n observations, from which the

[^18]overall OOB MSE (for a regression problem) or classification error (for a classification problem) can be computed. The resulting OOB error is a valid estimate of the test error for the bagged model, since the response for each observation is predicted using only the trees that were not fit using that observation. Figure 8.8 displays the OOB error on the Heart data. It can be shown that with B sufficiently large, OOB error is virtually equivalent to leave-one-out cross-validation error. The OOB approach for estimating the test error is particularly convenient when performing bagging on large data sets for which cross-validation would be computationally onerous.

Variable Importance Measures

As we have discussed, bagging typically results in improved accuracy over prediction using a single tree. Unfortunately, however, it can be difficult to interpret the resulting model. Recall that one of the advantages of decision trees is the attractive and easily interpreted diagram that results, such as the one displayed in Figure 8.1. However, when we bag a large number of trees, it is no longer possible to represent the resulting statistical learning procedure using a single tree, and it is no longer clear which variables are most important to the procedure. Thus, bagging improves prediction accuracy at the expense of interpretability.

Although the collection of bagged trees is much more difficult to interpret than a single tree, one can obtain an overall summary of the importance of each predictor using the RSS (for bagging regression trees) or the Gini index (for bagging classification trees). In the case of bagging regression trees, we can record the total amount that the RSS (8.1) is decreased due to splits over a given predictor, averaged over all B trees. A large value indicates an important predictor. Similarly, in the context of bagging classification trees, we can add up the total amount that the Gini index (8.6) is decreased by splits over a given predictor, averaged over all B trees.

A graphical representation of the variable importances in the Heart data is shown in Figure 8.9. We see the mean decrease in Gini index for each variable, relative to the largest. The variables with the largest mean decrease in Gini index are Thal, Ca, and ChestPain.

8.2.2 Random Forests

Random forests provide an improvement over bagged trees by way of a small tweak that decorrelates the trees. As in bagging, we build a number of decision trees on bootstrapped training samples. But when building these decision trees, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the full set of p predictors. The split is allowed to use only one of those m predictors. A fresh sample of m predictors is taken at each split, and typically we choose $m \approx \sqrt{p}$ - that is, the number of predictors considered at each split is approximately equal
variable importance
random forest

FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.
to the square root of the total number of predictors (4 out of the 13 for the Heart data).

In other words, in building a random forest, at each split in the tree, the algorithm is not even allowed to consider a majority of the available predictors. This may sound crazy, but it has a clever rationale. Suppose that there is one very strong predictor in the data set, along with a number of other moderately strong predictors. Then in the collection of bagged trees, most or all of the trees will use this strong predictor in the top split. Consequently, all of the bagged trees will look quite similar to each other. Hence the predictions from the bagged trees will be highly correlated. Unfortunately, averaging many highly correlated quantities does not lead to as large of a reduction in variance as averaging many uncorrelated quantities. In particular, this means that bagging will not lead to a substantial reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider only a subset of the predictors. Therefore, on average $(p-m) / p$ of the splits will not even consider the strong predictor, and so other predictors will have more of a chance. We can think of this process as decorrelating the trees, thereby making the average of the resulting trees less variable and hence more reliable.

The main difference between bagging and random forests is the choice of predictor subset size m. For instance, if a random forest is built using $m=p$, then this amounts simply to bagging. On the Heart data, random forests using $m=\sqrt{p}$ leads to a reduction in both test error and OOB error over bagging (Figure 8.8).

Using a small value of m in building a random forest will typically be helpful when we have a large number of correlated predictors. We applied random forests to a high-dimensional biological data set consisting of expression measurements of 4,718 genes measured on tissue samples from 349 patients. There are around 20,000 genes in humans, and individual genes have different levels of activity, or expression, in particular cells, tissues, and biological conditions. In this data set, each of the patient samples has a qualitative label with 15 different levels: either normal or 1 of 14 different types of cancer. Our goal was to use random forests to predict cancer type based on the 500 genes that have the largest variance in the training set. We randomly divided the observations into a training and a test set, and applied random forests to the training set for three different values of the number of splitting variables m. The results are shown in Figure 8.10. The error rate of a single tree is 45.7%, and the null rate is $75.4 \%{ }^{4}$ We see that using 400 trees is sufficient to give good performance, and that the choice $m=\sqrt{p}$ gave a small improvement in test error over bagging $(m=p)$ in this example. As with bagging, random forests will not overfit if we increase B, so in practice we use a value of B sufficiently large for the error rate to have settled down.

8.2.3 Boosting

We now discuss boosting, yet another approach for improving the predictions resulting from a decision tree. Like bagging, boosting is a general approach that can be applied to many statistical learning methods for regression or classification. Here we restrict our discussion of boosting to the context of decision trees.

Recall that bagging involves creating multiple copies of the original training data set using the bootstrap, fitting a separate decision tree to each copy, and then combining all of the trees in order to create a single predictive model. Notably, each tree is built on a bootstrap data set, independent of the other trees. Boosting works in a similar way, except that the trees are grown sequentially: each tree is grown using information from previously grown trees. Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set.

[^19]

FIGURE 8.10. Results from random forests for the 15 -class gene expression data set with $p=500$ predictors. The test error is displayed as a function of the number of trees. Each colored line corresponds to a different value of m, the number of predictors available for splitting at each interior tree node. Random forests $(m<p)$ lead to a slight improvement over bagging $(m=p)$. A single classification tree has an error rate of 45.7%.

Consider first the regression setting. Like bagging, boosting involves combining a large number of decision trees, $\hat{f}^{1}, \ldots, \hat{f}^{B}$. Boosting is described in Algorithm 8.2.

What is the idea behind this procedure? Unlike fitting a single large decision tree to the data, which amounts to fitting the data hard and potentially overfitting, the boosting approach instead learns slowly. Given the current model, we fit a decision tree to the residuals from the model. That is, we fit a tree using the current residuals, rather than the outcome Y, as the response. We then add this new decision tree into the fitted function in order to update the residuals. Each of these trees can be rather small, with just a few terminal nodes, determined by the parameter d in the algorithm. By fitting small trees to the residuals, we slowly improve \hat{f} in areas where it does not perform well. The shrinkage parameter λ slows the process down even further, allowing more and different shaped trees to attack the residuals. In general, statistical learning approaches that learn slowly tend to perform well. Note that in boosting, unlike in bagging, the construction of each tree depends strongly on the trees that have already been grown.

We have just described the process of boosting regression trees. Boosting classification trees proceeds in a similar but slightly more complex way, and the details are omitted here.

Boosting has three tuning parameters:

Algorithm 8.2 Boosting for Regression Trees

1. Set $\hat{f}(x)=0$ and $r_{i}=y_{i}$ for all i in the training set.
2. For $b=1,2, \ldots, B$, repeat:
(a) Fit a tree \hat{f}^{b} with d splits ($d+1$ terminal nodes) to the training data (X, r).
(b) Update \hat{f} by adding in a shrunken version of the new tree:

$$
\begin{equation*}
\hat{f}(x) \leftarrow \hat{f}(x)+\lambda \hat{f}^{b}(x) \tag{8.10}
\end{equation*}
$$

(c) Update the residuals,

$$
\begin{equation*}
r_{i} \leftarrow r_{i}-\lambda \hat{f}^{b}\left(x_{i}\right) . \tag{8.11}
\end{equation*}
$$

3. Output the boosted model,

$$
\begin{equation*}
\hat{f}(x)=\sum_{b=1}^{B} \lambda \hat{f}^{b}(x) \tag{8.12}
\end{equation*}
$$

1. The number of trees B. Unlike bagging and random forests, boosting can overfit if B is too large, although this overfitting tends to occur slowly if at all. We use cross-validation to select B.
2. The shrinkage parameter λ, a small positive number. This controls the rate at which boosting learns. Typical values are 0.01 or 0.001 , and the right choice can depend on the problem. Very small λ can require using a very large value of B in order to achieve good performance.
3. The number d of splits in each tree, which controls the complexity of the boosted ensemble. Often $d=1$ works well, in which case each tree is a stump, consisting of a single split. In this case, the boosted ensemble is fitting an additive model, since each term involves only a single variable. More generally d is the interaction depth, and controls the interaction order of the boosted model, since d splits can involve at most d variables.

In Figure 8.11, we applied boosting to the 15 -class cancer gene expression data set, in order to develop a classifier that can distinguish the normal class from the 14 cancer classes. We display the test error as a function of the total number of trees and the interaction depth d. We see that simple stumps with an interaction depth of one perform well if enough of them are included. This model outperforms the depth-two model, and both outperform a random forest. This highlights one difference between boosting

FIGURE 8.11. Results from performing boosting and random forests on the 15 -class gene expression data set in order to predict cancer versus normal. The test error is displayed as a function of the number of trees. For the two boosted models, $\lambda=0.01$. Depth-1 trees slightly outperform depth-2 trees, and both outperform the random forest, although the standard errors are around 0.02, making none of these differences significant. The test error rate for a single tree is 24%.
and random forests: in boosting, because the growth of a particular tree takes into account the other trees that have already been grown, smaller trees are typically sufficient. Using smaller trees can aid in interpretability as well; for instance, using stumps leads to an additive model.

8.2.4 Bayesian Additive Regression Trees

Finally, we discuss Bayesian additive regression trees (BART), another ensemble method that uses decision trees as its building blocks. For simplicity, we present BART for regression (as opposed to classification).

Recall that bagging and random forests make predictions from an aver-

Bayesian additive regression trees age of regression trees, each of which is built using a random sample of data and/or predictors. Each tree is built separately from the others. By contrast, boosting uses a weighted sum of trees, each of which is constructed by fitting a tree to the residual of the current fit. Thus, each new tree attempts to capture signal that is not yet accounted for by the current set of trees. BART is related to both approaches: each tree is constructed in a random manner as in bagging and random forests, and each tree tries to capture signal not yet accounted for by the current model, as in boosting. The main novelty in BART is the way in which new trees are generated.

Before we introduce the BART algorithm, we define some notation. We let K denote the number of regression trees, and B the number of iterations for which the BART algorithm will be run. The notation $\hat{f}_{k}^{b}(x)$ represents
(a): $\hat{f}_{k}^{b-1}(X) \quad(\mathrm{b}):$ Possibility $\# 1$ for $\hat{f}_{k}^{b}(X)$

(c): Possibility \#2 for $\hat{f}_{k}^{b}(X)$

(d): Possibility $\# 3$ for $\hat{f}_{k}^{b}(X)$

FIGURE 8.12. A schematic of perturbed trees from the BART algorithm. (a): The kth tree at the $(b-1)$ st iteration, $\hat{f}_{k}^{b-1}(X)$, is displayed. Panels (b)-(d) display three of many possibilities for $\hat{f}_{k}^{b}(X)$, given the form of $\hat{f}_{k}^{b-1}(X)$. (b): One possibility is that $\hat{f}_{k}^{b}(X)$ has the same structure as $\hat{f}_{k}^{b-1}(X)$, but with different predictions at the terminal nodes. (c): Another possibility is that $\hat{f}_{k}^{b}(X)$ results from pruning $\hat{f}_{k}^{b-1}(X)$. (d): Alternatively, $\hat{f}_{k}^{b}(X)$ may have more terminal nodes than $\hat{f}_{k}^{b-1}(X)$.
the prediction at x for the k th regression tree used in the b th iteration. At the end of each iteration, the K trees from that iteration will be summed, i.e. $\hat{f}^{b}(x)=\sum_{k=1}^{K} \hat{f}_{k}^{b}(x)$ for $b=1, \ldots, B$.

In the first iteration of the BART algorithm, all trees are initialized to have a single root node, with $\hat{f}_{k}^{1}(x)=\frac{1}{n K} \sum_{i=1}^{n} y_{i}$, the mean of the response values divided by the total number of trees. Thus, $\hat{f}^{1}(x)=\sum_{k=1}^{K} \hat{f}_{k}^{1}(x)=$ $\frac{1}{n} \sum_{i=1}^{n} y_{i}$.

In subsequent iterations, BART updates each of the K trees, one at a time. In the b th iteration, to update the k th tree, we subtract from each response value the predictions from all but the k th tree, in order to obtain a partial residual

$$
r_{i}=y_{i}-\sum_{k^{\prime}<k} \hat{f}_{k^{\prime}}^{b}\left(x_{i}\right)-\sum_{k^{\prime}>k} \hat{f}_{k^{\prime}}^{b-1}\left(x_{i}\right)
$$

for the i th observation, $i=1, \ldots, n$. Rather than fitting a fresh tree to this partial residual, BART randomly chooses a perturbation to the tree from the previous iteration $\left(\hat{f}_{k}^{b-1}\right)$ from a set of possible perturbations, favoring ones that improve the fit to the partial residual. There are two components to this perturbation:

1. We may change the structure of the tree by adding or pruning branches.
2. We may change the prediction in each terminal node of the tree.

Figure 8.12 illustrates examples of possible perturbations to a tree.
The output of BART is a collection of prediction models,

$$
\hat{f}^{b}(x)=\sum_{k=1}^{K} \hat{f}_{k}^{b}(x), \text { for } b=1,2, \ldots, B
$$

We typically throw away the first few of these prediction models, since models obtained in the earlier iterations - known as the burn-in period - tend not to provide very good results. We can let L denote the number of burn-in iterations; for instance, we might take $L=200$. Then, to obtain a single prediction, we simply take the average after the burn-in iterations, $\hat{f}(x)=\frac{1}{B-L} \sum_{b=L+1}^{B} \hat{f}^{b}(x)$. However, it is also possible to compute quantities other than the average: for instance, the percentiles of $\hat{f}^{L+1}(x), \ldots, \hat{f}^{B}(x)$ provide a measure of uncertainty in the final prediction. The overall BART procedure is summarized in Algorithm 8.3.

A key element of the BART approach is that in Step 3(a)ii., we do not fit a fresh tree to the current partial residual: instead, we try to improve the fit to the current partial residual by slightly modifying the tree obtained in the previous iteration (see Figure 8.12). Roughly speaking, this guards against overfitting since it limits how "hard" we fit the data in each iteration. Furthermore, the individual trees are typically quite small. We limit the tree size in order to avoid overfitting the data, which would be more likely to occur if we grew very large trees.

Figure 8.13 shows the result of applying BART to the Heart data, using $K=200$ trees, as the number of iterations is increased to 10,000 . During the initial iterations, the test and training errors jump around a bit. After this initial burn-in period, the error rates settle down. We note that there is only a small difference between the training error and the test error, indicating that the tree perturbation process largely avoids overfitting.

The training and test errors for boosting are also displayed in Figure 8.13. We see that the test error for boosting approaches that of BART, but then begins to increase as the number of iterations increases. Furthermore, the training error for boosting decreases as the number of iterations increases, indicating that boosting has overfit the data.

Though the details are outside of the scope of this book, it turns out that the BART method can be viewed as a Bayesian approach to fitting an ensemble of trees: each time we randomly perturb a tree in order to fit the residuals, we are in fact drawing a new tree from a posterior distribution. (Of course, this Bayesian connection is the motivation for BART's name.) Furthermore, Algorithm 8.3 can be viewed as a Markov chain Monte Carlo algorithm for fitting the BART model.

Algorithm 8.3 Bayesian Additive Regression Trees

1. Let $\hat{f}_{1}^{1}(x)=\hat{f}_{2}^{1}(x)=\cdots=\hat{f}_{K}^{1}(x)=\frac{1}{n K} \sum_{i=1}^{n} y_{i}$.
2. Compute $\hat{f}^{1}(x)=\sum_{k=1}^{K} \hat{f}_{k}^{1}(x)=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.
3. For $b=2, \ldots, B$:
(a) For $k=1,2, \ldots, K$:
i. For $i=1, \ldots, n$, compute the current partial residual

$$
r_{i}=y_{i}-\sum_{k^{\prime}<k} \hat{f}_{k^{\prime}}^{b}\left(x_{i}\right)-\sum_{k^{\prime}>k} \hat{f}_{k^{\prime}}^{b-1}\left(x_{i}\right)
$$

ii. Fit a new tree, $\hat{f}_{k}^{b}(x)$, to r_{i}, by randomly perturbing the k th tree from the previous iteration, $\hat{f}_{k}^{b-1}(x)$. Perturbations that improve the fit are favored.
(b) Compute $\hat{f}^{b}(x)=\sum_{k=1}^{K} \hat{f}_{k}^{b}(x)$.
4. Compute the mean after L burn-in samples,

$$
\hat{f}(x)=\frac{1}{B-L} \sum_{b=L+1}^{B} \hat{f}^{b}(x)
$$

When we apply BART, we must select the number of trees K, the number of iterations B, and the number of burn-in iterations L. We typically choose large values for B and K, and a moderate value for L : for instance, $K=200$, $B=1,000$, and $L=100$ is a reasonable choice. BART has been shown to have very impressive out-of-box performance - that is, it performs well with minimal tuning.

8.2.5 Summary of Tree Ensemble Methods

Trees are an attractive choice of weak learner for an ensemble method for a number of reasons, including their flexibility and ability to handle predictors of mixed types (i.e. qualitative as well as quantitative). We have now seen four approaches for fitting an ensemble of trees: bagging, random forests, boosting, and BART.

- In bagging, the trees are grown independently on random samples of the observations. Consequently, the trees tend to be quite similar to each other. Thus, bagging can get caught in local optima and can fail to thoroughly explore the model space.

FIGURE 8.13. BART and boosting results for the Heart data. Both training and test errors are displayed. After a burn-in period of 100 iterations (shown in gray), the error rates for BART settle down. Boosting begins to overfit after a few hundred iterations.

- In random forests, the trees are once again grown independently on random samples of the observations. However, each split on each tree is performed using a random subset of the features, thereby decorrelating the trees, and leading to a more thorough exploration of model space relative to bagging.
- In boosting, we only use the original data, and do not draw any random samples. The trees are grown successively, using a "slow" learning approach: each new tree is fit to the signal that is left over from the earlier trees, and shrunken down before it is used.
- In $B A R T$, we once again only make use of the original data, and we grow the trees successively. However, each tree is perturbed in order to avoid local minima and achieve a more thorough exploration of the model space.

[^0]: ${ }^{1}$ The assumption of linearity is often a useful working model. However, despite what many textbooks might tell us, we seldom believe that the true relationship is linear.

[^1]: ${ }^{2}$ This formula holds provided that the n observations are uncorrelated.

[^2]: ${ }^{3}$ Approximately for several reasons. Equation 3.10 relies on the assumption that the errors are Gaussian. Also, the factor of 2 in front of the $\mathrm{SE}\left(\hat{\beta}_{1}\right)$ term will vary slightly depending on the number of observations n in the linear regression. To be precise, rather than the number 2, (3.10) should contain the 97.5% quantile of a t-distribution with $n-2$ degrees of freedom. Details of how to compute the 95% confidence interval precisely in R will be provided later in this chapter.

[^3]: ${ }^{4}$ In Table 3.1, a small p-value for the intercept indicates that we can reject the null hypothesis that $\beta_{0}=0$, and a small p-value for TV indicates that we can reject the null hypothesis that $\beta_{1}=0$. Rejecting the latter null hypothesis allows us to conclude that there is a relationship between TV and sales. Rejecting the former allows us to conclude that in the absence of TV expenditure, sales are non-zero.

[^4]: ${ }^{5}$ We note that in fact, the right-hand side of (3.18) is the sample correlation; thus, it would be more correct to write $\widehat{\operatorname{Cor}(X, Y)}$; however, we omit the "hat" for ease of notation.

[^5]: ${ }^{6}$ Even if the errors are not normally-distributed, the F-statistic approximately follows an F-distribution provided that the sample size n is large.
 ${ }^{7}$ The square of each t-statistic is the corresponding F-statistic.

[^6]: ${ }^{8}$ This is related to the important concept of multiple testing, which is the focus of Chapter 13.

[^7]: ${ }^{9}$ In other words, if we collect a large number of data sets like the Advertising data set, and we construct a confidence interval for the average sales on the basis of each data set (given $\$ 100,000$ in TV and $\$ 20,000$ in radio advertising), then 95% of these confidence intervals will contain the true value of average sales.

[^8]: ${ }^{10}$ In the machine learning community, the creation of dummy variables to handle qualitative predictors is known as "one-hot encoding".

[^9]: ${ }^{11}$ Technically β_{0} is half the sum of the average debt for house owners and the average debt for non-house owners. Hence, β_{0} is exactly equal to the overall average only if the two groups have an equal number of members.

[^10]: ${ }^{12}$ There could still in theory be a difference between South and West, although the data here does not suggest any difference.

[^11]: ${ }^{1}$ When $p \gg n$, the least squares solution that has the smallest sum of squared coefficients can sometimes perform quite well. See Section 10.8 for a more detailed discussion.

[^12]: ${ }^{2}$ Though forward stepwise selection considers $p(p+1) / 2+1$ models, it performs a guided search over model space, and so the effective model space considered contains substantially more than $p(p+1) / 2+1$ models.

[^13]: ${ }^{3}$ Like forward stepwise selection, backward stepwise selection performs a guided search over model space, and so effectively considers substantially more than $1+p(p+1) / 2$ models.

[^14]: ${ }^{4}$ Mallow's C_{p} is sometimes defined as $C_{p}^{\prime}=\mathrm{RSS} / \hat{\sigma}^{2}+2 d-n$. This is equivalent to the definition given above in the sense that $C_{p}=\frac{1}{n} \hat{\sigma}^{2}\left(C_{p}^{\prime}+n\right)$, and so the model with smallest C_{p} also has smallest C_{p}^{\prime}.

[^15]: ${ }^{5}$ There are two formulas for AIC for least squares regression. The formula that we provide here requires an expression for σ^{2}, which we obtain using the full model containing all predictors. The second formula is appropriate when σ^{2} is unknown and we do not want to explicitly estimate it; that formula has a $\log (\mathrm{RSS})$ term instead of an RSS term. Detailed derivations of these two formulas are outside of the scope of this book.

[^16]: ${ }^{1}$ If $\hat{\mathbf{C}}$ is the 5×5 covariance matrix of the $\hat{\beta}_{j}$, and if $\ell_{0}^{T}=\left(1, x_{0}, x_{0}^{2}, x_{0}^{3}, x_{0}^{4}\right)$, then $\operatorname{Var}\left[\hat{f}\left(x_{0}\right)\right]=\ell_{0}^{T} \hat{\mathbf{C}} \ell_{0}$.

[^17]: ${ }^{2}$ We exclude $C_{0}(X)$ as a predictor in (7.5) because it is redundant with the intercept. This is similar to the fact that we need only two dummy variables to code a qualitative variable with three levels, provided that the model will contain an intercept. The decision to exclude $C_{0}(X)$ instead of some other $C_{k}(X)$ in (7.5) is arbitrary. Alternatively, we could include $C_{0}(X), C_{1}(X), \ldots, C_{K}(X)$, and exclude the intercept.

[^18]: ${ }^{3}$ This relates to Exercise 2 of Chapter 5.

[^19]: ${ }^{4}$ The null rate results from simply classifying each observation to the dominant class overall, which is in this case the normal class.

