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CHAPTER

Pattern mining: basic concepts and
methods

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that appear frequently
in a data set. For example, a set of items, such as milk and bread, that appear frequently together in
a transaction data set is a frequent itemset. A subsequence, such as buying first a smartphone, then a
smart TV, and then a smart home device, if it occurs frequently in a shopping history database, is a
(frequent) sequential pattern. A substructure can refer to different structural forms, such as subgraphs,
subtrees, or sublattices. If a substructure occurs frequently, it is called a (frequent) structured pattern.
Finding frequent patterns plays an essential role in mining associations, correlations, and many other
interesting relationships among data. Moreover, it helps in data classification, clustering, and other data
mining tasks. Thus, frequent pattern mining has become an important data mining task and a focused
theme in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, associations, and correla-
tions (Section 4.1) and study how they can be mined efficiently (Section 4.2). We also discuss how
to judge whether the patterns found are interesting (Section 4.3). In the subsequent chapter, we extend
our discussion to advanced frequent pattern mining, including mining more complex forms of frequent
patterns, and their applications.

4.1 Basic concepts
Frequent pattern mining uncovers recurring relationships in a given data set. This section introduces the
basic concepts of frequent pattern mining for the discovery of interesting associations and correlations
between itemsets in transactional and relational databases. We begin in Section 4.1.1 by presenting an
example of market basket analysis, the earliest form of frequent pattern mining for association rules.
The basic concepts of mining frequent patterns and associations are discussed in Section 4.1.2.

4.1.1 Market basket analysis: a motivating example
A set of items is referred to as an itemset.1 Frequent itemset mining leads to the discovery of associa-
tions and correlations among items in large transactional or relational data sets. With massive amounts
of data continuously being collected and stored, many industries are interested in mining such pat-
terns from their databases. The discovery of interesting correlation relationships among huge amounts

1 In the data mining research literature, “itemset” is more commonly used than “item set.”
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FIGURE 4.1

Market basket analysis.

of business transaction records can help in many business decision-making processes such as catalog
design, cross-marketing, and customer shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. This process analyzes
customer buying habits by finding associations between the different items that customers place in their
“shopping baskets” (Fig. 4.1). The discovery of these associations can help retailers develop marketing
strategies by gaining insight into which items are frequently purchased together by customers. For
instance, if customers are buying milk, how likely are they to also buy bread (and what kind of bread)
on the same trip to the supermarket? This information can lead to increased sales, revenue, and customer
acquisition by helping retailers do selective marketing and planned shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 4.1. Market basket analysis. Suppose, as manager of a retail company, you would like to
learn more about the buying habits of your customers. Specifically, you wonder, “Which groups or sets
of items are customers likely to purchase on a given trip to the store?” To answer your question, market
basket analysis may be performed on the retail data of customer transactions at your store. You can
then use these results to choose marketing strategies and help create a new catalog. For instance, market
basket analysis may help you design different store layouts. In one strategy, items that are frequently
purchased together can be placed in proximity to further encourage the combined sale of such items. If
customers who purchase computers also tend to buy antivirus software at the same time, then placing
the hardware display close to the software display may help increase the sales of both items.

In an alternative strategy, placing hardware and software at opposite ends of the store may entice
customers who purchase such items to pick up other items along the way. For instance, after deciding
on an expensive computer, a customer may observe security systems for sale while heading toward the
software display to purchase antivirus software and may decide to purchase a home security system as
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well. Market basket analysis can also help retailers plan which items to put on sale at reduced prices. If
customers tend to purchase computers and printers together, then reducing the prices on printers may
encourage the sale of printers as well as computers.

If we think of the universe as the set of items available at the store, then each item has a Boolean
variable representing the presence or absence of that item. Each basket can then be represented by a
Boolean vector of values assigned to these variables. The Boolean vectors can be analyzed to extract
buying patterns that reflect items that are frequently associated or purchased together. These patterns
can be represented in the form of association rules. For example, the information that customers who
purchase computers also tend to buy antivirus software at the same time is represented in the following
association rule:

computer ⇒ antivirus_software [support = 2%, confidence = 60%]. (4.1)

Rule support and confidence are two measures of rule interestingness. They reflect the usefulness
and certainty of discovered rules, respectively. A support of 2% for Rule (4.1) means that 2% of all the
transactions under analysis show that computer and antivirus software are purchased together. A con-
fidence of 60% means that 60% of the customers who purchased a computer also bought the software.
Typically, association rules are considered interesting if they satisfy a minimum support threshold
and a minimum confidence threshold. These thresholds can be set by users or domain experts. Ad-
ditional analysis can be performed to discover interesting statistical correlations between associated
items.

4.1.2 Frequent itemsets, closed itemsets, and association rules
Let I = {I1, I2, . . . , Im} be an itemset. Let D, the task-relevant data, be a set of database transactions
where each transaction T is a nonempty itemset such that T ⊆ I. Each transaction is associated with
an identifier, called a TID. Let A be a set of items. A transaction T is said to contain A if A ⊆ T .
An association rule is an implication of the form A ⇒ B, where A ⊂ I, B ⊂ I, A $= ∅, B $= ∅, and
A ∩ B = φ. The rule A ⇒ B holds in the transaction set D with support s, where s is the percentage
of transactions in D that contain A ∪ B (i.e., the union of sets A and B say, or, both A and B). This
is taken to be the probability, P(A ∪ B).2 The rule A ⇒ B has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that also contain B. This is taken to be the
conditional probability, P(B|A). That is,

support (A⇒B) =P(A ∪ B) (4.2)

confidence (A⇒B) =P(B|A). (4.3)

Rules that satisfy both a minimum support threshold (min_sup) and a minimum confidence threshold
(min_conf ) are called strong. By convention, support and confidence values are represented as percent-
ages.

2 Notice that the notation P(A ∪ B) indicates the probability that a transaction contains the union of sets A and B (i.e., it contains
every item in A and B). This should not be confused with P(A or B), which indicates the probability that a transaction contains
either A or B.
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An itemset that contains k items is a k-itemset. The set {computer, antivirus_software} is a 2-
itemset. The occurrence frequency of an itemset is the number of transactions that contain the itemset.
Occurrence frequency is also referred as the frequency, support count, or count of the itemset. Note
that the itemset support defined in Eq. (4.2) is sometimes referred to as relative support, whereas the
occurrence frequency is called the absolute support. If the relative support of an itemset I satisfies a
prespecified minimum support threshold (i.e., the absolute support of I satisfies the corresponding
minimum support count threshold), then I is a frequent itemset.3 The set of frequent k-itemsets is
commonly denoted by Lk .4

From Eq. (4.3), we have

confidence (A⇒B) = P(B|A) = support (A ∪ B)

support (A)
= support_count (A ∪ B)

support_count (A)
. (4.4)

Eq. (4.4) shows that the confidence of rule A ⇒ B can be easily derived from the support counts of
A and A ∪ B. That is, once the support counts of A, B, and A ∪ B are found, it is straightforward to
derive the corresponding association rules A ⇒ B and B ⇒ A and check whether they are strong. Thus
the problem of mining association rules can be reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets. By definition, each of these itemsets will occur at least as frequently as
a predetermined minimum support count, min_sup.

2. Generate strong association rules from the frequent itemsets. By definition, these rules must
satisfy minimum support and minimum confidence.

Additional interestingness measures that can be applied for the discovery of correlation relation-
ships between associated items will be discussed in Section 4.3. The overall performance of mining
association rules is determined by the first step since the second step is much less costly than the first.

A major challenge in mining frequent itemsets from a large data set is the fact that such mining often
generates a huge number of itemsets satisfying the minimum support (min_sup) threshold, especially
when min_sup is set low. This is because if an itemset is frequent, each of its subsets is frequent as
well. A long itemset will contain a combinatorial number of shorter frequent subitemsets. For example,
a frequent itemset of length 100, such as {a1, a2, . . . , a100}, contains

(100
1

)
= 100 frequent 1-itemsets:

{a1}, {a2}, . . . , {a100};
(100

2

)
frequent 2-itemsets: {a1, a2}, {a1, a3}, {a1, a4}, . . . , {a2, a3}, {a2, a4}, . . . ,

{a99, a100}; and so on. The total number of frequent itemsets that it contains is thus
(

100
1

)
+

(
100
2

)
+ · · · +

(
100
100

)
= 2100 − 1 ≈ 1.27 × 1030. (4.5)

This is too huge a number of itemsets for any computer to compute or store. To overcome this difficulty,
we introduce the concepts of closed frequent itemset and maximal frequent itemset.

3 In early work, itemsets satisfying minimum support were referred to as large. This term, however, is somewhat confusing as it
has connotations of the number of items in an itemset rather than the frequency of occurrence of the set. Hence, we use the more
recent term frequent.
4 Although the term frequent is preferred over large, for historic reasons frequent k-itemsets are still denoted as Lk .
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An itemset X is closed in a data set D if there exists no proper superitemset Y 5 such that Y has the
same support count as X in D. An itemset X is a closed frequent itemset in set D if X is both closed
and frequent in D. An itemset X is a maximal frequent itemset (or max-itemset) in a data set D if X

is frequent, and there exists no superitemset Y such that X ⊂ Y and Y is frequent in D.
Let C be the set of closed frequent itemsets for a data set D satisfying a minimum support threshold,

min_sup. Let M be the set of maximal frequent itemsets for D satisfying min_sup. Suppose that we
have the support count of each itemset in C and M. Notice that C and its count information can be used
to derive the whole set of frequent itemsets. Thus we say that C contains complete information regarding
its corresponding frequent itemsets. On the other hand, M registers only the support of the maximal
itemsets. It usually does not contain the complete support information regarding its corresponding
frequent itemsets. We illustrate these concepts with Example 4.2.

Example 4.2. Closed and maximal frequent itemsets. Suppose that a transaction database has
only two transactions: {〈a1, a2, . . . , a100〉; 〈a1, a2, . . . , a50〉}. Let the minimum support count thresh-
old be min_sup = 1. We find two closed frequent itemsets and their support counts, that is, C =
{{a1, a2, . . . , a100} : 1; {a1, a2, . . . , a50} : 2}. There is only one maximal frequent itemset: M =
{{a1, a2, . . . , a100} : 1}. Notice that we cannot include {a1, a2, . . . , a50} as a maximal frequent item-
set because it has a frequent superset, {a1, a2, . . . , a100}. Compare this to the preceding where we
determined that there are 2100 − 1 frequent itemsets, which are too many to be enumerated!

The set of closed frequent itemsets contains complete information regarding the frequent itemsets.
For example, from C, we can derive, say, (1) {a2, a45 : 2} since {a2, a45} is a subitemset of the itemset
{a1, a2, . . . , a50 : 2}; and (2) {a8, a55 : 1} since {a8, a55} is not a subitemset of the previous itemset but
of the itemset {a1, a2, . . . , a100 : 1}. However, from the maximal frequent itemset, we can only assert
that both itemsets ({a2, a45} and {a8, a55}) are frequent, but we cannot assert their actual support
counts.

4.2 Frequent itemset mining methods
In this section, you will learn methods for mining the simplest form of frequent patterns such as those
discussed for market basket analysis in Section 4.1.1. We begin by presenting Apriori, the basic algo-
rithm for finding frequent itemsets in Section 4.2.1. In Section 4.2.2, we look at how to generate strong
association rules from frequent itemsets. Section 4.2.3 describes several variations to the Apriori algo-
rithm for improved efficiency and scalability. Section 4.2.4 presents pattern-growth methods for mining
frequent itemsets that confine the subsequent search space to only the data sets containing the current
frequent itemsets. Section 4.2.5 presents methods for mining frequent itemsets that take advantage of
the vertical data format.

5 Y is a proper superitemset of X if X is a proper subitemset of Y , that is, if X ⊂ Y . In other words, every item of X is contained
in Y , but there is at least one item of Y that is not in X.
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4.2.1 Apriori algorithm: finding frequent itemsets by confined candidate
generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent
itemsets for Boolean association rules [AS94b]. The name of the algorithm is based on the fact that the
algorithm uses prior knowledge of frequent itemset properties, as we shall see later. Apriori employs an
iterative approach known as a level-wise search, where k-itemsets are used to explore (k + 1)-itemsets.
First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each
item, and collecting those items that satisfy minimum support. The resulting set is denoted by L1. Next,
L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and so on, until no more
frequent k-itemsets can be found. The finding of each Lk requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an important property
called the Apriori property is used to reduce the search space.

Apriori property: all nonempty subsets of a frequent itemset must also be frequent.

The Apriori property is based on the following observation. By definition, if an itemset I does not
satisfy the minimum support threshold, min_sup, then I is not frequent, that is, P(I) < min_sup. If an
item A is added to the itemset I , then the resulting itemset (i.e., I ∪ A) cannot occur more frequently
than I . Therefore I ∪ A is not frequent either, that is, P(I ∪ A) < min_sup.

This property belongs to a special category of properties called antimonotonicity in the sense that
if a set cannot pass a test, all of its supersets will fail the same test as well. It is called antimonotonicity
because the property is monotonic in the context of failing a test.

“How is the Apriori property used in the algorithm?” To understand this, let us look at how Lk−1
is used to find Lk for k ≥ 2. A two-step process is followed, consisting of join and prune actions.

1. The join step. To find Lk , a set of candidate k-itemsets is generated by joining Lk−1 with itself.
This set of candidates is denoted Ck . Let l1 and l2 be itemsets in Lk−1. The notation li[j ] refers to the
j th item in li (e.g., l1[k − 2] refers to the second to the last item in l1). For efficient implementation,
Apriori assumes that items within a transaction or itemset are sorted in lexicographic order. For
the (k − 1)-itemset, li , this means that the items are sorted such that li[1] < li[2] < · · · < li[k − 1].
The join, Lk−1 !" Lk−1, is performed, where members of Lk−1 are joinable if their first (k − 2)

items are in common. That is, members l1 and l2 of Lk−1 are joined if (l1[1] = l2[1]) ∧ (l1[2] =
l2[2]) ∧ · · · ∧ (l1[k − 2] = l2[k − 2]) ∧(l1[k − 1] < l2[k − 1]). The condition l1[k − 1] < l2[k − 1]
simply ensures that no duplicates are generated. The resulting itemset formed by joining l1 and l2 is
{l1[1], l1[2], . . . , l1[k − 2], l1[k − 1], l2[k − 1]}.

2. The prune step. Ck is a superset of Lk , that is, its members may or may not be frequent, but all of
the frequent k-itemsets are included in Ck . A database scan to determine the count of each candidate
in Ck would result in the determination of Lk (i.e., all candidates having a count no less than the
minimum support count are frequent by definition and therefore belong to Lk). Ck , however, can be
huge, and so this could involve heavy computation. To reduce the size of Ck , the Apriori property is
used as follows. Any (k − 1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.
Hence, if any (k − 1)-subset of a candidate k-itemset is not in Lk−1, then the candidate cannot
be frequent either and so can be removed from Ck . This subset testing can be done quickly by
maintaining a hash tree of all frequent itemsets.
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Example 4.3. Apriori. Let’s look at a concrete example, based on the transaction database, D, of
Table 4.1. There are nine transactions in this database, that is, |D| = 9. We use Fig. 4.2 to illustrate the
Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets, C1.
The algorithm simply scans all of the transactions to count the number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min_sup = 2. (Here, we are referring
to absolute support because we are using a support count. The corresponding relative support is
2/9 = 22%.) The set of frequent 1-itemsets, L1, can then be determined. It consists of the candidate
1-itemsets satisfying minimum support. In our example, all of the candidates in C1 satisfy minimum
support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 !" L1 to generate
a candidate set of 2-itemsets, C2.6 C2 consists of

(|L1|
2

)
2-itemsets. Note that no candidates are

removed from C2 during the prune step because each subset of the candidates is also frequent.
4. Next, the transactions in D are scanned and the support count of each candidate itemset in C2 is

accumulated, as shown in the middle table of the second row in Fig. 4.2.
5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate 2-itemsets in

C2 having minimum support.
6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Fig. 4.3. From the join step,

we first get C3 = L2 !" L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4,
I5}}. Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we
can determine that the four latter candidates cannot possibly be frequent. We therefore remove them
from C3, thereby saving the effort of unnecessarily obtaining their counts during the subsequent
scan of D to determine L3. Note that when given a candidate k-itemset, we only need to check if
its (k − 1)-subsets are frequent since the Apriori algorithm uses a level-wise search strategy. The
resulting pruned version of C3 is shown in the first table of the bottom row of Fig. 4.2.

7. The transactions in D are scanned to determine L3, consisting of those candidate 3-itemsets in C3
having minimum support (Fig. 4.2).

Table 4.1 A transac-
tional data set.
TID List of item_IDs
T100 I1, I2, I5
T200 I2, I4
T300 I2, I3
T400 I1, I2, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I1, I2, I3, I5
T900 I1, I2, I3

6 L1 !" L1 is equivalent to L1 × L1, since the definition of Lk !" Lk requires the two joining itemsets to share k − 1 = 0 items.
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FIGURE 4.2

Generation of the candidate itemsets and frequent itemsets, where the minimum support count is 2.

8. The algorithm uses L3 !" L3 to generate a candidate set of 4-itemsets, C4. Although the join results
in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset {I2, I3, I5} is not frequent.
Thus, C4 = φ, and the algorithm terminates, having found all of the frequent itemsets.

Fig. 4.4 shows pseudocode for the Apriori algorithm and its related procedures. Step 1 of Apriori
finds the frequent 1-itemsets, L1. In steps 2 through 10, Lk−1 is used to generate candidates Ck to find
Lk for k ≥ 2. The apriori_gen procedure generates the candidates and then uses the Apriori property
to eliminate those having a subset that is not frequent (step 3). Once all of the candidates have been
generated, the database is scanned (step 4). For each transaction, a subset function is used to find all
subsets of the transaction that are candidates (step 5), and the count for each of these candidates is
accumulated (steps 6 and 7). Finally, all the candidates satisfying the minimum support (step 9) form
the set of frequent itemsets, L (step 11). A procedure can then be called to generate association rules
from the frequent itemsets. Such a procedure is described in Section 4.2.2.
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a. Join: C3 = L2 !" L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}
!" {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}

= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.
b. Prune using the Apriori property: all nonempty subsets of a frequent itemset must also be frequent. Do any of the candidates

have a subset that is not frequent?

• The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item subsets of {I1, I2, I3} are members of
L2. Therefore, keep {I1, I2, I3} in C3.

• The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of {I1, I2, I5} are members of
L2. Therefore, keep {I1, I2, I5} in C3.

• The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not a member of L2, and so it is not
frequent. Therefore, remove {I1, I3, I5} from C3.

• The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a member of L2, and so it is not
frequent. Therefore, remove {I2, I3, I4} from C3.

• The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not a member of L2, and so it is not
frequent. Therefore, remove {I2, I3, I5} from C3.

• The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a member of L2, and so it is not
frequent. Therefore, remove {I2, I4, I5} from C3.

c. Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning.

FIGURE 4.3

Generation and pruning of candidate 3-itemsets, C3, from L2 using the Apriori property.

The apriori_gen procedure performs two kinds of actions, namely, join and prune, as described
before. In the join component, Lk−1 is joined with Lk−1 to generate potential candidates (steps 1–4).
The prune component (steps 5–7) employs the Apriori property to remove candidates that have a subset
that is not frequent. The test for infrequent subsets is shown in procedure has_infrequent_subset.

4.2.2 Generating association rules from frequent itemsets
Once the frequent itemsets from transactions in a database D have been found, it is straightforward
to generate strong association rules from them (where strong association rules satisfy both minimum
support and minimum confidence). This can be done using Eq. (4.4) for confidence, which we show
again here for completeness:

confidence (A ⇒ B) = P(B|A) = support_count (A ∪ B)

support_count (A)
.

The conditional probability is expressed in terms of itemset support count, where
support_count (A ∪ B) is the number of transactions containing the itemsets A ∪ B, and
support_count (A) is the number of transactions containing the itemset A. Based on this equation,
association rules can be generated as follows.

• For each frequent itemset l, generate all nonempty subsets of l.
• For every nonempty subset s of l, output the rule “s ⇒ (l − s)” if support_count (l)

support_count (s) ≥ min_conf, where
min_conf is the minimum confidence threshold.
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Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

Input:

• D, a database of transactions;
• min_sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

(1) L1 = find_frequent_1-itemsets(D);
(2) for (k = 2;Lk−1 $= φ;k++) {
(3) Ck = apriori_gen(Lk−1);
(4) for each transaction t ∈ D { // scan D for counts
(5) Ct = subset(Ck, t); // get the subsets of t that are candidates
(6) for each candidate c ∈ Ct

(7) c.count++;
(8) }
(9) Lk = {c ∈ Ck |c.count ≥ min_sup}
(10) }
(11) return L = ∪kLk ;

procedure apriori_gen(Lk−1:frequent (k − 1)-itemsets)
(1) for each itemset l1 ∈ Lk−1
(2) for each itemset l2 ∈ Lk−1
(3) if (l1[1] = l2[1]) ∧ (l1[2] = l2[2])

∧... ∧ (l1[k − 2] = l2[k − 2]) ∧ (l1[k − 1] < l2[k − 1]) then {
(4) c = l1 !" l2; // join step: generate candidates
(5) if has_infrequent_subset(c,Lk−1) then
(6) delete c; // prune step: remove unfruitful candidate
(7) else add c to Ck ;
(8) }
(9) return Ck ;

procedure has_infrequent_subset(c: candidate k-itemset;
Lk−1: frequent (k − 1)-itemsets); // use prior knowledge

(1) for each (k − 1)-subset s of c

(2) if s /∈ Lk−1 then
(3) return TRUE;
(4) return FALSE;

FIGURE 4.4

Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

Because the rules are generated from frequent itemsets, each one automatically satisfies the mini-
mum support. Frequent itemsets can be stored ahead of time in hash tables along with their counts so
that they can be accessed quickly.

Example 4.4. Generating association rules. Let’s try an example based on the transactional data
shown before in Table 4.1. The data contain frequent itemset X = {I1, I2, I5}. What are the association
rules that can be generated from X? The nonempty subsets of X are {I1, I2}, {I1, I5}, {I2, I5}, {I1},
{I2}, and {I5}. The resulting association rules are as shown below, each listed with its confidence:
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{I1, I2} ⇒ I5, confidence = 2/4 = 50%
{I1, I5} ⇒ I2, confidence = 2/2 = 100%
{I2, I5} ⇒ I1, confidence = 2/2 = 100%
I1 ⇒ {I2, I5}, confidence = 2/6 = 33%
I2 ⇒ {I1, I5}, confidence = 2/7 = 29%
I5 ⇒ {I1, I2}, confidence = 2/2 = 100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and last rules are
output, because these are the only ones generated that are strong. Note that, unlike conventional classi-
fication rules, association rules can contain more than one conjunct in the right side of the rule.

4.2.3 Improving the efficiency of Apriori
“How can we further improve the efficiency of Apriori-based mining?” Many variations of the Apriori
algorithm have been proposed that focus on improving the efficiency of the original algorithm. Several
of these variations are summarized as follows.

Hash-based technique (hashing itemsets into corresponding buckets). A hash-based technique can
be used to reduce the size of the candidate k-itemsets, Ck , for k > 1. For example, when scanning
each transaction (e.g., let t = {i1, i2, i4}) in the database to generate the frequent 1-itemsets, L1, we
can generate all the 2-itemsets for each transaction (e.g., three 2-itemsets {i1, i2}, {i1, i4}, and {i2, i4}
for transaction t), hash (i.e., map) them into the different buckets of a hash table structure, and
increase the corresponding bucket counts as shown in Fig. 4.5. A 2-itemset with a corresponding
bucket count in the hash table that is below the support threshold cannot be frequent and thus
should be removed from the candidate set. Such a hash-based technique may substantially reduce
the number of candidate k-itemsets examined (especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in future iterations). A trans-
action that does not contain any frequent k-itemsets cannot contain any frequent (k + 1)-itemsets.
Therefore such a transaction can be marked or removed from further consideration because subse-
quent database scans for j -itemsets, where j > k, will not need to consider such a transaction.

FIGURE 4.5

Hash table, H2, for candidate 2-itemsets. This hash table was generated by scanning Table 4.1’s transactions while
determining L1. If the minimum support count is, say, 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be fre-
quent and so they should not be included in C2.
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FIGURE 4.6

Mining by partitioning the data.

Partitioning (partitioning the data to find candidate itemsets). A partitioning technique can be used
that requires just two database scans to mine the frequent itemsets (Fig. 4.6). It consists of two
phases. In phase I, the algorithm divides the transactions of D into n nonoverlapping partitions.
If the minimum relative support threshold for transactions in D is min_sup, then the minimum
support count for a partition is min_sup × the number of transactions in that partition. For each
partition, all the local frequent itemsets (i.e., the itemsets frequent within the partition) are found.
A local frequent itemset may or may not be frequent with respect to the entire database, D. How-
ever, any itemset that is potentially frequent with respect to D must occur as a frequent itemset
in at least one of the partitions.7 Therefore all local frequent itemsets are candidate itemsets with
respect to D. The collection of frequent itemsets from all partitions forms the global candidate
itemsets with respect to D. In phase II, a second scan of D is conducted in which the actual support
of each candidate is assessed to determine the global frequent itemsets. Partition size and the num-
ber of partitions are set so that each partition can fit into main memory and therefore be read only
once in each phase.

Sampling (mining on a subset of the given data). The basic idea of the sampling approach is to pick
a random sample S of the given data D, and then search for frequent itemsets in S instead of D.
In this way, we trade off some degree of accuracy against efficiency. The S sample size is such
that the search for frequent itemsets in S can be done in main memory, and so only one scan of
the transactions in S is required overall. Because we are searching for frequent itemsets in S rather
than in D, it is possible that we will miss some of the global frequent itemsets.
To reduce this possibility, we use a lower support threshold than the minimum support to find the
frequent itemsets local to S (denoted LS). The rest of the database is then used to compute the
actual frequencies of each itemset in LS . A mechanism is used to determine whether all the global
frequent itemsets are included in LS . If LS actually contains all the frequent itemsets in D, then
only one scan of D is required. Otherwise, a second pass can be done to find the frequent itemsets
that were missed in the first pass. The sampling approach is especially beneficial when efficiency is
of utmost importance such as in computationally intensive applications that must be run frequently.

7 The proof of this property is left as an exercise (see Exercise 4.3d).
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Dynamic itemset counting (adding candidate itemsets at different points during a scan). A dynamic
itemset counting technique is proposed in which the database is partitioned into blocks marked
by start points. In this variation, new candidate itemsets can be added at any start point, unlike
in Apriori, which determines new candidate itemsets only after each complete database scan. The
technique uses the count-so-far as the lower bound of the actual count. If the count-so-far passes
the minimum support, the itemset is added into the frequent itemset collection and can be used to
generate longer candidates. This leads to fewer database scans than with Apriori for finding all the
frequent itemsets.

Other variations are discussed in the next chapter or left as exercises.

4.2.4 A pattern-growth approach for mining frequent itemsets
As we have seen, in many cases the Apriori candidate generate-and-test method significantly reduces
the size of candidate sets, leading to good performance gain. However, it can suffer from two nontrivial
costs.

• It may still need to generate a huge number of candidate sets. For example, if there are 104 frequent
1-itemsets, the Apriori algorithm will need to generate more than 107 candidate 2-itemsets.

• It may need to repeatedly scan the whole database and check a large set of candidates by pattern
matching. It is costly to go over each transaction in the database to determine the support of the
candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets without such a costly can-
didate generation process?” An interesting method in this attempt is called frequent pattern growth,
or simply FP-growth, which adopts a divide-and-conquer strategy as follows. First, it compresses the
database representing frequent items into a frequent pattern tree, or FP-tree, which retains the itemset
association information. It then divides the compressed database into a set of conditional databases (a
special kind of projected database), each associated with one itemset found so far, or “pattern fragment,”
and mines each database separately. For each “pattern fragment,” only its associated data sets need to
be examined. Therefore this approach may substantially reduce the size of the data sets to be searched,
along with the “growth” of patterns being examined. You will see how it works in Example 4.5.

Example 4.5. FP-growth (finding frequent itemsets without candidate generation). We reexamine
the mining of transaction database, D, of Table 4.1 in Example 4.3 using the frequent pattern growth
approach.

The first scan of the database is the same as Apriori, which derives the set of frequent items (1-
itemsets) and their support counts (frequencies). Let the minimum support count be 2. The set of
frequent items is sorted in the order of descending support count. This resulting set or list is denoted by
L. Thus, we have L = {{I2: 7}, {I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with “null.” Scan
database D a second time. The items in each transaction are processed in L order (i.e., sorted according
to descending support count), and a branch is created for each transaction. For example, the scan of
the first transaction, “T100: I1, I2, I5,” which contains three items (I2, I1, I5 in L order), leads to the
construction of the first branch of the tree with three nodes, 〈I2: 1〉, 〈I1: 1〉, and 〈I5: 1〉, where I2 is
linked as a child to the root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200,
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FIGURE 4.7

An FP-tree registers compressed frequent pattern information.

contains the items I2 and I4 in L order, which would result in a branch where I2 is linked to the root
and I4 is linked to I2. However, this branch would share a common prefix, I2, with the existing path
for T100. Therefore, we instead increment the count of the I2 node by 1, and create a new node, 〈I4:
1〉, which is linked as a child to 〈I2: 2〉. In general, when considering the branch to be added for a
transaction, the count of each node along a common prefix is incremented by 1, and nodes for the items
following the prefix are created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its occurrences
in the tree via a chain of node-links. The tree obtained after scanning all the transactions is shown in
Fig. 4.7 with the associated node-links. In this way, the problem of mining frequent patterns in databases
is transformed into that of mining the FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an initial suffix
pattern), construct its conditional pattern base (a “subdatabase,” which consists of the set of prefix
paths in the FP-tree cooccurring with the suffix pattern), then construct its (conditional) FP-tree, and
perform mining recursively on the tree. The pattern growth is achieved by the concatenation of the
suffix pattern with the frequent patterns generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 4.2 and detailed as follows.

• We first consider I5, which is the last item in L, rather than the first. The reason for starting at the
end of the list will become apparent as we explain the FP-tree mining process. I5 occurs in two
FP-tree branches of Fig. 4.7. (The occurrences of I5 can easily be found by following its chain of
node-links.) The paths formed by these branches are 〈I2, I1, I5: 1〉 and 〈I2, I1, I3, I5: 1〉. Therefore,
considering I5 as a suffix, its corresponding two prefix paths are 〈I2, I1: 1〉 and 〈I2, I1, I3: 1〉, which
form its conditional pattern base. Using this conditional pattern base as a transaction database, we
build an I5-conditional FP-tree, which contains only a single path, 〈I2: 2, I1: 2〉; I3 is not included
because its support count of 1 is less than the minimum support count. The single path generates all
the combinations of frequent patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.
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Table 4.2 Mining the FP-tree by creating conditional (sub-)pattern bases.

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated
I5 {{I2, I1: 1}, {I2, I1, I3: 1}} 〈I2: 2, I1: 2〉 {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4 {{I2, I1: 1}, {I2: 1}} 〈I2: 2〉 {I2, I4: 2}
I3 {{I2, I1: 2}, {I2: 2}, {I1: 2}} 〈I2: 4, I1: 2〉, 〈I1: 2〉 {I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1 {{I2: 4}} 〈I2: 4〉 {I2, I1: 4}

Algorithm: FP_growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

• D, a transaction database;
• min_sup, the minimum support count threshold.

Output: The complete set of frequent patterns.
Method:

1. The FP-tree is constructed in the following steps:
a. Scan the transaction database D once. Collect F , the set of frequent items, and their support counts. Sort F in support

count descending order as L, the list of frequent items.
b. Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the following.

Select and sort the frequent items in Trans according to the order of L. Let the sorted frequent item list in Trans be
[p|P ], where p is the first element and P is the remaining list. Call insert_tree([p|P ], T ), which is performed as
follows. If T has a child N such that N.item-name = p.item-name, then increment N ’s count by 1; else create a new
node N , and let its count be 1, its parent link be linked to T , and its node-link to the nodes with the same item-name via
the node-link structure. If P is nonempty, call insert_tree(P,N) recursively.

2. The FP-tree is mined by calling FP_growth(FP_tree,null), which is implemented as follows.

procedure FP_growth(Tree, α)
(1) if T ree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path P

(3) generate pattern β ∪ α with support_count = minimum support count of nodes in β;
(4) else for each ai in the header of T ree {
(5) generate pattern β = ai ∪ α with support_count = ai .support_count ;
(6) construct β’s conditional pattern base and then β’s conditional FP_tree T reeβ ;
(7) if T reeβ $= ∅ then
(8) call FP_growth(Treeβ ,β); }

FIGURE 4.8

FP-growth algorithm for discovering frequent itemsets without candidate generation.

• For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}}, which generates
a single-node conditional FP-tree, 〈I2: 2〉, and derives one frequent pattern, {I2, I4: 2}.

• Similar to the preceding analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2}, {I1: 2}}. Its
conditional FP-tree has two branches, 〈I2: 4, I1: 2〉 and 〈I1: 2〉, as shown in Fig. 4.9, which generates
the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}.

• Finally, I1’s conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one node,
〈I2: 4〉, which generates one frequent pattern, {I2, I1: 4}.

This mining process is summarized in Fig. 4.8.
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FIGURE 4.9

The conditional FP-tree associated with the conditional node I3.

The FP-growth method transforms the problem of finding long frequent patterns into searching for
shorter ones in much smaller conditional databases recursively and then concatenating the suffix. It
uses the least frequent items as a suffix, offering good selectivity. The method substantially reduces the
search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-based FP-tree.
An interesting alternative is to first partition the database into a set of projected databases and then
construct an FP-tree and mine it in each projected database. This process can be recursively applied to
any projected database if its FP-tree still cannot fit in main memory.

4.2.5 Mining frequent itemsets using the vertical data format
Both the Apriori and FP-growth methods mine frequent patterns from a set of transactions in TID-
itemset format (i.e., {T ID : itemset}), where TID is a transaction ID and itemset is the set of items
bought in transaction TID. This is known as the horizontal data format. Alternatively, data can be
presented in item-TID_set format (i.e., {item : T ID_set}), where item is an item name, and TID_set is
the set of transaction identifiers containing the item. This is known as the vertical data format.

In this subsection, we look at how frequent itemsets can also be mined efficiently using vertical data
format, which is the essence of the Eclat (Equivalence Class Transformation) algorithm.

Example 4.6. Mining frequent itemsets using the vertical data format. Consider the horizontal data
format of the transaction database, D, of Table 4.1 in Example 4.3. This can be transformed into the
vertical data format shown in Table 4.3 by scanning the data set once.

Table 4.3 The vertical data format of the trans-
action data set D of Table 4.1.
itemset TID_set
I1 {T100, T400, T500, T700, T800, T900}
I2 {T100, T200, T300, T400, T600, T800, T900}
I3 {T300, T500, T600, T700, T800, T900}
I4 {T200, T400}
I5 {T100, T800}
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Table 4.4 2-Itemsets in vertical
data format.
itemset TID_set
{I1, I2} {T100, T400, T800, T900}
{I1, I3} {T500, T700, T800, T900}
{I1, I4} {T400}
{I1, I5} {T100, T800}
{I2, I3} {T300, T600, T800, T900}
{I2, I4} {T200, T400}
{I2, I5} {T100, T800}
{I3, I5} {T800}

Table 4.5 3-Itemsets in
vertical data format.
itemset TID_set
{I1, I2, I3} {T800, T900}
{I1, I2, I5} {T100, T800}

Mining can be performed on this data set by intersecting the TID_sets of every pair of frequent
single items. The minimum support count is 2. Because every single item is frequent in Table 4.3, there
are 10 intersections performed in total, which lead to eight nonempty 2-itemsets, as shown in Table 4.4.
Notice that because the itemsets {I1, I4} and {I3, I5} each contain only one transaction, they do not
belong to the set of frequent 2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every one of its
2-itemset subsets is frequent. The candidate generation process here will generate only two 3-itemsets:
{I1, I2, I3} and {I1, I2, I5}. By intersecting the TID_sets of any two corresponding 2-itemsets of these
candidate 3-itemsets, it derives Table 4.5, where there are only two frequent 3-itemsets: {I1, I2, I3: 2}
and {I1, I2, I5: 2}.

Example 4.6 illustrates the process of mining frequent itemsets by exploring the vertical data format.
First, we transform the horizontally formatted data into the vertical format by scanning the data set
once. The support count of an itemset is simply the length of the TID_set of the itemset. Starting with
k = 1, the frequent k-itemsets can be used to construct the candidate (k + 1)-itemsets based on the
Apriori property. The computation is done by intersection of the TID_sets of the frequent k-itemsets to
compute the TID_sets of the corresponding (k + 1)-itemsets. This process repeats, with k incremented
by 1 each time, until no frequent itemsets or candidate itemsets can be found.

Besides taking advantage of the Apriori property in the generation of candidate (k + 1)-itemset
from frequent k-itemsets, another merit of this method is that there is no need to scan the database to
find the support of (k + 1)-itemsets (for k ≥ 1). This is because the TID_set of each k-itemset carries
the complete information required for counting such support. However, the TID_sets can be quite long,
taking substantial memory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID_sets, as well as the subsequent costs of intersec-
tions, we can use a technique called diffset, which keeps track of only the differences of the TID_sets of
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a (k + 1)-itemset and a corresponding k-itemset. For instance, in Example 4.6 we have {I1} = {T100,
T400, T500, T700, T800, T900} and {I1, I2} = {T100, T400, T800, T900}. The diffset between the
two is diffset({I1, I2}, {I1}) = {T500, T700}. Thus rather than recording the four TIDs that make up
the intersection of {I1} and {I2}, we can instead use diffset to record just two TIDs, indicating the
difference between {I1} and {I1, I2}. With such compressed bookkeeping, itemset frequency can still
be calculated correctly. Experiments show that in certain situations, such as when the data set contains
many dense and long patterns, this technique can substantially reduce the total cost of vertical format
mining of frequent itemsets.

4.2.6 Mining closed and max patterns
In Section 4.1.2 we saw how frequent itemset mining may generate a huge number of frequent itemsets,
especially when the min_sup threshold is set low or when there exist long patterns in the data set.
Example 4.2 showed that closed frequent itemsets8 can substantially reduce the number of patterns
generated in frequent itemset mining while preserving the complete information regarding the set of
frequent itemsets. That is, from the set of closed frequent itemsets, we can easily derive the set of
frequent itemsets and their support. Thus in practice, it is more desirable to mine the set of closed
frequent itemsets rather than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A naïve approach would be to first mine the complete
set of frequent itemsets and then remove every frequent itemset that is a proper subset of, and carries the
same support as, an existing frequent itemset. However, this is quite costly. As shown in Example 4.2,
this method would have to first derive 2100 − 1 frequent itemsets to obtain a length-100 frequent itemset,
all before it could begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there
exist only a very small number of closed frequent itemsets in Example 4.2’s data set.

A recommended methodology is to prune the search space as soon as we can identify the case of
closed itemsets during mining. For example, an itemset merging method is introduced as follows.

Itemset merging. If every transaction containing a frequent itemset X also contains an itemset Y but
not any proper superset of Y , then X ∪ Y forms a frequent closed itemset and there is no need to
search for any itemset containing X but no Y .

For example, in Table 4.2 of Example 4.5, the projected conditional database for prefix itemset
{I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each of its transactions contains
itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2, I1} can be merged with {I5} to
form the closed itemset {I5, I2, I1: 2}, and we do not need to mine for closed itemsets that contain
I5 but not {I2, I1}.

Many search space pruning and closure checking methods have been developed for mining frequent
closed itemsets. Moreover, because maximal frequent itemsets share many similarities with closed
frequent itemsets, many of the optimization techniques developed for mining closed itemset can be
extended to mining maximal frequent itemsets. Interested readers may like to dig deeper by studying
related research papers.

8 Remember that X is a closed frequent itemset in a data set S if there exists no proper superitemset Y such that Y has the same
support count as X in S, and X satisfies minimum support.
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4.3 Which patterns are interesting?—Pattern evaluation methods
Most association rule mining algorithms employ a support–confidence framework. Although minimum
support and confidence thresholds help weed out or exclude the exploration of a good number of unin-
teresting rules, many of the rules generated are still not interesting to many users. This is especially true
when mining at low support thresholds or mining for long patterns. This has been a major bottleneck
for successful application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting and mis-
leading (Section 4.3.1). We then discuss how the support–confidence framework can be supplemented
with additional interestingness measures based on correlation analysis (Section 4.3.2). Section 4.3.3
presents additional pattern evaluation measures. It then provides an overall comparison of all the mea-
sures discussed here. By the end, you will learn which pattern evaluation measures are most effective
for the discovery of only interesting rules.

4.3.1 Strong rules are not necessarily interesting
The interestingness of a rule can be assessed either subjectively or objectively. Ultimately, only the user
can judge if a given rule is interesting, and this judgment, being subjective, may differ from one user to
another. However, objective interestingness measures, based on the statistics “behind” the data, can be
used as one step toward the goal of weeding out uninteresting rules that would otherwise be presented
to the user.

“How can we tell which strong association rules are really interesting?” Let’s examine the follow-
ing example.

Example 4.7. A misleading “strong” association rule. Suppose we are interested in analyzing trans-
actions with respect to the purchase of computer games and videos. Let game refer to the transactions
containing computer games, and video refer to those containing videos. Of the 10,000 transactions an-
alyzed, the data show that 6000 of the customer transactions included computer games, whereas 7500
included videos, and 4000 included both computer games and videos. Suppose that a data mining pro-
gram for discovering association rules is run on the data, using a minimum support of, say, 30% and a
minimum confidence of 60%. The following association rule is discovered:

buys (X, “computer games”) ⇒ buys (X, “videos”)

[support = 40%, conf idence = 66%]. (4.6)

Rule (4.6) is a strong association rule and would therefore be reported, since its support value of
4000

10,000 = 40% and confidence value of 4000
6000 = 66% satisfy the minimum support and minimum confi-

dence thresholds, respectively. However, Rule (4.6) is misleading because the probability of purchasing
videos is 75%, which is even larger than 66%. In fact, computer games and videos are negatively as-
sociated because the purchase of one of these items actually decreases the likelihood of purchasing the
other. Without fully understanding this phenomenon, we could easily make unwise business decisions
based on Rule (4.6).

Example 4.7 also illustrates that the confidence of a rule A ⇒ B can be deceiving. It does not mea-
sure the real strength (or lack of strength) of the correlation and implication between A and B. Hence,
alternatives to the support–confidence framework can be useful in mining interesting data relationships.
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4.3.2 From association analysis to correlation analysis
As we have seen so far, the support and confidence measures are insufficient at filtering out uninteresting
association rules. To tackle this weakness, a correlation measure can be augmented to the support–
confidence framework for association rules. This leads to correlation rules of the form

A ⇒ B [support, confidence, correlation]. (4.7)

That is, a correlation rule is measured not only by its support and confidence but also by the correlation
between itemsets A and B. There are many different correlation measures for us to choose. In this
subsection, we study several correlation measures to determine which would be good for mining large
data sets.

Lift is a simple correlation measure that is given as follows. The occurrence of itemset A is inde-
pendent of the occurrence of itemset B if P(A ∪ B) = P(A)P (B); otherwise, itemsets A and B are
dependent and correlated. This definition can easily be extended to more than two itemsets. The lift
between the occurrence of A and B can be measured by computing

lift (A,B) = P(A ∪ B)

P (A)P (B)
. (4.8)

If the resulting value of Eq. (4.8) is less than 1, then the occurrence of A is negatively correlated
with the occurrence of B, meaning that the occurrence of one likely leads to the absence of the other
one. If the resulting value is greater than 1, then A and B are positively correlated, meaning that the
occurrence of one implies the occurrence of the other. If the resulting value is equal to 1, then A and B

are independent, and there is no correlation between them.
Eq. (4.8) is equivalent to P(B|A)/P (B), or conf (A ⇒ B)/P (B), which is also referred to as the

lift of the association (or correlation) rule A ⇒ B. In other words, it assesses the degree to which the
occurrence of one “lifts” the occurrence of the other. For example, if A corresponds to the sale of
computer games and B corresponds to the sale of videos, then given the current market conditions, the
sale of games is said to increase or “lift” the likelihood of the sale of videos by a factor of the value
returned by Eq. (4.8).

Let’s go back to the computer game and video data of Example 4.7.

Example 4.8. Correlation analysis using lift. To help filter out misleading “strong” associations of
the form A ⇒ B from the data of Example 4.7, we need to study how the two itemsets, A and B, are
correlated. Let game refer to the transactions of Example 4.7 that do not contain computer games, and
video refer to those that do not contain videos. The transactions can be summarized in a contingency
table, as shown in Table 4.6.

From the table, we can see that the probability of purchasing a computer game is P({game}) = 0.60,
the probability of purchasing a video is P({video}) = 0.75, and the probability of purchasing both is
P({game, video}) = 0.40. By Eq. (4.8), the lift of Rule (4.6) is P({game, video})/(P ({game}) ×
P({video})) = 0.40/(0.60 × 0.75) = 0.89. Because this value is less than 1, there is a negative corre-
lation between the occurrence of {game} and {video}. The numerator is the likelihood of a customer
purchasing both, whereas the denominator is what the likelihood would have been if the two purchases
were completely independent. Such a negative correlation cannot be identified by a support–confidence
framework.
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Table 4.6 2 × 2 contingency
table summarizing the trans-
actions with respect to game
and video purchases.

game game !row

video 4000 3500 7500

video 2000 500 2500
$col 6000 4000 10,000

Table 4.7 Table 4.6 contingency table,
now with the expected values.

game game !row

video 4000 (4500) 3500 (3000) 7500

video 2000 (1500) 500 (1000) 2500
$col 6000 4000 10,000

The second correlation measure that we study is the χ2 measure, which was introduced in Chapter 3
(Eq. (3.1)). To compute the χ2 value, we take the squared difference between the observed and expected
value for a slot (A and B pair) in the contingency table, divided by the expected value. This amount is
summed for all slots of the contingency table. Let’s perform a χ2 analysis of Example 4.8.

Example 4.9. Correlation analysis using χ2. To compute the correlation using χ2 analysis for nom-
inal data, we need the observed value and expected value (displayed in parenthesis) for each slot of the
contingency table, as shown in Table 4.7. From the table, we can compute the χ2 value as follows:

χ2 = $
(observed − expected)2

expected
= (4000 − 4500)2

4500
+ (3500 − 3000)2

3000

+ (2000 − 1500)2

1500
+ (500 − 1000)2

1000
= 555.6.

Because the χ2 value is greater than 1, and the observed value of the slot (game, video) = 4000, which
is less than the expected value of 4500, buying game and buying video are negatively correlated. This
is consistent with the conclusion derived from the analysis of the lift measure in Example 4.8.

4.3.3 A comparison of pattern evaluation measures
The above discussion shows that instead of using the simple support–confidence framework to evaluate
frequent patterns, other measures, such as lift and χ2, often disclose more intrinsic pattern relationships.
How effective are these measures? Should we also consider other alternatives?

Researchers have studied many pattern evaluation measures even before the start of in-depth re-
search on scalable methods for mining frequent patterns. In the data mining community, several other
pattern evaluation measures have attracted interest. In this subsection, we present four such measures:
all_confidence, max_confidence, Kulczynski, and cosine. Each of these four measures has an interesting
property: the value of each measure is only influenced by the supports of A, B, and A ∪ B, or more
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exactly, by the conditional probabilities of P(A|B) and P(B|A), but not by the total number of trans-
actions. Another common property is that each measure ranges from 0 to 1, and the higher the value,
the closer the relationship between A and B.

Given two itemsets, A and B, the all_confidence measure of A and B is defined as

all_conf (A,B) = sup(A ∪ B)

max {sup(A), sup(B)} = min {P(A|B),P (B|A)}, (4.9)

where max{sup(A), sup(B)} is the maximum support of the itemsets A and B. Thus all_conf (A,B) is
also the minimum confidence of the two association rules related to A and B, namely, “A ⇒ B” and
“B ⇒ A.”

Given two itemsets, A and B, the max_confidence measure of A and B is defined as

max_conf (A,B) = max{P(A |B),P (B |A)}. (4.10)

The max_conf measure is the maximum confidence of the two association rules, “A ⇒ B” and
“B ⇒ A.”

Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as Kulc) is defined
as

Kulc (A,B) = 1
2
(P (A|B) + P(B|A)). (4.11)

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be viewed as an average of
two confidence measures. That is, it is the average of two conditional probabilities: the probability of
itemset B given itemset A, and the probability of itemset A given itemset B.

Finally, given two itemsets, A and B, the cosine measure of A and B is defined as

cosine (A,B) = P(A ∪ B)√
P(A) × P(B)

= sup(A ∪ B)√
sup(A) × sup(B)

=
√

P(A|B) × P(B|A). (4.12)

The cosine measure can be viewed as a harmonized lift measure. The two formulae are similar except
that for cosine, the square root is taken on the product of the probabilities of A and B. This is an
important difference, however, because by taking the square root, the cosine value is only influenced
by the supports of A, B, and A ∪ B, and not by the total number of transactions.

Now, together with lift and χ2, we have introduced in total six pattern evaluation measures. You
may wonder, “Which is the best in assessing the discovered pattern relationships?” To answer this
question, we examine their performance on some typical data sets.

Example 4.10. Comparison of six pattern evaluation measures on typical data sets. The relation-
ships between the purchases of two items, milk and coffee, can be examined by summarizing their
purchase history in Table 4.8, a 2 × 2 contingency table, where an entry such as mc represents the
number of transactions containing both milk and coffee.
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Table 4.8 2 × 2 contingency
table for two items.

milk milk !row

coffee mc mc c

coffee mc mc c

$col m m $

Table 4.9 Comparison of six pattern evaluation measures using contingency tables for
a variety of data sets.

Data Set mc mc mc mc χ2 lift all_conf. max_conf. Kulc. cosine
D1 10,000 1000 1000 100,000 90,557 9.26 0.91 0.91 0.91 0.91
D2 10,000 1000 1000 100 0 1 0.91 0.91 0.91 0.91
D3 100 1000 1000 100,000 670 8.44 0.09 0.09 0.09 0.09
D4 1000 1000 1000 100,000 24,740 25.75 0.5 0.5 0.5 0.5
D5 1000 100 10,000 100,000 8173 9.18 0.09 0.91 0.5 0.29
D6 1000 10 100,000 100,000 965 1.97 0.01 0.99 0.5 0.10

Table 4.9 shows a set of transactional data sets with their corresponding contingency tables and the
associated values for each of the six evaluation measures. Let’s first examine the first four data sets,
D1 through D4. From the table, we see that m and c are positively associated in D1 and D2, negatively
associated in D3, and neutral in D4. For D1 and D2, m and c are positively associated because mc

(10,000) is considerably greater than mc (1000) and mc (1000). Intuitively, for people who bought milk
(m = 10,000 + 1000 = 11,000), it is very likely that they also bought coffee (mc/m = 10/11 = 91%),
and vice versa.

The results of the four newly introduced measures show that m and c are strongly positively associ-
ated in both data sets by producing a measure value of 0.91. However, lift and χ2 generate dramatically
different measure values for D1 and D2 due to their sensitivity to mc. In fact, in many real-world sce-
narios, mc is usually huge and unstable. For example, in a market basket database, the total number
of transactions could fluctuate on a daily basis and overwhelmingly exceed the number of transactions
containing any particular itemset. Therefore a good interestingness measure should not be affected by
transactions that do not contain the itemsets of interest; otherwise, it would generate unstable results,
as illustrated in D1 and D2.

Similarly, in D3, the four new measures correctly show that m and c are strongly negatively associ-
ated because the mc to c ratio equals the mc to m ratio, that is, 100/1100 = 9.1%. However, lift and χ2

both contradict this in an incorrect way: their values for D2 are between those for D1 and D3.
For data set D4, both lift and χ2 indicate a highly positive association between m and c, whereas

the others indicate a “neutral” association because the ratio of mc to mc equals the ratio of mc to mc,
which is 1. This means that if a customer buys coffee (or milk), the probability that he or she will also
purchase milk (or coffee) is exactly 50%.

“Why are lift and χ2 so poor at distinguishing pattern association relationships in the previous
transactional data sets?” To answer this, we have to consider the null-transactions. A null-transaction
is a transaction that does not contain any of the itemsets being examined. In our example, mc rep-
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resents the number of null-transactions. Lift and χ2 have difficulty distinguishing interesting pattern
association relationships because they are both strongly influenced by mc. Typically, the number of
null-transactions can outweigh the number of individual purchases because, for example, many people
may buy neither milk nor coffee. On the other hand, the other four measures are good indicators of
interesting pattern associations because their definitions remove the influence of mc (i.e., they are not
influenced by the number of null-transactions).

This discussion shows that it is highly desirable to have a measure that is independent of the
number of null-transactions. A measure is null-invariant if its value is free from the influence of
null-transactions. Null-invariance is an important property for measuring association patterns in large
transaction databases. Among the six discussed measures in this subsection, only lift and χ2 are not
null-invariant measures.

“Among the all_confidence, max_confidence, Kulczynski, and cosine measures, which is best at
indicating interesting pattern relationships?”

To answer this question, we introduce the imbalance ratio (IR), which assesses the imbalance of
two itemsets, A and B, in rule implications. It is defined as

IR(A,B) = |sup(A) − sup(B)|
sup(A) + sup(B) − sup(A ∪ B)

, (4.13)

where the numerator is the absolute value of the difference between the support of the itemsets A

and B, and the denominator is the number of transactions containing A or B. If the two directional
implications between A and B are the same, then IR(A,B) will be zero. Otherwise, the larger the
difference between the two, the larger the imbalance ratio. This ratio is independent of the number of
null-transactions and independent of the total number of transactions.

Let’s continue examining the remaining data sets in Example 4.10.

Example 4.11. Comparing null-invariant measures in pattern evaluation. Although the four mea-
sures introduced in this section are null-invariant, they may present dramatically different values on
some subtly different data sets. Let’s examine data sets D5 and D6, shown earlier in Table 4.9, where
the two events m and c have unbalanced conditional probabilities. That is, the ratio of mc to c is greater
than 0.9. This means that knowing that c occurs should strongly suggest that m occurs also. The ratio of
mc to m is less than 0.1, indicating that m implies that c is quite unlikely to occur. The all_confidence
and cosine measures view both cases as negatively associated and the Kulc measure views both as neu-
tral. The max_confidence measure claims strong positive associations for these cases. The measures
give very diverse results!

“Which measure intuitively reflects the true relationship between the purchase of milk and cof-
fee?” Actually, in this case, it is difficult to argue whether the two data sets have positive or negative
association. From one point of view, only mc/(mc + mc) = 1000/(1000 + 10,000) = 9.09% of milk-
related transactions contain coffee in D5, and this percentage is 1000/(1000 + 100,000) = 0.99% in
D6, both indicating a negative association. On the other hand, 90.9% of transactions in D5 (i.e.,
mc/(mc + mc) = 1000/(1000 + 100)) and 9% in D6 (i.e., 1000/(1000 + 10)) containing coffee con-
tain milk as well, which indicates a positive association between milk and coffee, a very different
conclusion.

In this case, it is fair to treat it as neutral, as Kulc does. In the meantime, it will be good to
also indicate its skewness using the imbalance ratio (IR). According to Eq. (4.13), for D4 we have
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IR(m, c) = 0, a perfectly balanced case; for D5, IR(m, c) = 0.89, a rather imbalanced case; whereas
for D6, IR(m, c) = 0.99, a very skewed case. Therefore the two measures, Kulc and IR, work together,
presenting a clear picture for all three data sets, D4 through D6.

In summary, the use of only support and confidence measures to mine associations may generate
a large number of rules, many of which can be uninteresting to users. Instead, we can augment the
support–confidence framework with a pattern interestingness measure, which helps focus the mining
toward rules with strong pattern relationships. The added measure substantially reduces the number
of rules generated and leads to the discovery of more meaningful rules. Besides those introduced in
this section, many other interestingness measures have been studied in the literature. Unfortunately,
most of them do not have the null-invariance property. Because large data sets typically have many
null-transactions, it is important to consider the null-invariance property when selecting appropriate
interestingness measures for pattern evaluation. Among the four null-invariant measures studied here,
namely all_confidence, max_confidence, Kulc, and cosine, we recommend using Kulc in conjunction
with the imbalance ratio.

4.4 Summary
• The discovery of frequent patterns, associations, and correlation relationships among huge amounts

of data is useful in selective marketing, decision analysis, and business management. A popular area
of application is market basket analysis, which studies customers’ buying habits by searching for
itemsets that are frequently purchased together (or in sequence).

• Association rule mining consists of first finding frequent itemsets (sets of items, such as A and
B, satisfying a minimum support threshold, or percentage of the task-relevant tuples), from which
strong association rules in the form of A ⇒ B are generated. These rules also satisfy a minimum
confidence threshold (a prespecified probability of satisfying B under the condition that A is satis-
fied). Associations can be further analyzed to uncover correlation rules, which convey statistical
correlations between itemsets A and B.

• Many efficient and scalable algorithms have been developed for frequent itemset mining, from
which association and correlation rules can be derived. These algorithms can be classified into three
categories: (1) Apriori-like algorithms, (2) frequent pattern growth–based algorithms such as FP-
growth, and (3) algorithms that use the vertical data format.

• The Apriori algorithm is a seminal algorithm for mining frequent itemsets for Boolean association
rules. It explores the level-wise mining Apriori property that all nonempty subsets of a frequent
itemset must also be frequent. At the kth iteration (for k ≥ 2), it forms frequent k-itemset candidates
based on the frequent (k − 1)-itemsets, and scans the database once to find the complete set of
frequent k-itemsets, Lk .
Variations involving hashing and transaction reduction can be used to make the procedure more
efficient. Other variations include partitioning the data (mining on each partition and then combining
the results) and sampling the data (mining on a data subset). These variations can reduce the number
of data scans required to as little as two or even one.

• Frequent pattern growth is a method of mining frequent itemsets without candidate generation.
It constructs a highly compact data structure (an FP-tree) to compress the original transaction
database. Rather than employing the generate-and-test strategy of Apriori-like methods, it focuses
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on frequent pattern (fragment) growth, which avoids costly candidate generation, resulting in greater
efficiency.

• Mining frequent itemsets using the vertical data format (Eclat) is a method that transforms a
given data set of transactions in the horizontal data format of TID-itemset into the vertical data
format of item-TID_set. It mines the transformed data set by TID_set intersections based on the
Apriori property and additional optimization techniques such as diffset.

• Not all strong association rules are interesting. Therefore, the support–confidence framework should
be augmented with a pattern evaluation measure, which promotes the mining of interesting rules.
A measure is null-invariant if its value is free from the influence of null-transactions (i.e., the
transactions that do not contain any of the itemsets being examined). Among many pattern eval-
uation measures, we examined lift, χ2, all_confidence, max_confidence, Kulczynski, and cosine,
and showed that only the latter four are null-invariant. We suggest using the Kulczynski measure,
together with the imbalance ratio, to present pattern relationships among itemsets.

4.5 Exercises
4.1. Suppose you have the set C of all frequent closed itemsets on a data set D, as well as the support

count for each frequent closed itemset. Describe an algorithm to determine whether a given
itemset X is frequent or not, and the support of X if it is frequent.

4.2. An itemset X is called a generator on a data set D if there does not exist a proper subitemset Y ⊂
X such that support (X) = support (Y ). A generator X is a frequent generator if support (X)

passes the minimum support threshold. Let G be the set of all frequent generators on a data set D.
a. Can you determine whether an itemset A is frequent and the support of A, if it is frequent,

using only G and the support counts of all frequent generators? If yes, present your algo-
rithm. Otherwise, what other information is needed? Can you give an algorithm assuming
the information needed is available?

b. What is the relationship between closed itemsets and generators?
4.3. The Apriori algorithm makes use of prior knowledge of subset support properties.

a. Prove that all nonempty subsets of a frequent itemset must also be frequent.
b. Prove that the support of any nonempty subset s′ of itemset s must be at least as great as the

support of s.
c. Given frequent itemset l and subset s of l, prove that the confidence of the rule “s′ ⇒

(l − s′)” cannot be more than the confidence of “s ⇒ (l − s),” where s′ is a subset of s.
d. A partitioning variation of Apriori subdivides the transactions of a database D into n

nonoverlapping partitions. Prove that any itemset that is frequent in D must be frequent
in at least one partition of D.

4.4. Let c be a candidate itemset in Ck generated by the Apriori algorithm. How many length-(k − 1)

subsets do we need to check in the prune step? Per your previous answer, can you give an
improved version of procedure has_infrequent_subset in Fig. 4.4?

4.5. Section 4.2.2 describes a method for generating association rules from frequent itemsets. Pro-
pose a more efficient method. Explain why it is more efficient than the one proposed there. (Hint:
consider incorporating the properties of Exercises 4.3(b), (c) into your design.)



4.5 Exercises 171

4.6. A database has five transactions. Let min_sup = 60% and min_conf = 80%.

TID items_bought
T100 {M, O, N, K, E, Y}
T200 {D, O, N, K, E, Y }
T300 {M, A, K, E}
T400 {M, U, C, K, Y}
T500 {C, O, O, K, I, E}

a. Find all frequent itemsets using Apriori and FP-growth, respectively. Compare the effi-
ciency of the two mining processes.

b. List all the strong association rules (with support s and confidence c) matching the follow-
ing metarule, where X is a variable representing customers, and itemi denotes variables
representing items (e.g., “A,” “B,”):

∀x ∈ transaction, buys(X, item1) ∧ buys(X, item2) ⇒ buys(X, item3) [s, c]

4.7. (Implementation project) Using a programming language that you are familiar with, such as
C++ or Java, implement three frequent itemset mining algorithms introduced in this chapter:
(1) Apriori [AS94b], (2) FP-growth [HPY00], and (3) Eclat [Zak00] (mining using the vertical
data format). Compare the performance of each algorithm with various kinds of large data sets.
Write a report to analyze the situations (e.g., data size, data distribution, minimal support thresh-
old setting, and pattern density) where one algorithm may perform better than the others, and
state why.

4.8. A database has four transactions. Let min_sup = 60% and min_conf = 80%.

cust_ID TID items_bought (in the form of brand-item_category)
01 T100 {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}
02 T200 {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread}
01 T300 {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}
03 T400 {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}

a. At the granularity of item_category (e.g., itemi could be “Milk”), for the rule template,

∀X ∈ transaction, buys(X, item1) ∧ buys(X, item2) ⇒ buys(X, item3) [s, c],

list the frequent k-itemset for the largest k, and all the strong association rules (with their
support s and confidence c) containing the frequent k-itemset for the largest k.

b. At the granularity of brand-item_category (e.g., itemi could be “Sunset-Milk”), for the rule
template,

∀X ∈ customer, buys(X, item1) ∧ buys(X, item2) ⇒ buys(X, item3),

list the frequent k-itemset for the largest k (but do not print any rules).
4.9. Suppose that a large store has a transactional database that is distributed among four locations.

Transactions in each component database have the same format, namely Tj : {i1, . . . , im}, where
Tj is a transaction identifier, and ik (1 ≤ k ≤ m) is the identifier of an item purchased in the trans-
action. Propose an efficient algorithm to mine global association rules. Your algorithm should not
require shipping all the data to one site and should not cause excessive network communication
overhead.
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4.10. Suppose that frequent itemsets are saved for a large transactional database, DB. Discuss how to
efficiently mine the (global) association rules under the same minimum support threshold, if a
set of new transactions, denoted as &DB, is (incrementally) added in?

4.11. Most frequent pattern mining algorithms consider only distinct items in a transaction. However,
multiple occurrences of an item in the same shopping basket, such as four cakes and three jugs
of milk, can be important in transactional data analysis. How can one mine frequent itemsets
efficiently considering multiple occurrences of items? Propose modifications to the well-known
algorithms, such as Apriori and FP-growth, to adapt to such a situation.

4.12. (Implementation project) Many techniques have been proposed to further improve the per-
formance of frequent itemset mining algorithms. Taking FP-tree–based frequent pattern growth
algorithms (e.g., FP-growth) as an example, implement one of the following optimization tech-
niques. Compare the performance of your new implementation with the unoptimized version.
a. The frequent pattern mining method of Section 4.2.4 uses an FP-tree to generate conditional

pattern bases using a bottom-up projection technique (i.e., project onto the prefix path of
an item p). However, one can develop a top-down projection technique, that is, project
onto the suffix path of an item p in the generation of a conditional pattern base. Design
and implement such a top-down FP-tree mining method. Compare its performance with the
bottom-up projection method.

b. Nodes and pointers are used uniformly in an FP-tree in the FP-growth algorithm design.
However, such a structure may consume a lot of space when the data are sparse. One possi-
ble alternative design is to explore array- and pointer-based hybrid implementation, where
a node may store multiple items when it contains no splitting point to multiple subbranches.
Develop such an implementation and compare it with the original one.

c. It is time and space consuming to generate numerous conditional pattern bases during
pattern-growth mining. An interesting alternative is to push right the branches that have
been mined for a particular item p, that is, to push them to the remaining branch(es) of
the FP-tree. This is done so that fewer conditional pattern bases have to be generated and
additional sharing can be explored when mining the remaining FP-tree branches. Design
and implement such a method and conduct a performance study on it.

4.13. Give a short example to show that items in a strong association rule actually may be negatively
correlated.

4.14. The following contingency table summarizes supermarket transaction data, where hot dogs refers
to the transactions containing hot dogs, hot dogs refers to the transactions that do not contain
hot dogs, hamburgers refers to the transactions containing hamburgers, and hamburgers refers
to the transactions that do not contain hamburgers.

hotdogs hot dogs !row

hamburgers 2000 500 2500

hamburgers 1000 1500 2500
$col 3000 2000 5000

a. Suppose that the association rule “hot dogs ⇒ hamburgers” is mined. Given a minimum
support threshold of 25% and a minimum confidence threshold of 50%, is this association
rule strong?
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b. Based on the given data, is the purchase of hot dogs independent of the purchase of ham-
burgers? If not, what kind of correlation relationship exists between the two?

c. Compare the use of the all_confidence, max_confidence, Kulczynski, and cosine measures
with lift and correlation on the given data.

4.15. (Implementation project) The DBLP data set (https:/ /dblp.uni-trier.de/xml/ ) consists of over
three million entries of research papers published in computer science conferences and journals.
Among these entries, there are a good number of authors that have coauthor relationships.
a. Propose a method to efficiently mine a set of coauthor relationships that are closely corre-

lated (e.g., often coauthoring papers together).
b. Based on the mining results and the pattern evaluation measures discussed in this chapter,

discuss which measure may convincingly uncover close collaboration patterns better than
others.

c. Based on the study in (a), develop a method that can roughly predict advisor and advisee
relationships and the approximate period for such advisory supervision.
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[LKCH03]. Wu, Chen, and Han [WCH10] introduced the Kulczynski measure for associative patterns
and performed a comparative analysis of a set of measures for pattern evaluation.
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