Association Analysis Basic Concepts and Algorithms

INFO 523 - Lecture 8

Dr. Greg Chism

Definition

- Mining Frequent Itemsets (APRIORI)
- Concise Itemset Representation
- Alternative Methods to Find Frequent Itemsets
- Association Rule Generation
- Support Distribution
- Pattern Evaluation

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	ltems
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\begin{array}{l} \{Diaper\} \rightarrow \{Beer\},\\ \{Milk, Bread\} \rightarrow \{Eggs, Coke\},\\ \{Beer, Bread\} \rightarrow \{Milk\}, \end{array}$

Implication means cooccurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma({Milk, Bread, Diaper}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper})
 - = $\sigma(\{Milk, Bread, Diaper\}) / |T| = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID Items

- 1 Bread, Milk
- 2 Bread, Diaper, Beer, Eggs
- 3 Milk, Diaper, Beer, Coke
- 4 Bread, Milk, Diaper, Beer
- 5 Bread, Milk, Diaper, Coke

 $=\frac{\sigma(X)}{|T|}$ s(X)

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: $\{Milk, Bread\} \rightarrow \{Diaper\}$

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)} = \frac{s(X \cup Y)}{s(X)}$$

 $O(\Lambda)$

TID Items

1

- Bread, Milk
- 2 Bread, Diaper, Beer, Eggs
- 3 Milk, Diaper, Beer, Coke
- Bread, Milk, Diaper, Beer 4
- 5 Bread, Milk, Diaper, Coke

Example:

$$\{Milk, Bread\} \rightarrow \{Diaper\}$$

$$s = \frac{\sigma(\{Milk, Bread, Diaper\})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\{Milk, Bread, Diaper\})}{\sigma(\{Milk, Diaper\})} = \frac{2}{3} = 0.67$$

- Definition
- Mining Frequent Itemsets (APRIORI)
- Concise Itemset Representation
- Alternative Methods to Find Frequent Itemsets
- Association Rule Generation
- Support Distribution
- Pattern Evaluation

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ *minsup* threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - \Rightarrow Computationally prohibitive!

Mining Association Rules

TID Items

1 Bread, Milk

- 2 Bread, Diaper, Beer, Eggs
- 3 Milk, Diaper, Beer, Coke
- 4 Bread, Milk, Diaper, Beer
- 5 Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

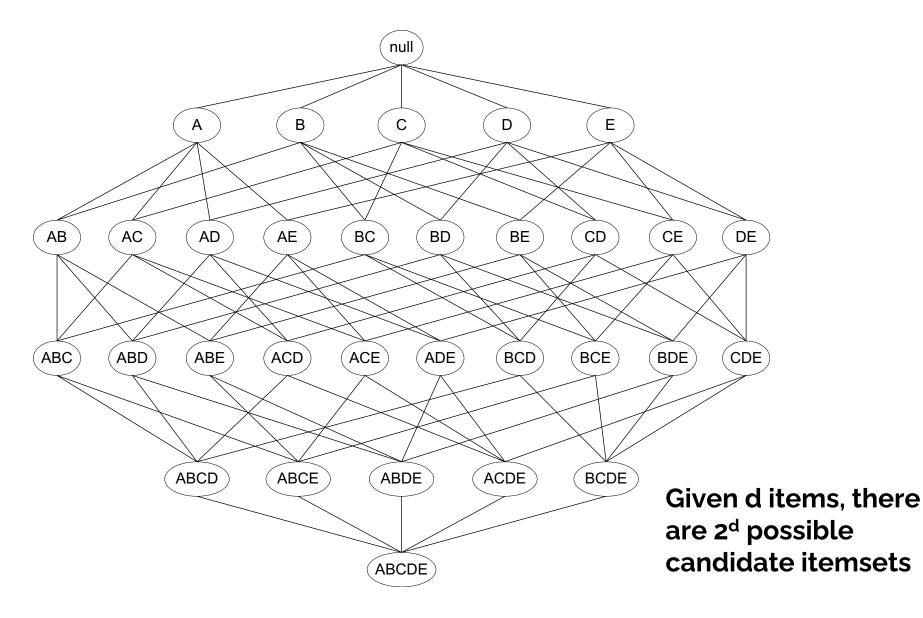
Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation



Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

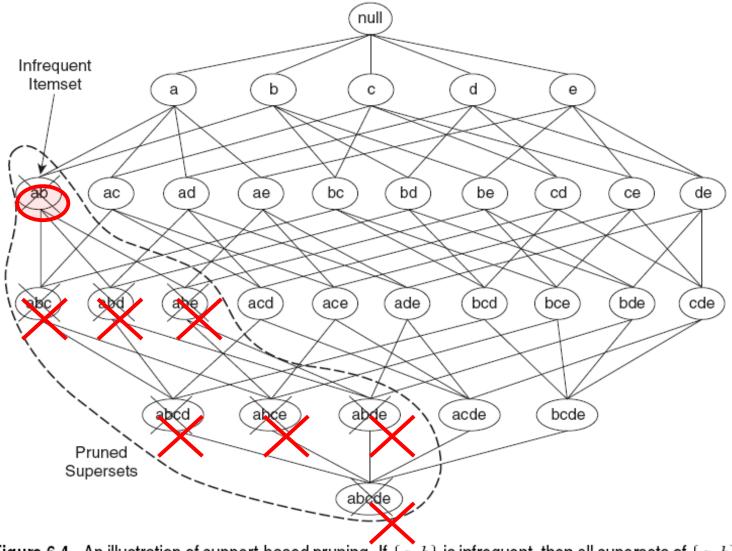
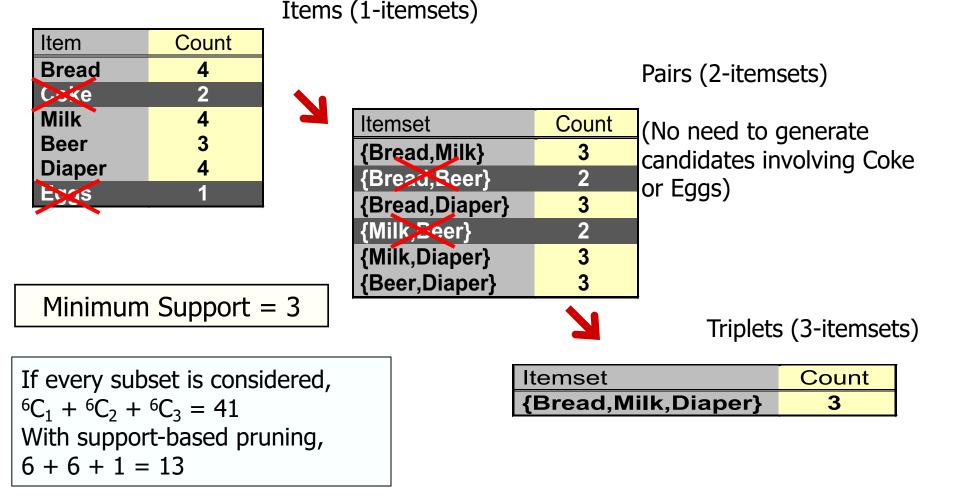


Figure 6.4. An illustration of support-based pruning. If $\{a, b\}$ is infrequent, then all supersets of $\{a, b\}$ are infrequent.

Illustrating Apriori Principle



Apriori Algorithm

- •Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

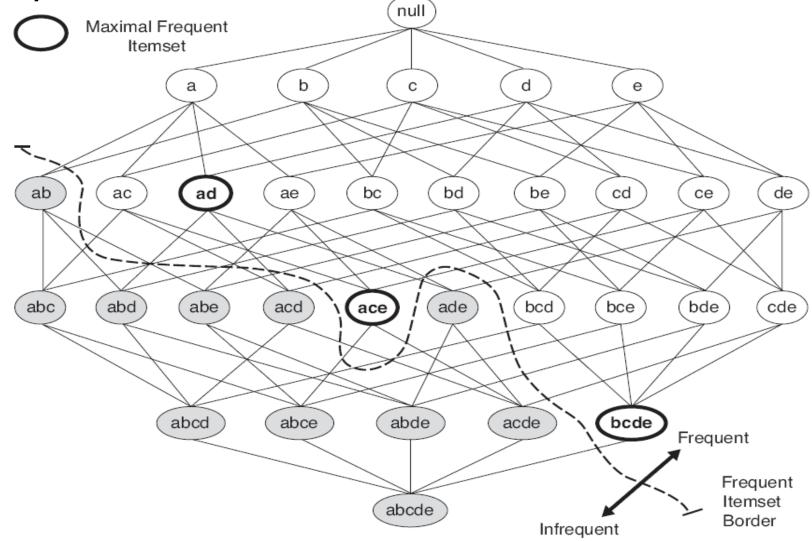
Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

- Definition
- Mining Frequent Itemsets (APRIORI)
- Concise Itemset Representation
- Alternative Methods to Find Frequent Itemsets
- Association Rule Generation
- Support Distribution
- Pattern Evaluation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent



Closed Itemset

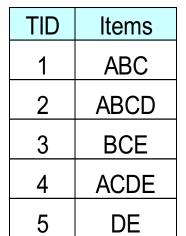
 An itemset is closed if none of its immediate supersets has the same support as the itemset (can only have smaller support -> see APRIORI principle)

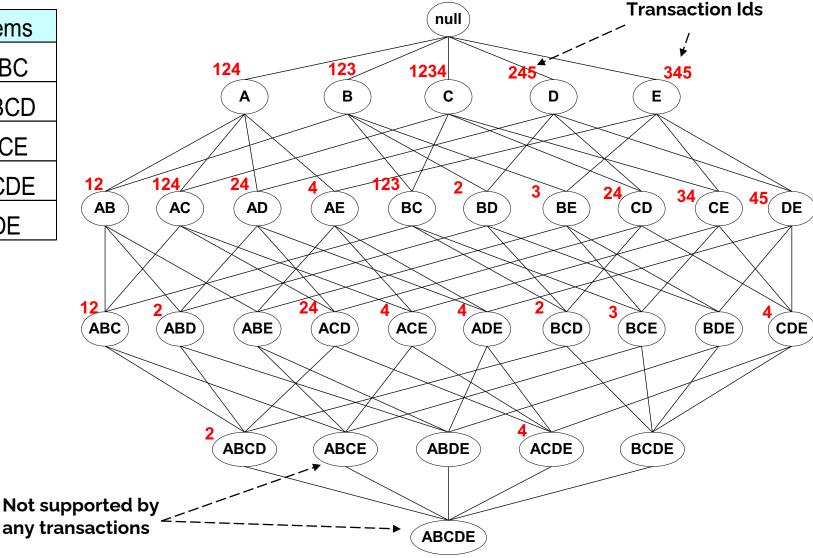
TID	Items	
1	{A,B}	
2	{B,C,D}	
3	{A,B,C,D}	
4	{A,B,D}	
5	$\{A,B,C,D\}$	

ltemset	Support	
{A}	4	
{B}	5	
{C}	3	
{D}	4	
{A,B}	4	
{A,C}	2	
{A,D}	3	
{B,C}	3	
{B,D}	4	
{C,D}	3	
{C,D}	3	

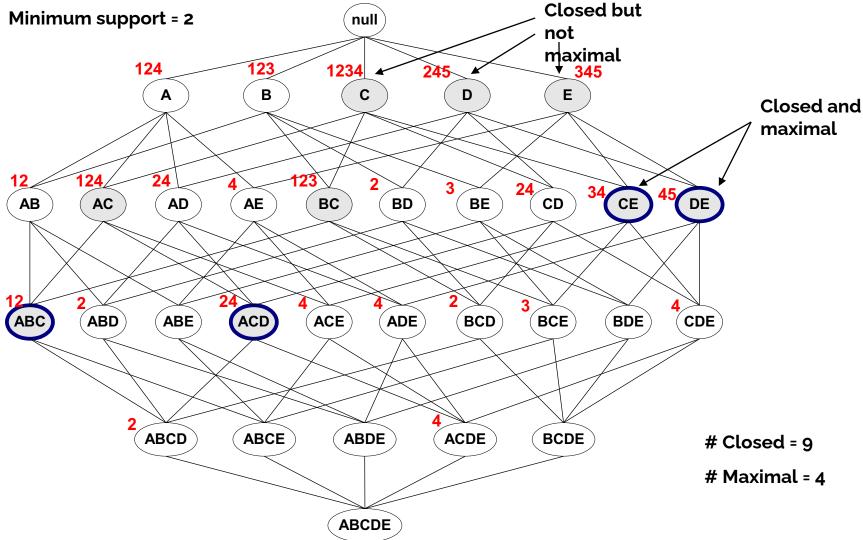
Itemset	Support	
{A,B,C}	2	
{A,B,D}	3	
{A,C,D}	2	
{B,C,D}	3	
{A,B,C,D}	2	

Maximal vs Closed Itemsets





Maximal vs Closed Frequent Itemsets



Maximal vs Closed Itemsets

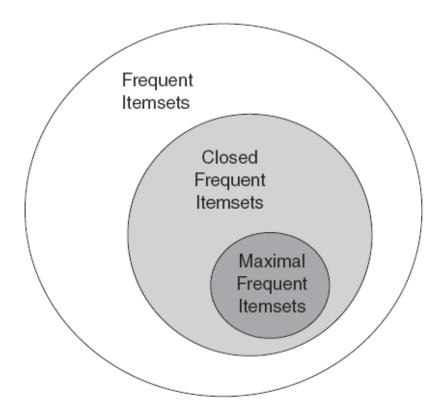
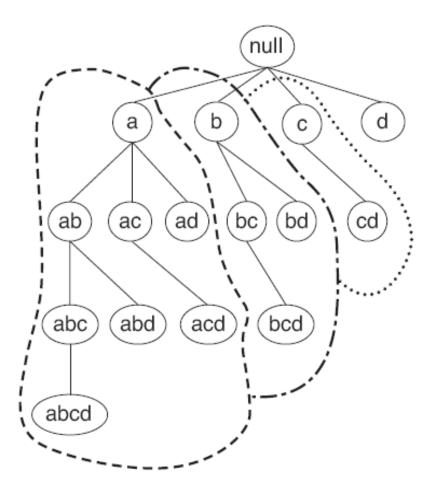


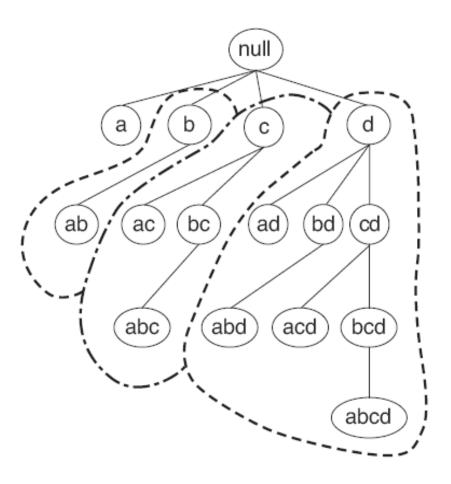
Figure 6.18. Relationships among frequent, maximal frequent, and closed frequent itemsets.

- Definition
- Mining Frequent Itemsets (APRIORI)
- Concise Itemset Representation
- Alternative Methods to Find Frequent Itemsets
- Association Rule Generation
- Support Distribution
- Pattern Evaluation

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
 - Equivalent Classes





(a) Prefix tree.

(b) Suffix tree.

Alternative Methods for Frequent Itemset Generation

•Representation of Database: horizontal vs vertical data layout

Horizontal Data Layout

TID	Items	
1	a,b,e	
2	b,c,d	
3	c,e	
4	a,c,d	
5	a,b,c,d	
6	a,e	
7	a,b	
8	a,b,c	
9	a,c,d	
10	b	

Vertical Data Layout

а	b	С	d	е
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

Alternative Algorithms

• FP-growth

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

ECLAT

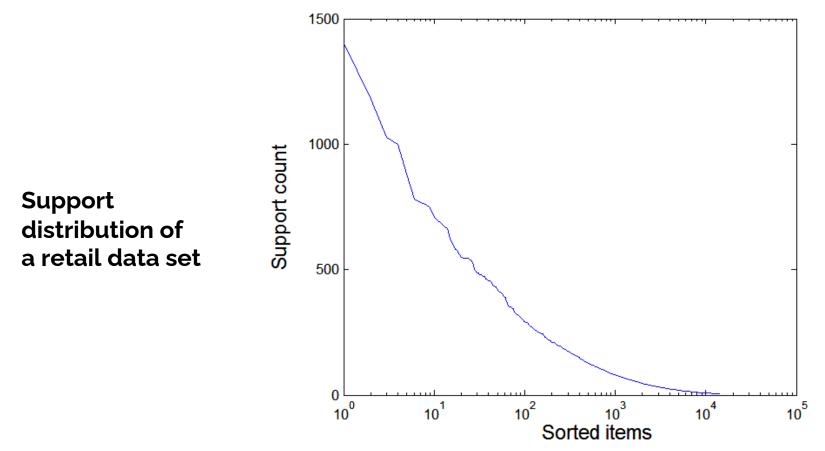
- Store transaction id-lists (vertical data layout).
- Performs fast tid-list intersection (bit-wise XOR) to count itemset frequencies

- Definition
- Mining Frequent Itemsets (APRIORI)
- Concise Itemset Representation
- Alternative Methods to Find Frequent Itemsets
- Association Rule Generation
- Support Distribution
- Pattern Evaluation

- Definition
- Mining Frequent Itemsets (APRIORI)
- Concise Itemset Representation
- Alternative Methods to Find Frequent Itemsets
- Association Rule Generation
- Support Distribution
- Pattern Evaluation

Effect of Support Distribution

Many real data sets have skewed support distribution



Effect of Support Distribution

- How to set the appropriate *minsup* threshold?
 - If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

- Definition
- Mining Frequent Itemsets (APRIORI)
- Concise Itemset Representation
- Alternative Methods to Find Frequent Itemsets
- Association Rule Generation
- Support Distribution
- Pattern Evaluation

Pattern Evaluation

- Association rule algorithms tend to produce too many rules. Many of them are
 - uninteresting or
 - redundant
- Interestingness measures can be used to prune/rank the derived patterns
- A rule {A,B,C} → {D} can be considered redundant if {A,B} → {D} has the same or higher confidence.

Applications for Association Rules

• Market Basket Analysis

Marketing & Retail. E.g., frequent itemsets give information about "other customer who bought this item also bought X"

Exploratory Data Analysis
 Find correlation in very large (= many transactions),
 high-dimensional (= many items) data

Intrusion Detection Rules with low support but very high lift

 Build Rule-based Classifiers Class association rules (CARs)