JIAWEI HAN = JIAN PEI = HANGHANG TONG

CRUAN SR |
) I3 N (" -
= N

R \.,"\‘w‘ Wy .Y

17
I #
| Ag".% :;’
L

FOURTH EDITION

DATA MINING

CONCEPTS AND TECHNIQUES

AAAAAAAAAAAAAA

Data Mining

Concepts and Techniques

This page intentionally left blank

Data Mining

Concepts and Techniques
Fourth Edition

Jiawei Han
Jian Pei
Hanghang Tong

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2023 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing from the
publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found
at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may
be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they should be
mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-811760-6

For information on all Morgan Kaufmann publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Katey Birtcher

Acquisitions Editor: Stephen Merken
Editorial Project Manager: Beth LoGiudice
Publishing Services Manager: Shereen Jameel
Production Project Manager: Gayathri S

Designer: Ryan Cook

qa Working together
AR 1 grow libraries in
R bookid developing countries

Typeset by VTeX

Printed in the United States of America

www.elsevier.com e www.bookaid.org

Last digit is the printnumber: 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals

To Dora and Lawrence for your love and encouragement

J.H.

To Jennifer, Jacqueline, and Jasmine for your never-failing care,
encouragement, and support

J.P.

To Jingrui, Emma, and Nathaniel for your endless love and inspiration

H.T.

This page intentionally left blank

Contents

Foreword Xvii
Foreword to second editionttt Xix
Preface XXi
Acknowledgments XXVii
About the authOrs XXixX
CHAPTER 1 Introduction 1
1.1 Whatisdatamining?ttt 1

1.2 Data mining: an essential step in knowledge discovery 2

1.3 Diversity of data types fordatamining, 4

1.4 Mining various kinds of knowledge 5

1.4.1 Multidimensional data summarization 6

1.4.2 Mining frequent patterns, associations, and correlations 6

1.4.3 Classification and regression for predictive analysis 7

144 Clusteranalysiso ittt 9

1.45 Deeplearninguniinii e 9

1.4.6 Outlier analysisttt 10

1.4.7 Are all mining results interesting? 10

1.5 Data mining: confluence of multiple disciplines 12

1.5.1 Statisticsand datamining, 12

1.5.2 Machine learning and data mining 13

1.5.3 Database technology and datamining 15

1.54 Datamininganddatascience 15

1.5.5 Data mining and other disciplines 16

1.6 Data mining and applicationsouirintirinrarannnn .. 17

1.7 Datamining and SOCIELY\t i et 19

1.8 Summary 19

1.9 EXEICISES . o v vt vttt e e e e e e 20

1.10 BibliographiC NOESo\ttt ettt ettt e e 21
CHAPTER 2 Data, measurements, and data preprocessing 23
2.1 DatatyPes . oo ettt e 24

2.1.1 Nominal attributes 24

2.1.2 Binary attributes 25

2.1.3 Ordinal attributes 25

2.1.4 Numeric attributes 26

2.1.5 Discrete vs. continuous attributes 27

2.2 Statisticsofdata 27

2.2.1 Measuring the central tendency 28

2.2.2 Measuring the dispersionof data 31

vii

viii Contents

2.3

24

25

2.6

2.7
2.8
2.9

CHAPTER 3
3.1

3.2

3.3

2.2.3 Covariance and correlation analysis 34
2.2.4 Graphic displays of basic statisticsofdata 38
Similarity and distance measureso.uieenieee... 43
2.3.1 Data matrix vs. dissimilarity matrix 43
2.3.2 Proximity measures for nominal attributes 44
2.3.3 Proximity measures for binary attributes 46
2.34 Dissimilarity of numeric data: Minkowski distance 48
2.3.5 Proximity measures for ordinal attributes 49
2.3.6 Dissimilarity for attributes of mixed types 50
237 Cosinesimilarity 52
2.3.8 Measuring similar distributions: the Kullback-Leibler divergence 53
2.3.9 Capturing hidden semantics in similarity measures 55
Data quality, data cleaning, and data integration 55
2.4.1 Dataquality MEasuresuuuienneenuenneennenn.. 55
242 Datacleaningt e 56
243 Datainte@rationottt 62
Data transformation 63
2.5.1 Normalizationot 64
2.5.2 DISCretizationutuit it 65
2.5.3 Data COMPIessioncuuuemueententeenenenenn.. 68
254 Sampling e 70
Dimensionality reduction 71
2.6.1 Principal components analysis 71
2.6.2 Attribute subset selection o 72
2.6.3 Nonlinear dimensionality reduction methods 74
SUMMATY . . o 79
EXEICISES . . o oottt 80
Bibliographic notes 83
Data warehousing and online analytical processing 85
Datawarehouse 85
3.1.1 Data warehouse: what and why? 85
3.1.2 Architecture of data warehouses: enterprise data warehouses and data

INATLS © . . e 88
313 Datalakes 93
Data warehouse modeling: schema and measures 96
3.2.1 Data cube: a multidimensional datamodel 97
3.2.2 Schemas for multidimensional data models: stars, snowflakes, and fact

constellations L 99
323 Concepthierarchies 103
3.24 Measures: categorization and computation 105
OLAP OPErationso v v ot ettt et e e e et et 106
3.3.1 Typical OLAPoperationst .. 106
3.3.2 Indexing OLAP data: bitmap index and joinindex 108

3.3.3 Storage implementation: column-based databases 111

34

3.5

3.6
3.7
3.8

CHAPTER 4
4.1

4.2

4.3

4.4
4.5
4.6

CHAPTER 5
5.1

5.2

Contents

Data cube computation
3.4.1 Terminology of data cube computation
3.4.2 Data cube materialization:ideas
3.4.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP
3.4.4 General strategies for data cube computation
Data cube computation methods L L oL
3.5.1 Multiway array aggregation for full cube computation
3.5.2 BUC: computing iceberg cubes from the apex cuboid downward
3.5.3 Precomputing shell fragments for fast high-dimensional OLAP
3.5.4 Efficient processing of OLAP queries using cuboids
SUMMATY . . ot e e
EXEICISES . . o\ttt
Bibliographic notes

Pattern mining: basic concepts and methods
Basic CONCePLSttt e
4.1.1 Market basket analysis: a motivating example
4.1.2 Frequent itemsets, closed itemsets, and associationrules
Frequent itemset mining methods

4.2.1 Apriori algorithm: finding frequent itemsets by confined candidate

GENETALION . . ottt ittt e
4.2.2 Generating association rules from frequent itemsets
4.2.3 Improving the efficiency of Apriori
4.2.4 A pattern-growth approach for mining frequent itemsets
4.2.5 Mining frequent itemsets using the vertical data format
4.2.6 Mining closed and max patterns
Which patterns are interesting?—Pattern evaluation methods
4.3.1 Strong rules are not necessarily interesting
4.3.2 From association analysis to correlation analysis
4.3.3 A comparison of pattern evaluation measures
SUMMATY . o e e
EXEICISES . . o\t
Bibliographic notes

Pattern mining: advanced methods
Mining various kinds of patterns
5.1.1 Mining multilevel associations
5.1.2 Mining multidimensional associations
5.1.3 Mining quantitative associationrules
5.1.4 Mining high-dimensionaldata
5.1.5 Mining rare patterns and negative patterns
Mining compressed or approximate patternsv. e,
5.2.1 Mining compressed patterns by pattern clustering
5.2.2 Extracting redundancy-aware top-k patterns

X Contents

5.3

5.4

5.5

5.6

5.7
5.8
5.9

CHAPTER 6
6.1

6.2

6.3

6.4

6.5

6.6

6.7

Constraint-based patternmining 191
5.3.1 Pruning pattern space with pattern pruning constraints 193
5.3.2 Pruning data space with data pruning constraints 196
5.3.3 Mining space pruning with succinctness constraints 197
Mining sequential Patternso ittt 198
5.4.1 Sequential pattern mining: concepts and primitives 198
5.4.2 Scalable methods for mining sequential patterns 200
5.4.3 Constraint-based mining of sequential patterns 210
Mining subgraph patternsttt 211
5.5.1 Methods for mining frequent subgraphs 212
5.5.2 Mining variant and constrained substructure patterns 219
Pattern mining: application examples 223
5.6.1 Phrase mining in massive textdata 223
5.6.2 Mining copy and paste bugs in software programs 230
SUMMATY . . oot e e e 232
EXEICISESttt 233
Bibliographic notes 235
Classification: basic concepts and methods 239
Basic CONCEPLS . . o ottt 239
6.1.1 Whatisclassification? i 239
6.1.2 General approach to classification 240
Decision tree inductionttt 243
6.2.1 Decision tree induction 244
6.2.2 Attribute selection measuresiiiiiiie... 248
6.2.3 Tree pruningttt 257
Bayes classification methods 259
6.3.1 Bayes'theorem 260
6.3.2 Naive Bayesian classification 262
Lazy learners (or learning from your neighbors) 266
6.4.1 k-nearest-neighbor classifiers 266
6.4.2 Case-based reasoningouiuiiiiiniennean.. 269
Linear classifiers 269
6.5.1 Linearregressiont 270
6.5.2 Perceptron: turning linear regression to classification 272
6.5.3 LogiStiC Tegressionottt 274
Model evaluation and selection 278
6.6.1 Metrics for evaluating classifier performance 278
6.6.2 Holdout method and random subsampling 283
6.6.3 Cross-validation 283
6.6.4 BOOISIIaD . . . oottt 284
6.6.5 Model selection using statistical tests of significance 285
6.6.6 Comparing classifiers based on cost—benefit and ROC curves 286
Techniques to improve classification accuracy 290

6.7.1 Introducing ensemble methods 290

6.8
6.9
6.10

CHAPTER 7
7.1

7.2

7.3

1.4

1.5

7.6

1.7

7.8
7.9
7.10

Contents Xi

6.7.2 Bagging 291
6.7.3 B0OStING 292
6.7.4 Randomforests 296
6.7.5 Improving classification accuracy of class-imbalanced data 297
SUMMATY . . oottt e e et et e 298
EXEICISES . . oot 299
Bibliographic notest e 302
Classification: advanced methods 307
Feature selection and engineering 307
7.1.1 Filtermethods 308
7.1.2 Wrappermethods 311
7.1.3 Embeddedmethods 312
Bayesian beliefnetworks 315
7.2.1 Concepts and mechanismsccu i, 315
7.2.2 Training Bayesian belief networks 317
Support vector machines L i 318
7.3.1 Linear support vector machines 319
7.3.2 Nonlinear support vector machines 324
Rule-based and pattern-based classification 327
7.4.1 Using IF-THEN rules for classification 328
7.4.2 Rule extraction from a decisiontree 330
7.4.3 Rule induction using a sequential covering algorithm 331
7.4.4 Associative classification e 335
7.4.5 Discriminative frequent pattern—based classification 338
Classification with weak supervisionccoueune.... 342
7.5.1 Semisupervised classification oL 343
7.5.2 Activelearning 345
7.5.3 Transferlearning 346
7.5.4 Distant SUPETVISIONottt ettt 348
7.5.5 Zero-shotlearning 349
Classification withrich datatype oo ... 351
7.6.1 Streamdataclassification 352
7.6.2 Sequence classification i 354
7.6.3 Graphdataclassification it 355
Potpourri: other related techniques 359
7.7.1 Multiclass classification oL 359
7.7.2 Distance metric learning L L. 362
7.7.3 Interpretability of classification 364
7.74 Genetic algorithms 367
7.7.5 Reinforcement learning 367
SUMMATY . . o vttt e e e e et et e e e 369
EXEICISES . . o\ttt 370

Bibliographicnotes 374

Xii Contents

CHAPTER 8
8.1

8.2

8.3

8.4

8.5

8.6
8.7
8.8

CHAPTER 9
9.1

9.2

9.3

94

Cluster analysis: basic concepts and methods
Cluster analysisttt
8.1.1 Whatis cluster analysis? it
8.1.2 Requirements for cluster analysis
8.1.3 Overview of basic clustering methods
Partitioning methods
8.2.1 k-Means: a centroid-based technique
8.2.2 Variationsof k-means
Hierarchical methods
8.3.1 Basic concepts of hierarchical clustering
8.3.2 Agglomerative hierarchical clustering
8.3.3 Divisive hierarchical clustering
8.3.4 BIRCH: scalable hierarchical clustering using clustering feature trees
8.3.5 Probabilistic hierarchical clustering
Density-based and grid-based methods
8.4.1 DBSCAN: density-based clustering based on connected regions with
highdensity
8.4.2 DENCLUE: clustering based on density distribution functions
84.3 Grid-basedmethods
Evaluation of clusteringo
8.5.1 Assessing clusteringtendency
8.5.2 Determining the number of clusters
8.5.3 Measuring clustering quality: extrinsic methods
854 Imtrinsicmethods
SUMMATY . . o oot ettt e et e e e e e e
EXEICISES . . oot
Bibliographic nOtesc.i it e
Cluster analysis: advanced methods
Probabilistic model-based clustering
9.1.1 Fuzzyclusters
9.1.2 Probabilistic model-based clusters
9.1.3 Expectation-maximization algorithm
Clustering high-dimensional data
9.2.1 Why is clustering high-dimensional data challenging?
9.2.2 Axis-parallel subspace approaches
9.2.3 Arbitrarily oriented subspace approaches
Biclusteringt
9.3.1 Why and where is biclustering useful?
9.3.2 Typesofbiclusters
9.3.3 Biclusteringmethods
9.3.4 Enumerating all biclusters usingMaPle
Dimensionality reduction for clustering
9.4.1 Linear dimensionality reduction methods for clustering

9.4.2 Nonnegative matrix factorization (NMF)

9.5

9.6

9.7
9.8
9.9

CHAPTER 10
10.1

10.2

10.3

10.4

10.5

10.6
10.7
10.8

CHAPTER 11
1.1

Contents Xiii

9.4.3 Spectralclustering 460
Clustering graph and network data 463
9.5.1 Applicationsandchallenges 463
9.5.2 Similarity measures 465
9.5.3 Graphclusteringmethods, 470
Semisupervised ClUSIETINGottt e 475
9.6.1 Semisupervised clustering on partially labeleddata 475
9.6.2 Semisupervised clustering on pairwise constraints 476
9.6.3 Other types of background knowledge for semisupervised clustering . 477
SUMMATY . . oottt et e e e e e e e et 479
EXEICISES . . oot 480
Bibliographicnotes 482
Deeplearning 485
BasiC CONCEPLS . . .ottt 485
10.1.1 Whatisdeeplearning?, 485
10.1.2 Backpropagation algorithm 489
10.1.3 Key challenges for training deep learning models 498
10.1.4 Overview of deep learning architecture 499
Improve training of deep learning models 500
10.2.1 Responsive activation functions 500
10.2.2 Adaptive learningrate 501
10.2.3 Dropout 504
10.2.4 Pretraifingottt 507
10.2.5 CroSs-entropyv ittt e 509
10.2.6 Autoencoder: unsupervised deep learning 511
10.2.7 Othertechniques 514
Convolutional neural networks i 517
10.3.1 Introducing convolution operation 517
10.3.2 Multidimensional convolution 519
10.3.3 Convolutional layer 523
Recurrent neural networks L i i 526
10.4.1 Basic RNN models and applications 526
1042 GatedRNNs 532
10.4.3 Other techniques for addressing long-term dependence 536
Graphneural networks 539
10.5.1 BaSiC CONCEPLS . . v v ov vttt e e et e e e 540
10.5.2 Graph convolutional networks 541
10.5.3 Other types of GNNSot 545
SUMMAryYo 547
EXEICISES . . o\ttt 548
Bibliographicnotes 552
Outlier detection 557

Basic CONCEPLS . . .ottt 557

Xiv Contents

11.5

11.6

11.8
11.9
11.10

CHAPTER 12
12.1

12.2

12.3

11.1.1 What are outliers?c.. ittt 558
11.1.2 Typesof outliersiiniitininen. 559
11.1.3 Challenges of outlierdetectiont ... 561
11.1.4 An overview of outlier detection methods 562
Statistical approaches 565
11.2.1 Parametricmethods i 565
11.2.2 Nonparametricmethods 569
Proximity-based approaches i i 572
11.3.1 Distance-based outlier detection 572
11.3.2 Density-based outlier detection 573
Reconstruction-based approaches i . 576
11.4.1 Matrix factorization—based methods for numerical data 577
11.4.2 Pattern-based compression methods for categorical data 582
Clustering- vs. classification-based approaches 585
11.5.1 Clustering-based approaches, 585
11.5.2 Classification-based approaches 588
Mining contextual and collective outliers 590
11.6.1 Transforming contextual outlier detection to conventional outlier

detectionttt e 591
11.6.2 Modeling normal behavior with respect to contexts 591
11.6.3 Mining collective outliers i, 592
Outlier detection in high-dimensional data 593
11.7.1 Extending conventional outlier detection 594
11.7.2 Finding outliers in subspacesc.uiuieevninnen .. 595
11.7.3 Outlier detectionensemble 596
11.7.4 Taming high dimensionality by deep learning 597
11.7.5 Modeling high-dimensional outliers 599
SUMMATY . . . 600
EXEICISES . . ottt 601
Bibliographic nOtesttt 602
Data mining trends and research frontiers 605
Mining richdatatypest e 605
12.1.1 Miningtextdatat 605
12.1.2 Spatial-temporaldata 610
12.1.3 Graphandnetworks 612
Data mining applications 617
12.2.1 Data mining for sentiment and opinion 617
12.2.2 Truth discovery and misinformation identification 620
12.2.3 Information and disease propagation 623
12.2.4 Productivity and team SCIENCeovuuinitenneenne.n. 626
Data mining methodologies and systems 629
12.3.1 Structuring unstructured data for knowledge mining: a data-driven

approach 629

12.3.2 Data augmentationo vttt 632

Contents

12.3.3 From correlation to causality
12.3.4 Network as a CONteXtottt
12.3.5 Auto-ML: methods and systemsco ...
12.4 Data mining, people, and SOCIELYttt
12.4.1 Privacy-preserving datamining
12.4.2 Human-algorithm interaction
12.4.3 Mining beyond maximizing accuracy: fairness, interpretability, and
TODUSHNESS . v vt ettt e et e e e e e e e e
12.4.4 Data mining for social good

APPENDIXA Mathematical background

A.1 Probability and statiSticsttt
A.1.1 PDF of typical distributions
A.1l2 MLEand MAP
A.1.3 Significance test
A.1.4 Density estimationttt
A.1.5 Bias-variance tradeoff L.
A.1.6 Cross-validation and Jackknife,

A.2 Numerical optimizationirintiria i
A2.1 Gradientdescent
A.2.2 Variants of gradientdescent
A23 Newton’'smethod i,
A.2.4 Coordinate descentiiitiiiiiie
A.2.5 Quadratic programmingttt ettt

A.3 Matrix and linearalgebra
A3.1 Linearsystem AX=Db
A.3.2 Norms of vectors and matricesuiuiano....
A.3.3 Matrix decompositions
A34 Subspace
A.3.5 Orthogonality i

A.4 Concepts and tools from signal processingc.ouuurn...
A4l EDtropy . ..ottt
A.4.2 Kullback-Leibler divergence (KL-divergence)
A.43 Mutual information
A.4.4 Discrete Fourier transform (DFT) and fast Fourier transform (FFT) . .

A5 BibliographiC NOtESottt e

Bibliography e

Index

XV

This page intentionally left blank

Foreword

Analyzing data is more important and prevalent than ever. Collecting and storing large datasets is easy;
disks and “clouds” are well within budget of even small institutions. There is no excuse to not analyze
the data to find patterns, trends, anomalies, and forecasts.

The 4th edition of Data Mining: Concepts and Techniques covers all the classics but adds signif-
icant material on recent developments. It has a whole chapter on deep learning, subchapters for vital
topics like text mining (including one of my favorite algorithms, TopMine), frequent-subgraph dis-
covery (covering gSpan and CloseGraph), and excellent summaries for explainability (LIME), genetic
algorithms, reinforcement learning, misinformation detection, productivity and team science, causality,
fairness, and social good.

The new appendix with mathematical background is extremely useful and convenient—it has all
the fundamental formulas for data mining in one place, like gradient descent, Newton, and related
material for optimization; SVD, eigenvalues and pseudo-inverse for matrix algebra; entropy and KL
for information theory; and DFT and FFT for signal processing.

The book has an impressive, carefully chosen list of more than 800 citations, with more than 250
citations for papers after 2015. In short, this edition continues serving both as an excellent textbook and
an encyclopedic reference book.

Christos Faloutsos
Carnegie Mellon University
Pittsburgh, June 2022

Xvii

This page intentionally left blank

Foreword to second edition

We are deluged by data—scientific data, medical data, demographic data, financial data, and marketing
data. People have no time to look at this data. Human attention has become the precious resource. So,
we must find ways to automatically analyze the data, to automatically classify it, to automatically sum-
marize it, to automatically discover and characterize trends in it, and to automatically flag anomalies.
This is one of the most active and exciting areas of the database research community. Researchers in
areas including statistics, visualization, artificial intelligence, and machine learning are contributing to
this field. The breadth of the field makes it difficult to grasp the extraordinary progress over the last few
decades.

Six years ago, Jiawei Han’s and Micheline Kamber’s seminal textbook organized and presented
Data Mining. It heralded a golden age of innovation in the field. This revision of their book reflects that
progress; more than half of the references and historical notes are to recent work. The field has matured
with many new and improved algorithms, and has broadened to include many more datatypes: streams,
sequences, graphs, time-series, geospatial, audio, images, and video. We are certainly not at the end of
the golden age—indeed research and commercial interest in data mining continues to grow—but we
are all fortunate to have this modern compendium.

The book gives quick introductions to database and data mining concepts with particular emphasis
on data analysis. It then covers in a chapter-by-chapter tour the concepts and techniques that underlie
classification, prediction, association, and clustering. These topics are presented with examples, a tour
of the best algorithms for each problem class, and with pragmatic rules of thumb about when to apply
each technique. The Socratic presentation style is both very readable and very informative. I certainly
learned a lot from reading the first edition and got re-educated and updated in reading the second
edition.

Jiawei Han and Micheline Kamber have been leading contributors to data mining research. This is
the text they use with their students to bring them up to speed on the field. The field is evolving very
rapidly, but this book is a quick way to learn the basic ideas and to understand where the field is today.
I found it very informative and stimulating, and believe you will too.

Jim Gray
In his memory

Xix

This page intentionally left blank

Preface

The computerization of our society has substantially enhanced our capabilities for both generating and
collecting data from diverse sources. A tremendous amount of data has flooded almost every aspect
of our lives. This explosive growth in stored or transient data has generated an urgent need for new
techniques and automated tools that can intelligently assist us in transforming the vast amounts of data
into useful information and knowledge. This has led to the generation of a promising and flourishing
frontier in computer science called data mining and its various applications. Data mining, also popularly
referred to as knowledge discovery from data (KDD), is the automated or convenient extraction of
patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the
Web, other massive information repositories, or data streams.

This book explores the concepts and techniques of knowledge discovery and data mining. As a
multidisciplinary field, data mining draws on work from areas including statistics, machine learning,
pattern recognition, database technology, information retrieval, natural language processing, network
science, knowledge-based systems, artificial intelligence, high-performance computing, and data vi-
sualization. We focus on issues relating to the feasibility, usefulness, effectiveness, and scalability of
techniques for the discovery of patterns hidden in large data sets. As a result, this book is not intended
as an introduction to statistics, machine learning, database systems, or other such areas, although we
do provide some background knowledge to facilitate the reader’s comprehension of their respective
roles in data mining. Rather, the book is a comprehensive introduction to data mining. It is useful for
computer science students, application developers, and business professionals, as well as researchers
involved in any of the disciplines listed above.

Data mining emerged during the late 1980s, made great strides during the 1990s, and continues
to flourish into the new millennium. This book presents an overall picture of the field, introducing
interesting data mining concepts and techniques and discussing applications and research directions.
An important motivation for writing this book was the need to build an organized framework for
the study of data mining—a challenging task, owing to the extensive multidisciplinary nature of this
fast-developing field. We hope that this book will encourage people with different backgrounds and
experiences to exchange their views regarding data mining to contribute toward the further promotion
and shaping of this exciting and dynamic field.

Organization of the book

Since the publication of the first three editions of this book, great progress has been made in the field
of data mining. Many new data mining methodologies, systems, and applications have been developed,
especially for handling new kinds of data, including information networks, graphs, complex structures,
and data streams, as well as text, Web, multimedia, time-series, and spatiotemporal data. Such fast
development and rich, new technical contents make it difficult to cover the full spectrum of the field in
a single book. Instead of continuously expanding the coverage of this book, we have decided to cover
the core material in sufficient scope and depth, and leave the handling of complex data types and their
applications to the books dedicated to those specific topics.

XXi

XXii Preface

The 4th edition substantially revises the first three editions of the book, with numerous enhance-
ments and a reorganization of the technical contents. The core technical material, which handles
different mining methodologies on general data types, is expanded and substantially enhanced. To keep
the book concise and up-to-date, we have done the following major revisions: (1) Two chapters in the
3rd edition, “Getting to Know You Data” and “Data Preprocessing” are merged into one chapter “Data,
Measurements and Data Preprocessing,” with the “Data Visualization” section removed since the con-
cepts are easy to understand, the methods have been covered in multiple, dedicated data visualization
books, and the software tools are widely available on the web; (2) two chapters in the 3rd edition,
“Data Warehousing and Online Analytical Processing” and “Data Cube Technology” are merged into
one chapter, with some not well-adopted data cube computation methods and data cube extensions
omitted, but with a newer concept, “Data Lakes” introduced; (3) the key data mining method chapters
in the 3rd edition on pattern discovery, classification, clustering and outlier analysis are retained with
contents substantially enhanced and updated; (4) a new chapter “Deep Learning” is added, with a sys-
tematic introduction to neural network and deep learning methodologies; (5) the final chapter on “Data
Mining Trends and Research Frontiers” is completely rewritten with many new advanced topics on data
mining introduced in comprehensive and concise way; and finally, (6) a set of appendices that briefly
introduce essential mathematical background needed to understand the contents of this book.

The chapters of this new edition are described briefly as follows, with emphasis on the new material.

Chapter 1 provides an introduction to the multidisciplinary field of data mining. It discusses the
evolutionary path of information technology, which has led to the need for data mining, and the im-
portance of its applications. It examines various kinds of data to be mined, and presents a general
classification of data mining tasks, based on the kinds of knowledge to be mined, the kinds of technolo-
gies used, and the kinds of applications that are targeted. It shows that data mining is a confluence of
multiple disciplines, with broad applications. Finally, it discusses how data mining may impact society.

Chapter 2 introduces the data, measurements and data preprocessing. It first discusses data objects
and attribute types, and then introduces typical measures for basic statistical data descriptions. It also
introduces ways to measure similarity and dissimilarity for various kinds of data. Then, the chapter
moves to introduce techniques for data preprocessing. In particular, it introduces the concept of data
quality and methods for data cleaning and data integration. It also discusses various methods for data
transformation and dimensionality reduction.

Chapter 3 provides a comprehensive introduction to datawarehouses and online analytical process-
ing (OLAP). The chapter starts with a well-accepted definition of data warehouse, an introduction to
the architecture, and the concept of data lake. Then it studies the logical design of a data warehouse as a
multidimensional data model, and looks at OLAP operations and how to index OLAP data for efficient
analytics. The chapter includes an in-depth treatment of the techniques of building data cube as a way
of implementing a data warehouse.

Chapters 4 and 5 present methods for mining frequent patterns, associations, and correlations in
large data sets. Chapter 4 introduces fundamental concepts, such as market basket analysis, with many
techniques for frequent itemset mining presented in an organized way. These range from the basic
Apriori algorithm and its variations to more advanced methods that improve efficiency, including the
frequent pattern growth approach, frequent pattern mining with vertical data format, and mining closed
and max frequent itemsets. The chapter also discusses pattern evaluation methods and introduces mea-
sures for mining correlated patterns. Chapter 5 is on advanced pattern mining methods. It discusses
methods for pattern mining in multilevel and multidimensional space, mining quantitative association

Preface XXiii

rules, mining high-dimensional data, mining rare and negative patterns, mining compressed or approx-
imate patterns, and constraint-based pattern mining. It then moves to advanced methods for mining
sequential patterns and subgraph patterns. It also presents applications of pattern mining, including
phrase mining in text data and mining copy and paste bugs in software programs.

Chapters 6 and 7 describe methods for data classification. Due to the importance and diversity of
classification methods, the contents are partitioned into two chapters. Chapter 6 introduces basic con-
cepts and methods for classification, including decision tree induction, Bayes classification, k-nearest
neighbor classifiers, and linear classifiers. It also discusses model evaluation and selection methods
and methods for improving classification accuracy, including ensemble methods and how to handle
imbalanced data. Chapter 7 discusses advanced methods for classification, including feature selection,
Bayesian belief networks, support vector machines, rule-based and pattern-based classification. Addi-
tional topics include classification with weak supervision, classification with rich data type, multiclass
classification, distant metric learning, interpretation of classification, genetic algorithms and reinforce-
ment learning.

Cluster analysis forms the topic of Chapters 8 and 9. Chapter 8 introduces the basic concepts
and methods for data clustering, including an overview of basic cluster analysis methods, partitioning
methods, hierarchical methods, density-based and grid-based methods. It also introduces methods for
the evaluation of clustering. Chapter 9 discusses advanced methods for clustering, including proba-
bilistic model-based clustering, clustering high-dimensional data, clustering graph and network data,
and semisupervised clustering.

Chapter 10 introduces deep learning, which is a powerful family of techniques based on artifi-
cial neural networks with broad applications in computer vision, natural language processing, machine
translation, social network analysis, and so on. We start with the basic concepts and a foundational tech-
nique called backpropagation algorithm. Then, we introduce various techniques to improve the training
of deep learning models, including responsive activation functions, adaptive learning rate, dropout,
pretraining, cross-entropy, and autoencoder. We also introduce several commonly used deep learning
architectures, ranging from feed-forward neural networks, convolutional neural networks, recurrent
neural networks, and graph neural networks.

Chapter 11 is dedicated to outlier detection. It introduces the basic concepts of outliers and outlier
analysis and discusses various outlier detection methods from the view of degree of supervision (i.e.,
supervised, semisupervised, and unsupervised methods), as well as from the view of approaches (i.e.,
statistical methods, proximity-based methods, reconstruction-based methods, clustering-based meth-
ods, and classification-based methods). It also discusses methods for mining contextual and collective
outliers, and for outlier detection in high-dimensional data.

Finally, in Chapter 12, we discuss future trends and research frontiers in data mining. We start with
a brief coverage of mining complex data types, including text data, graphs and networks, and spatiotem-
poral data. After that, we introduce a few data mining applications, ranging from sentiment and opinion
analysis, truth discovery and misinformation identification, information and disease propagation, to pro-
ductivity and team science. The chapter then moves ahead to cover other data mining methodologies,
including structuring unstructured data, data augmentation, causality analysis, network-as-a-context,
and auto-ML. Finally, it discusses social impacts of data mining, including privacy-preserving data
mining, human-algorithm interaction, fairness, interpretability and robustness, and data mining for so-
cial good.

XXiv Preface

Throughout the text, italic font is used to emphasize terms that are defined, and bold font is used to
highlight or summarize main ideas. Sans serif font is used for reserved words. Bold italic font is used
to represent multidimensional quantities.

This book has several strong features that set it apart from other textbooks on data mining. It presents
a very broad yet in-depth coverage of the principles of data mining. The chapters are written to be as
self-contained as possible, so they may be read in order of interest by the reader. Advanced chapters of-
fer a larger-scale view and may be considered optional for interested readers. All of the major methods
of data mining are presented. The book presents important topics in data mining regarding multidi-
mensional OLAP analysis, which is often overlooked or minimally treated in other data mining books.
The book also maintains web sites with a number of online resources to aid instructors, students, and
professionals in the field. These are described further in the following.

To the instructor

This book is designed to give a broad, yet detailed overview of the data mining field. First, it can be used
to teach an introductory course on data mining at an advanced undergraduate level or at the first-year
graduate level. Moreover, the book also provides essential materials for an advanced graduate course
on data mining.

Depending on the length of the instruction period, the background of students, and your interests,
you may select subsets of chapters to teach in various sequential orderings. For example, an introductory
course may cover the following chapters.

¢ Chapter 1: Introduction

* Chapter 2: Data, measurements, and data preprocessing

* Chapter 3: Data warehousing and online analytical processing
* Chapter 4: Pattern mining: basic concepts and methods

* Chapter 6: Classification: basic concepts

¢ Chapter 8: Cluster analysis: basic concepts and methods

If time permits, some materials about deep learning (Chapter 10) or outlier detection (Chapter 11)
may be chosen. In each chapter, the fundamental concepts should be covered, while some sections on
advanced topics can be treated optionally.

As another example, for a place where a machine learning course is offered to cover supervised
learning well, a data mining course can discuss in depth on clustering. Such a course can be based on
the following chapters.

e Chapter 1: Introduction

* Chapter 2: Data, measurements, and data preprocessing

¢ Chapter 3: Data warehousing and online analytical processing
* Chapter 4: Pattern mining: basic concepts and methods

e Chapter 8: Cluster analysis: basic concepts and methods

¢ Chapter 9: Cluster analysis: advanced methods

e Chapter 11: Outlier detection

Preface XXV

An instructor teaching an advanced data mining course may find Chapter 12 particularly informa-
tive, since it discusses an extensive spectrum of new topics in data mining that are under dynamic and
fast development.

Alternatively, you may choose to teach the whole book in a two-course sequence that covers all of
the chapters in the book, plus, when time permits, some advanced topics such as graph and network
mining. Material for such advanced topics may be selected from the companion chapters available from
the book’s web site, accompanied with a set of selected research papers.

Individual chapters in this book can also be used for tutorials or for special topics in related courses,
such as machine learning, pattern recognition, data warehousing, and intelligent data analysis.

Each chapter ends with a set of exercises, suitable as assigned homework. The exercises are either
short questions that test basic mastery of the material covered, longer questions that require analytical
thinking, or implementation projects. Some exercises can also be used as research discussion topics.
The bibliographic notes at the end of each chapter can be used to find the research literature that contains
the origin of the concepts and methods presented, in-depth treatment of related topics, and possible
extensions.

To the student

We hope that this textbook will spark your interest in the young yet fast-evolving field of data mining.
We have attempted to present the material in a clear manner, with careful explanation of the topics
covered. Each chapter ends with a summary describing the main points. We have included many figures
and illustrations throughout the text to make the book more enjoyable and reader-friendly. Although
this book was designed as a textbook, we have tried to organize it so that it will also be useful to you as
a reference book or handbook, should you later decide to perform in-depth research in the related fields
or pursue a career in data mining.
What do you need to know to read this book?

* You should have some knowledge of the concepts and terminology associated with statistics,
database systems, and machine learning. However, we do try to provide enough background of
the basics, so that if you are not so familiar with these fields or your memory is a bit rusty, you will
not have trouble following the discussions in the book.

* You should have some programming experience. In particular, you should be able to read pseu-
docode and understand simple data structures such as multidimensional arrays and structures.

To the professional

This book was designed to cover a wide range of topics in the data mining field. As a result, it is an
excellent handbook on the subject. Because each chapter is designed to be as standalone as possible,
you can focus on the topics that most interest you. The book can be used by application programmers,
data scientists, and information service managers who wish to learn about the key ideas of data mining
on their own. The book would also be useful for technical data analysis staff in banking, insurance,
medicine, and retailing industries who are interested in applying data mining solutions to their busi-
nesses. Moreover, the book may serve as a comprehensive survey of the data mining field, which may
also benefit researchers who would like to advance the state-of-the-art in data mining and extend the
scope of data mining applications.

XXVi Preface

The techniques and algorithms presented are of practical utility. Rather than selecting algorithms
that perform well on small “toy” data sets, the algorithms described in the book are geared for the
discovery of patterns and knowledge hidden in large, real data sets. Algorithms presented in the book
are illustrated in pseudocode. The pseudocode is similar to the C programming language, yet is designed
so that it should be easy to follow by programmers unfamiliar with C or C++. If you wish to implement
any of the algorithms, you should find the translation of our pseudocode into the programming language
of your choice to be a fairly straightforward task.

Book webh site with resources

The book has a website with Elsevier at https://educate.elsevier.com/book/details/9780128117606.
This website contains many supplemental materials for readers of the book or anyone else with an
interest in data mining. The resources include the following:

» Slide presentations for each chapter. Lecture notes in Microsoft PowerPoint slides are available
for each chapter.

* Instructors’ manual. This complete set of answers to the exercises in the book is available only to
instructors from the publisher’s web site.

* Figures from the book. This may help you to make your own slides for your classroom teaching.

* Table of Contents of the book in PDF format.

e Errata on the different printings of the book. We encourage you to point out any errors in this
book. Once the error is confirmed, we will update the errata list and include acknowledgment of
your contribution.

Interested readers may also like to check Authors’ course teaching websites. All the authors are uni-
versity professors in their respective universities. Please check their corresponding data mining course
websites which may contain their undergraduate and/or graduate course materials for introductory
and/or advanced courses on data mining, including updated course/chapter slides, syllabi, homeworks,
programming assignments, research projects, errata, and other related information.

https://educate.elsevier.com/book/details/9780128117606

Acknowledgments

Fourth edition of the hook

We would like to express our sincere thanks to Micheline Kamber, the co-author of the previous editions
of this book. Micheline has contributed substantially to these editions. Due to her commitment of
other duties, she will not be able to join us in this new edition. We really appreciate her long-term
collaborations and contributions in the past many years.

We would also like to express our grateful thanks to the previous and current members, including
faculty and students, of the Data and Information Systems (DAIS) Laboratory, the Data Mining Group,
IDEA Lab and iSAIL Lab at UIUC and the Data Mining Group at SFU, and many friends and col-
leagues, whose constant support and encouragement have made our work on this edition a rewarding
experience. Our thanks extend to the students and TAs in the many data mining courses we taught at
UIUC and SFU, as well as those in summer schools and beyond, who carefully went through the early
drafts and the early editions of this book, identified many errors, and suggested various improvements.

We also wish to thank Steve Merken and Beth LoGiudice at Elsevier, for their enthusiasm, patience,
and support during our writing of this edition of the book. We thank Gayathri S, the Project Manager,
and her team members, for keeping us on schedule. We are also grateful for the invaluable feedback
from all of the reviewers.

We would like to thank the US National Science Foundation (NSF), US Defense Advanced Re-
search Projects Agency (DARPA), US Army Research Laboratory (ARL), US National Institute of
Health (NIH), US Defense Threat Reduction Agency (DTRA), and Natural Science and Engineer-
ing Research Council of Canada (NSERC), as well as Microsoft Research, Google Research, IBM
Research, Amazon, Adobe, LinkedIn, Yahoo!, HP Labs, PayPal, Facebook, Visa Research, and other
industry research labs for their support of our research in the form of research grants, contracts, and
gifts. Such research support deepens our understanding of the subjects discussed in this book.

Finally, we thank our families for their wholehearted support throughout this project.

XXVii

This page intentionally left blank

About the authors

Jiawei Han is a Michael Aiken Chair Professor in the Department of Computer Science at the Uni-
versity of Illinois at Urbana-Champaign. He has received numerous awards for his contributions on
research into knowledge discovery and data mining, including ACM SIGKDD Innovation Award
(2004), IEEE Computer Society Technical Achievement Award (2005), and IEEE W. Wallace McDow-
ell Award (2009). He is a Fellow of ACM and a Fellow of IEEE. He served as founding Editor-in-Chief
of ACM Transactions on Knowledge Discovery from Data (2006-2011) and as an editorial board mem-
ber of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data
Mining and Knowledge Discovery.

Jian Pei is currently Professor of Computer Science, Biostatistics and Bioinformatics, and Electrical
and Computer Engineering at Duke University. He received a Ph.D. degree in computing science from
Simon Fraser University in 2002 under Dr. Jiawei Han’s supervision. He has published prolifically in
the premier academic forums on data mining, databases, Web searching, and information retrieval and
actively served the academic community. He is a fellow of the Royal Society of Canada, the Canadian
Academy of Engineering, ACM, and IEEE. He received the 2017 ACM SIGKDD Innovation Award
and the 2015 ACM SIGKDD Service Award.

Hanghang Tong is currently an associate professor at Department of Computer Science at University
of Illinois at Urbana-Champaign. He received his Ph.D. degree from Carnegie Mellon University in
2009. He has published over 200 refereed articles. His research is recognized by several prestigious
awards and thousands of citations. He is the Editor-in-Chief of SIGKDD Explorations (ACM) and an
associate editor of several journals.

XXiX

This page intentionally left blank

CHAPTER

Introduction

This book is an introduction to the young and fast-growing field of data mining (also known as knowl-
edge discovery from data, or KDD for short). The book focuses on fundamental data mining concepts
and techniques for discovering interesting patterns from data in various applications. In particular, we
emphasize prominent techniques for developing effective, efficient, and scalable data mining tools.

This chapter is organized as follows. In Section 1.1, we learn what is data mining and why data
mining is in high demand. Section 1.2 links data mining with the overall knowledge discovery process.
Next, we learn about data mining from multiple aspects, such as the kinds of data that can be mined
(Section 1.3), the kinds of knowledge to be mined (Section 1.4), the relationship between data mining
and other disciplines (Section 1.5), and data mining applications (Section 1.6). Finally, we discuss the
impact of data mining to society (Section 1.7).

1.1 What is data mining?

Necessity, who is the mother of invention.
- Plato

We live in a world where vast amounts of data are generated constantly and rapidly.

“We are living in the information age” is a popular saying; however, we are actually living in the data
age. Terabytes or petabytes of data pour into our computer networks, the World Wide Web (WWW),
and various kinds of devices every day from business, news agencies, society, science, engineering,
medicine, and almost every other aspect of daily life. This explosive growth of available data volume is
aresult of the computerization of our society and the fast development of powerful computing, sensing,
and data collection, storage, and publication tools.

Businesses worldwide generate gigantic data sets, including sales transactions, stock trading
records, product descriptions, sales promotions, company profiles and performance, and customer
feedback. Scientific and engineering practices generate high orders of petabytes of data in a contin-
uous manner, from remote sensing, to process measuring, scientific experiments, system performance,
engineering observations, and environment surveillance. Biomedical research and the health industry
generate tremendous amounts of data from gene sequence machines, biomedical experiment and re-
search reports, medical records, patient monitoring, and medical imaging. Billions of Web searches
supported by search engines process tens of petabytes of data daily. Social media tools have become
increasingly popular, producing a tremendous number of texts, pictures, and videos, generating various
kinds of Web communities and social networks. The list of sources that generate huge amounts of data
is endless.

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00011-4 1
Copyright © 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811760-6.00011-4

2 Chapter 1 Introduction

This explosively growing, widely available, and gigantic body of data makes our time truly the data
age. Powerful and versatile tools are badly needed to automatically uncover valuable information from
the tremendous amounts of data and to transform such data into organized knowledge. This necessity
has led to the birth of data mining.

Essentially, data mining is the process of discovering interesting patterns, models, and other kinds
of knowledge in large data sets. The term, data mining, as a vivid view of searching for gold nuggets
from data, appeared in 1990s. However, to refer to the mining of gold from rocks or sand, we say gold
mining instead of rock or sand mining. Analogously, data mining should have been more appropriately
named “knowledge mining from data,” which is unfortunately somewhat long. However, the shorter
term, knowledge mining may not reflect the emphasis on mining from large amounts of data. Neverthe-
less, mining is a vivid term characterizing the process that finds a small set of precious nuggets from a
great deal of raw material. Thus, such a misnomer carrying both “data” and “mining” became a popular
choice. In addition, many other terms have a similar meaning to data mining—for example, knowl-
edge mining from data, KDD (i.e., Knowledge Discovery from Data), pattern discovery, knowledge
extraction, data archaeology, data analytics, and information harvesting.

Data mining is a young, dynamic, and promising field. It has made and will continue to make great
strides in our journey from the data age toward the coming information age.

Example 1.1. Data mining turns a large collection of data into knowledge. A search engine (e.g.,
Google) receives billions of queries every day. What novel and useful knowledge can a search engine
learn from such a huge collection of queries collected from users over time? Interestingly, some patterns
found in user search queries can disclose invaluable knowledge that cannot be obtained by reading
individual data items alone. For example, Google’s Flu Trends uses specific search terms as indicators
of flu activity. It found a close relationship between the number of people who search for flu-related
information and the number of people who actually have flu symptoms. A pattern emerges when all of
the search queries related to flu are aggregated. Using aggregated Google search data, Flu Trends can
estimate flu activity up to two weeks faster than what traditional systems can.! This example shows
how data mining can turn a large collection of data into knowledge that can help meet a current global
challenge. O

1.2 Data mining: an essential step in knowledge discovery

Many people treat data mining as a synonym for another popularly used term, knowledge discovery
from data, or KDD, whereas others view data mining as merely an essential step in the overall process
of knowledge discovery. The overall knowledge discovery process is shown in Fig. 1.1 as an iterative
sequence of the following steps:

1. Data preparation
a. Data cleaning (to remove noise and inconsistent data)
b. Data integration (where multiple data sources may be combined)”

' This is reported in [GMP'09]. The Flu Trend reporting stopped in 2015.
2 A popular trend in the information industry is to perform data cleaning and data integration as a preprocessing step, where the
resulting data are stored in a data warehouse.

1.2 Data mining: an essential step in knowledge discovery 3

SelecV

Data Warehouse

- -

Data Sources

FIGURE 1.1

Data mining: An essential step in the process of knowledge discovery.

c. Data transformation (where data are transformed and consolidated into forms appropriate for
mining by performing summary or aggregation operations)’

d. Data selection (where data relevant to the analysis task are retrieved from the database)

2. Data mining (an essential process where intelligent methods are applied to extract patterns or con-
struct models)

3. Pattern/model evaluation (to identify the truly interesting patterns or models representing knowl-
edge based on inferestingness measures—see Section 1.4.7)

4. Knowledge presentation (where visualization and knowledge representation techniques are used
to present mined knowledge to users)

Steps 1(a) through 1(d) are different forms of data preprocessing, where data are prepared for min-
ing. The data mining step may interact with a user or a knowledge base. The interesting patterns are
presented to the user and may be stored as new knowledge in the knowledge base.

The preceding view shows data mining as one step in the knowledge discovery process, albeit an
essential one because it uncovers hidden patterns or models for evaluation. However, in industry, in
media, and in the research milieu, the term data mining is often used to refer to the entire knowledge
discovery process (perhaps because the term is shorter than knowledge discovery from data). Therefore,
we adopt a broad view of data mining functionality: Data mining is the process of discovering inter-

3 Data transformation and consolidation are often performed before the data selection process, particularly in the case of data
warehousing. Data reduction may also be performed to obtain a smaller representation of the original data without sacrificing its
integrity.

4 Chapter 1 Introduction

esting patterns and knowledge from large amounts of data. The data sources can include databases,
data warehouses, the Web, other information repositories, or data that are streamed into the system
dynamically.

1.3 Diversity of data types for data mining

As a general technology, data mining can be applied to any kind of data as long as the data are mean-
ingful for a target application. However, different kinds of data may need rather different data mining
methodologies, from simple to rather sophisticated, making data mining a rich and diverse field.

Structured vs. unstructured data

Based on whether data have clear structures, we can categorize data as structured vs. unstructured
data.

Data stored in relational databases, data cubes, data matrices, and many data warehouses have
uniform, record- or table-like structures, defined by their data dictionaries, with a fixed set of attributes
(or fields, columns), each with a fixed set of value ranges and semantic meaning. These data sets are
typical examples of highly structured data. In many real applications, such strict structural requirement
can be relaxed in multiple ways to accommodate semistructured nature of the data, such as to allow
a data object to contain a set value, a small set of heterogeneous typed values, or nested structures
or to allow the structure of objects or subobjects to be defined flexibly and dynamically (e.g., XML
structures).

There are many data sets that may not be as structured as relational tables or data matrices. However,
they do have certain structures with clearly defined semantic meaning. For example, a transactional
data set may contain a large set of transactions each containing a set of items. A sequence data set may
contain a large set of sequences each containing an ordered set of elements that can in turn contain a
set of items. Many application data sets, such as shopping transaction data, time-series data, gene or
protein data, or Weblog data, belong to this category.

A more sophisticated type of semistructured data set is graph or network data, where a set of nodes
are connected by a set of edges (also called links); and each node/link may have its own semantic
description or substructures.

Each of such categories of structured and semistructured data sets may have special kinds of patterns
or knowledge to be mined and many dedicated data mining methods, such as sequential pattern mining,
graph pattern mining, and information network mining methods, have been developed to analyze such
data sets.

Beyond such structured or semistructured data, there are also large amounts of unstructured data,
such as text data and multimedia (e.g., audio, image, video) data. Although some studies treat them
as one-dimensional or multidimensional byte streams, they do carry a lot of interesting semantics.
Domain-specific methods have been developed to analyze such data in the fields of natural language
understanding, text mining, computer vision, and pattern recognition. Moreover, recent advances on
deep learning have made tremendous progress on processing text, image, and video data. Nevertheless,
mining hidden structures from unstructured data may greatly help understand and make good use of
such data.

The real-world data can often be a mixture of structured data, semistructured data, and unstructured
data. For example, an online shopping website may host information for a large set of products, which

1.4 Mining various kinds of knowledge 5

can be essentially structured data stored in a relational database, with a fixed set of fields on product
name, price, specifications, and so on. However, some fields may essentially be text, image, and video
data, such as product introduction, expert or user reviews, product images, and advertisement videos.
Data mining methods are often developed for mining some particular type of data, and their results can
be integrated and coordinated to serve the overall goal.

Data associated with different applications

Different applications may generate or need to handle very different data sets and require rather
different data analysis methods. Thus when categorizing data sets for data mining, we should take
specific applications into consideration.

Take sequence data as an example. Biological sequences such as DNA or protein sequences may
have very different semantic meaning from shopping transaction sequences or Web click streams, call-
ing for rather different sequence mining methods. A special kind of sequence data is time-series data
where a time-series may contain an ordered set of numerical values with equal time interval, which is
also rather different from shopping transaction sequences, which may not have fixed time gaps (a cus-
tomer may shop at anytime she likes).

Data in some applications can be associated with spatial information, time information, or both,
forming spatial, temporal, and spatiotemporal data, respectively. Special data mining methods, such
as spatial data mining, temporal data mining, spatiotemporal data mining, or trajectory pattern mining,
should be developed for mining such data sets as well.

For graph and network data, different applications may also need rather different data mining
methods. For example, social networks (e.g., Facebook or LinkedIn data), computer communication
networks, biological networks, and information networks (e.g., authors linking with keywords) may
carry rather different semantics and require different mining methods.

Even for the same data set, finding different kinds of patterns or knowledge may require different
data mining methods. For example, for the same set of software (source) programs, finding plagiarized
subprogram modules or finding copy-and-paste bugs may need rather different data mining techniques.

Rich data types and diverse application requirements call for very diverse data mining methods.
Thus data mining is a rich and fascinating research domain, with lots of new methods waiting to be
studied and developed.

Stored vs. streaming data

Usually, data mining handles finite, stored data sets, such as those stored in various kinds of large
data repositories. However, in some applications such as video surveillance or remote sensing, data may
stream in dynamically and constantly, as infinite data streams. Mining stream data will require rather
different methods than stored data, which may form another interesting theme in our study.

1.4 Mining various kinds of knowledge

Different kinds of patterns and knowledge can be uncovered via data mining. In general, data mining
tasks can be put into two categories: descriptive data mining and predictive data mining. Descrip-
tive mining characterizes properties of the interested set of data, whereas predictive mining performs
induction on the data set in order to make predictions.

6 Chapter 1 Introduction

In this section, we introduce different data mining tasks. These include multidimensional data
summarization (Section 1.4.1); the mining of frequent patterns, associations, and correlations (Sec-
tion 1.4.2); classification and regression (Section 1.4.3); cluster analysis (Section 1.4.4); and outlier
analysis (Section 1.4.6). Different data mining functionalities generate different kinds of results that
are often called patterns, models, or knowledge. In Section 1.4.7, we will also introduce the interest-
ingness of a pattern or a model. In many cases, only interesting patterns or models will be considered
as knowledge.

1.4.1 Multidimensional data summarization

It is often tedious for a user to go over the details of a large set of data. Thus it is desirable to automati-
cally summarize an interested set of data and compare it with the contrasting sets at some high levels.
Such summaritive description of an interested set of data is called data summarization. Data sum-
marization can often be conducted in a multidimensional space. If the multidimensional space is well
defined and frequently used, such as product category, producer, location, or time, massive amounts
of data can be aggregated in the form of data cubes to facilitate user’s drill-down or roll-up of the
summarization space with mouse clicking. The output of such multidimensional summarization can be
presented in various forms, such as pie charts, bar charts, curves, multidimensional data cubes, and
multidimensional tables, including crosstabs.

For structured data, multidimensional aggregation methods have been developed to facilitate such
precomputation or online computation of multidimensional aggregations using data cube technology,
which will be discussed in Chapter 3. For unstructured data, such as text, this task becomes challenging.
We will give a brief discussion of such research frontiers in our last chapter.

1.4.2 Mining frequent patterns, associations, and correlations

Frequent patterns, as the name suggests, are patterns that occur frequently in data. There are many
kinds of frequent patterns, including frequent itemsets, frequent subsequences (also known as sequen-
tial patterns), and frequent substructures. A frequent itemset typically refers to a set of items that often
appear together in a transactional data set—for example, milk and bread, which are frequently bought
together in grocery stores by many customers. A frequently occurring subsequence, such as the pattern
that customers, tend to purchase first a laptop, followed by a computer bag, and then other accessories,
is a (frequent) sequential pattern. A substructure can refer to different structural forms (e.g., graphs,
trees, or lattices) that may be combined with itemsets or subsequences. If a substructure occurs fre-
quently, it is called a (frequent) structured pattern. Mining frequent patterns leads to the discovery of
interesting associations and correlations within data.

Example 1.2. Association analysis. Suppose that, a webstore manager wants to know which items are
frequently purchased together (i.e., in the same transaction). An example of such a rule, mined from
the transactional database, is

buys(X, “computer’) = buys(X, “webcam”) [support = 1%, confidence = 50%],

where X is a variable representing a customer. A confidence, or certainty, of 50% means that if a cus-
tomer buys a computer, there is a 50% chance that she will buy webcam as well. A 1% support means

1.4 Mining various kinds of knowledge 7

that 1% of all the transactions under analysis show that computer and webcam are purchased together.
This association rule involves a single attribute or predicate (i.e., buys) that repeats. Association rules
that contain a single predicate are referred to as single-dimensional association rules. Dropping the
predicate notation, the rule can be written simply as “computer = webcam [1%, 50%].”

Suppose, mining the same database generates another association rule:

age(X,“20..29”) A income(X, “40K..49K”) = buys(X, “laptop”)
[support = 0.5%, confidence = 60%].

The rule indicates that of all its customers under study, 0.5% are 20 to 29 years old with an income
of $40,000 to $49,000 and have purchased a laptop (computer). There is a 60% probability that a
customer in this age and income group will purchase a laptop. Note that this is an association involving
more than one attribute or predicate (i.e., age, income, and buys). Adopting the terminology used in
multidimensional databases, where each attribute is referred to as a dimension, the above rule can be
referred to as a multidimensional association rule. O

Typically, association rules are discarded as uninteresting if they do not satisfy both a minimum
support threshold and a minimum confidence threshold. Additional analysis can be performed to
uncover interesting statistical correlations between associated attribute—value pairs.

Frequent itemset mining is a fundamental form of frequent pattern mining. Mining frequent itemsets,
associations, and correlations will be discussed in Chapter 4. Mining diverse kinds of frequent pattern,
as well as mining sequential patterns and structured patterns, will be covered in Chapter 5.

1.4.3 Classification and regression for predictive analysis

Classification is the process of finding a model (or function) that describes and distinguishes data
classes or concepts. The model is derived based on the analysis of a set of training data (i.e., data
objects for which the class labels are known). The model is used to predict the class labels of objects
for which the class labels are unknown.

Depending on the classification methods, a derived model can be in various forms, such as a set of
classification rules (i.e., IF-THEN rules), a decision tree, a mathematical formula, or a learned neural
network (Fig. 1.2). A decision tree is a flowchart-like tree structure, where each node denotes a test
on an attribute value, each branch represents an outcome of the test, and tree leaves represent classes
or class distributions. Decision trees can easily be converted to classification rules. A neural network,
when used for classification, is typically a collection of neuron-like processing units with weighted
connections between the units. There are many other methods for constructing classification models,
such as naive Bayesian classification, support vector machines, and k-nearest-neighbor classification.

Whereas classification predicts categorical (discrete, unordered) labels, regression models contin-
uous-valued functions. That is, regression is used to predict missing or unavailable numerical data
values rather than (discrete) class labels. The term prediction refers to both numeric prediction and class
label prediction. Regression analysis is a statistical methodology that is most often used for numeric
prediction, although other methods exist as well. Regression also encompasses the identification of
distribution frends based on the available data.

Classification and regression may need to be preceded by feature selection or relevance analysis,
which attempts to identify attributes (often called features) that are significantly relevant to the clas-

8 Chapter 1 Introduction

age(X, “youth”) AND income(X, “high”) ——» class(X, “A”)
age(X, “youth”) AND income(X, “low”) —— class(X, “B”)
age(X, “middle_aged”) —» class(X, “C”)
age(X, “senior”) — class(X, “C”)

(a)

age

(©
FIGURE 1.2
A classification model can be represented in various forms: (a) IF-THEN rules, (b) a decision tree, or (c) a neural
network.

sification and regression process. Such attributes will be selected for the classification and regression
process. Other attributes, which are irrelevant, can then be excluded from consideration.

Example 1.3. Classification and regression. Suppose a webstore sales manager wants to classify a
large set of items in the store, based on three kinds of responses to a sales campaign: good response,
mild response, and no response. You want to derive a model for each of these three classes based on the
descriptive features of the items, such as price, brand, place_made, type, and category. The resulting
classification should maximally distinguish each class from the others, presenting an organized picture
of the data set.

Suppose that the resulting classification is expressed as a decision tree. The decision tree, for in-
stance, may identify price as being the first important factor that best distinguishes the three classes.
Other features that help further distinguish objects of each class from one another include brand and
place_made. Such a decision tree may help the manager understand the impact of the given sales cam-
paign and design a more effective campaign in the future.

Suppose instead, that rather than predicting categorical response labels for each store item, you
would like to predict the amount of revenue that each item will generate during an upcoming sale,
based on the previous sales data. This is an example of regression analysis because the regression
model constructed will predict a continuous function (or ordered value.) O

1.4 Mining various kinds of knowledge 9

Chapters 6 and 7 discuss classification in further detail. Regression analysis is covered lightly in
these chapters since it is typically introduced in statistics courses. Sources for further information are
given in the bibliographic notes.

1.4.4 Cluster analysis

Unlike classification and regression, which analyze class-labeled (training) data sets, cluster analysis
(also called clustering) groups data objects without consulting class labels. In many cases, class-labeled
data may simply not exist at the beginning. Clustering can be used to generate class labels for a group of
data. The objects are clustered or grouped based on the principle of maximizing the intraclass similarity
and minimizing the interclass similarity. That is, clusters of objects are formed so that objects within a
cluster have high similarity in comparison to one another, but are rather dissimilar to objects in other
clusters. Each cluster so formed can be viewed as a class of objects, from which rules can be derived.
Clustering can also facilitate taxonomy formation, that is, the organization of observations into a
hierarchy of classes that group similar events together.

Example 1.4. Cluster analysis. Cluster analysis can be performed on the webstore customer data
to identify homogeneous subpopulations of customers. These clusters may represent individual target
groups for marketing. Fig. 1.3 shows a 2-D plot of customers with respect to customer locations in a
city. Three clusters of data points are evident. O

Cluster analysis forms the topic of Chapters 8 and 9.

1.4.5 Deep learning

For many data mining tasks, such as classification and clustering, a key step often lies in finding “good
features,” which is a vector representation of each input data tuple. For example, in order to predict

° ° ° °
. °
° o0 ® o, % o
e ®0 04% o
' . o
e ° °
. % © 00 ®
\® ® ool
N ° o®
e oo o .
° o
« P
e ° o
7 e e ° ° o
2 ° ® oo
eeo e . o %
Y ° % o
o ® o ° :
(X o o

FIGURE 1.3

A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.

10 Chapter 1 Introduction

whether a regional disease outbreak will occur, one might have collected a large number of features
from the health surveillance data, including the number of daily positive cases, number of daily tests,
number of daily hospitalization, etc. Traditionally, this step (called feature engineering) often heavily
relies on domain knowledge. Deep learning techniques provide an automatic way for feature engineer-
ing, which is capable of generating semantically meaningful features (e.g., weekly positive rate) from
the initial input features. The generated features often significantly improve the mining performance
(e.g., classification accuracy).

Deep learning is based on neural networks. A neural network is a set of connected input-output
units where each connection has a weight associated with it. During the learning phase, the network
learns by adjusting the weights to be able to predict the correct target values (e.g., class labels) of the
input tuples. The core algorithm to learn such weights is called backpropagation, which searches for
a set of weights and bias values that can model the data to minimize the loss function between the
network’s prediction and the actual target output of data tuples. Various forms (called architectures)
of neural networks have been developed, including feed-forward neural networks, convolutional neural
networks, recurrent neural networks, graph neural networks, and many more.

Deep learning has broad applications in computer vision, natural language processing, machine
translation, social network analysis, and so on. It has been used in a variety of data mining tasks,
including classification, clustering, outlier detection, and reinforcement learning.

Deep learning is the topic of Chapter 10.

1.4.6 Outlier analysis

A data set may contain objects that do not comply with the general behavior or model of the data.
These data objects are outliers. Many data mining methods discard outliers as noise or exceptions.
However, in some applications (e.g., fraud detection) the rare events can be more interesting than the
more regularly occurring ones. The analysis of outlier data is referred to as outlier analysis or anomaly
mining.

Outliers may be detected using statistical tests that assume a distribution or probability model for
the data, or using distance measures where objects that are remote from any other cluster are considered
outliers. Rather than using statistical or distance measures, density-based methods may identify outliers
in a local region, although they look normal from a global statistical distribution view.

Example 1.5. Outlier analysis. Outlier analysis may uncover fraudulent usage of credit cards by
detecting purchases of unusually large amounts for a given account number in comparison to regular
charges incurred by the same account. Outlier values may also be detected with respect to the locations
and types of purchase, or the purchase frequency. O

Outlier analysis is discussed in Chapter 11.

1.4.7 Are all mining results interesting?

Data mining has the potential to generate a lot of results. A question can be, “Are all of the mining
results interesting?”

This is a great question. Each type of data mining functions has its own measures on the evaluation
of the mining quality. Nevertheless, there are some shared philosophy and principles.

1.4 Mining various kinds of knowledge 11

Take pattern mining as an example. Pattern mining may generate thousands or even millions of
patterns, or rules. You may wonder, “What makes a pattern interesting? Can a data mining system
generate all of the interesting patterns? Or, can the system generate only the interesting ones?”

To answer the first question, a pattern is interesting if it is (1) easily understood by humans, (2)
valid on new or test data with some degree of certainty, (3) potentially useful, and (4) novel. A pattern
is also interesting if it validates a hypothesis that the user sought to confirm.

Several objective measures of pattern interestingness exist. These are based on the structure of
discovered patterns and the statistics underlying them. An objective measure for association rules of the
form X = Y is rule support, representing the percentage of transactions from a transaction database
that the given rule satisfies. This is taken to be the probability P(X U Y), where X U Y indicates that a
transaction contains both X and Y, that is, the union of itemsets X and Y. Another objective measure for
association rules is confidence, which assesses the degree of certainty of the detected association. This
is taken to be the conditional probability P (Y |X), that is, the probability that a transaction containing
X also contains Y. More formally, support and confidence are defined as

support(X = Y)=P(XUY),
confidence(X = Y) = P(Y|X).

In general, each interestingness measure is associated with a threshold, which may be controlled by
the user. For example, rules that do not satisfy a confidence threshold of, say, 50% can be considered
uninteresting. Rules below the threshold likely reflect noise, exceptions, or minority cases and are
probably of less value.

There are also other objective measures. For example, one may like set of items to be strongly
correlated in an association rule. We will discuss such measures in the corresponding chapter.

Although objective measures help identify interesting patterns, they are often insufficient unless
combined with subjective measures that reflect a particular user’s needs and interests. For example,
patterns describing the characteristics of customers who shop frequently online should be interesting
to the marketing manager, but may be of little interest to other analysts studying the same database
for patterns on employee performance. Furthermore, many patterns that are interesting by objective
standards may represent common sense and, therefore, are actually uninteresting.

Subjective interestingness measures are based on user beliefs in the data. These measures find
patterns interesting if the patterns are unexpected (contradicting a user’s belief) or offer strategic in-
formation on which the user can act. In the latter case, such patterns are referred to as actionable. For
example, patterns like “a large earthquake often follows a cluster of small quakes” may be highly ac-
tionable if users can act on the information to save lives. Patterns that are expected can be interesting
if they confirm a hypothesis that the user wishes to validate or they resemble a user’s hunch.

The second question—*“Can a data mining system generate all of the interesting patterns?”—refers
to the completeness of a data mining algorithm. It is often unrealistic and inefficient for a pattern mining
system to generate all possible patterns since there could be a very large number of them. However, one
may also worry whether one may miss some important ones if the system stops short. To solve this
dilemma, user-provided constraints and interestingness measures should be used to focus the search.
With well-defined interesting measures and user-provided constraints, it is quite realistic to ensure the
completeness of pattern mining. The methods involved are examined in detail in Chapter 4.

Finally, the third question— “Can a data mining system generate only interesting patterns?”—is an
optimization problem in data mining. It is highly desirable for a data mining system to generate only

12 Chapter 1 Introduction

interesting patterns. This would be efficient for both the data mining system and the user because the
system may spend much less time to generate much fewer but interesting patterns, whereas the user
will not need to sift through a large number of patterns to identify the truly interesting ones. Constraint-
based pattern mining described in Chapter 5 is a good example in this direction.

Methods to assess the quality or interestingness of data mining results, and how to use them to
improve data mining efficiency, are discussed throughout the book.

1.5 Data mining: confluence of multiple disciplines

As a discipline that studies efficient and effective methods for uncovering patterns and knowledge
from various kinds of massive data sets for many applications, data mining naturally serves a conflu-
ence of multiple disciplines including machine learning, statistics, pattern recognition, natural language
processing, database technology, visualization and human computer interaction (HCI), algorithms,
high-performance computing, social sciences, and many application domains (Fig. 1.4). The interdis-
ciplinary nature of data mining research and development contributes significantly to the success of
data mining and its extensive applications. On the other hand, data mining is not only nurtured from the
knowledge and development of these disciplines, the dedicated research, development, and applications
of data mining on various kinds of big data may have substantially impacted the development of these
disciplines in recent years as well. In this section, we discuss several disciplines that strongly impact
and actively interact with the research, development, and applications of data mining.

1.5.1 Statistics and data mining

Statistics studies the collection, analysis, interpretation or explanation, and presentation of data. Data
mining has an inherent connection with statistics.

A statistical model is a set of mathematical functions that describe the behavior of the objects
in a target class in terms of random variables and their associated probability distributions. Statistical

Pattern
Recognitiol
isualization

& HCI
Algorithm

High-Performance

Computing

Machine
Learning

atural Language
Processing

Database
Technolog
FIGURE 1.4

Data mining: Confluence of multiple disciplines.

Data Mining

1.5 Data mining: confluence of multiple disciplines 13

models are widely used to model data and data classes. For example, in data mining tasks such as data
characterization and classification, statistical models of target classes can be built. In other words, such
statistical models can be the outcome of a data mining task. Alternatively, data mining tasks can be
built on top of statistical models. For example, we can use statistics to model noise and missing data
values. Then, when mining patterns in a large data set, the data mining process can use the model to
help identify and handle noisy or missing values in the data.

Statistics research develops tools for prediction and forecasting using data and statistical models.
Statistical methods can be used to summarize or describe a collection of data. Basic statistical descrip-
tions of data are introduced in Chapter 2. Statistics is useful for mining various patterns from data and
for understanding the underlying mechanisms generating and affecting the patterns. Inferential statis-
tics (or predictive statistics) models data in a way that accounts for randomness and uncertainty in the
observations and is used to draw inferences about the process or population under investigation.

Statistical methods can also be used to verify data mining results. For example, after a classification
or prediction model is mined, the model should be verified by statistical hypothesis testing. A statis-
tical hypothesis test (sometimes called confirmatory data analysis) makes statistical decisions using
experimental data. A result is called statistically significant if it is unlikely to have occurred by chance.
If the classification or prediction model holds, then the descriptive statistics of the model increases the
soundness of the model.

Applying statistical methods in data mining is far from trivial. Often, a serious challenge is how to
scale up a statistical method over a large data set. Many statistical methods have high complexity in
computation. When such methods are applied on large data sets that are also distributed on multiple
logical or physical sites, algorithms should be carefully designed and tuned to reduce the computational
cost. This challenge becomes even tougher for online applications, such as online query suggestions in
search engines, where data mining is required to continuously handle fast, real-time data streams.

Data mining research has developed many scalable and effective solutions for the analysis of mas-
sive data sets and data streams. Moreover, different kinds of data sets and different applications may
require rather different analysis methods. Effective solutions have been proposed and tested, which
leads to many new, scalable data mining-based statistical analysis methods.

1.5.2 Machine learning and data mining

Machine learning investigates how computers can learn (or improve their performance) based on data.
Machine learning is a fast-growing discipline, with many new methodologies and applications devel-
oped in recent years, from support vector machines to probabilistic graphical models and deep learning,
which we will cover in this book.

In general, machine learning addresses two classical problems: supervised learning and unsuper-
vised learning.

* Supervised learning: A classic example of supervised learning is classification. The supervision in
the learning comes from the labeled examples in the training data set. For example, to automatically
recognize handwritten postal codes on mails, the learning system takes a set of handwritten postal
code images and their corresponding machine-readable translations as the training examples, and
learns (i.e., computes) a classification model.

* Unsupervised learning: A classic example of unsupervised learning is clustering. The learning pro-
cess is unsupervised since the input examples are not class-labeled. Typically, we may use clustering

14 Chapter 1 Introduction

to discover groups within the data. For example, an unsupervised learning method can take, as input,
a set of images of handwritten digits. Suppose that it finds 10 clusters of data. These clusters may
hopefully correspond to the 10 distinct digits of 0 to 9, respectively. However, since the training data
are not labeled, the learned model cannot tell us the semantic meaning of the clusters found.

As to these two basic problems, data mining and machine learning do share many similarities.
However, data mining differs from machine learning in several major aspects. First, even on similar
tasks like classification and clustering, data mining often works on very large data sets, or even on
infinite data streams, scalability can be an important concern, and many efficient and highly scalable
data mining algorithms or stream mining algorithms have to be developed to accomplish such tasks.

Second, in many data mining problems, the data sets are usually large, but the training data can still
be rather small since it is expensive for experts to provide quality labels for many examples. Therefore,
data mining has to put a lot of effort on developing weakly supervised methods. These include method-
ologies like semisupervised learning with a small set of labeled data but a large set of unlabeled data
(with the idea sketched in Fig. 1.5), integration or ensemble of multiple weak models obtained from
nonexperts (e.g., those obtained by crowd-sourcing), distant supervision, such as using popularly avail-
able and general (but distantly relevant to the problem to be solved) knowledge-bases (e.g., wikipedia,
DBPedia), actively learning by carefully selecting examples to ask human experts, or transfer learning
by integrating models learned from similar problem domains. Data mining has been extending such
weakly supervised methods for constructing quality classification models on large data sets with a very
limited set of high quality training data.

o O
@)

o A
O O
O
® O

OO O

o€ o
O O
o 200
®

© 5

O g
0 O

@ Positive example ~— — — — Decision boundary without unlabeled examples

@ Negative example Decision boundary with unlabeled examples

O Unlabeled example

FIGURE 1.5

Semisupervised learning.

1.5 Data mining: confluence of multiple disciplines 15

Third, machine learning methods may not be able to handle many kinds of knowledge discovery
problems on big data. On the other hand, data mining, developing effective solutions for concrete ap-
plication problems, goes deep in the problem domain, and expands far beyond the scope covered by
machine learning. For example, many application problems, such as business transaction data analysis,
software program execution sequence analysis, and chemical and biological structural analysis, need
effective methods for mining frequent patterns, sequential patterns, and structured patterns. Data min-
ing research has generated many scalable, effective, and diverse mining methods for such tasks. As
another example, the analysis of large-scale social and information networks poses many challenging
problems that may not fit the typical scope of many machine learning methods due to the information
interaction across links and nodes in such networks. Data mining has developed a lot of interesting
solutions to such problems.

From this point of view, data mining and machine learning are two different but closely related
disciplines. Data mining dives deep into concrete, data-intensive application domains, does not con-
fine itself to a single problem-solving methodology, and develops concrete (sometimes rather novel),
effective and scalable solutions for many challenging application problems. It is a young, broad, and
promising research discipline for many researchers and practitioners to study and work on.

1.5.3 Database technology and data mining

Database system research focuses on the creation, maintenance, and use of databases for organizations
and end-users. Particularly, database system researchers have established well-recognized principles in
data models, query languages, query processing and optimization, data storage, and indexing methods.
Database technology is well known for its scalability in processing very large, relatively structured data
sets.

Many data mining tasks need to handle large data sets or even real-time, fast streaming data. Data
mining can make good use of scalable database technologies to achieve high efficiency and scalability
on large data sets. Moreover, data mining tasks can be used to extend the capability of existing database
systems to satisfy users’ sophisticated data analysis requirements.

Recent database systems have built systematic data analysis capabilities on database data using data
warehousing and data mining facilities. A data warehouse integrates data originated from multiple
sources and various timeframes. It consolidates data in multidimensional space to form partially ma-
terialized data cubes. The data cube model not only facilitates online analytical processing (OLAP)
in multidimensional databases but also promotes multidimensional data mining, which will be further
discussed in future chapters.

1.5.4 Data mining and data science

With the tremendous amount of data in almost every discipline and various kinds of applications,
big data and data science have become buzzwords in recent years. Big data generally refers to huge
amounts of structured and unstructured data of various forms, and data science is an interdisciplinary
field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights
from massive data of various forms. Clearly, data mining plays an essential role in data science.

For most people, data science is a concept that unifies statistics, machine learning, data mining,
and their related methods in order to understand and analyze massive data. It employs techniques and
theories drawn from many fields within the context of mathematics, statistics, information science, and

16 Chapter 1 Introduction

computer science. For many industry people, the term “data science” often refers to business analyt-
ics, business intelligence, predictive modeling, or any meaningful use of data, and is being taken as
a glamorized term to re-brand statistics, data mining, machine learning, or any kind of data analytics.
So far, there exists no consensus on a definition or suitable curriculum contents in data science degree
programs of many universities. Nonetheless, most universities take basic knowledge generated in statis-
tics, machine learning, data mining, database, and human computer interaction as the core curriculum
in data science education.

In 1990s, the late Turing award winner Jim Gray envisioned data science as the “fourth paradigm”
of science (i.e., from empirical to theoretical, computational, and now data-driven) and asserted that
“everything about science is changing because of the impact of information technology” and the emer-
gence of massive data. So there is no wonder that data science, big data, and data mining are closely
interrelated and represent an inevitable trend in science and technology developments.

1.5.5 Data mining and other disciplines

Besides statistics, machine learning, and database technology, data mining has close relationships with
many other disciplines as well.

The majority of the real-world data are unstructured, in the form of natural language text, images, or
audio-video data. Therefore, natural language processing, computer vision, pattern recognition, audio-
video signal processing, and information retrieval will offer critical help at handling such data. Actually,
handling any special kinds of data will need a lot of domain knowledge to be integrated into the data
mining algorithm design. For example, mining biomedical data will need the integration of knowledge
from biological sciences, medical sciences, and bioinformatics. Mining geospatial data will need much
knowledge and techniques from geography and geospatial data sciences. Mining software bugs in large
software programs will need to integrate software engineering with data mining. Mining social media
and social networks will need knowledge and skills from social sciences and network sciences. Such
examples can go on and on since data mining will penetrate almost every application domain.

One major challenge in data mining is efficiency and scalability since we often have to handle huge
amounts of data with critical time and resource constraints. Data mining is critically connected with
efficient algorithm design such as low-complexity, incremental, and streaming data mining algorithms.
It often needs to explore high performance computation, parallel computation, and distributed compu-
tation, with advanced hardware and cloud computing or cluster computing environment.

Data mining is also closely tied with human-computer interaction. Users need to interact with a
data mining system or process in an effective way, telling the system what to mine, how to incorporate
background knowledge, how to mine, and how to present the mining results in an easy-to-understand
(e.g., by interpretation and visualization) and easy-to-interact way (e.g., with friendly graphic user
interface and interactive mining).

Actually, nowadays, there are not only many interactive data mining systems but also many more
data mining functions hidden in various kinds of application programs. It is unrealistic to expect every-
one in our society to understand and master data mining techniques. It is also forbidden for industries
to expose their large data sets. Many systems have data mining functions built within so that people
can perform data mining or use data mining results simply by mouse clicking. For example, intelli-
gent search engines and online retails perform such invisible data mining by collecting their data and
user’s search or purchase history, incorporating data mining into their components to improve their per-
formance, functionality, and user satisfaction. When your grandma shops online, she may be surprised

1.6 Data mining and applications 17

when receiving some smart recommendations. This could likely be resulted from such invisible data
mining.

1.6 Data mining and applications

Where there are data, there are data mining applications

As a highly application-driven discipline, data mining has seen great successes in many applications. It
is impossible to enumerate all applications where data mining plays a critical role. Presentations of data
mining in knowledge-intensive application domains, such as bioinformatics and software engineering,
require more in-depth treatment and are beyond the scope of this book. To demonstrate the importance
of applications of data mining, we briefly discuss a few highly successful and popular application
examples of data mining: business intelligence; search engines; social media and social networks; and
biology, medical science, and health care.

Business intelligence

It is critical for businesses to acquire a better understanding of the commercial context of their organiza-
tion, such as their customers, the market, supply and resources, and competitors. Business intelligence
(BI) technologies provide historical, current, and predictive views of business operations. Examples
include reporting, online analytical processing, business performance management, competitive intel-
ligence, benchmarking, and predictive analytics.

“How important is data mining in business intelligence?” Without data mining, many businesses
may not be able to perform effective market analysis, compare customer feedback on similar products,
discover the strengths and weaknesses of their competitors, retain highly valuable customers, and make
smart business decisions.

Clearly, data mining is the core of business intelligence. Online analytical processing tools in
business intelligence rely on data warehousing and multidimensional data mining. Classification and
prediction techniques are the core of predictive analytics in business intelligence, for which there are
many applications in analyzing markets, supplies, and sales. Moreover, clustering plays a central role
in customer relationship management, which groups customers based on their similarities. Using multi-
dimensional summarization techniques, we can better understand features of each customer group and
develop customized customer reward programs.

Web search engines

A Web search engine is a specialized computer server that searches for information on the Web. The
search results of a user query are often returned as a list (sometimes called Aits). The hits may consist of
web pages, images, and other types of files. Some search engines also search and return data available in
public databases or open directories. Search engines differ from web directories in that web directories
are maintained by human editors, whereas search engines operate algorithmically or by a mixture of
algorithmic and human input.

Search engines pose grand challenges to data mining. First, they have to handle a huge and ever-
growing amount of data. Typically, such data cannot be processed using one or a few machines. Instead,
search engines often need to use computer clouds, which consist of thousands or even hundreds of thou-

18 Chapter 1 Introduction

sands of computers that collaboratively mine the huge amount of data. Scaling up data mining methods
over computer clouds and large distributed data sets is an area of active research and development.

Second, Web search engines often have to deal with online data. A search engine may be able to
afford constructing a model offline on huge datasets. To do this, it may construct a query classifier
that assigns a search query to predefined categories based on the query topic (i.e., whether the search
query “apple” is meant to retrieve information about a fruit or a brand of computers). Even if a model
is constructed offline, the adaptation of the model online must be fast enough to answer user queries in
real time.

Another challenge is maintaining and incrementally updating a model on fast-growing data streams.
For example, a query classifier may need to be incrementally maintained continuously since new queries
keep emerging and predefined categories and the data distribution may change. Most of the existing
model training methods are offline and static and thus cannot be used in such a scenario.

Third, Web search engines often have to deal with queries that are asked only a very small number
of times. Suppose a search engine wants to provide context-aware query recommendations. That is,
when a user poses a query, the search engine tries to infer the context of the query using the user’s
profile and his query history in order to return more customized answers within a small fraction of a
second. However, although the total number of queries asked can be huge, many queries may be asked
only once or a few times. Such severely skewed data are challenging for many data mining and machine
learning methods.

Social media and social networks

The prevalence of social media and social networks has fundamentally changed our life and the way
we exchange information and socialize nowadays. With tremendous amounts of social media and social
network data available, it is critical to analyze such data to extract actionable patterns and trends from
social media and social network data.

Social media mining is to sift through massive amounts of social media data (e.g., on social media
usage, online social behaviors, connections between individuals, online shopping behavior, content
exchange, etc.) in order to discern patterns and trends. These patterns and trends have been used for
social event detection, public health monitoring and surveillance, sentiment analysis in social media,
recommendation in social media, information provenance, social media trustability analysis, and social
spammer detection.

Social network mining is to investigate social network structures and the information associated
with such networks through the use of networks and graph theory and data mining methods. The social
network structures are characterized in terms of nodes (individual actors, people, or things within the
network) and the ties, edges, or links (relationships or interactions) that connect them. Examples of
social structures commonly visualized through social network analysis include social media networks,
memes spread, friendship and acquaintance networks, collaboration graphs, kinship, disease transmis-
sion, and sexual relationships. These networks are often visualized through sociograms in which nodes
are represented as points and ties are represented as lines.

Social network mining has been used to detect hidden communities, uncover the evolution and dy-
namics of social networks, compute network measures (e.g., centrality, transitivity, reciprocity, balance,
status, and similarity), analyze how information propagates in social media sites, measure and model
node/substructure influence and homophily, and conduct location-based social network analysis.

Social media mining and social network mining are important applications of data mining.

1.8 Summary 19

Biology, medical science, and health care

Biology, medical science and health care have also been generating massive data at exponential scale.
Biomedical data take many forms, from “omics” to imaging, mobile health, and electronic health
records. With the availability of more efficient digital collection methods, biomedical scientists and
clinicians now find themselves confronting ever larger sets of data and trying to devise creative ways
to sift through this mountain of data and make sense of it. Indeed, data that used to be considered large
now seems small as the amount of data now being collected in a single day by an investigator can sur-
pass what might have been generated over his/her career even a decade ago. This deluge of biomedical
information requires new thinking about how data can be managed and analyzed to further scientific
understanding and for improving healthcare.

Biomedical data mining involves many challenging data mining tasks, including mining massive ge-
nomic and proteomic sequence data, mining frequent subgraph patterns for classifying biological data,
mining regulatory networks, characterization and prediction of protein-protein interactions, classifica-
tion and predictive analysis of medical images, biological text mining, biological information network
construction from biotext data, mining electronic health records, and mining biomedical networks.

1.7 Data mining and society

With data mining penetrating our everyday lives, it is important to study the impact of data mining
on society. How can we use data mining technology to benefit society? How can we guard against its
misuse? The improper disclosure or use of data and the potential violation of individual privacy and
data protection rights are areas of concern that need to be addressed.

Data mining will help scientific discovery, business management, economy recovery, and security
protection (e.g., the real-time discovery of intruders and cyberattacks). However, it also poses the risk
of unintentionally disclosing some confidential business or government information and disclosing an
individual’s personal information. Studies on data security in data mining and privacy-preserving data
publishing and data mining are important, ongoing research theme. The philosophy is to observe data
sensitivity and preserve data security and people’s privacy while performing successful data mining.

These issues and many additional ones relating to the research, development, and application of
data mining will be discussed throughout the book.

1.8 Summary

* Necessity is the mother of invention. With the mounting growth of data in every application, data
mining meets the imminent need for effective, scalable, and flexible data analysis in our society.
Data mining can be considered as a natural evolution of information technology and a confluence of
several related disciplines and application domains.

» Data mining is the process of discovering interesting patterns and knowledge from massive amounts
of data. As a knowledge discovery process, it typically involves data cleaning, data integration,
data selection, data transformation, pattern and model discovery, pattern or model evaluation, and
knowledge presentation.

20 Chapter 1 Introduction

* A pattern or model is interesting if it is valid on test data with some degree of certainty, novel,
potentially useful (e.g., can be acted on or validates a hunch about which the user was curious),
and easily understood by humans. Interesting patterns represent knowledge. Measures of pattern
interestingness, either objective or subjective, can be used to guide the discovery process.

¢ Data mining can be conducted on any kind of data as long as the data are meaningful for a target
application, such as structured data (e.g., relational database, transaction data) and unstructured data
(e.g., text and multimedia data), as well as data associated with different applications. Data can
also be categorized as stored vs. stream data, whereas the latter may need to explore special stream
mining algorithms.

¢ Data mining functionalities are used to specify the kinds of patterns or knowledge to be found
in data mining tasks. The functionalities include characterization and discrimination; the mining of
frequent patterns, associations, and correlations; classification and regression; deep learning; cluster
analysis; and outlier detection. As new types of data, new applications, and new analysis demands
continue to emerge, there is no doubt we will see more and more novel data mining tasks in the
future.

* Data mining, is a confluence of multiple disciplines but it has its unique research focus, dedicated to
many advanced applications. We study the close relationships of data mining with statistics, machine
learning, database technology, and many other disciplines.

» Data mining has many successful applications, such as business intelligence, Web search, bioinfor-
matics, health informatics, finance, digital libraries, and digital governments.

* Data mining may already have its strong impact on the society and the study of such impact, such
as how to ensure the effectiveness of data mining and in the meantime ensure the data privacy and
security, has become an important issue in research.

1.9 Exercises

1.1. What is data mining? In your answer, address the following:

a. Is it a simple transformation or application of technology developed from databases, statis-
tics, machine learning, and pattern recognition?

b. Someone believes that data mining is an inevitable result of the evolution of information
technology. If you are a database researcher, show data mining is resulted from a nature
evolution of database technology. What about if you are a machine learner researcher, or a
statistician?

c. Describe the steps involved in data mining when viewed as a process of knowledge discovery.

1.2. Define each of the following data mining functionalities: association and correlation analysis,
classification, regression, clustering, deep learning, and outlier analysis. Give examples of each
data mining functionality, using a real-life database that you are familiar with.

1.3. Present an example where data mining is crucial to the success of a business. What data mining
functionalities does this business need (e.g., think of the kinds of patterns that could be mined)?
Can such patterns be generated alternatively by data query processing or simple statistical analy-
sis?

1.4. Explain the difference and similarity between correlation analysis and classification, between clas-
sification and clustering, and between classification and regression.

1.10 Bibliographic notes 21

1.5. Based on your observations, describe another possible kind of knowledge that needs to be dis-
covered by data mining methods but has not been listed in this chapter. Does it require a mining
methodology that is quite different from those outlined in this chapter?

1.6. Outliers are often discarded as noise. However, one person’s garbage could be another’s treasure.
For example, exceptions in credit card transactions can help us detect the fraudulent use of credit
cards. Using fraud detection as an example, propose two methods that can be used to detect outliers
and discuss which one is more reliable.

1.7. What are the major challenges of mining a huge amount of data (e.g., billions of tuples) in com-
parison with mining a small amount of data (e.g., data set of a few hundred tuples)?

1.8. Outline the major research challenges of data mining in one specific application domain, such as
stream/sensor data analysis, spatiotemporal data analysis, or bioinformatics.

1.10 Bibliographic notes

The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSFI1], is
an early collection of research papers on knowledge discovery from data. The book Advances in
Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy
[FPSSe96], is another early collection of research results on knowledge discovery and data mining.
There have been many data mining textbook or research books published since then. Some popular
ones include Data Mining: Practical Machine Learning Tools and Techniques (4th ed.) by Witten,
Frank, Hall and Pal [WFHP16]; Data Mining: Concepts and Techniques (3rd ed.) by Han and Kam-
ber and Pei [HKP11], Introduction to Data Mining (2nd ed.) by Tan, Steinbach, Karpatne, and Kumar
[TSKK18]; Data Mining: The Textbook [Agg15b]; Data Mining and Machine Learning: Fundamental
Concepts and Algorithms (2nd ed.) by Zaki and Meira [ZJ20]; Mining of Massive Datasets (3rd ed.)
by Leskovec, Rajaraman and Ullman [ZJ20]; The Elements of Statistical Learning (2nd ed.) by Hastie,
Tibshirani, and Friedman [HTF09]; Data Mining Techniques: For Marketing, Sales, and Customer
Relationship Management (3rd ed.) by Linoff and Berry [LB11]; Principles of Data Mining (Adap-
tive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMSO1]; Mining the Web:
Discovering Knowledge from Hypertext Data by Chakrabarti [Cha03]; Web Data Mining: Exploring
Hyperlinks, Contents, and Usage Data by Liu [Liu06]; and Data Mining: Multimedia, Soft Computing,
and Bioinformatics by Mitra and Acharya [MAO03].

There are also numerous books that contain collections of papers or chapters on particular aspects of
knowledge discovery, such as cluster analysis, outlier detection, classification, association mining, and
mining particular kinds of data, such as mining text data, multimedia data, relational data, geospatial
data, social and information network data, and social media data. However, this list has gone very long
over the years and we will not list them individually. There are numerous tutorial notes on data mining
in major data mining, database, machine learning, statistics, and Web technology conferences.

KDNuggets is a regular electronic newsletter containing information relevant to knowledge dis-
covery and data mining, moderated by Piatetsky-Shapiro since 1991. The Internet site KDNuggets
(https://www.kdnuggets.com) contains a good collection of KDD-related information.

The data mining community started its first international conference on knowledge discovery and
data mining in 1995. The conference evolved from the four international workshops on knowledge
discovery in databases, held from 1989 to 1994. ACM-SIGKDD, a Special Interest Group on Knowl-

https://www.kdnuggets.com

22 Chapter 1 Introduction

edge Discovery in Databases was set up under ACM in 1998 and has been organizing the international
conferences on knowledge discovery and data mining since 1999. IEEE Computer Science Society has
organized its annual data mining conference, International Conference on Data Mining (ICDM), since
2001. SIAM (Society on Industrial and Applied Mathematics) has organized its annual data mining
conference, SIAM Data Mining Conference (SDM), since 2002. A dedicated journal, Data Mining and
Knowledge Discovery, published by Springer, has been available since 1997. An ACM journal, ACM
Transactions on Knowledge Discovery from Data, published its first volume in 2007.

ACM-SIGKDD also publishes a bi-annual newsletter, SIGKDD Explorations. There are a few
other international or regional conferences on data mining, such as the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD), the
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), and the International
Conference on Web Search and Data Mining (WSDM).

Research in data mining has also been popularly published in many textbooks, research books,
conferences, and journals on data mining, database, statistics, machine learning, and data visualization.

CHAPTER

Data, measurements, and data
preprocessing

To conduct successful data mining, the first important thing is to get familiar with your data.
You may want to know the following: What are the types of attributes or fields that make up your
data? What kind of values does each attribute have? How are the values distributed? How can we
measure the similarity of some data objects with respect to others? Gaining such insights into the
data will help with the subsequent analysis. Moreover, real-world data are typically noisy, enormous
in volume (often several gigabytes or more), and may originate from a hodgepodge of heterogeneous
sources. How can we measure the quality of data? How can we clean and integrate data from multiple
heterogeneous sources? How can we normalize, compress, or transform the data? How can we reduce
the dimensionality of data to help subsequent analysis? These are the tasks of this chapter.

We begin in Section 2.1 by studying the various attribute types. These include nominal attributes,
binary attributes, ordinal attributes, and numeric attributes. Basic statistical descriptions can be used to
learn more about each attribute’s values, as described in Section 2.2. Given a temperature attribute, for
example, we can determine its mean (average value), median (middle value), and mode (most common
value). These are measures of central tendency, which give us an idea of the “middle” or center of a
distribution. Knowing such basic statistics regarding each attribute makes it easier to fill in missing
values, smooth noisy values, and spot outliers during data preprocessing. Knowledge of the attributes
and attribute values can also help in fixing inconsistencies incurred during data integration. Plotting the
measures of central tendency shows us if the data are symmetric or skewed. Quantile plots, histograms,
and scatter plots are other graphic displays of basic statistical descriptions. These can all be useful
during data preprocessing and can provide insight into areas for mining.

We may also want to examine how similar (or dissimilar) data objects are. For example, suppose we
have a database where the data objects are patients, described by their symptoms. We may want to find
the similarity or dissimilarity between individual patients. Such information can allow us to find clusters
of like patients within the data set. The similarity (or dissimilarity) between objects may also be used to
detect outliers in the data, or to perform nearest-neighbor classification. There are many measures for
assessing similarity and dissimilarity. In general, such measures are referred to as proximity measures.
Think of the proximity of two objects as a function of the distance between their attribute values,
although proximity can also be calculated based on probabilities rather than actual distance. Measures
of data proximity are described in Section 2.3.

Finally, we will discuss data preprocessing, which is to address today’s real-world challenges: data
sets are highly susceptible to noisy, missing, and inconsistent data due to their typically huge size
and their likely origin from multiple, heterogeneous sources. Low-quality data will lead to low-quality
mining results. Huge efforts need to be paid to preprocess the data to enhance the quality of data for
effective mining. Section 2.4 is on data cleaning and data integration. The former is to remove noise
and correct inconsistencies in data, whereas the latter is to merge data from multiple sources into a

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00012-6 23
Copyright © 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811760-6.00012-6

24 Chapter 2 Data, measurements, and data preprocessing

coherent data store such as a data warehouse. Section 2.5 is on data transformation, which transforms or
consolidates data into forms appropriate for mining. That is, it can make the resulting mining process be
more efficient, and the patterns found be easier to understand. Various strategies for data transformation
have been developed. For example, data normalization scales the attribute data to fall within a smaller
range, like 0.0 to 1.0; data discretization replaces the raw values of a numeric attribute by interval labels
or conceptual labels; and data reduction techniques (e.g., compression and sampling) transform the
input data to a reduced representation and can improve the accuracy and efficiency of mining algorithms
involving distance measurements. Last, Section 2.6 is on dimensionality reduction, which is the process
of reducing the number of random variables or attributes under consideration. Please note that various
data preprocessing techniques are not mutually exclusive; they may work together. For example, data
cleaning can involve transformations to correct wrong data, such as by transforming all entries for a
date field to a common format.

2.1 Data types

Data sets are made up of data objects. A data object represents an entity—in a sales database, the
objects may be customers, store items, and sales; in a medical database, the objects may be patients; in
a university database, the objects may be students, professors, and courses. Data objects are typically
described by attributes. Data objects can also be referred to as samples, examples, instances, data
points, or objects. If the data objects are stored in a database, they are data tuples. That is, the rows of
a database correspond to the data objects, and the columns correspond to the attributes. In this section,
we define attributes and look at the various attribute types.

What is an attribute? An attribute is a data field, representing a characteristic or feature of a data
object. The nouns attribute, dimension, feature, and variable are often used interchangeably in the
literature. The term dimension is commonly used in data warehousing. Machine learning literature
tends to use the term feature, whereas statisticians prefer the term variable. Data mining and database
professionals commonly use the term attribute, and we do here as well. Attributes describing a customer
object can include, for example, customer_ID, name, and address. Observed values for a given attribute
are known as observations. A set of attributes used to describe a given object is called an attribute vector
(or feature vector). The distribution of data involving one attribute (or variable) is called univariate.
A bivariate distribution involves two attributes, and so on.

The type of an attribute is determined by the set of possible values—nominal, binary, ordinal, or
numeric—the attribute can have. In the following subsections, we introduce each type.

2.1.1 Nominal attributes

Nominal means “relating to names.” The values of a nominal attribute are symbols or names of things.
Each value represents some kind of category, code, or state, and so nominal attributes are also referred
to as categorical. The values do not have any meaningful order. In computer science, the values are
also known as enumerations.

Example 2.1. Nominal attributes. Suppose that hair_color and marital_status are two attributes de-
scribing person objects. In our application, possible values for hair_color are black, brown, blond, red,
auburn, gray, and white. The attribute marital_status can take on the values single, married, divorced,

2.1 Data types 25

and widowed. Both hair_color and marital_status are nominal attributes. Another example of a nominal
attribute is occupation, with the values teacher, dentist, programmer, farmer, and so on. O

Although we said that the values of a nominal attribute are symbols or “names of things,” it is pos-
sible to represent such symbols or “names” with numbers. With hair_color, for instance, we can assign
a code of 0 for black, 1 for brown, and so on. Another example is customer_ID, with possible values
that are all numeric. However, in such cases, the numbers are not intended to be used quantitatively.
That is, mathematical operations on values of nominal attributes are not meaningful. It makes no sense
to subtract one customer ID number from another, unlike, say, subtracting an age value from another
(where age is a numeric attribute). Even though a nominal attribute may have integers as values, it is
not considered a numeric attribute because the integers are not meant to be used quantitatively. We will
say more on numeric attributes in Section 2.1.4.

Because nominal attribute values do not have any meaningful order about them and are not quantita-
tive, it makes no sense to find the mean (average) value or median (middle) value for such an attribute,
given a set of objects. One thing that is of interest, however, is the attribute’s most commonly occurring
value. This value, known as the mode, is one of the measures of central tendency. You will learn about
measures of central tendency in Section 2.2.

2.1.2 Binary attributes

A binary attribute is a nominal attribute with only two categories or states: 0 or 1, where 0 typically
means that the attribute is absent, and 1 means that it is present. Binary attributes are referred to as
Boolean if the two states correspond to frue and false.

Example 2.2. Binary attributes. Given the attribute smoker describing a patient object, 1 indicates
that the patient smokes, whereas 0 indicates that the patient does not. Similarly, suppose the patient
undergoes a medical test that has two possible outcomes. The attribute medical_test is binary, where a
value of 1 means the result of the test for the patient is positive, whereas 0 means the result is negative.

O

A binary attribute is symmetric if both of its states are equally valuable and carry the same weight;
that is, there is no preference on which outcome should be coded as 0 or 1. One such example could be
the attribute gender having the states male and female.

A binary attribute is asymmetric if the outcomes of the states are not equally important, such as the
positive and negative outcomes of a medical test for HIV. By convention, we code the most important
outcome, which is usually the rarer one, by 1 (e.g., HIV positive) and the other by O (e.g., HIV negative).

Computing similarities between objects involving symmetric and asymmetric binary attributes will
be discussed in a later section of this chapter.

2.1.3 Ordinal attributes

An ordinal attribute is an attribute with possible values that have a meaningful order or ranking among
them, but the magnitude between successive values is not known.

Example 2.3. Ordinal attributes. Suppose that drink_size corresponds to the size of drinks available
at a fast-food restaurant. This nominal attribute has three possible values: small, medium, and large.

26 Chapter 2 Data, measurements, and data preprocessing

The values have a meaningful sequence (which corresponds to increasing drink size); however, we
cannot tell from the values how much bigger, say, a large is than a medium. Other examples of ordinal
attributes include grade (e.g., A+, A, A—, B+, and so on) and professional_rank. Professional ranks
can be enumerated in a sequential order: for example, assistant, associate, and full for professors, and
private, private second class, private first class, specialist, corporal, sergeant, ... for army ranks.
Ordinal attributes are useful for registering subjective assessments of qualities that cannot be mea-
sured objectively; thus ordinal attributes are often used in surveys for ratings. In one survey, participants
were asked to rate how satisfied they were as customers. Customer satisfaction had the following ordi-
nal categories: 1: very dissatisfied, 2: dissatisfied, 3: neutral, 4: satisfied, and 5: very satisfied.]

Ordinal attributes may also be obtained from the discretization of numeric quantities by splitting the
value range into a finite number of ordered categories as described in a later section on data reduction.

The central tendency of an ordinal attribute can be represented by its mode and its median (the
middle value in an ordered sequence), but the mean cannot be defined.

Note that nominal, binary, and ordinal attributes are qualitative. That is, they describe a feature of
an object without giving an actual size or quantity. The values of such qualitative attributes are typically
words representing categories. If integers are used, they represent computer codes for the categories,
as opposed to measurable quantities (e.g., O for small drink size, 1 for medium, and 2 for large). In
the following subsection we look at numeric attributes, which provide quantitative measurements of an
object.

2.1.4 Numeric attributes

A numeric attribute is quantitative; that is, it is a measurable quantity, represented in integer or real
values. Numeric attributes can be interval-scaled or ratio-scaled.

Interval-scaled attributes

Interval-scaled attributes are measured on a scale of equal-size units. The values of interval-scaled
attributes have order and can be positive, 0, or negative. Thus, in addition to providing a ranking of
values, such attributes allow us to compare and quantify the difference between values.

Example 2.4. Interval-scaled attributes. A temperature attribute is interval-scaled. Suppose that we
have the outdoor temperature values for a number of different days, where each day is an object. By
ordering the values, we obtain a ranking of the objects with respect to temperature. In addition, we can
quantify the difference between values. For example, a temperature of 20 °C is five degrees higher than
a temperature of 15°C. Calendar dates are another example. For instance, the years 2012 and 2020 are
eight years apart. O

Temperatures in Celsius and Fahrenheit do not have a true zero-point, that is, neither 0 °C nor 0 °F
indicates “no temperature.” (On the Celsius scale, for example, the unit of measurement is 1/100 of
the difference between the melting temperature and the boiling temperature of water in atmospheric
pressure.) Although we can compute the difference between temperature values, we cannot talk of one
temperature value as being a multiple of another. Without a true zero, we cannot say, for instance, that
10°C is twice as warm as 5 °C. That is, we cannot speak of the values in terms of ratios. Similarly, there
is no true zero-point for calendar dates. (The year 0 does not correspond to the beginning of time.) This
brings us to ratio-scaled attributes, for which a true zero-point exists.

2.2 Statistics of data 27

Because interval-scaled attributes are numeric, we can compute their mean value, in addition to the
median and mode measures of central tendency.

Ratio-scaled attributes

A ratio-scaled attribute is a numeric attribute with an inherent zero-point. That is, if a measurement
is ratio-scaled, we can speak of a value as being a multiple (or ratio) of another value. In addition,
the values are ordered, and we can also compute the difference between values, as well as the mean,
median, and mode.

Example 2.5. Ratio-scaled attributes. Unlike temperatures in Celsius and Fahrenheit, the Kelvin (K)
temperature scale has what is considered a true zero-point (0 K = —273.15 °C): It is the point at which
all thermal motion ceases in the classical description of thermodynamics. Other examples of ratio-
scaled attributes include count attributes such as years_of _experience (e.g., the objects are employees)
and number_of_words (e.g., the objects are documents). Additional examples include attributes to mea-
sure weight, height, and speed, and monetary quantities (e.g., you are 100 times richer with $100 than
with $1). O

2.1.5 Discrete vs. continuous attributes

In our presentation, we have organized attributes into nominal, binary, ordinal, and numeric types.
There are many ways to organize attribute types. The types are not mutually exclusive.

Classification algorithms developed from the field of machine learning often consider attributes
as being either discrete or continuous. Each type may be processed differently. A discrete attribute
has a finite or countably infinite set of values, which may or may not be represented as integers. The
attributes hair_color, smoker, medical_test, and drink_size each have a finite number of values, and so
are discrete. Note that discrete attributes may have numeric values, such as 0 and 1 for binary attributes
or, the values 0 to 110 for the attribute age. An attribute is countably infinite if the set of possible values
is infinite but the values can be put in a one-to-one correspondence with natural numbers. For example,
the attribute customer_ID is countably infinite. The number of customers can grow to infinity, but in
reality, the actual set of values is countable (where the values can be put in one-to-one correspondence
with the set of integers). Zip codes are another example.

If an attribute is not discrete, it is continuous. The terms numeric attribute and continuous attribute
are often used interchangeably in the literature. (This can be confusing because, in the classic sense,
continuous values are real numbers, whereas numeric values can be either integers or real numbers.) In
practice, real values are represented using a finite number of digits. Continuous attributes are typically
represented as floating-point variables.

2.2 Statistics of data

For data preprocessing to be successful, it is essential to have an overall picture of your data. Basic
statistical descriptions can be used to identify properties of the data and highlight which data values
should be treated as noise or outliers.

This section discusses three areas of basic statistical descriptions. We start with measures of central
tendency (Section 2.2.1), which measure the location of the middle or center of a data distribution.

28 Chapter 2 Data, measurements, and data preprocessing

Intuitively speaking, given an attribute, where do most of its values fall? In particular, we discuss the
mean, median, mode, and midrange.

In addition to assessing the central tendency of our data set, we also would like to have an idea
of the dispersion of the data. That is, how are the data spread out? The most common data dispersion
measures are the range, quartiles (e.g., Q1, which is the first quartile, i.e., the 25th percentile), and
interquartile range; the five-number summary and boxplots; and the variance and standard deviation of
the data. These measures are useful for identifying outliers and are described in Section 2.2.2.

To facilitate the description of relations among multiple variables, the concepts of co-variance and
correlation coefficient for numerical data and x? correlation test for nominal data are introduced in
Section 2.2.3.

Finally, we can use many graphic displays of basic statistical descriptions to visually inspect our data
(Section 2.2.4). Most statistical or graphical data presentation software packages include bar charts, pie
charts, and line graphs. Other popular displays of data summaries and distributions include guantile
plots, quantile-quantile plots, histograms, and scatter plots.

2.2.1 Measuring the central tendency

In this section, we look at various ways to measure the central tendency of data. Suppose that we have
some attribute X, like salary, which has been recorded for a set of objects. Let x1, x2, ..., xy be the set
of N observed values or observations for X. Here, these values may also be referred to as the data set
(for X). If we were to plot the observations for salary, where would most of the values fall? This gives
us an idea of the central tendency of the data. Measures of central tendency include the mean, median,
mode, and midrange.

The most common and effective numeric measure of the “center” of a set of data is the (arithmetic)
mean. Let x|, x2,...,xy be a set of N values or observations, such as for some numeric attribute X,
like salary. The mean of this set of values is

N

2 i

i=l _X1txp+--+XN
N N '

(2.1)

X =
This corresponds to the built-in aggregate function, average (avg() in SQL), provided in relational
database systems.

Example 2.6. Mean. Suppose we have the following values for salary (in thousands of dollars), shown
in ascending order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. Using Eq. (2.1), we have

30+36+47+50+52+52+56+ 60+ 63 +70+ 70+ 110

= 12
= % =58.
Thus, the mean salary is $58,000. O
Sometimes, each value x; in a set may be associated with a weight w; fori =1, ..., N. The weights

reflect the significance, importance, or occurrence frequency attached to their respective values. In this

2.2 Statistics of data 29

case, we can compute
N
Z Wi X;
i=1
N
2w
i=l1

This is called the weighted arithmetic mean or the weighted average.

Although the mean is the single most useful quantity for describing a data set, it is not always
the best way of measuring the center of the data. A major problem with the mean is its sensitivity
to extreme (e.g., outlier) values. Even a small number of extreme values can corrupt the mean. For
example, the mean salary at a company may be substantially pushed up by that of a few highly paid
managers. Similarly, the mean score of a class in an exam could be pulled down quite a bit by a few
very low scores. To offset the effect caused by a small number of extreme values, we can instead use
the trimmed mean, which is the mean obtained after chopping off values at the high and low extremes.
For example, we can sort the values observed for salary and remove the top and bottom 2% before
computing the mean. We should avoid trimming too large a portion (such as 20%) at both ends, as this
can result in the loss of valuable information.

For skewed (asymmetric) data, a better measure of the center of data is the median, which is the
middle value in a set of ordered data values. It is the value that separates the higher half of a data set
from the lower half.

In probability and statistics, the median generally applies to numeric data; however, we may extend
the concept to ordinal data. Suppose that a given data set of N values for an attribute X is sorted in
ascending order. If N is odd, then the median is the middle value of the ordered set. If N is even, then
the median is not unique; it is the two middlemost values and any value in between. If X is a numeric
attribute in this case, by convention, the median is taken as the average of the two middlemost values.

_ wixy +waxy + -+ wyxy
witwy+twy

X =

2.2)

Example 2.7. Median. Let’s find the median of the data from Example 2.6. The data are already
sorted in ascending order. There is an even number of observations (i.e., 12); therefore, the median is
not unique. It can be any value within the two middlemost values of 52 and 56 (that is, within the sixth
and seventh values in the list). By convention, we assign the average of the two middlemost values as
the median; that is, @ = % = 54. Thus, the median is $54,000.

Suppose that we had only the first 11 values in the list. Given an odd number of values, the median
is the middlemost value. This is the sixth value in this list, which has a value of $52,000. O

The median is expensive to compute when we have a large number of observations. For numeric
attributes, however, we can easily approximate the value. Assume that data are grouped in intervals
according to their x; data values and that the frequency (i.e., number of data values) of each interval
is known. For example, employees may be grouped according to their annual salary in intervals such
as $10,001-20,000, $20,001-50,000, and so on. (A similar, concrete example can be seen in the data
table of Exercise 2.3.) Let the interval that contains the median frequency be the median interval. We
can approximate the median of the entire data set (e.g., the median salary) by interpolation using the

30 Chapter 2 Data, measurements, and data preprocessing

formula

(2.3)

N/2 — re
median~ L| + (M) X width,

f Teqmedian

where L is the lower boundary of the median interval, N is the number of values in the entire data set,
(Z freq) ; is the sum of the frequencies of all of the intervals that are lower than the median interval,
Jreqmeaian 15 the frequency of the median interval, and width is the width of the median interval.

Mode is another measure of central tendency. The mode for a set of data is the value that occurs
most frequently compared to all neighboring values in the set. Therefore, it can be determined for
qualitative and quantitative attributes. It is possible for the greatest frequency to correspond to several
different values, which results in more than one mode. Data sets with one, two, or three modes are
respectively called unimodal, bimodal, and trimodal. In general, a data set with two or more modes
is multimodal.

Example 2.8. Mode. The data from Example 2.6 are bimodal. The two modes are $52,000 and
$70,000. O

For unimodal numeric data that are moderately skewed (asymmetrical), we have the following em-
pirical relation:

mean — mode ~ 3 x (mean — median). 2.4)

This implies that the mode for unimodal frequency curves that are moderately skewed can easily be
approximated if the mean and median values are known.

The midrange can also be used to assess the central tendency of a numeric data set. It is the average
of the largest and smallest values in the set. This measure is easy to compute using the SQL aggregate
functions, max () and min().

Example 2.9. Midrange. The midrange of the data of Example 2.6 is w =$70,000. O

In a unimodal frequency curve with perfect symmetric data distribution, the mean, median, and
mode are all at the same center value, as shown in Fig. 2.1a.

Mean Mode Mean Mean Mode
/Median 1! I
Mode

. H) [-
Median Median

(a) Symmetric data (b) Positively skewed data (c) Negatively skewed data

FIGURE 2.1

Mean, median, and mode of symmetric vs. positively and negatively skewed data.

2.2 Statistics of data 31

Data in most real applications are not symmetric. They may instead be either positively skewed,
where the mode occurs at a value that is smaller than the median (Fig. 2.1b), or negatively skewed,
where the mode occurs at a value greater than the median (Fig. 2.1c).

2.2.2 Measuring the dispersion of data

We now look at measures to assess the dispersion or spread of numeric data. The measures include
range, quantiles, quartiles, percentiles, and the interquartile range. The five-number summary, which
can be displayed as a boxplot, is useful in identifying outliers. Variance and standard deviation also
indicate the spread of a data distribution.

Range, quartiles, and interquartile range

To start off, let’s study the range, quantiles, quartiles, percentiles, and the interquartile range as mea-
sures of data dispersion.

Let x1,x2,...,xy be a set of observations for some numeric attribute, X. The range of the set is
the difference between the largest (max()) and smallest (min()) values.

Suppose that the data for attribute X are sorted in ascending numeric order. Imagine that we can
pick certain data points so as to split the data distribution into equal-size consecutive sets, as in Fig. 2.2.
These data points are called quantiles. Quantiles are points taken at regular intervals of a data distri-
bution, dividing it into essentially equal-size consecutive sets. (We say “essentially” because there may
not be data values of X that divide the data into exactly equal-size subsets. For readability, we will refer
to them as equal.) The kth g-quantile for a given data distribution is the value x such that at most k/¢g
of the data values are less than x and at most (¢ — k)/q of the data values are more than x, where k is
an integer such that 0 < k < g. There are ¢ — 1 g-quantiles.

The 2-quantile is the data point dividing the lower and upper halves of the data distribution. It
corresponds to the median. The 4-quantiles are the three data points that split the data distribution into
four equal parts; each part represents one-fourth of the data distribution. They are more commonly
referred to as quartiles. The 100-quantiles are more commonly referred to as percentiles; they divide

25%
Ql Q2 Q’;
25th Median 75th
percentile percentile

FIGURE 2.2

A plot of the data distribution for some attribute X. The quantiles plotted are quartiles. The three quartiles divide the
distribution into four equal-size consecutive subsets. The second quartile corresponds to the median.

32 Chapter 2 Data, measurements, and data preprocessing

the data distribution into 100 equal-size consecutive sets. The median, quartiles, and percentiles are the
most widely used forms of quantiles.

The quartiles give an indication of a distribution’s center, spread, and shape. The first quartile,
denoted by Qj, is the 25th percentile. It cuts off the lowest 25% of the data. The third quartile,
denoted by Q3, is the 75th percentile—it cuts off the lowest 75% (or highest 25%) of the data. The
second quartile is the 50th percentile. As the median, it gives the center of the data distribution.

The distance between the first and third quartiles is a simple measure of spread that gives the range
covered by the middle half of the data. This distance is called the interquartile range (IQR) and is
defined as

IOR = Q3 — Q1. (2.5)

Example 2.10. Interquartile range. The quartiles are the three values that split the sorted data set into
four equal parts. The data of Example 2.6 contain 12 observations, already sorted in ascending order.
Since there are even number of elements on this list, the median of the list should be the mean of the
center two elements, that is ($52,000 + $56,000)/2 = $54,000. Then the first quartile should be the
mean of the 3rd and 4th elements, that is, ($47,000 + $50,000)/2 = $48,500, whereas the 3rd quartile
should be the mean of the 9th and 10th elements, that is, ($63,000 + $70,000)/2 = $66,500. Thus the
interquartile range is IQR = $66,500 — $48,500 = $18,000. O

Five-number summary, boxplots, and outliers

No single numeric measure of spread (e.g., IOR) is very useful for describing skewed distributions.
Have a look at the symmetric and skewed data distributions of Fig. 2.1. In the symmetric distribution,
the median (and other measures of central tendency) splits the data into equal-size halves. This does
not occur for skewed distributions. Therefore it is more informative to also provide the two quartiles
Q1 and Q3, along with the median. A common rule of thumb for identifying suspected outliers is to
single out values falling at least 1.5 x IQR above the third quartile or below the first quartile.

Because Q1, the median, and Q3 together contain no information about the endpoints (e.g., tails)
of the data, a fuller summary of the shape of a distribution can be obtained by providing the lowest and
highest data values as well. This is known as the five-number summary. The five-number summary
of a distribution consists of the median (Q>), the quartiles Q| and Q3, and the smallest and largest
individual observations, written in the order of Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the five-number
summary as follows:

* Typically, the ends of the box are at the quartiles so that the box length is the interquartile range.

e The median is marked by a line within the box.

* Two lines (called whiskers) outside the box extend to the smallest (Minimum) and largest (Maximum)
observations.

When dealing with a moderate number of observations, it is worthwhile to plot potential outliers
individually. To do this in a boxplot, the whiskers are extended to the extreme low and high observations
only if these values are less than 1.5 x IQR beyond the quartiles. Otherwise, the whiskers terminate at
the most extreme observations occurring within 1.5 x IQR of the quartiles. The remaining cases are
plotted individually. Boxplots can be used in the comparisons of several sets of compatible data.

2.2 Statistics of data 33

220 -
200 ¢
-
180 . T :
|
160 -) —
T
1
140 - 1 —
2 | e
~ S
gy !
& I
= 100 —
=)
80 1 L -
1
60 -+ —
1 |
1
404 L L -
.
20 1
Branch 1 Branch 2 Branch 3 Branch 4

FIGURE 2.3

Boxplot for the unit price data for items sold at four branches of an online store during a given time period.

Example 2.11. Boxplot. Fig. 2.3 shows boxplots for unit price data for items sold at four branches of
an online store during a given time period. For branch 1, we see that the median price of items sold
is $80, Q; is $60, and Q3 is $100. Notice that two outlying observations for this branch were plotted
individually, as their values of 175 and 202 are more than 1.5 times the /QR here of 40. O

Variance and standard deviation

Variance and standard deviation are measures of data dispersion. They indicate how spread out a data
distribution is. A low standard deviation means that the data observations tend to be very close to the
mean, whereas a high standard deviation indicates that the data are spread out over a large range of
values.

The variance of N observations, x1, X2, ..., xy (When N is large), for a numeric attribute X is

N 1N
2 __ L2 2) =2
o ——E (x; — X) —(—E xi) x4, (2.6)
Nl_:1 Nl,:1

where x is the mean value of the observations, as defined in Eq. (2.1). The standard deviation, o, of

the observations is the square root of the variance, o2.

34 Chapter 2 Data, measurements, and data preprocessing

Example 2.12. Variance and standard deviation. In Example 2.6, we found x = $58,000 using
Eq. (2.1) for the mean. To determine the variance and standard deviation of the data from that example,
we set N = 12 and use Eq. (2.6) to obtain

1
o= E(302+362+472...+ 110%) — 582

~379.17
o~ +/379.17~ 19.47.

The basic properties of the standard deviation, o, as a measure of spread are as follows:

* o measures spread about the mean and should be considered only when the mean is chosen as the

measure of center.
e o =0 only when there is no spread, that is, when all observations have the same value. Otherwise,

o> 0.

Importantly, an observation is unlikely to be more than several standard deviations away from the
mean. Mathematically, using Chebyshev’s inequality, it can be shown that at least (1 — k%) x 100%

of the observations are no more than k standard deviations from the mean. Therefore, the standard
deviation is a good indicator of the spread of a data set.
The computation of the variance and standard deviation is scalable in large data sets.

2.2.3 Covariance and correlation analysis

Covariance of numeric data

In probability theory and statistics, correlation and covariance are two similar measures for assessing
how much two attributes change together. Consider two numeric attributes A and B and a set of n real-
valued observations {(ay, b1), ..., (ax, by)}. The mean values of A and B, respectively, are also known
as the expected values on A and B, that is,

Yioi4i

n

E(A)=A=

and

_ Y
E(B):B:z:’;l_
n

The covariance between A and B is defined as
i (ai— A)(bi — B)

Cov(A,B)=E(A— A)Y(B - B))= 2.7
n
Mathematically, it can also be shown that
Cov(A,B)=E(A-B)— AB. (2.8)

This equation may simplify calculations.

2.2 Statistics of data 35

For two attributes A and B that tend to change together, if a value a; of A is larger than A (the
expected value of A), then the corresponding value of b; of attribute B is likely to be larger than B
(the expected value of B). Therefore the covariance between A and B is positive. On the other hand, if
one of the attributes tends to be above its expected value when the other attribute is below its expected
value, then the covariance of A and B is negative.

If A and B are independent (i.e., they do not have correlation), then E(A - B) = E(A) - E(B).
Therefore the covariance is Cov(A, B)=E(A-B) — AB=E(A)- E(B) — AB =0. However, the
converse is not true. Some pairs of random variables (attributes) may have a covariance of 0 but are
not independent. Only under some additional assumptions (e.g., the data follow multivariate normal
distributions) does a covariance of 0 imply independence.

Example 2.13. Covariance analysis of numeric attributes. Consider Table 2.1, which presents a
simplified example of stock prices observed at five time points for AllElectronics and HighTech, a
high-tech company. If the stocks are affected by the same industry trends, will their prices rise or fall
together?

6+5+4+3+2 20
E (AllElectronics) = _‘_dl_s# =< = $4

and

20+ 10+ 14+5+5 54
E(HighTech) = —— +5 ot = =$1030.

Thus, using Eq. (2.7), we compute

6x20+5x104+4x14+3x5+2x%x5
Cov(AllElectroncis, HighTech) = X 20+> x 10+ 5>< o xoF2x —4x10.80

=502-432=7.

Therefore, given the positive covariance we can say that stock prices for both companies rise together.
O

Variance is a special case of covariance, where the two attributes are identical (i.e., the covariance
of an attribute with itself).

Table 2.1 Stock prices for AllElec-
tronics and HighTech.

Time point AllElectronics HighTech

tl 6 20
2 5 10
t3 4 14
4 3 5
t5 2 5

36 Chapter 2 Data, measurements, and data preprocessing

Correlation coefficient for numeric data

For numeric attributes, we can evaluate the correlation between two attributes, A and B, by computing
the correlation coefficient (also known as Pearson’s product moment coefficient, named after its
inventer, Karl Pearson). This is

Y (ai—AYbi—B) Y (aibi) —nAB
rA,B = i=1 = i=1 s (2.9)

NoAOCR NoACR

where n is the number of tuples, a; and b; are the respective values of A and B in tuple i, A and B are
the respective mean values of A and B, o4 and op are the respective standard deviations of A and B
(as defined in Section 2.2.2), and ¥(a;b;) is the sum of the AB cross-product (i.e., for each tuple, the
value for A is multiplied by the value for B in that tuple). Note that —1 <74 p < +1.If r4_p is greater
than 0, then A and B are positively correlated, meaning that the values of A increase as the values of
B increase. The higher the value, the stronger the correlation (i.e., the more each attribute implies the
other). Hence, a higher value may indicate that A (or B) may be removed as a redundancy.

If the resulting value is equal to O, then A and B are independent, and there is no correlation be-
tween them. If the resulting value is less than 0, then A and B are negatively correlated, where the
values of one attribute increase as the values of the other attribute decrease. This means that each at-
tribute discourages the other. Scatter plots can also be used to view correlations between attributes
(Section 2.2.3). For example, Fig. 2.8’s scatter plots, respectively, show positively correlated data and
negatively correlated data, whereas Fig. 2.9 displays uncorrelated data.

Note that correlation does not imply causality. That is, if A and B are correlated, this does not nec-
essarily imply that A causes B or that B causes A. For example, in analyzing a demographic database,
we may find that attributes representing the number of hospitals and the number of car thefts in a region
are correlated. This does not mean that one causes the other. Both are actually causally linked to a third
attribute, namely, population.

x?2 correlation test for nominal data

For nominal data, a correlation relationship between two attributes, A and B, can be discovered by a X2
(chi-square) test. Suppose A has ¢ distinct values, namely, a, az, ...a., and B has r distinct values,
namely, by, b, ...b,. The data tuples described by A and B can be shown as a contingency table,
with the ¢ values of A making up the columns and the r values of B making up the rows. Let (A;, B})
denote the joint event that attribute A takes on value a; and attribute B takes on value b, that is, where
(A =a;, B=0j). Each and every possible (A;, B;) joint event has its own cell (or slot) in the table.
The yx? value (also known as the Pearson x? statistic) is computed as

c r (0” e)2

2 _ ij —€ij

X —E E T (2.10)
i=1 j=1

where o;; is the observed frequency (i.e., actual count) of the joint event (A;, B;) and e¢;; is the expected
frequency of (A;, B;), which can be computed as

t(A=a; t(B=b;
ey = count(a;) Zcoun (])’ @.11)

2.2 Statistics of data 37

where # is the number of data tuples, count (A = a;) is the number of tuples having value a; for A, and
count (B = bj) is the number of tuples having value b; for B. The sum in Eq. (2.10) is computed over
all of the r x c cells. Note that the cells that contribute the most to the x 2 value are those for which the
actual count is very different from that expected.

The X2 statistic tests the hypothesis that A and B are independent, that is, there is no correlation
between them. The test is based on a significance level, with (r — 1) x (¢ — 1) degrees of freedom. We
illustrate the use of this statistic in Example 2.14. If the hypothesis can be rejected, then we say that A
and B are statistically correlated.

Example 2.14. Correlation analysis of nominal attributes using x2. Suppose that a group of 1500
people was surveyed. The gender of each person was noted. Each person was polled as to whether his
or her preferred type of reading material was fiction or nonfiction. Thus, we have two attributes, gender
and preferred_reading. The observed frequency (or count) of each possible joint event is summarized in
the contingency table shown in Table 2.2, where the numbers in parentheses are the expected frequen-
cies. The expected frequencies are calculated based on the data distribution for both attributes using
Eq. 2.11).

Using Eq. (2.11), we can verify the expected frequencies for each cell. For example, the expected
frequency for the cell (male, fiction) is

_ count(male) x count(fiction) _ 300 x 450 _

en= n =00 %

and so on. Notice that in any row, the sum of the expected frequencies must equal the total observed
frequency for that row, and the sum of the expected frequencies in any column must also equal the total
observed frequency for that column.

Using Eq. (2.10) for x? computation, we get

5 (250-90)> (50—210)> (200 —360)> (1000 — 840)>
X" = + + +
90 210 360 840
=284.44 + 121.90 4+ 71.11 4 30.48 = 507.93.

For this 2 x 2 table, the degrees of freedom are (2 — 1) x (2— 1) = 1. For 1 degree of freedom, the
x? value needed to reject the hypothesis at the 0.001 significance level is 10.828 (taken from the table
of upper percentage points of the x? distribution, typically available from any textbook on statistics).
Since our computed value is above this, we can reject the hypothesis that gender and preferred_reading

Table 2.2 Example 2.1°s 2 x 2 con-

tingency table data.

Male Female Total
fiction 250 (90) 200 (360) 450
non_fiction 50 (210) 1000 (840) 1050
Total 300 1200 1500

Note: Are gender and preferred_reading corre-
lated?

38 Chapter 2 Data, measurements, and data preprocessing

are independent and conclude that the two attributes are (strongly) correlated for the given group of
people. O

2.2.4 Graphic displays of basic statistics of data

In this section, we study graphic displays of basic statistical descriptions. These include quantile plots,
quantile-quantile plots, histograms, and scatter plots. Such graphs are helpful for the visual inspection
of data, which is useful for data preprocessing. The first three of these show univariate distributions (i.e.,
data for one attribute), whereas scatter plots show bivariate distributions (i.e., involving two attributes).

Quantile plot

A quantile plot is a simple and effective way to have a first look at a univariate data distribution. First,
it displays all of the data for the given attribute (allowing a user to assess both the overall behavior
and unusual occurrences). Second, it plots quantile information (see Section 2.2.2). Let x;, for i =1
to N, be the data sorted in ascending order so that xj is the smallest observation and xy is the largest
for some ordinal or numeric attribute X. Each observation, x;, is paired with a percentage, f;, which
indicates that approximately f; x 100% of the data are below the value, x;. We say “approximately”
because there may not be a value with exactly a fraction, f;, of the data below x;. Note that the 0.25
quantile corresponds to quartile Q1, the 0.50 quantile is the median, and the 0.75 quantile is Q3.
Let
i—0.5

fi=—— 2.12)

These numbers increase in equal steps of 1/N, ranging from ﬁ (which is slightly above 0) to 1 — ﬁ
(which is slightly below 1). On a quantile plot, x; is graphed against f;. This allows us to compare
different distributions based on their quantiles. For example, given the quantile plots of sales data for

two different time periods, we can compare their Q1, median, O3, and other f; values at a glance.

Example 2.15. Quantile plot. Fig. 2.4 shows a quantile plot for the unit price data of Table 2.3. [

140

120 *
100 O jeve?s?
] Median ‘..‘00"
80 1 0, ““,000
60 seo?
oo®?
40 o**
20 -

Unit price ($)

T T T 1
0.00 0.25 0.50 0.75 1.00
f-value

FIGURE 2.4
A quantile plot for the unit price data of Table 2.3.

2.2 Statistics of data 39

Table 2.3 A set of unit price data
for items sold at a branch of the
online store.

Unit price ($) Count of items sold
40 275

43 300

47 250

74 360

75 515

78 540

115 320

117 270

120 350

Quantile-quantile plot

A quantile-quantile plot, or q-q plot, graphs the quantiles of one univariate distribution against the
corresponding quantiles of another. It is a powerful visualization tool in that it allows the user to view
whether there is a shift in going from one distribution to another.

Suppose that we have two sets of observations for the attribute or variable unit price, taken from
two different branch locations. Let x1, ..., xy be the data from the first branch, and yq, ..., yy be the
data from the second, where each data set is sorted in ascending order. If M = N (i.e., the number of
points in each set is the same), then we simply plot y; against x;, where y; and x; are both (i — 0.5)/N
quantiles of their respective data sets. If M < N (i.e., the second branch has fewer observations than
the first), there can be only M points on the q-q plot. Here, y; is the (i — 0.5)/M quantile of the y data,
which is plotted against the (i —0.5)/M quantile of the x data. This computation typically involves
interpolation.

Example 2.16. Quantile-quantile plot. Fig. 2.5 shows a quantile-quantile plot for unit price data of
items sold at two branches of the online store during a given time period. Each point corresponds to the
same quantile for each data set and shows the unit price of items sold at branch 1 vs. branch 2 for that
quantile. (To aid comparison, the straight line represents the case where, for each given quantile, the
unit price at each branch is the same. The darker points correspond to the data for Q1, the median, and
03, respectively.)

We see, for example, that at Q1, the unit price of items sold at branch 1 was slightly less than that
at branch 2. In other words, 25% of items sold at branch 1 were less than or equal to $60, whereas 25%
of items sold at branch 2 were less than or equal to $64. At the 50th percentile (marked by the median,
which is also Q»), we see that 50% of items sold at branch 1 were less than $78, whereas 50% of items
at branch 2 were less than $85. In general, we note that there is a shift in the distribution of branch 1
with respect to branch 2 in that the unit prices of items sold at branch 1 tend to be lower than those at
branch 2. O

40 Chapter 2 Data, measurements, and data preprocessing

120 -
110 ~
100

Branch 2 (unit price $)
[e.]
)
1

40 T T T T T T T 1
40 50 60 70 80 90 100 110 120

Branch 1 (unit price $)

FIGURE 2.5

A g-q plot for unit price data from two branches of the online store.

Histograms

Histograms (or frequency histograms) are at least a century old and are widely used. “Histos” means
pole or mast, and “gram” means chart, so a histogram is a chart of poles. Plotting histograms is a
graphical method for summarizing the distribution of a given attribute, X. According to the number
of poles desired in the chart, the range of values for X is partitioned into a set of disjoint consecutive
subranges. The subranges, referred to as buckets or bins, are disjoint subsets of the data distribution for
X. The range of a bucket is known as the width. Typically, the buckets are of equal width. For example,
a price attribute with a value range of $1-$200 (rounded up to the nearest dollar) can be partitioned
into subranges 1-20, 21-40, 41-60, and so on. For each subrange, a bar is drawn with a height that
represents the total count of items observed within the subrange.

Please note that histogram is different from another popularly used graph representation called bar
chart. Bar chart uses a set of bars (often separated with space) with X representing a set of categorical
data, such as automobile_model or item_type, and the height of the bar (column) indicates the size of
the group defined by the categories. On the other hand, histogram plots quantitative data with a range
of X values grouped into bins or intervals. Histograms are used to show distributions (along X axis)
while bar charts are used to compare categories. It is always appropriate to talk about the skewness of
a histogram; that is, the tendency of the observations to fall more on the low end or the high end of the
X axis. However, bar chart’s X axis does not have a low end or a high end; because the labels on the X
axis are categorical—not quantitative. Thus, bars can be reordered in bar charts but not in histograms.

Example 2.17. Histogram. Fig. 2.6 shows a histogram for a data set on research award distribution
for a region, where buckets (or bins) are defined by equal-width ranges representing $1000 increments,
and the frequency is the number of research awards in the corresponding buckets. O

Although histograms are widely used, they may not be as effective as the quantile plot, q-q plot, and
boxplot methods in comparing groups of univariate observations.

40

2.2 Statistics of data

35

30
25
20
15
10

5

0

10000

FIGURE 2.6

A 4.1 i

70000 90000

30000 50000

41

A histogram on research award distribution for a region.

Scatter plots and data correlation

A scatter plot is one of the most effective graphical methods for determining whether there appears
to be a relationship, pattern, or trend between two numeric attributes. To construct a scatter plot, each
pair of values is treated as a pair of coordinates in an algebraic sense and plotted as points in the plane.
Fig. 2.7 shows a scatter plot for the set of data in Table 2.3.

The scatter plot is a useful method for providing a first look at bivariate data to see clusters of
points and outliers, or to explore the possibility of correlation relationships. Two attributes, X and
Y, are correlated if the knowledge of one attribute enables to predict the other with some accuracy.
Correlations can be positive, negative, or null (uncorrelated). Fig. 2.8 shows examples of positive and
negative correlations between two attributes.

140

700 -

600 R o o .
- 500 - o S s,
2 400 A *7 .
g o ¢ .
5 300+ *%, * *
™~ 200

100 -

O T T T T T T 1
0 20 40 60 80 100 120
Unit price ($)

FIGURE 2.7

A scatter plot for Table 2.3 data set.

42 Chapter 2 Data, measurements, and data preprocessing

° °
L))
e o o)
° * e,
o ® *e® %
° ° o ®
o o * o ° *
° ° o °®
°
(a) (b)
FIGURE 2.8
Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.
o > . ° D
.0. ..’.’ ..03.. . ° ..0. :‘
3 . . L * ..90. ‘:.
0o o, 0% *°, .0 F¥] .. . ° ¢ ° .‘ .’..'.\..
e, o ‘et .'.., * e & Ce, N oo
L 2 S ORI S Y A . ° P . A 9%,
o . A X TR O o0 & o . L °
. %% 0 8% % e, . . o° e o .’.00". .
® o i * o* $.”‘0 .
b °® . ’. ®egp00
° L oo,
LY oo g%

FIGURE 2.9

Three cases where there is no observed correlation between the two plotted attributes in each of the data sets.

If the plotted points pattern slopes from lower left to upper right, this means that the values of
X increase as the values of Y increase, suggesting a positive correlation (Fig. 2.8a). If the pattern of
plotted points slopes from upper left to lower right, the values of X increase as the values of Y decrease,
suggesting a negative correlation (Fig. 2.8b). A line of best fit can be drawn to study the correlation
between the variables. Statistical tests for correlation are introduced in Appendix A.

Fig. 2.9 shows three cases for which there is no correlation relationship between the two attributes in
each of the given data sets. Scatter plots can also be extended to n attributes, resulting in a scatter-plot

matrix.

In summary, basic data descriptions (e.g., measures of central tendency and measures of dispersion)
and graphic statistical displays (e.g., quantile plots, histograms, and scatter plots) provide valuable in-
sight into the overall behavior of your data. By helping to identify noise and outliers, they are especially
useful for data cleaning.

2.3 Similarity and distance measures 43

2.3 Similarity and distance measures

In data mining applications, such as clustering, outlier analysis, and nearest-neighbor classification, we
need ways to assess how alike or unalike objects are in comparison to one another. For example, a
store may want to search for clusters of customer objects, resulting in groups of customers with similar
characteristics (e.g., similar income, area of residence, and age). Such information can then be used for
marketing. A cluster is a collection of data objects such that the objects within a cluster are similar
to one another and dissimilar to the objects in other clusters. Outlier analysis also employs clustering-
based techniques to identify potential outliers as objects that are highly dissimilar to others. Knowledge
of object similarities can also be used in nearest-neighbor classification schemes where a given object
(e.g., a patient) is assigned a class label (relating to, say, a diagnosis) based on its similarity toward
other objects in the model.

This section presents similarity and dissimilarity measures, which are referred to as measures of
proximity. Similarity and dissimilarity are related. A similarity measure for two objects, i and j, will
typically return value 0 if the objects are completely unalike. The higher the similarity value, the greater
the similarity between objects. (Typically, a value of 1 indicates complete similarity, that is, the objects
are identical.) A dissimilarity measure works the opposite way. It returns a value of O if the objects
are the same (and therefore, far from being dissimilar). The higher the dissimilarity value, the more
dissimilar the two objects are.

In Section 2.3.1 we present two data structures that are commonly used in the above types of ap-
plications: the data matrix (used to store the data objects) and the dissimilarity matrix (used to store
dissimilarity values for pairs of objects). We also switch to a different notation for data objects than pre-
viously used in this chapter since now we are dealing with objects described by more than one attribute.
We then discuss how object dissimilarity can be computed for objects described by nominal attributes
(Section 2.3.2), by binary attributes (Section 2.3.3), by numeric attributes (Section 2.3.4), by ordinal
attributes (Section 2.3.5), or by combinations of these attribute types (Section 2.3.6). Section 2.3.7
provides similarity measures for very long and sparse data vectors, such as term-frequency vectors
representing documents in information retrieval. Finally, Section 2.3.8 discusses how to measure the
difference between two probability distributions over the same variable x, and introduces a measure,
called the Kullback-Leibler divergence, or simply, the KL divergence, which has been popularly used
in the data mining literature.

Knowing how to compute dissimilarity is useful in studying attributes and will also be referenced
in later topics on clustering (Chapters 8 and 9), outlier analysis (Chapter 11), and nearest-neighbor
classification (Chapter 6).

2.3.1 Data matrix vs. dissimilarity matrix

In Section 2.2, we looked at ways of studying the central tendency, dispersion, and spread of observed
values for some attribute X. Our objects there were one-dimensional, that is, described by a single
attribute. In this section, we talk about objects described by multiple attributes. Therefore we need a
change in notation. Suppose that we have n objects (e.g., persons, items, or courses) described by p
attributes (also called measurements or features, such as age, height, weight, or gender). The objects
are x1 = (X11, X12, . .., X1p), X2 = (¥21, X22, . .., X2»), and so on, where x;; is the value for object x; of
the jth attribute. For brevity, we hereafter refer to object x; as object i. The objects may be tuples in a
relational database and are also referred to as data samples or feature vectors.

44 Chapter 2 Data, measurements, and data preprocessing

Main memory-based clustering and nearest-neighbor algorithms typically operate on either of the
following two data structures:

¢ Data matrix (or object-by-attribute structure): This structure stores the n data objects in the form
of a relational table or an n-by-p matrix (n objects x p attributes):

X11 X1f X1p
Xil s Xif o Xip |- (2.13)
Xnl Xnf Xnp

Each row corresponds to an object. As part of our notation, we may use f to index through the p
attributes.

* Dissimilarity matrix (or object-by-object structure): This structure stores a collection of proximities
that are available for all pairs of n objects. It is often represented by an n-by-n table:

0

d2,1) 0

d3,1) d(3,2) 0 7 (2.14)
A1) dn2) - e 0

where d(i, j) is the measured dissimilarity or “difference” between objects i and j. In general,
d(i, j) is a nonnegative number that is close to 0 when objects i and j are highly similar or “near”
each other, and becomes larger the more they differ. Note that d(i, i) = O; that is, the difference
between an object and itself is 0. Furthermore, d(i, j) = d(j,i). (For readability, we do not show
the d(j, i) entries since the matrix is symmetric.) Measures of dissimilarity are discussed throughout
the remainder of this chapter.

Measures of similarity can often be expressed as a function of measures of dissimilarity. For example,
for nominal data,

sim(i, j) =1—d,), (2.15)

where sim (i, j) is the similarity between objects i and j. Throughout the rest of this chapter, we will
also comment on measures of similarity.

A data matrix is made up of two entities or “things,” namely rows (for objects) and columns (for
attributes). Therefore, the data matrix is often called a two-mode matrix. The dissimilarity matrix
contains one kind of entity (dissimilarities) and so is called a one-mode matrix. Many clustering and
nearest-neighbor algorithms operate on a dissimilarity matrix. Data in the form of a data matrix can be
transformed into a dissimilarity matrix before applying such algorithms.

2.3.2 Proximity measures for nominal attributes

A nominal attribute can take on two or more states (Section 2.1.1). For example, map_color is a nominal
attribute that may have, say, five states: red, yellow, green, pink, and blue.

2.3 Similarity and distance measures 45

Let the number of states of a nominal attribute be M. The states can be denoted by letters, symbols,
or a set of integers, such as 1,2, ..., M. Notice that such integers are used just for data handling and
do not represent any specific ordering.

“How is dissimilarity computed between objects described by nominal attributes?” The dissimilar-
ity between two objects i and j can be computed based on the ratio of mismatches:

d(i, j) = ¥, (2.16)

where m is the number of matches (i.e., the number of attributes for which i and j are in the same state),
and p is the total number of attributes describing the objects. Weights can be assigned to increase the
effect of m or to assign greater weight to the matches in attributes having a larger number of states.

Example 2.18. Dissimilarity between nominal attributes. Suppose that we have the sample data
of Table 2.4, except that only the object-identifier and the attribute test-1 are available, where fest-1
is nominal. (We will use fest-2 and test-3 in later examples.) Let’s compute the dissimilarity matrix
Eq. (2.14), that is,

0
d2,1) 0
d3,1) d3,2) 0
d4,1) d4,2) d4,3) 0

Since here we have one nominal attribute, test-1, we set p = 1 in Eq. (2.16) so that d (i, j) evaluates to
0 if objects i and j match, and 1 if the objects differ. Thus, we get

0
1 0
1 10
01 10
From this, we see that all objects are dissimilar except objects 1 and 4 (i.e., d(4, 1) =0). O
Alternatively, similarity can be computed as
simG,) =1—d(, j)= 2. 2.17)
p

Table 2.4 A sample data table containing attributes of mixed

types.
Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3 (numeric)
1 code A excellent 45

2 code B fair 22
3 code C good 64
4 code A excellent 28

46 Chapter 2 Data, measurements, and data preprocessing

Proximity between objects described by nominal attributes can be computed using an alternative
encoding scheme. Nominal attributes can be encoded using asymmetric binary attributes by creating a
new binary attribute for each of the M states. For an object with a given state value, the binary attribute
representing that state is set to 1, whereas the remaining binary attributes are set to 0. For example, to
encode the nominal attribute map_color, a binary attribute can be created for each of the five colors
previously listed. For an object having the color yellow, the yellow attribute is set to 1, whereas the
remaining four attributes are set to 0. Proximity measures for this form of encoding can be calculated
using the methods discussed in the next subsection.

2.3.3 Proximity measures for binary attributes

Let’s look at dissimilarity and similarity measures for objects described by either symmetric or asym-
metric binary attributes.

Recall that a binary attribute has only one of two states, 0 and 1, where 0 means that the attribute is
absent, and 1 means that it is present (Section 2.1.2). Given the attribute smoker describing a patient,
for instance, 1 indicates that the patient smokes, whereas 0 indicates that the patient does not. Treating
binary attributes as if they are other numeric attributes can be misleading. Therefore methods specific
to binary data are necessary for computing dissimilarity.

“So, how can we compute the dissimilarity between two binary attributes?” One approach involves
computing a dissimilarity matrix from the given binary data. If all binary attributes are thought of as
having the same weight, we have the 2 x 2 contingency table of Table 2.5, where ¢ is the number of
attributes that equal 1 for both objects i and j, r is the number of attributes that equal 1 for object i but
equal O for object j, s is the number of attributes that equal O for object i but equal 1 for object j, and
t is the number of attributes that equal O for both objects i and j. The total number of attributes is p,
where p=q +r+s+t.

Recall that for symmetric binary attributes, each state is equally valuable. Dissimilarity that is based
on symmetric binary attributes is called symmetric binary dissimilarity. If objects i and j are de-
scribed by symmetric binary attributes, then the dissimilarity between i and j is

r+s

i, j) = ———.
1) q+r+s+t

(2.18)

For asymmetric binary attributes, the two states are not equally important, such as the positive (1)
and negative (0) outcomes of a disease test. Given two asymmetric binary attributes, the agreement of
two 1s (a positive match) is then considered more significant than that of two Os (a negative match).
Therefore such binary attributes are often considered “monary” (having one state). The dissimilarity

Table 2.5 Contingency table for
binary attributes.

Object j
1 0 sum
1 q r q+r
Objecti o t s+t

sum ¢g+s r—+t p

2.3 Similarity and distance measures 47

based on these attributes is called asymmetric binary dissimilarity, where the number of negative
matches, ¢, is considered unimportant and is thus ignored in the following computation:

r+s

di, j)=——.
¢.J) q+r+s

(2.19)

Complementarily, we can measure the difference between two binary attributes based on the notion
of similarity instead of dissimilarity. For example, the asymmetric binary similarity between the
objects i and j can be computed as

q

sim(i, j) =
The coefficient sim(i, j) of Eq. (2.20) is called the Jaccard coefficient and is popularly referenced in
the literature.
When both symmetric and asymmetric binary attributes occur in the same data set, the approach for
mixed attributes described in Section 2.3.6 can be applied.

Example 2.19. Dissimilarity between binary attributes. Suppose that a patient record table (Ta-
ble 2.6) contains the attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where name
is an object identifier, gender is a symmetric binary attribute, and the remaining attributes are asym-
metric binary. O

For asymmetric binary attribute values, let the values Y (yes) and P (positive) be set to 1, and the
value N (no or negative) be set to 0. Suppose that the distance between objects (patients) is computed
based only on the asymmetric binary attributes. According to Eq. (2.19), the distance between each pair
of the three patients—Jack, Mary, and Jim—is

. 1+1

d(Jack, Jim) = — = 0.67,
1+1+1

d(Jack, Mary) 0+1 0.33

ack, Mary) = ——— = (0.33,
Yot
142

d(Jim, M. =——=0.75.
(Jim, Mary) T152

These measurements suggest that Jim and Mary are unlikely to have a similar disease because they
have the highest dissimilarity value among the three pairs. Of the three patients, Jack and Mary are the
most likely to have a similar disease.

Table 2.6 Relational table where patients are described

by binary attributes.

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N

Jim M Y Y N N N N

Mary F Y N P N P N

48 Chapter 2 Data, measurements, and data preprocessing

2.3.4 Dissimilarity of numeric data: Minkowski distance

In this section, we describe distance measures that are commonly used for computing the dissimilarity
of objects described by numeric attributes. These measures include the Euclidean, Manhattan, and
Minkowski distances.

In some cases, the data are normalized before applying distance calculations. This involves trans-
forming the data to fall within a smaller or common range, such as [—1.0, 1.0] or [0.0, 1.0]. Consider a
height attribute, for example, which could be measured in either meters or inches. In general, express-
ing an attribute in smaller units will lead to a larger range for that attribute and thus tend to give such
attributes greater effect or “weight.” Normalizing the data attempts to give all attributes an equal weight.
It may or may not be useful in a particular application. Methods for normalizing data are discussed in
detail in Section 2.5 on data transformation.

The most popular distance measure is Euclidean distance (i.e., straight line or “as the crow flies”).
Leti = (x;1, xi2, ..., Xip) and j = (x;1, xj2, ..., Xjp) be two objects described by p numeric attributes.
The Euclidean distance between objects i and j is defined as

d(i, J) =/ Gt =31 4 (2 = xj2) -+ (xip — 32 2.21)

Another well-known measure is the Manhattan (or city block) distance, named so because it is the
distance in blocks between any two points in a city (such as 2 blocks down and 3 blocks over for a total
of 5 blocks). It is defined as

d(i, j)=xi1 —xj1| + |xi2 — xjo| + -+ |Xip — Xjpl. (2.22)
Both the Euclidean and the Manhattan distance satisfy the following mathematical properties:

Nonnegativity: d(i, j) > 0: Distance is a nonnegative number.

Identity of indiscernibles: d(i,i) = 0: The distance of an object to itself is 0.

Symmetry: d(i, j) =d(j,i): Distance is a symmetric function.

Triangle inequality: d(i, j) <d(i, k) + d(k, j): Going directly from object i to object j in space is
no more than making a detour over any other object k.

A measure that satisfies these conditions is known as metric. Please note that the nonnegativity property
is implied by the other three properties.

Example 2.20. Euclidean distance and Manhattan distance. Let x; = (1, 2) and x; = (3, 5) represent
two objects as shown in Fig. 2.10. The Euclidean distance between the two is +/22 + 32 =3.61. The
Manhattan distance between the two is 2 + 3 = 5. O

Minkowski distance is a generalization of the Euclidean and Manhattan distances. It is defined as

dti, j) = i = xjalh + lxia = xjlf -+ xip = xjp 1, (2.23)

where £ is a real number such that 4 > 1. (Such a distance is also called L, norm in some literature,
where the symbol p refers to our notation of 4. We have kept p as the number of attributes to be
consistent with the rest of this chapter.) It represents the Manhattan distance when 4 = 1 (i.e., L| norm)
and Euclidean distance when & =2 (i.e., L norm).

2.3 Similarity and distance measures 49

X, =(3,5)

Euclidean distance
=(22+32)12=361

N
G ———

3
x;=(1,2) Manhattan distance
2 =2+3=5
1 “«—)—p Supremum distance
=5-2=3
12 3

FIGURE 2.10

Euclidean, Manhattan, and supremum distances between two objects.

The supremum distance (also referred to as Lyqx, Loo Norm, and the Chebyshev distance) is a
generalization of the Minkowski distance for # — oo. To compute it, we find the attribute f that gives
the maximum difference in values between the two objects. This difference is the supremum distance,
defined more formally as:

1

h

p
.. . P
d(”):hlinéo § lxif — xjpl" :mjgx|xi,~—xjf~|. (2.24)
f=1

The Lo norm is also known as the uniform norm.

Example 2.21. Supremum distance. Let’s use the same two objects, x; = (1, 2) and x, = (3, 5), asin
Fig. 2.10. The second attribute gives the greatest difference between the values for the objects. That is,
max{(|3 — 1], |5 — 2|} = 3. This is the supremum distance between the two objects. O

If each attribute is assigned a weight according to its perceived importance, the weighted Euclidean
distance can be computed as

d(, j) Z\/wl|xil — X117+ walxiz — xj2? + -+ wplxip — xjpl2 (2.25)

Weighting can also be applied to other distance measures as well.

2.3.5 Proximity measures for ordinal attributes

The values of an ordinal attribute have a meaningful order or ranking about them, yet the magnitude be-
tween successive values is unknown (Section 2.1.3). An example includes the sequence small, medium,
large for a size attribute. Ordinal attributes may also be obtained from the discretization of numeric
attributes by splitting the value range into a finite number of categories. These categories are organized
into ranks. That is, the range of a numeric attribute can be mapped to an ordinal attribute f having M ¢

50 Chapter 2 Data, measurements, and data preprocessing

states. For example, the range of the interval-scaled attribute temperature (in Celsius) can be organized
into the following states: —30 to —10, —10 to 10, and 10 to 30, representing the categories cold tem-
perature, moderate temperature, and warm temperature, respectively. Let M p represent the number of
possible states that an ordinal attribute can have. These ordered states define the ranking 1, ..., M.

“How are ordinal attributes handled?” The treatment of ordinal attributes is quite similar to that of
numeric attributes when computing dissimilarity between objects. Suppose that f is an attribute from a
set of ordinal attributes describing n objects. The dissimilarity computation with respect to f involves
the following steps:

1. The value of f for the ith object is x;r, and f has M ordered states, representing the ranking
1,..., My. Replace each x;¢ by its corresponding rank, r;r € {1,..., Ms}.

2. Since each ordinal attribute can have a different number of states, it is often necessary to map the
range of each attribute onto [0.0, 1.0] so that each attribute has equal weight. We perform such data
normalization by replacing the rank r; ¢ of the ith object in the fth attribute by

(2.26)

3. Dissimilarity can then be computed using any of the distance measures described in Section 2.3.4
for numeric attributes, using z; to represent the f value for the ith object.

Example 2.22. Dissimilarity between ordinal attributes. Suppose that we have the sample data
shown earlier in Table 2.4, except that this time only the object-identifier and the continuous ordi-
nal attribute, test-2, are available. There are three states for test-2: fair, good, and excellent, that is,
My = 3. For step 1, if we replace each value for test-2 by its rank, the four objects are assigned the
ranks 3, 1, 2, and 3, respectively. Step 2 normalizes the ranking by mapping rank 1 to 0.0, rank 2 to
0.5, and rank 3 to 1.0. For step 3, we can use, say, the Euclidean distance defined in Eq. (2.21), which
results in the following dissimilarity matrix:

0

1.0 0

05 05 O
0 10 05 O

Therefore objects 1 and 2 are the most dissimilar, as are objects 2 and 4 (i.e.,d(2,1) = 1.0and d(4,2) =
1.0). This makes intuitive sense since objects 1 and 4 are both excellent. Object 2 is fair, which is at the
opposite end of the range of values for tesz-2. O

Similarity values for ordinal attributes can be interpreted from dissimilarity as sim(i, j) =1 —
(i, j).

2.3.6 Dissimilarity for attributes of mixed types

Sections 2.3.2 through 2.3.5 discussed how to compute the dissimilarity between objects described by
attributes of the same type, where these types may be either nominal, symmetric binary, asymmetric
binary, numeric, or ordinal. However, in many real databases, objects are described by a mixture of
attribute types. In general, a database can contain all of these attribute types.

2.3 Similarity and distance measures 51

“So, how can we compute the dissimilarity between objects of mixed attribute types?” One approach
is to group each type of attributes together, performing separate data mining (e.g., clustering) analysis
for each type. This is feasible if these analyses derive compatible results. However, in real applications,
it is unlikely that a separate analysis per attribute type will generate compatible results.

A more preferable approach is to process all attribute types together, performing a single analysis.
One such technique combines the different attributes into a single dissimilarity matrix, bringing all of
the meaningful attributes onto a common scale of the interval [0.0, 1.0].

Suppose that the data set contains p attributes of mixed types. The dissimilarity d(i, j) between
objects i and j is defined as

p) 50N
D =18 4

d(, j) = L (2.27)
p)
> f=1 8 j
where the indicator 8;{) — 0 if either (1) x;f or x ¢ is missing (i.e., there is no measurement of attribute
for object i or object j), or (2) xjr = x;r = 0 and attribute f is asymmetric binary; otherwise, § ()
] d] f if y y ij

1. The contribution of attribute f to the dissimilarity between i and j (i.e., dl.(]f)) is computed dependent
on its type:
bi x|
max g —min g
of attribute f, respectively;
* If f is nominal or binary: di(]f) =0if x;y = xjr; otherwise, dl.(]f) =1;and

. . i1 .
* If f is ordinal: compute the ranks r;y and z;r = ;’/f —» and treat z;¢ as numeric.

o If f is numeric: dl.(jzf) = , where max ¢ and min y are the maximum and minimum values

These steps are identical to what we have already seen for each of the individual attribute types. The
only difference is for numeric attributes, where we normalize so that the values map to the interval [0.0,
1.0]. Thus the dissimilarity between objects can be computed even when the attributes describing the
objects are of different types.

Example 2.23. Dissimilarity between attributes of mixed types. Let’s compute a dissimilarity matrix
for the objects in Table 2.4. Now we will consider all of the attributes, which are of different types. In
Examples 2.18 and 2.22, we worked out the dissimilarity matrices for each of the individual attributes.
The procedures we followed for fest-1 (which is nominal) and test-2 (which is ordinal) are the same as
outlined earlier for processing attributes of mixed types. Therefore we can use the dissimilarity matrices
obtained for fest-1 and test-2 later when we compute Eq. (2.27). First, however, we need to compute
the dissimilarity matrix for the third attribute, test-3 (which is numeric). That is, we must compute
di(]?). Following the case for numeric attributes, we let maxyx;, = 64 and minj;x, = 22. The difference
between the two is used in Eq. (2.27) to normalize the values of the dissimilarity matrix. The resulting
dissimilarity matrix for test-3 is

0
055 O
045 1.00 O

0.40 0.14 0.86 O

52 Chapter 2 Data, measurements, and data preprocessing

We can now use the dissimilarity matrices for the three attributes in our computation of Eq. (2.27). The
indicator ‘Sl(,f)= for each of the three attributes, f. We get, for example, d(3, 1)=W:
0.65. The resulting dissimilarity matrix obtained for the data described by the three attributes of mixed

types is:
0
08 0
0.65 083 0

0.13 0.71 0.79 O

From Table 2.4, we can intuitively guess that objects 1 and 4 are the most similar, based on their values
for test-1 and test-2. This is confirmed by the dissimilarity matrix, where d (4, 1) is the lowest value for
any pair of different objects. Similarly, the matrix indicates that objects 1 and 2 are the least similar. [

2.3.7 Cosine similarity

Cosine similarity measures the similarity between two vectors of an inner product space. It is measured
by the cosine of the angle between two vectors and determines whether two vectors are pointing in
roughly the same direction. It is often used to measure document similarity in text analysis.

A document can be represented by thousands of attributes, each recording the frequency of a partic-
ular word (such as a keyword) or phrase in the document. Thus each document is an object represented
by what is called a ferm-frequency vector. For example, in Table 2.7, we see that Documentl contains
five instances of the word feam, whereas hockey occurs three times. The word coach is absent from the
entire document, as indicated by a count value of 0. Such data can be highly asymmetric.

Term-frequency vectors are typically very long and sparse (i.e., they have many O values). Applica-
tions using such structures include information retrieval, text document clustering, and biological data
analysis. The traditional distance measures that we have studied in this chapter do not work well for
such sparse numeric data. For example, two term-frequency vectors may have many O values in com-
mon, meaning that the corresponding documents do not share many words, but this does not make them
similar. We need a measure that will focus on the words that the two documents do have in common,
and the occurrence frequency of such words. In other words, we need a measure for numeric data that
ignores zero-matches.

Cosine similarity is a measure of similarity that can be used to compare documents or, say, give
a ranking of documents with respect to a given vector of query words. Let x and y be two vectors for

Table 2.7 Document vector or term-frequency vector.

Document Team Coach Hockey Baseball Soccer Penalty Score Win Loss Season
Documentl 5 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 7 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

2.3 Similarity and distance measures 53

comparison. Using the cosine measure as a similarity function, we have

Xy

7 (2.28)
[x]ll1yll

sim(x,y) =

where [|x|| is the Euclidean norm of vector x = (x1, x2, ..., X)), defined as \/xf + x22 +-+ xlz,. Con-

ceptually, it is the length of the vector. Similarly, ||y|| is the Euclidean norm of vector y. The measure
computes the cosine of the angle between vectors x and y. A cosine value of O means that the two vec-
tors are at 90 degrees to each other (orthogonal) and have no match. The closer the cosine value to 1,
the smaller the angle and the greater the match between vectors. Note that because the cosine similarity
measure does not obey all of the properties of Section 2.3.4 defining metric measures, it is referred to
as a nonmetric measure.

Example 2.24. Cosine similarity between two term-frequency vectors. Suppose that x and y
are the first two term-frequency vectors in Table 2.7. That is, x =(5,0,3,0,2,0,0,2,0,0) and
y=(@,0,2,0,1,1,0,1,0, 1). How similar are x and y? Using Eq. (2.28) to compute the cosine simi-
larity between the two vectors, we get:

X -y=5%x34+0x0+3x24+0x04+2x1+0x1+0x0+2x1
+0x0+0x1=25
]| = V52 + 02 +32 4+ 02 + 22+ 02 + 02 + 22 + 02 + 02 = 6.48

Il =V32+02+22 402+ 124+ 12402+ 12+ 02 + 12 =4.12
sim(x,y) =0.94.

Therefore if we were using the cosine similarity measure to compare these documents, they would be
considered quite similar. O

When attributes are binary-valued, the cosine similarity function can be interpreted in terms of
shared features or attributes. Suppose an object x possesses the ith attribute if x; = 1. Then x - y is the
number of attributes possessed (i.e., shared) by both x and y, and ||x|| and || y|| are the geometric mean
of the number of attributes possessed by x and that by y respectively. Thus, sim(x, y) is a measure of
relative possession of common attributes.

A simple variation of cosine similarity for the preceding scenario is

x-y
X x+y-y—x-y

sim(x,y) = (2.29)

which is the ratio of the number of attributes shared by x and y to the number of attributes possessed
by x or y. This function, known as the Tanimoto coefficient or Tanimoto distance, is frequently used
in information retrieval and biology taxonomy.

2.3.8 Measuring similar distributions: the Kullback-Leibler divergence

Finally, we introduce Kullback-Leibler divergence, or simply, the KL divergence, a measure that has
been popularly used in the data mining literature to measure the difference between two probability

54 Chapter 2 Data, measurements, and data preprocessing

distributions over the same variable x. This concept was originated in probability theory and informa-
tion theory.

The KL divergence, which is closely related to relative entropy, information divergence, and infor-
mation for discrimination, is a nonsymmetric measure of the difference between two probability distri-
butions p(x) and g (x). Specifically, the KL divergence of ¢(x) from p(x), denoted Dk (p(x)||g(x)),
is a measure of the information loss when ¢ (x) is used to approximate p(x).

Let p(x) and g(x) be two probability distributions of a discrete random variable x. That is, both
p(x) and g(x) sumup to 1, and p(x) > 0 and g(x) > O for any x in X. Dk (p(x)||g(x)) is defined in
Eq. (2.30).

p(x)
q(x)

DgrL(p(®)llgx) =Y p(x)In (2.30)

xeX

The KL divergence measures the expected number of extra bits required to code samples from p(x)
when using a code based on ¢ (x) rather than using a code based on p(x). Typically p(x) represents the
“true” distribution of data, observations, or a precisely calculated theoretical distribution. The measure
q (x) typically represents a theory, model, description, or approximation of p(x).

The continuous version of the KL divergence is

o p(x)

DKL(P(X)HQ(X)):/ p(x)In——dx. (2.31)
) q(x)

Although the KL divergence measures the “distance” between two distributions, it is not a dis-
tance measure. This is because that the KL divergence is not a metric measure. It is not symmetric:
the KL from p(x) to g(x) is generally not the same as the KL from g(x) to p(x). Furthermore,
it need not satisfy triangular inequality. Nevertheless, Dx (p(x)||g(x)) is a nonnegative measure.
Dk 1 (p()llg(x)) = 0 and Dg 1 (p(x)|lg(x)) = 0 if and only if p(x) =g (x).

Notice that attention should be paid when computing the KL divergence. We know lim ()0
p(x)log p(x) =0. However, when p(x) #0 but g(x) =0, Dgr(p(x)|lg(x)) is defined as oco. This
means that if one event e is possible (i.e., p(e) > 0), and the other predicts it is absolutely impossible
(i.e., g(e) = 0), then the two distributions are absolutely different. However, in practice, two distribu-
tions P and Q are derived from observations and sample counting, that is, from frequency distributions.
It is unreasonable to predict in the derived probability distribution that an event is completely impos-
sible since we must take into account the possibility of unseen events. A smoothing method can be
used to derive the probability distribution from an observed frequency distribution, as illustrated in the
following example.

Example 2.25. Computing the KL divergence by smoothing. Suppose there are two sample distri-
butions P and Q as follows: P : (a:3/5,b:1/5,c:1/5)and Q:(a:5/9,b:3/9,d :1/9). To compute
the KL divergence Dk (P||Q), we introduce a small constant €, for example € = 1073, and define a
smoothed version of P and Q, P" and Q’, as follows.

The sample set observed in P, SP = {a, b, c}. Similarly, SQ = {a, b, d}. The union set is SU =
{a, b, c, d}. By smoothing, the missing symbols can be added to each distribution accordingly, with the
small probability €. Thus we have P':(a:3/5—¢€/3,b:1/5—€/3,c:1/5—€/3,d:€¢)and Q" : (a:
5/9—¢€/3,b:3/9—¢/3,c:¢€,d:1/9—¢€/3). Dgr(P’, Q') can be computed easily. O

2.4 Data quality, data cleaning, and data integration 55

2.3.9 Capturing hidden semantics in similarity measures

Similarity measure is a fundamental concept in data mining. We have introduced multiple measures for
computing similarities among objects consisting of numerical attribute, symmetric and asymmetric
binary attribute, ordinal attribute, and nominal attribute. We have also introduced how to compute
document similarity using the vector space model, and how to compare two distributions using the
notion of KL divergence. These notions and measures on object similarity will be used substantially in
our subsequent studies on methods for pattern discovery, classification, clustering, and outlier analysis.

In real-life applications, we may encounter the notion of object similarity beyond what we have
discussed in this chapter. Even for simple objects, similarities among objects are often closely related
to their semantic meanings, which cannot be captured based on the above defined similarity measures.
For example, people often consider geometry and algebra are more similar than geometry vs. music or
politics, even all are subjects studied in schools. Moreover, documents that consist of similar frequency
distributions of words (or similar bags of words) may express rather different meanings (e.g., consider-
ing “The cat bites a mouse” vs. “The mouse bites a cat”). This goes beyond what a vector space model
(i.e., expressing words as a set of vectors in a high-dimensional vector space as shown in Section 2.3.7)
can handle. Furthermore, objects can be composed of rather complex structures and connections. Sim-
ilarity measures for graphs and networks may need to be introduced, which is beyond the notions of
object similarity introduced here.

In the upcoming chapters, we will introduce additional similarity measures when encountered along
with the problems and methods to be discussed. In particular, in Chapter 12, we will briefly introduce
the notion of distributive representation and representation learning, where text embedding and deep
learning will be used to compute such advanced notion of similarities.

2.4 Data quality, data cleaning, and data integration

In this section, we start with a discussion of data quality measures (Section 2.4.1). Then, we introduce
common techniques for data cleaning (Section 2.4.2) and data integration (Section 2.4.3).

2.4.1 Data quality measures

Data have quality if they satisfy the requirements of the intended use. There are many factors com-
prising data quality, including accuracy, completeness, consistency, timeliness, believability, and in-
terpretability.

Imagine that you are a manager at an online webstore and have been charged with analyzing the
company’s data with respect to your branch’s sales. You immediately set out to perform this task. You
carefully inspect the company’s database and data warehouse, identifying and selecting the attributes
or dimensions (e.g., item, price, and units_sold) to be included in your analysis. Alas! You notice that
several of the attributes for various tuples have no recorded values. For your analysis, you would like to
include information as to whether each item purchased was advertised as on sale, yet you discover that
this information has not been recorded. Furthermore, users of your database system have reported er-
rors, unusual values, and inconsistencies in the data recorded for some transactions. In other words, the
data you wish to analyze by data mining techniques are incomplete (lacking attribute values or certain
attributes of interest, or containing only aggregate data); inaccurate or noisy (containing errors, or val-

56 Chapter 2 Data, measurements, and data preprocessing

ues that deviate from the expected); and inconsistent (e.g., containing discrepancies in the department
codes used to categorize items). Welcome to the real world!

This scenario illustrates three of the elements defining data quality: accuracy, completeness, and
consistency. Inaccurate, incomplete, and inconsistent data are commonplace properties of large real-
world databases and data warehouses. There are many possible reasons for inaccurate data (i.e., having
incorrect attribute values). The data collection instruments used may be faulty. There may have been
human or computer errors occurring at data entry. Users may purposely submit incorrect data values
for mandatory fields when they do not wish to submit personal information (e.g., by choosing the de-
fault value “January 1” displayed for birthday). This is known as disguised missing data. Errors in data
transmission can also occur. There may be technology limitations such as limited buffer size for coordi-
nating synchronized data transfer and consumption. Incorrect data may also result from inconsistencies
in naming conventions or data codes or inconsistent formats for input fields (e.g., date). Duplicate tuples
also require data cleaning.

Incomplete data can occur for a number of reasons. Attributes of interest may not always be avail-
able, such as customer information for sales transaction data. Other data may not be included simply
because they were not considered important at the time of entry. Relevant data may not be recorded due
to a misunderstanding or because of equipment malfunctions. Data that were inconsistent with other
recorded data may have been deleted. Furthermore, the recording of the data history or modifications
may have been overlooked. Missing data, particularly for tuples with missing values for some attributes,
may need to be inferred.

Recall that data quality depends on the intended use of the data. Two different users may have very
different assessments of the quality of a given database. For example, a marketing analyst may need
to access the database mentioned before for a list of customer addresses. Some of the addresses are
outdated or incorrect, yet overall, 80% of the addresses are accurate. The marketing analyst considers
this to be a large customer database for target marketing purposes and is pleased with the database’s
accuracy, although as sales manager, you found the data inaccurate.

Timeliness also affects data quality. Suppose that you are overseeing the distribution of monthly
sales bonuses to the top sales representatives in a company. Several sales representatives, however,
fail to submit their sales records on time at the month-end. There are also a number of corrections and
adjustments that flow in after the month-end. For a period of time following each month, the data stored
in the database are incomplete. However, once all of the data are received, it is correct. The fact that the
month-end data are not updated in a timely fashion has a negative impact on the data quality.

Two other factors affecting data quality are believability and interpretability. Believability reflects
how much the data are trusted by users, whereas interpretability reflects how easily the data are under-
stood. Suppose that a database, at one point, had several errors, all of which have since been corrected.
The past errors, however, had caused many problems for sales department users, and so they no longer
trust the data. The data also use many accounting codes, which the sales department does not know
how to interpret. Even though the database is now accurate, complete, consistent, and timely, sales
department users may regard it as of low quality due to poor believability and interpretability.

2.4.2 Data cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or data cleansing)
routines attempt to fill in missing values, smooth out noise while identifying outliers, and correct in-
consistencies in the data. In this section, you will study basic methods for data cleaning. First, we look

2.4 Data quality, data cleaning, and data integration 57

at ways of handling missing values. Then, we explain data smoothing techniques. Finally, we discuss
approaches to data cleaning as a process.

Missing values

Imagine that you need to analyze the sales and customer data of a company. You note that many tuples
have no recorded value for several attributes such as customer income. How can you go about filling in
the missing values for this attribute? Let’s look at the following methods.

1. Ignore the tuple: This is usually done when the class label is missing (assuming the mining task
involves classification). This method is not very effective, unless the tuple contains several attributes
with missing values. It is especially poor when the percentage of missing values per attribute varies
considerably. By ignoring the tuple, we do not make use of the remaining attributes’ values in the
tuple. Such data could have been useful to the task at hand.

2. Fill in the missing value manually: In general, this approach is time consuming and may not be
feasible given a large data set with many missing values.

3. Use a global constant to fill in the missing value: Replace all missing attribute values by the same
constant such as a label like “Unknown” or —oo. If missing values are replaced by, say, “Unknown,”
then the mining program may mistakenly think that they form an interesting concept, since they all
have a value in common—that of “Unknown.” Hence, although this method is simple, it is not
foolproof.

4. Use a measure of central tendency for the attribute (e.g., the mean or median) to fill in the miss-
ing value: Section 2.2 discussed measures of central tendency, which indicate the “middle” value
of a data distribution. For normal (symmetric) data distributions, the mean can be used, whereas
skewed data distribution should employ the median (Section 2.2). For example, suppose that the
data distribution regarding the income of the customers is symmetric and that the mean income is
$56,000. Use this value to replace the missing value for income.

5. Use the attribute mean or median for all samples belonging to the same class as the given
tuple: For example, if classifying customers according to credit_risk, we may replace the missing
value with the mean income value for customers in the same credit risk category as that of the given
tuple. If the data distribution for a given class is skewed, the median value is a better choice.

6. Use the most probable value to fill in the missing value: This may be determined with regression,
inference-based tools using a Bayesian formalism or decision tree induction. For example, using the
other customer attributes in your data set, you may construct a decision tree to predict the missing
values for income. Decision trees, regression, and Bayesian inference are described in detail in
Chapters 6 and 7.

Methods 3 through 6 bias the data—the filled-in value may not be correct. Method 6, however, is a
popular strategy. In comparison to the other methods, it uses the most information from the present data
to predict missing values. By considering the values of other attributes in its estimation of the missing
value for income, there is a greater chance that the relationships between income and the other attributes
are preserved.

It is important to note that, in some cases, a missing value may not imply an error in the data!
For example, when applying for a credit card, candidates may be asked to supply their driver’s license
number. Candidates who do not have a driver’s license may naturally leave this field blank. Forms
should allow respondents to specify values such as “not applicable.” Software routines may also be

58 Chapter 2 Data, measurements, and data preprocessing

»)

used to uncover other null values (e.g., “don’t know, , or “none”). Ideally, each attribute should
have one or more rules regarding the null condition. The rules may specify whether or not nulls are
allowed and/or how such values should be handled or transformed. Fields may also be intentionally
left blank if they are to be provided in a later step of the business process. Hence, although we can try
our best to clean the data after it is seized, good database and data entry procedure design should help
minimize the number of missing values or errors in the first place.

Noisy data

“What is noise?” Noise is a random error or variance in a measured variable. Given a numeric attribute
such as, say, price, how can we “smooth” out the data to remove the noise? Let’s look at the following
data smoothing techniques.

Binning: Binning methods smooth a sorted data value by consulting its “neighborhood,” that is, the
values around it. The sorted values are distributed into a number of “buckets,” or bins. Because
binning methods consult the neighborhood of values, they perform local smoothing. Fig. 2.11 il-
lustrates some binning techniques. In this example, the data for price are first sorted and then
partitioned into equal-frequency bins of size 3 (i.e., each bin contains three values). In smoothing
by bin means, each value in a bin is replaced by the mean value of the bin. For example, the mean
of the values 4, 8, and 15 in Bin 1 is 9. Therefore each original value in this bin is replaced by the
value 9.

Similarly, smoothing by bin medians can be employed, in which each bin value is replaced by the
bin median. In smoothing by bin boundaries, the minimum and maximum values in a given bin
are identified as the bin boundaries. Each bin value is then replaced by the closest boundary value.
In general, the larger the width, the greater the effect of the smoothing. Alternatively, bins may be

Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:
Bin 1: 4,8, 15

Bin 2: 21, 21,24

Bin 3: 25,28, 34

Smoothing by bin means:
Binl: 9,9,9

Bin2: 22,22,22

Bin 3: 29, 29,29

Smoothing by bin boundaries:
Bin 1: 4,4, 15

Bin2: 21,21,24

Bin 3: 25,25, 34

FIGURE 2.11

Data smoothing with different binning methods.

2.4 Data quality, data cleaning, and data integration 59

equal width, where the interval range of values in each bin is constant. Binning is also used as a
discretization technique.

Regression: Data smoothing can also be done by regression, a technique that conforms data values
to a function. Linear regression involves finding the “best” line to fit two attributes (or variables) so
that one attribute can be used to predict the other. Multiple linear regression is an extension of linear
regression, where more than two attributes are involved, and the data are fit to a multidimensional
surface. Regression is further described in Chapter 6.

QOutlier analysis: Outliers may be detected by clustering, for example, where similar values are or-
ganized into groups or “clusters.” Intuitively, values that fall outside of the set of clusters may be
considered as outliers (Fig. 2.12). Chapter 11 is dedicated to the topic of outlier analysis.

Many data smoothing methods are also used for data discretization (a form of data transformation)
and data reduction. For example, the binning techniques described before reduce the number of distinct
values per attribute. This acts as a form of data reduction for logic-based data mining methods, such as
decision tree induction, which repeatedly makes value comparisons on sorted data. Concept hierarchies
are a form of data discretization that can also be used for data smoothing. A concept hierarchy for
price, for example, may map real price values into inexpensive, moderately_priced, and expensive,
thereby reducing the number of data values to be handled by the mining process. Data discretization is
discussed in Section 2.5.2. Some methods of classification have built-in data smoothing mechanisms.
Classification is the topic of Chapters 6 and 7.

Y
° Y o %0 °
!) o
1
. \
o 00 ®q%0e \
(0 00 %%y |
. @ ° i °
o %% 000° "
@ ® ool |
a0 0® v
P TN P
e °
° . -
- ® RN T
e . e -
/ / \
‘e ® ® L /e e o
1 e | (X J]
eoe ° ° % |
i Y | ° | 'Y
° ° .
‘9 ‘90® ! ‘e o
/ RNy Be

FIGURE 2.12

A 2-D customer data plot with respect to customer locations in a city, showing three data clusters. Outliers may be
detected as values that fall outside of the cluster sets.

60 Chapter 2 Data, measurements, and data preprocessing

Data cleaning as a process

Missing values, noise, and inconsistencies contribute to inaccurate data. So far, we have looked at
techniques for handling missing data and for smoothing data. “But data cleaning is a big job. What
about data cleaning as a process? How exactly does one proceed in tackling this task? Are there any
tools out there to help?”

The first step in data cleaning as a process is discrepancy detection. Discrepancies can be caused by
several factors, including poorly designed data entry forms that have many optional fields, human error
in data entry, deliberate errors (e.g., respondents not wanting to divulge information about themselves),
and data decay (e.g., outdated addresses). Discrepancies may also arise from inconsistent data represen-
tations and inconsistent use of codes. Other sources of discrepancies include errors in instrumentation
devices that record data and system errors. Errors can also occur when the data are (inadequately) used
for purposes other than originally intended. There may also be inconsistencies due to data integration
(e.g., where a given attribute can have different names in different databases).

“So, how can we proceed with discrepancy detection?” As a starting point, use any knowledge you
may already have regarding properties of the data. Such knowledge or “data about data” is referred to
as metadata. This is where we can make use of the knowledge we gained about our data in the earlier
sections. For example, what are the data type and domain of each attribute? What are the acceptable
values for each attribute? The basic statistical data descriptions discussed in Section 2.2 are useful here
to grasp data trends and identify anomalies. For example, find the mean, median, and mode values.
Are the data symmetric or skewed? What is the range of values? Do all values fall within the expected
range? What is the standard deviation of each attribute? For Gaussian-like distributions, values that are
more than two standard deviations away from the mean for a given attribute may be flagged as potential
outliers. Are there any known dependencies between attributes? In this step, you may write your own
scripts and/or use some of the tools that we discuss further later. From this, you may find noise, outliers,
and unusual values that need investigation.

As a data analyst, you should be on the lookout for the inconsistent use of codes and any inconsistent
data representations (e.g., “2010/12/25” and “25/12/2010” for date). Field overloading is another error
source that typically results when developers squeeze new attribute definitions into unused (bit) portions
of already defined attributes (e.g., an unused bit of an attribute that has a value range that uses only, say,
31 out of 32 bits).

The data should also be examined regarding uniqueness, consecutiveness, and null conditions. A
uniqueness rule says that each value of the given attribute must be different from all other values for
that attribute. A consecutiveness rule says that there can be no missing values between the lowest and
highest values for the attribute, and that all values must also be unique (e.g., as in check numbers). A
null condition rule specifies the use of blanks, question marks, special characters, or other strings that
may indicate the null condition (e.g., where a value for a given attribute is not available), and how such
values should be handled. As mentioned earlier, reasons for missing values may include: (1) the person
originally asked to provide a value for the attribute refuses and/or finds that the information requested
is not applicable (e.g., a license_number attribute left blank by nondrivers); (2) the data entry person
does not know the correct value; or (3) the value is to be provided by a later step of the process. The
null rule should specify how to record the null condition, for example, such as to store zero for numeric

! Data integration and the removal of redundant data that can result from such integration are further described in Section 2.4.3.

2.4 Data quality, data cleaning, and data integration 61

attributes, a blank for categorical attributes, or any other conventions that may be in use (e.g., entries
like “don’t know” or “?” should be transformed to blank).

There are a number of different commercial tools that can aid in the discrepancy detection step.
Data scrubbing tools use simple domain knowledge (e.g., knowledge of postal addresses and spell-
checking) to detect errors and make corrections in the data. These tools rely on parsing and fuzzy
matching techniques when cleaning data from multiple sources. Data auditing tools find discrepancies
by analyzing the data to discover rules and relationships, and detecting data that violate such condi-
tions. They are variants of data mining tools. For example, they may employ statistical analysis to find
correlations, or clustering to identify outliers. They may also use the basic statistical data descriptions
presented in Section 2.2.

Some data inconsistencies may be corrected manually using external references. For example, errors
made at data entry may be corrected by performing a paper trace. Most errors, however, will require
data transformations. That is, once we find discrepancies, we typically need to define and apply (a
series of) transformations to correct them.

Commercial tools can assist in the data transformation step. Data migration tools allow simple
transformations to be specified such as to replace the string “gender” by “sex.” ETL (extraction/trans-
formation/loading) tools allow users to specify transforms through a graphical user interface (GUI).
These tools typically support only a restricted set of transformations so that often we may also choose
to write custom scripts for this step of the data cleaning process.

The two-step process of discrepancy detection and data transformation (to correct discrepancies)
iterates. This process, however, is error-prone and time-consuming. Some transformations may intro-
duce more discrepancies. Some nested discrepancies may only be detected after others have been fixed.
For example, a typo such as “20010” in a year field may only surface once all date values have been
converted to a uniform format. Transformations are often done as a batch process while the user waits
without feedback. Only after the transformation is complete can the user go back and check that no new
anomalies have been mistakenly created. Typically, numerous iterations are required before the user is
satisfied. Any tuples that cannot be automatically handled by a given transformation are typically writ-
ten to a file without any explanation regarding the reasoning behind their failure. As a result, the entire
data cleaning process also suffers from a lack of interactivity.

New approaches to data cleaning emphasize increased interactivity. Potter’s Wheel, for example, is
a publicly available data cleaning tool that integrates discrepancy detection and transformation. Users
gradually build a series of transformations by composing and debugging individual transformations, one
step at a time, on a spreadsheet-like interface. The transformations can be specified graphically or by
providing examples. Results are shown immediately on the records that are visible on the screen. The
user can choose to undo the transformations, so that transformations that have introduced additional
errors can be “erased.” The tool automatically performs discrepancy checking in the background on
the latest transformed view of the data. Users can gradually develop and refine transformations as
discrepancies are found, leading to more effective and efficient data cleaning. Section 2.5 will introduce
some common data transformation techniques, including normalization, discretization, compression,
and sampling.

Another approach to increasing interactivity in data cleaning is the development of declarative lan-
guages for the specification of data transformation operators. Such work focuses on defining powerful
extensions to SQL and algorithms that enable users to express data cleaning specifications efficiently.

62 Chapter 2 Data, measurements, and data preprocessing

As we discover more about the data, it is important to keep updating the metadata to reflect this
knowledge. This will help speed up data cleaning on future versions of the same data store.

2.4.3 Data integration

Data mining often requires data integration—the merging of data from multiple data stores. Careful
integration can help reduce and avoid redundancies and inconsistencies in the resulting data set. This
can help improve the accuracy and speed of the subsequent data mining process.

The semantic heterogeneity and structure of data pose great challenges in data integration. In this
section, we first introduce the entity identification problem, which matches schema and objects from
different sources. Then, we present correlation tests for spotting correlated numeric and nominal data.
Finally, we introduce tuple duplication and the detection and resolution of data value conflicts.

Entity identification problem

It is likely that your data analysis task will involve data integration, which combines data from mul-
tiple sources into a coherent data store, as in data warehousing. These sources may include multiple
databases, data cubes, or flat files.

There are a number of issues to consider during data integration. Schema integration and object
matching can be tricky. How can equivalent real-world entities from multiple data sources be matched
up? This is referred to as the entity identification problem. For example, how can a data analyst or
a computer be sure that customer_id in one database and cust_number in another refer to the same
attribute? Moreover, metadata may be used to help entity identification (e.g., data codes for pay_type
in one database may be “H” and “S” but / and 2 in another). Examples of metadata for each attribute
include the name, meaning, data type, range of values permitted for the attribute, and null rules for
handling blank, zero, or null values (Section 2.4.2). Such metadata can be used to help avoid errors in
schema integration. Hence, this step also relates to data cleaning, as described earlier.

When matching attributes from one database to another during integration, special attention must
be paid to the structure of the data. This is to ensure that any attribute functional dependencies and
referential constraints in the source system match those in the target system. For example, in one system,
a discount may be applied to the order, whereas in another system, it is applied to each individual
line item within the order. If this is not caught before integration, items in the target system may be
improperly discounted.

Redundancy and correlation analysis

Redundancy is another important issue in data integration. An attribute (such as annual revenue, for
instance) may be redundant if it can be “derived” from another attribute or set of attributes. Inconsis-
tencies in attribute or dimension naming can also cause redundancies in the resulting data set.

Some redundancies can be detected by correlation analysis. Given two attributes, such analysis
can measure how strongly one attribute implies the other, based on the available data. For nominal data,
we can use the x? (chi-square) test. For numeric attributes, we can use the correlation coefficient and
covariance, both of which assess how one attribute’s values vary from those of another.

2.5 Data transformation 63

Tuple duplication

In addition to detecting redundancies between attributes, duplication should also be detected at the
tuple level (e.g., where there are two or more identical tuples for a given unique data entry). The use
of denormalized tables (often done to improve performance by avoiding joins) is another source of
data redundancy. Inconsistencies often arise between various duplicates, due to inaccurate data entry or
updating some but not all data occurrences. For example, if a purchase order database contains attributes
for the purchaser’s name and address instead of a key to this information in a purchaser database,
discrepancies can occur, such as the same purchaser’s name appearing with different addresses within
the purchase order database.

Data value conflict detection and resolution

Data integration also involves the detection and resolution of data value conflicts. For example, for the
same real-world entity, attribute values from different sources may differ. This may be due to differences
in representation, scaling, or encoding. For instance, a weight attribute may be stored in metric units
in one system and British imperial units in another. For a hotel chain, the price of rooms in different
cities may involve not only different currencies but also different services (e.g., free breakfast) and
taxes. When exchanging information between schools, for example, each school may have its own
curriculum and grading scheme. One university may adopt a quarter system, offer three courses on
database systems, and assign grades from A+ to F, whereas another may adopt a semester system, offer
two courses on databases, and assign grades from 1 to 10. It is difficult to work out precise course-to-
grade transformation rules between the two universities, making information exchange difficult.

Attributes may also differ on the abstraction level, where an attribute in one system is recorded at,
say, a lower abstraction level than the “same” attribute in another. For example, the tofal_sales in one
database may refer to one branch of the company, whereas an attribute of the same name in another
database may refer to the total sales for the stores in a given region.

The topic of discrepancy detection was described in Section 2.4.2 on data cleaning as a process.

2.5 Data transformation

In data transformation, the data are transformed or consolidated into forms appropriate for mining.
Through appropriate data transformation, the resulting mining process may be more efficient, and the
patterns found may be easier to understand. Various strategies for data transformation have been de-
veloped. In this section, we start with the introduction of data normalization (Section 2.5.1), where the
attribute data are scaled so as to fall within a smaller range, such as —1.0 to 1.0 or 0.0 to 1.0. Then, we
will learn data discretization (Section 2.5.2), which replaces the raw values of a numeric attribute (e.g.,
age) by interval labels (e.g., 0-10, 11-20, etc.) or conceptual labels (e.g., youth, adult, senior). Data
compression (Section 2.5.3) and sampling (Section 2.5.4) are two data reduction techniques that trans-
form the input data to a reduced representation that is much smaller in volume, yet closely maintains
the integrity of the original data.

64 Chapter 2 Data, measurements, and data preprocessing

2.5.1 Normalization

The measurement unit used can affect the data analysis. For example, changing measurement units from
meters to inches for height, or from kilograms to pounds for weight, may lead to very different results.
In general, expressing an attribute in smaller units will lead to a larger range for that attribute and thus
tend to give such an attribute greater effect or “weight.” To help avoid dependence on the choice of
measurement units, the data should be normalized or standardized. This involves transforming the data
to fall within a smaller or common range such as [—1.0, 1.0] or [0.0, 1.0]. (The terms standardize and
normalize are used interchangeably in data preprocessing, although in statistics, the latter term also has
other connotations.)

Normalizing the data attempts to give all attributes an equal weight. Normalization is particu-
larly useful for classification algorithms involving neural networks or distance measurements such as
nearest-neighbor classification and clustering. If using the neural network backpropagation algorithm
for classification (Chapter 10), normalizing the input values for each attribute measured in the training
tuples will help speed up the learning phase. For distance-based methods, normalization helps prevent
attributes with initially large ranges (e.g., income) from outweighing attributes with initially smaller
ranges (e.g., binary attributes). It is also useful when given no prior knowledge of the data.

There are many methods for data normalization. We study min-max normalization, z-score normal-
ization, and normalization by decimal scaling. For our discussion, let A be a numeric attribute with n
observed values, v, vy, ..., U,.

Min-max normalization performs a linear transformation on the original data. Suppose that min 4
and max, are the minimum and maximum values of an attribute, A. Min-max normalization maps a
value, v;, of A to v; in the range [new_min4, new_max4] by computing

, v —ming . .
V; = ————————(new_max, — new_mina) +new_mingy. (2.32)
maxa — ming
Min-max normalization preserves the relationships among the original data values. It will encounter an
“out-of-bounds” error if a future input case for normalization falls outside of the original data range
for A.

Example 2.26. Min-max normalization. Suppose that the minimum and maximum values for
the attribute income are $12,000 and $98,000, respectively. We would like to map income to
the range [0.0, 1.0]. By min-max normalization, a value of $73,600 for income is transformed to

%(l.o—owozmm -

In z-score normalization (or zero-mean normalization), the values for an attribute, A, are normal-
ized based on the mean (i.e., average) and standard deviation of A. A value, v;, of A is normalized to
v! by computing

A (2.33)
oA

where A and o4 are the mean and standard deviation, respectively, of attribute A. The mean and stan-
dard deviation were discussed in Section 2.2, where A = %(vl +v2+ -+ vy,), and o4 is computed as
the square root of the variance of A (see Eq. (2.6)). This method of normalization is useful when the
actual minimum and maximum of attribute A are unknown or when there are outliers that dominate the
min-max normalization.

2.5 Data transformation 65

Example 2.27. z-score normalization. Suppose that the mean and standard deviation of the values
for the attribute income are $54,000 and $16,000, respectively. With z-score normalization, a value of

$73,600 for income is transformed to 22:890-58.000 — j 235, O

A variation of this z-score normalization replaces the standard deviation of Eq. (2.33) by the mean
absolute deviation of A. The mean absolute deviation of A, denoted s4, is

1 _ _ _
SAZE(|01—A|+|U2—A|+"‘+|vn_A|)~ (234)

Thus z-score normalization using the mean absolute deviation is

o=+ (2.35)
SA

The mean absolute deviation, s4, is more robust to outliers than the standard deviation, o4. When
computing the mean absolute deviation, the deviations from the mean (i.e., |x; — X|) are not squared;
hence, the effect of outliers is somewhat reduced.

Normalization by decimal scaling normalizes by moving the decimal point of values of attribute
A. The number of decimal points moved depends on the maximum absolute value of A. A value, v;, of
A is normalized to v] by computing

/ Vi
v = —,
10/

where j is the smallest integer such that max (|v}]) < 1.

(2.36)

Example 2.28. Decimal scaling. Suppose that the recorded values of A range from —986 to 917. The
maximum absolute value of A is 986. To normalize by decimal scaling, we therefore divide each value
by 1000 (i.e., j = 3) so that —986 normalizes to —0.986 and 917 normalizes to 0.917. O

Note that normalization can change the original data quite a bit, especially when using z-score
normalization or decimal scaling. It is also necessary to save the normalization parameters (e.g., the
mean and standard deviation if using z-score normalization) so that future data can be normalized in a
uniform manner.

2.5.2 Discretization

Data discretization is a common data transformation technique, where the raw values of a numeric
attribute (e.g., age) are replaced by interval labels (e.g., 0-10, 11-20, etc.) or conceptual labels (e.g.,
youth, adult, senior). The labels, in turn, can be recursively organized into higher-level concepts, re-
sulting in a concept hierarchy for the numeric attribute. Fig. 2.13 shows a concept hierarchy for the
attribute price. More than one concept hierarchy can be defined for the same attribute to accommodate
the needs of various users.

Discretization techniques can be categorized based on how the discretization is performed, such as
whether it uses class information or which direction it proceeds (i.e., top-down vs. bottom-up). If the
discretization process uses class information, then we say it is supervised discretization. Otherwise,
it is unsupervised. If the process starts by first finding one or a few points (called split points or cut

66 Chapter 2 Data, measurements, and data preprocessing

(80...$1000]

[($0...$200]] [($200...$400]] [($400...$600]] [($600...$800]] [($800...$1000]]

s0... 1[s100..) [s200.)[$300..) [($400..) 8500 [($600..|[$700..) [($800...)(($900...

$100] || $200] $300] || $400] $500] || $600] $700] || $800] $900] || $1000]
FIGURE 2.13

A concept hierarchy for the attribute price, where an interval ($X ...$Y] denotes the range from $X (exclusive) to
$Y (inclusive).

points) to split the entire attribute range and then repeats this recursively on the resulting intervals, it
is called top-down discretization or splitting. This contrasts with bottom-up discretization or merging,
which starts by considering all of the continuous values as potential split-points, removes some by
merging neighborhood values to form intervals, and then recursively applies this process to the resulting
intervals.

We introduce two basic discretization techniques, including binning and histogram analysis. Other
methods for discretization include cluster analysis, decision tree analysis, and correlation analysis. Each
of these techniques can be used to generate concept hierarchies for numeric attributes.

Discretization by binning

Binning is a top-down splitting technique based on a specified number of bins. Section 2.4.2 discussed
binning methods for data smoothing. These methods are also used as discretization methods for data
reduction and concept hierarchy generation. For example, attribute values can be discretized by ap-
plying equal-width or equal-frequency binning and then replacing each bin value by the bin mean or
median, as in smoothing by bin means or smoothing by bin medians, respectively. These techniques can
be applied recursively to the resulting partitions to generate concept hierarchies.

Binning does not use class information and is therefore an unsupervised discretization technique. It
is sensitive to the user-specified number of bins, as well as the presence of outliers.

Discretization by histogram analysis

Histogram analysis is an unsupervised discretization technique because it does not use class in-
formation. Histograms were introduced in Section 2.2.4. A histogram partitions the values of an
attribute, A, into disjoint ranges called buckets or bins. If each bucket represents only a single
attribute-value/frequency pair, the buckets are called singleton buckets. Singleton buckets are useful
for storing high-frequency outliers. Often, buckets instead represent continuous ranges for the given
attribute.

Example 2.29. The following data are a list of prices for commonly sold items in the company (rounded
to the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14,

2.5 Data transformation 67

10
9
8 - —
7 1 —
6 - —

count

5 4 — —
4
3

AL | s |

5 10 15 20 25 30
price ($)

\4

FIGURE 2.14

A histogram for price using singleton buckets—each bucket represents one price—value/frequency pair.

14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25,
25, 25, 25, 25, 28, 28, 30, 30, 30.

Fig. 2.14 shows a histogram for the data using singleton buckets. To further reduce the data, it is
common to have each bucket denote a continuous value range for the given attribute. In Fig. 2.15, each
bucket represents a different $10 range for price. O

“How are the buckets determined and the attribute values partitioned?” There are several partition-
ing rules, including the following:

* Equal-width: In an equal-width histogram, the width of each bucket range is uniform (e.g., the
width of $10 for the buckets in Fig. 2.15).

* Equal-frequency (or equal-depth): In an equal-frequency histogram, the buckets are created so
that, roughly, the frequency of each bucket is constant (i.e., each bucket contains roughly the same
number of contiguous data samples).

Histograms are highly effective at approximating both sparse and dense data, as well as highly
skewed and uniform data. The histograms described before for single attributes can be extended for
multiple attributes. Multidimensional histograms can capture dependencies between attributes. These
histograms have been found effective in approximating data with up to five attributes. More studies are
needed regarding the effectiveness of multidimensional histograms for high dimensionalities.

The histogram analysis algorithm can be applied recursively to each partition in order to auto-
matically generate a multilevel concept hierarchy, with the procedure terminating once a prespecified
number of concept levels has been reached. A minimum interval size can also be used per level to con-

68 Chapter 2 Data, measurements, and data preprocessing

25 A

20 A

15

count

10

\/

T T
1-10 11-20 21-30
price ($)

FIGURE 2.15

An equal-width histogram for price, where values are aggregated so that each bucket has a uniform width of $10.

trol the recursive procedure. This specifies the minimum width of a partition or the minimum number
of values for each partition at each level.

2.5.3 Data compression

In data compression, transformations are applied so as to obtain a reduced or “compressed” representa-
tion of the original data. If the original data can be reconstructed from the compressed data without any
information loss, the data reduction is called lossless. If, instead, we can reconstruct only an approxi-
mation of the original data, then the data reduction is called lossy. There are several lossless algorithms
for string compression; however, they typically allow only limited data manipulation. Dimensionality
reduction techniques (Section 2.6) can also be considered as forms of data compression.

The discrete wavelet transform (DWT) is a linear signal processing technique that, when applied
to a data vector x, transforms it to a numerically different vector, x’, of wavelet coefficients. The two
vectors are of the same length. When applying this technique to data reduction, we consider each tuple
as an n-dimensional data vector, that is, x = (x1, x2, ..., X,), depicting n measurements made on the
tuple from n database attributes.

“How can this technique be useful for data reduction if the wavelet transformed data are of the same
length as the original data?” The usefulness lies in the fact that the wavelet transformed data can be
truncated. A compressed approximation of the data can be retained by storing only a small fraction of
the strongest wavelet coefficients. For example, all wavelet coefficients larger than some user-specified
threshold can be retained. All other coefficients are set to 0. The resulting data representation is there-
fore very sparse, so that operations that can take advantage of data sparsity are computationally very
fast if performed in wavelet space. The technique also works to remove noise without smoothing out
the main features of the data, making it effective for data cleaning as well. Given a set of coefficients,
an approximation of the original data can be constructed by applying the inverse of the DWT used.

2.5 Data transformation 69

The DWT is closely related to the discrete Fourier transform (DFT), a signal processing technique
involving sines and cosines. In general, however, the DWT achieves better lossy compression. That is,
if the same number of coefficients is retained for a DWT and a DFT of a given data vector, the DWT
version will often provide a more accurate approximation of the original data. Hence, for an equivalent
approximation, the DWT requires less space than the DFT. Unlike the DFT, wavelets are quite localized
in space, contributing to the conservation of local detail.

There is only one DFT, yet there are several families of DWTs. Fig. 2.16 shows some wavelet
families. Popular wavelet transforms include the Haar-2, Daubechies-4, and Daubechies-6. The general
procedure for applying a discrete wavelet transform uses a hierarchical pyramid algorithm that halves
the data at each iteration, resulting in fast computational speed. The method is as follows:

1. The length, L, of the input data vector must be an integer power of 2. This condition can be met by
padding the data vector with zeros as necessary (L > n).

2. Each transform involves applying two functions. The first applies some data smoothing, such as
sum or weighted average. The second performs a weighted difference, which acts to bring out the
detailed features of the data.

3. The two functions are applied to pairs of data points in X, that is, to all pairs of measurements
(x2i, x2i+1). This results in two data sets of length L/2. In general, these represent a smoothed or
low-frequency version of the input data and the high-frequency content of it, respectively.

4. The two functions are recursively applied to the data sets obtained in the previous iteration, until the
resulting data sets obtained are of length 2.

5. Selected values from the data sets obtained in the previous iterations are designated as the wavelet
coefficients of the transformed data.

Equivalently, a matrix multiplication can be applied to the input data in order to obtain the wavelet
coefficients, where the matrix used depends on the given DWT. The matrix must be orthonormal,
meaning that the columns are unit vectors and are mutually orthogonal, so that the matrix inverse is just
its transpose. Although we do not have room to discuss it here, this property allows the reconstruction
of the data from the smooth and smooth-difference data sets. Factoring the matrix used into a product

0.8
0.6
0.6
0.4 0.4 -
0.2 0.2 7
0.0
0.0 T T T T T T T T T T T
—1.0 —-0.5 00 05 1.0 1.5 20 0 2 4 6
(a) Haar-2 (b) Daubechies-4

FIGURE 2.16

Examples of wavelet families. The number next to a wavelet name is the number of vanishing moments of the

wavelet. This is a set of mathematical relationships that the coefficients must satisfy and is related to the number of
coefficients.

70 Chapter 2 Data, measurements, and data preprocessing

of a few sparse matrices, the resulting “fast DWT” algorithm has a complexity of O(n) for an input
vector of length n.

Wavelet transforms can be applied to multidimensional data such as a data cube. This is done by first
applying the transform to the first dimension, then to the second, and so on. The computational com-
plexity involved is linear with respect to the number of cells in the cube. Wavelet transforms give good
results on sparse or skewed data and on data with ordered attributes. Lossy compression by wavelets
is reportedly better than JPEG compression, the current commercial standard. Wavelet transforms have
many real-world applications, including the compression of fingerprint images, computer vision, anal-
ysis of time-series data, and data cleaning.

2.5.4 Sampling

Sampling can be used as a data reduction technique because it allows a large data set to be represented
by a much smaller random data sample (or subset). Suppose that a large data set, D, contains N tuples.
Let’s look at the most common ways that we could sample D for data reduction.

¢ Simple random sample without replacement (SRSWOR) of size s: This is created by drawing s
samples from D, and every time a sample is drawn, it is not to be placed back to the data set D.

* Simple random sample with replacement (SRSWR) of size s: This is similar to SRSWOR, except
that each time a tuple is drawn from D, it is recorded and then replaced. That is, after a tuple is
drawn, it is placed back in D so that it may be drawn again.

* Cluster sample: If the tuples in D are grouped into M mutually disjoint “clusters,” then a sample
of s clusters can be obtained, where s < M. For example, tuples in a database are usually retrieved
a page at a time, so that each page can be considered a cluster. A reduced data representation can be
obtained by applying, say, SRSWOR to the pages, resulting in a cluster sample of the tuples. Other
clustering criteria conveying rich semantics can also be explored. For example, in a spatial database,
we may choose to define clusters geographically based on how closely different areas are located.

» Stratified sample: If D is divided into mutually disjoint parts called strata, a stratified sample of D
is generated by obtaining a sample at each stratum. This helps ensure a representative sample, espe-
cially when the data are skewed. For example, a stratified sample may be obtained from customer
data, where a stratum is created for each customer age group. In this way, the age group having the
smallest number of customers will be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a sample is proportional to
the size of the sample, s, as opposed to N, the data set size. Hence, sampling complexity is potentially
sublinear to the size of the data. Other data reduction techniques can require at least one complete
pass through D. For a fixed sample size, sampling complexity increases only linearly as the number
of data dimensions, n, increases, whereas techniques using histograms, for example, could increase
exponentially in n.

When applied to data reduction, sampling is most commonly used to estimate the answer to an
aggregate query. It is possible (using the central limit theorem) to determine a sufficient sample size for
estimating a given function within a specified degree of error. This sample size, s, may be extremely
small in comparison to N. Sampling is a natural choice for the progressive refinement of a reduced data
set. Such a set can be further refined by simply increasing the sample size.

2.6 Dimensionality reduction 71

2.6 Dimensionality reduction

Dimensionality reduction is the process of reducing the number of random variables or attributes or
features under consideration. Dimensionality reduction methods include principal components analy-
sis (PCA) (Section 2.6.1), which is a linear method that transforms or projects the original data onto
a smaller space. Attribute subset selection is a method of dimensionality reduction in which irrele-
vant, weakly relevant, or redundant attributes or dimensions are detected and removed (Section 2.6.2).
There are many nonlinear methods for dimensionality reduction (Section 2.6.3) such as kernel PCA
and stochastic neighbor embedding.

2.6.1 Principal components analysis

In this subsection, we provide an intuitive introduction to principal components analysis as a method
of dimensionality reduction. A detailed theoretical explanation is beyond the scope of this book. For
additional references, please see the bibliographic notes at the end of this chapter.

Suppose that the data to be reduced consist of tuples or data vectors described by d attributes or
dimensions. Principal components analysis (PCA; also called the Karhunen-Loeve, or K-L, method)
searches for k d-dimensional orthonormal vectors that can best be used to represent the data, where
k <d. The original data are thus projected onto a much smaller space, resulting in dimensionality
reduction. Unlike attribute subset selection (Section 2.6.2), which reduces the attribute set size by re-
taining a subset of the initial set of attributes, PCA “combines” the essence of attributes by creating an
alternative, smaller set of variables. The initial data can then be projected onto this smaller set. PCA
often reveals relationships that were not previously suspected and thereby allows interpretations that
would not ordinarily result.

The basic procedure is as follows:

1. The input data are normalized, so that each attribute falls within the same range. This step helps
ensure that attributes with large domains will not dominate attributes with smaller domains.

2. PCA computes k orthonormal vectors that provide a basis for the normalized input data. These are
unit vectors that are perpendicular with each other. These vectors are referred to as the principal
components. The input data are a linear combination of the principal components.

3. The principal components are sorted in order of decreasing “significance” or strength. The principal
components essentially serve as a new set of axes for the data, providing important information
about variance. That is, the sorted axes are such that the first axis shows the most variance among
the data, the second axis shows the next highest variance, and so on. For example, Fig. 2.17 shows
the first two principal components, Y| and Y, for the given set of data originally mapped to the
axes X1 and X». This information helps identify groups or patterns within the data.

4. Because the components are sorted in descending order of “significance,” the data size can be re-
duced by eliminating the weaker components, that is, those with low variance. Using the strongest
principal components, it should be possible to reconstruct a good approximation of the original data.

PCA can be applied to ordered and unordered attributes and can handle sparse data and skewed data.
Multidimensional data of more than two dimensions can be handled by reducing the problem to two
dimensions. Principal components may be used as inputs to multiple regression and cluster analysis.

72 Chapter 2 Data, measurements, and data preprocessing

FIGURE 2.17

Principal components analysis. Y1 and Y, are the first two principal components for the given data.

2.6.2 Attribute subset selection

Data sets for analysis may contain hundreds of attributes, many of which may be irrelevant to the mining
task or redundant. For example, if the task is to classify customers based on whether or not they are
likely to purchase a popular new music album when notified of a sale, attributes such as the customer’s
phone number are likely to be irrelevant, unlike attributes such as age or music_taste. Although it may
be possible for a domain expert to pick out some of the useful attributes, this can be a difficult and
time-consuming task, especially when the data’s behavior is not well known. (Hence, a reason behind
its analysis!) Leaving out relevant attributes or keeping irrelevant attributes may be detrimental, causing
confusion for the mining algorithm employed. This can result in discovered patterns of poor quality. In
addition, the added volume of irrelevant or redundant attributes can slow down the mining process.

Attribute subset selection” reduces the data set size by removing irrelevant or redundant attributes
(or dimensions). This makes mining focused on the relevant dimensions. Mining on a reduced set of
attributes has an additional benefit: It reduces the number of attributes appearing in the discovered
patterns, helping to make the patterns easier to understand.

“How can we find a ‘good’ subset of the original attributes?” For d attributes, there are 2¢ possible
subsets. An exhaustive search for the optimal subset of attributes can be prohibitively expensive, espe-
cially as d and the number of data classes increase. Therefore, heuristic methods that explore a reduced
search space are commonly used for attribute subset selection. These methods are typically greedy in
that, while searching through attribute space, they always make what looks to be the best choice at the
time. Their strategy is to make a locally optimal choice in the hope that this will lead to a globally good

2 In machine learning, attribute subset selection is known as feature subset selection.

2.6 Dimensionality reduction

73

Forward selection Backward elimination Decision tree induction
Initial attribute set: Initial attribute set: Initial attribute set:
(A, Ay, Az, Ay, As, Ag) | {A]L Ag, As, Ay, As, Ag) | {AL Ay, As, Ay, As, Ag)
Initial reduced set: => (A, A3, Ay, As, Ag)
{} => {Ay, Ay, As, Ag}
= {A} => Reduced attribute set:
=>{A|, A4} {A, Ay, Ag)
=> Reduced attribute set:
{A1, Ay, Ag}
=> Reduced attribute set:
{A1, Ay, Ag}
FIGURE 2.18

Greedy (heuristic) methods for attribute subset selection.

solution. Such greedy methods are effective in practice and may come close to estimating an optimal

solution.

The “best” (and “worst”) attributes are typically determined using tests of statistical significance,
which assume that the attributes are independent of one another. Many other attribute evaluation
measures can be used such as the information gain measure used in building decision trees for classifi-

cation.’

Basic heuristic methods of attribute subset selection include the following techniques, some of
which are illustrated in Fig. 2.18.

1. Stepwise forward selection: The procedure starts with an empty set of attributes as the reduced set.
The best of the original attributes is determined and added to the reduced set. At each subsequent

iteration or step, the best of the remaining original attributes is added to the set.

2. Stepwise backward elimination: The procedure starts with the full set of attributes. At each step,
it removes the worst attribute remaining in the set.
3. Combination of forward selection and backward elimination: The stepwise forward selection
and backward elimination methods can be combined so that, at each step, the procedure selects the

best attribute and removes the worst from among the remaining attributes.

4. Decision tree induction: Decision tree algorithms (e.g., ID3, C4.5, and CART) were originally
intended for classification. Decision tree induction constructs a flowchart-like structure where each

3 The information gain measure is described in detail in Chapter 6.

74 Chapter 2 Data, measurements, and data preprocessing

internal (nonleaf) node denotes a test on an attribute, each branch corresponds to an outcome of the
test, and each external (leaf) node denotes a class prediction. At each node, the algorithm chooses
the “best” attribute to partition the data into individual classes.

When decision tree induction is used for attribute subset selection, a tree is constructed from the
given data. All attributes that do not appear in the tree are assumed to be irrelevant. The set of
attributes appearing in the tree form the reduced subset of attributes.

The stopping criteria for the methods may vary. The procedure may employ a threshold on the measure
used to determine when to stop the attribute selection process.

In some cases, we may want to create new attributes based on others. Such attribute construction”
can help improve accuracy and understanding of structure in high-dimensional data. For example, we
may wish to add the attribute area based on the attributes height and width. By combining attributes,
attribute construction can discover missing information about the relationships between data attributes
that can be useful for knowledge discovery.

2.6.3 Nonlinear dimensionality reduction methods

PCA is a linear method for dimensionality reduction in that each principal component is a linear com-
bination of the original input attributes. This works well if the input data approximately follows a
Gaussian distribution or forms a few linearly separable clusters. When the input data are linearly insep-
arable, however, PCA becomes ineffective. Luckily, there are many nonlinear methods we can resort to
in this case.

General procedure

Suppose there are n data tuples x;, (i =1, ...,n), each of which is represented by a d-dimensional
attribute vector. How can we reduce the dimensionality to k where k < d? In order words, we want to
represent each of input data tuples by a k-dimensional attribute vector X;, (i =1, ...,n). Since k < d,
we call the k-dimensional attribute vector X;, (i =1, ...,n) as low-dimensional representations of the
original data tuples x;, (i =1, ..., n).

For many nonlinear dimensionality reduction methods, they often follow the following two steps
(see Fig. 2.19 for an illustration). In the first step (constructing proximity matrix), we constructann X n
proximity matrix P whose entry P (i, j) (i, j = 1, ..., n) indicates the affinity or relevance between the
two corresponding data tuples x; and x ;. In the second step (preserving proximity), we learn the new,
low-dimensional representations of the input data tuples in the k-dimensional space X; (i =1, ..., n) so
that the proximity matrix P constructed in the first step is somewhat preserved.

Depending on how the proximity matrix is constructed (Step 1) and how to preserve the constructed
proximity matrix (Step 2), a variety of nonlinear dimensionality reduction techniques have been devel-
oped. Let’s look at two representative techniques below, including kernel PCA (KPCA) and stochastic
hood embedding (SNE). A comparison of these two methods is summarized in Table 2.8.

4 In the machine learning literature, attribute construction is known as feature construction.

2.6 Dimensionality reduction 75

Preserving proximity

Proximity matrix construction

Input data Proximity matrix Output data

* ntuples (rows) * nrows * ntuples (rows)

* dfeatures (columns) * ncolumns * kfeatures (columns)
FIGURE 2.19

An illustration of nonlinear dimensionality reduction.

Table 2.8 Comparison of KPCA and SNE.

Step 1: Proximity Construction Step 2: Preserving Proximity

KPCA P,) =k(xi,x)) min Y} (PG, j) = PG,))* =P - PI3,,
—d2 R
SNE PG, j)= % minZLlKL(P,-llPi)
I=tizi€ il
Kernel PCA

In kernel PCA (KPCA), we use a kernel function k (-) to construct the proximity matrix called kernel
matrix (Step 1): P@, j) =«(x;,x;), (i,j=1,...,n). We will save the full details of kernel function
k (+) to the later chapters (e.g., Chapter 7). In the simplest term, a kernel function computes the similarity
of a pair of input data tuples in some high-dimensional, often nonlinear, space.

Meanwhile, we can also estimate such proximity (i.e., similarity) based on the learned low-
dimensional representations: f’(i ,J)=%;-X;,(i, j =1, ..., n) where - is the vector inner product. What
would be the best (i.e., optimal) low-dimensional representations X;, (i =1, ..., n)? Intuitively we hope
that the estimated proximity matrix P is as close as possible to the kernel matrix P. This leads to the fol-
lowing optimization problem (Step 2), which says that the best low-dimensional representations should
be those that minimize ZZjZI(P(i, Jj)— 13(1', Nr=|pP— 13||§m, where || - || fro is the matrix Frobe-
nius norm. We will not go into the mathematical details of how to solve this optimization problem. To
make the long story short, it turns out the optimal low-dimensional representations X;, (i =1,...,n)
can be obtained by the top-k eigenvectors and eigenvalues of the kernel matrix P. For a review of
eigenvectors and eigenvalues, see Appendix A.

Typical choices for the kernel functions include (1) polynomial kernel: « (x;, x ;) = (1 +x; - x ;)P

—lxi—x ;1%
where p is the parameter, and (2) radial basis function (RBF) «k (x;,x ;) = eTZJ, where o is the
parameter. If we choose a linear kernel: « (x;, x j) = x; - x j, KPCA degenerates to the standard PCA.

Stochastic neighbor embedding

In stochastic neighbor embedding (SNE), we first construct the proximity matrix P as follows:
2, 2

P, j)= %, where dizj = %

Yiizie i

and o is the parameter. We can view P (i, j) as the prob-

76 Chapter 2 Data, measurements, and data preprocessing

ability that data tuple x ; is the neighbor of data tuple x;: the closer the two data tuples are (i.e., smaller
d;j), the more likely x ; is the neighbor of x;.”
Suppose we have learned the low-dimensional representations X;, (i = 1, ..., n). We can obtain an-
o Ei—%12
Sy g e iR
is that if two data tuples share the similar low-dimensional representations (i.e., a small [|x; — X ;])),

other estimated proximity matrix in the similar way: PG, j)= Again, the intuition

the estimated proximity between them is large (i.e., a high P, j)). Now, in order to figure out the
best low-dimensional representations X;, (i =1, ...,n), we again seek those that make the estimated
proximity P be as close as possible to the proximity matrix P: P &~ P.

Different from KPCA, in this case, each row of both matrices P and P sums up to 1 and all the
entries are nonnegative. In other words, each row of matrices P and Pisa probability distribution that
tells the probability that each data tuple is the neighbor of a give data tuple. Naturally we can use KL di-
vergence (see Section 2.3.8) to measure the difference between them, and the optimal low-dimensional
representations X;, (i = 1, ..., n) are those that minimize the overall KL divergences between all rows of
P and that of P: &; = argming, =1, ») Y Dxi(P] |13,-), where P; and P; are the ith rows of P and
P, respectively. Again, we will not go into the teeny weeny mathematical details of how to solve this
optimization problem. Many off-the-shelf optimization packages can be used, such as gradient descent
method.

A variant of SNE named t-SNE (t-distributed stochastic neighbor embedding) has been widely used
to project the multi-dimensional representation produced by various deep learning models (Chapter 10)
to a two- or three-dimensional space for the purpose of visualization.

Note that in the above introduction, we have omitted some implementation details of KPCA and
SNE. For example, we need to ensure the data tuples are centered in KPCA; we often set P(i,i) =0 in
SNE; and a variant of SNE constructs a symmetric proximity matrix P. Interested readers can refer to
the related papers in the bibliographic notes.

Let us look at an example.

Example 2.30. Given a collection of data tuples in 2-D space (Fig. 2.20(a)). The input data naturally
form two clusters: one crescent shape facing up and one facing down. These two clusters are entangled
with each other, and there is no way we can find a linear subspace (a linear line in this case) to separate
them from each other. This means that no matter what kind of line we choose from the input space,
if we project the original data tuples onto this line, the projected portions (i.e., the low-dimensional
representation) will always be mixed with each other. This is what happens with PCA in Fig. 2.20(b),
where we plot the projection of the input data onto the space spanned by two principal components.
We can see that the two clusters are still mixed with each other, and the new representations by the
principal components are essentially a linear rotation of the input data.

In contrast, using a nonlinear dimensionality reduction technique KPCA (Fig. 2.20(c)) or t-SNE
(Fig. 2.20(d)), the two clusters are now better separated from each other in this new space.

Fig. 2.21 further shows the heatmaps of the similarity or proximity matrices in PCA (a), KPCA (b),
and t-SNE (c), respectively. The two diagonal blocks indicate the proximity within the two clusters,
respectively, and the two off-diagonal blocks indicate the proximity between the data from the two

5 An interesting observation is that the proximity matrix P here is the row-normalized kernel matrix in KPCA with the RBF
kernel.

2.6 Dimensionality reduction 77

Input Data PCA
. ® o . .
eyt o o
o H 3 : LI .
2 VE me, 3 [P S
(,g.—‘?g X%, - By LR
‘é . ‘. ° o :'. " °«"° s
= %y 5 o ’ RRAR AT
. N ° o ° opft ° & oos
2 8 i 134 R -y
' o . L3 R M Y
.?' - o oy oo .'..‘ . 3." %
.0.‘-‘;’ . .&; .’,;ﬁ. h 2% oo 5.'

iy’ e "1 3 Erhd ot R ¥ A
P & °, IR e ° sod & v,
o8 3} 9 Lol - ” e Y
K St) ot 7. A e’ -
.1‘ . .{., % 2 %S ° o' 0 H 300
o3 p v J <. KA eon e
: 2 b, reus. o aY oged '3
e ?7' : o L IR &
R 54 N > 15
£ L3P s 4

SR . ¥ A

LAPET 3’

M XX T
:-?;%":nf“ ::'
(a) Input data

(b) PCA
Kernel PCA t-SNE
= %) ”‘3
R X 4 KL
* % K] ".'i‘

N, (J 3 1 3

e %3’ .'o: Q e g]
d :"'.g ™~ A
oL . ‘ ‘: %) ’1‘

’ L | = ;. o'd,

H . 1) ‘% P
¥, 3 b4 4
¥ X Y,
':a' / * i3 i‘. .?Er -‘?’
t : ¥ 2 %
B N 3 * f 1
N4 R . 9

*- \\ ...:5: “.g o w. *ve‘i

"..-;j Rty # =3
(c) KPCA

FIGURE 2.20

An example of linear vs. nonlinear dimensionality reduction methods.

clusters. We can see that, in general, by nonlinear methods (KPCA and t-SNE), the proximity between
data tuples from the same cluster is much higher than the proximity between data tuples from different
clusters. This in turn leads to better dimensionality reduction results than linear methods (e.g., PCA).

O

78 Chapter 2 Data, measurements, and data preprocessing

Linear . RBF _ t-SNE

(a) PCA (b) KPCA t-SNE

FIGURE 2.21

The heatmaps of the similarity or proximity matrices in PCA (a), KPCA (b), and t-SNE (c), respectively. The two
diagonal blocks correspond to the two clusters in Fig. 2.20.

We can view PCA as the following process. First, we find principal components and project the
original data tuples into the subspace spanned by the principal components. Then, we use the projected
data tuples together with the principal components to reconstruct the original data tuples. This is a
linear process in that both the projection step and the reconstruction step are linear operations. Using
a specific deep learning technique called autoencoder, which will be introduced in Chapter 10, we
can make both projection and reconstruction steps to be nonlinear. The output from such a nonlinear
projection step thus forms the low-dimensional representations of the input data tuples.

PCA, attribute subset selection, KPCA, and SNE can be used as a data preprocessing step. That
is, we first apply one of these techniques on the input data tuples to produce their low-dimensional
representations before seeing the specific data mining task (e.g., classification, clustering, and outlier
detection). We can also perform dimensionality reduction fogether with a specific data mining task.
The rationality is that the dimensionality reduction and the corresponding data mining task are likely to
mutually complement with each other. For example, when combining attribute subset selection with the
classification task (called embedded feature selection), the classification model will guide the attribute
selection process, and the selected features will in turn help build a better classification model; when
combining dimensionality reduction with the clustering task, the clustering structure is likely to be more
evident in the new, low-dimensional space, and meanwhile such a clustering structure will help find
better low-dimensional representations. We will introduce such dimensionality reduction techniques in
the chapter on classification.

Dimensionality reduction, we introduced in this section, and data compression and sampling meth-
ods introduced in the previous section are common data reduction techniques. Another type of data
reduction technique is called numerosity reduction, which uses parametric or nonparametric models
to obtain smaller representations of the original data. Parametric models store only the model param-
eters instead of the actual data. Examples include regression and log-linear models. Nonparametric
methods include histograms, clustering, sampling, and data cube aggregation.

2.7 Summary 79

2.7 Summary

» Data sets are made up of data objects. A data object represents an entity. Data objects are described
by attributes. Attributes can be nominal, binary, ordinal, or numeric.

* The values of a nominal (or categorical) attribute are symbols or names of things, where each
value represents some kind of category, code, or state.

* Binary attributes are nominal attributes with only two possible states (such as 1 and O or true and
false). If the two states are equally important, the attribute is symmetric; otherwise it is asymmetric.

* An ordinal attribute is an attribute with possible values that have a meaningful order or ranking
among them, but the magnitude between successive values is not known.

* A numeric attribute is quantitative (i.e., it is a measurable quantity) represented in integer or real
values. Numeric attribute types can be interval-scaled or ratio-scaled. The values of an interval-
scaled attribute are measured in fixed and equal units. Ratio-scaled attributes are numeric at-
tributes with an inherent zero-point. Measurements are ratio-scaled in that we can speak of values
as being an order of magnitude larger than the unit of measurement.

* Basic statistical descriptions provide the analytical foundation for data preprocessing. The basic
statistical measures for data summarization include mean, weighted mean, median, and mode for
measuring the central tendency of data; and range, quantiles, quartiles, interquartile range, vari-
ance, and standard deviation for measuring the dispersion of data. Graphical representations (e.g.,
boxplots, quantile plots, quantile-quantile plots, histograms, and scatter plots) facilitate visual in-
spection of the data and are thus useful for data preprocessing and mining.

* Measures of object similarity and dissimilarity are used in data mining applications such as
clustering, outlier analysis, and nearest-neighbor classification. Such measures of proximity can be
computed for each attribute type studied in this chapter, or for combinations of such attributes. Ex-
amples include the Jaccard coefficient for asymmetric binary attributes and Euclidean, Manhattan,
Minkowski, and supremum distances for numeric attributes. For applications involving sparse nu-
meric data vectors, such as term-frequency vectors, the cosine measure and the Tanimoto coefficient
are often used in the assessment of similarity. To measure the difference between two probabil-
ity distributions over the same variable x, Kullback-Leibler divergence (or the KL divergence) has
been popularly used. Dg 1 (p(x)||g(x)) measures the expected number of extra bits required to code
samples from p(x) when using a code based on g (x) rather than using a code based on p(x).

* Data quality is defined in terms of accuracy, completeness, consistency, timeliness, believability,
and interpretability. These qualities are assessed based on the intended use of the data.

» Data cleaning routines attempt to fill in missing values, smooth out noise while identifying outliers,
and correct inconsistencies in the data. Data cleaning is usually performed as an iterative two-step
process consisting of discrepancy detection and data transformation.

* Data integration combines data from multiple sources to form a coherent data store. The resolu-
tion of semantic heterogeneity, metadata, correlation analysis, tuple duplication detection, and data
conflict detection contribute to smooth data integration.

* Data transformation routines convert the data into appropriate forms for mining. For example, in
normalization, attribute values are scaled; data discretization transforms numeric data by mapping
values to interval or concept labels; and data compression and data sampling, as two typical data
reduction techniques, transform the input data to a reduced representation.

80

Chapter 2 Data, measurements, and data preprocessing

¢ Dimensionality reduction reduces the number of random variables or attributes under consider-
ation. Methods include principal components analysis, attribute subset selection, kernel principal
component analysis, and stochastic neighbor embedding.

2.8

2.1,

2.2.

23.

2.4.
2.5.

Exercises

Give three additional commonly used statistical measures that are not already illustrated in this
chapter for the characterization of data dispersion, discuss how they can be computed efficiently
in large databases.

Suppose that the data for analysis include the attribute age. The age values for the data tuples
are (in ascending order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35,
35, 35, 36, 40, 45, 46, 52, 70.

a. What is the mean of the data? What is the median?

b. What is the mode of the data? Comment on the data’s modality (i.e., bimodal, trimodal,
etc.).

What is the midrange of the data?

Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

Give the five-number summary of the data.

Show a boxplot of the data.

Suppose that the values for a given set of data are grouped into intervals. The intervals and
corresponding frequencies are as follows:

~® 20

Age Frequency
1-5 200
6-15 450
16-20 300
21-50 1500
51-80 700
81-110 44

Compute an approximate median value for the data.

How is a quantile-quantile plot different from a quantile plot?

In our text, we state that the variance of N observations, x1, x2, ..., xy (when N is large), for a
numeric attribute X is defined as

1% 2 <1XN: 2) 2
SRR A Y L o) (2.37)
N Ni:l

where x is the mean value of the observations, as defined in Eq. (2.1). This is actually the for-
mula for calculating the variance for the whole population using all the data (hence called the
population variance). If we are calculation the variance using only a sample of data (hence called
sample variance), we will need to use the following formula:

i) 1 z)
§2 = p— Z(x,- —x)2 = p— (;xlz —nx2> , (2.38)

i=1

2.8 Exercises 81

where n is size of the sample. With the sample size n, sample standard deviation can be de-
fined similarly. Explain why there is such a minor difference at defining sample variance and
population variance.
2.6. Reason why variance and standard deviation can be computed efficiently in very large data sets.
2.7. Suppose that a hospital tested the age and body fat data for 18 randomly selected adults with the
following results:

age |23 |23 |27 |27 |39 |41 |47 |49 |50
Dofat | 9.5 1265 |78 |17.8 314|259 |274|27.2|31.2
age |52 |54 |54 |56 |57 |58 |58 |60 |61
Yofat | 34.6 | 42.5 | 28.8 | 33.4 | 30.2 | 34.1 | 32.9 | 41.2 | 35.7

a. Calculate the mean, median, and standard deviation of age and %fat
b. Draw the boxplots for age and %fat
€. Draw a scatter plot and a g-q plot based on these two variables
2.8. Briefly outline how to compute the dissimilarity between objects described by the following:
a. Nominal attributes
b. Asymmetric binary attributes
€. Numeric attributes
d. Term-frequency vectors
2.9. Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):
a. Compute the Euclidean distance between the two objects
b. Compute the Manhattan distance between the two objects
c. Compute the Minkowski distance between the two objects, using 7 =3
d. Compute the supremum distance between the two objects

2.10. The median is one of the most important measures in data analysis. Propose several methods for
median approximation. Analyze their respective complexity under different parameter settings
and decide to what extent the real value can be approximated. Moreover, suggest a heuristic
strategy to balance between accuracy and complexity, and then apply it to all methods you have
given.

2.11. It is important to define or select similarity measures in data analysis. However, there is no
commonly accepted subjective similarity measure. Results can vary depending on the similarity
measures used. Nonetheless, seemingly different similarity measures may be equivalent after
some transformation.

Suppose we have the following 2-D data set:

A1 | Ay
x1 | 1517
x3 |2 1.9
x3| 16|18
xq4| 12|15
x5 | 1.5 1.0

a. Consider the data as 2-D data points. Given a new data point, x = (1.4, 1.6) as a query, rank
the database points based on similarity with the query using Euclidean distance, Manhattan
distance, supremum distance, and cosine similarity.

82

2.12,

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

Chapter 2 Data, measurements, and data preprocessing

b. Normalize the data set to make the norm of each data point equal to 1. Use Euclidean

distance on the transformed data to rank the data points.
Data quality can be assessed in terms of several issues, including accuracy, completeness, and

consistency. For each of the above three issues, discuss how data quality assessment can depend

on the intended use of the data, giving examples. Propose two other dimensions of data quality.

In real-world data, tuples with missing values for some attributes are a common occurrence.

Describe various methods for handling this problem.

Given the following data (in the ascending order) for the attribute age: 13, 15, 16, 16, 19, 20, 20,

21,22,22,25, 25,25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

a. Use smoothing by bin means to smooth these data, using equal-frequency bins of size 3.
Ilustrate your steps. Comment on the effect of this technique for the given data.

b. How might you determine outliers in the data?

c. What other methods are there for data smoothing?

Discuss issues to consider during data integration.

What are the value ranges of the following normalization methods?

a. min-max normalization

b. z-score normalization

€. z-score normalization using the mean absolute deviation instead of standard deviation

d. normalization by decimal scaling

Use these methods to normalize the following group of data:

200, 300, 400, 600, 1000

a. min-max normalization by setting new_min =0 and new_max = 1

b. z-score normalization

€. z-score normalization using the mean absolute deviation instead of standard deviation

d. normalization by decimal scaling

Using the data for age given in Exercise 2.14, answer the following:

a. Use min-max normalization to transform the value 35 for age onto the range [0.0, 1.0]

b. Use z-score normalization to transform the value 35 for age, where the standard deviation
of age is 12.70 years

c. Use normalization by decimal scaling to transform the value 35 for age

d. Comment on which method you would prefer to use for the given data, giving reasons as to
why

Using the data for age and body fat given in Exercise 2.7, answer the following:

a. Normalize the two attributes based on z-score normalization

h. Calculate the correlation coefficient (Pearson’s product moment coefficient). Are these two
attributes positively or negatively correlated? Compute their covariance.

Suppose a group of 12 sales price records has been sorted as follows:

5,10, 11,13, 15,35, 50, 55,72, 92,204, 215.

Partition them into three bins by each of the following methods:
a. Equal-frequency (equal-depth) partitioning

h. Equal-width partitioning

c. Clustering

2.9 Bibliographic notes 83

2.21. Use a flowchart to summarize the following procedures for attribute subset selection:
a. Stepwise forward selection
h. Stepwise backward elimination
€. A combination of forward selection and backward elimination
2.22. Using the data for age given in Exercise 2.14,
a. Plot an equal-width histogram of width 10
b. Sketch examples of each of the following sampling techniques: SRSWOR, SRSWR, cluster
sampling, and stratified sampling, using samples of size 5 and the strata “youth,” “middle-
aged,” and “senior”

2.23. Robust data loading poses a challenge in database systems because the input data are often dirty.
In many cases, an input record may miss multiple values; some records could be contaminated,
with some data values out of range or of a different data type than expected. Work out an au-
tomated data cleaning and loading algorithm so that the erroneous data will be marked and
contaminated data will not be mistakenly inserted into the database during data loading.

2.9 Bibliographic notes

Data description, statistical data measurements, and descriptive data characterization have been intro-
duced in most statistics introductory textbooks. For statistics-based visualization of data using boxplots,
quantile plots, quantile-quantile plots, scatter plots, and loess curves, see Cleveland [Cle93].

Similarity and distance measures among various variables have been introduced in many text-
books that study cluster analysis, including Hartigan [Har75]; Jain and Dubes [JD88]; Kaufman and
Rousseeuw [KR90]; Arabie, Hubert, and de Soete [AHS96]. Methods for combining attributes of dif-
ferent types into a single dissimilarity matrix were introduced by Kaufman and Rousseeuw [KR90].

Data preprocessing is discussed in a number of textbooks, including Pyle [Pyl99], Loshin [LosO1],
Redman [RedO1], and Dasu and Johnson [DJO03], and Garcia, Luengo, and Herrera [GLH15], and Lu-
engo et al. [LGGRG™20].

For discussion regarding data quality, see Redman [RedO1]; Wang, Storey, and Firth [WSF95];
Wand and Wang [WWO96]; Ballou and Tayi [BT99]; and Olson [Ols03]. Potter’s Wheel, an interactive
data cleaning tool described in Section 2.4.2, is presented by Raman and Hellerstein [RHO1]. An exam-
ple of the development of declarative languages for the specification of data transformation operators is
given by Galhardas et al. [GFS™01]. The handling of missing attribute values is discussed by Friedman
[Fri77]; Breiman, Friedman, Olshen, and Stone [BFOS84]; and Quinlan [Qui89]. Hua and Pei [HPO7]
present a heuristic approach to cleaning disguised missing data, where such data are captured when
users falsely select default values on forms (e.g., “January 1” for birthdate) when they do not want to
disclose personal information.

A method for the detection of outlier or “garbage” patterns in a handwritten character database
is given in Guyon, Matic, and Vapnik [GMV96]. Binning and data normalization are treated in many
texts, including Kennedy et al. [KLLV "98], Weiss and Indurkhya [W198], and Pyle [Pyl199]. Systems that
include attribute (or feature) construction include BACON by Langley, Simon, Bradshaw, and Zytkow
[LSBZ87]; Stagger by Schlimmer [Sch86]; FRINGE by Pagallo [Pag89]; and AQ17-DCI by Bloedorn
and Michalski [BM98a]. Attribute construction is also described in Liu and Motoda [LM98]. Dasu et al.

84 Chapter 2 Data, measurements, and data preprocessing

build a BELLMAN system and propose a set of interesting methods for building a data quality browser
by mining database structures [DJMS02].

A survey of data reduction techniques can be found in Barbard et al. [BDF97]. For algorithms on
data cubes and their precomputation, see Sarawagi and Stonebraker [SS94]; Agarwal et al. [AAD96];
Harinarayan, Rajaraman, and Ullman [HRU96]; Ross and Srivastava [RS97]; and Zhao, Deshpande,
and Naughton [ZDNO97]. Attribute subset selection (or feature subset selection) is described in many
texts such as Neter, Kutner, Nachtsheim, and Wasserman [NKNW96]; Dash and Liu [DL97]; and Liu
and Motoda [LM98]. A combination of forward selection and backward elimination method is proposed
by Siedlecki and Sklansky [SS88]. A wrapper approach to attribute selection is described by Kohavi
and John [KJ97]. Unsupervised attribute subset selection is described by Dash, Liu, and Yao [DLY97].

For a general introduction to histograms, see Barbard et al. [BDF97] and Devore and Peck [DP97].
For extensions of single-attribute histograms to multiple attributes, see Muralikrishna and DeWitt
[MD88], and Poosala and Ioannidis [PI97].

There are many methods for assessing attribute relevance. Each has its own bias. The information
gain measure is biased toward attributes with many values. Many alternatives have been proposed,
such as gain ratio (Quinlan [Qui93]), which considers the probability of each attribute value. Other
relevance measures include the Gini index (Breiman, Friedman, Olshen, and Stone [BFOS84]), the X2
contingency table statistic, and the uncertainty coefficient (Johnson and Wichern [JW92]). For a com-
parison of attribute selection measures for decision tree induction, see Buntine and Niblett [BN92]. For
additional methods, see Liu and Motoda [LM98], Dash and Liu [DL97], and Almuallim and Dietterich
[ADI1].

Liu et al. [LHTDO02] perform a comprehensive survey of data discretization methods. Entropy-
based discretization with the C4.5 algorithm is described by Quinlan [Qui93]. In Catlett [Cat91], the
D-2 system binarizes a numeric feature recursively. ChiMerge by Kerber [Ker92] and Chi2 by Liu and
Setiono [LS95] are methods for the automatic discretization of numeric attributes that both employ the
x 2 statistic.

For a description of wavelets for dimensionality reduction, see Press, Teukolosky, Vetterling, and
Flannery [PTVFO7]. A general account of wavelets can be found in Hubbard [Hub96]. For a list of
wavelet software packages, see Bruce, Donoho, and Gao [BDG96]. Daubechies transforms are de-
scribed by Daubechies [Dau92]. Routines for PCA are included in most statistical software packages
such as SAS (http://www.sas.com). An introduction of KPCA can be found in [MSS'98] by Mika,
Scholkopf, and Smola. Stochastic neighbor embedding is proposed by Hinton and Roweis [HR02]. A
comparative review on dimensionality reduction is by van der Maaten et al. [vdMPvdH09].

http://www.sas.com

CHAPTER

Data warehousing and online
analytical processing

Data analytics, also often known as business intelligence, is the strategies and technology that enable
enterprises to gain deep and actionable insights into business data. Data mining plays the core role in
data analytics and business intelligence. Fundamentally, data warehouses generalize and consolidate
data in multidimensional space. The construction of data warehouses involves data cleaning, data inte-
gration, and data transformation, and can be viewed as an important preparation step for data mining.
Moreover, data warehouses provide online analytical processing (OLAP) tools for interactive analysis
of multidimensional data of varied granularities, which facilitates effective data generalization and data
mining. Many other data mining functions, such as association, classification, prediction, and cluster-
ing, can be integrated with OLAP operations to enhance interactive mining of knowledge at multiple
levels of abstraction. OLAP tools typically use data cube, a multidimensional data model, to provide
flexible access to summarized data. Data lakes as enterprise information infrastructure collect exten-
sive data in enterprises and integrate metadata so that data exploration can be conducted effectively.
Hence, data warehouses, OLAP, data cubes, and data lakes have become essential data and information
backbone for enterprises. This chapter presents an in-depth and comprehensive introduction to data
warehouse, OLAP, data cube, and data lake technology. This overview is essential for understanding
the overall data mining and knowledge discovery process and practical applications. In addition, it can
serve as a well-informed introduction to data analytics and business intelligence.

In this chapter, we first study a well-accepted definition of the data warehouse, introduce the archi-
tecture, and discuss the concept of data lake (Section 3.1). We then study the logical design of a data
warehouse as a multidimensional data model (Section 3.2). Next, we look at OLAP operations and how
to index OLAP data for efficient analytics (Section 3.3). Last, we introduce the techniques of building
data cube as a way of implementing a data warehouse (Section 3.4).

3.1 Data warehouse

This section introduces data warehouses. We begin with a definition of data warehouses and explain
how data warehouses can serve as the foundation of business intelligence (Section 3.1.1). Next, we
discuss data warehouse architecture (Section 3.1.2). Last, we discuss data lakes (Section 3.1.3).

3.1.1 Data warehouse: what and why?

More often than not, data in organizations are recorded at the operational level. For example, for the
sake of business efficiency, an e-commerce company often records the details of customer transactions
in a table, the information about customers in another table, and the particulars about product suppliers

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00013-8 8 5
Copyright © 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811760-6.00013-8

86 Chapter 3 Data warehousing and online analytical processing

in a third table. Operational data are mainly concerned about individual business functionings, such as
a purchase transaction, the registration of a new customer, and the shipment of a batch of products to a
store. The major advantage is that business operations, such as a customer purchasing a product, can be
conducted efficiently by inserting, deleting, or modifying only one or several records in one or a small
number of tables, and thus many business operations can be conducted concurrently.

At the same time, business analysts and executives often focus on historical, current, and predictive
views of business operations instead of individual transaction details. For example, a business analyst
in an e-commerce company may want to investigate the categories of customers, such as their demo-
graphical groups, who spend the most last month, and the major categories of products they purchase.
Computing answers to such analytic questions is often time and resource consuming, since it has to join
multiple data tables and conduct a large number of group-by aggregation operations, and thus needs
exclusive access to the data. Many analysis tasks may be periodic and some may be ad hoc and thus
may severely affect business operations, which are expected to be online, frequent, and concurrent.

To address the gap between business operations and analysis, data warehousing provides architec-
tures and tools for business analysts and executives to systematically organize, understand, and use
their data to make strategic decisions. Data warehouse systems are valuable tools in today’s competi-
tive, fast-evolving world. In the last two decades, many firms have spent billions of dollars in building
enterprise-wide data warehouses. It is well recognized that, with competition mounting in every indus-
try, data warehousing is the must-have business infrastructure—a way to retain customers by learning
more about their demands and behavior.

“Then, what exactly is a data warehouse?” In general, a data warehouse refers to a data repository
that is specific for analysis and is maintained separately from an organization’s operational databases.
Data warehouse systems support information processing by providing a solid platform of consolidated
historic data for analysis.

According to William H. Inmon, a leading architect in construction of data warehouse systems,
“A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in
support of management’s decision making process” [Inm96]. This short but comprehensive definition
presents the major features of a data warehouse. The four keywords—subject-oriented, integrated,
time-variant, and nonvolatile—distinguish data warehouses from other data repository systems, such
as relational database systems, transaction processing systems, and file systems.

* Subject-oriented: A data warehouse is organized around major subjects that are often identified
enterprise or department wise, such as customer, supplier, product, and sales. Rather than concen-
trating on the day-to-day operations and transaction processing of an organization, a data warehouse
focuses on modeling and analyzing data for decision makers. Hence, data warehouses typically pro-
vide a simple and concise view of particular subject issues by excluding data that are not useful in
the decision support process.

* Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources,
such as relational databases, flat files, and online transaction records. Data cleaning and data inte-
gration techniques are applied to ensure consistency in naming conventions, encoding structures,
attribute measures, and so on.

* Time-variant: Data are stored to provide information from a historic perspective (e.g., the past
5-10 years). Every key structure in a data warehouse contains, either implicitly or explicitly, a time
element. In other words, a data warehouse typically records data crossing a substantial history of
time.

3.1 Data warehouse 87

* Nonvolatile: A data warehouse is always a physically separate store of data transformed from the
application data found in the operational environment. Due to this separation, a data warehouse
does not require strong transaction processing, recovery, and concurrency control mechanisms and
thus has no interference with the operational systems. It usually requires only two operations in
data accessing: initial loading of data and access of data. In other words, the data stored in a data
warehouse are typically not deleted.

In sum, a data warehouse is a semantically consistent and persistent data store that serves as a
physical implementation of a decision support data model. It stores the information that an enterprise
needs to make strategic decisions. A data warehouse is also often viewed as an architecture, constructed
by integrating data from multiple heterogeneous sources to support structured and/or ad hoc queries,
analytical reporting, and decision making. Correspondingly, data warehousing is the process of con-
structing and using data warehouses. The construction of a data warehouse requires data cleaning, data
integration, and data consolidation.

“How do organizations use information from data warehouses?” Many organizations use this infor-
mation to support business decision-making activities. For example, by identifying the groups of most
active customers an e-commerce company can design promotion campaigns to retain those customers
firmly. By analyzing the sales patterns of products in different seasons, a company may design supply
chain strategies to reduce the stocking cost of seasonal products. Analytic results from data warehouses
are often presented to analysts and decision makers through periodic or ad hoc reports, such as daily,
weekly, and monthly sales analysis reports analyzing sales patterns on customer groups, regions, prod-
ucts, and promotions.

“What are the major differences between operational database systems and data warehouses?” The
major task of traditional operational database systems is to perform online transaction processing
(OLTP). These OLTP systems cover most of the day-to-day operations of an organization, such as
purchasing, inventory, manufacturing, banking, payroll, registration, and accounting. Data warehouse
systems serve business analysts and executives (in general, also known as knowledge workers) in the
role of obtaining business insights and making decisions by organizing and presenting data in various
perspectives in order to accommodate the diverse needs from different users. These systems are known
as online analytical processing (OLAP) systems.

The major distinguishing features of OLTP and OLAP are as follows:

* Users and system orientation: An OLTP system is transaction-oriented and is used for operation
execution by clerks and clients. An OLAP system is business insight-oriented and is used for data
summarization and analysis by knowledge workers, including managers, executives, and analysts.

* Data contents: An OLTP system manages current data that are typically too detailed to be easily
used for business decision making. An OLAP system manages large amounts of historic data, pro-
vides facilities for summarization and aggregation, and stores and manages information at different
levels of granularity, such as weekly-monthly-annually. These features make data easier to be used
for informed decision making.

* Database design: An OLTP system usually adopts an entity-relationship (ER) data model and an
application-oriented database design. An OLAP system typically adopts either a star model or a
snowflake model (see Section 3.2.2) and a subject-oriented database design.

* View: An OLTP system focuses mainly on the current data within an enterprise or department, with-
out referring to historic data or data in different organizations. In contrast, an OLAP system often

88 Chapter 3 Data warehousing and online analytical processing

spans multiple versions of a database schema, due to the evolutionary process of an organization.
OLAP systems also deal with information that originates from different organizations, integrating
information from many data stores.

* Access patterns: The access patterns of an OLTP system consist mainly of short, atomic transac-
tions, such as transferring an amount from one account to another. Such a system requires concur-
rency control and recovery mechanisms. However, accesses to OLAP systems are mostly read-only
operations (because most data warehouses store historic rather than up-to-date information). Many
accesses may be complex queries.

“Why not perform OLAP directly on operational databases instead of constructing a separate data
warehouse?” A major reason for a separation is to ensure the high performance of both systems. An
operational database is designed and tuned from known tasks and workloads like indexing and hashing
using primary keys, searching for particular records, and optimizing “canned” queries, which are pre-
programmed and frequently used queries in business. OLAP queries, however, are often complex. They
involve the computation of large data groups at summarized levels and may require the use of special
data organization, access, and implementation methods based on multidimensional views. Processing
OLAP queries directly in operational databases may substantially jeopardize the performance of op-
erational tasks. An operational database supports the concurrent processing of multiple transactions.
Concurrency control and recovery mechanisms (e.g., locking and logging) are required to ensure the
consistency and robustness of transactions. An OLAP query often needs read-only access of massive
data records for summarization and aggregation. Concurrency control and recovery mechanisms, if ap-
plied for such OLAP operations, may seriously delay the execution of concurrent transactions and thus
substantially reduce the throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on the different struc-
tures, contents, and uses of the data in these two kinds of systems. Decision support requires historic
data, whereas operational databases do not typically maintain historic data. In this context, the data
in operational databases are usually far from complete for decision making. Decision support requires
consolidation (e.g., aggregation and summarization) of data from heterogeneous sources, resulting in
high-quality, clean, and integrated data. In contrast, operational databases contain only detailed raw
data, such as transactions, which need to be consolidated before analysis. Because the two systems
provide quite different functionalities and require different kinds of data, it is presently necessary to
maintain separate databases.

3.1.2 Architecture of data warehouses: enterprise data warehouses and data
marts

“What does the architecture of a data warehouse look like?” To answer this question, we first intro-
duce the general three-tier architecture of data warehouses and then discuss two major data warehouse
models: the enterprise warehouse and the data mart.

The three-tier architecture
Data warehouses often adopt a three-tier architecture, as shown in Fig. 3.1.

The bottom level is a warehouse database server that is typically a main-stream database system,
such as a relational database or a key-value store. Back-end tools and data extraction/transforma-
tion/loading (ETL) utilities are used to feed data into the bottom tier from operational databases or

3.1 Data warehouse 89

Query/report Analysis Data mining

Top tier:

|—| H Front-end tools

OLAP server OLAP server

Middle tier:
OLAP server

Monitoring Administration Data warehouse Data marts
Q: Data warehouse
Metadata repoVv cerver

Extract

=58 2011

Operational databases External sources

FIGURE 3.1

A three-tier data warehousing architecture.

other external sources (e.g., customer profile information provided by external partners). These tools
and utilities perform data extraction, cleaning, and transformation, as well as load and refresh functions
to update the data warehouse. This tier also contains a metadata repository, which stores information
about the data warehouse and its contents.

The middle tier is an OLAP server that is typically implemented using either a relational OLAP
(ROLAP) model (i.e., an extended relational DBMS that maps operations on multidimensional data to
standard relational operations) or a multidimensional OLAP (MOLAP) model (i.e., a special-purpose
server that directly implements multidimensional data and operations). We will discuss OLAP servers
in detail soon.

90 Chapter 3 Data warehousing and online analytical processing

The top tier is a front-end client layer, which contains tools for querying, reporting, visualization,
analysis, and/or data mining, such as trend analysis and prediction.

“What are metadata in a warehouse database server?” Metadata are data about data. When used
in a data warehouse, metadata are the data that defines warehouse objects. Metadata are created for the
data names and definitions of the given warehouse. Additional metadata may be created and captured
for timestamping any extracted data, the source of the extracted data, and missing fields that have been
added by data cleaning or integration processes.

In addition, a metadata repository may contain a description of the data warehouse structure (e.g.,
the schema, view, dimensions, derived data definition, etc.), operational metadata (e.g., data transfor-
mation lineage, freshness of data), definitions of data summarization, mapping from operational data to
the data warehouse, system information, and related business information.

Metadata play a very different role than other data warehouse data and are important for many
reasons. For example, metadata are used as a directory to help analysts locate the contents of a data
warehouse and as a guide to data mapping when data are transformed from the operational environ-
ment to the data warehouse environment. Metadata also serve as a guide to the algorithms used for
summarization between the current detailed data and the lightly summarized data and between the
lightly summarized data and the highly summarized data. Metadata should be stored and managed
persistently (i.e., on disk).

Data warehouse systems use back-end tools and utilities to populate and refresh their data (Fig. 3.1).
These tools and utilities include the functions of data extraction (gathering data from multiple, het-
erogeneous, and external sources), data cleaning (detecting errors in data and rectifying them when
possible), data transformation (converting data from legacy or host format to warehouse format),
loading (sorting, summarizing, consolidating, computing views, checking integrity, and building in-
dices and partitions), and refreshing (propagating the updates from the data sources to the warehouse).
In addition, data warehouse systems usually provide a good set of data warehouse management tools.

ETL for data warehouses

In order to load and periodically refresh contents in data warehouses, typically data warehousing
systems implement some ETL modules. We discuss the essential techniques and methods for data ex-
traction, transformation, and loading in Chapter 2, which serve data warehousing, too. Here, we briefly
introduce some major tasks of ETL for data warehouses.

Data extraction

A data extraction process extracts data from external sources and is often the most important aspect of
ETL. For example, a data warehouse may need to extract transaction data from an OLTP database and
also user review data from social media repository. To encapsulate the details of various data sources,
wrappers are often developed and deployed, which interact with data sources and supply extracted data
to the ETL module. Due to the diversity and dynamics of data sources, manually developing wrappers
is often inefficient and ineffective in quality. Recently, more and more wrappers are data driven and can
automatically adapt to changes of data sources, such as changes in schema, update frequency, layout,
and encoding. For example, a wrapper for an OLTP database can monitor and adapt to schema updates.
A wrapper for a social media can crawl data from the social media and extract key fields from text,
such as product name and sentiment of user review. Moreover, the wrapper may also be able to adapt
to changes in social media layouts and remain robust against spamming.

3.1 Data warehouse 91

Data transformation

More often than not, data extracted from sources may not meet the requirements of a data warehouse
immediately. There may be some gaps, such as mismatching in data format, enforcement of business
integrity constraints, and requirements on data quality. Data transformation applies rules and functions
to transform the extracted data, enforce business logic and improve quality, so that the transformed data
is ready to be loaded into the data warehouse. For example, in the transformation step, data about ad-
dresses can be cleansed so that standard representation of addresses is used, and the correct information
about country, state, city, and postcode is identified and encoded. Moreover, through transformation,
we can enforce business logic, such as requiring that every transaction of amount over 1 million dollars
has to be associated with a customer representative. Data cleansing and quality improvement are also
important tasks in the data transformation stage.

Data transformation is a dynamic process. Data mining techniques are frequently used in data trans-
formation. For example, data mining techniques can be used to detect data quality issues and improve
data cleansing. Moreover, as business advances, business logic also evolves correspondingly. The data
transformation process has to be updated accordingly.

Data loading

After data extracted from sources and transformed, the loading phase loads data into data warehouses.
Loading may take many different ways. For example, a relative small data warehouse may load data
in a centralized and periodic way (e.g., loading on a daily, weekly, or monthly basis). A large data
warehouse crossing many distributed servers may have to load data in a distributed manner. If a data
warehouse supports a highly time-sensitive business, the data warehouse may have to load data in a
more frequent or even real-time manner. Loading data is often time consuming and the slowest part of
an ETL process. Loading may also affect the availability, usability, and bandwidth of a data warehouse.
Various techniques are developed to achieve high performance in loading data into data warehouses
and to minimize interferes to regular services provided by data warehouses.

Enterprise data warehouse and data mart

From the architecture point of view, there are two major data warehouse models, namely the enterprise
warehouse and the data mart.

Enterprise warehouse: An enterprise warehouse collects all information about subjects spanning
the entire organization. It provides corporate-wide data integration, usually from one or more op-
erational systems or external information providers, and is cross-functional in scope. It typically
contains detailed data and summarized data and can range in size from hundreds of gigabytes to
terabytes or beyond. It requires extensive business modeling at the enterprise level and may take
years to design and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a specific group
of users, such as those within a business department. The scope is confined to specific selected
subjects. For example, a marketing data mart may confine its subjects to customer, item, marketing
channel and sales. A risk control data mart may focus on customer credit, risk, and different types
of frauds. The data contained in data marts tend to be summarized. The implementation cycle of
a data mart is more likely to be measured in weeks rather than months or years. However, it may
involve complex integration in the long run if its design and planning are not enterprise-wide.

92 Chapter 3 Data warehousing and online analytical processing

Depending on the source of data, data marts can be categorized as independent or dependent. In-
dependent data marts are sourced from data captured from one or more operational systems or
external information providers, or from data generated locally within a particular department or
geographic area. Dependent data marts are sourced directly from enterprise data warehouses. In
practice, many data marks load data from both enterprise data warehouses and external or specific
internal data sources.

Some circumstances also employ a virtual warehouse, which is a set of views over operational
databases. For efficient query processing, only some of the possible summary views may be material-
ized. A virtual warehouse is easy to build but put excess overhead on operational database servers.

“It is often said that enterprises use artificial intelligence (Al for short) more and more in business
and data is a foundation of AI. What is the relationship between data warehouses and AI?” In general,
data warehouses can support deployment of Al and machine learning functionalities. At the same time,
artificial intelligence and machine learning tools can be used on top of data warehouses to take the best
advantage of data warehouses.

Artificial intelligence refers to various computer systems that can conduct tasks that normally need
human intelligence, such as playing board games, automatic driving, and dialog with humans. Machine
learning, one of the core technologies in Al, is to build computer systems that can learn without being
explicitly programmed the specific instructions. Many machine learning techniques are used by data
mining, such as classification and clustering, which will be discussed in detail later in this book.

Artificial intelligence and machine learning tools need to consume considerable amounts of data to
build various models for sophisticated tasks. Data warehouses organize and summarize data at proper
levels and thus can support deployment of Al and machine learning functionalities. For example, an
e-commerce company may want to build an Al model to categorize customers into different groups
for better customer-relation management. This sophisticated task can be substantially benefited from a
data mart of customer information, which can provide cleaned, integrated, and summarized data about
customers.

At the same time, Al and machine learning techniques are widely used in various steps of data
warehousing. For example, machine learning techniques can be used in constructing data warehouses,
such as filling in missing values and identifying entities in data cleaning (see Chapter 2). Moreover, the
output from Al models may be included in a data warehouse. For example, a data mart of customer
information may likely include customer profiles, where customers and customer groups are often la-
beled based on their behavior, such as age groups, income levels, and consumption preferences. Those
labels are often predicted by machine learning models trained from customer data. Third, Al and ma-
chine learning techniques can be used to optimize data warehouse performance. For example, machine
learning techniques can be used to tune up the performance of data indexing and task execution in data
warehouses distributed in large data centers and also can help to lower down power consumption sub-
stantially. Last but not least, Al and machine learning techniques are essential for knowledge workers
to explore and understand data in data warehouses and make well-informed decisions. For example, an
analyst can build machine learning models to explore the relationship between business growth rates in
different regions and the marketing cost. More examples will be given in the later part of this book.

3.1 Data warehouse 93

3.1.3 Data lakes

“In some organizations, people mention ‘data lakes’. What are data lakes and what are the relations
and differences between data lakes and data warehouses?” In a big organization, there are often a mas-
sive number of complicated data sources with a wild variety in data types, formats, and quality, such as
business data in relational databases, communication records between customers and the organization,
regulations, market analysis, and external market information. Many data exploration analyses are one-
time and may have to use data from different corners. It may take a long time to design and develop
a data warehouse, where data is integrated, transformed, structured, and loaded according to defined
usages. Moreover, many data-driven explorations have to be self-service business intelligence so that
data scientists can analyze and explore data by themselves. To address the vast data usage demands in
the organization, as an alternative, a data lake may be built.

Conceptually, a data lake is a single repository of all enterprise data in the natural format, such
as relational data, semistructured data (e.g., XML, CSV, JSON), unstructured data (e.g., emails, PDF
files), and even binary data (e.g., images, audio, video). More often than not, a data lake takes the
form of object blocks or files and is hosted using a cloud-based or distributed data repository. A data
lake often stores both raw data copies and transformed data. Many analytical tasks, such as reporting,
visualization, analytics, and data mining, can be conducted on data lakes.

“What are the essential differences between data warehouses and data lakes?” First, to build a data
warehouse, one has to analyze the data sources, understand the business processes, and develop the
corresponding data models. The subjects in data warehouses reflect the factors in the corresponding
business analysis and decision-making processes. In contrast, a data lake retains all data in an organi-
zation, including the current and historical data, as well as data being used now and that not used at
this time. The rationale is that the data lake as the complete repository can be used as the base of all
data-related tasks now and in the future.

Second, a data warehouse typically stores data extracted from transactional data, including quan-
titative metrics and attribute values and does not cover much nonrelational data, such as text, images,
and video. Data are loaded to data warehouses according to predefined schemas. In contrast, a data lake
natively embraces all data types. Data are transformed when it is used.

Third, a data warehouse is designed for data analysts and executives. The queries on a data ware-
house are typically supporting decision making. In contrast, since a data lake includes all data in the
natural form, it can support all users in an organization, including operational users, analysts, and ex-
ecutives.

Fourth, the well-designed structures in a data warehouse provide high-quality support to target ana-
Iytical tasks. However, for new queries or business changes that are not covered by the data warehouse
design, it takes time to upgrade the data warehouse to address the new demands, which is the major
pain-point in data warehousing. In contrast, a data lake stores all data in the raw form and thus is always
available for exploring any novel usages. Data scientists can directly work on data lakes to conduct data
analysis. The analysis results may also become a part of the data lake.

Last, since building a data warehouse takes time and resource, a data warehouse typically cannot
cover all business and analytic users in an organization. For those business and users not supported by
a data warehouse, they can still use a data lake to obtain faster insights.

Data warehouses and data lakes represent two views on data analytics. Data warehouses are more
top-down, structured, and centralized. In contrast, data lakes are more bottom-up, quick prototyping,
and democratic. In enterprise practice, a combination is often exercised to harvest the best gain.

94 Chapter 3 Data warehousing and online analytical processing

“As a data lake has to store all enterprise data, which is often huge in size and diverse in type and
format, how are data in a data lake stored and organized?” Typically data lakes have a core storage
layer, which stores raw and/or lightly processed data. There are several important considerations in
designing and implementing the data lake storage. First, since data lakes are served as the centralized
data repository for an entire enterprise, the data storage has to be exceptionally scalable. Second, as
data lakes have to respond to a wide variety of queries and analytic tasks, data robustness is critical.
Consequently, the data storage layer has to have high durability. In other words, the data stored in a
data lake should be intact and pristine all the time. Third, to address the diversity of data in enterprises,
data lake storage has to support different types of data in various format, including structured data,
semistructured data, and unstructured data. All such data has to be stored and managed consistently
and harmonically in the same repository. Fourth, as data lakes are used to support different kinds of
queries, analyses, and applications, the data storage should be able to support various data schemas,
many of which may not be known or available when data lakes are designed. In other words, the
data lake storage must be independent from any fixed schema. Last, in contrast to many applications
where data and computation are corporate, the storage layer of data lakes should be decoupled with
computation resources, so that various computation resources, ranging from legacy mainframe servers
to clouds, can access data in data lakes. This separation can allow the maximum scalability in both data
lakes and applications supported by data lakes.

Conceptually, a data lake has a storage layer as a single repository. In implementation, the data
repository is still divided into multiple layers. Typically, the repository has three mandatory layers: raw
data, cleansed data, and application data. Optionally, a standardized data layer and a sandbox layer may
be added. Let us explain the layers bottom up. Fig. 3.2 summarizes the layers.

The raw data layer is the lowest layer and is also known as the ingestion layer or the landing
area. At this layer, raw data is loaded in the native format. No data processing is conducted, such as
cleansing, duplicate removing, or data transforming. Data are typically organized into folders by areas,
data sources, objects, and time of ingestion. The data at this level are not ready for use yet, and thus
end users of data lakes should not be allowed to access to the raw data layer.

Sandbox data layer Enriching data by data scientists and analysts
Application data layer Implementing business logics
Cleansed data layer } Cleansing and transforming data
Standardlzed datalayer 7777777 Facilitating efficient data transferring and cleansing
[Raw data layer } Loading raw data

FIGURE 3.2

The layers of data storage in data lakes.

3.1 Data warehouse 95

Optionally, a data lake may have a standardized data layer on top of the raw data layer. The main
objective of the standardized data layer is to facilitate high performance in data transferring and cleans-
ing. For example, in the raw data layer, data are stored in its native format. In the standardized data
layer, data may be transformed into some formats that are best for cleansing. Moreover, data may be
divided into structures of finer grain for more efficient access and processing.

The next layer is the cleansed data layer, also known as the curated layer or the conformed layer. At
this layer, data are cleansed and transformed, such as being denormalized or consolidated. Moreover,
data are organized into data sets and stored into tables or files. End users of data lakes are allowed to
access data at this layer.

On top of the cleansed data layer is the application data layer, also known as the trusted layer, the
secure layer, or the production layer. Business logics are implemented at this layer. Therefore, many
applications, including those data mining and machine learning applications, can be built based on this
layer.

In some organizations, data scientists and analysts may conduct experiments and find patterns and
correlations. Their projects may enrich the data substantially and thus create new data. Such data may
be stored at the optional sandbox data layer.

“Centered by the data lake storage, what is the architecture of data lakes? What are the other impor-
tant components in data lakes in addition to data storage?” Fig. 3.3 shows the conceptual architecture
of data lakes. A data lake takes data from a wide spectrum of data repositories in an enterprise or an

Analytics and
reporting

Data models Business rules
and Search engine and
dictionaries dictionaries

Data Lake

Connector Connector Connector Connector

o N ' Web Social : Esternal
Databases Documents s . images
crawling media data

sources

FIGURE 3.3

The conceptual architecture of data lakes.

96 Chapter 3 Data warehousing and online analytical processing

organization, such as the databases, the store of documents, data crawled from the web, social media,
images (e.g., products), and possibly external data sources. Data from those data sources are loaded
into the data lake through connectors in a continuous manner. Once data are ingested into a data lake,
the data goes through the layers that we just discussed.

Data lakes serve as the centralized data repositories of enterprises and organizations. End users,
such as analysts and data scientists, can access data sets in data lakes, at the cleansed data layer and
the upper layers. A major type of access is to discover the data sets that can be used to fulfill analytic
tasks. These “data discovery” tasks are conducted through an enterprise search engine. For example,
a data scientist designing a marketing campaign may want to find all data related to customers in
industry section “electronics manufacturing.” Through the search engine, the data scientist may find
data sets like purchase transactions from the operational databases, communication documents with
those related customers, product categories of those customers crawled from the web, product reviews
from social media, and product images and product availability data provided by those customers as
external data. Clearly, without a data lake as a centralized data repository, the data scientist may have
to spend a lot of time to find such data scattered in different departments of the enterprise and obtain
access to those data sets. In order to facilitate better utility of data in data lakes, data models and
dictionaries and business rules and dictionaries are employed as domain business knowledge bases
for the enterprise search engine so that the search of data sets is business oriented instead of technical
oriented. Last, many applications can be built on top of the data services provided by data lakes through
the corresponding application programming interfaces (APIs). Regular analytics and reporting services
can also be developed and maintained accordingly.

Data lakes as centralized data repositories in enterprises bring in huge efficiency and advantage
in data-driven business operation and decision making. At the same time, data lakes also post grand
challenges in management and administration. In addition to the data storage layer, data lakes also
need to address a series of important aspects. Among others, security is a central piece. Access to data
lakes should be properly defined and assigned to the right people for the right periods. Data stored in
data lakes should be protected properly. Authentication, accountability, authorization, and data protec-
tion should be held consistently and comprehensively. In order to ensure security and tune for high
performance, data lakes should be under systematic governance. For example, monitoring, logging,
and lineage should be conducted regularly. Availability, usability, security, and integrity of data lakes
should be monitored and managed all the time. In addition, data quality, data auditing, archives, and
stewardship are some other important aspects in data lakes.

3.2 Data warehouse modeling: schema and measures

As discussed in the last section, a data warehouse integrates historical and current data in a subject-
oriented and nonvolatile manner. The data models used in data warehouses organize data according
to subjects. Here, a subject, such as customers, is captured by dimensions, such as gender, age group,
and occupation, and measures, such as total purchase and average transaction amount. Naturally, data
warehouses and OLAP tools are based on multidimensional data models, which view data in the form
a data cube. In this section, you will learn how data cubes model n-dimensional data (Section 3.2.1). In
Section 3.2.2, various multidimensional models are explained: star schema, snowflake schema, and fact
constellation. Data in a data warehouse may be analyzed in different granularities, defined by concept

3.2 Data warehouse modeling: schema and measures 97

hierarchies. You will learn concept hierarchies in Section 3.2.3. You will also learn about different
categories of measures and how they can be computed efficiently (Section 3.2.4).

3.2.1 Data cube: a multidimensional data model

“What is a data cube?” At the core of multidimensional data analysis is the efficient computation of
aggregations across many sets of dimensions. A data cube allows data to be modeled and viewed in
multiple dimensions. It is defined by dimensions and facts.

A multidimensional data model is typically organized around a central theme, also known as a
subject, such as sales. The information about a subject can be divided into two parts in analysis. The first
part is the perspectives that the subject is to be analyzed. For example, for subject sales in a company,
the possible perspectives may include time, item, branch, and location. Those perspectives are modeled
as dimensions. In the simplest multidimensional data model, a dimension table can be built for each
dimension. For example, a dimension table for ifem may contain the attributes item_name, brand and
fype.

The second part is the measurements on a subject. Those measurements are called facts. For exam-
ple, for subject sales in a company, the facts may be dollars_sold (sales amount in dollars), units_sold
(number of units sold), and amount_budgeted. Facts are typically numerical, but still may take some
other data types, such as categorical data or text.

In a data warehouse, a fact table stores the names of the facts, or measures, as well as (foreign)
keys referencing to each of the related dimension tables.

In general, a data cube can have as many dimensions as the business needs and thus is n-
dimensional. To elaborate data cubes and the multidimensional data model, let us start by looking
at a simple 2-D data cube that is, in fact, a table or spreadsheet for sales data for a company. In par-
ticular, we will look at the sales data for items sold per quarter in a city, say Vancouver. The data are
shown in Table 3.1. In this 2-D representation, the sales for Vancouver are shown with respect to the
time dimension (organized in quarters) and the item dimension (organized according to the types of
items sold). The fact or measure displayed is dollars_sold (in thousands).

Now, suppose that we would like to view the sales data with a third dimension. For instance, suppose
we would like to view the data according to time and item, as well as location, for the cities Chicago,
New York, Toronto, and Vancouver. These 3-D data are shown in Table 3.2. The 3-D data in the table

Table 3.1 2-D view of sales data according to time and item.

location = “Vancouver”

time (quarter) item (type)
home entertainment computer phone security
Q1 605 825 14 400
Q2 680 952 31 512
Q3 812 1023 30 501
Q4 927 1038 38 580

Note: The sales are from branches located in the city of Vancouver. The measure
displayed is dollars_sold (in thousands).

98 Chapter 3 Data warehousing and online analytical processing

Table 3.2 3-D view of sales data according to time, item, and location.

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”
time item item item item

home comp. phone sec. home comp. phone sec. home comp. phone sec. home comp. phone sec.
ent. ent. ent. ent.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400
Q2 943 890 64 698 1130 1024 41 925 894 769 52 682 680 952 31 512
Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501
Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580

Note: The measure displayed is dollars_sold (in thousands).

)
>
r & Chicago 854 882 89 623
\0“&\ New York 1087~ 968 38 872
Toronto 818 746 43 591 s
Vancouver . S
oV
1
_ Ql| 605 | 825 | 14 | 400 &)
7 L
§ Q2 \QQ
= 680 | 952 31 512 ,\,L% %r\Q
& o
N Q3| 812 | 1023 30 501 A
i ®
Q4| 927 | 1038 38 580

‘ computer security

home phone
entertainment

item (types)

FIGURE 3.4

A 3-D data cube representation of the data in Table 3.2, according to time, item, and location. The measure displayed
is dollars_sold (in thousands).

are represented as a series of 2-D tables. Conceptually, we may also represent the same data in the form
of a 3-D data cube, as in Fig. 3.4.

Suppose that we would now like to view our sales data with an additional fourth dimension, say
supplier. Visualizing things in 4-D becomes tricky. However, we can think of a 4-D cube as a series of
3-D cubes, as shown in Fig. 3.5. If we continue in this way, we may display any n-dimensional data as a
series of (n — 1)-dimensional “cubes.” The data cube is a metaphor for multidimensional data storage.
The actual physical storage of such data may differ from its logical representation. The important thing
to remember is that data cubes are n-dimensional and do not confine data to 3-D.

Tables 3.1 and 3.2 show the data at different degrees of summarization. In the data warehousing
research literature, a data cube like those shown in Figs. 3.4 and 3.5 is often referred to as a cuboid.

3.2 Data warehouse modeling: schema and measures 99

‘J\
RS
C}\\

o N e s sy A e s s vy NN e v oo RN g
XM New York
(P‘ Toronto [
%" Vancouver LA

605|825| 14 | 400

=

LS}

time (quarters)
LR

K

|c0mputer| security |computer| security |computer| security

home phone home phone home phone
entertainment entertainment entertainment

item (types) item (types) item (types)
FIGURE 3.5

A 4-D data cube representation of sales data, according to time, item, location, and supplier. The measure displayed
is dollars_sold (in thousands). For improved readability, only some of the cube values are shown.

In SQL terms, these aggregations are referred to as group-by’s. Each group-by can be represented by a
cuboid.

Given a set of dimensions, we can generate a cuboid for each of the possible subsets of the given
dimensions, including the empty set. The result would form a lattice of cuboids, each showing the data
at a different level of summarization, or group-by. The lattice of cuboids is then referred to as a data
cube. Fig. 3.6 shows a lattice of cuboids forming a data cube for dimensions time, item, location, and
supplier.

The cuboid that holds the lowest level of summarization is called the base cuboid. For example, the
4-D cuboid in Fig. 3.5 is the base cuboid for the given time, item, location, and supplier dimensions.
Fig. 3.4 is a 3-D (nonbase) cuboid for time, item, and location, summarized for all suppliers. The 0-D
cuboid, which holds the highest level of summarization, is called the apex cuboid. In our example, this
is the total sales, or dollars_sold, summarized over all four dimensions. The apex cuboid is typically
denoted by al1.

3.2.2 Schemas for multidimensional data models: stars, snowflakes, and fact
constellations

The entity-relationship data model is commonly used in the design of relational databases, where a
database schema consists of a set of entities and the relationships among them. Normalization is con-
ducted to break a wide table into narrower tables so that many transactional operations only have to
access very few records in one or a small number of tables, and thus concurrency of transactional oper-
ations can be maximized. Such a data model is appropriate for online transaction processing. An online
data analysis often has to scan a lot of data. To support online data analysis, a data warehouse requires
a concise, subject-oriented schema that facilitates scanning a large amount of data efficiently.

The most popular data model for a data warehouse is a multidimensional model. The most common
paradigm of multidimensional model is star schema, in which a data warehouse contains (1) a large
central table (fact table) containing the bulk of the data, with no redundancy, and (2) a set of smaller

100 Chapter 3 Data warehousing and online analytical processing

all 0-D (apex) cuboid

, 1-D cuboids
Q) supplier
time, item (J O location, 2-D cuboids
time, location supplier
’ 3-D cuboids
time, item, location O
time, item, supplier . .
’ \SUPP item, location,
supplier
time, item, location, supplier 4-D (base) cuboid

FIGURE 3.6

Lattice of cuboids, making up a 4-D data cube for time, item, location, and supplier. Each cuboid represents a
different degree of summarization.

attendant tables (dimension tables), one for each dimension. The schema graph resembles a starburst,
with the dimension tables displayed in a radial pattern around the central fact table.

Example 3.1. Star schema. A star schema for sales is shown in Fig. 3.7. Sales are considered along
four dimensions: time, item, branch, and location. The schema contains a central fact table for sales that
contains the keys to each of the four dimensions, along with two measures: dollars_sold and units_sold.
To minimize the size of the fact table, dimension identifiers (e.g., time_key and item_key) are system-
generated identifiers. O

Notice that in the star schema, each dimension is represented by only one table, and each table
contains a set of attributes. For example, the location dimension table contains the attribute set {loca-
tion_key, street, city, province_or_state, country}. This constraint may introduce some redundancy. For
example, “Urbana” and “Chicago” are both cities in the state of Illinois, USA. Entries for such cities
in the location dimension table create redundancy among the attributes province_or_state and country,
that is, (..., Urbana, IL, USA) and (..., Chicago, IL, USA).

Snowflake schema is a variant of star schema, where some dimension tables are normalized,
thereby further splitting the data into additional tables. The resulting schema graph forms a shape
similar to a snowflake.

The major difference between the snowflake schema and star schema models is that the dimension
tables of the snowflake model may be kept in normalized form to reduce redundancies. Such a table is
easy to maintain and saves storage space. However, this space savings is negligible in comparison to the
typical magnitude of the fact table. Furthermore, the snowflake structure may reduce the effectiveness

3.2 Data warehouse modeling: schema and measures

time
Dimension table

Y

time_key

day

day_of _the_week

month

quarter

year

N —

branch
Dimension table

branch_key

branch_name

sales
Fact table

time_key
item_key
branch_key

location_key
dollars_sold
units_sold

item
Dimension table

item_key

item_name

brand

nype

supplier_type
ﬁ

location
Dimension table

location_key

Street

city

101

branch_type
ﬁ

province_or_state

-ount
| country

FIGURE 3.7

Star schema of sales data warehouse.

of browsing, since more joins are needed to execute a query. Consequently, the system performance
may be adversely impacted. Hence, although the snowflake schema reduces redundancy, it is not as
popular as the star schema in data warehouse design.

Example 3.2. Snowflake schema. A snowflake schema for sales is given in Fig. 3.8. Here, the sales
fact table is identical to that of the star schema in Fig. 3.7. The main difference between the two
schemas is in the definition of dimension tables. The single dimension table for ifem in the star schema
is normalized in the snowflake schema, resulting in the new item and supplier tables. For example,
the item dimension table now contains attributes item_key, item_name, brand, type, and supplier_key,
where supplier_key is linked to the supplier dimension table, containing supplier_key and supplier_type
information. Similarly, the single dimension table for location in the star schema can be normalized into
two new tables: location and city. The city_key in the new location table links to the city dimension.
Notice that, when desirable, further normalization can be performed on province_or_state and country
in the snowflake schema shown in Fig. 3.8. O

Sophisticated applications may require multiple fact tables to share dimension tables. This kind of
schema can be viewed as a collection of stars and hence is called a galaxy schema or a fact constella-
tion.

Example 3.3. Fact constellation. A fact constellation schema is shown in Fig. 3.9. This schema
specifies two fact tables, sales and shipping. The sales table definition is identical to that of the star
schema (Fig. 3.7). The shipping table has five dimensions, or keys—item_key, time_key, shipper_key,
from_location, and to_location—and two measures—dollars_cost and units_shipped. A fact constel-

Chapter 3 Data warehousing and online analytical processing

time sales item
Dimension table Fact table Dimension table
s e 1 Y
time_key time_key item_key
day item_key / item_name
day_of _week branch_key brand
month location_key type
quarter dollars_sold \supplier_key
\year \ units_sold)
branch location

Dimension table

Dimension table

supplier
Dimension table

supplier_key
supplier_type
—

branch_key location_key city

branch_name street Dimension table

branch_type city_key city_key

province_or_state
| country
FIGURE 3.8
Snowflake schema of a sales data warehouse.
time sales item shipping shipper
Dimension table Fact table Dimension table Fact table Dimension table
time_key — rtime_key item_key ritem_key shipper_key
day item_key item_name time_key shipper_name
day_of_week | branch_key brand shipper_key — location_key
month location_key type from_location shipper_type
quarter dollars_sold supplier_type to_location —
year \ units_sold ~— dollars_cost
‘unitsfshipped
branch location

Dimension table Dimension table

branch_key) location_key

branch_name street

branch_type city

“—— province_or_state

country

FIGURE 3.9

Fact constellation schema of a sales and shipping data warehouse.

3.2 Data warehouse modeling: schema and measures 103

lation schema allows dimension tables to be shared between fact tables. For example, the dimension
tables for time, item, and location are shared between the sales and shipping fact tables. O

3.2.3 Concept hierarchies

Dimensions define concept hierarchies. A concept hierarchy defines a sequence of mappings from a
set of low-level concepts to higher-level, more general concepts. Consider a concept hierarchy for the
dimension location. City values for location include Vancouver, Toronto, New York, and Chicago. Each
city, however, can be mapped to the province or state to which it belongs. For example, Vancouver can
be mapped to British Columbia and Chicago to Illinois. The provinces and states can in turn be mapped
to the country (e.g., Canada or the United States) to which they belong. These mappings form a concept
hierarchy for the dimension location, mapping a set of low-level concepts (i.e., cities) to higher-level,
more general concepts (i.e., countries). This concept hierarchy is illustrated in Fig. 3.10.

Many concept hierarchies are implicit within the database schema. For example, suppose that the
dimension /ocation is described by the attributes number, street, city, province_or_state, zip_code, and
country. These attributes are related by a total order, forming a concept hierarchy such as “street < city
< province_or_state < country.” This hierarchy is shown in Fig. 3.11(a). Alternatively, the attributes
of a dimension may be organized in a partial order, forming an acyclic directed graph. An example
of a partial order for the time dimension based on the attributes day, week, month, quarter, and year
is “day < {month < quarter; week} < year' This partial order structure is shown in Fig. 3.11(b).

location
all
country
province_ (British Columbia
or_state

city (Vancouver)"-(Victoria) (Toronto) (Ottawa) (New York)-~- (Buffalo) (Chicago) (Urbana)

FIGURE 3.10

A concept hierarchy for location. Due to space limitations, not all of the hierarchy nodes are shown, indicated by
ellipses between nodes.

1 Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower abstraction of month.
Instead, it is often treated as a lower abstraction of year, since a year contains approximately 52 weeks.

104 Chapter 3 Data warehousing and online analytical processing

country
year
province_or_state
quarter
cii
Yy month week
street day
(a) (b)

FIGURE 3.11

Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for location and (b) a lattice

for time.

($0...$1000] '

(50..52001) (($200..54001) ((($400..56001) ((8600..58001) ((5800. $1000])

(%0 ... ($100...§ [($200...§ [($300...§ |($400...]{($500...] [($600...§|($700...} [($800... ($900
$100] $200] $300] $400] $500] $600 $700] $800] $900] $1000]

FIGURE 3.12

A concept hierarchy for price.

A concept hierarchy that is a total or partial order among attributes in a database schema is called a
schema hierarchy. Concept hierarchies that are common to many applications (e.g., for time) may be
predefined in the data mining system. Data mining systems should provide users with the flexibility to
tailor predefined hierarchies according to their particular needs. For example, users may want to define
a fiscal year starting on April 1 or an academic year starting on September 1.

Concept hierarchies may also be defined by discretizing or grouping values for a given dimension or
attribute, resulting in a set-grouping hierarchy. A total or partial order can be defined among groups
of values. An example of a set-grouping hierarchy is shown in Fig. 3.12 for the dimension price, where
an interval ($X ...$Y] denotes the range from $X (exclusive) to $¥ (inclusive).

3.2 Data warehouse modeling: schema and measures 105

There may be more than one concept hierarchy for a given attribute or dimension, based on different
user viewpoints. For instance, a user may prefer to organize price by defining ranges for inexpensive,
moderately_priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts or knowledge engi-
neers, or may be automatically generated based on statistical analysis of the data distribution. Concept
hierarchies allow data to be handled at varying levels of abstraction, as we will see in Section 3.2.4.

3.2.4 Measures: categorization and computation

“How are measures computed?” To answer this question, we first study how measures can be catego-
rized. Note that a multidimensional point in the data cube space, also known as a cell in the data cube,
can be defined by a set of dimension—value pairs; for example, (time = “Q1,” location = “Vancouver,”
item = “computer”’). A measure in a data cube is a numeric function that can be evaluated at each
point in the data cube space. A measure value is computed for a given point by aggregating the data
corresponding to the respective dimension—value pairs defining the given point. For example, the mea-
sure fotal-sales for the cell (time = “Q1,” location = “Vancouver,” item = “computer”) is computed by
summing up all the amounts happened in Q1, at the branch of Vancouver, and about computers from
the fact table.

Measures can be organized into three categories—distributive, algebraic, and holistic—based on the
kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed manner as

follows. Suppose the data is partitioned into n sets arbitrarily. We apply the aggregate function to
each partition, resulting in n aggregate values. If the result derived by applying the function to the
n aggregate values is the same as that derived by applying the function to the entire data set (i.e.,
without partitioning), the function is said to be computed in a distributed manner.
For example, sum() can be computed for a data cube by first partitioning the cube into a set of
subcubes, computing sum() for each subcube, and then summing up the counts obtained for each
subcube. Hence sum() is a distributive aggregate function. For the same reason, count (), min(),
and max () are distributive aggregate functions. By treating the count value of each nonempty base
cell as 1 by default, count () of any cell in a cube can be viewed as the sum of the count values
of all of its corresponding child cells in its subcube. Thus count() is distributive. A measure is
distributive if it is obtained by applying a distributive aggregate function. Distributive measures
can be computed efficiently because of the way the computation can be partitioned.

Algebraic: An aggregate function is algebraic if it can be computed by an algebraic function with M
arguments (where M is a fixed positive integer), each of which is obtained by applying a distribu-
tive aggregate function. For example, avg() (average) can be computed by sum()/count() with
two arguments, where both sum() and count() are distributive aggregate functions. Similarly, it
can be shown that min_N() and max_N() (which find the N minimum and N maximum values, re-
spectively, in a given set) and standard_deviation() are algebraic aggregate functions. A measure
is algebraic if it is obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the storage size needed
to describe a subaggregate. That is, there does not exist an algebraic function with M arguments
(where M is a constant) that characterizes the computation. Some examples of holistic functions

106 Chapter 3 Data warehousing and online analytical processing

include median(), mode (), and rank(). A measure is holistic if it is obtained by applying a holistic
aggregate function.

Most large data cube applications require efficient and scalable computation, and thus distributive
and algebraic measures are often used. Many efficient techniques for computing data cubes using dis-
tributive and algebraic measures exist. We will introduce some principled methods later in this chapter.
In contrast, it is difficult to compute holistic measures efficiently. Efficient techniques to approximate
the computation of some holistic measures, however, do exist. In many cases, such techniques are suf-
ficient to overcome the difficulties of efficient computation of holistic measures.

3.3 OLAP operations

A data warehouse needs to support online multidimensional analytic queries. In this section, you will
learn a series of typical OLAP operations on data warehouses (Section 3.3.1) and how to index data to
support some OLAP queries (Section 3.3.2). An important problem is how data can be stored properly
to support OLAP operations, which will be explained in Section 3.3.3.

3.3.1 Typical OLAP operations

“How can multidimensional OLAP operations be used in data analysis?” In a multidimensional model,
data are organized into multiple dimensions, and each dimension contains multiple levels of abstraction
defined by concept hierarchies. This organization provides users with the flexibility to view data from
different perspectives. A number of OLAP data cube operations empower interactive querying and
analysis of the data at hand. Hence, OLAP provides a user-friendly environment for interactive data
analysis.

Example 3.4. OLAP operations. Let us look at some typical OLAP operations for multidimensional
data. Each of the following operations is illustrated in Fig. 3.13. At the center of the figure is a data
cube for sales in a company. The cube contains three dimensions, location, time, and item, where
location is aggregated with respect to city values, time is aggregated with respect to quarters, and item
is aggregated with respect to item types. To aid in our explanation, we refer to this cube as the central
cube. The measure displayed is dollars_sold (in thousands). (For the sake of readability, only some cell
values in the cubes are shown.) The data examined are for the cities Chicago, New York, Toronto, and
Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors) performs aggre-
gation on a data cube, either by climbing up a concept hierarchy for a dimension or by dimension
reduction. Fig. 3.13 shows the result of a roll-up operation performed on the central cube by climb-
ing up the concept hierarchy for location given in Fig. 3.10. This hierarchy was defined as the total
order “street < city < province_or_state < country.” The roll-up operation shown aggregates the
data by ascending the location hierarchy from the level of city to the level of country. In other
words, rather than grouping the data by city, the resulting cube groups the data by country.

When roll-up is performed by dimension reduction, one or more dimensions are removed from
the given cube. For example, consider a sales data cube containing only the location and time

3.3 OLAP operations 107

S
O
& USA 5007
(\°‘\ Canada
& « 2 Q1/1000
& £
,0(\\ Toronto 395 = Q2
& Vancouver g
&)
A0 2 S
: § Qi1f605 : Q3
1 o
Sf@ s o
g .
e computer |computer| security
h P home phone
ome dice for entertainment
entertainment (location = “Toronto” or “Vancouver”) item (types)
item (types) and (time = “Q1” or “Q2”) and m
(item = “home entertainment” or “‘computer’’) rolfl-up
on location
(from cities
to countries)
)
<X .
& Chicago >z
&8 New York 1560
o Toronto 395
%" Vancouver
’,‘,2* Q1]605| 825 14 | 400
9
£
&
slice \; Q3
for fime="Q1" s -
| Q4 drill-down
on time
2 Chicago | computer| security (from quarters
2 to months)
=] home phone
& New York entertainment S
~§ Toronto item (types) @“ Chicago
s o New York
<= Vancouver | 605|825 | 14 |400 & Toronto
A% Vancouver
|computer security January 150
home phone February 100
entertainment March 150
item (types) April
2 ’
= May
g June
g Jul
home 605 < y
 entertainment 5 August
D =
& computer 825 September
< ” October
§ phone November
security 400 December
|New York|Va.ncouver computer| security
Chicago Toronto home phone
. . entertainment
location (cities) item (types)
FIGURE 3.13

Examples of typical OLAP operations on multidimensional data.

108 Chapter 3 Data warehousing and online analytical processing

dimensions. Roll-up may be performed by removing, say, the location dimension, resulting in an
aggregation of the total sales by time of the whole company, rather than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to more detailed
data. Drill-down can be realized by either stepping down a concept hierarchy for a dimension or
introducing additional dimensions. Fig. 3.13 shows the result of a drill-down operation performed
on the central cube by stepping down a concept hierarchy for time defined as “day < month <
quarter < year.” Drill-down occurs by descending the time hierarchy from the level of quarter to
the more detailed level of month. The resulting data cube details the total sales per month rather
than summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be performed by adding new
dimensions to a cube. For example, a drill-down on the central cube in Fig. 3.13 can be conducted
by introducing an additional dimension, such as customer_group.

Slice and dice: The slice operation performs a selection on one dimension of the given cube, resulting
in a subcube. Fig. 3.13 shows a slice operation where the sales data is selected from the central
cube for the dimension time using the criterion time = “Q1.” The dice operation defines a subcube
by performing a selection on two or more dimensions. Fig. 3.13 shows a dice operation on the
central cube based on the following selection criterion that involves three dimensions: (location
= “Toronto” or “Vancouver”) and (time = “Q1” or “Q2”) and (item = “home entertainment” or
“computer”).

Pivot (rotate): Pivor (also called rotate) is a visualization operation that rotates the data axes in view
to provide an alternative data presentation. Fig. 3.13 shows a pivot operation where the ifem and
location axes in a 2-D slice are rotated. Other examples include rotating the axes in a 3-D cube or
transforming a 3-D cube into a series of 2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For example,
drill-across executes queries involving (i.e., across) more than one fact table. The drill-through
operation uses relational SQL facilities to drill through the bottom level of a data cube down to its
back-end relational tables.

Other OLAP operations may include ranking the top N or bottom N items in lists, as well as
computing moving averages, growth rates, interests, internal return rates, depreciation, currency
conversions, and statistical functions. O

OLAP offers analytical modeling capabilities, including a calculation engine for deriving ratios,
variance, and so on, and for computing measures across multiple dimensions. It can generate summa-
rizations, aggregations, and hierarchies at each granularity level and at every dimension intersection.
OLAP also supports functional models for forecasting, trend analysis, and statistical analysis. In this
context, an OLAP engine is a powerful data analysis tool.

3.3.2 Indexing OLAP data: bitmap index and join index

To facilitate efficient data accessing, most data warehouse systems support index structures and materi-
alized views (using cuboids). We will discuss the general methods to select cuboids for materialization
in Section 3.4. In this subsection, we examine how to index OLAP data by bitmap indexing and join
indexing.

3.3 OLAP operations 109

Bitmap indexing

The bitmap indexing method is popular in OLAP products because it allows quick searching in data
cubes. A bitmap index is an alternative representation of the record_ID (RID) list. In the bitmap index
for a given attribute, there is a distinct bit vector, By, for each value v in the attribute’s domain. If the
domain of a given attribute consists of n values, then n bits are needed for each entry in the bitmap
index (i.e., there are n bit vectors). If the attribute has the value v for a given row in the data table, then
the bit representing that value is set to 1 in the corresponding row of the bitmap index. All other bits
for that row are set to 0.

Example 3.5. Bitmap indexing. Consider a customer information table shown in Fig. 3.14, where
there is an attribute gender. To keep our discussion simple, assume there are two possible values on
attribute gender. We may use one character, that is, 8 bits, for each record to represent the gender value,
such as F for female and M for male. Bitmap index represents the gender value using one bit, such as
0 for female and 1 for male. This representation immediately brings in an eight-fold saving in storage.

More importantly, bitmap index can speed up many aggregate queries. For example, let us count the
number of female customers in the customer information table. A straightforward method has to scan
each record and count. For a table having 10,000 records and each record taking 100 bytes, the total
I/0O cost is 10,000 x 100 = 1,000,000 bytes.

A bitmap index uses only 1 bit for each record. Those bits are packed into words in storage. For
example, for the first 8 records in the table, the bitmap index values are packed into a byte 01010011.
Scanning the whole bitmap index takes only 10,000 bits in I/O, that is 1250 bytes, 800 times less than
scanning the whole table.

To calculate the number of Os in a byte, we can simply use a precomputed hash table that uses the
byte values as the index and stores the corresponding numbers of Os. For example, the hash table stores
value 4 in the 83rd entry, since 83 is the decimal value of binary 01010011 and the binary string has 4
0Os. Using the byte 01010011, which is 53 in decimal, to search the hash table, we immediately know
that there are 4 female customers in the first 8 records. We can compute the number of Os in the whole

Customer information Bitmap index A table counting Os in bytes
Name .. | Gender Gender Byte Number of Os
Ada Female 0 00000000 8
Bob Male 1 00000001 7
Cathy Female 0 00000010 7
Dan Male 1 00000011 6
Elsa Female 0
Flora Female 0 01010011 4
George Male 1
Hogan Male 1

FIGURE 3.14
Indexing OLAP data using bitmap indices.

110 Chapter 3 Data warehousing and online analytical processing

The bit-sliced index

A fact table Weights
Amount 211 (210129128 | 27 12612512423 |22]21]20
15.21 0 1|10f(1(1|1|)1|1|0|0]|0O
27.06 110|102 |0|0Of1(0O|0O|1]0O

FIGURE 3.15
Indexing OLAP data using bitmap indices.

gender attribute byte by byte using the bitmap index, and sum up the byte-wise counts to derive the
total number of female customers. In practice, one can use machine words instead of bytes to further
speed up the counting process. O

Bitmap indexing is advantageous compared to hash and tree indices in answering some types of
OLAP queries. It is especially useful for low-cardinality domains because comparison, join, and aggre-
gation operations are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and input/output (I/O) since a string of charac-
ters can be represented by a single bit.

Bitmap indexing can be extended to bit-sliced indexing for numeric data. Let us illustrate the ideas
using an example.

Example 3.6. Bit-sliced indexing. Suppose we want to compute the sum of the amount attribute in the
fact table in Fig. 3.15. We can write an amount into an integer number of pennies and then represent
it as a binary number of n bits. If we represent an amount using 32 bits, that is, 4 bytes, it is good for
amounts up to $42,949,672.96 and sufficient for many application scenarios.

After we represent all amount numbers in binary, we can build a bitmap index for every bit. To
compute the sum of all amounts, we count for each bit the number of 1s. Denote by x; (i > 0) the
number of 1s in the ith bits of the amounts from right to left, the rightmost being bit 0. Since a 1 at the
ith bit carries a weight of 2/ pennies, the x; 1s in the ith bits of all amounts represent x; - 2/ pennies in

the sum of the amounts. Therefore, the sum of amounts is) ;. X; - 2/ pennies or % dollars. [
Join indexing

In a data warehousing schema such as the star-schema, we often need to join the fact table and the
dimension tables. Joining tables again and again for various queries is definitely costly. Therefore, join
indexing is used to precompute and store the identifier pairs of the join results so that the join results
can be accessed efficiently.

Example 3.7. Join indexing. In Example 3.1, we defined a star schema of the form “sales_star [time,
item, branch, location]: dollars_sold = sum (sales_in_dollars).” An example of a join index between
the sales fact table and the locations and items dimension tables is shown in Fig. 3.16. Consider the
OLAP query “the total sales of smartphone and desktop in BC.” If no index presents, then we have to

3.3 OLAP operations 111

Dimension table: locations Fact table: sales Dimension table: items
Location _id | City Province | ... TID Location_id | Item_id | ... Amount Item _id | Model category
Lo8 Vancouver BC T57 Lo8 18569 849.98 17253 iPhone smartphone
L12 Victory BC T238 | L12 17253 1099.95 18569 Galaxy | smartphone

T459 | L12 18569 799.95 19051 iMac Desktop
T884 | LO8 13051 2799.99
Join index table for Join index table for
location-sales item-sales
Location _id | TID Location _id | TID
Lo8 T57 17253 T238
L08 T884
18569 T57
L12 T238 18569 T459
L12 T459
19051 T884
FIGURE 3.16
Join index.

join the fact table and the dimension tables locations and items and select only those join results about
“smartphone” and “desktop.”

A join index table records the primary keys of the matching tuples in two tables. For example, in
the join index table for location-sales, the pairs of location_id and TID of the matching tuples in the
dimension table locations and sales are recorded. From the join index table, we can quickly find out
the TIDs of the tuples in the sales fact table belonging to “BC.” Similarly, using the join index for
item-sales, we can identify the tuples in the sales table about “smartphone” and “desktop.” Using the
identified TIDs as such, we can accurately access the tuples in the fact table that are needed to compute
the OLAP aggregate and reduce the I/O cost. Typically, a data warehouse only contains a very small
percentage of transactions about a selected area and product categories. For example, there may be only
0.1% of the transactions in the fact table that are smartphones and desktops sold in BC. Without using
any index, we have to read the whole fact table into main memory in order to compute the aggregate.
Using the join indexes, even each page contains 100 transaction records in the fact table, and all those
transactions of smartphones and desktops sold in BC are evenly distributed, we only need to read 10%
of the pages into main memory and thus save 90% of I/O. U

3.3.3 Storage implementation: column-based databases

“How to store data so that OLAP queries can be answered efficiently?” In many applications, a fact
table may be wide and contain tens or even hundreds of attributes. More often than not, an OLAP

112 Chapter 3 Data warehousing and online analytical processing

query may compute the aggregate of all records or a large portion of records on a small number of
attributes. If the data is stored in a traditional relational table where records are stored row by row, then
we have to scan all records in order to answer a query, but only a small segment in a record is used.
This observation presents a significant opportunity to develop more efficient storage scheme for OLAP
data.

To make the storage more efficient for answering OLAP queries, a column-based database stores a
wide table that is often used for aggregate queries in a column by column style. Specifically, a column-
based database stores the values of all records on a column in consecutive storage blocks. All records
are listed in the same order across all columns.

Example 3.8. Column-based database. Consider a fact table about customer information, which in-
cludes attributes and storage space in number of bytes customer_id (2), Tast_name (20), first_name
(20), gender (1), birthdate (2), address_street (50), address_city (2), address_province (1), ad-
dress_country (1), email (30), registration_date (2),and family_income (2). Each record occupies
133 bytes. If the fact table contains 10 million customer records, then the total space is over 1 GB.

If the data are stored row by row and we want to answer the OLAP query of the average family
income of female customers by province, then we have to scan the whole table, reading all records. The
I/O cost is 1 GB. At the same time, for each record, we only need to use 4 bytes among the 133 bytes,
that is, attributes gender, address_province, and family_income. In other words, only % =3% of
the data read are useful to answer the query.

A column-based database stores the data attribute by attribute in column, as shown in Fig. 3.17.
To answer the above query, a column-based database only needs to read three columns, gender, ad-
dress_province, and family_income. It checks the values on gender and increments the total and
count for address_province accordingly. Overall, the total amount of I/O incurred to a column-based
database in this case is 4x 10 million =40 MB. A huge saving in I/O is achieved.

In implementation, preferably a column-based database processes a column at a time and uses
bitmaps to keep the intermediate results so that they can be passed to the next column. In this ex-
ample, we can first process the column gender and use a bitmap to keep the list of female customers.
That is, each customer is associated with a bit, female being 0 and male being 1. Next, we can process
the column address_province, and form a bitmap for each province. If a customer lives in BC, for ex-
ample, then the associated bit in the bitmap of BC is set to 1, otherwise, it is set to 0. Last, to calculate
the average family income of customers in BC, we only need to conduct the bitwise AND operation
between the bitmap for gender and the bitmap for province BC. The resulting bitmap is used to select

the entries in column family_income to calculate the average. O
customer_id last_name first_name gender birthdate address_province family_income
FIGURE 3.17

Column-based storage.

3.4 Data cube computation 113

Column-based databases have been extensively implemented in industry data warehousing and
OLAP databases. Column-based databases have remarkable advantages for OLAP-like workloads, such
as those aggregate queries searching a few columns of all records in a wide table. At the same time,
column-based databases have to separate transactions into columns and compressed transactions as they
are stored, which make column-based databases costly for OLTP workloads.

3.4 Data cube computation

Data warehouses contain huge volumes of data. OLAP servers demand that decision support queries be
answered in the order of seconds. Data cubes are the core of data warehouses. Therefore, it is crucial for
data warehouse systems to support highly efficient dat cube computation, access, and query process-
ing. In this section, we present an overview of the ideas behind data cube computation. Section 3.4.1
introduces the basic terminology. Section 3.4.2 discusses various ideas in fully or partially material-
izing a data cube. Section 3.4.3 explains how data cubes may be stored using various architectures.
Section 3.4.4 overviews the general strategies frequently used in data cube computation. The detailed
algorithms for data cube computation will be introduced in Section 3.5.

3.4.1 Terminology of data cube computation

One approach to cube computation is to compute aggregates over all subsets of the dimensions specified
by a user. This can require excessive storage space, especially for large numbers of dimensions. To
discuss the details about data cube computation and analysis, we need some terminology.

Fig. 3.18 shows a 3-D data cube for three dimensions, A, B, and C, and an aggregate measure, M.
Hereafter in this chapter, we always use the term data cube to refer to a lattice of cuboids rather than
an individual cuboid. A tuple in a cuboid is also called a cell, which represents a point in the data cube
space. A cell in the base cuboid is a base cell. A cell from a nonbase cuboid is an aggregate cell. An ag-
gregate cell aggregates over one or more dimensions, where each aggregated dimension is indicated by a
* in the cell notation. Suppose we have an n-dimensional data cube. Leta = (a1, aa, ..., a,, measures)

all (apex cuboid)

A B C
AB AC BC
ABC (base cuboid)

FIGURE 3.18

Lattice of cuboids making up a 3-D data cube with the dimensions A, B, and C for some aggregate measure, M.

114 Chapter 3 Data warehousing and online analytical processing

be a cell from one of the cuboids making up the data cube. We say that a is an m-dimensional cell (i.e.,
from an m-dimensional cuboid) if exactly m (m < n) values among {a1, a, ..., a,} are not x. If m =n,
then a is a base cell; otherwise, it is an aggregate cell (i.e., where m < n).

Example 3.9. Base and aggregate cells. Consider a data cube with three dimensions, month, city,
and customer_group, and the measure sales. (Jan, *, *, 2800) and (x, Chicago, *, 1200) are 1-D cells;
(Jan, %, Business, 150) is a 2-D cell; and (Jan, Chicago, Business, 45) is a 3-D cell. Here, since the data
cube has 3 dimensions, all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells.

(month, city, *) is a 2-D cuboid, which contains all 2-D cells having non-* values on attributes
month and city. The base cuboid (month, city, customergroup) contains all base cells. The apex
cuboid ALL contains only one 0-D cell (%, %, *). O

An ancestor—descendant relationship may exist between cells. In an n-dimensional data cube, an
i-Dcella = (ay,a,...,a,, measures,) is an ancestor of a j-D cell b = (b1, b, ..., by, measuresyp),
and b is a descendant of a, if and only if (1) i < j, and (2) for 1 <k <n, a; = by whenever a; # *. In
particular, cell a is called a parent of cell b, and b is a child of a, if and only if j =i + 1.

Example 3.10. Ancestor and descendant cells. Referring to Example 3.9, 1-D cell a = (Jan, *, %,
2800) and 2-D cell b= (Jan, *, Business, 150) are ancestors of 3-D cell ¢ = (Jan, Chicago,
Business, 45); c is a descendant of both a and b; b is a parent of c; and c is a child of b. O

“How many cuboids are there in an n-dimensional data cube?” If there is no hierarchy associated
with any dimension, then the total number of cuboids for an n-dimensional data cube, as we have seen,
is (8) + (’f) +-- 4+ (Z) =2". However, in practice, many dimensions do have hierarchies. For example,
time is often explored at multiple conceptual levels such as in the hierarchy “day < month < quarter
< year.” On a dimension that is associated with L levels, cuboid has L + 1 possible choices, that is,
one of the L levels or the virtual top level al1 meaning not including the dimension in the group-by.
Thus, for an n-dimensional data cube, the total number of cuboids that can be generated (including the
cuboids generated by climbing up the hierarchies along each dimension) is

n
Total number of cuboids = H(Li +1), 3.1
i=1

where L; is the number of levels associated with dimension i.

For example, the time dimension as specified before has four conceptual levels, or five if we include
the virtual level a11. If the cube has 10 dimensions and each dimension has five levels (including a11),
the total number of cuboids that can be generated is 510 ~ 9.8 x 10°. The size of each cuboid, that is,
the number of cells in a cuboid, also depends on the cardinality (i.e., number of distinct values) of
each dimension. For example, if every item is sold in each city, there would be |city| x |item| tuples
in the (city, item) group-by alone. As the number of dimensions, number of conceptual hierarchies,
or cardinality increases, the storage space required for many of the group-by’s will grossly exceed the
(limited) size of the input relation. Indeed, given a base table and a set of dimensions, how to fast
calculate or estimate the number of tuples in the resulting data cube remains an unsolved challenge.

3.4 Data cube computation 115

3.4.2 Data cube materialization: ideas

By now, you probably realize that in large-scale applications, it may not be desirable or realistic to

precompute and materialize all cuboids that can possibly be generated for a data cube (i.e., from a base

cuboid). If there are many cuboids, and these cuboids are large in size, a more reasonable option is

partial materialization; that is, to materialize only some of the possible cuboids that can be generated.
There are three possible choices for data cube materialization.

1. No materialization: Do not precompute any of the “nonbase” cuboids. This leads to computing
expensive multidimensional aggregates on-the-fly, which can be extremely slow.

2. Full materialization: Precompute all of the cuboids. The resulting lattice of computed cuboids is
referred to as the full cube. This choice typically requires huge amounts of memory space in order
to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids,
such as a subset of the cube that contains only those cells that satisfy some user-specified criterion
(e.g., the aggregate count of each cell is above some threshold). We use the term subcube to refer
to the latter case, where only some of the cells may be precomputed for various cuboids. Partial
materialization of data cubes offers an interesting trade-off between storage space and response
time for OLAP. Instead of computing the full cube, we can compute only a subset of the data cube’s
cuboids, or subcubes consisting of subsets of cells from the various cuboids.

Nonetheless, full cube computation algorithms are important. We can use such algorithms to com-
pute smaller cubes, consisting of a subset of the given set of dimensions, or a smaller range of possible
values for some of the dimensions. In these cases, the smaller cube is a full cube for the given subset
of dimensions and/or dimension values. A thorough understanding of full cube computation methods
will help us develop efficient methods for computing partial cubes. Hence, it is important to explore
scalable methods for computing all the cuboids making up a data cube, that is, for full materialization.
These methods must take into consideration the limited amount of main memory available for cuboid
computation, the total size of the computed data cube, as well as the time required for such computation.

Many cells in a cuboid may actually be of little or no interest to data analysts. Recall that each cell
in a full cube records an aggregate value such as count or sum. For many cells in a cuboid, the measure
value will be zero. For example, if item “snow-tire” is not sold in city “Pheonix” in June at all, the
corresponding aggregate cell will have measure value of O for count or sum. In a cuboid, when most
of the cells have measure 0, that is, the product of the cardinalities for the dimensions in the cuboid is
much larger than the number of nonzero-valued tuples stored in the cuboid, then we say that the cuboid
is sparse. If a cube contains many sparse cuboids, we say that the cube is sparse.

In many cases, a substantial amount of the cube’s space could be taken up by a large number of
cells with very low measure values. This is because the cube cells are often quite sparsely distributed
within a multidimensional space. For example, a customer may only buy a few items in a store at a time.
Such an event will generate only a few nonempty cells, leaving most other cube cells empty. In such
situations, it is useful to materialize only those cells in a cuboid (group-by) with a measure value above
some minimum threshold. In a data cube about sales, say, we may wish to materialize only those cells
for which count > 10 (i.e., where at least 10 tuples exist for the cell’s given combination of dimensions)
or only those cells representing sales > $100. This not only saves processing time and disk space but
also leads to a more focused analysis. The cells that cannot pass the threshold are likely to be too trivial
to warrant further analysis.

116 Chapter 3 Data warehousing and online analytical processing

Such partially materialized cubes are known as iceberg cubes. The minimum threshold is called
the minimum support threshold, or minimum support (min_sup), for short. By materializing only a
fraction of the cells in a data cube, the result is seen as the “tip of the iceberg,” where the “iceberg”
is the potential full cube including all cells. An iceberg cube can be specified using an SQL query, as
shown in Example 3.11.

Example 3.11. Iceberg cube. Consider the following iceberg cube query.

compute cube sales_iceberg as

select month, city, customer_group, count (*)
from salesInfo

cube by month, city, customer_group

having count(*) >=min_sup

The compute cube statement specifies the precomputation of the iceberg cube, sales_iceberg, with
three dimensions, month, city, and customer_group, and the aggregate measure count(). The input
tuples are in the salesInfo relation. The cube by clause specifies that aggregates (group-by’s) are to
be formed for each of the possible subsets of the given dimensions. If we were computing the full
cube, each group-by would correspond to a cuboid in the data cube lattice. The constraint specified in
the having clause is known as the iceberg condition. Here, the iceberg measure is count(). Note that
the iceberg cube computed here can be used to answer group-by queries on any combination of the
specified dimensions of the form having count(*) >= v, where v > min_sup. Instead of count(), the
iceberg condition may specify more complex measures, such as average().

If we were to omit the having clause, we would end up with the full cube. Let us call this cube
sales_cube. The iceberg cube, sales_iceberg, excludes all the cells of sales_cube with a count that is
less than min_sup. Obviously, if we were to set the minimum support to 1 in sales_iceberg, the resulting
cube would be the full cube, sales_cube. O

A naive approach to computing an iceberg cube would be to first compute the full cube and then
prune the cells that do not satisfy the iceberg condition. However, this is still prohibitively expensive.
An efficient approach is to compute only the iceberg cube directly without computing the full cube.
Section 3.5.2 discusses methods for efficient iceberg cube computation.

Introducing iceberg cubes lessens the burden of computing trivial aggregate cells in a data cube.
However, we may still end up with a large number of uninteresting cells to compute. For example,
suppose that there are 2 base cells for a database of 100 dimensions, denoted as {(a1, a2, a3, ..., aip) :
10, (a1, a2, b3, ..., b1oo) : 10}, where each has a cell count of 10. If the minimum support is set to 10,
there are still be an impermissible number of cells to compute and store, although most of them are not
interesting. For example, there are 2101 _ 6 distinct aggregate cells,” like {(a1,ar,a3,a4,...,a99, %) :
10, ..., (a1,az, *,4a4,...,a99,ai00) : 10, ..., (a1, az,as, *,...,*,%): 10}, but most of them do not
contain much new information. If we ignore all the aggregate cells that can be obtained by replac-
ing some constants with *’s while keeping the same measure value, there are only three distinct
cells left: {(ay,az,as,...,ai00): 10, (a1,az, b3, ..., b1oo) : 10, (a1, az, *, ..., *) :20}. That is, out of
2101 _ 4 distinct base and aggregate cells, only three really offer valuable information.

2 The proof is left as an exercise for the reader.

3.4 Data cube computation 117

(aj,ap, %, ..., %) :20

(aj,ay,as,...,a19) : 10 (ay,ay,bs, ..., by) : 10

FIGURE 3.19

Three closed cells forming the lattice of a closed cube.

To systematically compress a data cube, we need to introduce the concept of closed coverage. The
coverage of a cell c is the set of base cells that are descendants of c¢. The measure of ¢ is computed by
the base cells that are descendants of c. In other words, the measure of ¢ is determined by the coverage
of ¢. Clearly, if two cells c¢; and ¢, have the same coverage, they have same measure no mater what
aggregate functions are used. Based on this observation, A cell, c, is a closed cell if there exists no cell,
d, such that d is a descendant of ¢ (i.e., d is obtained by replacing at least one * in ¢ with a non-* value),
and d has the same coverage as c¢. A quotient cube is a data cube consisting of only closed cells. For
example, the three cells derived in the preceding paragraph are the three closed cells of the data cube
for the data set { (a1, a2, a3, ..., aio0) : 10, (a1, az, b3, ..., bioo) : 10}. They form the lattice of a closed
cube as shown in Fig. 3.19. Other nonclosed cells can be derived from their corresponding closed cells
in this lattice. For example, “(ay, *, *, ..., *) : 20” can be derived from “(ay, a2, *, ..., %) : 20” because
the former is a generalized nonclosed cell of the latter. Similarly, we have “(a1, a2, b3, *, ..., *) : 10.”

Another strategy for partial materialization is to precompute only the cuboids involving a small
number of dimensions such as three to five. These cuboids form a cube shell for the corresponding
data cube. Queries on additional combinations of the dimensions will have to be computed on-the-fly.
For example, we could compute all cuboids with three dimensions or less in an n-dimensional data
cube, resulting in a cube shell of size 3. This, however, can still result in a large number of cuboids
to compute, particularly when r is large. Alternatively, we can choose to precompute only portions or
fragments of the cube shell based on cuboids of interest. Section 3.5.3 discusses a method for computing
shell fragments and explores how they can be used for efficient OLAP query processing.

3.4.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP

There are many methods for efficient data cube computation, based on the various kinds of cubes de-
scribed earlier in this section. In general, there are two basic data structures used for storing cuboids.
The implementation of relational OLAP (ROLAP) uses relational tables, whereas multidimensional ar-
rays are used in multidimensional OLAP (MOLAP). In some situations, we may also combine ROLAP
and MOLAP to obtain the hybrid OLAP (HOLAP) approach. Let us look at the details here.
Logically, OLAP servers present business users with multidimensional data from data warehouses
or data marts, without concerns regarding how or where the data are stored. However, the physical

118 Chapter 3 Data warehousing and online analytical processing

architecture and implementation of OLAP servers must consider data storage issues. Implementations
of a data warehouse server for OLAP processing may have the following options.

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in between a re-
lational back-end server and client front-end tools. They use a relational or extended-relational
DBMS to store and manage warehouse data, and OLAP middleware to support missing pieces.
ROLAP servers include optimization for each DBMS back end, implementation of aggregation
navigation logic, and additional tools and services. ROLAP technology tends to have greater scal-
ability than MOLAP technology.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional data views
through array-based multidimensional storage engines. They map multidimensional views directly
to data cube array structures. The advantage of using a data cube is that it allows fast indexing to
precomputed summarized data. Notice that with multidimensional data stores, the storage utiliza-
tion may be low if the data set is sparse. In such cases, sparse matrix compression techniques should
be explored.

Many MOLAP servers adopt a two-level storage representation to handle dense and sparse data
sets: Denser subcubes are identified and stored as array structures, whereas sparse subcubes employ
compression technology for efficient storage utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and MOLAP
technology, benefiting from the greater scalability of ROLAP and the faster computation of MO-
LAP. For example, a HOLAP server may allow large volumes of detailed data to be stored in a
relational database, whereas aggregations are kept in a separate MOLARP store.

Specialized SQL servers: To meet the growing demand of OLAP processing in relational databases,
some database system vendors implement specialized SQL servers that provide advanced query
language and query processing support for SQL queries over star and snowflake schemas in a read-
only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look at ROLAP.
As its name implies, ROLAP uses relational tables to store data for online analytical processing. Recall
that the fact table associated with a base cuboid is referred to as a base fact table. The base fact table
stores data at the abstraction level indicated by the join keys in the schema for the given data cube.
Aggregated data can also be stored in fact tables, referred to as summary fact tables. Some summary
fact tables store both base fact table data and aggregated data. Alternatively, separate summary fact
tables can be used for each abstraction level to store only aggregated data.

Example 3.12. A ROLAP data store. Table 3.3 shows a summary fact table that contains both base
fact data and aggregated data. The schema is “(record_identifier (RID), item, ..., day, month, quarter,
year, dollars_sold),” where day, month, quarter, and year define the sales date, and dollars_sold is the
sales amount. Consider the tuples with an RID of 1001 and 1002, respectively. The data of these tuples
are at the base fact level, where the sales dates are October 15, 2010, and October 23, 2010, respectively.
Consider the tuple with an RID of 5001. This tuple is at a more general level of abstraction than the
tuples 1001 and 1002. The day value has been generalized to a11, so that the corresponding fime value is
October 2010. That is, the dollars_sold amount shown is an aggregation representing the entire month
of October 2010, rather than just October 15 or 23, 2010. The special value a1l is used to represent
subtotals in summarized data. O

3.4 Data cube computation 119

Table 3.3 Single table for base and summary facts.
RID item ... day month quarter year dollars_sold
1001 TV ... 15 10 Q4 2010 250.60

1002 TV ... 23 10 Q4 2010 175.00

5001 TV ... all 10 Q4 2010 45,786.08

MOLAP uses multidimensional array structures to store data for online analytical processing.

Most data warehouse systems adopt a client-server architecture. A relational data store always re-
sides at the data warehouse/data mart server site. A multidimensional data store can reside at either the
database server site or the client site.

3.4.4 General strategies for data cube computation

Although ROLAP and MOLAP may each explore different cube computation techniques, some opti-
mization techniques are popularly used.

Optimization Technique 1: sorting, hashing, and grouping
Sorting, hashing, and grouping operations should be applied to the dimension attributes to reorder and
cluster related tuples.

In cube computation, aggregation is performed on the tuples (or cells) that share the same set of
dimension values. Thus it is important to explore sorting, hashing, and grouping operations to access
and group such data together to facilitate computation of such aggregates.

To compute total sales by branch, day, and item, for example, it can be more efficient to sort tuples
or cells first by branch, then by day, and last by item. Using the sorted data, it is easy to group them
according to the ifem name. Efficient implementations of such operations in large data sets have been
extensively studied in the algorithm and database research communities, such as counting sort. Such
implementations can be extended to data cube computation.

This technique can also be further extended to perform shared-sorts (i.e., sharing sorting costs
across multiple cuboids when sort-based methods are used), or to perform shared-partitions (i.e.,
sharing the partitioning cost across multiple cuboids when hash-based algorithms are used). For exam-
ple, using the data sorted first by branch, then by day and last by item, we can compute not only the
cuboid (branch, day, item) but also the cuboids (branch, day, *), (branch, *, x) and ().

Optimization Technique 2: simultaneous aggregation and caching of intermediate results

In cube computation, it is efficient to compute higher-level aggregates from previously computed
lower-level aggregates, rather than from the base fact table, since the number of tuples of higher-level
aggregates is far less than the number of tuples at the base fact table. For example, to computer the
total sales amount of a year, it is more efficient to aggregate from the subtotals of different items of the
year. Moreover, simultaneous aggregation from cached intermediate computation results may lead to
a reduction of expensive disk input/output (I/O) operations. This technique can be further extended to

120 Chapter 3 Data warehousing and online analytical processing

perform amortized scans (i.e., computing as many cuboids as possible at the same time to amortize
disk reads).

Optimization Technique 3: aggregation from the smallest child when there exist multiple
child cuboids

When there exist multiple child cuboids, it is usually more efficient to compute the desired parent (i.e.,
more generalized) cuboid from the smallest in size, previously computed child cuboid. For example, to
compute a sales cuboid, Cprancn, when there exist two previously computed cuboids, Cipranch, year) and
Cibranch,item)» it is obviously more efficient to compute Cp;qpcp, from the former than from the latter if
there are many more distinct items than distinct years.

Optimization Technique 4: the downward antimonotonicity can be used to prune search
space in iceberg cube computation

For many aggregate measures, the downward antimonotonicity may hold. If a given cell does not satisfy
the iceberg condition, then no descendant of the cell (i.e., more specialized cell) can satisfy the iceberg
condition.

For example, consider the iceberg condition “count (x) >=1000.” If a cell (*, Bellingham, *): 800
fails the iceberg condition, then any descendant of the cell, such as (March, Bellingham, *) and (*,
Bellingham, small-business), must also fail the condition, and thus cannot be entitled to be included in
the iceberg cube.

The antimonotonicity property can be used to substantially reduce the computation of iceberg cubes.
A common iceberg condition is that the cells must satisfy a minimum support threshold such as a
minimum count or sum. In this situation, the antimonotonicity property can be used to prune away the
exploration of the cell’s descendants.

In the next section, we introduce several popular methods for efficient cube computation that explore
these optimization strategies.

3.5 Data cube computation methods

Data cube computation is an essential task in data warehouse implementation. The precomputation of
all or part of a data cube can greatly reduce the response time and enhance the performance of online
analytical processing. However, such computation is challenging because it may require substantial
computational time and storage space. This section explores efficient methods for data cube compu-
tation. Section 3.5.1 describes the multiway array aggregation (MultiWay) method for computing full
cubes. Section 3.5.2 describes the BUC method, which computes iceberg cubes from the apex cuboid
downward. Section 3.5.3 describes a shell-fragment cubing approach that computes shell fragments for
efficient high-dimensional OLAP. Last, Section 3.5.4 demonstrates how to answer OLAP queries using
cuboids in data cubes.

To simplify our discussion, we exclude the cuboids that would be generated by climbing up any ex-
isting hierarchies for the dimensions. Those cube types can be computed by straightforward extensions
of the discussed methods. Methods for the efficient computation of closed cubes are left as an exercise
for interested readers.

3.5 Data cube computation methods 121

3.5.1 Multiway array aggregation for full cube computation

The multiway array aggregation (or simply MultiWay) method computes a full data cube using a
multidimensional array as its basic data structure. It is a typical MOLAP approach that uses direct
array addressing, where dimension values are accessed via the position or index of their corresponding
array locations. MultiWay constructs an array-based cube as follows.

1. Partition the array into chunks. A chunk is a subcube that is small enough to fit into the memory
available for cube computation. Chunking is a method for dividing an n-dimensional array into
small n-dimensional chunks, where each chunk is stored as an object on disk. The chunks are com-
pressed to remove wasted space resulting from empty array cells. A cell is empty if it does not
contain any valid data (i.e., its cell count is 0). For instance, “chunkID + offset” can be used as
a cell-addressing mechanism to compress a sparse array structure and when searching for cells
within a chunk. Such a compression technique is powerful at handling sparse cubes, both on disk
and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The order in which cells are
visited can be optimized to minimize the number of times that each cell must be revisited, thereby
reducing memory access and storage costs. The idea is to exploit this ordering so that portions of the
aggregate cells in multiple cuboids can be computed simultaneously, and any unnecessary revisiting
of cells is avoided.

This chunking technique involves “overlapping” some of the aggregation computations; therefore it is
referred to as multiway array aggregation. It performs simultaneous aggregation, that is, it computes
aggregations simultaneously on multiple dimensions.

We explain this approach to array-based cube construction by looking at a concrete example.

Example 3.13. Multiway array cube computation. Consider a 3-D data array containing three di-
mensions A, B, and C. The 3-D array is partitioned into small, memory-based chunks. In this example,
the array is partitioned into 64 chunks as shown in Fig. 3.20. Dimension A is organized into four equal-
sized partitions: ag, a1, a2, and a3. Dimensions B and C are similarly organized into four partitions
each. Chunks 1, 2, ..., 64 correspond to the subcubes apboco, aiboco, - .., azbzcs, respectively. Sup-
pose that the cardinality of the dimensions A, B, and C is 40, 400, and 4000, respectively. Thus the size
of the array for each dimension, A, B, and C, is also 40, 400, and 4000, respectively. Since the number
of partitions of each dimension is 4, the size of each partition in A, B, and C is therefore 10, 100, and
1000, respectively. Full materialization of the corresponding data cube involves the computation of all
the cuboids defining this cube. The resulting full cube consists of the following cuboids:

* The base cuboid, denoted by ABC (from which all the other cuboids are directly or indirectly
computed). This cube is already computed and corresponds to the given 3-D array.

e The 2-D cuboids, AB, AC, and BC, which respectively correspond to the group-by’s AB, AC, and
BC. These cuboids need to be computed.

e The 1-D cuboids, A, B, and C, which respectively correspond to the group-by’s A, B, and C. These
cuboids need to be computed.

* The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by (); that is, there is no
group-by here. These cuboids need to be computed. It consists of only one value. If, say, the data
cube measure is count, then the value to be computed is simply the total count of all the tuples in
ABC.

122 Chapter 3 Data warehousing and online analytical processing

A-B Plane

* *
%
o . %
*
*
*
FIGURE 3.20

A 3-D array for the dimensions A, B, and C, organized into 64 chunks. Each chunk is small enough to fit into the
memory available for cube computation. The *’s indicate the chunks from 1 to 13 that have been aggregated so far in
the process.

Let’s look at how the multiway array aggregation technique is used in this computation. There are
many possible orderings with which chunks can be read into memory for use in cube computation.
Consider the ordering labeled from 1 to 64, shown in Fig. 3.20. Suppose we want to compute the boco
chunk of the BC cuboid. We allocate space for this chunk in chunk memory. By scanning A BC chunks

3.5 Data cube computation methods 123

1 through 4, the boco chunk is computed. That is, the cells for bycg are aggregated over ag to az. The
chunk memory can then be assigned to the next chunk, b;cg, which completes its aggregation after the
scanning of the next four ABC chunks: 5 through 8. Continuing in this way, the entire BC cuboid can
be computed. Therefore only one BC chunk needs to be in memory at a time for the computation of all
the BC chunks.

In computing the BC cuboid, we will have scanned each of the 64 chunks. “Is there a way to
avoid having to rescan all of these chunks for the computation of other cuboids, such as AC and
AB?” The answer is, most definitely, yes. This is where the “multiway computation” or “simultaneous
aggregation” idea comes in. For example, when chunk 1 (i.e., apbgcy) is being scanned (say, for the
computation of the 2-D chunk bgcq of BC, as described previously), all of the other 2-D chunks related
to apboco can be simultaneously computed. That is, when agbgcy is being scanned, each of the three
chunks (boco, aoco, and apbp) on the three 2-D aggregation planes (BC, AC, and AB) should be
computed then as well. In other words, multiway computation simultaneously aggregates to each of the
2-D planes while a 3-D chunk is in memory.

Now let’s look at how different orderings of chunk scanning and of cuboid computation can affect
the overall data cube computation efficiency. Recall that the size of the dimensions A, B, and C is 40,
400, and 4000, respectively. Therefore the largest 2-D plane is BC (of size 400 x 4000 = 1,600,000).
The second largest 2-D plane is AC (of size 40 x 4000 = 160,000). AB is the smallest 2-D plane (of
size 40 x 400 = 16,000).

Suppose that the chunks are scanned in the order shown, from chunks 1 to 64. As previously men-
tioned, boco is fully aggregated after scanning the row containing chunks 1 through 4; bicg is fully
aggregated after scanning chunks 5 through 8, and so on. Thus we need to scan four chunks of the 3-D
array to fully compute one chunk of the BC cuboid (where BC is the largest of the 2-D planes). In other
words, by scanning in this order, one BC chunk is fully computed for each row scanned. In compar-
ison, the complete computation of one chunk of the second largest 2-D plane, AC, requires scanning
13 chunks, given the ordering from 1 to 64. That is, agcp is fully aggregated only after the scanning of
chunks 1, 5, 9, and 13.

Finally, the complete computation of one chunk of the smallest 2-D plane, A B, requires scanning
49 chunks. For example, agbg is fully aggregated after scanning chunks 1, 17, 33, and 49. Hence, AB
requires the longest scan of chunks to complete its computation. To avoid bringing a 3-D chunk into
memory more than once, the minimum memory requirement for holding all relevant 2-D planes in
chunk memory, according to the chunk ordering of 1 to 64, is as follows: 40 x 400 (for the whole AB
plane) + 40 x 1000 (for one column of the AC plane) + 100 x 1000 (for one BC plane chunk) =
16,000 + 40,000 + 100,000 = 156,000 memory units.

Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21, 37, 53, and so on.
That is, suppose the scan is in the order of first aggregating toward the AB plane and then toward the
AC plane, and lastly toward the BC plane. The minimum memory requirement for holding 2-D planes
in chunk memory would be as follows: 400 x 4000 (for the whole BC plane) 4+ 10 x 4000 (for one AC
plane row) + 10 x 100 (for one A B plane chunk) = 1,600,000 + 40,000 + 1000 = 1,641,000 memory
units. Notice that this is more than 10 times the memory requirement of the scan ordering of 1 to 64.

Similarly, we can work out the minimum memory requirements for the multiway computation of
the 1-D and 0-D cuboids. Fig. 3.21 shows the most efficient way to compute 1-D cuboids. Chunks
for 1-D cuboids A and B are computed during the computation of the smallest 2-D cuboid, AB. The
smallest 1-D cuboid, A, will have all of its chunks allocated in memory, whereas the larger 1-D cuboid,

124 Chapter 3 Data warehousing and online analytical processing

apaa as
by by
by by
by | ¥ by |*|*
&
*
by | * b | #|* | #| *
*
*
B A C dp ap ap das
dpayaas
(a) (b)

FIGURE 3.21

Memory allocation and computation order for computing Example 5.4’s 1-D cuboids. (a) The 1-D cuboids, A and
B, are aggregated during the computation of the smallest 2-D cuboid, AB. (b) The 1-D cuboid, C, is aggregated
during the computation of the second smallest 2-D cuboid, AC. The *’s represent chunks that so far have been
aggregated to.

B, will have only one chunk allocated in memory at a time. Similarly, chunk C is computed during the
computation of the second smallest 2-D cuboid, AC, requiring only one chunk in memory at a time.
Based on this analysis, we see that the most efficient ordering in this array cube computation is the
chunk ordering of 1 to 64, with the stated memory allocation strategy. O

Example 3.13 assumes that there is enough memory space for one-pass cube computation (i.e., to
compute all of the cuboids from one scan of all the chunks). If there is insufficient memory space, the
computation will require more than one pass through the 3-D array. In such cases, however, the basic
principle of ordered chunk computation remains the same. MultiWay is most effective when the product
of the cardinalities of dimensions is moderate and the data are not too sparse. When the dimensionality
is high or the data are very sparse, the in-memory arrays become too large to fit in memory, and this
method becomes impractical.

With the use of appropriate sparse array compression techniques and careful ordering of the com-
putation of cuboids, it has been shown by experiments that MultiWay array cube computation is
significantly faster than traditional ROLAP (relational record-based) computation. Unlike ROLAP, the
array structure of MultiWay does not require saving space to store search keys. Furthermore, MultiWay
uses direct array addressing, which is faster than ROLAP’s key-based addressing search strategy. For
ROLAP cube computation, instead of cubing a table directly, it can be faster to convert the table to an

3.5 Data cube computation methods 125

array, cube the array, and then convert the result back to a table. However, this observation works only
for cubes with a relatively small number of dimensions, because the number of cuboids to be computed
is exponential to the number of dimensions.

“What would happen if we tried to use MultiWay to compute iceberg cubes?” Remember that the
downward antimonotonicity property states that if a given cell does not satisfy the iceberg property,
then neither will any of its descendants. Unfortunately, MultiWay’s computation starts from the base
cuboid and progresses upward toward more generalized, ancestor cuboids. It cannot take advantage of
possible pruning using the antimonotonicity, which requires a parent node to be computed before its
child (i.e., more specific) nodes. For example, if the count of a cell ¢ in, say, AB, does not satisfy the
minimum support specified in the iceberg condition, we cannot prune away cell ¢, because the count of
¢’s ancestors in the A or B cuboids may be greater than the minimum support, and their computation
will need aggregation involving the count of c.

3.5.2 BUC: computing iceberg cubes from the apex cuboid downward

BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike MultiWay, BUC con-
structs the cube from the apex cuboid toward the base cuboid. This allows BUC to share data partition-
ing costs. This processing order also allows BUC to prune during construction, using the downward
antimonotonicity property.

Fig. 3.22 shows a lattice of cuboids, making up a 3-D data cube with the dimensions A, B, and C.
The apex (0-D) cuboid, representing the concept all (i.e., (x, *, %)), is at the top of the lattice. This is the
most aggregated or generalized level. The 3-D base cuboid, ABC, is at the bottom of the lattice. It is the
least aggregated (most detailed or specialized) level. This representation of a lattice of cuboids, with the
apex at the top and the base at the bottom, is commonly accepted in data warehousing. It consolidates
the notions of drill-down (where we can move from a highly aggregated cell to lower, more detailed
cells) and roll-up (where we can move from detailed, low-level cells to higher-level, more aggregated
cells).

BUC stands for “Bottom-Up Construction.” However, according to the lattice convention described
before and used throughout this book, the BUC processing order is actually top-down! The BUC authors
view a lattice of cuboids in the reverse order, with the apex cuboid at the bottom and the base cuboid
at the top. In that view, BUC does bottom-up construction. However, because we adopt the application
worldview where drill-down refers to drilling from the apex cuboid down toward the base cuboid, the
exploration process of BUC is regarded as top-down. BUC’s exploration for the computation of a 3-D
data cube is shown in Fig. 3.22.

The BUC algorithm is shown in Fig. 3.23. We first give an explanation of the algorithm and then
follow up with an example. Initially, the algorithm is called with the input relation (set of tuples). BUC
aggregates the entire input (line 1) and writes the resulting total (line 3). (Line 2 is an optimization
feature that is discussed later in our example.) For each dimension d (line 4), the input is partitioned
on d (line 6). On return from Partition(), dataCount contains the total number of tuples for each
distinct value of dimension d. Each distinct value of d forms its own partition. Line 8 iterates through
each partition. Line 10 tests the partition for minimum support. That is, if the number of tuples in the
partition satisfies (i.e., is >) the minimum support, then the partition becomes the input relation for a
recursive call made to BUC, which computes the iceberg cube on the partitions for dimensions d + 1
to numDims (line 12).

126 Chapter 3 Data warehousing and online analytical processing

all

AB AC BC

FIGURE 3.22

BUC'’s exploration for a 3-D data cube computation. Note that the computation starts from the apex cuboid.

Note that for a full cube (i.e., where minimum support in the having clause is 1), the minimum
support condition is always satisfied. Thus the recursive call descends one level deeper into the lattice.
On return from the recursive call, we continue with the next partition for d. After all the partitions have
been processed, the entire process is repeated for each of the remaining dimensions.

Example 3.14. BUC construction of an iceberg cube. Consider the iceberg cube expressed in SQL
as follows:

compute cube iceberg_cube as

select A, B, C, D, count(*)

from R

cube by A, B,C,D

having count(*) >=3
Let’s see how BUC constructs the iceberg cube for the dimensions A, B, C, and D, where 3 is the
minimum support count. Suppose that dimension A has four distinct values, ap, az, az, a4; B has four
distinct values, b1, by, b3, bs; C has two distinct values, ¢, ¢p; and D has two distinct values, di, d». If
we consider each group-by to be a partition, then we must compute every combination of the grouping
attributes that satisfy the minimum support (i.e., that have three tuples).

Fig. 3.24 illustrates how the input is partitioned first according to the different attribute values of

dimension A and then B, C, and D. To do so, BUC scans the input, aggregating the tuples to obtain

3.5 Data cube computation methods 127

Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.

Input:

® input: the relation to aggregate;
® dim: the starting dimension for this iteration.

Globals:

® constant numDims: the total number of dimensions;

® constant cardinality[numDims]: the cardinality of each dimension;

® constant min_sup: the minimum number of tuples in a partition for it to be output;

® outputRec: the current output record;

® dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers of size cardinality[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.
Method:
(1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(2) if input.count() == 1 then // Optimization
WriteDescendants(input[0], dim); return;

endif
(3) write outputRec;
(4) for (d =dim; d < numDims; d + +) do //Partition each dimension

(®)] C = cardinality[d];

6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d
@) k=0;

8) for (i =0;i < C;i+ +) do // for each partition (each value of dimension d)

© ¢ = dataCount[d][i];

(10) if ¢ >= min_sup then // test the iceberg condition

(11) outputRec.dim([d] = input[k].dim[d];

(12) BUC(input[k..k + ¢ — 1], d + 1); // aggregate on next dimension
(13) endif

(14) k +=c;

(15) endfor
(16) outputRec.dim[d] = all;
(17) endfor

FIGURE 3.23

BUC algorithm for sparse or iceberg cube computation. Source: Beyer and Ramakrishnan [BR99].

a count for all, corresponding to the cell (x, *, *, x). Dimension A is used to split the input into four
partitions, one for each distinct value of A. The number of tuples (counts) for each distinct value of A
is recorded in dataCount.

BUC uses the downward antimonotonicity property to save time while searching for tuples that sat-
isfy the iceberg condition. Starting with A dimension value, aj, the a; partition is aggregated, creating
one tuple for the A group-by, corresponding to the cell (ay, *, *, *). Suppose (ai, *, *, *) satisfies the
minimum support, in which case a recursive call is made on the partition for a;. BUC partitions a; on
the dimension B. It checks the count of (aj, b, *, %) to see if it satisfies the minimum support. If it
does, it outputs the aggregated tuple to the AB group-by and recurses on (ay, by, *, *) to partition on
C, starting with ¢1. Suppose the cell count for (ay, by, c1, *) is 2, which does not satisfy the minimum
support. According to the downward antimonotonicity property, if a cell does not satisfy the minimum
support, then neither can any of its descendants. Therefore, BUC prunes any further exploration of

128 Chapter 3 Data warehousing and online analytical processing

dy dy

o
. *

by

by

a

as

aq

FIGURE 3.24

BUC partitioning snapshot given an example 4-D data set.

(a1, by, c1, *). That is, it avoids partitioning this cell on dimension D. It backtracks to the aj, by par-
tition and recurses on (ap, b1, ¢, *), and so on. By checking the iceberg condition each time before
performing a recursive call, BUC saves a great deal of processing time whenever a cell’s count does not
satisfy the minimum support.

The partition process is facilitated by a linear sorting method, CountingSort. CountingSort is fast
because it does not perform any key comparisons to find partition boundaries. For example, to sort
10,000 tuples according to an attribute A whose value is an integer in the range between 1 and 100, we
can set up 100 counters and scan the data once to count the number of 1’s, 2’s, ..., 100’s on attribute
A. Suppose there are ij tuples having 1 on A, i; tuples having 2 on A, and so on. Then, in the next
scan, we can move all the tuples having value 1 on attribute A to the first i; slots, the tuples having
value 2 on attribute A to the slots i1 + 1, ...,i; + iz, and so on. After those two scans, the tuples are

3.5 Data cube computation methods 129

sorted according to A. In addition, the counts computed during the sort can be reused to compute the
group-by’s in BUC.

Line 2 is an optimization for partitions having a count of 1 such as (ai, b2, *, %) in our example.
To save on partitioning costs, the count is written to each of the tuple’s descendant group-by’s. This is
particularly useful since, in practice, many partitions may have a single tuple. O

The BUC performance is sensitive to the order of the dimensions and to skew in the data. Ideally,
the most discriminating dimensions should be processed first. Dimensions should be processed in the
order of decreasing cardinality. The higher the cardinality, the smaller the partitions, and thus the more
partitions there will be, thereby providing BUC with a greater opportunity for pruning. Similarly, the
more uniform a dimension (i.e., having less skew), the better it is for pruning.

BUC’s major contribution is the idea of sharing partitioning costs. However, unlike MultiWay, it
does not share the computation of aggregates between parent and child group-by’s. For example, the
computation of cuboid AB does not help that of ABC. The latter needs to be computed essentially
from scratch.

3.5.3 Precomputing shell fragments for fast high-dimensional OLAP

Materializing data cubes facilitates flexible and fast OLAP operations. However, computing full data
cube of high dimensionality needs massive storage space and unrealistic computation time. Although
there are proposals of computing iceberg cubes and closed cubes, they are still confined to low-
dimensional data (e.g., less than 12 dimensions) and cannot handle the challenges of high dimension-
ality. One possible alternative is to compute a thin cube shell, such as computing all cuboids with three
dimensions or less in a 60-dimensional data cube, resulting in a cube shell of size 3. However, such a
cube shell cannot support OLAP or query involving four or more dimensions.

Here we introduce a shell fragment approach for high-dimensional OLAP, based on the following
observation: Although a data cube may contain many dimensions, most OLAP operations are per-
formed only on a small number of dimensions relevant to some query-selected conditions at a time. In
other words, an OLAP query is likely to ignore many dimensions (i.e., treating them as irrelevant), con-
strain certain conditions in some dimensions (e.g., using query constants), and leave only a few to be
manipulated (for drilling, pivoting, etc.). This is because it is neither realistic nor fruitful for anyone to
comprehend thousands of cells involving dozens of dimensions simultaneously in a high-dimensional
space at the same time.

Based on this observation, it is natural to first locate some low-dimensional cuboids of interest
within a high-dimension cube and then conduct OLAP on such low-dimensional cuboids. This implies
that if multidimensional aggregates can be computed quickly on a small number of dimensions inside
a high-dimensional space, we may still achieve fast OLAP without materializing the original high-
dimensional data cube. This leads to a semionline computation approach, called shell fragment as
follows: First, given a base cuboid, we can precompute (i.e., offline) cube shell fragments. Then, when
query comes, one can quickly assembly a low-dimensional cube online using the preprocessed data, and
conduct OLAP operations. The shell fragment approach can handle databases of high dimensionality
and can quickly compute small local cubes online. It explores the inverted index data structure, which
is popular in information retrieval and Web-based information systems.

The basic idea is as follows. Given a high-dimensional data set, we partition the dimensions into a
set of disjoint dimension fragments, convert each fragment into its corresponding inverted index repre-

130 Chapter 3 Data warehousing and online analytical processing

Table 3.4 Original
database.

TID A B C D E
1 a, by ¢ di el
ap by ¢ dy e
ap by ¢ di e
a by ¢ d e

[V BEE RS I]

a by c di e3

sentation, and then construct cube shell fragments while keeping the inverted indices associated with
the cube cells. Using the precomputed cubes’ shell fragments, we can dynamically assemble and com-
pute cuboid cells of the required data cube online. This is made efficient by set intersection operations
on the inverted indices.

To illustrate the shell fragment approach, we use a tiny database of Table 3.4 as a running example.
Let the cube measure be count (). Other measures will be discussed later. We first look at how to
construct the inverted index for the given database.

Example 3.15. Construct the inverted index. For each attribute value in each dimension, list the tuple
identifiers (T1Ds) of all the tuples that have that value. For example, attribute value a; appears in tuples
4 and 5. The TID list for ay then contains exactly two items, namely 4 and 5. The resulting inverted
index table is shown in Table 3.5. It retains all the information of the original database. O

“How do we compute shell fragments of a data cube?” We first partition all the dimensions of
the given data set into independent groups of dimensions, called fragments. We scan the base cuboid
and construct an inverted index for each attribute. For each fragment, we compute the full local (i.e.,
fragment-based) data cube while retaining the inverted indices. Consider a database of 60 dimensions,
namely, A1, Ag, ..., Ago. We can first partition the 60 dimensions into 20 fragments of size 3, such
as (A1, Az, A3), (A4, As, Ag), ..., (Asg, As9, Agp). For each fragment, we compute its full data cube
while recording the inverted indices. For example, in fragment (A1, Ay, A3), we would compute seven

Table 3.5 Inverted index.
Attribute Value TID List List Size
aj {1, 2, 3} 3
aj {4, 5} 2
b1 {1,4, 5} 3
by {2, 3} 2
c1 {1,2,3,4,5} 5
dj {1, 3,4, 5} 4
d {2} 1
el {1,2} 2
e {3, 4} 2
e3 {5} 1

3.5 Data cube computation methods 131

cuboids: Ay, Ay, A3, A1Ay, Ap Az, A1A3, A1 Ay Ajz. Furthermore, an inverted index is retained for each
cell in the cuboids. That is, for each cell, its associated TID list is recorded.

The benefit of computing local cubes of each shell fragment instead of computing the complete
cube shell can be seen by a simple calculation. For a base cuboid of 60 dimensions, there are only
7 x 20 = 140 cuboids to be computed according to the preceding shell fragment partitioning. This is in
contrast to the 36,050 cuboids computed for the cube shell of size 3! Notice that the above fragment
partitioning is based simply on the grouping of consecutive dimensions. A more desirable approach
would be to partition based on popular dimension groupings. This information can be obtained from
domain experts or the past history of OLAP queries.

Let’s return to our running example to see how shell fragments are computed.

Example 3.16. Compute shell fragments. Suppose we are to compute the shell fragments of size
3. We first divide the five dimensions into two fragments, namely (A, B, C) and (D, E). For each
fragment, we compute the full local data cube by intersecting the TID lists in Table 3.5 in a top-down
depth-first order in the cuboid lattice. For example, to compute the cell (a1, by, *), we intersect the TID
lists of a; and b, to obtain a new list of {2, 3}. Cuboid A B is shown in Table 3.6.

After computing cuboid A B, we can then compute cuboid A BC by intersecting all pairwise combi-
nations between Table 3.6 and the row ¢ in Table 3.5. Notice that because cell (az, by) is empty, it can
be effectively discarded in subsequent computations, based on the downward antimonotonicity prop-
erty. The same process can be applied to compute fragment (D, E), which is completely independent
from computing (A, B, C). Cuboid DE is shown in Table 3.7. O

If the measure in the iceberg condition is count() (as in tuple counting), there is no need to reference
the original database because the length of the TID list is equivalent to the tuple count. “Do we need to
reference the original database if computing other measures such as average()?” Actually, we can build
and reference an ID_measure array instead, which stores what we need to compute other measures.
For example, to compute average(), we let the ID_measure array hold three elements, namely, (TID,
item_count, sum), for each cell. The average() measure for each aggregate cell can then be computed
using sum()/item_count(), by accessing only this ID_measure array. Since ID_measure array is a

Table 3.6 Cuboid AB.

Cell Intersection TID List List Size
(a1,by) {1,2,3}n{l1,4,5} {1} 1
(a1, b2) {1,2,3}Nn{2,3} {2, 3} 2
(az,by) {4,51N{1,4,5} {4, 5} 2
(a2,b2) {4,5}N{2,3} { 0

Table 3.7 Cuboid DE.

Cell Intersection TID List List Size
(di,er) {1,3,4,5}n{1,2} {1} 1
di,e2) {1,3,4,5}n{3,4} (3,4} 2
(di,e3) {1,3,4,5} N {5} {5} 1
(dr,e1) {2}N{L,2} {2} 1

132 Chapter 3 Data warehousing and online analytical processing

more compact data structure than the corresponding high-dimensional database, it is more likely to fit
in memory.

“Once we have computed the shell fragments, how can they be used to answer OLAP queries?”
Given the precomputed shell fragments, the cube space can be viewed as a virtual cube to support
OLAP queries. In general, two types of queries are possible: (1) point query and (2) subcube query. In a
point query, all of the relevant dimensions in the cube have been instantiated and only the corresponding
measure is inquired, whereas in a subcube query, at least one of the relevant dimensions in the cube is
inquired. Let’s examine only the subcube query. In an n-dimensional data cube A1 A, ... A,, a subcube
query could be in the form (A1, As?, Ag, Ay1?7: M?), where A| = {a11,a18} and Ag = ag4, As and Ay
are the inquired dimensions, and M is the inquired measure.

A subcube query returns a local data cube based on the instantiated and inquired dimensions. Such
a data cube needs to be aggregated in a multidimensional way so that online analytical processing
(drilling, dicing, pivoting, etc.) can be made available to users for flexible manipulation and analysis.
Because instantiated dimensions usually provide highly selective constants that dramatically reduce
the size of the valid TID lists, we should make maximal use of the precomputed shell fragments by
finding the fragments that best fit the set of instantiated dimensions and fetching and intersecting the
associated TID lists to derive the reduced TID list. This list can then be used to intersect the best-fitting
shell fragments consisting of the inquired dimensions. This will generate the relevant and inquired base
cuboid, which can then be used to compute the relevant subcube on-the-fly using an efficient online
cubing algorithm.

Let the subcube query be of the form (¢;, aj, Ayt ap, Ag? © M7), where ;, o, and o, represent
a set of instantiated values of dimension A;, A;, and A, respectively, and Ay and A, represent two
inquired dimensions. First, we check the shell fragment schema to determine which dimensions among
(1)A;,Aj,and A, and (2) Ag and A, are in the same fragment partition. Suppose A; and A belong to
the same fragment, as do Ay and A, but that A, is in a different fragment. We fetch the corresponding
TID lists in the precomputed 2-D fragment for A; and A ; using the instantiations ¢; and o, then fetch
the TID list on the precomputed 1-D fragment for A, using instantiation «,, and then fetch the TID lists
on the precomputed 2-D fragments for Ay and A, respectively, using no instantiations (i.e., all possible
values). The obtained TID lists are intersected to derive the final TID lists, which are used to fetch the
corresponding measures from the ID_measure array to derive the “base cuboid” of a 2-D subcube for
two dimensions (Ag, Ag4). A fast cube computation algorithm can be applied to compute this 2-D cube
based on the derived base cuboid. The computed 2-D cube is then ready for OLAP operations.

3.5.4 Efficient processing of OLAP queries using cuboids

The purpose of materializing cuboids and constructing OLAP index structures is to speed up query
processing in data cubes. Given materialized views, query processing should proceed as follows:

1. Determine which operations should be performed on the available cuboids: This involves trans-
forming any selection, projection, roll-up (group-by), and drill-down operations specified in the
query into corresponding SQL and/or OLAP operations. For example, slicing and dicing a data
cube may correspond to selection and/or projection operations on a materialized cuboid.

2. Determine to which materialized cuboid(s) the relevant operations should be applied: This
involves identifying all of the materialized cuboids that may potentially be used to answer the query,

3.6 Summary 133

pruning the set using knowledge of “dominance” relationships among the cuboids, estimating the
costs of using the remaining materialized cuboids, and selecting the cuboid with the least cost.

Example 3.17. OLAP query processing. Suppose that a data cube for a retail company is defined in
the form of “sales_cube [time, item, location]: sum(sales_in_dollars).” The dimension hierarchies used
are “day < month < quarter < year” for time; “item_name < brand < type” for item; and “street <
city < province_or_state < country” for location.

Suppose that the query to be processed is on {brand, province_or_state}, with the selection constant
“year = 2010.” Also, suppose that there are four materialized cuboids available, as follows:

* cuboid 1: {year, item_name, city}

* cuboid 2: {year, brand, country}

* cuboid 3: {year, brand, province_or_state}

* cuboid 4: {item_name, province_or_state}, where year = 2010

“Which of these four cuboids should be selected to process the query?” Finer-granularity data
cannot be generated from coarser-granularity data. Therefore cuboid 2 cannot be used because country
is a more general concept than province_or_state. Cuboids 1, 3, and 4 can be used to process the query
because (1) they have the same set or a superset of the dimensions in the query, (2) the selection clause
in the query can imply the selection in the cuboid, and (3) the abstraction levels for the item and location
dimensions in these cuboids are at a finer level than brand and province_or_state, respectively.

“How would the costs of each cuboid compare if used to process the query?” 1t is likely that using
cuboid 1 would cost the most because both item_name and city are at a lower level than the brand and
province_or_state concepts specified in the query. If there are not many year values associated with
items in the cube, but there are several item_names for each brand, then cuboid 3 will be smaller than
cuboid 4, and thus cuboid 3 should be chosen to process the query. However, if efficient indices are
available for cuboid 4, then cuboid 4 may be a better choice. Therefore some cost-based estimation is
required to decide which set of cuboids should be selected for query processing. 4

3.6 Summary

* A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile data collection
organized in support of management decision making. Several factors distinguish data warehouses
from operational databases. Because the two systems provide quite different functionalities and re-
quire different kinds of data, it is necessary to maintain data warehouses separately from operational
databases.

» Data warehouses often adopt a three-tier architecture. The bottom tier is a warehouse database
server, which is typically a relational database system. The middle tier is an OLAP server, and the
top tier is a client that contains query and reporting tools.

* A data warehouse contains back-end tools and utilities for populating and refreshing the ware-
house. These cover data extraction, data cleaning, data transformation, loading, refreshing, and
warehouse management.

* Data warehouse metadata are data defining the warehouse objects. A metadata repository provides
details regarding the warehouse structure, data history, the algorithms used for summarization, map-

134 Chapter 3 Data warehousing and online analytical processing

pings from the source data to the warehouse form, system performance, and business terms and
issues.

* A data lake is a single repository of all enterprise data in the natural format. A data lake often
stores both raw data copies and transformed data. Many analytical tasks can be conducted on data
lakes. In enterprises and organizations, data warehouses and data lakes serve different purposes and
complement with each other.

* The layers of data storage in data lakes include, from bottom up, the raw data layer, the optional
standardized data layer, the cleansed data layer, the application data layer, and the optional sandbox
data layer.

* A multidimensional data model is typically used for the design of corporate data warehouses
and departmental data marts. Such a model can adopt a star schema, snowflake schema, or fact
constellation schema. The core of the multidimensional model is the data cube, which consists
of a large set of facts (or measures) and a number of dimensions. Dimensions are the entities or
perspectives with respect to which an organization wants to keep records and are hierarchical in
nature.

* A data cube consists of a lattice of cuboids, each corresponding to a different degree of summariza-
tion of the given multidimensional data.

* Concept hierarchies organize the values of attributes or dimensions into gradual abstraction levels.
They are useful in mining at multiple abstraction levels.

¢ OLAP servers may adopt a relational OLAP (ROLAP), a multidimensional OLAP (MOLAP),
or a hybrid OLAP (HOLAP) implementation. A ROLAP server uses an extended relational DBMS
that maps OLAP operations on multidimensional data to standard relational operations. A MOLAP
server maps multidimensional data views directly to array structures. A HOLAP server combines
ROLAP and MOLAP. For example, it may use ROLAP for historic data while maintaining fre-
quently accessed data in a separate MOLARP store.

* A measure in a data cube is a numeric function that can be evaluated at each point (i.e., cell) in the
data cube space. Measures can be organized into three categories, namely distributive, algebraic,
and holistic.

* Online analytical processing can be performed in data warehouses/marts using the multidimen-
sional data model. Typical OLAP operations include roll-up, and drill-(down, across, through),
slice-and-dice, and pivot (rotate), as well as statistical operations such as ranking and computing
moving averages and growth rates. OLAP operations can be implemented efficiently using the data
cube structure.

» To facilitate efficient data accessing, most data warehouse systems use index structures. bimap
index represents a given attribute of low cardinality using bits and can substantially reduce the I/O
cost and speed up the computation for many aggregate queries. Join index precomputes and stores
identifier pairs of join results between a fact table and a dimension table, and thus can dramatically
reduce I/O cost in aggregate computation.

* In many applications, a fact table may contain many attributes, but an OLAP query may only use
several attributes. A column-based database stores the values of all records column by column
instead of row by row and can save dramatic I/O cost and processing time in computing aggregates.

* A data cube consists of a lattice of cuboids. Each cuboid corresponds to a different degree of
summarization of the given multidimensional data. Full materialization refers to the computation
of all the cuboids in a data cube lattice. Partial materialization refers to the selective computation

3.7 Exercises 135

of a subset of the cuboid cells in the lattice. Iceberg cubes and shell fragments are examples of
partial materialization. A data cube may contain much redundant information. A quotient cube as a
concise representation of data cube contains only closed cells and reduces redundant information. An
iceberg cube is a data cube that stores only those cube cells that have an aggregate value (e.g., count)
above some minimum support threshold. For shell fragments of a data cube, only some cuboids
involving a small number of dimensions are computed, and queries on additional combinations of
the dimensions can be computed on-the-fly.

* There are several efficient data cube computation methods. In this chapter, we discussed some
cube computation methods in detail: (1) MultiWay array aggregation for materializing full data
cubes in sparse-array-based, bottom-up, shared computation; (2) BUC for computing iceberg cubes
by exploring ordering and sorting for efficient top-down computation; and (3) shell-fragment
cubing, which supports high-dimensional OLAP by precomputing only the partitioned cube shell
fragments.

3.7 Exercises

3.1. Consider the data about students, instructors, courses, and departments in a college setting. When
such data is used as operational data, please give three example operations. If we want to build a
data warehouse using such data, what may be a subject of the data warehouse?

3.2. Use one example to discuss how data mart, enterprise data warehouse, and machine learning
applications can be connected and build up one over another.

3.3. Is it possible that an enterprise runs both a data warehouse and a data lake? If so, what is the
relation between the data warehouse and the data lake? Can you describe one scenario where
maintaining both a data warehouse and a data lake is necessary and beneficial?

3.4. Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and
the two measures count and charge, where charge is the fee that a doctor charges a patient for a
visit.

a. Enumerate three classes of schemas that are popularly used for modeling data warehouses.

b. Draw a schema diagram for the above data warehouse using one of the schema classes listed
in (a).

c. Starting with the base cuboid [day, doctor, patient], what specific OLAP operations
should be performed in order to list the total fee collected by each doctor in 20107

d. To obtain the same list, write an SQL query assuming the data is stored in a relational
database with the schema fee (day, month, year, doctor, hospital, patient, count, charge).

3.5. Suppose that a data warehouse for Big_University consists of the four dimensions student,
course, semester, and instructor, and two measures count and avg_grade. At the lowest concep-
tual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade
measure stores the actual course grade of the student. At higher conceptual levels, avg_grade
stores the average grade for the given combination.

a. Draw a snowflake schema diagram for the data warehouse.

b. Starting with the base cuboid [student,course,semester, instructor], what specific
OLAP operations (e.g., roll-up from semester to year) should you perform in order to list
the average grade of CS courses for each Big_University student.

136 Chapter 3 Data warehousing and online analytical processing

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

c. If each dimension has five levels (including al11), such as “student < major < status <
university < all,” how many cuboids will this cube contain (including the base and apex
cuboids)?

Suppose that a data warehouse consists of the four dimensions date, spectator, location, and

game, and the two measures count and charge, where charge is the fare that a spectator pays

when watching a game on a given date. Spectators may be students, adults, or seniors, with each
category having its own charge rate.

a. Draw a star schema diagram for the data warehouse.

b. Starting with the base cuboid [date, spectator, location, game], what specific OLAP op-
erations should you perform in order to list the total charge paid by student spectators at
GM_Place in 2010?

C. Bitmap indexing is useful in data warehousing. Taking this cube as an example, briefly
discuss advantages and problems of using a bitmap index structure.

A data warehouse can be modeled by either a star schema or a snowflake schema. Briefly de-
scribe the similarities and the differences of the two models, and then analyze their advantages
and disadvantages with regard to one another. Give your opinion of which might be more empir-
ically useful and state the reasons behind your answer.
Design a data warehouse for a regional weather bureau. The weather bureau has about 1000
probes, which are scattered throughout various land and ocean locations in the region to collect
basic weather data, including air pressure, temperature, and precipitation at each hour. All data
are sent to the central station, which has collected such data for more than 10 years. Your design
should facilitate efficient querying and online analytical processing and derive general weather
patterns in multidimensional space.

A popular data warehouse implementation is to construct a multidimensional database, known

as a data cube. Unfortunately, this may often generate a huge, yet very sparse, multidimensional

matrix.

a. Present an example illustrating such a huge and sparse data cube.

b. Design an implementation method that can elegantly overcome this sparse matrix problem.
Note that you need to explain your data structures in detail and discuss the space needed, as
well as how to retrieve data from your structures.

€. Modify your design in (b) to handle incremental data updates. Give the reasoning behind
your new design.

Regarding the computation of measures in a data cube:

a. Enumerate three categories of measures, based on the kind of aggregate functions used in
computing a data cube.

h. For a data cube with the three dimensions time, location, and item, which category does
the function variance belong to? Describe how to compute it if the cube is partitioned into
many chunks.

Hint: The formula for computing variance is % Z,N: 1 (i — x',-)z, where x; is the average of
XiS.

€. Suppose the function is “fop 10 sales.” Discuss how to efficiently compute this measure in
a data cube.

Suppose a company wants to design a data warehouse to facilitate the analysis of moving ve-

hicles in an online analytical processing manner. The company registers huge amounts of auto

3.7 Exercises 137

movement data in the format of (Auto_ID, location, speed, time). Each Auto_ID represents a
vehicle associated with information (e.g., vehicle_category, driver_category), and each location
may be associated with a street in a city. Assume that a street map is available for the city.

a. Design such a data warehouse to facilitate effective online analytical processing in multidi-
mensional space.

b. The movement data may contain noise. Discuss how you would develop a method to auto-
matically discover data records that were likely erroneously registered in the data repository.

c. The movement data may be sparse. Discuss how you would develop a method that con-
structs a reliable data warehouse despite the sparsity of data.

d. If you want to drive from A to B starting at a particular time, discuss how a system may use
the data in this warehouse to work out a fast route.

3.12. Radio-frequency identification is commonly used to trace object movement and perform inven-
tory control. An RFID reader can successfully read an RFID tag from a limited distance at any
scheduled time. Suppose a company wants to design a data warehouse to facilitate the analysis of
objects with RFID tags in an online analytical processing manner. The company registers huge
amounts of RFID data in the format of (RFID, at_location, time), and also has some information
about the objects carrying the RFID tag, for example, (RFID, product_name, product_category,
producer, date_produced, price).

a. Design a data warehouse to facilitate effective registration and online analytical processing
of such data.

b. The RFID data may contain lots of redundant information. Discuss a method that maximally
reduces redundancy during data registration in the RFID data warehouse.

c. The RFID data may contain lots of noise such as missing registration and misread IDs.
Discuss a method that effectively cleans up the noisy data in the RFID data warehouse.

d. You may want to perform online analytical processing to determine how many TV sets
were shipped from the LA seaport to BestBuy in Champaign, IL, by month, brand, and
price_range. Outline how this could be done efficiently if you were to store such RFID data
in the warehouse.

e. If a customer returns a jug of milk and complains that it has spoiled before its expiration
date, discuss how you can investigate such a case in the warehouse to find out what the
problem is, either in shipping or in storage.

3.13. In many applications, new data sets are incrementally added to the existing large data sets. Thus,
an important consideration is whether a measure can be computed efficiently in an incremental
manner. Use count, standard deviation, and median as examples to show that a distributive or
algebraic measure facilitates efficient incremental computation, whereas a holistic measure does
not.

3.14. Suppose that we need to record three measures in a data cube: min(), average(), and median().
Design an efficient computation and storage method for each measure given that the cube allows
data to be deleted incrementally (i.e., in small portions at a time) from the cube.

3.15. In data warehouse technology, a multiple dimensional view can be implemented by a relational
database technique (ROLAP), by a multidimensional database technique (MOLAP), or by a hy-
brid database technique (HOLAP).

a. Briefly describe each implementation technique.

b. For each technique, explain how each of the following functions may be implemented:

138 Chapter 3 Data warehousing and online analytical processing

3.16.

3.17.

3.18.

3.19.

3.20.

i. The generation of a data warehouse (including aggregation)
ii. Roll-up
iii. Drill-down
iv. Incremental updating
€. Which implementation techniques do you prefer, and why?
Suppose that a data warehouse contains 20 dimensions, each with about five levels of granularity.
a. Users are mainly interested in four particular dimensions, each having three frequently ac-
cessed levels for rolling up and drilling down. How would you design a data cube structure
to support this preference efficiently?
h. Attimes, a user may want to drill through the cube to the raw data for one or two particular
dimensions. How would you support this feature?
A data cube, C, has n dimensions, and each dimension has exactly p distinct values in the base
cuboid. Assume that there are no concept hierarchies associated with the dimensions.
a. What is the maximum number of cells possible in the base cuboid?
b. What is the minimum number of cells possible in the base cuboid?
€. What is the maximum number of cells possible (including both base cells and aggregate
cells) in the C data cube?
d. What is the minimum number of cells possible in C?
Assume that a 10-D base cuboid contains only three base cells: (1) (ai, d2, d3,ds, ..., dy, d1o),
(2) (dl, bz, d3, d4, ey d9, dlo), and (3) (dl, dz, c3, d4, ey dg, dlo), where al 75 dl, b2 ;ﬁ dz, and
c3 # d3. The measure of the cube is count ().
a. How many nonempty cuboids will a full data cube contain?
bh. How many nonempty aggregate (i.e., nonbase) cells will a full cube contain?
c. How many nonempty aggregate cells will an iceberg cube contain if the condition of the
iceberg cube is “count > 277
d. A cell, ¢, is a closed cell if there exists no cell, d, such that d is a specialization of cell ¢
(i.e., d is obtained by replacing a * in ¢ by a non-* value) and d has the same measure value
as c. A closed cube is a data cube consisting of only closed cells. How many closed cells
are in the full cube?
There are several typical cube computation methods, such as MultiWay [ZDN97], BUC [BR99],
and Star-Cubing [XHLWO03]. Briefly describe these three methods (i.e., use one or two lines
to outline the key points) and compare their feasibility and performance under the following
conditions:
a. Computing a dense full cube of low dimensionality (e.g., less than eight dimensions).
h. Computing an iceberg cube of around 10 dimensions with a highly skewed data distribution.
c. Computing a sparse iceberg cube of high dimensionality (e.g., over 100 dimensions).
Suppose a data cube, C, has D dimensions, and the base cuboid contains k distinct tuples.
a. Present a formula to calculate the minimum number of cells that the cube, C, may contain.
b. Present a formula to calculate the maximum number of cells that C may contain.
€. Answer parts (a) and (b) as if the count in each cube cell must be no less than a threshold, v.
d. Answer parts (a) and (b) as if only closed cells are considered (with the minimum count
threshold, v).

3.7 Exercises 139

3.21. Suppose that a base cuboid has three dimensions, A, B, C, with the following number of cells:
|A| = 1,000,000, |B] =100, and |C| = 1000. Suppose that each dimension is evenly partitioned
into 10 portions for chunking.

a. Assuming each dimension has only one level, draw the complete lattice of the cube.

b. If each cube cell stores one measure with four bytes, what is the total size of the computed
cube if the cube is dense?

€. State the order for computing the chunks in the cube that requires the least amount of space,
and compute the total amount of main memory space required for computing the 2-D planes.

3.22. When computing a cube of high dimensionality, we encounter the inherent curse of dimension-
ality problem: There exists a huge number of subsets of combinations of dimensions.

a. Suppose that there are only two base cells, { (a1, a2, a3, ..., aioo0) and (ay, az, b3, ..., b10o) },
in a 100-D base cuboid. Compute the number of nonempty aggregate cells. Comment on
the storage space and time required to compute these cells.

b. Suppose we are to compute an iceberg cube from (a). If the minimum support count in the
iceberg condition is 2, how many aggregate cells will there be in the iceberg cube? Show
the cells.

c. Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells in a
data cube. However, even with iceberg cubes, we could still end up having to compute a
large number of trivial uninteresting cells (i.e., with small counts). Suppose that a database
has 20 tuples that map to (or cover) the two following base cells in a 100-D base cuboid,
each with a cell count of 10: {(ay, a»,as, ...,ai) : 10, (ay, az, bs, ..., bigy) : 10}.

i. Let the minimum support be 10. How many distinct aggregate cells will there be like
the following: {(a1, a2, a3, aa, ..., a9, %) : 10, ..., (a1, a2, *, as, ..., agy, aypo) : 10,
o (ar,ax,az, ®, ..o, %, %) 0 10}?

ii. If we ignore all the aggregate cells that can be obtained by replacing some constants
with *’s while keeping the same measure value, how many distinct cells remain?
What are the cells?

3.23. Propose an algorithm that computes closed iceberg cubes efficiently.

3.24. Suppose that we want to compute an iceberg cube for the dimensions, A, B, C, D, where we
wish to materialize all cells that satisfy a minimum support count of at least v, and where car-
dinality(A) < cardinality(B) < cardinality(C) < cardinality(D). Show the BUC processing tree
(which shows the order in which the BUC algorithm explores a data cube’s lattice, starting from
all) for the construction of this iceberg cube.

3.25. Discuss how you might extend the Star-Cubing algorithm to compute iceberg cubes where the
iceberg condition tests for an avg that is no bigger than some value, v.

3.26. A flight data warehouse for a travel agent consists of six dimensions: traveler, departure (city),
departure_time, arrival, arrival_time, and flight; and two measures: count () and avg_fare(),
where avg_fare() stores the concrete fare at the lowest level but the average fare at other levels.

a. Suppose the cube is fully materialized. Starting with the base cuboid [traveler, departure,
departure_time, arrival, arrival_time, flight], what specific OLAP operations (e.g., roll-up
flight to airline) should one perform to list the average fare per month for each business
traveler who flies American Airlines (AA) from Los Angeles in 2009?

140 Chapter 3 Data warehousing and online analytical processing

b.

Suppose we want to compute a data cube where the condition is that the minimum number
of records is 10 and the average fare is over $500. Outline an efficient cube computation
method (based on common sense about flight data distribution).

3.27. (Implementation project) There are four typical data cube computation methods: MultiWay
[ZDN97], BUC [BR99], H-Cubing [HPDWO01], and Star-Cubing [XHLWO03].

a.

Implement any one of these cube computation algorithms and describe your implemen-
tation, experimentation, and performance. Find another student who has implemented a
different algorithm on the same platform (e.g., C++ on Linux) and compare your algorithm
performance with his or hers.
Input:
i. An n-dimensional base cuboid table (for n < 20), which is essentially a relational
table with n attributes.
ii. An iceberg condition: count (C) > k, where k is a positive integer as a parameter.
Output:
i. The set of computed cuboids that satisfy the iceberg condition, in the order of your
output generation.
ii. Summary of the set of cuboids in the form of “cuboid ID: the number of nonempty
cells,” sorted in alphabetical order of cuboids (e.g., A: 155, AB: 120, ABC: 22, ABCD:
4, ABCE: 6, ABD: 36), where the number after : represents the number of nonempty
cells. (This is used to quickly check the correctness of your results.)
Based on your implementation, discuss the following:
i. What challenging computation problems are encountered as the number of dimen-
sions grows large?
ii. How can iceberg cubing solve the problems of part (a) for some data sets (and char-
acterize such data sets)?
iii. Give one simple example to show that sometimes iceberg cubes cannot provide a
good solution.
Instead of computing a high-dimensionality data cube, we may choose to materialize the
cuboids that have only a small number of dimension combinations. For example, for a 30-D
data cube, we may only compute the 5-D cuboids for every possible 5-D combination. The
resulting cuboids form a shell cube. Discuss how easy or hard it is to modify your cube
computation algorithm to facilitate such computation.

3.28. The sampling cube was proposed for multidimensional analysis of sampling data (e.g., survey
data). In many real applications, sampling data can be of high dimensionality (e.g., it is not
unusual to have more than 50 dimensions in a survey data set).

3.29.

a.

b.

How can we construct an efficient and scalable high-dimensional sampling cube in large
sampling data sets?

Design an efficient incremental update algorithm for such a high-dimensional sampling
cube.

Discuss how to support quality drill-down given that some low-level cells may be empty or
contain too few data for reliable analysis.

The ranking cube was designed to support top-k (ranking) queries in relational database systems.
However, ranking queries are also posed to data warehouses, where ranking is on multidimen-
sional aggregates instead of on measures of base facts. For example, consider a product manager

3.7 Exercises 141

who is analyzing a sales database that stores the nationwide sales history, organized by location
and time. To make investment decisions, the manager may pose the following query: “What are
the top-10 (state, year) cells having the largest total product sales?” He may further drill down
and ask, “What are the top-10 (city, month) cells?”” Suppose the system can perform such partial
materialization to derive two types of materialized cuboids: a guiding cuboid and a supporting
cuboid, where the former contains a number of guiding cells that provide concise, high-level
data statistics to guide the ranking query processing, whereas the latter provides inverted indices
for efficient online aggregation.

a. Derive an efficient method for computing such aggregate ranking cubes.

b. Extend your framework to handle more advanced measures. One such example could be as
follows. Consider an organization donation database, where donors are grouped by “age,”
“income,” and other attributes. Interesting questions include: “Which age and income groups
have made the top-k average amount of donation (per donor)?” and “Which income group
of donors has the largest standard deviation in the donation amount?”

3.30. Recently, researchers have proposed another kind of query, called a skyline query. A skyline
query returns all the objects p; such that p; is not dominated by any other object p;, where
dominance is defined as follows. Let the value of p; on dimension d be v(p;,d). We say p; is
dominated by p; if and only if for each preference dimension d, v(p;,d) < v(p;, d), and there
is at least one d where the equality does not hold.

a. Design a ranking cube (see the previous question) so that skyline queries can be processed
efficiently.

b. Skyline queries are sometimes too strict to be desirable to some users. One may generalize
the concept of skyline into generalized skyline as follows: Given a d-dimensional database
and a query q, the generalized skyline is the set of the following objects: (1) the skyline
objects and (2) the nonskyline objects that are €-neighbors of a skyline object, where r is
an e-neighbor of an object p if the distance between p and r is no more than €. Design a
ranking cube to process generalized skyline queries efficiently.

3.31. The prediction cube is a good example of multidimensional data mining in cube space.

a. Propose an efficient algorithm that computes prediction cubes in a given multidimensional
database.

b. For what kind of classification models can your algorithm be applied? Explain.

3.32. Multifeature cubes allow us to construct interesting data cubes based on rather sophisticated
query conditions. Can you construct the following multifeature cube by translating the following
user requests into queries using the form introduced in this textbook?

a. Construct a smart shopper cube where a shopper is smart if at least 10% of the goods she
buys in each shopping trip are on sale.

b. Construct a data cube for best-deal products where best-deal products are those products
for which the price is the lowest for this product in the given month.

3.33. Discovery-driven cube exploration is a desirable way to mark interesting points among a large
number of cells in a data cube. Individual users may have different views on whether a point
should be considered interesting enough to be marked. Suppose one would like to mark those ob-
jects of which the absolute value of z score is over 2 in every row and column in a d-dimensional
plane.

142 Chapter 3 Data warehousing and online analytical processing

a. Derive an efficient computation method to identify such points during the data cube com-
putation.

b. Suppose a partially materialized cube has (d — 1)-dimensional and (d + 1)-dimensional
cuboids materialized but not the d-dimensional one. Derive an efficient method to mark
those (d — 1)-dimensional cells with d-dimensional children that contain such marked
points.

3.8 Bibliographic notes

There are a good number of introductory-level textbooks on data warehousing and OLAP technology—
for example, Kimball et al. [KRTMOS8]; Imhoff, Galemmo, and Geiger [IGG03]; and Inmon [Inm96].
Chaudhuri and Dayal [CD97] provide an early overview of data warehousing and OLAP technology.
A set of research papers on materialized views and data warehouse implementations are collected in
Materialized Views: Techniques, Implementations, and Applications by Gupta and Mumick [GM99].

The history of decision support systems can be traced back to the 1960s. However, the proposal
to construct large data warehouses for multidimensional data analysis is credited to Codd [CCS93]
who coined the term OLAP for online analytical processing. The OLAP Council was established in
1995. Widom [Wid95] identifies several research problems in data warehousing. Kimball and Ross
[KRO2] provide an overview of the deficiencies of SQL regarding the ability to support comparisons
that are common in the business world, and present a good set of application cases that require data
warehousing and OLAP technology. For an overview of OLAP systems vs. statistical databases, see
Shoshani [Sho97].

Gray et al. [GCB™"97] propose the data cube as a relational aggregation operator generalizing group-
by, crosstabs, and subtotals. Harinarayan, Rajaraman, and Ullman [HRU96] propose a greedy algorithm
for the partial materialization of cuboids in the computation of a data cube. Data cube computation
methods are investigated by numerous studies such as Sarawagi and Stonebraker [SS94]; Agarwal
et al. [AAD"96]; Zhao, Deshpande, and Naughton [ZDN97]; Ross and Srivastava [RS97]; Beyer and
Ramakrishnan [BR99]; Han, Pei, Dong, and Wang [HPDWO1]; and Xin, Han, Li, and Wah [XHLWO03].

The concept of iceberg queries is first introduced in Fang et al. [FSGM ' 98]. The use of join indices
to speed up relational query processing is proposed by Valduriez [Val87]. O’Neil and Graefe [OG95]
propose a bitmapped join index method to speed up OLAP-based query processing. A discussion of
the performance of bitmapping and other nontraditional index techniques is given in O’Neil and Quass
[0Q97].

For work regarding the selection of materialized cuboids for efficient OLAP query processing, see,
for example, Chaudhuri and Dayal [CD97]; Harinarayan, Rajaraman, and Ullman [HRU96]; and Sris-
tava et al. [SDJL96]. Methods for cube size estimation are discussed by Deshpande et al. [DNRT97],
Ross and Srivastava [RS97], and Beyer and Ramakrishnan [BR99]. Agrawal, Gupta, and Sarawagi
[AGS97] propose operations for modeling multidimensional databases. Methods for answering queries
quickly by online aggregation are described in Hellerstein, Haas, and Wang [HHW97] and Hellerstein
et al. [HACT99]. Techniques for estimating the top N queries are proposed in Carey and Kossman
[CK98] and Donjerkovic and Ramakrishnan [DR99].

Efficient computation of multidimensional aggregates in data cubes is studied by many researchers.
Gray et al. [GCB™97] propose cube-by as a relational aggregation operator generalizing group-by,

3.8 Bibliographic notes 143

crosstabs, and subtotals, and categorized data cube measures into three categories: distributive, alge-
braic, and holistic. Harinarayan, Rajaraman, and Ullman [HRU96] propose a greedy algorithm for the
partial materialization of cuboids in the computation of a data cube. Sarawagi and Stonebraker [SS94]
develop a chunk-based computation technique for the efficient organization of large multidimensional
arrays. Agarwal et al. [AADT96] propose several guidelines for efficient computation of multidimen-
sional aggregates for ROLAP servers.

The chunk-based MultiWay array aggregation method for data cube computation in MOLAP is
proposed by Zhao, Deshpande, and Naughton [ZDN97]. Ross and Srivastava [RS97] develop a method
for computing sparse data cubes. Iceberg queries are first described in Fang et al. [FSGM ™ 98]. BUC, a
scalable method that computes iceberg cubes from the apex cuboid downwards, is introduced by Beyer
and Ramakrishnan [BR99]. Han, Pei, Dong, and Wang [HPDWO1] introduce an H-Cubing method for
computing iceberg cubes with complex measures using an H-tree structure.

The Star-Cubing method for computing iceberg cubes with a dynamic star-tree structure is in-
troduced by Xin, Han, Li, and Wah [XHLWO03]. MM-Cubing, an efficient iceberg cube computation
method that factorizes the lattice space is developed by Shao, Han, and Xin [SHXO04]. The shell-
fragment-based cubing approach for efficient high-dimensional OLAP is proposed by Li, Han, and
Gonzalez [LHGO04].

Aside from computing iceberg cubes, another way to reduce data cube computation is to materialize
condensed, dwarf, or quotient cubes, which are variants of closed cubes. Wang, Feng, Lu, and Yu
propose computing a reduced data cube, called a condensed cube [WLFY02]. Sismanis, Deligiannakis,
Roussopoulos, and Kotids propose computing a compressed data cube, called a dwarf cube [SDRKO02].
Lakeshmanan, Pei, and Han propose a quotient cube structure to summarize a data cube’s semantics
[LPHO2], which is further extended to a gc-tree structure by Lakshmanan, Pei, and Zhao [LPZ03]. An
aggregation-based approach, called C-Cubing (i.e., Closed-Cubing), is developed by Xin, Han, Shao,
and Liu [XHSLO6], which performs efficient closed-cube computation by taking advantage of a new
algebraic measure closedness.

There are also various studies on the computation of compressed data cubes by approximation,
such as quasicubes by Barbara and Sullivan [BS97]; wavelet cubes by Vitter, Wang, and Iyer [VWI9S];
compressed cubes for query approximation on continuous dimensions by Shanmugasundaram, Fayyad,
and Bradley [SFB99]; using log-linear models to compress data cubes by Barbara and Wu [BW00];
and OLAP over uncertain and imprecise data by Burdick et al. [BDJ*05].

For works regarding the selection of materialized cuboids for efficient OLAP query processing,
see Chaudhuri and Dayal [CD97]; Harinarayan, Rajaraman, and Ullman [HRU96]; Srivastava, Dar,
Jagadish, and Levy [SDJL96]; Gupta [Gup97]; Baralis, Paraboschi, and Teniente [BPT97]; and Shukla,
Deshpande, and Naughton [SDNO98]. Methods for cube size estimation are discussed by Deshpande
et al. [DNR'97], Ross and Srivastava [RS97], and Beyer and Ramakrishnan [BR99]. Agrawal, Gupta,
and Sarawagi [AGS97] propose operations for modeling multidimensional databases.

Data cube modeling and computation have been extended well beyond relational data. Computation
of stream cubes for multidimensional stream data analysis is studied by Chen et al. [CDH™02]. Efficient
computation of spatial data cubes is examined by Stefanovic, Han, and Koperski [SHKO00], efficient
OLAP in spatial data warehouses is studied by Papadias, Kalnis, Zhang, and Tao [PKZT01], and a map
cube for visualizing spatial data warehouses is proposed by Shekhar et al. [SLTT01]. A multimedia data
cube is constructed in MultiMediaMiner by Zaiane et al. [ZHL"98]. For analysis of multidimensional
text databases, TextCube, based on the vector space model, is proposed by Lin et al. [LDH'08], and

144 Chapter 3 Data warehousing and online analytical processing

TopicCube, based on a topic modeling approach, is proposed by Zhang, Zhai, and Han [ZZH09]. RFID
Cube and FlowCube for analyzing RFID data are proposed by Gonzalez et al. [GHLK06,GHLO06].

The sampling cube is introduced for analyzing sampling data by Li et al. [LHY "08]. The ranking
cube is proposed by Xin, Han, Cheng, and Li [XHCLO06] for efficient processing of ranking (top-k)
queries in databases. This methodology has been extended by Wu, Xin, and Han [WXHO08] to ARCube,
which supports the ranking of aggregate queries in partially materialized data cubes. It has also been
extended by Wu, Xin, Mei, and Han [WXMHO09] to PromoCube, which supports promotion query
analysis in multidimensional space.

The discovery-driven exploration of OLAP data cubes is proposed by Sarawagi, Agrawal, and
Megiddo [SAM9S]. Further studies on integration of OLAP with data mining capabilities for intelligent
exploration of multidimensional OLAP data are done by Sarawagi and Sathe [SSO1]. The construction
of multifeature data cubes is described by Ross, Srivastava, and Chatziantoniou [RSC98]. Methods
for answering queries quickly by online aggregation are described by Hellerstein, Haas, and Wang
[HHWO97] and Hellerstein et al. [HAC"99]. A cube-gradient analysis problem, called cubegrade, is
first proposed by Imielinski, Khachiyan, and Abdulghani [IKAO2]. An efficient method for multidi-
mensional constrained gradient analysis in data cubes is studied by Dong et al. [DHLT01].

Mining cube space, or integration of knowledge discovery and OLAP cubes, has been studied by
many researchers. The concept of online analytical mining (OLAM), or OLAP mining, is introduced
by Han [Han98]. Chen et al. develop a regression cube for regression-based multidimensional analysis
of time-series data [CDH™02,CDH™06]. Fagin et al. [FGK™05] studied data mining in multistructured
databases. Chen, Chen, Lin, and Ramakrishnan [CCLROS5] propose prediction cubes, which integrate
prediction models with data cubes to discover interesting data subspaces for facilitated prediction.
Chen, Ramakrishnan, Shavlik, and Tamma [CRSTO06] study the use of data mining models as build-
ing blocks in a multistep mining process and the use of cube space to intuitively define the space of
interest for predicting global aggregates from local regions. Ramakrishnan and Chen [RC07] present
an organized picture of exploratory mining in cube space.

The innovation of data lake is mainly driven by industry. Some general introduction to the concept of
data lakes include [Fan15]. Inmon [Inm16] discusses data lake architecture. Some examples of data lake
systems include Azure Data Lake Store [RSD™17], Google Goods [HKN™16], Constance [HGQ16],
and CoreDB [BBNT17].

CHAPTER

Pattern mining: basic concepts and
methods

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that appear frequently
in a data set. For example, a set of items, such as milk and bread, that appear frequently together in
a transaction data set is a frequent itemset. A subsequence, such as buying first a smartphone, then a
smart TV, and then a smart home device, if it occurs frequently in a shopping history database, is a
(frequent) sequential pattern. A substructure can refer to different structural forms, such as subgraphs,
subtrees, or sublattices. If a substructure occurs frequently, it is called a (frequent) structured pattern.
Finding frequent patterns plays an essential role in mining associations, correlations, and many other
interesting relationships among data. Moreover, it helps in data classification, clustering, and other data
mining tasks. Thus, frequent pattern mining has become an important data mining task and a focused
theme in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, associations, and correla-
tions (Section 4.1) and study how they can be mined efficiently (Section 4.2). We also discuss how
to judge whether the patterns found are interesting (Section 4.3). In the subsequent chapter, we extend
our discussion to advanced frequent pattern mining, including mining more complex forms of frequent
patterns, and their applications.

4.1 Basic concepts

Frequent pattern mining uncovers recurring relationships in a given data set. This section introduces the
basic concepts of frequent pattern mining for the discovery of interesting associations and correlations
between itemsets in transactional and relational databases. We begin in Section 4.1.1 by presenting an
example of market basket analysis, the earliest form of frequent pattern mining for association rules.
The basic concepts of mining frequent patterns and associations are discussed in Section 4.1.2.

4.1.1 Market basket analysis: a motivating example

A set of items is referred to as an itemset.! Frequent itemset mining leads to the discovery of associa-
tions and correlations among items in large transactional or relational data sets. With massive amounts
of data continuously being collected and stored, many industries are interested in mining such pat-
terns from their databases. The discovery of interesting correlation relationships among huge amounts

' In the data mining research literature, “itemset” is more commonly used than “item set.”

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00014-X 1 4 5
Copyright © 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811760-6.00014-X

146 Chapter 4 Patter mining: basic concepts and methods

Which items are frequently
purchased together by customers?

Shopping Baskets
[U T [U T [U]
... bread milk bread ., bread
milk milk
cereal sugar €ggs butter
Customer 1 Customer 2 Customer 3
sugar
eggs
Market Analyst
Customer n

FIGURE 4.1
Market basket analysis.

of business transaction records can help in many business decision-making processes such as catalog
design, cross-marketing, and customer shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. This process analyzes
customer buying habits by finding associations between the different items that customers place in their
“shopping baskets” (Fig. 4.1). The discovery of these associations can help retailers develop marketing
strategies by gaining insight into which items are frequently purchased together by customers. For
instance, if customers are buying milk, how likely are they to also buy bread (and what kind of bread)
on the same trip to the supermarket? This information can lead to increased sales, revenue, and customer
acquisition by helping retailers do selective marketing and planned shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 4.1. Market basket analysis. Suppose, as manager of a retail company, you would like to
learn more about the buying habits of your customers. Specifically, you wonder, “Which groups or sets
of items are customers likely to purchase on a given trip to the store?” To answer your question, market
basket analysis may be performed on the retail data of customer transactions at your store. You can
then use these results to choose marketing strategies and help create a new catalog. For instance, market
basket analysis may help you design different store layouts. In one strategy, items that are frequently
purchased together can be placed in proximity to further encourage the combined sale of such items. If
customers who purchase computers also tend to buy antivirus software at the same time, then placing
the hardware display close to the software display may help increase the sales of both items.

In an alternative strategy, placing hardware and software at opposite ends of the store may entice
customers who purchase such items to pick up other items along the way. For instance, after deciding
on an expensive computer, a customer may observe security systems for sale while heading toward the
software display to purchase antivirus software and may decide to purchase a home security system as

4.1 Basic concepts 147

well. Market basket analysis can also help retailers plan which items to put on sale at reduced prices. If
customers tend to purchase computers and printers together, then reducing the prices on printers may
encourage the sale of printers as well as computers. O

If we think of the universe as the set of items available at the store, then each item has a Boolean
variable representing the presence or absence of that item. Each basket can then be represented by a
Boolean vector of values assigned to these variables. The Boolean vectors can be analyzed to extract
buying patterns that reflect items that are frequently associated or purchased together. These patterns
can be represented in the form of association rules. For example, the information that customers who
purchase computers also tend to buy antivirus software at the same time is represented in the following
association rule:

computer = antivirus_software [support = 2%, confidence = 60%]. 4.1

Rule support and confidence are two measures of rule interestingness. They reflect the usefulness
and certainty of discovered rules, respectively. A support of 2% for Rule (4.1) means that 2% of all the
transactions under analysis show that computer and antivirus software are purchased together. A con-
fidence of 60% means that 60% of the customers who purchased a computer also bought the software.
Typically, association rules are considered interesting if they satisfy a minimum support threshold
and a minimum confidence threshold. These thresholds can be set by users or domain experts. Ad-
ditional analysis can be performed to discover interesting statistical correlations between associated
items.

4.1.2 Frequent itemsets, closed itemsets, and association rules

LetZ={I,I,...,1,} be an itemset. Let D, the task-relevant data, be a set of database transactions
where each transaction 7' is a nonempty itemset such that 7 C Z. Each transaction is associated with
an identifier, called a TID. Let A be a set of items. A transaction 7" is said to contain A if ACT.
An association rule is an implication of the form A = B, where ACZ, BCZ, A# @, B#(, and
AN B =¢. The rule A = B holds in the transaction set D with support s, where s is the percentage
of transactions in D that contain A U B (i.e., the union of sets A and B say, or, both A and B). This
is taken to be the probability, P(A U B).2 The rule A = B has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that also contain B. This is taken to be the
conditional probability, P(B|A). That is,

support (A=>B) =P(AU B) “4.2)
confidence (A= B) =P(B|A). “4.3)
Rules that satisfy both a minimum support threshold (min_sup) and a minimum confidence threshold

(min_conf) are called strong. By convention, support and confidence values are represented as percent-
ages.

2 Notice that the notation P(A U B) indicates the probability that a transaction contains the union of sets A and B (i.e., it contains
every item in A and B). This should not be confused with P(A or B), which indicates the probability that a transaction contains
either A or B.

148 Chapter 4 Patter mining: basic concepts and methods

An itemset that contains k items is a k-itemset. The set {computer, antivirus_software} is a 2-
itemset. The occurrence frequency of an itemset is the number of transactions that contain the itemset.
Occurrence frequency is also referred as the frequency, support count, or count of the itemset. Note
that the itemset support defined in Eq. (4.2) is sometimes referred to as relative support, whereas the
occurrence frequency is called the absolute support. If the relative support of an itemset [satisfies a
prespecified minimum support threshold (i.e., the absolute support of I satisfies the corresponding
minimum support count threshold), then I is a frequent itemset.’ The set of frequent k-itemsets is
commonly denoted by L;.*

From Eq. (4.3), we have

support (AU B) support_count (AU B)

confidence (A= B) = P(B|A) = 4.4)

support (A) support_count (A)

Eq. (4.4) shows that the confidence of rule A = B can be easily derived from the support counts of
A and AU B. That is, once the support counts of A, B, and A U B are found, it is straightforward to
derive the corresponding association rules A = B and B = A and check whether they are strong. Thus
the problem of mining association rules can be reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets. By definition, each of these itemsets will occur at least as frequently as
a predetermined minimum support count, min_sup.

2. Generate strong association rules from the frequent itemsets. By definition, these rules must
satisfy minimum support and minimum confidence.

Additional interestingness measures that can be applied for the discovery of correlation relation-
ships between associated items will be discussed in Section 4.3. The overall performance of mining
association rules is determined by the first step since the second step is much less costly than the first.

A major challenge in mining frequent itemsets from a large data set is the fact that such mining often
generates a huge number of itemsets satisfying the minimum support (min_sup) threshold, especially
when min_sup is set low. This is because if an itemset is frequent, each of its subsets is frequent as
well. A long itemset will contain a combinatorial number of shorter frequent subitemsets. For example,
a frequent itemset of length 100, such as {ai, a», ..., ajpo}, contains (1(1)0) = 100 frequent 1-itemsets:
{ar}, (a2}, ..., faroo}; (') frequent 2-itemsets: {ar, az}, {a1, a3}, {a1, as), ..., {a2, a3}, (a2, aa}, ...,
{ag9, aioo}; and so on. The total number of frequent itemsets that it contains is thus

100 100 100
=210 _ 12127 x10%, 45
(1)+<2>+ +(100) : *)

This is too huge a number of itemsets for any computer to compute or store. To overcome this difficulty,
we introduce the concepts of closed frequent itemset and maximal frequent itemset.

3 n early work, itemsets satisfying minimum support were referred to as large. This term, however, is somewhat confusing as it
has connotations of the number of items in an itemset rather than the frequency of occurrence of the set. Hence, we use the more
recent term frequent.

4 Although the term frequent is preferred over large, for historic reasons frequent k-itemsets are still denoted as Ly.

4.2 Frequent itemset mining methods 149

An itemset X is closed in a data set D if there exists no proper superitemset Y~ such that ¥ has the
same support count as X in D. An itemset X is a closed frequent itemset in set D if X is both closed
and frequent in D. An itemset X is a maximal frequent itemset (or max-itemset) in a data set D if X
is frequent, and there exists no superitemset Y such that X C Y and Y is frequent in D.

Let C be the set of closed frequent itemsets for a data set D satisfying a minimum support threshold,
min_sup. Let M be the set of maximal frequent itemsets for D satisfying min_sup. Suppose that we
have the support count of each itemset in C and M. Notice that C and its count information can be used
to derive the whole set of frequent itemsets. Thus we say that C contains complete information regarding
its corresponding frequent itemsets. On the other hand, M registers only the support of the maximal
itemsets. It usually does not contain the complete support information regarding its corresponding
frequent itemsets. We illustrate these concepts with Example 4.2.

Example 4.2. Closed and maximal frequent itemsets. Suppose that a transaction database has
only two transactions: {{ai, a2, ..., aio0); (a1, az,...,aso)}. Let the minimum support count thresh-
old be min_sup = 1. We find two closed frequent itemsets and their support counts, that is, C =
{{a,a2,...,a100}: 1; {a1,a2,...,as0}:2}. There is only one maximal frequent itemset: M =
{{a1,az,...,a100} : 1}. Notice that we cannot include {aj,ay,...,as0} as a maximal frequent item-
set because it has a frequent superset, {aj, as, ..., ajgo}. Compare this to the preceding where we
determined that there are 2!%0 — 1 frequent itemsets, which are too many to be enumerated!

The set of closed frequent itemsets contains complete information regarding the frequent itemsets.
For example, from C, we can derive, say, (1) {ay, ass : 2} since {a2, as5} is a subitemset of the itemset
{a1,as,...,a50:2}; and (2) {ag, ass5 : 1} since {ag, ass} is not a subitemset of the previous itemset but
of the itemset {aj, az, ..., ajoo : 1}. However, from the maximal frequent itemset, we can only assert
that both itemsets ({a», as5} and {ag, ass}) are frequent, but we cannot assert their actual support
counts. O

4.2 Frequent itemset mining methods

In this section, you will learn methods for mining the simplest form of frequent patterns such as those
discussed for market basket analysis in Section 4.1.1. We begin by presenting Apriori, the basic algo-
rithm for finding frequent itemsets in Section 4.2.1. In Section 4.2.2, we look at how to generate strong
association rules from frequent itemsets. Section 4.2.3 describes several variations to the Apriori algo-
rithm for improved efficiency and scalability. Section 4.2.4 presents pattern-growth methods for mining
frequent itemsets that confine the subsequent search space to only the data sets containing the current
frequent itemsets. Section 4.2.5 presents methods for mining frequent itemsets that take advantage of
the vertical data format.

5 Yisa proper superitemset of X if X is a proper subitemset of Y, that is, if X C Y. In other words, every item of X is contained
in Y, but there is at least one item of Y that is not in X.

150 Chapter 4 Patter mining: basic concepts and methods

4.2.1 Apriori algorithm: finding frequent itemsets by confined candidate
generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent
itemsets for Boolean association rules [AS94b]. The name of the algorithm is based on the fact that the
algorithm uses prior knowledge of frequent itemset properties, as we shall see later. Apriori employs an
iterative approach known as a level-wise search, where k-itemsets are used to explore (k + 1)-itemsets.
First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each
item, and collecting those items that satisfy minimum support. The resulting set is denoted by L. Next,
L is used to find L, the set of frequent 2-itemsets, which is used to find L3, and so on, until no more
frequent k-itemsets can be found. The finding of each Lj requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an important property
called the Apriori property is used to reduce the search space.

Apriori property: all nonempty subsets of a frequent itemset must also be frequent.

The Apriori property is based on the following observation. By definition, if an itemset / does not
satisfy the minimum support threshold, min_sup, then I is not frequent, that is, P(I) < min_sup. If an
item A is added to the itemset /, then the resulting itemset (i.e., / U A) cannot occur more frequently
than . Therefore I U A is not frequent either, that is, P(I U A) < min_sup.

This property belongs to a special category of properties called antimonotonicity in the sense that
if a set cannot pass a test, all of its supersets will fail the same test as well. It is called antimonotonicity
because the property is monotonic in the context of failing a test.

“How is the Apriori property used in the algorithm?” To understand this, let us look at how L;_1
is used to find Ly for k > 2. A two-step process is followed, consisting of join and prune actions.

1. The join step. To find Ly, a set of candidate k-itemsets is generated by joining Li_; with itself.
This set of candidates is denoted Cy. Let /] and I, be itemsets in Li—_1. The notation /;[j] refers to the
jthitemin/; (e.g., [1[k — 2] refers to the second to the last item in /1). For efficient implementation,
Apriori assumes that items within a transaction or itemset are sorted in lexicographic order. For
the (k — 1)-itemset, /;, this means that the items are sorted such that [;[1] < [;[2] < --- < [;[k — 1].
The join, Lg_1 X Lj_1, is performed, where members of Li_1 are joinable if their first (k — 2)
items are in common. That is, members /; and Iy of Lix_1 are joined if (/1[1] =0L[1]) A ((1[2] =
LR A Ak —2] =1k —2]) A(li[k — 1] <[k — 1]). The condition /1[k — 1] < [k — 1]
simply ensures that no duplicates are generated. The resulting itemset formed by joining /; and [; is
{Ll1], 4L12), ..., ik = 2], L[k — 1], L[k — 1]}

2. The prune step. Cy is a superset of Ly, that is, its members may or may not be frequent, but all of
the frequent k-itemsets are included in C. A database scan to determine the count of each candidate
in Cy would result in the determination of Ly (i.e., all candidates having a count no less than the
minimum support count are frequent by definition and therefore belong to Ly). Cy, however, can be
huge, and so this could involve heavy computation. To reduce the size of Cy, the Apriori property is
used as follows. Any (k — 1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.
Hence, if any (k — 1)-subset of a candidate k-itemset is not in Lk_1, then the candidate cannot
be frequent either and so can be removed from Ci. This subset testing can be done quickly by
maintaining a hash tree of all frequent itemsets.

4.2 Frequent itemset mining methods 151

Example 4.3. Apriori. Let’s look at a concrete example, based on the transaction database, D, of
Table 4.1. There are nine transactions in this database, that is, | D| = 9. We use Fig. 4.2 to illustrate the
Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets, Cj.
The algorithm simply scans all of the transactions to count the number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min_sup = 2. (Here, we are referring
to absolute support because we are using a support count. The corresponding relative support is
2/9 =22%.) The set of frequent 1-itemsets, L1, can then be determined. It consists of the candidate
1-itemsets satisfying minimum support. In our example, all of the candidates in C; satisfy minimum
support.

3. To discover the set of frequent 2-itemsets, L, the algorithm uses the join L; X L to generate
a candidate set of 2-itemsets, C5.° C» consists of ('LQ") 2-itemsets. Note that no candidates are
removed from C, during the prune step because each subset of the candidates is also frequent.

4. Next, the transactions in D are scanned and the support count of each candidate itemset in C» is
accumulated, as shown in the middle table of the second row in Fig. 4.2.

5. The set of frequent 2-itemsets, Ly, is then determined, consisting of those candidate 2-itemsets in
C»> having minimum support.

6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Fig. 4.3. From the join step,
we first get C3 = Ly x Ly = {{I1, 12, 13}, {I1, 12, IS}, {11, I3, I5}, {12, I3, 14}, {12, I3, IS}, {12, I4,
I5}}. Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we
can determine that the four latter candidates cannot possibly be frequent. We therefore remove them
from Cj3, thereby saving the effort of unnecessarily obtaining their counts during the subsequent
scan of D to determine L3. Note that when given a candidate k-itemset, we only need to check if
its (k — 1)-subsets are frequent since the Apriori algorithm uses a level-wise search strategy. The
resulting pruned version of C3 is shown in the first table of the bottom row of Fig. 4.2.

7. The transactions in D are scanned to determine L3, consisting of those candidate 3-itemsets in C3
having minimum support (Fig. 4.2).

Table 4.1 A transac-
tional data set.

TID List of item_IDs
T100 11,12, 15

T200 12,14

T300 12,13

T400 11,12, 14

T500 11,13

T600 12,13

T700 11,13

T800 11,12,13,15
T900 11,12, 13

6 Ly » L is equivalent to L1 x L1, since the definition of Ly X Ly requires the two joining itemsets to share k — 1 = 0 items.

152

Chapter 4 Patter mining: basic concepts and methods

G L
Scan D for Ttemset | Sup. count | Compare candidgte Itemset | Sup. count
count of each (11} 6 support count with (11} 6
candidate (12} 7 minimum support (12} 7
5 | {13} 6 count {13} 6
(14} 2 > | (14} 2
(15} 2 {15} 2
Generate C, G G) Ly
candidates |Itemset | ¢ ¢ |Itemset| Sup. count Compare candidate | Itemset | Sup. count
from L, L 121 | count of each | 01 12) 4 support count with [{T1, 12} 4
—— [{ILB} | ndidate | (1113} 4 minimum support | {11, I3} 4
(I, 14y | — y |{I1,14} 1 count {11, 15} 2
{I1, I5} {11, 15} 2 > {12, 13} 4
{12, 13} {12, 13} 4 {12, 14} 2
{12, 14} {12, 14} 2 {12, 15} 2
{12, I5} {12, 15} 2
{I3,14} {13, 14} 0
{13, I5} {13, 15} 1
(14,15} (14,15} 0
C; (o Compare candidate L,
Generate C;| Itemset | Scan D for | Itemset |[Sup. count support count Mfemgeet |Sup. count
candidates |{I1, 12, 13} | count of each [{I1, 12, 13} 2 with minimum e T3y 2
from L, candidate support count
— {11, 12, I5} | — > | {11, 12, IS} 2 — {11, 12, I5} 2
FIGURE 4.2

Generation of the candidate itemsets and frequent itemsets, where the minimum support count is 2.

8. The algorithm uses L3 & L3 to generate a candidate set of 4-itemsets, C4. Although the join results
in {{I1, 12, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset {12, I3, I5} is not frequent.
Thus, C4 = ¢, and the algorithm terminates, having found all of the frequent itemsets.

Fig. 4.4 shows pseudocode for the Apriori algorithm and its related procedures. Step 1 of Apriori
finds the frequent 1-itemsets, L. In steps 2 through 10, L;_; is used to generate candidates Cy to find
Ly for k > 2. The apriori_gen procedure generates the candidates and then uses the Apriori property
to eliminate those having a subset that is not frequent (step 3). Once all of the candidates have been
generated, the database is scanned (step 4). For each transaction, a subset function is used to find all
subsets of the transaction that are candidates (step 5), and the count for each of these candidates is
accumulated (steps 6 and 7). Finally, all the candidates satisfying the minimum support (step 9) form
the set of frequent itemsets, L (step 11). A procedure can then be called to generate association rules

from the frequent itemsets. Such a procedure is described in Section 4.2.2.

4.2 Frequent itemset mining methods 153

a. Join: C3=Ly ™ Ly={{I1,12},{11,13},{I1,15},{12,13},{12,14},{12,15}}
({11, 12}, {I1,13},{11,15},{12,13},{I2,14},{12,15}}
={I1,12,13},{11,12,15},{11,13,15},{I12,13,14},{12,13,15},{12,14,15}}.
b. Prune using the Apriori property: all nonempty subsets of a frequent itemset must also be frequent. Do any of the candidates
have a subset that is not frequent?

® The 2-item subsets of {I1, 12, I3} are {I1, 12}, {I1, I3}, and {12, I3}. All 2-item subsets of {I1, I2, I3} are members of
L,. Therefore, keep {I1, 12, I3} in C3.

® The 2-item subsets of {I1, 12, IS} are {I1, 12}, {I1, IS5}, and {12, I5}. All 2-item subsets of {I1, I2, IS} are members of
L,. Therefore, keep {I1, 12, I5} in C3.

® The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, IS5}, and {13, I5}. {I3, I5} is not a member of L;, and so it is not
frequent. Therefore, remove {I1, I3, I5} from Cs3.

® The 2-item subsets of {12, I3, 14} are {12, I3}, {12, 14}, and {13, I4}. {I3, I4} is not a member of L7, and so it is not
frequent. Therefore, remove {12, I3, I4} from Cs3.

® The 2-item subsets of {12, I3, I5} are {12, I3}, {12, IS5}, and {13, I5}. {I3, I5} is not a member of L;, and so it is not
frequent. Therefore, remove {12, I3, I5} from Cs.

® The 2-item subsets of {12, I4, I5} are {12, 14}, {12, IS5}, and {14, I5}. {14, I5} is not a member of L7, and so it is not
frequent. Therefore, remove {12, 14, I5} from C3.

c. Therefore, C3 = {{I1, 12,13}, {I1, 12, I5}} after pruning.

FIGURE 4.3

Generation and pruning of candidate 3-itemsets, C3, from L, using the Apriori property.

The apriori_gen procedure performs two kinds of actions, namely, join and prune, as described
before. In the join component, L;_ is joined with Li_; to generate potential candidates (steps 1-4).
The prune component (steps 5—7) employs the Apriori property to remove candidates that have a subset
that is not frequent. The test for infrequent subsets is shown in procedure has_infrequent_subset.

4.2.2 Generating association rules from frequent itemsets

Once the frequent itemsets from transactions in a database D have been found, it is straightforward
to generate strong association rules from them (where strong association rules satisfy both minimum
support and minimum confidence). This can be done using Eq. (4.4) for confidence, which we show
again here for completeness:

support_count (A U B)
confidence (A = B) = P(B|A) =

support_count (A)

The conditional probability is expressed in terms of itemset support count, where
support_count(AU B) is the number of transactions containing the itemsets AU B, and
support_count(A) is the number of transactions containing the itemset A. Based on this equation,
association rules can be generated as follows.

* For each frequent itemset /, generate all nonempty subsets of /.
* For every nonempty subset s of /, output the rule “s = (I —s)” if
min_conf is the minimum confidence threshold.

support_count(l)

<
support_count(s) — mln_conf, where

154 Chapter 4 Patter mining: basic concepts and methods

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

Input:

® D, adatabase of transactions;
® min_sup, the minimum support count threshold.

Output: L, frequent itemsets in D.
Method:

(1) L =find_frequent_1-itemsets(D);
(2) for (k=2;Lp_1 #¢;k++) {

3) Cy, = apriori_gen(Ly_1);

4) for each transaction ¢t € D { // scan D for counts

5) C; = subset(Cy, t); // get the subsets of ¢ that are candidates
6) for each candidate ¢ € C;

@] c.count++;

(®) }

©) Ly = {c € Cy|c.count > min_sup}

10y }

(11) return L =UiLy;

procedure apriori_gen(Ly_1:frequent (k — 1)-itemsets)
(1) for each itemset [y € L;_

2) for each itemset /» € L;_
3) if (41 = L1 A (41121 = h[2)
A ATk =21 =1k —2]) A (I1[k — 1] < I3[k — 1]) then {
“) ¢ =1y X Ip; // join step: generate candidates
5) if has_infrequent_subset(c, L;_1) then
6) delete c; // prune step: remove unfruitful candidate
@) else add c to Cy;
® }

O return Cy;

procedure has_infrequent_subset(c: candidate k-itemset;
Ly _1: frequent (k — 1)-itemsets); // use prior knowledge
D for each (k — 1)-subset s of ¢
?2) if s ¢ Ly then
3) return TRUE;
4) return FALSE;

FIGURE 4.4

Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

Because the rules are generated from frequent itemsets, each one automatically satisfies the mini-
mum support. Frequent itemsets can be stored ahead of time in hash tables along with their counts so
that they can be accessed quickly.

Example 4.4. Generating association rules. Let’s try an example based on the transactional data
shown before in Table 4.1. The data contain frequent itemset X = {I1, 12, I5}. What are the association
rules that can be generated from X ? The nonempty subsets of X are {I1, 12}, {I1, I5}, {12, IS}, {I1},
{I2}, and {IS5}. The resulting association rules are as shown below, each listed with its confidence:

4.2 Frequent itemset mining methods 155

{I1,12} =15, confidence =2/4 =50%
{I1,15} = 12, confidence =2/2 =100%
{12,158} = 11, confidence =2/2 = 100%
11 = {I2,15}, confidence =2/6 =33%
2= {I1,15}, confidence =2/7=29%
I5={I1,12}, confidence =2/2=100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and last rules are
output, because these are the only ones generated that are strong. Note that, unlike conventional classi-
fication rules, association rules can contain more than one conjunct in the right side of the rule. O

4.2.3 Improving the efficiency of Apriori

“How can we further improve the efficiency of Apriori-based mining?” Many variations of the Apriori
algorithm have been proposed that focus on improving the efficiency of the original algorithm. Several
of these variations are summarized as follows.

Hash-based technique (hashing itemsets into corresponding buckets). A hash-based technique can
be used to reduce the size of the candidate k-itemsets, Cy, for k > 1. For example, when scanning
each transaction (e.g., let t = {i1, i2, i4}) in the database to generate the frequent 1-itemsets, L1, we
can generate all the 2-itemsets for each transaction (e.g., three 2-itemsets {i1, i2}, {i1, i1}, and {i, i}
for transaction ¢), hash (i.e., map) them into the different buckets of a hash table structure, and
increase the corresponding bucket counts as shown in Fig. 4.5. A 2-itemset with a corresponding
bucket count in the hash table that is below the support threshold cannot be frequent and thus
should be removed from the candidate set. Such a hash-based technique may substantially reduce
the number of candidate k-itemsets examined (especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in future iterations). A trans-
action that does not contain any frequent k-itemsets cannot contain any frequent (k + 1)-itemsets.
Therefore such a transaction can be marked or removed from further consideration because subse-
quent database scans for j-itemsets, where j > k, will not need to consider such a transaction.

H,

[bucket address || 0 1 2 3 4 5 6 |

Create hash table H, bucket count 2 2
using hash function bucket contents ||{I1, I4}|{I1, IS} {12, I3}{{12, I4}|{12, IS}|{I1, I2}|{I1, I3}
h(x, y) = ((order of x) X 10 {13, IS} {11, I} ({12, I3} ({12, 14} {12, IS }|{11, 12 }|{I1, 13}
+ (order of y)) mod 7 {12, 13} {11, 12} {11, 13}
- (12,13} {I1, 12} |{I1, I3}

FIGURE 4.5

Hash table, H;, for candidate 2-itemsets. This hash table was generated by scanning Table 4.1’s transactions while
determining L. If the minimum support count is, say, 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be fre-
quent and so they should not be included in Cj.

156 Chapter 4 Patter mining: basic concepts and methods

Phase I

T

Phase 11
) Divide D Find the Combine Find global Frequent
Transactions into n frequent all local frequent b 5(jtemsets

inD partitions itemsets frequent itemsets inD
local to each itemsets among
partition to form candidates
(1 scan) candidate (1 scan)
itemset
—

FIGURE 4.6
Mining by partitioning the data.

Partitioning (partitioning the data to find candidate itemsets). A partitioning technique can be used
that requires just two database scans to mine the frequent itemsets (Fig. 4.6). It consists of two
phases. In phase I, the algorithm divides the transactions of D into n nonoverlapping partitions.
If the minimum relative support threshold for transactions in D is min_sup, then the minimum
support count for a partition is min_sup X the number of transactions in that partition. For each
partition, all the local frequent itemsets (i.e., the itemsets frequent within the partition) are found.
A local frequent itemset may or may not be frequent with respect to the entire database, D. How-
ever, any itemset that is potentially frequent with respect to D must occur as a frequent itemset
in at least one of the partitions.” Therefore all local frequent itemsets are candidate itemsets with
respect to D. The collection of frequent itemsets from all partitions forms the global candidate
itemsets with respect to D. In phase II, a second scan of D is conducted in which the actual support
of each candidate is assessed to determine the global frequent itemsets. Partition size and the num-
ber of partitions are set so that each partition can fit into main memory and therefore be read only
once in each phase.

Sampling (mining on a subset of the given data). The basic idea of the sampling approach is to pick
a random sample S of the given data D, and then search for frequent itemsets in S instead of D.
In this way, we trade off some degree of accuracy against efficiency. The S sample size is such
that the search for frequent itemsets in S can be done in main memory, and so only one scan of
the transactions in S is required overall. Because we are searching for frequent itemsets in S rather
than in D, it is possible that we will miss some of the global frequent itemsets.

To reduce this possibility, we use a lower support threshold than the minimum support to find the
frequent itemsets local to S (denoted Lg). The rest of the database is then used to compute the
actual frequencies of each itemset in Lg. A mechanism is used to determine whether all the global
frequent itemsets are included in Lg. If Lg actually contains all the frequent itemsets in D, then
only one scan of D is required. Otherwise, a second pass can be done to find the frequent itemsets
that were missed in the first pass. The sampling approach is especially beneficial when efficiency is
of utmost importance such as in computationally intensive applications that must be run frequently.

7 The proof of this property is left as an exercise (see Exercise 4.3d).

4.2 Frequent itemset mining methods 157

Dynamic itemset counting (adding candidate itemsets at different points during a scan). A dynamic
itemset counting technique is proposed in which the database is partitioned into blocks marked
by start points. In this variation, new candidate itemsets can be added at any start point, unlike
in Apriori, which determines new candidate itemsets only after each complete database scan. The
technique uses the count-so-far as the lower bound of the actual count. If the count-so-far passes
the minimum support, the itemset is added into the frequent itemset collection and can be used to
generate longer candidates. This leads to fewer database scans than with Apriori for finding all the
frequent itemsets.

Other variations are discussed in the next chapter or left as exercises.

4.2.4 A pattern-growth approach for mining frequent itemsets

As we have seen, in many cases the Apriori candidate generate-and-test method significantly reduces
the size of candidate sets, leading to good performance gain. However, it can suffer from two nontrivial
costs.

« It may still need to generate a huge number of candidate sets. For example, if there are 10* frequent
1-itemsets, the Apriori algorithm will need to generate more than 10 candidate 2-itemsets.

* It may need to repeatedly scan the whole database and check a large set of candidates by pattern
matching. It is costly to go over each transaction in the database to determine the support of the
candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets without such a costly can-
didate generation process?” An interesting method in this attempt is called frequent pattern growth,
or simply FP-growth, which adopts a divide-and-conquer strategy as follows. First, it compresses the
database representing frequent items into a frequent pattern tree, or FP-tree, which retains the itemset
association information. It then divides the compressed database into a set of conditional databases (a
special kind of projected database), each associated with one itemset found so far, or “pattern fragment,”
and mines each database separately. For each “pattern fragment,” only its associated data sets need to
be examined. Therefore this approach may substantially reduce the size of the data sets to be searched,
along with the “growth” of patterns being examined. You will see how it works in Example 4.5.

Example 4.5. FP-growth (finding frequent itemsets without candidate generation). We reexamine
the mining of transaction database, D, of Table 4.1 in Example 4.3 using the frequent pattern growth
approach.

The first scan of the database is the same as Apriori, which derives the set of frequent items (1-
itemsets) and their support counts (frequencies). Let the minimum support count be 2. The set of
frequent items is sorted in the order of descending support count. This resulting set or /ist is denoted by
L. Thus, we have L = {{12: 7}, {11: 6}, {I3: 6}, {14: 2}, {I5: 2} }.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with “null.” Scan
database D a second time. The items in each transaction are processed in L order (i.e., sorted according
to descending support count), and a branch is created for each transaction. For example, the scan of
the first transaction, “T100: 11, 12, I5,” which contains three items (I2, I1, I5 in L order), leads to the
construction of the first branch of the tree with three nodes, (I2: 1), (I1: 1), and (I5: 1), where 12 is
linked as a child to the root, I1 is linked to 12, and IS is linked to I1. The second transaction, T200,

158 Chapter 4 Patter mining: basic concepts and methods

Support
ItemID “*™™ Node-link -
P S
2174 -
116} --f---="""""
Bi6: -~
442
5121 e

FIGURE 4.7

An FP-tree registers compressed frequent pattern information.

contains the items 12 and 14 in L order, which would result in a branch where 12 is linked to the root
and 14 is linked to I2. However, this branch would share a common prefix, 12, with the existing path
for T100. Therefore, we instead increment the count of the 12 node by 1, and create a new node, (I4:
1), which is linked as a child to (I2: 2). In general, when considering the branch to be added for a
transaction, the count of each node along a common prefix is incremented by 1, and nodes for the items
following the prefix are created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its occurrences
in the tree via a chain of node-links. The tree obtained after scanning all the transactions is shown in
Fig. 4.7 with the associated node-links. In this way, the problem of mining frequent patterns in databases
is transformed into that of mining the FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an initial suffix
pattern), construct its conditional pattern base (a “subdatabase,” which consists of the set of prefix
paths in the FP-tree cooccurring with the suffix pattern), then construct its (conditional) FP-tree, and
perform mining recursively on the tree. The pattern growth is achieved by the concatenation of the
suffix pattern with the frequent patterns generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 4.2 and detailed as follows.

* We first consider IS5, which is the last item in L, rather than the first. The reason for starting at the
end of the list will become apparent as we explain the FP-tree mining process. 15 occurs in two
FP-tree branches of Fig. 4.7. (The occurrences of I5 can easily be found by following its chain of
node-links.) The paths formed by these branches are (12, I1, I5: 1) and (12, I1, I3, I5: 1). Therefore,
considering I5 as a suffix, its corresponding two prefix paths are (12, I1: 1) and (I2, I1, I3: 1), which
form its conditional pattern base. Using this conditional pattern base as a transaction database, we
build an I5-conditional FP-tree, which contains only a single path, (I2: 2, I1: 2); I3 is not included
because its support count of 1 is less than the minimum support count. The single path generates all
the combinations of frequent patterns: {12, I5: 2}, {I1, I5: 2}, {12, I1, I5: 2}.

4.2 Frequent itemset mining methods 159

Table 4.2 Mining the FP-tree by creating conditional (sub-)pattern bases.

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated

15 ({2,111}, {12, 11, 13: 1}} (12:2,11: 2) (12, 15: 23, {11, 15: 2}, {12, 11, 15: 2}
4 ({12,111}, {12: 1)} (12: 2) (12, 14: 2}
3 {{I2,11:2), {12: 2}, {11:2}} (I2:4,11:2), (I1:2) {12, 13: 4}, {I1,13: 4}, {I2, 11, I3: 2}
1l ({12: 41} (12: 4) (12, 11: 4}

Algorithm: FP_growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

® D, atransaction database;
® min_sup, the minimum support count threshold.

Output: The complete set of frequent patterns.
Method:

1. The FP-tree is constructed in the following steps:
a. Scan the transaction database D once. Collect F, the set of frequent items, and their support counts. Sort F' in support
count descending order as L, the list of frequent items.
b. Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the following.
Select and sort the frequent items in Trans according to the order of L. Let the sorted frequent item list in Trans be
[p|P], where p is the first element and P is the remaining list. Call insert_tree([p|P], T), which is performed as
follows. If T has a child N such that N.item-name = p.item-name, then increment N’s count by 1; else create a new
node N, and let its count be 1, its parent link be linked to 7', and its node-link to the nodes with the same item-name via
the node-link structure. If P is nonempty, call insert_tree(P, N) recursively.
2. The FP-tree is mined by calling FP_growth(FP_tree, null), which is implemented as follows.

procedure FP_growth(Tree, a)
(1) if Tree contains a single path P then

2) for each combination (denoted as $) of the nodes in the path P

3) generate pattern 8 U « with support_count = minimum support count of nodes in f3;
(4) else for each g; in the header of T'ree {

) generate pattern 8 = a; U o with support_count = a; .support_count;

©6) construct B’s conditional pattern base and then 8’s conditional FP_tree Treeg;

@) if Treeg # () then

8) call FP_growth(Treeg, B); }

FIGURE 4.8

FP-growth algorithm for discovering frequent itemsets without candidate generation.

» For 14, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}}, which generates
a single-node conditional FP-tree, (I2: 2), and derives one frequent pattern, {12, 14: 2}.

» Similar to the preceding analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2}, {I1: 2}}. Its
conditional FP-tree has two branches, (12: 4, I1: 2) and (I1: 2), as shown in Fig. 4.9, which generates
the set of patterns { {12, 13: 4}, {I1, I3: 4}, {12, I1, 13: 2} }.

* Finally, I1’s conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one node,
(I2: 4), which generates one frequent pattern, {12, I1: 4}.

This mining process is summarized in Fig. 4.8. O

160 Chapter 4 Patter mining: basic concepts and methods

Support

count
Item ID) No,de—link null{}

~
N

A
12

I1

I N
,
\
T
.
H
.
H
H
=
(]

FIGURE 4.9

The conditional FP-tree associated with the conditional node I3.

The FP-growth method transforms the problem of finding long frequent patterns into searching for
shorter ones in much smaller conditional databases recursively and then concatenating the suffix. It
uses the least frequent items as a suffix, offering good selectivity. The method substantially reduces the
search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-based FP-tree.
An interesting alternative is to first partition the database into a set of projected databases and then
construct an FP-tree and mine it in each projected database. This process can be recursively applied to
any projected database if its FP-tree still cannot fit in main memory.

4.2.5 Mining frequent itemsets using the vertical data format

Both the Apriori and FP-growth methods mine frequent patterns from a set of transactions in 77/D-
itemset format (i.e., {TID :itemset}), where TID is a transaction ID and itemset is the set of items
bought in transaction 77D. This is known as the horizontal data format. Alternatively, data can be
presented in item-TID_set format (i.e., {item : T I D_set}), where ifem is an item name, and TID_set is
the set of transaction identifiers containing the item. This is known as the vertical data format.

In this subsection, we look at how frequent itemsets can also be mined efficiently using vertical data
format, which is the essence of the Eclat (Equivalence Class Transformation) algorithm.

Example 4.6. Mining frequent itemsets using the vertical data format. Consider the horizontal data
format of the transaction database, D, of Table 4.1 in Example 4.3. This can be transformed into the
vertical data format shown in Table 4.3 by scanning the data set once.

Table 4.3 The vertical data format of the trans-
action data set D of Table 4.1.

itemset TID_set

11 {T100, T400, T500, T700, T800, T900}

2 {T100, T200, T300, T400, T600, T800, T900}
13 {T300, TS00, T600, T700, T800, T900}

4 {T200, T400}

15 {T100, TS00}

4.2 Frequent itemset mining methods 161

Table 4.4 2-Itemsets in vertical
data format.

itemset TID_set

{I1,12} {T100, T400, T800, T90O}
(11,13} {T500, T700, T800, T900}
(I, 14} {T400}

(11,15} {T100, T800}

(12,13} {T300, T600, T80, T900}
(12,14} {T200, T400}

(12,15} {T100, T800}

(13,15} {T800}

Table 4.5 3-Itemsets in
vertical data format.
itemset TID_set
(11,12, 13} {T800, T900}
{I1,12, 15} {T100, T800}

Mining can be performed on this data set by intersecting the TID_sets of every pair of frequent
single items. The minimum support count is 2. Because every single item is frequent in Table 4.3, there
are 10 intersections performed in total, which lead to eight nonempty 2-itemsets, as shown in Table 4.4.
Notice that because the itemsets {I1, I4} and {I3, I5} each contain only one transaction, they do not
belong to the set of frequent 2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every one of its
2-itemset subsets is frequent. The candidate generation process here will generate only two 3-itemsets:
{I1,12, I3} and {I1, 12, I5}. By intersecting the TID_sets of any two corresponding 2-itemsets of these
candidate 3-itemsets, it derives Table 4.5, where there are only two frequent 3-itemsets: {I1, 12, 13: 2}
and {I1, 12, I5: 2}. O

Example 4.6 illustrates the process of mining frequent itemsets by exploring the vertical data format.
First, we transform the horizontally formatted data into the vertical format by scanning the data set
once. The support count of an itemset is simply the length of the TID_set of the itemset. Starting with
k =1, the frequent k-itemsets can be used to construct the candidate (k + 1)-itemsets based on the
Apriori property. The computation is done by intersection of the TID_sets of the frequent k-itemsets to
compute the TID_sets of the corresponding (k + 1)-itemsets. This process repeats, with k incremented
by 1 each time, until no frequent itemsets or candidate itemsets can be found.

Besides taking advantage of the Apriori property in the generation of candidate (k 4 1)-itemset
from frequent k-itemsets, another merit of this method is that there is no need to scan the database to
find the support of (k + 1)-itemsets (for k£ > 1). This is because the TID_set of each k-itemset carries
the complete information required for counting such support. However, the TID_sets can be quite long,
taking substantial memory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID_sets, as well as the subsequent costs of intersec-
tions, we can use a technique called diffset, which keeps track of only the differences of the TID_sets of

162 Chapter 4 Patter mining: basic concepts and methods

a (k + 1)-itemset and a corresponding k-itemset. For instance, in Example 4.6 we have {I1} = {T100,
T400, T500, T700, T800, T900} and {I1, 12} = {T100, T400, T800, T900}. The diffset between the
two is diffset({I1, 12}, {I1}) = {T500, T700}. Thus rather than recording the four TIDs that make up
the intersection of {I1} and {I2}, we can instead use diffset to record just two TIDs, indicating the
difference between {I1} and {I1, I2}. With such compressed bookkeeping, itemset frequency can still
be calculated correctly. Experiments show that in certain situations, such as when the data set contains
many dense and long patterns, this technique can substantially reduce the total cost of vertical format
mining of frequent itemsets.

4.2.6 Mining closed and max patterns

In Section 4.1.2 we saw how frequent itemset mining may generate a huge number of frequent itemsets,
especially when the min_sup threshold is set low or when there exist long patterns in the data set.
Example 4.2 showed that closed frequent itemsets® can substantially reduce the number of patterns
generated in frequent itemset mining while preserving the complete information regarding the set of
frequent itemsets. That is, from the set of closed frequent itemsets, we can easily derive the set of
frequent itemsets and their support. Thus in practice, it is more desirable to mine the set of closed
frequent itemsets rather than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A naive approach would be to first mine the complete
set of frequent itemsets and then remove every frequent itemset that is a proper subset of, and carries the
same support as, an existing frequent itemset. However, this is quite costly. As shown in Example 4.2,
this method would have to first derive 2!%° — 1 frequent itemsets to obtain a length-100 frequent itemset,
all before it could begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there
exist only a very small number of closed frequent itemsets in Example 4.2’s data set.

A recommended methodology is to prune the search space as soon as we can identify the case of
closed itemsets during mining. For example, an itemset merging method is introduced as follows.

Itemset merging. If every transaction containing a frequent itemset X also contains an itemset Y but
not any proper superset of Y, then X UY forms a frequent closed itemset and there is no need to
search for any itemset containing X butno'Y.

For example, in Table 4.2 of Example 4.5, the projected conditional database for prefix itemset
{15:2} is {{I2, 11}, {12, 11, I3}}, from which we can see that each of its transactions contains
itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2, I1} can be merged with {IS} to
form the closed itemset {I5, 12, I1: 2}, and we do not need to mine for closed itemsets that contain
I5 but not {12, I1}.

Many search space pruning and closure checking methods have been developed for mining frequent
closed itemsets. Moreover, because maximal frequent itemsets share many similarities with closed
frequent itemsets, many of the optimization techniques developed for mining closed itemset can be
extended to mining maximal frequent itemsets. Interested readers may like to dig deeper by studying
related research papers.

8 Remember that X is a closed frequent itemset in a data set S if there exists no proper superitemset ¥ such that Y has the same
support count as X in S, and X satisfies minimum support.

4.3 Which patterns are interesting?—~Pattern evaluation methods 163

4.3 Which patterns are interesting?—Pattern evaluation methods

Most association rule mining algorithms employ a support—confidence framework. Although minimum
support and confidence thresholds kelp weed out or exclude the exploration of a good number of unin-
teresting rules, many of the rules generated are still not interesting to many users. This is especially true
when mining at low support thresholds or mining for long patterns. This has been a major bottleneck
for successful application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting and mis-
leading (Section 4.3.1). We then discuss how the support—confidence framework can be supplemented
with additional interestingness measures based on correlation analysis (Section 4.3.2). Section 4.3.3
presents additional pattern evaluation measures. It then provides an overall comparison of all the mea-
sures discussed here. By the end, you will learn which pattern evaluation measures are most effective
for the discovery of only interesting rules.

4.3.1 Strong rules are not necessarily interesting

The interestingness of a rule can be assessed either subjectively or objectively. Ultimately, only the user
can judge if a given rule is interesting, and this judgment, being subjective, may differ from one user to
another. However, objective interestingness measures, based on the statistics “behind” the data, can be
used as one step toward the goal of weeding out uninteresting rules that would otherwise be presented
to the user.

“How can we tell which strong association rules are really interesting?” Let’s examine the follow-
ing example.

Example 4.7. A misleading “‘strong” association rule. Suppose we are interested in analyzing trans-
actions with respect to the purchase of computer games and videos. Let game refer to the transactions
containing computer games, and video refer to those containing videos. Of the 10,000 transactions an-
alyzed, the data show that 6000 of the customer transactions included computer games, whereas 7500
included videos, and 4000 included both computer games and videos. Suppose that a data mining pro-
gram for discovering association rules is run on the data, using a minimum support of, say, 30% and a
minimum confidence of 60%. The following association rule is discovered:

buys (X, “computer games”) = buys (X, “videos™)
[support =40%, confidence = 66%]. 4.6)

Rule (4.6) is a strong association rule and would therefore be reported, since its support value of
1‘(‘)?880 =40% and confidence value of % = 66% satisfy the minimum support and minimum confi-
dence thresholds, respectively. However, Rule (4.6) is misleading because the probability of purchasing
videos is 75%, which is even larger than 66%. In fact, computer games and videos are negatively as-
sociated because the purchase of one of these items actually decreases the likelihood of purchasing the
other. Without fully understanding this phenomenon, we could easily make unwise business decisions

based on Rule (4.6). O

Example 4.7 also illustrates that the confidence of a rule A = B can be deceiving. It does not mea-
sure the real strength (or lack of strength) of the correlation and implication between A and B. Hence,
alternatives to the support—confidence framework can be useful in mining interesting data relationships.

164 Chapter 4 Patter mining: basic concepts and methods

4.3.2 From association analysis to correlation analysis

As we have seen so far, the support and confidence measures are insufficient at filtering out uninteresting
association rules. To tackle this weakness, a correlation measure can be augmented to the support—
confidence framework for association rules. This leads to correlation rules of the form

A = B [support, confidence, correlation)]. 4.7

That is, a correlation rule is measured not only by its support and confidence but also by the correlation
between itemsets A and B. There are many different correlation measures for us to choose. In this
subsection, we study several correlation measures to determine which would be good for mining large
data sets.

Lift is a simple correlation measure that is given as follows. The occurrence of itemset A is inde-
pendent of the occurrence of itemset B if P(A U B) = P(A)P(B); otherwise, itemsets A and B are
dependent and correlated. This definition can easily be extended to more than two itemsets. The lift
between the occurrence of A and B can be measured by computing

P(AU B)

(4.8)
If the resulting value of Eq. (4.8) is less than 1, then the occurrence of A is negatively correlated
with the occurrence of B, meaning that the occurrence of one likely leads to the absence of the other
one. If the resulting value is greater than 1, then A and B are positively correlated, meaning that the
occurrence of one implies the occurrence of the other. If the resulting value is equal to 1, then A and B
are independent, and there is no correlation between them.

Eq. (4.8) is equivalent to P(B|A)/P(B), or conf(A = B)/P(B), which is also referred to as the
lift of the association (or correlation) rule A = B. In other words, it assesses the degree to which the
occurrence of one “lifts” the occurrence of the other. For example, if A corresponds to the sale of
computer games and B corresponds to the sale of videos, then given the current market conditions, the
sale of games is said to increase or “lift” the likelihood of the sale of videos by a factor of the value
returned by Eq. (4.8).

Let’s go back to the computer game and video data of Example 4.7.

Example 4.8. Correlation analysis using lift. To help filter out misleading “strong” associations of
the form A = B from the data of Example 4.7, we need to study how the two itemsets, A and B, are
correlated. Let game refer to the transactions of Example 4.7 that do not contain computer games, and
video refer to those that do not contain videos. The transactions can be summarized in a contingency
table, as shown in Table 4.6.

From the table, we can see that the probability of purchasing a computer game is P ({game}) = 0.60,
the probability of purchasing a video is P ({video}) = 0.75, and the probability of purchasing both is
P({game,video}) = 0.40. By Eq. (4.8), the lift of Rule (4.6) is P({game, video})/(P({game}) x
P ({video})) =0.40/(0.60 x 0.75) = 0.89. Because this value is less than 1, there is a negative corre-
lation between the occurrence of {game} and {video}. The numerator is the likelihood of a customer
purchasing both, whereas the denominator is what the likelihood would have been if the two purchases
were completely independent. Such a negative correlation cannot be identified by a support—confidence
framework. O

4.3 Which patterns are interesting?—~Pattern evaluation methods 165

Table 4.6 2 x 2 contingency
table summarizing the trans-
actions with respect to game
and video purchases.
game game Y.,y

video 4000 3500 7500
video 2000 500 2500
ol 6000 4000 10,000

Table 4.7 Table 4.6 contingency table,
now with the expected values.

game game Zrow
video 4000 (4500) 3500 (3000) 7500
video 2000 (1500) 500 (1000) 2500
Yol 6000 4000 10,000

The second correlation measure that we study is the x> measure, which was introduced in Chapter 3
(Eq. (3.1)). To compute the x 2 value, we take the squared difference between the observed and expected
value for a slot (A and B pair) in the contingency table, divided by the expected value. This amount is
summed for all slots of the contingency table. Let’s perform a x 2 analysis of Example 4.8.

Example 4.9. Correlation analysis using x 2. To compute the correlation using x> analysis for nom-
inal data, we need the observed value and expected value (displayed in parenthesis) for each slot of the
contingency table, as shown in Table 4.7. From the table, we can compute the 2 value as follows:

1 (observed — expected)® (4000 —4500)> (3500 — 3000)*

X = expected 4500 3000
(2000 — 1500 (500 —1000)* _ .
1500 1000

Because the X2 value is greater than 1, and the observed value of the slot (game, video) = 4000, which
is less than the expected value of 4500, buying game and buying video are negatively correlated. This
is consistent with the conclusion derived from the analysis of the /ifr measure in Example 4.8. O

4.3.3 A comparison of pattern evaluation measures

The above discussion shows that instead of using the simple support—confidence framework to evaluate
frequent patterns, other measures, such as /ift and x 2, often disclose more intrinsic pattern relationships.
How effective are these measures? Should we also consider other alternatives?

Researchers have studied many pattern evaluation measures even before the start of in-depth re-
search on scalable methods for mining frequent patterns. In the data mining community, several other
pattern evaluation measures have attracted interest. In this subsection, we present four such measures:
all_confidence, max_confidence, Kulczynski, and cosine. Each of these four measures has an interesting
property: the value of each measure is only influenced by the supports of A, B, and A U B, or more

166 Chapter 4 Patter mining: basic concepts and methods

exactly, by the conditional probabilities of P(A|B) and P(B|A), but not by the total number of trans-
actions. Another common property is that each measure ranges from O to 1, and the higher the value,
the closer the relationship between A and B.

Given two itemsets, A and B, the all_confidence measure of A and B is defined as

all_conf(A, By = — SWPAYB) e (pAIB). P(BIA)), 4.9)
max {sup(A), sup(B)}

where max{sup(A), sup(B)} is the maximum support of the itemsets A and B. Thus all_conf(A, B) is
also the minimum confidence of the two association rules related to A and B, namely, “A = B” and
66B i A.77

Given two itemsets, A and B, the max_confidence measure of A and B is defined as
max_conf(A, B) =max{P(A|B), P(B|A)}. 4.10)

The max_conf measure is the maximum confidence of the two association rules, “A = B” and
“B : A.7’

Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as Kulc) is defined
as

Kulc (A, B) = %(P(AIB)+P(B|A)). @11

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be viewed as an average of
two confidence measures. That is, it is the average of two conditional probabilities: the probability of
itemset B given itemset A, and the probability of itemset A given itemset B.

Finally, given two itemsets, A and B, the cosine measure of A and B is defined as

ne (A By— —PAUB) __ __ sup(AUB)
cosine (A, B) = VPA) X P(B) «/sup(A) x sup(B)
=/P(A|B) x P(B|A). (*+12)

The cosine measure can be viewed as a harmonized lift measure. The two formulae are similar except
that for cosine, the square root is taken on the product of the probabilities of A and B. This is an
important difference, however, because by taking the square root, the cosine value is only influenced
by the supports of A, B, and A U B, and not by the total number of transactions.

Now, together with /ift and x2, we have introduced in total six pattern evaluation measures. You
may wonder, “Which is the best in assessing the discovered pattern relationships?” To answer this
question, we examine their performance on some typical data sets.

Example 4.10. Comparison of six pattern evaluation measures on typical data sets. The relation-
ships between the purchases of two items, milk and coffee, can be examined by summarizing their
purchase history in Table 4.8, a 2 x 2 contingency table, where an entry such as mc represents the
number of transactions containing both milk and coffee.

4.3 Which patterns are interesting?—~Pattern evaluation methods 167

Table 4.8 2 x 2 contingency
table for two items.

milk milk Zrop

coffee mc mc c

coffee me¢ mc ¢

Yol m m)
Table 4.9 Comparison of six pattern evaluation measures using contingency tables for
a variety of data sets.
Data Set mc mc mc mc x? lift all_conf. max_conf. Kulc. cosine
D, 10,000 1000 1000 100,000 90,557 9.26 0.1 0.91 091 091
Dy 10,000 1000 1000 100 0 1 091 0.91 091 091
D3 100 1000 1000 100,000 670 8.44 0.09 0.09 0.09 0.09
Dy 1000 1000 1000 100,000 24,740 25.75 0.5 0.5 0.5 0.5
Ds 1000 100 10,000 100,000 8173 9.18 0.09 0.91 0.5 0.29
Deg 1000 10 100,000 100,000 965 197 0.01 0.99 0.5 0.10

Table 4.9 shows a set of transactional data sets with their corresponding contingency tables and the
associated values for each of the six evaluation measures. Let’s first examine the first four data sets,
D1 through D4. From the table, we see that m and c are positively associated in D and D», negatively
associated in D3, and neutral in D4. For D1 and D>, m and c are positively associated because mc
(10,000) is considerably greater than mc (1000) and mc (1000). Intuitively, for people who bought milk
(m =10,000 + 1000 = 11,000), it is very likely that they also bought coffee (mc/m = 10/11 =91%),
and vice versa.

The results of the four newly introduced measures show that m and ¢ are strongly positively associ-
ated in both data sets by producing a measure value of 0.91. However, lift and x> generate dramatically
different measure values for D; and D, due to their sensitivity to mc. In fact, in many real-world sce-
narios, mc is usually huge and unstable. For example, in a market basket database, the total number
of transactions could fluctuate on a daily basis and overwhelmingly exceed the number of transactions
containing any particular itemset. Therefore a good interestingness measure should not be affected by
transactions that do not contain the itemsets of interest; otherwise, it would generate unstable results,
as illustrated in D and D».

Similarly, in D3, the four new measures correctly show that m and c are strongly negatively associ-
ated because the mc to c ratio equals the mc to m ratio, that is, 100/1100 = 9.1%. However, lift and X2
both contradict this in an incorrect way: their values for D, are between those for D1 and Ds.

For data set Dy, both [ift and x? indicate a highly positive association between m and ¢, whereas
the others indicate a “neutral” association because the ratio of mc to mc equals the ratio of mc to mc,
which is 1. This means that if a customer buys coffee (or milk), the probability that he or she will also
purchase milk (or coffee) is exactly 50%. O

“Why are lift and x* so poor at distinguishing pattern association relationships in the previous
transactional data sets?” To answer this, we have to consider the null-transactions. A null-transaction
is a transaction that does not contain any of the itemsets being examined. In our example, mc rep-

168 Chapter 4 Patter mining: basic concepts and methods

resents the number of null-transactions. Lift and x> have difficulty distinguishing interesting pattern
association relationships because they are both strongly influenced by mc. Typically, the number of
null-transactions can outweigh the number of individual purchases because, for example, many people
may buy neither milk nor coffee. On the other hand, the other four measures are good indicators of
interesting pattern associations because their definitions remove the influence of mic (i.e., they are not
influenced by the number of null-transactions).

This discussion shows that it is highly desirable to have a measure that is independent of the
number of null-transactions. A measure is null-invariant if its value is free from the influence of
null-transactions. Null-invariance is an important property for measuring association patterns in large
transaction databases. Among the six discussed measures in this subsection, only /ift and x? are not
null-invariant measures.

“Among the all_confidence, max_confidence, Kulczynski, and cosine measures, which is best at
indicating interesting pattern relationships?”’

To answer this question, we introduce the imbalance ratio (IR), which assesses the imbalance of
two itemsets, A and B, in rule implications. It is defined as

Isup(A) — sup(B)|
sup(A) + sup(B) — sup(AU B)’

IR(A, B) = (4.13)

where the numerator is the absolute value of the difference between the support of the itemsets A
and B, and the denominator is the number of transactions containing A or B. If the two directional
implications between A and B are the same, then I R(A, B) will be zero. Otherwise, the larger the
difference between the two, the larger the imbalance ratio. This ratio is independent of the number of

null-transactions and independent of the total number of transactions.
Let’s continue examining the remaining data sets in Example 4.10.

Example 4.11. Comparing null-invariant measures in pattern evaluation. Although the four mea-
sures introduced in this section are null-invariant, they may present dramatically different values on
some subtly different data sets. Let’s examine data sets Ds and Dg, shown earlier in Table 4.9, where
the two events m and ¢ have unbalanced conditional probabilities. That is, the ratio of mc to c is greater
than 0.9. This means that knowing that ¢ occurs should strongly suggest that m occurs also. The ratio of
mc to m is less than 0.1, indicating that m implies that c is quite unlikely to occur. The all_confidence
and cosine measures view both cases as negatively associated and the Kulc measure views both as neu-
tral. The max_confidence measure claims strong positive associations for these cases. The measures
give very diverse results!

“Which measure intuitively reflects the true relationship between the purchase of milk and cof-
fee?” Actually, in this case, it is difficult to argue whether the two data sets have positive or negative
association. From one point of view, only mc/(mc + mc) = 1000/(1000 4 10,000) = 9.09% of milk-
related transactions contain coffee in Ds, and this percentage is 1000/(1000 4 100,000) = 0.99% in
Dg, both indicating a negative association. On the other hand, 90.9% of transactions in Ds (i.e.,
mc/(mc + mc) = 1000/(1000 4+ 100)) and 9% in D¢ (i.e., 1000/(1000 + 10)) containing coffee con-
tain milk as well, which indicates a positive association between milk and coffee, a very different
conclusion.

In this case, it is fair to treat it as neutral, as Kulc does. In the meantime, it will be good to
also indicate its skewness using the imbalance ratio (IR). According to Eq. (4.13), for D4 we have

4.4 Summary 169

IR(m, c) =0, a perfectly balanced case; for D5, I R(m, c) = 0.89, a rather imbalanced case; whereas
for Dg, I R(m, c¢) = 0.99, a very skewed case. Therefore the two measures, Kulc and I R, work together,
presenting a clear picture for all three data sets, D4 through Dg. O

In summary, the use of only support and confidence measures to mine associations may generate
a large number of rules, many of which can be uninteresting to users. Instead, we can augment the
support—confidence framework with a pattern interestingness measure, which helps focus the mining
toward rules with strong pattern relationships. The added measure substantially reduces the number
of rules generated and leads to the discovery of more meaningful rules. Besides those introduced in
this section, many other interestingness measures have been studied in the literature. Unfortunately,
most of them do not have the null-invariance property. Because large data sets typically have many
null-transactions, it is important to consider the null-invariance property when selecting appropriate
interestingness measures for pattern evaluation. Among the four null-invariant measures studied here,
namely all_confidence, max_confidence, Kulc, and cosine, we recommend using Kulc in conjunction
with the imbalance ratio.

4.4 Summary

» The discovery of frequent patterns, associations, and correlation relationships among huge amounts
of data is useful in selective marketing, decision analysis, and business management. A popular area
of application is market basket analysis, which studies customers’ buying habits by searching for
itemsets that are frequently purchased together (or in sequence).

» Association rule mining consists of first finding frequent itemsets (sets of items, such as A and
B, satisfying a minimum support threshold, or percentage of the task-relevant tuples), from which
strong association rules in the form of A = B are generated. These rules also satisfy a minimum
confidence threshold (a prespecified probability of satisfying B under the condition that A is satis-
fied). Associations can be further analyzed to uncover correlation rules, which convey statistical
correlations between itemsets A and B.

* Many efficient and scalable algorithms have been developed for frequent itemset mining, from
which association and correlation rules can be derived. These algorithms can be classified into three
categories: (1) Apriori-like algorithms, (2) frequent pattern growth—based algorithms such as FP-
growth, and (3) algorithms that use the vertical data format.

» The Apriori algorithm is a seminal algorithm for mining frequent itemsets for Boolean association

rules. It explores the level-wise mining Apriori property that all nonempty subsets of a frequent
itemset must also be frequent. At the kth iteration (for k > 2), it forms frequent k-itemset candidates
based on the frequent (k — 1)-itemsets, and scans the database once to find the complete set of
frequent k-itemsets, Ly.
Variations involving hashing and transaction reduction can be used to make the procedure more
efficient. Other variations include partitioning the data (mining on each partition and then combining
the results) and sampling the data (mining on a data subset). These variations can reduce the number
of data scans required to as little as two or even one.

* Frequent pattern growth is a method of mining frequent itemsets without candidate generation.
It constructs a highly compact data structure (an FP-tree) to compress the original transaction
database. Rather than employing the generate-and-test strategy of Apriori-like methods, it focuses

170 Chapter 4 Patter mining: basic concepts and methods

on frequent pattern (fragment) growth, which avoids costly candidate generation, resulting in greater
efficiency.

* Mining frequent itemsets using the vertical data format (Eclat) is a method that transforms a
given data set of transactions in the horizontal data format of TID-itemset into the vertical data
format of item-TID_set. It mines the transformed data set by T1D_set intersections based on the
Apriori property and additional optimization techniques such as diffset.

* Not all strong association rules are interesting. Therefore, the support—confidence framework should
be augmented with a pattern evaluation measure, which promotes the mining of interesting rules.
A measure is null-invariant if its value is free from the influence of null-transactions (i.e., the
transactions that do not contain any of the itemsets being examined). Among many pattern eval-
uation measures, we examined lift, x2, all_confidence, max_confidence, Kulczynski, and cosine,
and showed that only the latter four are null-invariant. We suggest using the Kulczynski measure,
together with the imbalance ratio, to present pattern relationships among itemsets.

4.5 Exercises

4.1. Suppose you have the set C of all frequent closed itemsets on a data set D, as well as the support
count for each frequent closed itemset. Describe an algorithm to determine whether a given
itemset X is frequent or not, and the support of X if it is frequent.

4.2. Anitemset X is called a generator on a data set D if there does not exist a proper subitemset Y C
X such that support(X) = support(Y). A generator X is a frequent generator if support(X)
passes the minimum support threshold. Let G be the set of all frequent generators on a data set D.

a. Can you determine whether an itemset A is frequent and the support of A, if it is frequent,
using only G and the support counts of all frequent generators? If yes, present your algo-
rithm. Otherwise, what other information is needed? Can you give an algorithm assuming
the information needed is available?

b. What is the relationship between closed itemsets and generators?

4.3. The Apriori algorithm makes use of prior knowledge of subset support properties.

a. Prove that all nonempty subsets of a frequent itemset must also be frequent.

b. Prove that the support of any nonempty subset s’ of itemset s must be at least as great as the
support of s.

c. Given frequent itemset / and subset s of [, prove that the confidence of the rule “s’ =
(I — s")” cannot be more than the confidence of “s = (I — s),” where s’ is a subset of s.

d. A partitioning variation of Apriori subdivides the transactions of a database D into n
nonoverlapping partitions. Prove that any itemset that is frequent in D must be frequent
in at least one partition of D.

4.4. Let ¢ be a candidate itemset in Cy generated by the Apriori algorithm. How many length-(k — 1)
subsets do we need to check in the prune step? Per your previous answer, can you give an
improved version of procedure has_infrequent_subset in Fig. 4.4?

4.5. Section 4.2.2 describes a method for generating association rules from frequent itemsets. Pro-
pose a more efficient method. Explain why it is more efficient than the one proposed there. (Hint:
consider incorporating the properties of Exercises 4.3(b), (c¢) into your design.)

4.5 Exercises 171

4.6. A database has five transactions. Let min_sup = 60% and min_conf = 80%.

TID | items_bought
T100 | {M,O,N,K,E, Y}
T200 | {D,O,N,K,E, Y }
T300 | {M, A, K, E}

T400 | {M, U,C,K, Y}
T500 | {C,0,0,K,LLE}

a. Find all frequent itemsets using Apriori and FP-growth, respectively. Compare the effi-
ciency of the two mining processes.

b. List all the strong association rules (with support s and confidence ¢) matching the follow-
ing metarule, where X is a variable representing customers, and item; denotes variables
representing items (e.g., “A,” “B,”):

Vx € transaction, buys(X,itemy) A buys(X,itemy) = buys(X,items) [s,c]

4.7. (Implementation project) Using a programming language that you are familiar with, such as
C++ or Java, implement three frequent itemset mining algorithms introduced in this chapter:
(1) Apriori [AS94b], (2) FP-growth [HPY00], and (3) Eclat [Zak00] (mining using the vertical
data format). Compare the performance of each algorithm with various kinds of large data sets.
Write a report to analyze the situations (e.g., data size, data distribution, minimal support thresh-
old setting, and pattern density) where one algorithm may perform better than the others, and
state why.

4.8. A database has four transactions. Let min_sup = 60% and min_conf = 80%.

cust_ID | TID | items_bought (in the form of brand-item_category)

01 T100 | {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread }

02 T200 | {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread }
01 T300 | {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}

03 T400 | {Wonder-Bread, Sunset-Milk, Dairyland-Cheese }

a. At the granularity of item_category (e.g., item; could be “Milk”), for the rule template,

VX etransaction, buys(X,itemi) A buys(X,itemy) = buys(X,items) [s,c],

list the frequent k-itemset for the largest k, and all the strong association rules (with their
support s and confidence c) containing the frequent k-itemset for the largest k.

b. At the granularity of brand-item_category (e.g., item; could be “Sunset-Milk”), for the rule
template,

VX € customer, buys(X,item1) AN buys(X,items) = buys(X, items),

list the frequent k-itemset for the largest k (but do not print any rules).
4.9. Suppose that a large store has a transactional database that is distributed among four locations.
Transactions in each component database have the same format, namely T : {i1, ..., i;,}, where
T} is a transaction identifier, and i; (1 < k < m) is the identifier of an item purchased in the trans-
action. Propose an efficient algorithm to mine global association rules. Your algorithm should not
require shipping all the data to one site and should not cause excessive network communication
overhead.

172

4.10.

4.11.

4.12.

4.13.

4.14.

Chapter 4 Patter mining: basic concepts and methods

Suppose that frequent itemsets are saved for a large transactional database, D B. Discuss how to
efficiently mine the (global) association rules under the same minimum support threshold, if a
set of new transactions, denoted as A D B, is (incrementally) added in?

Most frequent pattern mining algorithms consider only distinct items in a transaction. However,
multiple occurrences of an item in the same shopping basket, such as four cakes and three jugs
of milk, can be important in transactional data analysis. How can one mine frequent itemsets
efficiently considering multiple occurrences of items? Propose modifications to the well-known
algorithms, such as Apriori and FP-growth, to adapt to such a situation.

(Implementation project) Many techniques have been proposed to further improve the per-

formance of frequent itemset mining algorithms. Taking FP-tree—based frequent pattern growth

algorithms (e.g., FP-growth) as an example, implement one of the following optimization tech-
niques. Compare the performance of your new implementation with the unoptimized version.

a. The frequent pattern mining method of Section 4.2.4 uses an FP-tree to generate conditional
pattern bases using a bottom-up projection technique (i.e., project onto the prefix path of
an item p). However, one can develop a fop-down projection technique, that is, project
onto the suffix path of an item p in the generation of a conditional pattern base. Design
and implement such a top-down FP-tree mining method. Compare its performance with the
bottom-up projection method.

b. Nodes and pointers are used uniformly in an FP-tree in the FP-growth algorithm design.
However, such a structure may consume a lot of space when the data are sparse. One possi-
ble alternative design is to explore array- and pointer-based hybrid implementation, where
a node may store multiple items when it contains no splitting point to multiple subbranches.
Develop such an implementation and compare it with the original one.

c. It is time and space consuming to generate numerous conditional pattern bases during
pattern-growth mining. An interesting alternative is to push right the branches that have
been mined for a particular item p, that is, to push them to the remaining branch(es) of
the FP-tree. This is done so that fewer conditional pattern bases have to be generated and
additional sharing can be explored when mining the remaining FP-tree branches. Design
and implement such a method and conduct a performance study on it.

Give a short example to show that items in a strong association rule actually may be negatively

correlated.

The following contingency table summarizes supermarket transaction data, where hot dogs refers

to the transactions containing hot dogs, hot dogs refers to the transactions that do not contain

hot dogs, hamburgers refers to the transactions containing hamburgers, and hamburgers refers
to the transactions that do not contain hamburgers.

hotdogs hot dogs X,,u
hamburgers | 2000 500 2500
hamburgers | 1000 1500 2500
Peol 3000 2000 5000

a. Suppose that the association rule “hot dogs = hamburgers” is mined. Given a minimum
support threshold of 25% and a minimum confidence threshold of 50%, is this association
rule strong?

4.6 Bibliographic notes 173

b. Based on the given data, is the purchase of hot dogs independent of the purchase of ham-
burgers? If not, what kind of correlation relationship exists between the two?

€. Compare the use of the all_confidence, max_confidence, Kulczynski, and cosine measures
with lift and correlation on the given data.

4.15. (Implementation project) The DBLP data set (https://dblp.uni-trier.de/xml/) consists of over
three million entries of research papers published in computer science conferences and journals.
Among these entries, there are a good number of authors that have coauthor relationships.

a. Propose a method to efficiently mine a set of coauthor relationships that are closely corre-
lated (e.g., often coauthoring papers together).

bh. Based on the mining results and the pattern evaluation measures discussed in this chapter,
discuss which measure may convincingly uncover close collaboration patterns better than
others.

c. Based on the study in (a), develop a method that can roughly predict advisor and advisee
relationships and the approximate period for such advisory supervision.

4.6 Bibliographic notes

Association rule mining was first proposed by Agrawal, Imielinski, and Swami [AIS93]. The Apriori
algorithm discussed in Section 4.2.1 for frequent itemset mining was presented in Agrawal and Srikant
[AS94b]. A variation of the algorithm using a similar pruning heuristic was developed independently
by Mannila, Tiovonen, and Verkamo [MTV94]. A joint publication combining these works later ap-
peared in Agrawal et al. [AMST96]. A method for generating association rules from frequent itemsets
is described in Agrawal and Srikant [AS94a].

References for the variations of Apriori described in Section 4.2.3 include the following. The use of
hash tables to improve association mining efficiency was studied by Park, Chen, and Yu [PCY95a]. The
partitioning technique was proposed by Savasere, Omiecinski, and Navathe [SONO95]. The sampling
approach is discussed in Toivonen [Toi96]. A dynamic itemset counting approach is given in Brin,
Motwani, Ullman, and Tsur [BMUT97]. An efficient incremental updating of mined association rules
was proposed by Cheung, Han, Ng, and Wong [CHNWO96]. Parallel and distributed association data
mining under the Apriori framework was studied by Park, Chen, and Yu [PCY95b]; Agrawal and Shafer
[AS96]; and Cheung et al. [CHNT96]. Another parallel association mining method, which explores
itemset clustering using a vertical database layout, was proposed in Zaki, Parthasarathy, Ogihara, and
Li [ZPOL97].

Other scalable frequent itemset mining methods have been proposed as alternatives to the Apriori-
based approach. FP-growth, a pattern-growth approach for mining frequent itemsets without candidate
generation, was proposed by Han, Pei, and Yin [HPYO0O] (Section 4.2.4). An exploration of hyper
structure mining of frequent patterns, called H-Mine, was proposed by Pei et al. [PHLO1]. A method
that integrates top-down and bottom-up traversal of FP-trees in pattern-growth mining was proposed
by Liu, Pan, Wang, and Han [LPWHO2]. An array-based implementation of prefix-tree structure for
efficient pattern growth mining was proposed by Grahne and Zhu [GZ03b]. Eclat, an approach for
mining frequent itemsets by exploring the vertical data format, was proposed by Zaki [Zak00]. A depth-
first generation of frequent itemsets by a tree projection technique was proposed by Agarwal, Aggarwal,

https://dblp.uni-trier.de/xml/

174 Chapter 4 Patter mining: basic concepts and methods

and Prasad [AAPO1]. An integration of association mining with relational database systems was studied
by Sarawagi, Thomas, and Agrawal [STA9S].

The mining of frequent closed itemsets was proposed in Pasquier, Bastide, Taouil, and Lakhal
[PBTL99], where an Apriori-based algorithm called A-Close for such mining was presented. CLOSET,
an efficient closed itemset mining algorithm based on the frequent pattern growth method, was pro-
posed by Pei, Han, and Mao [PHMO0O]. CHARM by Zaki and Hsiao [ZH02] developed a compact
vertical TID list structure called diffset, which records only the difference in the TID list of a candidate
pattern from its prefix pattern. A fast hash-based approach is also used in CHARM to prune nonclosed
patterns. CLOSET+ by Wang, Han, and Pei [WHPO03] integrates previously proposed effective strate-
gies as well as newly developed techniques such as hybrid tree-projection and item skipping. AFOPT,
a method that explores a right push operation on FP-trees during the mining process, was proposed
by Liu, Lu, Lou, and Yu [LLLYO03]. Grahne and Zhu [GZ03b] proposed a prefix-tree—based algorithm
integrated with array representation, called FPClose, for mining closed itemsets using a pattern-growth
approach.

Pan et al. [PCT 03] proposed CARPENTER, a method for finding closed patterns in long biolog-
ical data sets, which integrates the advantages of vertical data formats and pattern growth methods.
Mining max-patterns was first studied by Bayardo [Bay98], where MaxMiner, an Apriori-based, level-
wise, breadth-first search method, was proposed to find max-itemset by performing superset frequency
pruning and subset infrequency pruning for search space reduction. Another efficient method, MAFIA,
developed by Burdick, Calimlim, and Gehrke [BCGO1], uses vertical bitmaps to compress TID lists,
thus improving the counting efficiency. A FIMI (Frequent Itemset Mining Implementation) workshop
dedicated to implementation methods for frequent itemset mining was reported by Goethals and Zaki
[GZ03a].

The problem of mining interesting rules has been studied by many researchers. The statistical inde-
pendence of rules in data mining was studied by Piatetski-Shapiro [PS91]. The interestingness problem
of strong association rules is discussed in Chen, Han, and Yu [CHY96]; Brin, Motwani, and Silver-
stein [BMS97]; and Aggarwal and Yu [AY99], which cover several interestingness measures, including
lift. An efficient method for generalizing associations to correlations is given in Brin, Motwani, and
Silverstein [BMS97]. Other alternatives to the support—confidence framework for assessing the interest-
ingness of association rules are proposed in Brin, Motwani, Ullman, and Tsur [BMUT97] and Ahmed,
El-Makky, and Taha [AEMTOO].

A method for mining strong gradient relationships among itemsets was proposed by Imielinski,
Khachiyan, and Abdulghani [IKAO2]. Silverstein, Brin, Motwani, and Ullman [SBMU98] studied the
problem of mining causal structures over transaction databases. Some comparative studies of different
interestingness measures were done by Hilderman and Hamilton [HHO1]. The notion of null transac-
tion invariance was introduced, together with a comparative analysis of interestingness measures, by
Tan, Kumar, and Srivastava [TKS02]. The use of all_confidence as a correlation measure for generat-
ing interesting association rules was studied by Omiecinski [Omi03] and by Lee, Kim, Cai, and Han
[LKCHO3]. Wu, Chen, and Han [WCH10] introduced the Kulczynski measure for associative patterns
and performed a comparative analysis of a set of measures for pattern evaluation.

CHAPTER

Pattern mining: advanced methods

Frequent pattern mining has reached far beyond the basics due to substantial research, numerous
extensions of the problem scope, and broad application studies. In this chapter, we will learn methods
for advanced pattern mining. We first introduce methods for mining various kinds of patterns, including
mining multilevel patterns, multidimensional patterns, patterns in continuous data, rare patterns, neg-
ative patterns, and frequent patterns in high-dimensional data. We also examine methods for mining
compressed and approximate patterns. Then we examine the methodologies of utilizing constraints to
reduce the cost of frequent pattern mining. Since sequential patterns and structural patterns are popu-
larly encountered but they need rather different mining methods, we introduce concepts and methods
for mining sequential patterns in sequence data sets and mining subgraph patterns in graph data sets. To
get the flavor on how to extend pattern mining methods to facilitate diverse applications, we examine
one example on mining copy-and-paste bugs in large software programs. Notice that pattern mining is
a more general term than frequent pattern mining since the former covers rare and negative patterns as
well. However, when there is no ambiguity, the two terms are used interchangeably.

5.1 Mining various kinds of patterns

In the last chapter we have studied methods for mining patterns and associations at a single concept level
and single dimensional space (e.g., products purchased). However, in many applications, people may
like to uncover more complex patterns from massive data. For example, one may like to find multilevel
associations that involve concepts at different abstraction levels, multidimensional associations that
involve more than one dimension or predicate (e.g., rules that relate what a customer buys to his or
her age), quantitative association rules that involve numeric attributes (e.g., age, salary), rare patterns
that may suggest interesting although rare item combinations, and negative patterns that show negative
correlations between items.

In this section we examine methods for mining patterns and associations at multiple abstraction
levels (Section 5.1.1) and at multidimensional spaces (Section 5.1.2), handling data with quantitative
attributes (Section 5.1.3), mining patterns in high-dimensional space (Section 5.1.4), and mining rare
patterns and negative patterns (Section 5.1.5).

5.1.1 Mining multilevel associations

For many applications, strong associations discovered at high abstraction levels, though often having
high support, could be commonsense knowledge (e.g., buying bread and milk frequently together).
We may want to drill down to find novel patterns at more detailed levels (e.g., buying what kind of

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00015-1 1 7 5
Copyright © 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811760-6.00015-1

176 Chapter 5 Pattern mining: advanced methods

bread and what kind of milk frequently together). On the other hand, there could be too many scattered
patterns at low or primitive abstraction levels, some of which are just trivial specializations of patterns
at higher levels. Therefore, it is interesting to examine how to develop effective methods for mining
meaningful patterns at multiple abstraction levels, with sufficient flexibility for easy traversal among
different abstraction spaces.

Example 5.1. Mining multilevel association rules. Suppose we are given the task-relevant set of
transactional data in Table 5.1 for sales in an e-store, showing the items purchased for each transaction.
The concept hierarchy for the items is shown in Fig. 5.1. A concept hierarchy defines a sequence
of mappings from a set of low-level concepts to a higher-level, more general concept set. Data can
be generalized by replacing low-level concepts within the data by their corresponding higher-level
concepts, or ancestors, from a concept hierarchy.

The concept hierarchy in Fig. 5.1 has five levels, respectively, referred to as levels O through 4,
starting with level O at the root node for all (the most general abstraction level). Here, level 1 includes
computer, software, printer and camera, and computer accessory; level 2 includes laptop computer,
desktop computer, office software, antivirus software, etc.; and level 3 includes Dell desktop computer,

, Microsoft office software, etc. Level 4 is the most specific abstraction level of this hierarchy. It
consists of concrete products.

Table 5.1 Task-relevant data, D
TID Items Purchased
T100 Apple 15” MacBook Pro, HP Photosmart 7520 printer
T200 Microsoft Office Professional 2020, Microsoft Surface Mobile Mouse
T300 Logitech MX Master 2S Wireless Mouse, Gimars GEL Wrist Rest
T400 Dell Studio XPS 16 Notebook, Canon PowerShot SX70 HS Digital Camera
T500 Apple iPad Air (10.5-inch, Wi-Fi, 256GB), Norton Security Premium
all
[Computer] [Software] [Printer and Camera] [Computer Accessory]
[Laptop Desktop Office Ant1v1rus Printer Dlgltdl erst Pad Mouse
- Dell |... Mlcrosoft] ...| Canon |. Glmars ... | LogiTech

FIGURE 5.1

Concept hierarchy for computer items of an e-store.

5.1 Mining various kinds of patterns 177

Concept hierarchies for nominal attributes may be specified by users familiar with the data such
as store managers. Alternatively, they can be generated from data, based on the analysis of product
specifications, attribute values, or data distributions. Concept hierarchies for numeric attributes can be
generated using discretization techniques, such as those introduced in Chapter 2. For our example, the
concept hierarchy of Fig. 5.1 is provided.

The items in Table 5.1 are at the lowest level of Fig. 5.1’s concept hierarchy. It is difficult to find in-
teresting purchase patterns in such primitive-level data. For instance, if “Dell Studio XPS 16 Notebook”
or “Logitech VX Nano Cordless Laser Mouse” occurs in a very small fraction of the transactions, then
it can be difficult to find strong associations involving these specific items. Few people may buy these
items together, making it unlikely that the itemset will satisfy minimum support. However, we would
expect that it is easier to find strong associations between generalized abstractions of these items, such
as between “Dell Notebook” and “Cordless Mouse.” 4

Association rules generated from mining data at multiple abstraction levels are called multiple-level
or multilevel association rules. Multilevel association rules can be mined efficiently using concept
hierarchies under a support-confidence framework. In general, a top-down strategy can be employed,
where counts are accumulated for the calculation of frequent itemsets at each concept level, starting at
concept level 1 and working downward in the hierarchy toward the more specific concept levels, until
no more frequent itemsets can be found. For each level, any algorithm for discovering frequent itemsets
may be used, such as Apriori or its variations.

A number of variations to this approach are described next, where each variation involves “playing”
with the support threshold in a slightly different way. The variations are illustrated in Figs. 5.2 and 5.3,
where nodes indicate an item or itemset that has been examined, and nodes with thick borders indicate
that an examined item or itemset is frequent.

* Using uniform minimum support for all levels (referred to as uniform support): The same min-
imum support threshold is used when mining at each abstraction level. For example, in Fig. 5.2, a
minimum support threshold of 5% is used throughout (e.g., for mining from “computer” downward
to “laptop computer”). Both “computer” and “laptop computer” are found to be frequent, whereas
“desktop computer” is not.

When a uniform minimum support threshold is used, the search procedure is simplified. The method
is also simple in that users are required to specify only one minimum support threshold. An Apriori-
like optimization technique can be adopted, based on the knowledge that an ancestor is a superset of

Level 1
min_sup=5% [computer [support=10%]]
Level 2
min_sup=5%
[laptop computer [support=6%]] [desktop computer [support=49%] J
FIGURE 5.2

Multilevel mining with uniform support.

178 Chapter 5 Pattern mining: advanced methods

Level 1
min_sup=5% [computer [support=10%]]
Level 2
min_sup=3%
[laptop computer [support=6%]] [desktop computer [support=4%]]
FIGURE 5.3

Multilevel mining with reduced support.

its descendants: The search avoids examining itemsets containing any item or itemset of which the
ancestors do not have minimum support.
The uniform support approach, however, has some drawbacks. It is unlikely that items at lower ab-
straction levels will occur as frequently as those at higher abstraction levels. If the minimum support
threshold is set too high, it could miss some meaningful associations occurring at low abstraction
levels. If the threshold is set too low, it may generate many uninteresting associations occurring at
high abstraction levels. This provides the motivation for the next approach.

¢ Using reduced minimum support at lower levels (referred to as reduced support): Each abstrac-
tion level has its own minimum support threshold. The deeper the abstraction level, the smaller the
corresponding threshold. For example, in Fig. 5.3, the minimum support thresholds for levels 1 and
2 are 5% and 3%, respectively. In this way, “computer,” “laptop computer,” and “desktop computer”
are all considered frequent.
For mining multilevel patterns with reduced support, the minimum support threshold at the lowest
abstraction level should be used during the mining process to allow mining to penetrate down to the
lowest abstraction level. However, for the final pattern/rule extraction, thresholds associated with the
corresponding items should be enforced to print out only interesting associations.

¢ Using item or group-based minimum support (referred to as group-based support): Because
users or experts often have insights as to which groups are more important than others, it is some-
times desirable to set up user-specific, item-based, or group-based minimal support thresholds when
mining multilevel rules. For example, a user could set up the minimum support thresholds based
on product price or on items of interest, such as by setting particularly low support thresholds for
“camera with price over $ 1000,” to pay particular attention to the association patterns containing
items in these categories.
For mining patterns with mixed items from groups with different support thresholds, usually the
lowest support threshold among all the participating groups is taken as the support threshold in
mining. This will avoid filtering out valuable patterns containing items from the group with the
lowest support threshold. In the meantime, the minimal support threshold for each individual group
should be kept to avoid generating uninteresting itemsets from each group. Other interestingness
measures can be used after the itemset mining to extract truly interesting rules.

A serious side effect of mining multilevel association rules is its generation of many redundant
rules across multiple abstraction levels due to the “ancestor” relationships among items. For example,

5.1 Mining various kinds of patterns 179

consider the following rules where “laptop computer” is an ancestor of “Dell laptop computer” based
on the concept hierarchy of Fig. 5.1, and where X is a variable representing customers who purchased
items.

buys(X, “laptop computer”) = buys(X, “HP printer”)

[support = 8%, confidence = 70%] (GR))
buys(X, “Dell laptop computer”) = buys(X, “HP printer”)
[support =2%, confidence = 72%] 5.2)

“If Rules (5.1) and (5.2) are both mined, does Rule (5.2) provide any novel information?” We say
arule R1 is an ancestor of a rule R2, if R1 can be obtained by replacing the items in R2 by their
ancestors in a concept hierarchy. For example, Rule (5.1) is an ancestor of Rule (5.2) because “laptop
computer” is an ancestor of “Dell laptop computer.” Based on this definition, a rule can be considered
redundant if its support and confidence are close to their “expected” values, based on an ancestor of the
rule.

Example 5.2. Checking redundancy among multilevel association rules. Suppose that about one-
quarter of all “laptop computer” sales are for “Dell laptop computers.” Since Rule (5.1) has a 70%
confidence and 8% support, we may expect Rule (5.2) to have a confidence of around 70% (since all
data samples of “Dell laptop computer” are also samples of “laptop computer”) and a support of around
2% (i.e., 8% x %). If this is indeed the case, then Rule (5.2) is not interesting because it does not offer
any additional information and is less general than Rule (5.1). O

5.1.2 Mining multidimensional associations

So far, we have studied association rules that imply a single predicate, that is, the predicate buys. For
instance, at mining a data set, we may discover the Boolean association rule

buys(X, “Apple iPad air”) = buys(X, “HP printer”). 5.3)

Following the terminology used in multidimensional databases, we refer to each distinct predicate in a
rule as a dimension. Hence, we can refer to Rule (5.3) as a single-dimensional or intradimensional
association rule because it contains a single distinct predicate (e.g., buys) with multiple occurrences
(i.e., the predicate occurs more than once within the rule). Such rules are commonly mined from trans-
actional data.

Instead of considering transactional data only, sales and related information are often linked with
relational data or integrated into a data warehouse. Such data stores are multidimensional in nature.
For instance, in addition to keeping track of the items purchased in sales transactions, a relational
database may record other attributes associated with the items and/or transactions such as the item
description or the branch location of the sale. Additional relational information regarding the customers
who purchased the items (e.g., customer age, occupation, credit rating, income, and address) may also
be stored. Considering each database attribute or warehouse dimension as a predicate, we can therefore
mine association rules containing multiple predicates such as

age(X, “18...25”) A occupation(X, “student’) = buys(X, “laptop”). 5.4

180 Chapter 5 Pattern mining: advanced methods

Association rules that involve two or more dimensions or predicates can be referred to as multidi-
mensional association rules. Rule (5.4) contains three predicates (age, occupation, and buys), each of
which occurs only once in the rule. Hence, we say that it has no repeated predicates. Multidimensional
association rules with no repeated predicates are called interdimensional association rules. We can
also mine multidimensional association rules with repeated predicates, which contain multiple occur-
rences of some predicates. These rules are called hybrid-dimensional association rules. An example
of such a rule is the following, where the predicate buys is repeated:

age(X,“18...25”) A buys(X, “laptop”) = buys(X, “HP printer”). (5.5)

Database attributes can be nominal or quantitative. The values of nominal (or categorical) attributes
are “names of things.” Nominal attributes have a finite number of possible values, with no ordering
among the values (e.g., occupation, brand, color). Quantitative attributes are numeric and have an
implicit ordering among values (e.g., age, income, price). Techniques for mining multidimensional
association rules can be categorized into two basic approaches regarding the treatment of quantitative
attributes.

In the first approach, quantitative attributes are discretized using predefined concept hierarchies.
This discretization occurs before mining. For instance, a concept hierarchy for income may be used to
replace the original numeric values of this attribute by interval labels such as “0..20K,” “21K..30K,”
“31K..40K,” and so on. Here, discretization is static and predetermined. Chapter 2 on data preprocess-
ing gave several techniques for discretizing numeric attributes. The discretized numeric attributes, with
their interval labels, can then be treated as nominal attributes (where each interval is considered a cat-
egory). We refer to this as mining multidimensional association rules using static discretization of
quantitative attributes.

In the second approach, quantitative attributes are discretized or clustered into “bins” based on the
data distribution. These bins may be further combined during the mining process. The discretization
process is dynamic and established to satisfy some mining criteria such as maximizing the confidence
of the rules mined. Because this strategy treats the numeric attribute values as quantities rather than
as predefined ranges or categories, association rules mined from this approach are also referred to as
(dynamic) quantitative association rules.

Let’s study each of these approaches for mining multidimensional association rules. For simplic-
ity, we confine our discussion to interdimensional association rules. Note that rather than searching
for frequent itemsets (as is done for single-dimensional association rule mining), in multidimensional
association rule mining we search for frequent predicate sets. A k-predicate set is a set containing k
conjunctive predicates. For instance, the set of predicates {age, occupation, buys} from Rule (5.4) is a
3-predicate set.

5.1.3 Mining quantitative association rules

As discussed earlier, relational and data warehouse data often involve quantitative attributes or mea-
sures. We can discretize quantitative attributes into multiple intervals and then treat them as nominal
data in association mining. However, such simple discretization may lead to the generation of an enor-
mous number of rules, many of which may not be useful. Here we introduce three methods that can
help overcome this difficulty to discover novel association relationships: (1) a data cube method, (2) a
clustering-based method, and (3) a statistical analysis method to uncover exceptional behaviors.

5.1 Mining various kinds of patterns 181

Data cube-based mining of quantitative associations

In many cases quantitative attributes can be discretized before mining using predefined concept hierar-
chies or data discretization techniques, where numeric values are replaced by interval labels. Nominal
attributes may also be generalized to higher conceptual levels if desired. If the resulting task-relevant
data are stored in a relational table, then any of the frequent itemset mining algorithms we have dis-
cussed can easily be modified so as to find all frequent predicate sets. In particular, instead of searching
on only one attribute like buys, we need to search through all of the relevant attributes, treating each
attribute-value pair as an itemset.

Alternatively, the transformed multidimensional data may be used to construct a data cube. Data
cubes are well suited for the mining of multidimensional association rules: They store aggregates (e.g.,
counts) in multidimensional space, which is essential for computing the support and confidence of
multidimensional association rules. An overview of data cube technology and data cube computation
algorithms were presented in Chapter 3. Fig. 5.4 shows the lattice of cuboids defining a data cube for
the dimensions age, income, and buys. The cells of an n-dimensional cuboid can be used to store the
support counts of the corresponding n-predicate sets. The base cuboid aggregates the task-relevant data
by age, income, and buys; the 2-D cuboid, (age, income), aggregates by age and income, and so on; the
0-D (apex) cuboid contains the total number of transactions in the task-relevant data.

Due to the ever-increasing use of data warehouse and OLAP technology, it is possible that a data
cube containing the dimensions that are of interest to the user may already exist, fully or partially
materialized. If this is the case, we can simply fetch the corresponding aggregate values or compute
them using lower-level materialized aggregates, and return the rules needed using a rule generation
algorithm. Notice that even in this case, the Apriori property can still be used to prune the search
space. If a given k-predicate set has support sup, which does not satisfy minimum support, then further
exploration of this set should be terminated. This is because any more-specialized version of the k-
itemset will have support no greater than sup and, therefore, will not satisfy minimum support either.
In cases where no relevant data cube exists for the mining task, we must create one on-the-fly. This

0-D (apex) cuboid

1-D cuboids
(age) (buys)
2-D cuboids
(age, income) > S (income, buys)
(age, income, buys) 3-D (base) cuboid

FIGURE 5.4

Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by. The base cuboid con-
tains the three predicates age, income, and buys.

182 Chapter 5 Pattern mining: advanced methods

becomes an iceberg cube computation problem, where the minimum support threshold is taken as the
iceberg condition (Chapter 3).

Mining clustering-based quantitative associations

Besides using discretization-based or data cube-based data sets to generate quantitative association
rules, we can also generate quantitative association rules by clustering data in the quantitative dimen-
sions. (Recall that objects within a cluster are similar to one another and dissimilar to those in other
clusters.) The general assumption is that interesting frequent patterns or association rules are in general
found at relatively dense clusters of quantitative attributes. Here, we describe a top-down approach and
a bottom-up approach to clustering that finds quantitative associations.

A typical top-down approach for finding clustering-based quantitative frequent patterns is as fol-
lows. For each quantitative dimension, a standard clustering algorithm (e.g., k-means or a density-based
clustering algorithm, as described in Chapter 8) can be applied to find clusters in this dimension that
satisfy the minimum support threshold. For each cluster, we then examine the 2-D spaces generated by
combining the cluster with a cluster or nominal value of another dimension to see if such a combination
passes the minimum support threshold. If it does, we continue to search for clusters in this 2-D region
and progress to even higher-dimensional combinations. The Apriori pruning still applies in this process:
If, at any point, the support of a combination does not have minimum support, its further partitioning
or combination with other dimensions cannot have minimum support either.

A bottom-up approach for finding clustering-based frequent patterns works by first clustering in
high-dimensional space to form clusters with support that satisfies the minimum support threshold, and
then projecting and merging those clusters in the space containing fewer dimensional combinations.
However, for high-dimensional data sets, finding high-dimensional clustering itself is a tough problem.
Thus, this approach is less realistic.

Using statistical theory to disclose exceptional behavior

It is possible to discover quantitative association rules that disclose exceptional behavior, where “excep-
tional” is defined based on a statistical theory. For example, the following association rule may indicate
exceptional behavior:

gender = female = mean wage = $7.90/ hr (overall _mean_wage = $9.02/ hr). (5.6)

This rule states that the average wage for females is only $7.90/hr. This rule is (subjectively) interest-
ing because it reveals a group of people earning a significantly lower wage than the average wage of
$9.02/hr.

An integral aspect of our definition involves applying statistical tests to confirm the validity of our
rules. That is, Rule (5.6) is only accepted if a statistical test (in this case, a Z-test) confirms that with
high confidence it can be inferred that the mean wage of the female population is indeed lower than the
mean wage of the rest of the population.'

! The above rule was mined from a real database based on a 1985 U.S. census.

5.1 Mining various kinds of patterns 183

5.1.4 Mining high-dimensional data

Our discussions of mining multidimensional patterns in the above two subsections are confined to
patterns involving a small number of dimensions. However, some applications may need to mine high-
dimensional data (i.e., data with hundreds or thousands of dimensions). However, it is not easy to
extend the previous multidimensional pattern mining methods to mine high-dimensional data because
the search spaces of such methods grow exponentially with the number of dimensions.

One interesting direction to handle high-dimensional data is to extend a pattern growth approach by
exploring the vertical data format to handle data sets with a large number of dimensions (also called fea-
tures or items, e.g., genes) but a small number of rows (also called transactions or tuples, e.g., samples).
This is useful in applications like the analysis of gene expressions in bioinformatics, for example, where
we often need to analyze microarray data that contain a large number of genes (e.g., 10,000 to 100,000)
but only a small number of samples (e.g., dozens to hundreds).

Another direction is to develop a new methodology that focuses its mining effort on colossal pat-
terns, that is, patterns of rather long length, instead of the complete set of patterns. One interesting
such method is called Pattern-Fusion, which takes leaps in the pattern search space, leading to a good
approximation of the complete set of colossal frequent patterns. We briefly outline the idea of pattern-
fusion here and refer interested readers to the detailed technical paper.

In some applications (e.g., bioinformatics), a researcher can be more interested in finding colos-
sal patterns (e.g., long DNA and protein sequences) than finding small (i.e., short) ones since colossal
patterns usually carry more significant meanings. Finding colossal patterns is challenging because in-
cremental mining tends to get “trapped” by an explosive number of midsize patterns before it can even
reach candidate patterns of large size.

All of the pattern mining strategies we have studied so far, such as Apriori and FP-growth, use an
incremental growth strategy by nature, that is, they increase the length of candidate patterns by one at
a time. Breadth-first search methods like Apriori cannot bypass the generation of an explosive number
of midsize patterns generated, making it impossible to reach colossal patterns. Even depth-first search
methods like FP-growth can be easily trapped in a huge number of subtrees before reaching colossal
patterns. Clearly, a completely new mining methodology is needed to overcome such a hurdle.

As we have observed in Fig. 5.5, there could be a small number of colossal patterns (e.g., patterns
of size close to 100) but such patterns may generate an exponential number of mid-sized patterns.
Instead of mining a complete set of mid-sized patterns, Pattern-Fusion fuses a small number of shorter
patterns into bigger colossal pattern candidates, and checks against the data set to see which of such
candidates are the true frequent patterns, which can be further fused to generate even larger colossal
pattern candidates. Such step-by-step fusing takes leaps in the pattern search space and avoids the
pitfalls of both breadth-first and depth-first searches, as shown in Fig. 5.6.

Note that a colossal pattern such as {ay, az, ..., ajgo} : 55 implies that the data set contains many,
many short subpatterns like {a;, az, a9, ...,a3}:55+; ..., {a1, a9, ...,as0} : 55+; ...), where 55+
means with support count of at least 55. That is, a colossal pattern should generate far more small
patterns than smaller patterns do. Thus, a colossal pattern is more robust in the sense that if a small
number of items are removed from the pattern, the resulting pattern would have a similar support set.
The larger the pattern size, the more prominent this robustness. Such a robustness relationship between
a colossal pattern and its corresponding short patterns can be extended to multiple levels.

184 Chapter 5 Pattern mining: advanced methods

O Midsize patterns
B Colossal patterns

Frequent Pattern Size

FIGURE 5.5

A high-dimensional data set may contain a small set of colossal patterns but exponentially many midsize patterns.

@ Pattern candidates
B Colossal patterns

Current
Pool

Frequent Pattern Size

&
<

FIGURE 5.6

Pattern tree traversal: Candidates are taken from a pool of patterns, which results in shortcuts through pattern space
to the colossal patterns.

Thus Pattern-Fusion has the capability to identify good merging candidates, which are the patterns
that share some subpatterns and have some similar support sets. This does help the search leaps through
pattern space more directly toward colossal patterns.

It has been theoretically shown that Pattern-Fusion leads to a good approximation of colossal pat-
terns (see [ZYH07]). The method was tested on synthetic and real data sets constructed from program
tracing data and microarray data. Experiments show that the method can find most of the colossal
patterns with high efficiency.

5.1 Mining various kinds of patterns 185

5.1.5 Mining rare patterns and negative patterns

All the methods presented so far in this chapter have been for mining frequent patterns. Sometimes,
however, it is interesting to find patterns that are rare instead of frequent, or patterns that reflect a
negative correlation between items. These patterns are respectively referred to as rare patterns and
negative patterns. In this subsection, we consider various ways of defining rare patterns and negative
patterns, which are also useful to mine.

Example 5.3. Rare patterns and negative patterns. In jewelry sales data, sales of diamond watches
are rare; however, patterns involving the selling of diamond watches could be interesting. In supermar-
ket data, if we find that customers frequently buy Coca-Cola Classic or Diet Coke but not both, then
buying Coca-Cola Classic and buying Diet Coke together is considered a negative (correlated) pattern.
In car sales data, a dealer sells a few fuel-thirsty vehicles (e.g., SUVs) to a given customer, and then
later sells electric cars to the same customer. Even though buying SUVs and buying electric cars may be
negatively correlated events, it can be interesting to discover and examine such exceptional cases. [

An infrequent (or rare) pattern is a pattern with a frequency support that is below (or far below) a
user-specified (relative) minimum support threshold. However, since the occurrence frequencies of the
majority of itemsets are usually below or even far below the minimum support threshold, it is desirable
in practice for users to specify other conditions for rare patterns. For example, if we want to find
patterns containing at least one item with a value that is over $500, we should specify such a constraint
explicitly. Efficient mining of such itemsets is discussed under mining multidimensional associations
(Section 5.1.1), where the strategy is to adopt multiple (e.g., item- or group-based) minimum support
thresholds. Other applicable methods are discussed under constraint-based pattern mining (Section 5.3),
where user-specified constraints are pushed deep into the iterative mining process.

There are various ways we could define a negative pattern. We will consider three such definitions.

Definition 5.1. If itemsets X and Y are both frequent but rarely occur together (i.e., sup(X UY) <
sup(X) x sup(Y)), then itemsets X and Y are negatively correlated, and the pattern X U Y is a nega-
tively correlated pattern. If sup(X UY) < sup(X) x sup(Y), then X and Y are strongly negatively
correlated, and the pattern X U Y is a strongly negatively correlated pattern.

This definition can easily be extended for patterns containing k-itemsets for k > 2.

A problem with the definition, however, is that it is not null-invariant. That is, its value can be
misleadingly influenced by null transactions, where a null-transaction is a transaction that does not
contain any of the itemsets being examined (Section 4.3.3). This is illustrated in Example 5.4.

Example 5.4. Null-transaction problem with Definition 5.1. If there are a lot of null-transactions
in the data set, then the number of null-transactions rather than the patterns observed may strongly
influence a measure’s assessment as to whether a pattern is negatively correlated. For example, suppose
a sewing store sells needle packages A and B. The store sold 100 packages each of A and B, but only
one transaction contains both A and B. Intuitively, A is negatively correlated with B since the purchase
of one does not seem to encourage the purchase of the other.

Let’s see how the above definition handles this scenario. If there are 200 transactions, we have
sup(AU B) =1/200=0.005 and sup(A) x sup(B) =100/200 x 100/200 = 0.25. Thus, sup(AU
B) <« sup(A) x sup(B), and so Definition 5.1 indicates that A and B are strongly negatively corre-
lated. What if, instead of only 200 transactions in the database, there are 10°? In this case, there

186 Chapter 5 Pattern mining: advanced methods

are many null-transactions, that is, many contain neither A nor B. How does the definition hold
up? It computes sup(AU B) =1/10° and sup(X) x sup(Y) =100/10° x 100/10° = 1/108. Thus,
sup(A U B) > sup(X) x sup(Y), which contradicts the earlier finding even though the number of oc-
currences of A and B has not changed. The measure in Definition 5.1 is not null-invariant, where
null-invariance is essential for quality interestingness measures as discussed in Section 4.3.3. O

Definition 5.2. If X and Y are strongly negatively correlated, then
sup(X U Y) x sup(Y UY)>sup(XUY) x sup(y uy).

Intuitively, it says that two itemsets X and Y are strongly negatively correlated if the probability of
a transaction contains either X or Y is far bigger than the probability that it contains both X and Y or it
contains neither X nor Y.

Example 5.5. Null-transaction problem with Definition 5.2. Given our needle package example,
when there are in total 200 transactions in the database, we have

sup(A U B) x sup(A U B) =99/200 x 99/200 a2 0.245
> sup(AU B) x sup(AU B) =1/200 x (200 — 199)/200 ~ 0.25 x 107,

which, according to Definition 5.2, indicates that A and B are strongly negatively correlated. However,
if there are 10° transactions in the database, the measure would compute

sup(A U B) x sup(A U B) =99/10% x 99/10° =9.8 x 10~°
< sup(AU B) x sup(AUB) =1/10° x (10° — 199)/10° ~ 107°.

This time, the measure indicates that A and B are positively correlated, hence, a contradiction. The
measure is not null-invariant. O

As a third alternative, consider Definition 5.3, which is based on the Kulczynski measure (i.e., the
average of conditional probabilities). It follows the spirit of interestingness measures introduced in
Section 4.3.3.

Definition 5.3. Suppose that itemsets X and Y are both frequent, that is, sup(X) > min_sup and
sup(Y) > min_sup, where min_sup is the minimum support threshold. If (P(X|Y) + P(Y|X))/2 <,
where € is a negative pattern threshold, then pattern X U Y is a negatively correlated pattern.

Example 5.6. Negatively correlated patterns using Definition 5.3, based on the Kulczynski mea-
sure. Let’s reexamine our needle package example. Let min_sup be 0.01% and € =0.02. When
there are 200 transactions in the database, we have sup(A) = sup(B) = 100/200 = 0.5 > 0.01% and
(P(B|A)+ P(A|B))/2=(0.01+0.01)/2 < 0.02; thus A and B are negatively correlated. Does this
still hold true if we have many more transactions? When there are 10° transactions in the database,
the measure computes sup(A) = sup(B) = 100/106 =0.01% > 0.01% and (P(B|A) + P(A|B))/2 =
(0.0140.01)/2 < 0.02, again indicating that A and B are negatively correlated. This matches our in-
tuition. The measure does not have the null-invariance problem of the first two definitions considered.

Let’s examine another case: Suppose that among 100,000 transactions, the store sold 1000 needle
packages of A but only 10 packages of B; however, every time package B is sold, package A is also sold

5.2 Mining compressed or approximate patterns 187

(i.e., they appear in the same transaction). In this case, the measure computes (P (B|A) + P(A|B))/2 =
(0.01 +1)/2 =0.505 > 0.02, which indicates that A and B are positively correlated instead of nega-
tively correlated. This also matches our intuition. O

With this new definition of negative correlation, efficient methods can easily be derived for mining
negative patterns in large databases. This is left as an exercise for interested readers.

5.2 Mining compressed or approximate patterns

A major challenge in frequent pattern mining is the huge number of discovered patterns. Using a mini-
mum support threshold to control the number of patterns found has limited effect. Too low a value can
lead to the generation of an explosive number of output patterns, whereas too high a value can lead to
the discovery of only commonsense patterns.

To reduce the huge set of frequent patterns generated in mining while maintaining high-quality
patterns, we can instead mine a compressed or approximate set of frequent patterns. Top-k most frequent
patterns were proposed to make the mining process concentrate on only the set of k most frequent
patterns. Although interesting, they usually do not epitomize the k most representative patterns because
of the uneven frequency distribution among itemsets. Constraint-based mining of frequent patterns
(Section 5.3) incorporates user-specified constraints to filter out uninteresting patterns. Measures of
pattern/rule interestingness and correlation (Section 5.3) can also be used to help confine the search to
patterns/rules of interest.

Recall in the last chapter, we introduced two preliminary forms of “compression” of frequent pat-
terns: closed pattern, which is a lossless compression of the set of frequent patterns, and max-pattern,
which is a lossy compression. In this section, we examine two advanced forms of “compression” of
frequent patterns that build on the concepts of closed patterns and max-patterns. Section 5.2.1 explores
clustering-based compression of frequent patterns, which groups patterns together based on their sim-
ilarity and frequency support. Section 5.2.2 takes a “summarization” approach, where the aim is to
derive redundancy-aware top-k representative patterns that cover the whole set of (closed) frequent
itemsets. The approach considers not only the representativeness of patterns but also their mutual inde-
pendence to avoid redundancy in the set of generated patterns. The k representatives provide compact
compression over the collection of frequent patterns, making them easier to interpret and use.

5.2.1 Mining compressed patterns by pattern clustering

Pattern compression can be achieved by pattern clustering. Clustering techniques are described in detail
in Chapters 8 and 9. In this section, it is not necessary to know the fine details of clustering. Rather,
you will learn how the concept of clustering can be applied to compress frequent patterns. Clustering is
the automatic process of grouping similar objects together, so that objects within a cluster are similar
to one another and dissimilar to objects in other clusters. In this case, the objects are frequent patterns.
The frequent patterns are clustered using a tightness measure called §-cluster. A representative pattern
is selected for each cluster, thereby offering a compressed version of the set of frequent patterns.
Before we begin, let’s review some definitions. An itemset X is a closed frequent itemset in a data
set D if X is frequent and there exists no proper superitemset ¥ of X such that Y has the same support

188 Chapter 5 Pattern mining: advanced methods

Table 5.2 Subset of frequent

itemsets.
ID Itemsets Support
Py {b,c,d, e} 205,227

P {b,c,d,e, [} 205,211
P3 {a,b,c,d,e, f} 101,758
Py {a,c,d,e, [} 161,563
Ps {a,c,d, e} 161,576

count as X in D. An itemset X is a maximal frequent itemset in data set D if X is frequent, and there
exists no superitemset ¥ such that X C Y and Y is frequent in D. Using these concepts alone is not
enough to obtain a good representative compression of a data set, as we see in Example 5.7.

Example 5.7. Shortcomings of closed itemsets and maximal itemsets for compression. Table 5.2
shows a subset of frequent itemsets on a large data set, where a, b, ¢, d, e, f represent individual items.
There is no nonclosed itemset here; therefore we cannot use closed frequent itemsets to compress the
data. The only maximal frequent itemset is P;. However, we observe that itemsets P>, P3, and Ps
are significantly different with respect to their support counts. If we were to use P3 to represent a
compressed version of the data, we would lose this support count information entirely. Consider the
two pairs (P;, P>) and (Ps4, Ps). From visual inspection, the patterns within each pair are very similar
with respect to their support and expression. Therefore intuitively, P>, P3, and Py, collectively, should
serve as a better compressed version of the data. O

Let’s see if we can find a way of clustering frequent patterns as a means of obtaining a compressed
representation of them. We will need to define a good similarity measure, cluster patterns according to
this measure, and then select and output only a representative pattern for each cluster. Since the set of
closed frequent patterns is a lossless compression over the original frequent patterns set, it is a good
idea to discover representative patterns around the collection of approximately closed patterns.

We can use the following distance measure between closed patterns. Let P; and P, be two closed
patterns. Their supporting transaction sets are 7 (P;) and T (P»), respectively. The pattern distance of
Py and P, Pat_Dist(P;, P»), is defined as

IT(P)NT(P)]

Pat_Dist(P|, P))=1— ——————.
IT(P1)UT (P

(5.7)
Pattern distance is a distance metric defined on the set of transactions. It incorporates the support
information of patterns, as desired previously.

Example 5.8. Pattern distance. Suppose P; and P; are two patterns such that T (Py) = {#1, 12, 13, ta, t5}
and T (Py) = {t1, 12, 13, 14, tg}, Where #; is a transaction in the database. The distance between P; and P
is Pat_Dist(P), P))=1—¢2=1. O

Now, let’s consider the expression of patterns. Given two patterns A and B, we say B can be
expressed by A if O(B) C O(A), where O(A) is the corresponding itemset of pattern A. Follow-
ing this definition, assume patterns Pp, Ps, ..., Py are in the same cluster. The representative pattern

5.2 Mining compressed or approximate patterns 189

P, of the cluster should be able to express all the other patterns in the cluster. Clearly, we have
U, 0(P) S O(Py).

Using the distance measure, we can simply apply a clustering method, such as k-means (Sec-
tion 9.2), on the collection of frequent patterns. However, this introduces two problems. First, the quality
of the clusters cannot be guaranteed; second, it may not be able to find a representative pattern for each
cluster (i.e., the pattern P» may not belong to the same cluster). To overcome these problems, this is
where the concept of §-cluster comes in, where § (0 < § < 1) measures the tightness of a cluster.

A pattern P is §-covered by another pattern P’ if O(P) € O(P’) and Pat_ Dist(P,P’) < §. A
set of patterns form a §-cluster if there exists a representative pattern P, such that for each pattern P
in the set, P is §-covered by P;.

Note that according to the concept of §-cluster, a pattern can belong to multiple clusters. Also, using
8-cluster, we only need to compute the distance between each pattern and the representative pattern of
the cluster. Because a pattern P is §-covered by a representative pattern P, only if O(P) € O(P,), we
can simplify the distance calculation by considering only the supports of the patterns:

IT(PYNT(PHI _ |T(P)

Pat_Dist(P,P)=1— =1- .
|T(P)UT(P) |T(P)|

(5.8)

If we restrict the representative pattern to be frequent, then the number of representative patterns
(i.e., clusters) is no less than the number of maximal frequent patterns. This is because a maximal
frequent pattern can only be covered by itself. To achieve more succinct compression, we relax the
constraints on representative patterns, that is, we allow the support of representative patterns to be
somewhat less than min_sup.

For any representative pattern P,, assume its support is k. Since it has to cover at least one frequent
pattern (i.e., P) with support that is at least min_sup, we have

TPl _ K (5.9)

6> Pat_Dist(P,P,)=1— > - .
|T (P)| min_sup

That is, k > (1 — §) x min_sup. This is the minimum support for a representative pattern, denoted as
Min_sup,..

Based on the preceding discussion, the pattern compression problem can be defined as follows:
Given a transaction database, a minimum support min_sup, and the cluster quality measure §, the
pattern compression problem is to find a set of representative patterns R such that for each frequent
pattern P (with respect to min_sup), there is a representative pattern P, € R (with respect to min_sup,.),
which covers P, and the value of |R| is minimized.

Finding a minimum set of representative patterns is an NP-Hard problem. However, efficient meth-
ods have been developed that reduce the number of closed frequent patterns generated by orders of
magnitude with respect to the original collection of closed patterns. The methods succeed in finding a
high-quality compression of the pattern set.

5.2.2 Extracting redundancy-aware top-k patterns

Mining the top-k most frequent patterns is a strategy for reducing the number of patterns returned during
mining. However, in many cases, frequent patterns are not mutually independent but often clustered in

190 Chapter 5 Pattern mining: advanced methods

small regions. This is somewhat like finding 20 population centers in the world, which may result in
cities clustered in a small number of countries rather than evenly distributed across the globe. Instead,
most users would prefer to derive the k most interesting patterns, which are not only significant but also
mutually independent and containing little redundancy. A small set of k representative patterns that have
not only high significance but also low redundancy are called redundancy-aware top-k patterns.

Example 5.9. Redundancy-aware top-k strategy vs. other top-k strategies. Fig. 5.7 illustrates the
intuition behind redundancy-aware top-k patterns vs. traditional top-k patterns and k-summarized pat-
terns. Suppose we have the frequent patterns set shown in Fig. 5.7(a), where each circle represents
a pattern of which the significance is colored in grayscale. The distance between two circles reflects
the redundancy of the two corresponding patterns: The closer the circles are, the more redundant the
respective patterns are to one another. Let’s say we want to find three patterns that will best represent
the given set, that is, k = 3. Which three should we choose?

Arrows are used to show the patterns chosen if using redundancy-aware top-k patterns (Fig. 5.7b),
traditional top-k patterns (Fig. 5.7c), or k-summarized patterns (Fig. 5.7d). In Fig. 5.7(c), the tra-
ditional top-k strategy relies solely on significance: It selects the three most significant patterns to
represent the set.

@) o
Q O
Qee oo J: | @¥e oo
oe o XN | AL Oogo
Significance + Relevance
(a) (b)
o @
O Q
¥ oo Qe o
@O 0°©) @) 0°©
@O @00
ce®y 0 000y o
@ o @ o
Significance Relevance
(c) d)

FIGURE 5.7

Conceptual view comparing top-k methodologies (where gray levels represent pattern significance, and the closer
that two patterns are displayed, the more redundant they are to one another): (a) original patterns, (b) redundancy-
aware top-k patterns, (c) traditional top-k patterns, and (d) k-summarized patterns.

5.3 Constraint-based pattern mining 191

In Fig. 5.7(d), the k-summarized pattern strategy selects patterns based solely on nonredundancy.
It detects three clusters and finds the most representative patterns to be the “centermost” pattern from
each cluster. These patterns are chosen to represent the data. The selected patterns are considered “sum-
marized patterns” in the sense that they represent or “provide a summary” of the clusters they stand for.

By contrast, in Fig. 5.7(b) the redundancy-aware top-k patterns make a trade-off between sig-
nificance and redundancy. The three patterns chosen here have high significance and low redundancy.
Observe, for example, the two highly significant patterns that, based on their redundancy, are displayed
next to each other. The redundancy-aware top-k strategy selects only one of them, taking into consider-
ation that two would be redundant. To formalize the definition of redundancy-aware top-k patterns, we
need to define the concepts of significance and redundancy. U

A significance measure S is a function mapping a pattern p € P to a real value such that S(p) is
the degree of interestingness (or usefulness) of the pattern p. In general, significance measures can be
either objective or subjective. Objective measures depend only on the structure of the given pattern and
the underlying data used in the discovery process. Commonly used objective measures include support,
confidence, correlation, and #f-idf (or term frequency vs. inverse document frequency), where the latter
is often used in information retrieval. Subjective measures are based on user beliefs in the data. They
therefore depend on the users who examine the patterns. A subjective measure is usually a relative
score based on user prior knowledge or a background model. It often measures the unexpectedness
of a pattern by computing its divergence from the background model. Let S(p, g) be the combined
significance of patterns p and ¢, and S(p|q) = S(p, g) — S(g) be the relative significance of p given
q. Note that the combined significance, S(p, g), means the collective significance of two individual
patterns p and g, not the significance of a single super pattern p U g.

Given the significance measure S, the redundancy R between two patterns p and g is defined as
R(p,q) = S(p) + S(g) — S(p, q). Subsequently, we have S(plq) = S(p) — R(p, q).

We assume that the combined significance of two patterns is no less than the significance of any
individual pattern (since it is a collective significance of two patterns) and does not exceed the sum of
two individual significance patterns (since there exists redundancy). That is, the redundancy between
two patterns should satisfy

0<R(p,q) <min(S(p), S(g)). (5.10)

The ideal redundancy measure R(p, q) is usually hard to obtain. However, we can approximate redun-
dancy using distance between patterns such as with the distance measure defined in Section 5.2.1.

The problem of finding redundancy-aware top-k patterns can thus be transformed into finding a
k-pattern set that maximizes the marginal significance, which is a well-studied problem in information
retrieval. In this field, a document has high marginal relevance if it is both relevant to the query and
contains minimal marginal similarity to previously selected documents, where the marginal similarity
is computed by choosing the most relevant selected document. The detailed computational method is
omitted here. Experimental studies have shown that the computation based on this principle is efficient
and is able to find high-significance and low-redundancy top-k patterns.

5.3 Constraint-based pattern mining
A pattern mining process may uncover thousands of patterns from a given data set, many of which may
end up being unrelated or uninteresting to users. Often, a user has a good sense of which “direction” of

192 Chapter 5 Pattern mining: advanced methods

mining may lead to interesting patterns and the “form” of the patterns or rules they want to find. They
may also have a sense of “conditions” for the rules, which would eliminate the discovery of certain
rules that they know would not be of interest. Thus a good option is to have users specify such intuition
or expectations as constraints to confine the search space or perform constraint refinement interactively
based on the intermediate mining results. This strategy is known as constraint-based mining. The
constraints can include the following:

* Knowledge type constraints: These specify the type of knowledge to be mined, such as association,
correlation, classification, or clustering.

* Data constraints: These specify the set of task-relevant data.

* Dimension/level constraints: These specify the desired dimensions (or attributes) of the data, the
abstraction levels, or the level of the concept hierarchies to be used in mining.

* Interestingness constraints: These specify thresholds on statistical measures of rule interestingness
such as support, confidence, and correlation.

* Rule/pattern constraints: These specify the form of, or conditions on, the rules/patterns to be
mined. Such constraints may be expressed as metarules (rule templates), as the maximum or mini-
mum number of predicates that can occur in the rule antecedent or consequent, or as relationships
among attributes, attribute values, and/or aggregates.

These constraints can be specified using a high-level data mining query language or a template-based
graphical user interface.

The first four constraint types have already been addressed earlier in the book. In this section, we
discuss the use of rule/pattern constraints to focus on the mining task. This form of constraint-based
mining allows users to describe the rules or patterns that they would like to uncover, thereby making
the data mining process more effective. In the meantime, a sophisticated mining query optimizer can be
used to exploit the constraints specified by the user, thereby making the mining process more efficient.

In some cases, a user may like to specify some syntactic form of rules (also called metarules) that
she is interested in mining. Such syntactic forms help the user to express her expectation and also help
the system to confine search space and improve mining efficiency.

For example, a metarule can be in the form of

Pi(X,Y) A Py(X, W)= buys(X, “iPad”), (5.11)

where P; and P, are predicate variables that can be instantiated to attributes in a given database
during the mining process, X is a variable representing a customer, and ¥ and W take on values of
the attributes assigned to P; and P», respectively. Typically, a user can specify a list of attributes to be
considered for instantiation with Py and P,. Otherwise, a default set may be used.

A metarule forms a hypothesis regarding the relationships that the user is interested in probing or
confirming. Following such a template, a system can then mine concrete rules that match the given
metarule. Possibly, Rule (5.12) that complies with Metarule (5.11) will be returned as mining results

age(X,“20..29”) A income(X, “41K ..60K ") = buys(X, “iPad”). (5.12)

In order to generate interesting and useful mining results, users may have multiple ways to specify
rule/pattern constraints. It is desirable for a mining system to use rule/pattern constraints to prune the
search space, that is, to push such constraints deeply into the mining process while still ensure the

5.3 Constraint-based pattern mining 193

completeness of the answer returned for a mining query. However, this is a nontrivial task, and its study
leads to constraint-based pattern mining.

To study how to use constraints at mining frequent patterns or association rules, we examine the
following running example.

Example 5.10. Constraints on shopping transaction mining. Suppose that a multidimensional shop-
ping transaction database contains the following interrelated relations:

» item(item_ID, item_name, description, category, price)
* sales(transaction_ID, day, month, year, store_ID, city)
e trans_item(item_ID, transaction_ID)

Here, the ifem table contains attributes item_ID, item_name, description, category, and price; the sales
table contains attributes transaction_ID, day, month, year, store_ID, and city; and the two tables are
linked via the foreign key attributes, item_ID and transaction_ID, in the table trans_item.

A mining query may contain multiple constraints, For example, we may have a query: “From the
sales in Chicago in 2020, find the patterns (i.e., item sets) that which cheap items (where the sum of
the prices is less than $10) appear in the same transaction with (hence may promote) which expensive
items (where the minimum price is $50).”

This query contains the following four constraints: (1) sum(I.price) < $10, where I represents the
item_ID of a cheap item; (2) min(J.price) > $50), where J represents the item_ID of an expensive
item; (3) T.city = Chicago; and (4) T.year = 2020, where T represents a transaction_ID. O

In constraint-based pattern mining, the search space can be pruned in the mining process with two
strategies: pruning pattern search space and pruning data search space. The former checks candidate
patterns and decides whether a pattern should be eliminated from further processing. For example, it
may prune a pattern if all of its superpattern will be useless in the remaining mining process, say, based
on the Apriori property. The latter checks the data set to determine whether a particular data object will
not be able to contribute to the subsequent generation of satisfiable patterns in the remaining mining
process (hence safely pruning the data object).

We examine these pruning strategies in the following subsections.

5.3.1 Pruning pattern space with pattern pruning constraints

Based on how a constraint may interact with the pattern mining process, we partition pattern mining
constraints into four categories: (1) antimonotonic, (2) monotonic, (3) convertible, and (4) nonconvert-
ible. Let’s examine them one by one.

Pattern antimonotonicity

The first group of constraints are characterized with pattern antimonotonicity. A constraint C is pat-
tern antimonotonic if it has the following property: If an itemset does not satisfy constraint C, none
of its supersets will satisfy C.

Let’s examine a constraint “Cy : sum(I.price) < $100” and see what may happen if the constraint is
added to our shopping transaction mining query. Suppose we are mining itemsets of size k at the kth it-
eration using the Apriori algorithm or the like. If the summation of the prices of the items in a candidate
itemset S is greater than $100, this itemset should be pruned from the search space, since not only the

194 Chapter 5 Pattern mining: advanced methods

current set cannot satisfy the constraint, but also adding more items into the set (assuming that the price
of any item is no less than zero) will never be able to satisfy the constraint. Notice that the pruning of
this pattern (frequent itemset) for constraint C; is not confined to the Apriori candidate-generation-and-
test framework. For example, for the same reason, S; should be pruned in the pattern-growth framework
since pattern S and the further growth from it can never make constraint C satisfiable.

This property is called antimonotonicity because monotonicity of a constraint usually means if a
pattern p satisfies a constraint C, its further expansion will always satisfy C; however, here we claim
that this constraint may have a reverse behavior: once a pattern p violates the constraint C1, its further
growth (or expansion) will always violate Cy. Pattern pruning by antimonotonicity can be applied at
each iteration of Apriori-style algorithms to help improve the efficiency of the overall mining process
while guaranteeing the completeness of the data mining task.

It is interesting to note that the very basic Apriori property itself (which states that all nonempty
subsets of a frequent itemset must also be frequent) is antimonotonic: If an itemset does not satisfy the
minimum support threshold, none of its supersets can. This property has been used at each iteration of
the Apriori algorithm to reduce the number of candidate itemsets to be examined, thereby reducing the
search space for frequent pattern mining.

There are many constraints that are antimonotonic. For example, the constraint “min(J.price) >
$50,” and “count (I) < 10,” are antimonotonic. However, there are also many constraints that are not
antimonotonic. For example, the constraint “avg(I.price) < $10” is not antimonotonic. This is because
even for a given itemset S that does not satisfy this constraint, a superset created by adding some (cheap)
items may make it satisfy the constraint. Hence, pushing this constraint inside the mining process will
not guarantee the completeness of the data mining process. A list of popularly encountered constraints
is given in the first column of Table 5.3. The antimonotonicity of the constraints is indicated in the
second column. To simplify our discussion, only existence operators (e.g., =, €, but not #, ¢) and
comparison (or containment) operators with equality (e.g., <, C) are given.

Pattern monotonicity

The second category of constraints is pattern monotonicity. A constraint C is pattern monotonic if
it has the following property: If an itemset satisfies constraint C, all of its supersets will satisfy C.

Let’s examine another constraint “C : sum(I.price) > $100” and see what may happen if the con-
straint is added to our example query. Suppose we are mining itemsets of size k at the kth iteration using
the Apriori algorithm or the like. If the summation of the prices of the items in a candidate itemset S
is less than $100, this itemset should not be pruned from the search space, since adding more items
to the current set may make the itemset satisfy the constraint. However, once the sum of the prices of
the items in itemset S satisfies the constraint C;, there is no need to check this constraint for S any
more since adding more items will not decrease the sum value and will always satisfy the constraint.
In other words, if an itemset satisfies the constraint, so do all of its supersets. Please note that the prop-
erty is independent of particular iterative pattern mining algorithms. For example, the same pruning
methodology should be adopted for pattern-growth algorithms as well.

There are many pattern monotonic constraints in practice. For example, “min(I.price) < $10” and
“count (I) > 10” are such constraints. The pattern monotonicity of the list of frequently encountered
constraints is indicated in the third column of Table 5.3.

5.3 Constraint-based pattern mining 195

Table 5.3 Characterization of commonly used pattern pruning
constraints.

Constraint Antimonotonic Monotonic Succinct
ve S no yes yes
SOV no yes yes
SCv yes no yes
min(S) <v no yes yes
min(S) >v yes no yes
max(S) <v yes no yes
max(S) >v no yes yes
count(S) <v yes no no
count(S)>v no yes no
sum(S) <vMaeS,a>0) yes no no
sum(S)>vMaeS,a>0) no yes no
range(S) <v yes no no
range(S) > v no yes no
avg(S) B v, 0 ef{<,>} convertible convertible no
support(S) > & yes no no
support(S) <& no yes no
all_confidence(S) > & yes no no
all_confidence(S) <& no yes no

Convertible constraints: ordering data in transactions

There are constraints that are neither pattern antimonotonic nor pattern monotonic. For example, it is
hard to directly push the constraint “C3 : avg(l.price) < $10” deeply into an iterative mining process
because the next item to be added to the current itemset can be more expensive or less expensive
than the average price of the itemset computed so far. At the first glance, it seems to be hard to explore
constraint pushing for such kind of constraints in pattern mining. However, observing that the items in a
transaction can be treated as a set, and thus it is possible to arrange items in a transaction in any specific
ordering. Interestingly, when the items in the itemset are arranged in a price ascending or descending
order, it is possible to explore efficient pruning in frequent itemset mining as we did before. In this
context, it is possible to convert such kind of constraints into monotonic or antimonotonic constraints.
Hence we call such constraints as convertible constraints.

Let’s re-examine the constraint Cz. If the items in all the transactions are sorted in the price-
ascending order (or items in any transaction are added in this order) in the pattern-growth mining
process, the constraint C3 becomes antimonotonic, because if an itemset / violates the constraint (i.e.,
with an average price greater than $10), then further addition of more expensive items into the itemset
will never make it satisfy the constraint. Similarly, if items in all the transaction are sorted (or being
added to the itemset being mined) in the price-descending order, it becomes monotonic, because if the
itemset satisfies the constraint (i.e., with an average price no greater than $10), then adding cheaper
items into the current itemset will still make the average price no greater than $10.

Will the Apriori-like algorithm make good use of the convertible constraint to prune its search
space? Unfortunately, such a constraint satisfaction checking cannot be done easily with an Apriori-like

196 Chapter 5 Pattern mining: advanced methods

candidate-generation-and-test algorithm, because an Apriori-like algorithm requires all of the subsets
(say, {ab}, {bc}, {ac}) of a candidate {abc} must be frequent and satisfies the constraint. However, even
{abc} itself could be a valid itemset (i.e., avg ({abc}.price) < $10), the subset {bc} may have violated
C3, and we will never be able to generate {abc} since {bc} has been pruned.

Let S represent a set of items and its value be price. Besides “avg(S) < c¢” and “avg(S) > ¢,” there
are also other convertible constraints. For example, “variance(S) > ¢,” “standard_deviation(S) >
¢” are convertible constraints. However, this does not imply that every nonmonotonic or nonantimono-
tonic constraint is convertible. For example, if the aggregation function for item values in the set has
random sampling behavior, it will be hard to arrange the items in a monotonically increasing or decreas-
ing order. Therefore, there still exists a category of constraints that are nonconvertible. The good news
is that although there exist some tough constraints that are not convertible, most simple and frequently
used constraints belong to one of the three categories we just described, antimonotonic, monotonic, and
convertible, to which efficient constraint mining methods can be applied.

5.3.2 Pruning data space with data pruning constraints

The second way of search space pruning in constraint-based frequent pattern mining is pruning data
space. This strategy prunes pieces of data if they will not contribute to the subsequent generation of
satisfiable patterns in the mining process. We examine data antimonotonicity in this section.

Interestingly, many constraints are data-antimonotonic in the sense that during the mining process,
if a data entry cannot satisfy a data-antimonotonic constraint based on the current pattern, then it can
be pruned. We prune it because it will not be able to contribute to the generation of any superpattern of
the current pattern in the remaining mining process.

Example 5.11. Data antimonotonicity. We examine constraint C| : sum(I.price) > $100, that is, the
sum of the prices of the items in the mined pattern must be no less than $100. Suppose that the current
frequent itemset, S, does not satisfy constraint C; (say, because the sum of the prices of the items in S is
$50). If the remaining frequent items in a transaction 7; cannot make S satisfy the constraint (e.g., the
remaining frequent items in 7; are {ip.price = $5,is.price = $10, ig.price = $20}), then T; cannot
contribute to the patterns to be mined from S, and can be pruned from further mining.

Note that such pruning may not be effective by enforcing it only at the beginning of the mining
process. This is because it may prune those transactions whose sum of items do not satisfy the constraint
C1. However, we may encounter a case that i3. price = $90, but later in the mining process, i3 becomes
infrequent with § in the transaction data set, and at this point, 7; should be pruned. Therefore such
checking and pruning should be enforced at each iteration to reduce the data search space. O

Notice that constraint C1 is a monotonic constraint with respect to pattern space pruning. As we have
seen, this pattern monotonic constraint has very limited power for reducing the search space in pattern
pruning. However, the same constraint is data antimonotonic and can be used for effective reduction of
the data search space.

For a pattern antimonotonic constraint, such as Cy : sum(I.price) < $100, we can prune both pat-
tern and data search spaces at the same time. Based on our study of pattern pruning, we already know
that the current itemset can be pruned if the sum of the prices in it is over $100 (since its further expan-
sion can never satisfy C»). At the same time, we can also prune any remaining items in a transaction 7;
that cannot make the constraint C, valid. For example, if the sum of the prices of items in the current

5.3 Constraint-based pattern mining 197

itemset S is $90, any item with price over $10 in the remaining frequent items in 7; can be pruned.
If none of the remaining items in 7; can make the constraint valid, the entire transaction 7; should be
pruned.

Consider pattern constraints that are neither antimonotonic nor monotonic such as “Cs:
avg(l.price) <10.” These can be data-antimonotonic because if the remaining items in a transac-
tion 7; cannot make the constraint valid, then 7; can be pruned as well. Therefore data-antimonotonic
constraints can be quite useful for constraint-based data space pruning.

Notice that search space pruning by data antimonotonicity is confined only to a pattern growth-
based mining algorithm because the pruning of a data entry is determined based on whether it can
contribute to a specific pattern. Data antimonotonicity cannot be used for pruning the data space if
the Apriori algorithm is used because the data are associated with all of the currently active patterns.
At any iteration, there are usually many active patterns. A data entry that cannot contribute to the
formation of the superpatterns of a given pattern may still be able to contribute to the superpattern of
other active patterns. Thus, the power of data space pruning can be very limited for nonpattern growth-
based algorithms.

5.3.3 Mining space pruning with succinctness constraints

For pattern mining, there is another category of constraints called succinct constraints. A constraint ¢
is succinct if it can be enforced by directly pruning some data objects from the database or by directly
enumerating all and only those sets that are guaranteed to satisfy the constraint. The former is called
data succinct since it enables direct data space pruning, whereas the latter is called pattern succinct
since it enables direct pattern generation by starting with initial patterns that satisfy the constraint. Let’s
examine a few examples.

First, let’s examine the constraint i € S, that is, the pattern must contain item i. To find the patterns
containing item #, one can mine only i-projected database since a transaction does not contain i will not
contribute to the patterns containing i, and for those containing i, all the remaining items can participate
the remaining of the mining process. This facilitates data space pruning at the beginning and thus this
constraint is both data and pattern succinct. On the other hand, to find the patterns that do not contain
item i (i.e., i ¢ S), one can mine it by mining the transaction database with i removed since i in a
transaction will not contribute to the pattern. This facilitates data space pruning at the beginning and
also facilitate pattern space pruning (since it avoids mine any intermediate patterns containing i, thus
the constraint is succinct, and it is both pattern succinct and data succinct.

As another example, a constraint “min(S.price) > $50” is data succinct since we can remove all
items whose price is less than $50 from the transactions since any item whose price is no less than $50
will not contribute to the pattern mining process. Similarly, min(S.Price) < v is pattern succinct since
we can start with only those items whose price is no greater than v.

Notice that not all the constraints are succinct. For example, the constraint sum(S.Price) > v is
not succinct because it cannot be used to facilitate the pruning of any item from a transaction at the
beginning of the process since the sum of the price of an itemset S will keep increasing.

The pattern succinctness of the list of SQL primitives—based constraints is indicated in the fourth
column of Table 5.3.

From the above discussion, we can see that the same constraint may belong to more than one cate-
gory. For example, the constraint “min(I.price) < $10” is pattern monotonic and also data succinct. In

198 Chapter 5 Pattern mining: advanced methods

this case, we can use data succinctness to start only with those items whose price is no more than $10.
By doing so, it has implicitly applied pattern monotonicity property already since once the constraint
is used at the starting point (i.e., satisfied), we will not need to check it any more. As another example,
the constraint “cq : sum(I.price) > $100” is both pattern monotonic and data antimonotonic, we can
use the data antimonotonicity to prune those transactions whose prices of the remaining items adding
together cannot reach $100. In the meantime, once a pattern satisfies cg, we will not need to check ¢
again in the mining process.

In applications, a user may pose a mining query that may contain multiple constraints. In many
cases, multiple constraints can be enforced together to jointly prune mining space, which may lead to
more efficient processing. However, in some cases, different constraints may require different item-
ordering for the effective constraint enforcement, especially for convertible constraints. For example,
a query may contain both c; : avg(S.profit) > 20 and ¢ : avg(S.price) < 50. Unfortunately, sorting
on profit in value-descending order may not result in value-descending order of their associated item
price. In this case, it is the best to estimate which ordering may lead to more effective pruning, and
mining following the more effective pruning ordering will lead to more efficient processing. Suppose it
is hard to find patterns satisfying c| but easy to find pattern satisfying c,. Then the system should sort
the items in transactions in profit descending ordering. Once the average profit of the current itemset
drops to below $20, the itemset can be tossed (i.e., no further mining with it), which will lead to efficient
processing.

5.4 Mining sequential patterns

A sequence database consists of sequences of ordered elements or events, recorded with or without
a concrete notion of time. There are many applications involving sequence data. Typical examples
include customer shopping sequences, Web clickstreams, biological sequences, and sequences of events
in science and engineering, and in natural and social developments. In this section, we study sequential
pattern mining in transactional databases, and with proper extensions, such mining algorithms can help
find sequential patterns for many other applications, such as finding sequential patterns for Webclick
streams, and for science, engineering, and social event mining. We start with the basic concepts of
sequential pattern mining in Section 5.4.1. Section 5.4.2 presents several scalable methods for such
mining. We will discuss constraint-based sequential pattern mining in Section 5.4.3.

5.4.1 Sequential pattern mining: concepts and primitives

“What is sequential pattern mining?” Sequential pattern mining is the mining of frequently occur-
ring ordered events or subsequences as patterns. An example of a sequential pattern is “Customers
who buy an iPad Pro are likely to buy an Apple pencil within 90 days.” For retail data, sequential
patterns are useful for shelf placement and promotions. This industry, as well as telecommunications
and other businesses, may also use sequential patterns for targeted marketing, customer retention, and
many other tasks. Other areas in which sequential patterns can be applied include Web access pattern
analysis, production processes, and network intrusion detection. Notice that most studies of sequential
pattern mining concentrate on categorical or symbolic patterns, whereas numerical curve analysis usu-
ally belongs to the scope of trend analysis and forecasting in statistical time-series analysis discussed
in many statistics or time-series analysis textbooks.

5.4 Mining sequential patterns 199

The sequential pattern mining problem was first introduced by Agrawal and Srikant in 1995 based
on their study of customer purchase sequences, as follows: Given a set of sequences, where each se-
quence consists of a list of events (or elements) and each event consists of a set of items, and given
a user-specified minimum support threshold of min_sup, sequential pattern mining finds all frequent
subsequences, that is, the subsequences whose occurrence frequency in the set of sequences is no less
than min_sup.

Let’s establish some vocabulary for our discussion of sequential pattern mining. Let Z =
{11, 12,...,1,} be the set of all items. An itemset is a nonempty set of items. A sequence is an or-
dered list of events. A sequence s is denoted (ejeze3 - - - ¢;), where event e; occurs before e>, which
occurs before e3, and so on. Event ¢; is also called an element of s. In the case of customer purchase
data, an event refers to a shopping trip in which a customer bought items at a certain store. The event
is thus an itemset, that is, an unordered list of items that the customer purchased during the trip. The
itemset (or event) is denoted as (x1x2 - - - x;), where xi is an item. For brevity, the brackets are omitted
if an element has only one item, that is, element (x) is written as x. Suppose that a customer made
several shopping trips to the store. These ordered events form a sequence for the customer. That is,
the customer first bought the items in eq, then later bought the items in ey, and so on. An item can
occur at most once in an event of a sequence,” but can occur multiple times in different events of a
sequence. The number of instances of items in a sequence is called the length of the sequence. A
sequence with length [is called an /-sequence. A sequence « = (ajaz - - - a,) is called a subsequence
of another sequence B8 = (b1b>---by,), and B is a supersequence of «, denoted as o = g, if there
exist integers 1 < ji < jo <--- < j, <m such that a; € b}, ap Cbj,, ..., ay € bj,. For example, if
o = ((ab),d) and B = ((abc), (de)) where a, b, ¢, d, and e are items, then « is a subsequence of 8 and
B is a supersequence of «.

A sequence database, S, is a set of tuples, (SID, s), where SID is a sequence_ID and s is a
sequence. For our example, S contains sequences for all customers of the store. A tuple (S D, s) is said
to contain a sequence «, if o is a subsequence of s. The support of a sequence « in a sequence database
S is the number of tuples in the database containing «, that is, supports(a) = | {{(SID, s)|({(SID, s) €
S) A (@ E)} |. It can be denoted as support(«) if the sequence database is clear from the context.
Given a positive integer min_sup as the minimum support threshold, a sequence « is frequent in
sequence database S if supports(«a) > min_sup. That is, for sequence « to be frequent, it must occur
at least min_sup times in S. A frequent sequence is called a sequential pattern. A sequential pattern
with length [is called an /-pattern. The following example illustrates these concepts.

Example 5.12. Sequential patterns. Consider the sequence database, S, given in Table 5.4, which
will be used in examples throughout this section. Let min_sup = 2. The set of items in the database is
{a,b,c,d, e, f, g}. The database contains four sequences.

Let’s have a close look at sequence 1, which is (a(abc)(ac)d(cf)). It has five events, namely (a),
(abc), (ac), (d) and (cf), which occur in the order listed. Items a and ¢ each appear more than once
in different events of the sequence. There are nine instances of items in sequence 1. Therefore it has a
length of nine and is called a 9-sequence. Item a occurs three times in sequence 1 and so contributes
three to the length of the sequence. However, the entire sequence contributes only one to the support

2 We simplify our discussion here in the same spirit as frequent itemset mining, but the developed method can be extended to
consider multiple identical items.

200 Chapter 5 Pattern mining: advanced methods

Table 5.4 A sequence data-

base.

Sequence_ID Sequence
1 {a(abe)(ac)d(cf))
2 ((ad)c(bc)(ae))
3 ((ef)(ab)(df)ch)
4 {eg(af)cbc)

of (a). Sequence (a(bc)df) is a subsequence of sequence 1 since the events of the former are each
subsets of events in sequence 1, and the order of events is preserved. Consider subsequence s = ((ab)c).
Looking at the sequence database, S, we see that sequences 1 and 3 are the only ones that contain the
subsequence s. The support of s is thus 2, which satisfies minimum support. Therefore s is frequent,
and so we call it a sequential pattern. It is a 3-pattern since it is a sequential pattern of length three. [

This model of sequential pattern mining is an abstraction of customer-shopping sequence analysis.
Scalable methods for sequential pattern mining on such data are described in Section 5.4.2, which
follows. Many other sequential pattern mining applications may not be covered by this model. For
example, when analyzing Web clickstream sequences, gaps between clicks become important if one
wants to predict what the next click might be. In DNA sequence analysis, approximate patterns become
useful since DNA sequences may contain (symbol) insertions, deletions, and mutations. Such diverse
requirements can be viewed as constraint relaxation or enforcement. In Section 5.4.3, we discuss how
to extend the basic sequential mining model to constrained sequential pattern mining in order to handle
these cases.

5.4.2 Scalahle methods for mining sequential patterns

Sequential pattern mining is computationally challenging since such mining may generate and/or test a
combinatorially explosive number of intermediate subsequences.

“How can we develop efficient and scalable methods for sequential pattern mining ?”” We may cate-
gorize the sequential pattern mining methods into two categories: (1) efficient methods for mining the
full set of sequential patterns, and (2) efficient methods for mining only the set of closed sequential pat-
terns, where a sequential pattern s is closed if there exists no sequential pattern s’ where s’ is a proper
supersequence of s, and s’ has the same (frequency) support as 5. Since all of the subsequences of a
frequent sequence are also frequent, mining the set of closed sequential patterns may avoid the gen-
eration of unnecessary subsequences and thus lead to more compact results as well as more efficient
methods than mining the full set. We will first examine methods for mining the full set and then study
how they can be extended for mining the closed set. In addition, we discuss modifications for mining
multilevel, multidimensional sequential patterns (that is, with multiple levels of granularity).

The major approaches for mining the full set of sequential patterns are similar to those introduced
for frequent itemset mining in Chapter 5. Here, we discuss three such approaches for sequential pat-
tern mining, represented by the algorithms GSP, SPADE, and PrefixSpan, respectively. GSP adopts a

3 Closed frequent itemsets were introduced in Chapter 4. Here, the definition is applied to sequential patterns.

5.4 Mining sequential patterns 201

candidate generate-and-test approach using horizontal data format (where the data are represented as
(sequence_I D : sequence_of _itemsets), as usual, where each itemset is an event). SPADE adopts
a candidate generate-and-test approach using vertical data format (where the data are represented
as (itemset : (sequence_I D, event_I D))). The vertical data format can be obtained by transform-
ing from a horizontally formatted sequence database in just one scan. PrefixSpan is a pattern growth
method, which does not require candidate generation.

All three approaches either directly or indirectly explore the Apriori property, stated as follows:
every nonempty subsequence of a sequential pattern is a sequential pattern. (Recall that for a pattern
to be called sequential, it must be frequent. That is, it must satisfy minimum support.) The Apriori
property is antimonotonic (or downward-closed) in that, if a sequence cannot pass a test (e.g., regarding
minimum support), all of its supersequences will also fail the test. Use of this property to prune the
search space can help make the discovery of sequential patterns more efficient.

GSP: a sequential pattern mining algorithm based on candidate generate-and-test

GSP (generalize sequential patterns) is a sequential pattern mining method that was developed by
Srikant and Agrawal in 1996. It is an extension of their seminal algorithm for frequent itemset min-
ing, known as Apriori (Section 5.2). GSP makes use of the downward-closure property of sequential
patterns and adopts a multiple-pass, candidate generate-and-test approach. The algorithm is outlined as
follows. In the first scan of the database, it finds all of the frequent items, that is, those with minimum
support. Each such item yields a length-1 frequent sequence consisting of that item. Each subsequent
pass starts with a seed set of sequential patterns—the set of sequential patterns found in the previous
pass. This seed set is used to generate new potentially frequent patterns, called candidate sequences.
Each candidate sequence contains one more item than the seed sequential pattern from which it was
generated. Recall that the number of instances of items in a sequence is the length of the sequence.
Therefore all of the candidate sequences in a given pass will have the same length. We refer to a se-
quence with length & as a k-sequence. Let Cy denote the set of candidate k-sequences. A pass over the
database finds the support for each candidate k-sequence. The candidates in Cy with at least min_sup
form Ly, the set of all frequent k-sequences. This set then becomes the seed set for the next pass, k£ + 1.
The algorithm terminates when no new sequential pattern is found in a pass, or no candidate sequence
can be generated.
The method is illustrated in the following example.

Example 5.13. GSP: candidate generate-and-test (using horizontal data format). Suppose we are
given the same sequence database, S, of Table 5.4 from Example 5.12, with min_sup = 2. Note that
the data are represented in horizontal data format. In the first scan (k = 1), GSP collects the support for
each item. The set of candidate 1-sequences is thus (shown here in the form of “sequence : support™):
(a):4,(b) 4, (c):4,{d):3,{e):3,(f):3,(g): 1.

The sequence (g) has a support of only 1, and is the only sequence that does not satisfy minimum
support. By filtering it out, we obtain the first seed set, L1 = {(a), (D), (c), (d), (e}, (f)}. Each member
in the set represents a length-1 sequential pattern. Each subsequent pass starts with the seed set found
in the previous pass and uses it to generate new candidate sequences, which are potentially frequent.

Using L; as the seed set, this set of 6 length-1 sequential patterns generates a set of 6 X
6+ % =51 candidate sequences of length 2, Cp = {{aa), (ab),...,{(af),(ba), (bb),...,{ff),
((ab)), ((ac)), ..., ((ef))}. Note that (aa) indicates that (a) happens twice in sequel, and (ab) indicates
that (a) happens followed by (b).

202 Chapter 5 Pattern mining: advanced methods

In general, the set of candidates is generated by a self-join of the sequential patterns found in the pre-
vious pass (see Section 5.2.1 for details). GSP applies the Apriori property to prune the set of candidates
as follows. In the kth pass, a sequence is a candidate only if each of its length-(k — 1) subsequences
is a sequential pattern found at the (k — 1)th pass. A new scan of the database collects the support for
each candidate sequence and finds a new set of sequential patterns, L. This set becomes the seed for
the next pass. The algorithm terminates when no sequential pattern is found in a pass, or when there
is no candidate sequence generated. Clearly, the number of scans is at least the maximum length of
sequential patterns. GSP needs one more scan if the sequential patterns obtained in the last scan still
generate new candidates.

Although GSP benefits from the Apriori pruning, it still generates a large number of candidates.
In this example, 6 length-1 sequential patterns generate 51 length-2 candidates; 22 length-2 sequential
patterns generate 64 length-3 candidates; and so on. Some candidates generated by GSP may not appear
in the database at all. In this example, 13 out of 64 length-3 candidates do not appear in the database,
resulting in wasted search effort. O

The example shows that although an Apriori-like sequential pattern mining method, such as GSP,
reduces search space, it typically needs to scan the database multiple times. It will likely generate a
huge set of candidate sequences, especially when mining long sequences. There is a need for more
efficient mining method.

SPADE: an Apriori-based vertical data format sequential pattern mining algorithm

The Apriori-like sequential pattern mining approach (based on candidate generate-and-test) can also
be explored by mapping a sequence database into vertical data format. In vertical data format, the
database becomes a set of tuples of the form (itemset : (sequence_I D, event_I D)). That is, for a
given itemset, we record the sequence identifier and corresponding event identifier for which the itemset
occurs. The event identifier serves as a timestamp within a sequence. The event_ID of the ith itemset
(or event) in a sequence is i. Note that an itemset can occur in more than one sequence. The set of
(sequence_I D, event_I D) pairs for a given itemset forms the ID_list of the itemset. The mapping
from horizontal to vertical format requires one scan of the database. A major advantage of using this
format is that we can determine the support of any k-sequence by simply joining the ID_lists of any
two of its (k — 1)-length subsequences. The length of the resulting ID_list (i.e., unique sequence_I D
values) is equal to the support of the k-sequence, which tells us whether or not the sequence is frequent.

SPADE (sequential pattern discovery using equivalent classes) is an Apriori-based sequential pat-
tern mining algorithm that uses vertical data format. As with GSP, SPADE requires one scan to find
the frequent 1-sequences. To find candidate 2-sequences, we join all pairs of single items if they are
frequent (therein, it applies the Apriori property), share the same sequence identifier, and their event
identifiers follow a sequential ordering. That is, the first item in the pair must occur as an event before
the second item, where both occur in the same sequence. Similarly, we can grow the length of itemsets
from length 2 to length three, and so on. The procedure stops when no frequent sequences can be found
or no such sequences can be formed by such joins. The following example helps illustrate the process.

Example 5.14. SPADE: candidate generate-and-test using vertical data format. Let min_sup = 2.
Our running example sequence database, S, of Table 5.4 is in horizontal data format. SPADE first scans
S and transforms it into the vertical format, as shown in Fig. 5.8(a). Each itemset (or event) is associated
with its ID_list, which is the set of SID (sequence_ID) and EID (event_ID) pairs that contain the itemset.

5.4 Mining sequential patterns 203

| SID | EID | itemset

a

=
=

abc

ac
d
cf
ad
c
bc
ae
ef
ab
df
c

(-} Kol Ron

B[R] R W] W] W[W] W[N] NN N =] =] =] =
O U ix[W[N] =] O] W N = | W N =] O W] N

C

(a) vertical format database

a b
SID EID SID EID

1 1 1 2
1 2 2 3
1 3 3 2
2 1 3 5
2 4 4 5
3 2

4 3

(b) ID_.lists for some l-sequences

ab ba
SID EID(a) EID(b) SID EID(b) EID(a)
1 1 2 1 2 3
2 1 3 2 3 4
3 2 5
4 3 5
(c) ID_lists for some 2-sequences
aba
SID _ EID(a) EID(b) EID(a)
1 1 2 3
2 1 3 4
(d) ID.lists for some 3-sequences
FIGURE 5.8

The SPADE mining process: (a) vertical format database; and (b) to (d) show fragments of the ID_lists for 1-
sequences, 2-sequences, and 3-sequences, respectively.

204 Chapter 5 Pattern mining: advanced methods

The ID_list for individual items, a, b, and so on, is shown in Fig. 5.8(b). For example, the ID_list for
item b consists of the following (S1 D, EI D) pairs: {(1, 2), (2, 3), (3,2), (3,5), (4,5)}, where the entry
(1,2) means that b occurs in sequence 1, event 2, etc. Items a and b are frequent. They can be joined to
form the length-2 sequence, (a, b). We find the support of this sequence as follows. We join the ID_lists
of a and b by joining on the same sequence_I D wherever, according to the event_IDs, a occurs before
b. That is, the join must preserve the temporal order of the events involved. The result of such a join for
a and b is shown in the ID_list for ab of Fig. 5.8(c). For example, the ID_list for 2-sequence ab is a set
of triples, (SID, EI1D(a), EID(b)), namely {(1, 1,2), (2, 1,3), (3,2,5), (4, 3,5)}. The entry (2,1,3),
for example, shows that both a and b occur in sequence 2, and that a (event 1 of the sequence) occurs
before b (event 3), as required. Furthermore, the frequent 2-sequences can be joined (while considering
the Apriori pruning heuristic that the (k-1)-subsequences of a candidate k-sequence must be frequent)
to form 3-sequences, as in Fig. 5.8(d), and so on. The process terminates when no frequent sequences
can be found or no candidate sequences can be formed. O

The use of vertical data format, with the creation of ID_lists, reduces scans of the sequence database.
The ID_lists carry the information necessary to find the support of candidates. As the length of a
frequent sequence increases, the size of its ID_list decreases, resulting in fast joins. However, the basic
search methodology of SPADE and GSP is breadth-first search (e.g., exploring 1-sequences, then 2-
sequences, and so on) and Apriori pruning. Despite the pruning, both algorithms have to generate
large sets of candidates in breadth-first manner in order to grow longer sequences. Thus, most of the
difficulties suffered in the GSP algorithm will reoccur in SPADE as well.

PrefixSpan: prefix-projected sequential pattern growth

Pattern growth is a method of frequent-pattern mining that does not require candidate generation. The
technique originated in the FP-growth algorithm for transaction databases, presented in Section 5.6.
The general idea of this approach is as follows: it finds the frequent single items, then compresses this
information into a frequent-pattern tree, or FP-tree. The FP-tree is used to generate a set of projected
databases, each associated with one frequent item. Each of these databases is mined separately and
recursively, avoiding candidate generation. Interestingly, the pattern-growth approach can be extended
to mining sequential patterns, which leads to a new algorithm, PrefixSpan, illustrated below.

Without loss of generality, all the items within an event can be listed alphabetically. For example,
instead of listing the items in an event as, say, (bac), we can list them as (abc). Given a sequence
o = (erez---e,) (Where each e; corresponds to a frequent event in a sequence database, S), a sequence
B =(e\e)---e,) (m<n) is called a prefix of « if and only if (1) e, =e¢; for (i <m —1); (2) ¢, C
em; and (3) all the frequent items in (e, — e),) are alphabetically after those in e),. Sequence y =
(el emy1---ey) is called the suffix of « with respect to prefix B, denoted as y =«/f, where e, =
(em — e,’n).4 We also denote o« = 8 - y. Note if 8 is not a subsequence of «, the suffix of o with respect
to B is empty.

We illustrate these concepts with the following example.

Example 5.15. Prefix and suffix. Let sequence s = (a(abc)(ac)d(cf)), which corresponds to se-
quence 1 of our running example sequence database. (a), (aa), (a(ab)), and {a(abc)) are four prefixes

4Ir el is not empty, the suffix is also denoted as ((_items ine}),)e;, 41 - - en)-

5.4 Mining sequential patterns 205

of 5. ((abc)(ac)d(cf)) is the suffix of s with respect to the prefix (a); ((_bc)(ac)d(cf)) is its suffix
with respect to the prefix (aa); and ((_c)(ac)d(cf)) is its suffix with respect to the prefix (a(ab)). U

Based on the concepts of prefix and suffix, the problem of mining sequential patterns can be decom-
posed into a set of subproblems as shown below.

1. Let {{x1), (x2), ..., {x,)} be the complete set of length-1 sequential patterns in a sequence database,
S. The complete set of sequential patterns in S can be partitioned into n disjoint subsets. The ith
subset (1 <i < n) is the set of sequential patterns with prefix (x;).

2. Let « be a length-/ sequential pattern and {8, 82, ..., B} be the set of all length-(/ + 1) sequential
patterns with prefix o. The complete set of sequential patterns with prefix «, except for « itself, can
be partitioned into m disjoint subsets. The jth subset (1 < j <m) is the set of sequential patterns
prefixed with ;.

Based on this observation, the problem can be partitioned recursively. That is, each subset of sequen-
tial patterns can be further partitioned when necessary. This forms a divide-and-conquer framework.
To mine the subsets of sequential patterns, we construct corresponding projected databases and mine
each one recursively.

Let’s use our running example to examine how to use the prefix-based projection approach for
mining sequential patterns.

Example 5.16. PrefixSpan: a pattern-growth approach. Using the same sequence database, S, of
Table 5.4 with min_sup =2, sequential patterns in S can be mined by a prefix-projection method in
the following steps.

1. Find length-1 sequential patterns. Scan S once to find all of the frequent items in sequences. Each of
these frequent items is a length-1 sequential pattern. They are (a) : 4, (b) : 4, (c) : 4, (d) : 3, {e) : 3,
and (f) : 3, where the notation “(pattern) : count” represents the pattern and its associated support
count.

2. Partition the search space. The complete set of sequential patterns can be partitioned into the fol-
lowing six subsets according to the six prefixes: (1) the ones with prefix (a), (2) the ones with prefix
(b), ..., and (6) the ones with prefix (f).

3. Find subsets of sequential patterns. The subsets of sequential patterns mentioned in step 2 can be
mined by constructing corresponding projected databases and mining each recursively. The pro-
jected databases, as well as the sequential patterns found in them, are listed in Table 5.5, while the
mining process is explained as follows.

a. Find sequential patterns with prefix (a). Only the sequences containing (a) should be collected.
Moreover, in a sequence containing {(a), only the subsequence prefixed with the first occurrence
of (a) should be considered. For example, in sequence {(ef)(ab)(df)cb), only the subsequence
((_b)(df)ch) should be considered for mining sequential patterns prefixed with (a). Notice that
(_b) means that the last event in the prefix, which is a, together with b, form one event.

The sequences in S containing (a) are projected with respect to (a) to form the (a)-projected
database, which consists of four suffix sequences: ((abc)(ac)d(cf)), ((_Ld)c(bc)(ae)),
(LD)(df)eb) and ((_f)cbe).

By scanning the (a)-projected database once, its locally frequent items are a : 2, b: 4, _b: 2,
c:4,d:2,and f :2. Thus all the length-2 sequential patterns prefixed with (a) are found, and
they are (aa) : 2, (ab) : 4, ((ab)) :2, {ac) : 4, (ad) : 2, and (af) : 2.

206 Chapter 5 Pattern mining: advanced methods

Table 5.5 Projected databases and sequential patterns.

Prefix | Projected Database Sequential Patterns

(a) ((abe)(ac)d(cf)), ((Ld)c(bo)(ae)), | {a), {aa), (ab), (a(bc)), (a(bc)a), (aba), (abc), ((ab)), ((ab)c),
((Lb)(f)ceb), (Lf)ebe) ((ab)d), {(ab) f), {(ab)dc), {ac), {aca), {ach), (acc), (ad), {adc), {af)

(b) ((Co)ao)d(cf)), (o) (ae)), (b), (ba), (be), {(bo)), ((be)a), (bd), (bdc), (bf)
(df)eb), {c)

() ((ac)d(cf)), ((be)(ae)), (b), {bc) | (c), {ca), {cb), (cc)

(d) ((cf)), {cbe)(ae)), ((_f)cb) (d), (db), {dc), {dcb)

(e) ((_f)(ab)(df)ch), ((af)cbc) (e), (ea), {eab), {eac), (each), {eb), (ebc), (ec), {ecb), (ef), (efb),

(efc), (efch).
(f) | {(ab)(df)ch), {cbc) (f), (fB), {fbc), {fc), (feb)

Recursively, all sequential patterns with prefix (a) can be partitioned into six subsets: (1) those
prefixed with (aa), (2) those with (ab), ..., and finally, (6) those with (af). These subsets
can be mined by constructing respective projected databases and mining each recursively as
follows.

i. The (aa)-projected database consists of two nonempty (suffix) subsequences prefixed
with (aa): {{((_bc)(ac)d(cf)), {{(_e))}. Since there is no hope of generating any fre-
quent subsequence from this projected database, the processing of the (aa)-projected
database terminates.

ii. The (ab)-projected database consists of three suffix sequences: {(_c)(ac)d(cf)), ((_c)a),
and (c). Recursively mining the (ab)-projected database returns four sequential patterns:
(o)), ((Lo)a), (a), and (c) (i.e., {a(bc)), (a(bc)a), {(aba), and (abc).) They form the
complete set of sequential patterns prefixed with (ab).

iii. The ((ab))-projected database contains only two sequences: ((_c)(ac) d(cf)) and
((df)cb), which leads to the finding of the following sequential patterns prefixed with
((ab)): (c), (d), (f), and {dc).

iv. The (ac)-, (ad)- and {af)- projected databases can be constructed and recursively mined
in a similar manner. The sequential patterns found are shown in Table 5.5.

b. Find sequential patterns with prefix (b), (c), (d), {e) and {f), respectively. This can be done
by constructing the (b)-, (c)- (d)-, (e)-, and (f)-projected databases and mining them. The
projected databases and the sequential patterns found are also shown in Table 5.5.

4. The set of sequential patterns is the collection of patterns found in the above recursive mining
process. ([

The method described above generates no candidate sequences in the mining process. However, it
may generate many projected databases, one for each frequent prefix-subsequence. Forming a large
number of projected databases recursively may become the major cost of the method if such databases
have to be generated physically. An important optimization technique is pseudo-projection, as shown
in Fig. 5.9. For example, for a sequence (a(abc)(ac)d(cf)), (a)’s projection will generate a projected
subsequence ((abc)(ac)d(cf)) (i.e., {(a)’s suffix), and a subsequent projection on (b) generates an
(ab)’s projected sequence ((_c)(ac)d(cf)). Such physical projection may take a lot of time and space to
copy and store the projected subsequences, which contains a lot of redundancy. The pseudo-projection
method registers the index (or identifier) of the corresponding sequence and the starting position of the

5.4 Mining sequential patterns 207

|
s = <a(abc)(ac)d(cf)>
/ l <a>

s|<a>:(,2)|7/ |<(abc)(ac)d(cf)>]

s|<ab>:(,5)| / <(_c)(ac)d(cf)>
FIGURE 5.9

Pseudo projection vs. physical project in PrefixSpan.

projected suffix in the sequence instead of performing physical projection. That is, a physical projection
of a sequence is replaced by registering a sequence identifier and the projected position index point.
For example, in the above two projections, instead of generating two physical projected suffixes, only
two pointers are created (one pointing at position 2 shown by the solid arrow and the other at position
5 shown by the dashed arrow). This may save time to copy and paste suffixes and save spaces to store
such suffixes.

Pseudo-projection reduces the cost of projection substantially when such projection can be done in
main memory. However, it may not be efficient if the pseudo-projection is used for disk-based accessing
since random access to disk space is costly. The suggested approach is that if the original sequence
database or the projected databases are too big to fit in memory, the physical projection should be
applied, however, the execution should be swapped to pseudo-projection once the projected databases
can fit in memory. This methodology is adopted in the PrefixSpan implementation.

A performance comparison of GSP, SPADE, and PrefixSpan shows that PrefixSpan has the best
overall performance. SPADE, though weaker than PrefixSpan in most cases, outperforms GSP. Gener-
ating huge candidate sets may consume a tremendous amount of memory, thereby causing candidate
generate-and-test algorithms to become rather slow. The comparison also found that when there is a
large number of frequent subsequences, all three algorithms run slowly. This problem can be partially
solved by closed sequential pattern mining.

Mining closed sequential patterns

Since mining the complete set of frequent subsequences can generate a huge number of sequential
patterns, an interesting alternative is to mine frequent closed subsequences only, that is, those containing
no supersequence with the same support. Mining closed sequential patterns can produce a significantly
less number of sequences than the full set of sequential patterns. Note that the full set of frequent
subsequences, together with their supports, can easily be derived from the closed subsequences. Thus
closed subsequences have the same expressive power as the corresponding full set of subsequences.
Because of their compactness, they may also be quicker to find.

CloSpan is an efficient closed sequential pattern mining method. Similar to mining closed frequent
patterns, it can skip mining redundant closed sequential pattern if it finds the continuous mining will
not generate any new results. For example, as shown in Fig. 5.10, if the projected database A of prefix
(ac) is identical to the later projected database A of prefix (c) (which is called backward subpattern
since (c)A arrives late and is a subpattern of (ac)A), CloSpan will prune the later A mining to avoid

208 Chapter 5 Pattern mining: advanced methods

(a) backward subpattern

(b) backward superpattern

FIGURE 5.10

The pruning of a backward subpattern or a backward superpattern.

redundancy. Similarly, CloSpan will search for backward superpatterns for pruning to avoid redundant
mining. More concretely, it will stop growing a prefix-based projected databases S|g if it is of the
same size as that of the prefix-based projected database S|, and « and B have substring/superstring
relationships.

This is based on a property of sequence databases, called equivalence of projected databases,
stated as follows: Two projected sequence databases, S|y = S| ,3,5 o C B (ie., o is a subsequence of B),
are equivalent if and only if the total number of items in S|y is equal to the total number of items in
S|p.

ﬂLet’s examine one such example.

Example 5.17. CloSpan: Pruning redundant projected database. Given a small sequence database,
S, shown in Fig. 5.11, with min_sup = 2. The prefix project sequence database of the prefix (af) is
({acg), (egb(ac)), {ea)) with 12 symbols (including parentheses), and the projected sequence database
of the prefix (f) is of the same size. Clearly, the two projected databases should be identical and there
is no need to mine the latter, the (f)-projected sequence database. This is understandable since for
any sequence s, if its projections on (af) and (f) respectively are not identical, the latter must contain
more symbols than the former (e.g., it may contain only (f) but not (a... f) or has (f) in front of
(a... f)). However, now, the two sizes are equal. This implies that their projected databases must be
identical. Such backward subpattern pruning and backward superpattern pruning can reduce the search
space substantially. O

Empirical results show that CloSpan often derives a much smaller set of sequential patterns in a
shorter time than PrefixSpan, which mines the complete set of sequential patterns.

5 In S|y, a sequence database S is projected with respect to sequence (e.g., prefix) a. The notation S| can be similarly defined.

5.4 Mining sequential patterns 209

ID Sequence

1 <aefbcg>
2 <afegb(ac)>
3 <afea> min_sup =2
<a3/ fb% \«€>\ <f>
<efbcg> <cg> <fbcg> <bcg>
<fegb(ac)> i <gb(ac)> <egb(ac)>

<fea> <a>

size=6
\Q>
Only need to keep

size = 12 (including <cg>
parentheses) <(ac)>

<ea>

<bcg>
<egb(ac)>

<ea>

FIGURE 5.11

The pruning of a backward subpattern or a backward superpattern.

Mining multidimensional, multilevel sequential patterns

Sequence identifiers (representing individual customers, for example) and sequence items (such as
products bought) are often associated with additional pieces of information. Sequential pattern mining
may take advantage of such additional information to discover interesting patterns in multidimensional,
multilevel information space. Take customer shopping transactions, for instance. In a sequence database
for such data, the additional information associated with sequence IDs could include customer residen-
tial area, group, and profession. Information associated with items could include item category, brand,
model type, model number, place manufactured, and manufacture date. Mining multidimensional, mul-
tilevel sequential patterns is the discovery of interesting patterns in such a broad dimensional space, at
different levels of detail.

Example 5.18. Multidimensional, multilevel sequential patters. The discovery that “Retired cus-
tomers who purchase a smart home thermostat are likely to purchase a video doorbell within a month”
and that “Young adults who purchase a laptop are likely to buy laser printer within 90 days” are
examples of multidimensional, multilevel sequential patterns. By grouping customers into “retired cus-
tomers” and “young adults” according to the values in the age dimension, and by generalizing items
to, say, “smart thermostat” rather than a specific model, the patterns mined here are associated with
certain dimensions and are at a higher level of abstraction. O

“Can a typical sequential pattern algorithm such as PrefixSpan be extended to efficiently mine
multidimensional, multilevel sequential patterns?” One suggested modification is to associate the mul-

210 Chapter 5 Pattern mining: advanced methods

tidimensional, multilevel information with the sequence_ID and item_ID, respectively, which the min-
ing method can take into consideration when finding frequent subsequences. For example, (Chicago,
middle_aged, business) can be associated with sequence_ID_1002 (for a given customer), whereas
(laserprinter, HP, Laser Jet Pro, G3Q47A, USA, 2020) can be associated with item_ID_543005
in the sequence. A sequential pattern mining algorithm will use such information in the mining process
to find sequential patterns associated with multidimensional, multilevel information.

5.4.3 Constraint-based mining of sequential patterns

As shown in our study of frequent-pattern mining, mining that is performed without user-specified con-
straints may generate numerous patterns that are of no interest. Such unfocused mining can reduce both
the efficiency and usability of frequent-pattern mining. Thus we promote constraint-based mining,
which incorporates user-specified constraints to reduce the search space and derive only patterns that
are of interest to the user.

Constraints can be expressed in many forms. They may specify desired relationships between at-
tributes, attribute values, or aggregates within the resulting patterns mined. Regular expressions can
also be used as constraints in the form of “pattern templates,” which specify the desired form of the
patterns to be mined. The general concepts introduced for constraint-based frequent pattern mining ap-
ply to constraint-based sequential pattern mining as well. The key idea to note is that these kinds of
constraints can be used during the mining process to confine the search space, thereby improving (1)
the efficiency of the mining, and (2) the interestingness of the resulting patterns found. This idea is also
referred to as “pushing the constraints deep into the mining process.”

We now examine some typical examples of constraints for sequential pattern mining.

First, constraints can be related to the duration, 7, of a sequence. The duration can be user-
specified, related to a particular time period, such as within the last 6 months. Sequential pattern mining
can then be confined to the data within the specified duration, 7. Constraints related to a specific du-
ration, can be considered as succinct constraints. A constraint is succinct if we can enumerate all and
only those sequences that are guaranteed to satisfy the constraint, even before support counting begins.
In this case, we can push the data selection process deep into the mining process, and select sequences
in the desired period before mining begins to reduce the search space.

Second, a user may confine the maximal or minimal length of the sequential patterns to be mined.
The maximal or minimal length of sequential patterns can be treated as antimonotonic or monotonic
constraints, respectively. For example, the constraint L < 10 is antimonotonic since, if a sequential
pattern violates this constraint, further mining following it will always violate the constraint. Simi-
larly, data antimonotonicity and its search space pruning rules can be established correspondingly for
sequential pattern mining as well.

Third, in sequential pattern mining, a constraint can be related to an event folding window, w. A
set of events occurring within a specified period of time can be viewed as occurring together. If w is set
to O (i.e., no event sequence folding), sequential patterns are found where each event occurs at a distinct
time instant, such as “a customer bought a laptop, then a digital camera, and then a laser printer” will
be considered as a length-3 sequence, even if all these happen within the same day. However, if w is
set to be weekly based, then these transactions are considered as occurring within the same period, and
such sequences are “folded” into a set in the analysis. On the extreme, if w is set to be as long as the
whole duration, T, sequential pattern mining is degenerated into sequence-insensitive frequent pattern
mining.

5.5 Mining subgraph patterns 211

Fourth, a desired time gap between events in the discovered patterns may be specified as a con-
straint. For example, min_gap < gap <max_gap 1is to find patterns that are separated by at least
min_gap but at most max_gap. A pattern like “If a person rents movie A, it is likely she will rent
movie B not within 6 days but within 30 days” implies 6 < gap < 30 (days). It is straightforward to
push gap constraints into the sequential pattern mining process. With minor modifications to the min-
ing process, it can handle constraints with approximate gaps as well.

Finally, a user can specify constraints on the kinds of sequential patterns by providing “pattern tem-
plates” in the form of regular expressions. Here we discuss mining serial episodes and parallel episodes
using regular expressions. A serial episode is a set of events that occurs in total order, whereas a par-
allel episode is a set of events whose occurrence ordering is trivial. Consider the following example.

Example 5.19. Specifying serial episodes and parallel episodes with regular expressions. Let the
notation (E, t) represent event type E at time t. Consider the data (A, 1), (C, 2), and (B, 5) with an
event folding window width of w = 2, where the serial episode A — B and the parallel episode A &
C both occur in the data. The user can specify constraints in the form of a regular expression, such as
{A|B}C * {D|E}, which indicates that the user would like to find patterns where event A and B first
occur (but they are parallel in that their relative ordering is unimportant), followed by one or a set of
events C, followed by the events D and E (where D can occur either before or after £). Other events
can occur in between those specified in the regular expression. O

A regular expression constraint may be neither antimonotonic nor monotonic. In such cases, we
cannot use it to prune the search space in the same ways as described above. However, by modifying
the PrefixSpan-based pattern-growth approach, such constraints can be handled in an elegant manner.
Let’s examine one such example.

Example 5.20. Constraint-based sequential pattern mining with a regular expression constraint.
Suppose that our task is to mine sequential patterns, again using the sequence database, S, of Table 5.4.
This time, however, we are particularly interested in patterns that match the regular expression con-
straint, C = (a * {bb|(bc)d|dd}), with minimum support.

This constraint cannot be pushed deep into the mining process. Nonetheless, it can easily be inte-
grated with the pattern-growth mining process as follows. First, only the (a)-projected database, S|(4),
needs to be mined since the regular expression constraint C starts with a. Retain only the sequences
in S|4 that contain items within the set {b, ¢, d}. Second, the remaining mining can proceed from the
suffix. This is essentially the Suffix-Span algorithm, which is symmetric to PrefixSpan in that it grows
suffixes from the end of the sequence forward. The growth should match the suffix as the constraint,
({bb|(bc)d|dd}). For the projected databases that match these suffixes, we can grow sequential patterns
either in prefix- or suffix-expansion manner to find all of the remaining sequential patterns. O

Thus we have seen several ways in which constraints can be used to improve the efficiency and
usability of sequential pattern mining.

5.5 Mining subgraph patterns

Graphs become increasingly important in modeling complicated structures, such as circuits, images,
workflows, XML documents, webpages, chemical compounds, protein structures, biological networks,

212 Chapter 5 Pattern mining: advanced methods

social networks, information networks, knowledge graphs, and the Web. Many graph search algorithms
have been developed in chemical informatics, computer vision, video indexing, Web search, and text
retrieval. With the increasing demand on the analysis of large amounts of structured data, graph mining
has become an active and important theme in data mining.

Among the various kinds of graph patterns, frequent substructures or subgraphs are the very basic
patterns that can be discovered in a collection of graphs. They are useful for characterizing graph sets,
discriminating different groups of graphs, classifying and clustering graphs, building graph indices, and
facilitating similarity search in graph databases. Recent studies have developed several graph mining
methods and applied them to the discovery of interesting patterns in various applications. For example,
there have been reports on the discovery of active chemical structures in HIV-screening data sets by
contrasting the support of frequent graphs between different classes. There have been studies on the use
of frequent structures as features to classify chemical compounds, on the frequent graph mining tech-
nique to study protein structural families, on the detection of considerably large frequent subpathways
in metabolic networks, and on the use of frequent graph patterns for graph indexing and similarity
search in graph databases. Although graph mining may include mining frequent subgraph patterns,
graph classification, clustering, and other analysis tasks, in this section we focus on mining frequent
subgraphs. We look at various methods, their extensions, and applications.

5.5.1 Methods for mining frequent subgraphs

Before presenting graph mining methods, it is necessary to first introduce some preliminary concepts
relating to frequent graph mining.

We denote the vertex set of a graph g by V(g) and the edge set by E(g). A label function, L,
maps a vertex or an edge to a label. A graph g is a subgraph of another graph g’ if there exists a
subgraph isomorphism from g to g’. Given a labeled graph data set, D = {G|, G, ..., G}, we define
support(g) (or frequency(g)) as the percentage (or number) of graphs in a graph database (i.e., a
collection of graphs) D where g is a subgraph. A frequent graph is a graph whose support is no less
than a minimum support threshold, min_sup.

Example 5.21. Frequent subgraph. Fig. 5.12 shows a sample set of chemical structures. Fig. 5.13
depicts two of the frequent subgraphs in this data set, given a minimum support of 66.6%. O

“How can we discover frequent substructures?” The discovery of frequent substructures usually
consists of two steps. In the first step, we generate frequent substructure candidates. The frequency of
each candidate is checked in the second step. Most studies on frequent substructure discovery focus on

S—C—C—N C—C—N—C C—S—C—C
(0} S N=0
(g1) (g2) (g3)

FIGURE 5.12
A sample graph data set.

5.5 Mining subgraph patterns 213

§—C—C=0 C—C—N
I
N

frequency: 2 frequency: 3

FIGURE 5.13
Frequent graphs.

the optimization of the first step. This is because the second step involves a subgraph isomorphism test
whose computational complexity is excessively high (that is, NP-complete).

In this section, we look at various methods for frequent substructure mining. In general, there are
two basic approaches to this problem: an Apriori-based approach and a pattern-grown approach.

Apriori-based approach

Apriori-based frequent substructure mining algorithms share similar characteristics with Apriori-based
frequent itemset mining algorithms (Chapter 4). The search for frequent graphs starts with graphs of
small “size,” and proceeds in a bottom-up manner by generating candidates having an extra vertex,
edge, or path. The definition of graph size depends on the algorithm used.

The general framework of Apriori-based methods for frequent substructure mining is outlined in
Fig. 5.14. We refer to this algorithm as AprioriGraph. S; is the frequent substructure set of size k.
We will clarify the definition of graph size when we describe specific Apriori-based methods further
below. AprioriGraph adopts a level-wise mining methodology. At each iteration, the size of newly
discovered frequent substructures is increased by one. These new substructures are first generated by
joining two similar but slightly different frequent subgraphs that were discovered in the previous call
to AprioriGraph. This candidate generation procedure is outlined on line 4. The frequency of the newly
formed structures is then checked. Those found to be frequent are used to generate larger candidates in
the next round.

Algorithm: AprioriGraph(D, minsup, Sj)

Input: a graph data set D, and min_support.
Output: The frequent substructure set Sg.

1: Sp41 < @5

2: for each frequent g; € Sy do

3: for each frequent g; € Sy do

4: for each size (k + 1) graph g formed by the merge of g; and g; do
5: if g is frequent in D and g ¢ S| then

6: insert g to Sg41;

7:if 541 # @ then

8: call AprioriGraph(D, minsup, S1);

9: return;

FIGURE 5.14
AprioriGraph.

214 Chapter 5 Pattern mining: advanced methods

SR - HE

FSG: Two substructure patterns and their potential candidates.

The main design complexity of Apriori-based substructure mining algorithms is the candidate gen-
eration step. The candidate generation in frequent itemset mining is straightforward. For example,
suppose we have two frequent itemsets of size-3: (abc) and (bcd). The frequent itemset candidate
of size-4 generated from them is simply (abcd), derived from a join. However, the candidate genera-
tion problem in frequent substructure mining is harder than that in frequent itemset mining, since there
are many ways to join two substructures, as shown below.

Apriori-based algorithms for frequent substructure mining include AGM, FSG, and a path-join
method. AGM shares similar characteristics with Apriori-based itemset mining. FSG and the path-
join method explore edges and connections in an Apriori-based fashion. Since edge is a bigger unit
than vertex and it enforces more constraints than single vertex, the edge-based candidate generation
method FSG leads to improved efficiency over the vertex-based candidate generation method, AGM.
We examine the FSG method here.

The FSG algorithm adopts an edge-based candidate generation strategy that increases the substruc-
ture size by one edge in each call of AprioriGraph. Two size-k patterns are merged if and only if they
share the same subgraph having k — 1 edges, which is called the core. Here, graph size is taken to be
the number of edges in the graph. The newly formed candidate includes the core and the additional two
edges from the size-k patterns. Fig. 5.15 shows potential candidates formed by two structure patterns.
Each candidate has one more edge than these two patterns, but this additional edge can be associated
with different vertices. This example illustrates the complexity of joining two structures to form a large
pattern candidate.

In a third Apriori-based approach, an edge-disjoint path method was proposed, where graphs are
classified by the number of disjoint paths they have, and two paths are edge-disjoint if they do not share
any common edge. A substructure pattern with k£ + 1 disjoint paths is generated by joining substructures
with k disjoint paths.

Apriori-based algorithms have considerable overhead when joining two size-k frequent substruc-
tures to generate size-(k + 1) graph candidates. The overhead occurs when (1) joining two size-k
frequent graphs (or other structures like paths) to generate size-(k 4+ 1) graph candidates, and (2)
checking the frequency of these candidates separately. These two operations constitute the performance
bottlenecks of the Apriori-like algorithms. In order to avoid such overhead, non—Apriori-based algo-
rithms have been developed, most of which adopt the pattern-growth methodology. This methodology
tries to extend patterns directly from a single pattern. In the following, we introduce the pattern-growth
approach for frequent subgraph mining.

5.5 Mining subgraph patterns 215

Pattern-growth approach

The Apriori-based approach has to use the breadth-first search (BFS) strategy because of its level-wise
candidate generation. In order to determine whether a size-(k 4+ 1) graph is frequent, it must check
all of its corresponding size-k subgraphs to obtain an upper bound of its frequency. Thus before min-
ing any size-(k + 1) subgraph, the Apriori-like approach usually has to complete the mining of size-k
subgraphs. Therefore, BFS is necessary in the Apriori-like approach. In contrast, the pattern-growth
approach is more flexible regarding its search method. It can use breadth-first search and depth-first
search (DFS), the latter of which consumes less memory.

A graph g can be extended by adding a new edge e. The newly formed graph is denoted by g <y e.
Edge e may or may not introduce a new vertex to g. If e introduces a new vertex, we denote the
new graph by g o,y e, otherwise, g ©,; e, where f or b indicates that the extension is in a forward or
backward direction.

Fig. 5.16 illustrates a general framework for pattern growth-based frequent substructure mining.
We refer to the algorithm as PatternGrowthGraph. For each discovered graph g, it performs extensions
recursively until all the frequent graphs with g embedded are discovered. The recursion stops once no
frequent graph can be generated.

PatternGrowthGraph is simple, but not efficient. The bottleneck is at the inefficiency of extending a
graph. The same graph can be discovered many times. For example, there may exist n different (n — 1)-
edge graphs that can be extended to the same n-edge graph. The repeated discovery of the same graph
is computationally inefficient. We call a graph that is discovered at the second time a duplicate graph.
Although line 1 of PatternGrowthGraph gets rid of duplicate graphs, the generation and detection of
duplicate graphs may increase the workload. In order to reduce the generation of duplicate graphs, each
frequent graph should be extended as conservatively as possible. This principle leads to the design of
several new algorithms. A typical example is the gSpan algorithm as described below.

The gSpan algorithm is designed to reduce the generation of duplicate graphs. It does not need to
search previously discovered frequent graphs for duplicate detection. It does not extend any duplicate
graph, yet still guarantees the discovery of the complete set of frequent graphs.

Let’s see how the gSpan algorithm works. To traverse graphs, it adopts depth-first search. Initially,
a starting vertex is randomly chosen and the vertices in a graph are marked so that we can tell which
vertices have been visited. The visited vertex set is expanded repeatedly until a full depth-first search
(DES) tree is built. One graph may have various DFS trees depending on how the depth-first search is

Algorithm: PatternGrowthGraph(g, D, minsup, S)

Input: A frequent graph g, a graph data set D, and the support threshold minsup.
Output: The frequent graph set S.

. if g € S then return;

: else insert g to S;

: scan D once, find all the edges e such that g can be extended to g ox e ;
: for each frequent g o e do

Call PatternGrowthGraph(g ¢x e, D, minsup, S);

: return;

SR SRV S

FIGURE 5.16
PatternGrowthGraph.

216 Chapter 5 Pattern mining: advanced methods

a a

bl () b () ' b
’ A v v \4
OO ONONRONON

(@) (b) (c) (d)

FIGURE 5.17
DFS subscripting.

performed, that is, the vertex visiting order. The darkened edges in Figs. 5.17(b) to 5.17(d) show three
DFS trees for the same graph of Fig. 5.17(a). The vertex labels are x, y, and z; the edge labels are a and
b. Alphabetic order is taken as the default order in the labels. When building a DFS tree, the visiting
sequence of vertices forms a linear order. We use subscripts to record this order, where i < j means v;
is visited before v; when the depth-first search is performed. A graph G subscripted with a DFS tree T
is written as Gr. T is called a DFS subscripting of G. Given a DFS tree T', we call the starting vertex
in T, vy, the root, and the last visited vertex, v,, the right-most vertex. The straight path from vg to vy, is
called the right-most path. In Figs. 5.17(b) to 5.17(d), three different subscriptings are generated based
on the corresponding DFS trees. The right-most path is (vg, v1, v3) in Figs. 5.17(b) and 5.17(c), and
(vo, v1, v2, v3) in Fig. 5.17(d).

PatternGrowth extends a frequent graph in every possible position, which may generate a large
number of duplicate graphs. The gSpan algorithm introduces a more sophisticated extension method.
The new method restricts the extension as follows: Given a graph G and a DFS tree T in G, a new
edge e can be added between the right-most vertex and other vertices on the right-most path (backward
extension); or it can introduce a new vertex and connect to vertices on the right-most path (forward
extension). Since both kinds of extensions take place on the right-most path, we call them right-most
extension, denoted by G ¢, e (for brevity, T is omitted here).

Example 5.22. Backward extension and forward extension. If we want to extend the graph in
Fig. 5.17(b), the backward extension candidates can be (v3, vg). The forward extension candidates
can be edges extending from vs3, v, or vg with a new vertex introduced. O

Figs. 5.18(b) to 5.18(g) show all the potential right-most extensions of Fig. 5.18(a). The darkened
vertices show the rightmost path. Among these, Figs. 5.18(b) to 5.18(d) grow from the rightmost vertex
while Figs. 5.18(e) to 5.18(g) grow from other vertices on the rightmost path. Figs. 5.18(b.0) to 5.18(b.4)
are children of Fig. 5.18(b), and Figs. 5.18(f.0) to 5.18(f.3) are children of Fig. 5.18(f). In summary,
backward extension only takes place on the rightmost vertex while forward extension introduces a new
edge from vertices on the rightmost path.

Since many DFS trees/subscriptings may exist for the same graph, we choose one of them as the
base subscripting and only conduct right-most extension on that DFS tree/subscripting. Otherwise,
right-most extension cannot reduce the generation of duplicate graphs because we would have to extend
the same graph for every DFS subscripting.

We transform each subscripted graph to an edge sequence, called a DFS code, so that we can build
an order among these sequences. The goal is to select the subscripting that generates the minimum

5.5 Mining subgraph patterns 217

(b.0) (b.1) (b2) (b3) (b4) (f0) (1) (f2) (£3)

FIGURE 5.18

Right-most extension.

Table 5.6 DFS code for Fig. 5.17(b), 5.17(c), and
5.17(d).

edge Y0 ” V2

eo ©0,1,X,a,X)| (0,1,X,a,X) | (0,1,Y,b, X)
el (1,2,X,a,Z2) | (1,2, X,b,Y) | (1,2,X,a,X)
e 2,0,Z,b,X) | (1,3, X,a,Z2) | 2,3,X,b,27)
e3 (1,3, X,b,Y) | 3,0,Z2,b,X) | 3,1,Z,a, X)

sequence as its base subscripting. There are two kinds of orders in this transformation process: (1) edge
order, which maps edges in a subscripted graph into a sequence; and (2) sequence order, which builds
an order among edge sequences, that is, graphs.

First, we introduce edge order. Intuitively, DFS tree defines the discovery order of forward edges.
For the graph shown in Fig. 5.17(b), the forward edges are visited in the order of (0, 1), (1, 2), (1, 3).
Now we put backward edges into the order as follows. Given a vertex v, all of its backward edges
should appear just before its forward edges. If v does not have any forward edge, we put its backward
edges after the forward edge where v is the second vertex. For vertex v, in Fig. 5.17(b), its backward
edge (2, 0) should appear after (1, 2) since vy does not have any forward edge. Among the backward
edges from the same vertex, we can enforce an order. Assume that a vertex v; has two backward edges,
(i, j1) and (i, jo). If j1 < ja, then edge (i, j1) will appear before edge (i, j»). So far, we have completed
the ordering of the edges in a graph. Based on this order, a graph can be transformed into an edge
sequence. A complete sequence for Fig. 5.17(b) is (0, 1), (1,2), (2,0), (1, 3).

Based on this ordering, three different DFS codes, o, y1, and y», generated by DFS subscriptings
in Figs. 5.17(b), 5.17(c), and 5.17(d), respectively, are shown in Table 5.6. An edge is represented by a
S-tuple, (G, j,1i, 1, j),1;), l; and [; are the labels of v; and v}, respectively, and [(; ;) is the label of the
edge connecting them.

Through DFS coding, a one-to-one mapping is built between a subscripted graph and a DFS code
(a one-to-many mapping between a graph and DFS codes). When the context is clear, we treat a sub-

218 Chapter 5 Pattern mining: advanced methods

Pruned

FIGURE 5.19

Lexicographic search tree.

scripted graph and its DFS code as the same. All the notations on subscripted graphs can also be applied
to DFS codes. The graph represented by a DFS code « is written G, .

Second, we define an order among edge sequences. Since one graph may have several DFS codes,
we want to build an order among these codes and select one code to represent the graph. Since we
are dealing with labeled graphs, the label information should be considered as one of the ordering
factors. The labels of vertices and edges are used to break the tie when two edges have the exactly
same subscript, but different labels. Let the edge order relation <7 take the first priority, the vertex
label /; take the second priority, the edge label [j) take the third, and the vertex label /; take the
fourth to determine the order of two edges. For example, the first edge of the three DFS codes in
Table 5.61s (0, 1, X, a, X), (0,1, X, a, X), and (0, 1, Y, b, X), respectively. All of them share the same
subscript (0, 1). Therefore relation <7 cannot tell the difference among them. However, using label
information, following the order of first vertex label, edge label, and second vertex label, we have
0,1,X,a,X)<(0,1,Y,b, X). The ordering based on the above rules is called DFS Lexicographic
Order. According to this ordering, we have yy < y; < y; for the DFS codes listed in Table 5.6.

Based on the DFS lexicographic ordering, the minimum DFS code of a given graph G, written as
dfs(G), is the minimal one among all the DFS codes. For example, code yq in Table 5.6 is the minimum
DFS code of the graph in Fig. 5.17(a). The subscripting that generates the minimum DFS code is called
the base subscripting.

We have the following important relationship between the minimum DFS code and the isomorphism
of the two graphs: Given two graphs G and G’', G is isomorphic to G' if and only if dfs(G) = dfs(G").
Based on this property, what we need to do for mining frequent subgraphs is to perform only the right-
most extensions on the minimum DFS codes since such an extension will guarantee the completeness
of mining results.

Fig. 5.19 shows how to arrange all DFS codes in a search tree through right-most extensions. The
root is an empty code. Each node is a DFS code encoding a graph. Each edge represents a right-most
extension from a (k — 1)-length DFS code to a k-length DFS code. The tree itself is ordered: left
siblings are smaller than right siblings in the sense of DFS lexicographic order. Since any graph has at
least one DFS code, the search tree can enumerate all possible subgraphs in a graph data set. However,
one graph may have several DFS codes, minimum and nonminimum. The search of nonminimum DFS
codes does not produce a useful result. “Is it necessary to perform right-most extension on nonminimum
DFS codes?” The answer is “no.” If codes s and s’ in Fig. 5.19 encode the same graph, the search space
under s’ can be safely pruned.

5.5 Mining subgraph patterns 219

Algorithm: gSpan(s, D, minsup, S)

Input: A DFS code s, a graph data set D, and min_support.
Output: The frequent graph set S.

cif s #dfs(s), then

return;

:insert s into S;

:set C to O

: scan D once, find all the edges e such that s can be right-most extended to s ¢, e;
insert s ¢, e into C and count its frequency;

6: sort C in DFS lexicographic order;

7: for each frequent s ¢, ¢ in C do

8

9

lJl-lku.).I\.)D—t

Call gSpan(s ¢ e, D, minsup, S);
: return;

FIGURE 5.20

gSpan: A pattern-growth algorithm for frequent substructure mining.

The details of gSpan are depicted in Fig. 5.20. gSpan is called recursively to extend graph patterns
so that their frequent descendants are found until their support is lower than minsup or its code is not
minimum any more. The difference between gSpan and PatternGrowth is at the right-most extension
and extension termination of nonminimum DFS codes (lines 1-2). We replace the existence judgment
in lines 1-2 of PatternGrowth with the inequation s # dfs(s). Actually, s # df s(s) is more efficient to
calculate. Line 5 requires exhaustive enumeration of s in D in order to count the frequency of all the
possible right-most extensions of s.

The algorithm of Fig. 5.20 implements a depth-first search version of gSpan. Actually, breadth-first
search works too: for each newly discovered frequent subgraph in line 8, instead of directly calling
gSpan, we insert it into a global first-in-first-out queue Q, which records all subgraphs that have not
been extended. We then “gSpan” each subgraph in Q one by one. The performance of a breadth-
first search version of gSpan is very close to that of the depth-first search although the latter usually
consumes less memory.

5.5.2 Mining variant and constrained substructure patterns

The frequent subgraph mining discussed in the previous section handles only one special kind of graph:
labeled, undirected, connected simple graphs without any specific constraints. That is, we assume that
the database to be mined contains a set of graphs each consisting of a set of labeled vertices and labeled
but undirected edges, with no other constraints. However, many applications or users may need to
enforce various kinds of constraints on the patterns to be mined or seek variant substructure patterns.
For example, we may like to mine patterns, each of which contains certain specific vertices/edges,
or where the total number of vertices/edges is within a specified range. Or what if we seek patterns
where the average density of the graph patterns is above a threshold? Although it is possible to develop
customized algorithms for each such case, there are too many variant cases to consider. Instead, a
general framework is needed—one that can organize variants and constraints and help develop efficient
mining methods systematically. In this section, we study several variants and constrained substructure
patterns and look at how they can be mined.

220 Chapter 5 Pattern mining: advanced methods

Mining closed frequent substructures

The first important variation of a frequent substructure is the closed frequent substructure. Take
mining frequent subgraph as an example. Similar to mining frequent itemsets and mining sequential
patterns, mining graph patterns may generate an explosive number of patterns. According to the Apri-
ori property, all the subgraphs of a frequent graph are frequent. Thus a large graph pattern may generate
an exponential number of frequent subgraphs. For example, among 423 confirmed active chemical com-
pounds in an AIDS antiviral screen data set, there are nearly 1,000,000 frequent graph patterns whose
support is at least 5%. This renders the further analysis on frequent graphs nearly impossible.

One way to alleviate this problem is to mine only frequent closed graphs, where a frequent graph
G is closed if and only if there does not exist a proper supergraph G’ that has the same support as
G. Alternatively, we can mine maximal subgraph patterns where a frequent pattern G is maximal if
and only if there does not exist a frequent superpattern of G. A set of closed subgraph patterns has the
same expressive power as the full set of subgraph patterns under the same minimum support threshold
because the latter can be generated by the derived set of closed graph patterns. On the other hand, the
maximal pattern set is a subset of the closed pattern set. It is usually more compact than the closed
pattern set. However, we cannot use it to reconstruct the entire set of frequent patterns—the support
information of a pattern is lost if it is a proper subpattern of a maximal pattern, yet carries a different
support.

Example 5.23. Maximal frequent graph. The two graphs in Fig. 5.13 are closed frequent graphs but
only the first graph is a maximal frequent graph. The second graph is not maximal because it has a
frequent supergraph. O

Mining closed graphs leads to a complete but more compact representation. For example, for the
AIDS antiviral data set mentioned above, among the one million frequent graphs, only about 2000 are
closed frequent graphs. If further analysis, such as classification or clustering, is performed on closed
frequent graphs instead of frequent graphs, it will achieve similar accuracy with less redundancy and
higher efficiency.

An efficient method, called CloseGraph, was developed for mining closed frequent graphs by exten-
sion of the gSpan algorithm. The key for efficient mining of closed frequent subgraphs is to figure out at
what condition that the further growth of a frequent subgraph g should be pruned when its e-expanded
subgraph g’ has the same support as g. Experimental study has shown that CloseGraph often generates
far fewer graph patterns and runs more efficiently than gSpan, which mines the full subgraph pattern
set.

Extension of pattern-growth approach: mining alternative substructure patterns

A typical pattern-growth graph mining algorithm, such as gSpan or CloseGraph, mines labeled, con-
nected, undirected frequent or closed subgraph patterns. Such a graph mining framework can be
extended easily for mining alternative substructure patterns. Here we discuss a few such alternatives.
First, the method can be extended for mining unlabeled or partially labeled graphs. Each vertex
and each edge in our previously discussed graphs contain labels. Alternatively, if none of the vertices
and edges in a graph are labeled, the graph is unlabeled. A graph is partially labeled if only some
of the edges and/or vertices are labeled. To handle such cases, we can build a label set that contains
the original label set and a new empty label, ¢. Label ¢ is assigned to vertices and edges that do not
have labels. Notice that label ¢ may match with any label or with ¢ only, depending on the application

5.5 Mining subgraph patterns 221

semantics. With this transformation, gSpan (and CloseGraph) can directly mine unlabeled or partially
labeled graphs.

Second, we examine whether gSpan can be extended to mining nonsimple graphs. A nonsimple
graph may have a self-loop (i.e., an edge joins a vertex to itself) and multiple edges (i.e., several edges
connecting two of the same vertices). In gSpan, we always first grow backward edges and then forward
edges. In order to accommodate self-loops, the growing order should be changed to backward edges,
self-loops, and forward edges. If we allow sharing of the same vertices in two neighboring edges in a
DEFS code, the definition of DFS lexicographic order can handle multiple edges smoothly. Thus gSpan
can mine nonsimple graphs efficiently too.

Third, we see how gSpan can be extended to handle mining directed graphs. In a directed graph,
each edge of the graph has a defined direction. If we use a 5-tuple, (i, j, l;, [, j),!;), to represent an
undirected edge, then for directed edges, a new state is introduced to form a 6-tuple, (i, j, d,l;, [, j),1;),
where d represents the direction of an edge. Let d = +1 be the direction from i (v;) to j (v;), whereas
d = —1 be that from j (v;) to i (v;). Notice that the sign of d is not related with the forwardness or
backwardness of an edge. When extending a graph with one more edge, this edge may have two choices
of d, which only introduces a new state in the growing procedure and need not change the framework
of gSpan.

Fourth, the method can also be extended to mining disconnected graphs. There are two cases
to be considered: (1) the graphs in the data set may be disconnected, and (2) the graph patterns may
be disconnected. For the first case, we can transform the original data set by adding a virtual vertex
to connect the disconnected graphs in each graph. We then apply gSpan on the new graph data set.
For the second case, we redefine the DFS code. A disconnected graph pattern can be viewed as a
set of connected graphs, r = {go, g1, .- ., &m}, Where g; is a connected graph, 0 <i < m. Since each
graph can be mapped to a minimum DFS code, a disconnected graph r can be translated into a code,
y = (80,51, .- -, Sm), where s; is the minimum DFS code of g;. The order of g; in r is irrelevant. Thus,
we enforce an order in {s;} such that sy <s1 <... <s,. ¥y can be extended by either adding one-edge
Sm+1 (Sm < Sm1) or by extending s, ..., and sg. When checking the frequency of y in the graph data
set, make sure that go, g1, ..., and g, are disconnected with each other.

Finally, if we view a tree as a degenerated graph, it is straightforward to extend the method to mining
frequent subtrees. In comparison with a general graph, a tree can be considered as a degenerated
direct graph that does not contain any edges that can go back to its parent or ancestor nodes. Thus if
we consider that our traversal always starts at the root (since the tree does not contain any backward
edges), gSpan is ready to mine tree structures. Based on the mining efficiency of the pattern-growth-
based approach, it is expected that gSpan can achieve good performance in tree-structure mining.

Mining substructure patterns with user-specified constraints

Various kinds of constraints or specific requirements can be associated with a user’s mining request.
Rather than developing many case-specific substructure mining algorithms, it is more appropriate to set
up a general framework to facilitate such mining.

Constraint-based mining of frequent substructures. Constraint-based mining of frequent substruc-
tures can be developed systematically, similar to the constraint-based mining of frequent patterns and
sequential patterns introduced previously. Take graph mining as an example. With the constraint-
based frequent pattern mining framework, graph constraints can also be classified into a few cate-
gories, including pattern antimonotonic, pattern monotonic, data antimonotonic, and succinct. Efficient

222 Chapter 5 Pattern mining: advanced methods

constraint-based mining methods can be developed in a similar way by extending efficient graph-pattern
mining algorithms, such as gSpan and CloseGraph.

Example 5.24. Constraint-based substructure mining. Let’s examine a few commonly encountered
classes of constraints to see how the constraint-pushing technique can be integrated into the pattern-
growth mining framework.

1. Element, set, or subgraph containment constraint. Suppose a user requires that the mined pattern
contains a particular set of subgraphs. This is a succinct constraint that can be pushed deep into
the beginning of the mining process. That is, we can take the given set of subgraphs as a query,
perform selection first using the constraint, and then mine on the selected data set by growing (i.e.,
extending) the patterns from such given set of subgraphs. A similar strategy can be developed if we
require that the mined graph pattern must contain a particular set of edges or vertices.

2. Geometric constraint. A geometric constraint can be that the angle between each pair of con-
nected edges must be within a range, written as “Cg =min_angle < angle(ey, e2, v, v1, v12) <
max_angle,)” where two edges e; and e; are connected at vertex v with the two vertices at the
other ends as v and v7, respectively. Cg is a pattern antimonotonic constraint since if one angle
in a graph formed by two edges does not satisfy C¢, further growth on the graph will never satisfy
Cg. Thus Cg can be pushed deep into the edge growth process and reject any growth that does not
satisfy Cg. Cg is also a data antimonotonic constraint: for any data graph g;, with respect to a
candidate subgraph g, if there is no component in the remaining g; containing edges satisfying Cg,
gi should not be further considered for g. since it will not support g.’s further expansion.

3. Value-sum constraint. One example of such a constraint can be that the sum of (positive) weights
on the edges Sum, be within a range from /ow to high. This constraint can be split into two con-
straints, Sum, > low and Sum, < high. The former is a pattern monotonic constraint, since once
it is satisfied, further “growth” on the graph by adding more edges will always satisfy the constraint.
The latter is a pattern antimonotonic constraint, because once the condition it is not satisfied,
further growth of Sum, will never satisfy it. Both constraints are data antimonotonic in the sense
that any data graph that cannot satisfy these constraints during the pattern growth process should be
pruned. The constraint pushing strategy can then be worked out easily. O

Notice that a graph-mining query may contain multiple constraints. For example, we may want
to mine graph patterns satisfying constraints on both the geometry and the range of the sum of edge
weights. In such cases, we should try to push multiple constraints simultaneously, exploring a method
similar to that developed for frequent itemset mining. For the multiple constraints that are difficult to
push in simultaneously, customized constraint-based mining algorithms can be developed accordingly.

Mining approximate frequent substructures

An alternative way to reduce the number of patterns to be generated is to mine approximate frequent
substructures, which allow slight structural variations. With this technique, we can represent several
slightly different frequent substructures using one approximate substructure.

The principle of minimum description length (Chapter 6) is adopted in a substructure discovery
system called SUBDUE, which mines approximate frequent substructures. It looks for a substructure
pattern that can best compress a graph set based on the Minimum Description Length (MDL) principle,
which essentially states that the simplest representation is preferred. SUBDUE adopts a constrained

5.6 Pattern mining: application examples 223

beam search method. It grows a single vertex incrementally by expanding a node in it. At each ex-
pansion, it searches for the best total description length: the description length of the pattern and the
description length of the graph set with all the instances of the pattern condensed into single nodes.
SUBDUE performs approximate matching to allow slight variations of substructures, thus supporting
the discovery of approximate substructures.

There should be many different ways to mine approximate substructure patterns. Some may lead
to a better representation of the entire set of substructure patterns, whereas others may lead to more
efficient mining techniques. More research is needed in this direction.

Mining coherent substructures

A frequent substructure G is a coherent subgraph if the mutual information between G and each of its
own subgraphs is above some threshold. The number of coherent substructures is significantly smaller
than that of frequent substructures. Thus mining coherent substructures can efficiently prune redundant
patterns—that is, patterns that are similar to each other and have the similar support. A promising
method was developed for mining such substructures. Its experiments demonstrate that in mining spatial
motifs from protein structure graphs, the discovered coherent substructures are usually statistically
significant. This indicates that coherent substructure mining selects a small subset of features that have
high distinguishing power between protein classes.

5.6 Pattern mining: application examples

Besides mining frequent patterns in shopping basket analysis, pattern mining captures intrinsic cooc-
currence properties of multiple components in massive data sets and plays an important role in various
applications. Here we introduce two such cases: phrase mining in massive text data and software bug
analysis.

5.6.1 Phrase mining in massive text data

Text data are ubiquitous and plays an essential role at conveying semantics in human communications.
However, text data are unstructured and high dimensional. Thus transforming unstructured text into
structured units will substantially reduce semantic ambiguity and enhance the power and efficiency at
manipulating such data. One such structured unit is semantically meaningful phrases. Although word
has been considered as a basic unit at conveying semantics in human languages, a single word (which
is often called “unigram”) is often ambiguous at expressing semantic meanings. For example, a single
word “united” could form United Airline, United States, United Kingdom, and so on when combining
with other words, and the word itself may not be an independent semantic unit. However, a phrase
like “United States” or “United Airline” will not lead to any ambiguity. Clearly, phrase represents a
natural, meaningful, unambiguous semantic unit. Phrase mining, that is, extracting meaningful phrases
from massive text, may transform text data from word granularity to phrase granularity and enhance
the power and efficiency at manipulating unstructured data.

Phrase mining plays a key role in named entity recognition, a basic natural language processing task.
Named entity recognition is often modeled as a sequence labeling problem. To solve such a problem,
one can first label the words in a sentence by marking a word with “B,” as the beginning of a noun

224 Chapter 5 Pattern mining: advanced methods

phrase, the next word could be “I,” representing it is still in the same phrase, or “O,” representing it is
out of the phrase, and some even uses “S” to represent the singleton of a phrase (i.e., unigram entity).
Such kind of annotation may require human to annotate hundreds of documents as training data and then
train a supervised model based on part-of-speech features. However, such kind of training can be costly
since it requires human to do a lot of tedious labeling work. Further, this kind of human annotation
process is not scalable to a new language, a new domain (e.g., science and engineering), or an emerging
application, such as analyzing social media data. Obviously, an automated or semiautomated process
could be more desirable for phrase mining.

A simple way to automate the phrase finding process is to take frequent recurring word sequences
in text, such as frequent bigrams and tri-grams as phrases. Unfortunately, many frequent bigrams or
tri-grams do not form meaningful phrases. For example, “study of” could be a frequent bigram but it
is not a meaningful phrase, and the bigram “this paper,” though frequent, may not carry much useful
information. Moreover, some highly frequent bigrams or tri-grams may not even occur “independently.”
For example, “vector machine” could be a frequently occurring bigram in a machine learning literature
corpus but may not exist independently since “vector machine” may only exist as a subsequence of a
genuine frequent phrase “support vector machine.”

How to judge the quality of a phrase?

This leads to an important problem in phrase mining: how to judge a phrase is in high quality with
respect to a given corpus. A phrase is a sequence of words that appear contiguously in the text, forming
a complete semantic unit in certain context of the given documents. The raw frequency of a phrase is the
total count of its occurrences. There is no universally accepted definition of phrase quality. However,
it is useful to quantify phrase quality as the probability of a word sequence being a complete semantic
unit, meeting the following criteria:

* Popularity: A quality phrase should occur with sufficient frequency in the given collection of doc-
uments.

* Concordance: The collocation of tokens in quality phrases should occur with significantly higher
probability than what is expected due to chance. For example, “strong tea” (but not “powerful tea”)
could likely be a phrase formed by two collocated words.

* Informativeness: A phrase is informative if it is indicative of a specific topic or concept. “This
paper” is a popular and concordant phrase but not informative in a research paper corpus.

e Completeness: A phrase is complete if it can be interpreted as a whole semantic unit in certain
context. For example, “vector machine” does not appear as a complete phrase in a machine learning
corpus since almost every occurrence of “vector machine” is just a subcomponent of “support vector
machine.” Note that a phrase and its subphrase can both be valid in appropriate context. For example,
“relational database system,” “relational database,” and “database system” can all be valid in certain
context.

Phrasal segmentation and computing phrase quality

Phrase quality can be defined to be the possibility of a multiword sequence being a coherent semantic
unit, according to the above four criteria. Given a phrase v, its phrase quality can be defined as: Q(v) =
p([v]lv) € [0, 1] where [v] refers to the event that the words in v compose a phrase. For a single
word w, we define Q(w) = 1. For phrases, Q is to be learned from data. For example, a good quality
estimator is able to return Q(relational database system) =~ 1 and Q(vector machine) = 0.

5.6 Pattern mining: application examples 225

Concordance computation. Concordance contributes significantly to the evaluate the phrase quality
since tokens in high quality phrases should cooccur (also called “colocation”) with significantly higher
probability than what is expected due to chance. There are multiple measures that can be used to eval-
uate how a sequence of words that cooccur more frequently than expected in a corpus.

To make phrases with different lengths comparable, we partition each phrase candidate into two
disjoint parts in all possible ways and derive effective features measuring their concordance.

Suppose for each word or phrase u € U/, we have its raw frequency f[u]. Its probability p(u) is
defined as

flul
pu) = =1
Zu’ eu flu']
Given a phrase v € P, we split it into two most-likely subunits (u;, u,) such that pointwise mutual infor-
mation is minimized. Pointwise mutual information quantifies the discrepancy between the probability
of their true collocation and the presumed collocation under independence assumption. Mathematically,

(7, u,) =arg min logA.
w@ur=v = p(up) p(ur)

With (u;, u,), we can directly use the pointwise mutual information as one of the concordance features.

p(v)

PMI(uy,u,)=log ————.
(e, wer) = o8 o)

Another feature is also from information theory, called pointwise Kullback-Leibler divergence:

p(v)

PRLOI s up)) = p)log —o s

The additional p(v) is multiplied with pointwise mutual information, leading to less bias toward rare-
occurred phrases.
Both features are supposed to be positively correlated with concordance. Concordance can also be
evaluated using other statistical measures, such as z-test, z-test, chi-squared test, and likelihood ratio.
Many of these measures can be used to guide an agglomerative phrasal segmentation process.

Phrasal segmentation. A phrasal segmentation corresponds to a partition of a word sequence into
multiple subsequences, such that every subsequence corresponds to either a single word or a phrase.
Phrasal segmentation provides the necessary granularity we need to extract quality phrases. Consider
the raw frequency of a phrase is the total count of its occurrences in the original corpus. The total count
for a phrase to appear in the segmented corpus is called rectified frequency.

A sequence’s segmentation may not be unique. A sequence could be ambiguous and may have dif-
ferent interpretations based on different ways of segmentation. For example, “[support vector machine |
learning” and “[support vector| [machine learning]” may both be valid partitions, with different
meanings. Nevertheless, in most cases, it does not require perfect segmentation, no matter if such a
segmentation exists, to extract quality phrases. In a large document collection, the popularly adopted
phrases appear many times in a variety of context. Even with a few mistakes or debatable partitions,
a reasonably high quality segmentation would retain sufficient support (i.e., rectified frequency) for

226 Chapter 5 Pattern mining: advanced methods

these quality phrases. On the other hand, a quality segmentation will unlikely generate partitions like
“support [vector machine].” Thus, “vector machine,” even with high raw frequency, is a false phrase
since it will have very low rectified frequency.

Informativeness computation. Some candidates are unlikely to be informative because they are func-
tional or stopwords. The following stopword-based features can be used to compute informativeness:

¢ Whether stopwords are located at the beginning or the end of the phrase candidate, which requires
a dictionary of stopwords. Phrases that begin or end with stopwords, such as “I am,” are often
functional rather than informative.

A more generic feature is to measure the informativeness based on corpus statistics.

* Average inverse document frequency (IDF) computed over words, where IDF for a word w is com-
puted as

o IC]
{d e [D]:w e Ca)l’

where the IDF score of a word or phrase w is the logarithm of the total number of documents in the
corpus (i.e., |C]) divided by the number of documents where w appears (i.e., |{d € [D]: w € Cg}|). It
is a traditional information retrieval measure of how much information a word provides in order to
retrieve a small subset of documents from a corpus. In general, quality phrases are expected to have not
too small average IDF.

In addition to word-based features, punctuation is frequently used in text to aid interpretations of
specific concept or idea. This information is helpful for our task. Specifically, we adopt the following
feature:

IDF(w) = lo

* Punctuation: probabilities of a phrase in quotes, brackets or capitalized.

Higher probability usually indicates that a phrase is more likely to be informative.

Phrase mining methods

With such quality measures as guidance, phrase mining can adopt an unsupervised, a weakly super-
vised, or a distantly supervised approach.

Unsupervised phrase mining: ToPMine. ToPMine finds quality phrases based on statistics in the
corpus without using any human supervision or annotation. It first mines frequent phrases using a
contiguous sequential pattern mining, and then use these phrases to segment each document through
an agglomerative phrase construction method. For the frequent phrase mining process, it uses a typical
contiguous sequential pattern mining algorithm such as PrefixSpan with the gap between the candidate
words set to zero. Then it simply collects aggregate counts for all contiguous words in a corpus that
satisfy a certain minimum support threshold.

For the agglomerative phrase construction process, it adopts a bottom-up phrase/word merging pro-
cess. At each iteration, it makes locally optimal decisions in merging single- and multiword phrases as
guided by a statistical significance score (i.e., merging two contiguous phrases such that their merging
is of highest significance). The following iteration then considers the newly merged phrase as a single
unit and assesses the significance of merging two phrases. The algorithm terminates when the next

5.6 Pattern mining: application examples 227

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
l-grams problem word data programming data
algorithm language method language patterns
optimal text algorithm code mining
solution speech learning type rules
search system clustering object set
solve recognition classification implementation event
constraints character based system time
programming translation features compiler association
heuristic sentences proposed java stream
genetic grammar classifier data large
n-grams genetic algorithm natural language data sets programming language data mining
optimization problem speech recognition support vector machine source code data sets
solve this problem language model learning algorithm object oriented data streams
optimal solution natural language processing machine learning type system association rules
evolutionary algorithm machine translation feature selection data structure data collection
local search recognition system paper we propose program execution time series
search space context free grammars clustering algorithm run time data analysis
optimization algorithm sign language decision tree code generation mining algorithms
search algorithm recognition rate proposed method object oriented programming spatio temporal
objective function character recognition training data java programs frequent itemsets
FIGURE 5.21

Five topics from a 50-topic run of ToPMine on a full DBLP abstracts data set. Overall we see coherent topics and

high-quality topical phrases, which can be interpreted as “search/optimization,” “NLP,” “machine learning,” “pro-
gramming languages,” and “data mining.”

merging with the highest significance does not meet a predetermined significance threshold or when all
the terms have been merged into a single phrase. While the frequent phrase mining algorithm satisfies
the frequency requirement, the phrase construction algorithm satisfies the collocation and completeness
criterion.

By integrating such a phrase mining process with a refined LDA (Latent Dirichlet Allocation)-based
topic modeling process, ToPMine generates topic clusters consisting of high quality phrases, without
human supervision, as shown in Fig. 5.21.

Weakly supervised phrase mining: SegPhrase. It is possible to mine quality phrases without any
human supervision; however, it is often more desirable to assist phrase mining with a small set of
human-provided labeled data due to various ways to form phrases in diverse domains.

Here we introduce a weakly supervised phrase mining method, called SegPhrase, which takes a
corpus with a small set L of labeled quality phrases and L of inferior ones as the input and generates
a ranked list of phrases with decreasing quality, together with a segmented corpus, as output. Taking
a small set of labeled data, one can work with various classifiers that can be effectively trained with a
small set of labeled data and output a probabilistic score between 0 and 1. For instance, we can adopt the
random forest algorithm, which is a typical ensemble-based classification algorithm to be introduced
in Chapter 7, and is effective to train a quality classifier with a small number of positive (i.e., quality
phrases) and negative labels (i.e., inferior phrases). The ratio of positive predictions among all decision
trees can be interpreted as a phrase’s quality estimation. The experiments show that 200-300 labels are
enough to train a satisfactory classifier. Classification results will be fed into a phrasal segmentation
process to compute rectified frequency of each phrase. Combined with phrase quality estimation, bad
phrases with high raw frequency get removed as their rectified frequencies approach zero. Furthermore,

228 Chapter 5 Pattern mining: advanced methods

Conference SIGMOD SIGKDD
Method SegPhrase+ Chunking SegPhrase+ Chunking
1 data base data base data mining data mining
2 database system database system data set association rule
3 relational database query processing association rule knowledge discovery
4 query optimization query optimization knowledge discovery frequent itemset
5 query processing relational database time series decision tree
51 sql server database technology association rule mining | search space
52 relational data database server rule set domain knowledge
53 data structure large volume concept drift important problem
54 join query performance study knowledge acquisition concurrency control
55 web service web service gene expression data conceptual graph
201 high dimensional data | efficient implementation || web content optimal solution
202 location based service | sensor network frequent subgraph semantic relationship
203 xml schema large collection intrusion detection effective way
204 two phase locking important issue categorical attribute space complexity
205 deep web frequent itemset user preference small set
FIGURE 5.22

Interesting phrases mined from papers published in SIGMOD and SIGKDD conferences.

rectified phrase frequencies can be fed back to generate additional features and improve the phrase
quality estimation.

Such a phrase quality estimation and phrasal segmentation form a mutually enhancement process.
A better phrase quality estimator can guide a better segmentation, and a better segmentation will further
improve phrase quality estimation. As a result, misclassified phrase candidates can get mostly corrected
after retraining the classifier. Therefore, such an integrated, mutual enhancement framework is expected
to leverage the quality on both quality estimation and phrasal segmentation and address all the four
phrase quality requirements organically. The experiments show that the benefits brought by retraining
the classifier with rectified frequency just need one round iteration, leaving performance curves over
the next several iterations similar.

With only a small set of human crafted training data, SegPhrase has shown high performance on
generating a large set of quality phrases from different kinds of corpora, in multiple natural languages.
A performance study on the quality of phrases generated by different methods also show that Seg-
Phrase outperforms many other phrase mining or chucking methods. Fig. 5.22 shows a set of interesting
phrases mined from a large set of papers published in SIGMOD and SIGKDD conferences, which obvi-
ously outperforms the set of phrases generated by a phrase chucking methods adopted in JATE (https://
code.google.com/p/jatetoolkit).

Distantly supervised phrase mining: AutoPhrase. AutoPhrase is an automated phrase mining frame-
work, which further avoids additional manual labeling effort and enhances the performance with two
techniques: (1) robust positive-only distant training and (2) POS-guided phrasal segmentation.

Many high-quality phrases are freely available in general knowledge bases, and they can be easily
obtained to a scale that is much larger than that produced by human experts. Domain-specific corpora
usually contain quality phrases encoded either in general knowledge bases or in domain-specific knowl-
edge bases (e.g., biomedical knowledge bases). We can leverage the existing high-quality phrases from

https://code.google.com/p/jatetoolkit
https://code.google.com/p/jatetoolkit

5.6 Pattern mining: application examples 229

MaCS:rI;i::“ Phrase Candidates Positive Pool Robust positive-only distant
5 trainin -gui i
(frequent n-gram) EP—— g POS-guided phrasal segmentation
= |:> peaks at Anderson Cooper US President / Barack Obama /
a tow //' US President 0.99 US President |:> speaks / at /a /town hall meeting /
p :
QL l¢ Barack Obama ‘:> 0.98 Anderson Cooper with / CNN /'s / Anderson Cooper /

Knowledge bases

e Anderson Cooper 0.98 Barack Obama

C Noisy Negative Poo =
* MalSy NegatVElD The / Obama administration / may /

7,710 0.85 Obama administrati i
: “!"‘ wo e K ama administration | phrase quality be/ winding / down / but / first lady
- / o

Ry

" 03 speaks at re-estimation| / \iichelle Obama / is / keeping / ..

an example
P US President i
. linistration 0.2atown

FIGURE 5.23

Autophrase: automated phrase mining by distant supervision.

general knowledge bases (e.g., Wikipedia and Freebase) or domain-specific ones as available “positive”
labels for distant training.

Knowledge bases, however, rarely, if ever, identify inferior phrases that fail to meet our criteria.
An important observation is that the number of phrase candidates, based on n-grams, is huge, and the
majority of them are actually of inferior quality (e.g., “Francisco opera and”). In practice, based on
the experiments, among millions of phrase candidates, usually, only about 10% are in good quality.
Therefore phrase candidates that are derived from the given corpus but that fail to match any high-
quality phrase derived from the given knowledge base are used to populate a large but noisy negative
pool. A framework for exploring knowledge-bases in distant supervision is outlined in Fig. 5.23.

Directly training a classifier based on the noisy label pools is not a wise choice: some phrases of
high quality from the given corpus may have been missed (i.e., inaccurately binned into the negative
pool) simply because they were not present in the knowledge base. Instead, a clever way is to utilize an
ensemble classifier that averages the results of 7 independently trained base classifiers. For each base
classifier, K phrase candidates are randomly drawn with replacement from the positive pool and the
negative pool respectively. This size-2K subset of the full set of all phrase candidates is called a per-
turbed training set, because the labels of some quality phrases are switched from positive to negative. In
order for the ensemble classifier to alleviate the effect of such noise, we need to use base classifiers with
the lowest possible training errors. An unpruned decision tree can be grown to the point of separating
all phrases to meet this requirement. The phrase quality score of a particular phrase is computed as the
proportion of all decision trees that predict that phrase is a quality phrase.

To further enhance the performance of phrase mining, a pretrained part-of-speech (POS) tagger can
be incorporated to take advantage of linguistic knowledge. The POS-guided phrasal segmentation lever-
ages the shallow syntactic information in POS tags to guide the phrasal segmentation model locating the
boundaries of phrases more accurately. POS tags may provide shallow, language-specific knowledge,
which may help boost phrase detection accuracy, especially at syntactic constituent boundaries for that
language. For example, suppose the whole POS tag sequence is “NN NN NN VB DT NN.” A good
POS sequence quality estimator might return Q(NN NN NN)~ 1 and Q(NN V B) ~ 0 where NN
refers to singular or mass noun (e.g., database), V B means verb in the base form (e.g., is), and DT is
for determiner (e.g., the).

The extensive experiments show that AutoPhrase is domain-independent, outperforms other phrase
mining methods, and supports multiple languages (e.g., English, Spanish, and Chinese) effectively, with
minimal human effort.

230 Chapter 5 Pattern mining: advanced methods

5.6.2 Mining copy and paste bugs in software programs

Pattern mining has found its interesting applications in software program analysis since the source
code of a program module consists of long sequences of programming statements and the execution
of a software program forms a sequence of executed codes. A large software program may consist of
many program modules and its executions may leave tremendous amount of execution traces. Manual
examination of such programming code or execution traces could be tedious and costly. Frequent and
sequential pattern mining could provide useful tools to uncover interesting regularities or irregularities.
Typical examples may include mining software bugs from source programs or execution sequences,
mining programming rules from program revision histories, mining software function precedence pro-
tocols by examination of frequent subsequences, and revealing neglected conditions by frequent itemset
or subgraph mining.

Here we examine one example which explores pattern discovery to find copy-pasting software pro-
gram bugs from source code. Because a lot of program fragments may share some similar functions,
code copy-pasting has become popular in software programming. A programmer may highlight a few
lines of program code at one location of a program, copy these lines, paste them to another location in
a program, and then perform appropriate modifications of the pasted programming code.

Copy-pasting is a common programming practice. Some statistic shows that about 12% of program
code in the Linux file system and about 19% in the X Window system are copy-pasted. However,
copy-pasted code is error-prone. Due to programmer’s carelessness, changes on pasted code may not
always be done consistently throughout. Such “forget-to-change” bugs can be common and lead to
buggy programs.

Interestingly, such copy-pasting bugs can be mined by transforming source code into a sequence
data set, on which sequential pattern mining can be conducted to identify likely mismatched identifier
names, and hence catch the “forget-to-change” bugs.

Let’s examine such an example. Fig. 5.24 shows a program module that contains a copy-pasting bug:
The first for-loop block is copied and pasted to form the second for-loop block, and every occurrence
of the pasted identifier “total” should be consistently changed to “taken.” Unfortunately, the last change
of “total” was missing, leading to a bug.

void __init prom_meminit(void)

for (i=0; i<n; i++) {
total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

for (i=0; i<n; i++) {
takenli].adr = list[i].addr;
taken(i].bytes = list[i].size;
takenl[i].more = &total[i+1];

}

FIGURE 5.24

A program fragment that contains a copy-pasting bug.

5.6 Pattern mining: application examples 231

Hash values
65 | for (i=0; i<n; i++) {
16 total[i].adr = list[i].addr;
16 total[i].bytes = list[i].size;
71 total[i].more = &total[i+1];

}

65 I for (i=0; i<n; i++) {
16 taken(i].adr = list[i].addr;
16 takenl[i].bytes = list[i].size;
71 taken([i].more = &total[i+1];

FIGURE 5.25

Transform a sequence of statements into a sequence of numbers.

The key to find such a programming bug is to identify the corresponding copy-pasting blocks and
examine whether the modifications of the statements in the pasted block were conducted consistently.
“How to automatically identify such copy-pasting blocks?” An interesting strategy is to map a long
source program into a long sequence of numbers, where each statement is represented by a number.
If a statement being copied and that being pasted can be mapped to the same number, the blocks of
statements being copied and pasted will show a similar sequence, and a sequential pattern mining
algorithm will be able to identify such copy-pasting blocks.

Let’s see how two statements, one copied and one pasted, can be mapped to the same number, by
a clever design. To map the statements “total[i].adr = list[i].addr;” and “takenl[i].adr = list[i].addr;” to
the same number, we may design the following mapping rules: (1) the identifiers of the same type are
mapped to the same token, (2) different operators, constants, and key words are mapped to different
tokens, and (3) a statement consisting of the same sequence of tokens is mapped to the same number
and that consisting of a different sequence of tokens is mapped to different numbers.

Following this set of rules, the name identifiers “total,” “list,” “taken,” “i,” and “addr” are mapped
to the same token (e.g., 3). Similarly, we may have “[” mapped to 5, “]”to 6; “"t0 8, “="109, “;”" to 1,
and “&” to 2. Then the statement “total[i].adr = list[i].addr;” is mapped to a sequence of tokens “3 5 3
6839353683 1.” Such a sequence could be mapped (e.g., using a hash function) to a number (e.g.,
16). By such mapping, each statement in a program is mapped to a number; and two statements with
similar functions, such as “total[i].adr = list[i].addr;” and “taken[i].adr = list[i].addr;,” will be mapped
to the same number 16, despite their different identifier names, since they have the same sequence of
tokens. Thus, a sequence of statements shown in Fig. 5.24 are transformed into a sequence of numbers
(or hash values) as shown in Fig. 5.25.

The above-described transformation maps a program to a sequence of numbers. One can further cut
along sequence by blocks. Thus, our program code in Fig. 5.24 will be transformed into a sequence data
set: (65), (16, 16, 71), ..., (65), (16, 16, 71). By sequential pattern mining, one can find the sequential
pattern “(65), (16, 16, 71).”

Note that even some other statements are inserted in the middle of such a sequence of statements,
a typical sequential pattern mining algorithm such as PrefixSpan will still be able to find the correct
sequential pattern. For example, mining the two sequences (16, 16, 71) and (16, 18, 16, 25, 71) will
generate the same frequent subsequence (16, 16, 71). This will allow the method to detect copy-pasting

232 Chapter 5 Pattern mining: advanced methods

bugs even if a few other statements are inserted into the pasted program code as long as such an insertion
are confined to a predefined maximal gap (for sequential pattern mining).

After identification of copy-pasting blocks, the next step is to find inconsistent modifications in the
pasted statements. This can be done easily by comparing the two copy-pasting blocks. If the majority
occurrences of one identifier (e.g., “total”’) have been changed to another one (e.g., “taken”), the mi-
nority unchanged (e.g., the retained “total”) is likely the bug. An “unchanged ratio” can be easily set to
identify such “forget to change” errors.

A software bug mining program, CP-Miner, adopting the mining methodology described here, has
successfully uncovered many copy-pasting bugs in Linux, Apache, and other open source programs,
out of millions of lines of code.

5.7 Summary

* The scope of frequent pattern mining research reaches far beyond the basic concepts and methods
introduced in Chapter 4 for mining frequent itemsets and associations. This chapter presented a road
map of the field, where topics are organized with respect to the kinds of patterns and rules that can
be mined, mining methods, and applications.

¢ In addition to mining for basic frequent itemsets and associations, advanced forms of patterns
can be mined such as multilevel associations and multidimensional associations, quantitative asso-
ciation rules, rare patterns, and negative patterns. We can also mine high-dimensional patterns and
compressed or approximate patterns.

¢ Multilevel associations involve data at more than one abstraction level (e.g., “buys computer” and
“buys laptop”). These may be mined using multiple minimum support thresholds. Multidimen-
sional associations contain more than one dimension. Techniques for mining such associations
differ in how they handle repetitive predicates. Quantitative association rules involve quantitative
attributes. Discretization, clustering, and statistical analysis that discloses exceptional behavior can
be integrated with the pattern mining process.

* Rare patterns occur rarely but are of special interest. Negative patterns are patterns with compo-
nents that exhibit negatively correlated behavior. Care should be taken in the definition of negative
patterns, with consideration of the null-invariance property. Rare and negative patterns may highlight
exceptional behavior in the data, which is likely of interest.

* Constraint-based mining strategies can be used to help direct the mining process toward patterns
that match users’ intuition or satisfy certain constraints. Many user-specified constraints can be
pushed deep into the mining process. Constraints can be categorized into pattern-pruning and data-
pruning constraints. Properties of such constraints include monotonicity, antimonotonicity, data-
antimonotonicity, and succinctness. Constraints with such properties can be properly incorporated
into efficient pattern mining processes.

e Methods have been developed for mining patterns in high-dimensional space. This includes a
pattern growth approach based on row enumeration for mining data sets where the number of di-
mensions is large and the number of data tuples is small (e.g., for microarray data), as well as mining
colossal patterns (i.e., patterns of very long length) by a Pattern-Fusion method.

* To reduce the number of patterns returned in mining, we can instead mine compressed patterns or ap-
proximate patterns. Compressed patterns can be mined with representative patterns defined based on

5.8 Exercises 233

the concept of clustering, and approximate patterns can be mined by extracting redundancy-aware
top-k patterns (i.e., a small set of k-representative patterns that have not only high significance but
also low redundancy with respect to one another).

* Sequential pattern mining is the mining of frequently occurring ordered events or subsequences as
patterns. The Apriori pruning principles can be used for pruning in sequential pattern mining, which
leads to efficient sequential mining algorithms, such as GSP, SPADE and PrefixSpan. CloSpan is
an efficient method for mining closed sequential patterns. Efficient methods have also been devel-
oped for mining multidimensional and multilevel sequential patterns and constraint-based sequential
pattern mining.

* Subgraph pattern mining is the mining of frequent subgraphs in a collection of graphs. The Apri-
ori pruning principles can be used for pruning in subgraph pattern mining, which leads to efficient
subgraph mining algorithms, such as AGM, FSG and gSpan (a pattern-growth approach). CloseG-
raph is an efficient method for mining closed subgraph patterns. Efficient methods have also been
developed for mining other frequent substructure patterns, such as directed graphs, tree structures,
and disconnected graphs, mining frequent substructures with user-specified constraints, mining ap-
proximate frequent substructures, and mining coherent substructures.

» Pattern mining has broad and interesting applications. Besides popular market analysis application,
this chapter discusses phrase mining from massive text and software copy-pasting bug mining in
software engineering. For phrase mining, an unsupervised method ToPMine, a weakly supervised
method SegPhrase and a distantly supervised method AutoPhrase are introduced. For software copy-
pasting bug mining, a methodology adopted in CP-Miner is introduced.

5.8 Exercises

5.1. Propose and outline a level-shared mining approach to mining multilevel association rules in
which each item is encoded by its level position. Design it so that an initial scan of the database
collects the count for each item at each concept level, identifying frequent and subfrequent items.
Comment on the processing cost of mining multilevel associations with this method in compar-
ison to mining single-level associations.

5.2. Suppose, as manager of a chain of stores, you would like to use sales transactional data to
analyze the effectiveness of your store’s advertisements. In particular, you would like to study
how specific factors influence the effectiveness of advertisements that announce a particular
category of items on sale. The factors to study are the region in which customers live and the day-
of-the-week and time-of-the-day of the ads. Discuss how to design an efficient method to mine
the transaction data sets and explain how multidimensional and multilevel mining methods can
help you derive a good solution.

5.3. Quantitative association rules may disclose exceptional behaviors within a data set, where
“exceptional” can be defined based on statistical theory. For example, Section 5.1.3 shows the
association rule

gender = female = mean_wage = $7.90/ hr (overall_mean_wage = $9.02/ hr),

which suggests an exceptional pattern. The rule states that the average wage for females is only
$7.90 per hour, which is a significantly lower wage than the overall average of $9.02 per hour.

234 Chapter 5 Pattern mining: advanced methods

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

Discuss how such quantitative rules can be discovered systematically and efficiently in large data
sets with quantitative attributes.

In multidimensional data analysis, it is interesting to extract pairs of similar cell characteristics
associated with substantial changes in measure in a data cube, where cells are considered similar
if they are related by roll-up (i.e., ancestors), drill-down (i.e., descendants), or 1-D mutation
(i.e., siblings) operations. Such an analysis is called cube gradient analysis.

Suppose the measure of the cube is average. A user poses a set of probe cells and would like to
find their corresponding sets of gradient cells, each of which satisfies a certain gradient threshold.
For example, find the set of corresponding gradient cells that have an average sale price greater
than 20% of that of the given probe cells. Develop an algorithm than mines the set of constrained
gradient cells efficiently in a large data cube.

Section 5.1.5 presented various ways of defining negatively correlated patterns. Consider Def-
inition 5.3: “Suppose that itemsets X and Y are both frequent, that is, sup(X) > min_sup
and sup(Y) > min_sup, where min_sup is the minimum support threshold. If (P(X|Y) +
P(Y|X))/2 < €, where € is a negative pattern threshold, then pattern X U Y is a negatively cor-
related pattern.” Design an efficient pattern growth algorithm for mining the set of negatively
correlated patterns.

Prove that each entry in the following table correctly characterizes its corresponding rule con-
straint for frequent itemset mining.

Rule Constraint Antimonotonic Monotonic Succinct
a. veS no yes yes
h. Scv yes no yes
c. min(S)<v no yes yes
d. range(S)<v yes no no

The price of each item in a store is nonnegative. The store manager is only interested in mining

the rules, following the constraints given below. For each of the following cases, identify the

kinds of constraints they represent and briefly discuss how to mine such association rules using

constraint-based pattern mining.

a. Containing at least one Blu-ray DVD movie.

h. Containing items with a sum of the prices that is less than $150.

c. Containing one free item and other items with a sum of the prices that is at least $200,
whereas the average price of all the items is between $100 and $500.

Section 5.1.4 introduced a core Pattern-Fusion method for mining high-dimensional data. Ex-

plain why a long pattern, if existing in the data set, is likely to be discovered by this method.

Section 5.2.1 defined a pattern distance measure between closed patterns P; and P, as

IT(P)NT (P

Pat_Dist(P,P))=1— ————F7+——,
IT(P)UT(Py)]

where T'(P1) and T (P,) are the supporting transaction sets of P; and P,, respectively. Is this a
valid distance metric? Show the derivation to support your answer.

Association rule mining often generates a large number of rules, many of which may be similar,
thus not containing much novel information. Design an efficient algorithm that compresses a
large set of patterns into a small compact set. Discuss whether your mining method is robust
under different pattern similarity definitions.

5.9 Bibliographic notes 235

5.11. Frequent pattern mining may generate many superfluous patterns. Therefore, it is important to
develop methods that mine compressed patterns. Suppose a user would like to obtain only k
patterns (where k is a small integer). Outline an efficient method that generates the k most
representative patterns, where more distinct patterns are preferred over very similar patterns.
Illustrate the effectiveness of your method using a small data set.

5.12. Sequential pattern mining is to mine sequential patterns for a set of items occurring in sequence
order. In practice, people may like to find sequential patterns for types of items instead of for
concrete items, such as sequence patterns formed by high-level concepts. For example, instead
of finding sequential patterns composed of concrete models of i-phones in shopping transactions,
but finding patterns composed of Apple products, smart-phones, electronics, and so on. Outline
an efficient sequential pattern mining algorithm that simultaneously mines sequential patterns
at multiple levels of abstraction.

5.13. At studying customer shopping sequences, one may find if a customer buys a sequence of prod-
ucts from one company, the chance for him/her to buy the products of the similar kind from
another company will be much reduced. Can you outline an efficient algorithm that will be able
to capture such negatively associated sequential patterns?

5.14. Our study of subgraph pattern mining has been on how to mine frequent substructures from a col-
lection of graph data sets. The current Web page structures (e.g., Wikipedia) or social networks
may form one or a small number of gigantic network structures. One may need to find frequent
common substructures from one gigantic network. Outline an efficient method that finds top-k
large substructural patterns in a massive network.

5.15. In this chapter, we introduce an effective method for mining copy-and-paste bugs in software
programs. Typically, a software program may take different inputs which may lead to different
program execution sequences. For some inputs, the program execution finishes successfully but
for some other inputs, the program fails (e.g., getting a core dump). Can you work out an algo-
rithm that may use sequential pattern mining to identify what execution sequences may be used
to distinguish program failure from program success?

5.9 Bibliographic notes

This chapter described various ways in which the basic techniques of frequent itemset mining (pre-
sented in Chapter 4) have been extended. One line of extension is mining multilevel and multidimen-
sional association rules. Multilevel association mining was studied in Srikant and Agrawal [SA95] and
Han and Fu [HF95]. In Srikant and Agrawal [SA95], such mining was studied in the context of gener-
alized association rules, and an R-interest measure was proposed for removing redundant rules. Mining
multidimensional association rules using static discretization of quantitative attributes and data cubes
was studied by Kamber, Han, and Chiang [KHC97].

Another line of extension is to mine patterns on numeric attributes. Srikant and Agrawal [SA96]
proposed a nongrid-based technique for mining quantitative association rules, which uses a measure
of partial completeness. Mining quantitative association rules based on rule clustering was proposed
by Lent, Swami, and Widom [LSW97]. Techniques for mining quantitative rules based on x-monotone
and rectilinear regions were presented by Fukuda, Morimoto, Morishita, and Tokuyama [FMMT96] and
Yoda et al. [YFMT97]. Mining (distance-based) association rules over interval data was proposed by

236 Chapter 5 Pattern mining: advanced methods

Miller and Yang [MYO97]. Aumann and Lindell [AL99] studied the mining of quantitative association
rules based on a statistical theory to present only those rules that deviate substantially from normal data.

Mining rare patterns by pushing group-based constraints was proposed by Wang, He, and Han
[WHHOO]. Mining negative association rules was discussed by Savasere, Omiecinski, and Navathe
[SON98] and by Tan, Steinbach, and Kumar [TSKO05].

Constraint-based mining directs the mining process toward patterns that are likely of interest to
the user. The use of metarules as syntactic or semantic filters defining the form of interesting single-
dimensional association rules was proposed in Klemettinen et al. [KMR " 94]. Metarule-guided mining,
where the metarule consequent specifies an action (e.g., Bayesian clustering or plotting) to be ap-
plied to the data satisfying the metarule antecedent, was proposed in Shen, Ong, Mitbander, and
Zaniolo [SOMZ96]. A relation-based approach to metarule-guided mining of association rules was
studied in Fu and Han [FHO5].

Methods for constraint-based mining using pattern pruning constraints were studied by Ng, Laksh-
manan, Han, and Pang [NLHP98]; Lakshmanan, Ng, Han, and Pang [LNHP99]; and Pei, Han, and
Lakshmanan [PHLO1]. Constraint-based pattern mining by data reduction using data pruning con-
straints was studied by Bonchi, Giannotti, Mazzanti, and Pedreschi [BGMPO03] and Zhu, Yan, Han,
and Yu [ZYHYO07]. An efficient method for mining constrained correlated sets was given in Grahne,
Lakshmanan, and Wang [GLWO00]. A dual mining approach was proposed by Bucila, Gehrke, Kifer,
and White [BGKWO03]. Other ideas involving the use of templates or predicate constraints in min-
ing have been discussed in Anand and Kahn [AK93]; Dhar and Tuzhilin [DT93]; Hoschka and Klsgen
[HK91]; Liu, Hsu, and Chen [LHC97]; Silberschatz and Tuzhilin [ST96]; and Srikant, Vu, and Agrawal
[SVA97].

Traditional pattern mining methods encounter challenges when mining high-dimensional patterns,
with applications like bioinformatics. Pan et al. [PCT 03] proposed CARPENTER, a method for find-
ing closed patterns in high-dimensional biological data sets, which integrates the advantages of vertical
data formats and pattern growth methods. Pan, Tung, Cong, and Xu [PTCX04] proposed COBBLER,
which finds frequent closed itemsets by integrating row enumeration with column enumeration. Liu,
Han, Xin, and Shao [LHXS06] proposed TDClose to mine frequent closed patterns in high-dimensional
data by starting from the maximal rowset, integrated with a row-enumeration tree. It uses the pruning
power of the minimum support threshold to reduce the search space. For mining rather long patterns,
called colossal patterns, Zhu et al. [ZYH"07] developed a core Pattern-Fusion method that leaps over
an exponential number of intermediate patterns to reach colossal patterns.

To generate a reduced set of patterns, recent studies have focused on mining compressed sets of
frequent patterns. Closed patterns can be viewed as a lossless compression of frequent patterns, whereas
maximal patterns can be viewed as a simple lossy compression of frequent patterns. Top-k patterns,
such as by Wang, Han, Lu, and Tsvetkov [WHLTO05], and error-tolerant patterns, such as by Yang,
Fayyad, and Bradley [YFBO1], are alternative forms of interesting patterns. Afrati, Gionis, and Mannila
[AGMO04] proposed to use k-itemsets to cover a collection of frequent itemsets. For frequent itemset
compression, Yan, Cheng, Han, and Xin [YCHXO5] proposed a profile-based approach, and Xin, Han,
Yan, and Cheng [XHYCOS5] proposed a clustering-based approach. By taking into consideration both
pattern significance and pattern redundancy, Xin, Cheng, Yan, and Han [XCYHO06] proposed a method
for extracting redundancy-aware top-k patterns.

Automated semantic annotation of frequent patterns is useful for explaining the meaning of patterns.
Mei et al. [MXC'07] studied methods for semantic annotation of frequent patterns.

5.9 Bibliographic notes 237

An important extension to frequent itemset mining is mining sequence and structural data. This
includes mining sequential patterns (Agrawal and Srikant [AS95]; Pei et al. [PHMAT01,PHMAT04];
and Zaki [Zak01]); mining frequent episodes (Mannila, Toivonen, and Verkamo [MTV97]); mining
structural patterns (Inokuchi, Washio, and Motoda [TWM98]; Kuramochi and Karypis [KKO01]; and Yan
and Han [YHO02]); mining cyclic association rules (Ozden, Ramaswamy, and Silberschatz [ORS98]);
intertransaction association rule mining (Lu, Han, and Feng [LHF98]); and calendric market basket
analysis (Ramaswamy, Mahajan, and Silberschatz [RMS98]). Although the major graph pattern mining
studies are on mining frequent graph patterns in a collection of graphs, there are also studies on mining
large substructural patterns in a single large network, such as Zhu et al. [ZQL ™ 11].

Pattern mining has been extended to help effective data classification and clustering. Pattern-based
classification (Liu, Hsu, and Ma [LHM98] and Cheng, Yan, Han, and Hsu [CYHHO7]) is discussed in
Chapter 7. Pattern-based cluster analysis (Agrawal, Gehrke, Gunopulos, and Raghavan [AGGR98] and
Wang, Wang, Yang, and Yu [WWY Y02]) is discussed in Chapter 9.

Pattern mining also helps many other data analysis and processing tasks such as cube gradient
mining and discriminative analysis (Imielinski, Khachiyan, and Abdulghani [IKA02]; Dong et al.
[DHL™04]; Ji, Bailey, and Dong [JBD0S5]), discriminative pattern-based indexing (Yan, Yu, and Han
[YYHOS5]), and discriminative pattern-based similarity search (Yan, Zhu, Yu, and Han [YZYHO06]).

Pattern mining has been extended to mining spatial, temporal, time-series, multimedia data, and
data streams. Mining spatial association rules or spatial collocation rules was studied by Koperski
and Han [KHO95]; Xiong et al. [XSH"04]; and Cao, Mamoulis, and Cheung [CMCO05]. Pattern-based
mining of time-series data is discussed in Shieh and Keogh [SK08] and Ye and Keogh [YKO09]. There
are many studies on pattern-based mining of multimedia data such as Zaiane, Han, and Zhu [ZHZ00]
and Yuan, Wu, and Yang [YWYO07]. Methods for mining frequent patterns on stream data have been
proposed by many researchers, including Manku and Motwani [MMO02]; Karp, Papadimitriou, and
Shenker [KPS03]; and Metwally, Agrawal, and El Abbadi [MAAO5].

Pattern mining has broad applications. Application areas include computer science such as software
bug analysis, sensor network mining, and performance improvement of operating systems. For example,
CP-Miner by Li, Lu, Myagmar, and Zhou [LLMZ04] uses pattern mining to identify copy-pasted code
for bug isolation. PR-Miner by Li and Zhou [LZ05] uses pattern mining to extract application-specific
programming rules from source code. Discriminative pattern mining is used for program failure detec-
tion to classify software behaviors (Lo et al. [LCH"09]) and for troubleshooting in sensor networks
(Khan et al. [KLAT08]).

As another pattern mining application, phrase mining from massive text data has been studied in
recent years. An unsupervised phrase mining method ToPMine, which explores frequent contiguous
patterns is developed by El-Kishki et al. [EKSW™14]; a weakly supervised phrase mining method
SegPhrase, which explores phrasal segmentation and pattern-guided classification is developed by Liu
et al. [LSW™15]; AutoPhrase, which uses Wikipedia as a source for distant supervision for phrase
mining is introduced by Shang et al. [SLJ"18]; and UCPhrase that explores the information derived
from pretrained language models is developed by Gu et al. [GWB*21].

This page intentionally left blank

CHAPTER

Classification: basic concepts and
methods

Classification is a form of data analysis that extracts models describing important data classes. Such
models, called classifiers, predict categorical (discrete, unordered) class labels. For example, we can
build a classification model to categorize bank loan applications as either safe or risky, or identify the
early sign of cognitive impairment based on a patient’s functional magnetic resonance imaging (fMRI)
scan, or help a self-driving car automatically recognize various road signs. Such analysis can help pro-
vide us with a better understanding of the data at large. Many classification methods have been proposed
by researchers in machine learning, pattern recognition, and statistics. Traditional classification algo-
rithms typically assume a small or medium data size. Modern classification techniques have built on
such work, developing scalable classification and prediction techniques capable of handling very large
amounts of data. Classification belongs to supervised learning and is closely connected to many other
data mining tasks. Classification has numerous applications, including fraud detection, target market-
ing, performance prediction, manufacturing, medical diagnosis, and many more.

We start off by introducing the main ideas of classification in Section 6.1. In the rest of this chapter,
you will learn the basic techniques for data classification such as how to build decision tree classifiers
(Section 6.2), Bayes classifiers (Section 6.3), lazy learners (Section 6.4), and linear classifiers (Sec-
tion 6.5). Section 6.6 discusses how to evaluate and compare different classifiers. Various measures of
accuracy are given, as well as techniques for obtaining reliable accuracy estimates. Methods for improv-
ing classifier accuracy are presented in Section 6.7, including ensemble methods and class-imbalanced
data (i.e., where the main class of interest is rare).

6.1 Basic concepts

We introduce the concept of classification in Section 6.1.1. Section 6.1.2 describes the general approach
to classification as a two-step process. In the first step, we build a classification model based on previous
data. In the second step, we determine if the model’s accuracy is acceptable, and if so, we use the model
to classify new data.

6.1.1 What is classification?

A bank loans officer needs analysis of her data to learn which loan applicants are “safe” and which
are “risky” for the bank, and her colleague from the risk management department wishes to detect
fraudulent transactions. A marketing manager at an electronics store needs data analysis to help guess
whether a customer with a given profile will buy a new computer, or understand the sentiment of social
media posts regarding a newly released product, or detect fake reviews about a new product from an

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00016-3 2 39
Copyright © 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811760-6.00016-3

240 Chapter 6 Classification: basic concepts and methods

online review site, or identify a subscribed customer who is likely to switch to a competitive electronics
store (i.e., churn prediction). An IT security analyst wants to know if the network system is under
attack (intrusion detection) or if a given application is contaminated with malware (malware detection).
A teacher wishes to know if a student enrolled in an online course will drop out before she completes the
course. A talent recruiter wants to know if an individual is looking for the next career move. A medical
researcher wants to analyze breast cancer data to predict which one of three specific treatments a patient
should receive, a cardiologist wants to identify the patient who is likely to have a congestive heart failure
based on her chronic medical history, a neuroscientist wants to identify the early sign of cognitive
impairment (which could lead to, say Alzheimer’s disease) based on a patient’s functional magnetic
resonance imaging (fMRI) scan. An intelligent question-answering system needs to understand what
type of question the user is asking (question classification), as the first step to automatically provide
a high-quality answer. A self-driving car needs to automatically recognize various road signs (e.g.,
‘stop,” ‘detour,” etc.). A physicist needs to identify high energy event from massive experiment data,
which might lead to new discoveries. Law enforcement wishes to predict the crime hot spot so that the
precaution measures can be taken proactively.

In each of these examples, the data analysis task is classification, where a model or classifier is
constructed to predict class (categorical) labels, such as “safe” or “risky” for the loan application data;
or “positive” or “negative” for sentiment classification; or “yes” or “no” for the marketing data; or
“dropout” or “stay” for online course enrollment, or “treatment A,” “treatment B,” or “treatment C”
for the medical data; or various question types for a question-answering system. These categories can
be represented by discrete values, where the ordering among values has no meaning. For example, the
values 1, 2, and 3 may be used to represent treatments A, B, and C, where there is no ordering implied
among this group of treatment regimes.

Suppose that the marketing manager wants to predict how much a given customer will spend during
a sale; or a realtor might be interested in knowing the average house pricing of the next year in different
residential areas; or a career planner wants to forecast the average yearly income of students immedi-
ately after graduating from the college in different majors. This kind of data analysis task is an example
of numeric prediction, where the model constructed predicts a continuous-valued function, or ordered
value, as opposed to a class label. Regression analysis is a statistical methodology that is most often
used for numeric prediction; hence the two terms tend to be used synonymously, although other methods
for numeric prediction exist. Ranking is another type of numerical prediction where the model predicts
the ordered values (i.e., ranks), for example, a web search engine (e.g., Google) ranks the relevant web-
pages with respect to a given query, with the higher-ranked webpages being more relevant to the query.
Classification and numeric prediction are the two major types of prediction problems. This chapter
primarily focuses on classification. It is worth pointing out that classification and numerical prediction
(e.g., regression) are closely related to each other. Many classification techniques can be modified for
the purpose of regression. We will see some examples, including regression trees (Section 6.2), lazy
learners (Section 6.4.1), linear regression (Section 6.5), and gradient tree boosting (Section 6.7.1).

6.1.2 General approach to classification

“How does classification work?” Data classification is a two-step process, consisting of a learning
step (where a classification model is constructed) and a classification step (where the model is used

6.1 Basic concepts 241

[Classification algorithm]

Training data

name age income loan_decision

Sandy Jones youth low risky

Bill Lee youth low risky v

Caroline Fox middle_aged high safe

Rick Field middle_aged low risky —

Susan Lake senior low safe Classification rules

Claire Phips senior medium safe

Joe Smith middle_aged high safe

- IF age = youth THEN loan_decision = risky

IF income = high THEN loan_decision = safe
IF age = middle_aged AND income = low
THEN loan_decision = risky

(a)

[Classification rules]

Test data
name age income loan_decision (John Henry, middle_aged, low)
- Loan decision?
Juan Bello senior low safe

Sylvia Crest middle_aged low risky
Anne Yee middle_aged high safe

risky
(b)

FIGURE 6.1

The data classification process: (a) Learning: Training data are analyzed by a classification algorithm. Here, the class
label attribute is loan_decision, and the learned model or classifier is represented in the form of classification rules.
(b) Classification: Test data are used to estimate the accuracy of the classification rules. If the accuracy is acceptable,
the rules can be applied to the classification of new data tuples.

to predict class labels for given data). The process is shown for the loan application data in Fig. 6.1.
The data are simplified for illustrative purposes. In reality, we may expect many more attributes to be
considered.

242 Chapter 6 Classification: basic concepts and methods

In the first step, a classifier is built describing a predetermined set of data classes or concepts. This
is the learning step (also known as the training phase), where a classification algorithm builds the clas-
sifier by analyzing or “learning from” a training set made up of database tuples and their associated
class labels. A tuple, X, is represented by an n-dimensional attribute vector, X = (x1, x2, ..., Xy),
depicting n measurements made on the tuple from n database attributes, respectively, A1, Az, ..., A, 1
Each tuple, X, is assumed to belong to a predefined class as determined by another database attribute
called the class label attribute. The class label attribute is discrete-valued and unordered. It is cate-
gorical (or nominal) in that each value serves as a category or class. The individual tuples making up
the training set are referred to as training tuples and are randomly sampled from the database under
analysis. In the context of classification, data tuples can be referred to as samples, examples, instances,
data points, or objects.”

Because the class label of each training tuple is provided, this step belongs to supervised learning
(i.e., the learning of the classifier is “supervised” in that it is told to which class each training tuple
belongs). The scope of supervised learning is larger than classification, and it broadly encompasses
learning methods for training a numerical prediction model (e.g., regression, ranking) if the true target
values of training tuples are known during the learning step. Supervised learning contrasts with unsu-
pervised learning (e.g., clustering), in which the true target value (e.g., class label) of each training
tuple is not known, and the number or set of classes to be learned may not be known in advance. For
example, if we did not have the loan_decision data available for the training set, we could use clus-
tering to try to determine “groups of like tuples” which may correspond to risk groups within the loan
application data. Likewise, we could use clustering techniques to find social media posts sharing sim-
ilar topics without knowing their actual class labels. Clustering is the topic of Chapters 8 and 9. The
landscape of the prediction problem (e.g., classification, regression, ranking) has gone beyond super-
vised vs. unsupervised learning. To name a few, in semisupervised classification, it builds a classifier
based on a limited number of labeled training tuples (whose true class labels are given during training)
and a large number of unlabeled training tuples (whose class labels are unknown during training); in
zero-shot learning, some class label might appear after the classification model has been built. In other
words, during the training phase, there are no (i.e., zero) labeled training tuples for such a class label.
Both semisupervised learning and zero-shot learning belong to weakly supervised learning in that the
supervision information for training the model is weaker than the standard supervised learning. For
the classification task, this means that the supervision (i.e., the true class labels of training tuples) is
known only for a small fraction of the entire training set in semisupervised learning; or is absent for
certain class label(s) in zero-shot learning. Classification with weak supervision will be introduced in
Chapter 7.

The first step of the classification process can also be viewed as the learning of a mapping or func-
tion, y = f(X), that can predict the associated class label y of a given tuple X. In this view, we wish
to learn a mapping or function that separates the data classes. Typically, this mapping is represented
in the form of classification rules, decision trees, or mathematical formulae. In our example, the map-

' Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term feature vector rather than
attribute vector. In our discussion, we use these two terms interchangeably. In our notation, any variable representing a vector is
typically shown in bold italic font; measurements depicting the vector are shown in italic font (e.g., X = (x1, x2, x3)).

2 In the machine learning literature, training tuples are commonly referred to as training samples. Throughout this text, we prefer
to use the term tuples instead of samples.

6.2 Decision tree induction 243

ping is represented as classification rules that identify loan applications as being either safe or risky
(Fig. 6.1(a)). The rules can be used to categorize future data tuples, as well as provide deeper insight
into the data contents. They also provide a compressed data representation.

“What about classification accuracy?” In the second step (Fig. 6.1(b)), the model is used for clas-
sification. First, the predictive accuracy of the classifier is estimated. If we were to use the training set
to measure the classifier’s accuracy, this estimate would likely be too optimistic, because the classifier
tends to overfit the data (i.e., during learning it may incorporate some particular anomalies of the train-
ing data that do not represent the general data set). Therefore a test set is used, made up of test tuples
and their associated class labels. They are independent of the training tuples, meaning that they were
not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test tuples that are correctly
classified by the classifier. The associated class label of each test tuple is compared with the learned
classifier’s class prediction for that tuple. Section 6.6 describes several methods for estimating classifier
accuracy. If the accuracy of the classifier is considered acceptable, the classifier can be used to classify
future data tuples for which the class label is not known. Such data are also referred to in the machine
learning literature as “unknown” or “previously unseen” data. For example, the classification rules
learned in Fig. 6.1(a) from the analysis of data from previous loan applications can be used to approve
or reject new or future loan applicants.

6.2 Decision tree induction

Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision
tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an
attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds a
class label. The topmost node in a tree is the root node. A typical decision tree is shown in Fig. 6.2. It
represents the concept buys_computer; that is, it predicts whether a customer at an electronics store is

FIGURE 6.2

A decision tree for the concept buys_computer, indicating whether a customer is likely to purchase a computer. Each
internal (nonleaf) node represents a test on an attribute. Each leaf node represents a class (either buys_computer =

yes or buys_computer = no).

244 Chapter 6 Classification: basic concepts and methods

likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes are denoted by
ovals (or circles). Some decision tree algorithms produce only binary trees (where each internal node
branches to exactly two other nodes), whereas others can produce nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the associated class
label is unknown, the attribute values of the tuple are tested against the decision tree. A path is traced
from the root to a leaf node, which holds the class prediction for that tuple. Decision trees can easily be
converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers does
not require any domain knowledge or parameter setting and therefore is appropriate for exploratory
knowledge discovery. Decision trees can handle multidimensional data. Their representation of ac-
quired knowledge in tree form is intuitive and generally easy to assimilate by humans. The learning
and classification steps of decision tree induction are simple and fast. In general, decision tree clas-
sifiers have good accuracy. However, successful use may depend on the data at hand. Decision tree
induction algorithms have been used for classification in many application areas such as medicine,
manufacturing and production, financial analysis, astronomy, and molecular biology. Decision trees are
the basis of several commercial rule induction systems.

In Section 6.2.1, we describe a basic algorithm for learning decision trees. During tree construction,
attribute selection measures are used to select the attribute that best partitions the tuples into distinct
classes. Popular measures of attribute selection are given in Section 6.2.2. When decision trees are
built, many of the branches may reflect noise or outliers in the training data. Tree pruning attempts to
identify and remove such branches, with the goal of improving classification accuracy on unseen data.
Tree pruning is described in Section 6.2.3.

6.2.1 Decision tree induction

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning, developed a
decision tree algorithm known as ID3 (Iterative Dichotomizer). This work expanded on earlier work on
concept learning systems, described by E. B. Hunt, J. Marin, and P. T. Stone. Quinlan later presented
C4.5 (a successor of ID3), which became a benchmark to which newer supervised learning algorithms
are often compared. In 1984, a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone)
published the book Classification and Regression Trees (CART), which described the generation of bi-
nary decision trees. ID3 and CART were invented independent of one another at around the same time,
yet follow a similar approach for learning decision trees from training tuples. These two cornerstone
algorithms spawned a flurry of work on decision tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which decision trees are
constructed in a top-down recursive divide-and-conquer manner. Most algorithms for decision tree
induction also follow a top-down approach, which starts with a training set of tuples and their associated
class labels. The training set is recursively partitioned into smaller subsets as the tree is being built. A
basic decision tree algorithm is summarized in Fig. 6.3. At first glance, the algorithm may appear long,
but fear not! It is quite straightforward. The strategy is as follows.

* The algorithm is called with three parameters: D, attribute_list, and Attribute_selection_method. D
is a data partition. Initially, it is the complete set of training tuples and their associated class labels.
The parameter attribute_list is a list of attributes describing the tuples. Attribute_selection_method
specifies a heuristic procedure for selecting the attribute that “best” discriminates the given tuples

6.2 Decision tree induction 245

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition, D.

Input:

® Data partition, D, which is a set of training tuples and their associated class labels;

® artribute_list, the set of candidate attributes;

® Attribute_selection_method, a procedure to determine the splitting criterion that “best” partitions the data tuples into
individual classes. This criterion consists of a splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method:

(1) create anode N;
(2) iftuples in D are all of the same class, C, then

3) return N as a leaf node labeled with the class C;
(4) if attribute_list is empty then
5) return N as a leaf node labeled with the majority class in D; // majority voting

(6) apply Attribute_selection_method(D, attribute_list) to find the “best” splitting_criterion;
(7) label node N with splitting_criterion;
(8) if splitting_attribute is discrete-valued and
multiway splits allowed then // not restricted to binary trees
©) attribute_list < attribute_list — splitting_attribute; // remove splitting_attribute
(10) for each outcome j of splitting_criterion
// partition the tuples and grow subtrees for each partition

(11) let D; be the set of data tuples in D satisfying outcome j; // a partition

12) if D is empty then

(13) attach a leaf labeled with the majority class in D to node N;

(14) else attach the node returned by Generate_decision_tree(D s attribute_list) to node N
endfor

(15) return N.

FIGURE 6.3

Basic algorithm for inducing a decision tree from training tuples.

according to class. This procedure employs an attribute selection measure such as information gain
or the Gini impurity. (We will introduce these measures in the next subsection.) Whether the tree
is strictly binary is generally driven by the attribute selection measure. Some attribute selection
measures, such as the Gini impurity, enforce the resulting tree to be binary. Others, like information
gain, do not, therein allowing multiway splits (i.e., two or more branches to be grown from a node).

* The tree starts as a single node, N, representing the training tuples in D (step 1).?

» If the tuples in D are all of the same class, then node N becomes a leaf and is labeled with that class
(steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All terminating conditions are
explained at the end of the algorithm.

* Otherwise, the algorithm calls Attribute_selection_method to determine the splitting criterion. The
splitting criterion tells us which attribute to test at node N by determining the “best” way to separate

3 The partition of class-labeled training tuples at node N is the set of tuples that follow a path from the root of the tree to node
N when being processed by the tree. This set is sometimes referred to in the literature as the family of tuples at node N. We have
referred to this set as the “tuples represented at node N,” “the tuples that reach node N,” or simply “the tuples at node N.” Rather
than storing the actual tuples at a node, most implementations store pointers to these tuples.

246 Chapter 6 Classification: basic concepts and methods

or partition the tuples in D into individual classes (step 6). The splitting criterion also tells us which
branches to grow from node N with respect to the outcomes of the chosen test. More specifically,
the splitting criterion indicates the splitting attribute and may also indicate either a split-point or a
splitting subset. The splitting criterion is determined so that, ideally, the resulting partitions at each
branch are as “pure” as possible. A partition is pure if all the tuples in it belong to the same class.
In other words, if we split up the tuples in D according to the mutually exclusive outcomes of the
splitting criterion, we hope for the resulting partitions to be as pure as possible.

e The node N is labeled with the splitting criterion, which serves as a test at the node (step 7). A
branch is grown from node N for each of the outcomes of the splitting criterion. The tuples in D are
partitioned accordingly (steps 10—11). There are three possible scenarios, as illustrated in Fig. 6.4.
Let A be the splitting attribute. A has v distinct values, {aj, a2, ..., ay}, based on the training data.

1. A is discrete-valued: In this case, the outcomes of the test at node N directly correspond to the
known values of A. A branch is created for each known value, a;, of A and labeled with that
value (Fig. 6.4(a)). Partition D; is the subset of class-labeled tuples in D having value a; of
A. Because all the tuples in a given partition have the same value for A, A does not need to be

Partitioning scenarios Examples
> 2, PO .
a; a ... 4y al § = % 9%0 < é" %‘3
/ | \ /& & %] / 5 \

A =split_point A > split_point =42,000 >42,000

(b) / \ / \

color € {red, green}?

yes no yes no

ol / N |/ \

FIGURE 6.4

This figure shows three possibilities for partitioning tuples based on the splitting criterion, each with examples. Let
A be the splitting attribute. (a) If A is discrete-valued, then one branch is grown for each known value of A. (b) If A
is continuous-valued, then two branches are grown, corresponding to A < split_point and A > split_point. (c) If A
is discrete-valued and a binary tree must be produced, then the test is of the form A € S4, where Sy is the splitting
subset for A.

6.2 Decision tree induction 247

considered in any future partitioning of the tuples. Therefore it is removed from attribute_list
(steps 8 and 9).

2. A is continuous-valued: In this case, the test at node N has two possible outcomes, corresponding
to the conditions A < split_point and A > split_point, respectively, where split_point is the split-
point returned by Attribute_selection_method as part of the splitting criterion. (In practice, the
split-point, a, is often taken as the midpoint of two known adjacent values of A and therefore
may not actually be a preexisting value of A from the training data.) Two branches are grown
from N and labeled according to the previous outcomes (Fig. 6.4(b)). The tuples are partitioned
such that D holds the subset of class-labeled tuples in D for which A < split_point, while Dy
holds the rest.

3. A is discrete-valued and a binary tree must be produced (as dictated by the attribute selection
measure or algorithm being used): The test at node N is of the form “A € S4?7,” where Sy is the
splitting subset for A, returned by Attribute_selection_method as part of the splitting criterion. It
is a subset of the known values of A. If a given tuple has value a; of A, andif a; € §4, then the
test at node N is satisfied. Two branches are grown from N (Fig. 6.4(c)). By convention, the left
branch out of N is labeled yes so that Dy corresponds to the subset of class-labeled tuples in D
that satisfy the test. The right branch out of N is labeled no so that D, corresponds to the subset
of class-labeled tuples from D that do not satisfy the test.

* The algorithm uses the same process recursively to form a decision tree for the tuples at each result-
ing partition, D, of D (step 14).
* The recursive partitioning stops only when any one of the following terminating conditions is true:

1. All the tuples in partition D (represented at node N) belong to the same class (steps 2 and 3).

2. There are no remaining attributes on which the tuples may be further partitioned (step 4). In this
case, majority voting is employed (step 5). This involves converting node N into a leaf and
labeling it with the most common class in D. Alternatively, the class distribution of the node
tuples may be stored.

3. There are no tuples for a given branch, that is, a partition D; is empty (step 12). In this case, a
leaf is created with the majority class in D (step 13).

» The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n x |D| x log(|D|)),
where 7 is the number of attributes describing the tuples in D and | D| is the number of training tuples
in D. This means that the computational cost of growing a tree grows at most n X |D| x log(|D|) with
| D| tuples. The proof is left as an exercise for the reader.

Incremental versions of decision tree induction have also been proposed. When given new train-
ing data, it restructures the decision tree acquired from learning on previous training data rather than
relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in creating the tree
(Section 6.2.2) and the mechanisms used for pruning (Section 6.2.3).

Decision tree is closely related to another type of tree, called regression tree, which is used to
predict the continuous output value. A regression tree is very similar to a decision tree in that it also
partitions the entire attribute space into multiple subregions, each corresponding to a leaf node. The
main difference is as follows. In a regression tree, a leaf node holds a continuous value instead of a

248 Chapter 6 Classification: basic concepts and methods

College
educated?

no

GPA>3.5?

FIGURE 6.5

A regression tree for predicting the average yearly income based on an individual’s education. The values of the
three leaf nodes are calculated as follows. $50K is the average yearly income of all training individuals who do

not have a college degree; $60K is the average yearly income of all training individuals who have a college degree
with a GPA less than or equal to 3.5; and $100K is the average yearly income of all training individuals who have a
college degree with a GPA higher than 3.5. The leaf node values ($50K, $60K, and $100K) are used to predict the
yearly income of any test individual who falls into the corresponding leaf nodes.

categorical value (i.e., class label) in a decision tree. The continuous value of a leaf node is learned
during the training phase, which is set as the average output value of all training tuples fallen in the
corresponding subregions. CART uses residual sum of squares (RSS) as the objective function, which
is the sum of the squared difference between the actual and predicted output values of training tuples

RSS=) (v — 3% ©6.1)

where y; is the actual output value of the ith training tuple, and y; is the predicted output by the
regression tree. Choosing the average output of all training tuples in the corresponding subregion is
optimal in that it minimizes the RSS in Eq. (6.1). Each leaf node value is then used to predict the output
of a test tuple which falls into it. Fig. 6.5 presents an example of a regression tree for predicting the
average yearly income based on an individual’s education (e.g., whether or not the individual attended
the college, the average GPA at college, etc.).

6.2.2 Attribute selection measures

An attribute selection measure is a heuristic for selecting the splitting criterion that “best” separates
a given data partition, D, of class-labeled training tuples into individual classes. If we were to split D
into smaller partitions according to the outcomes of the splitting criterion, ideally, each partition would
be pure (i.e., all the tuples that fall into a given partition would belong to the same class). Conceptually,
the “best” splitting criterion is the one that most closely results in such a scenario. Attribute selection
measures are also known as splitting rules because they determine how the tuples at a given node are
to be split.

6.2 Decision tree induction 249

The attribute selection measure provides a ranking for each attribute describing the given training
tuples. The attribute having the best score for the measure” is chosen as the splitting attribute for the
given tuples. If the splitting attribute is continuous-valued or if we are restricted to binary trees, then,
respectively, either a split point or a splitting subset must also be determined as part of the splitting
criterion. The tree node created for partition D is labeled with the splitting criterion, branches are grown
for each outcome of the criterion, and the tuples are partitioned accordingly. This section describes three
popular attribute selection measures—information gain, gain ratio, and Gini impurity.

The notation used herein is as follows. Let D, the data partition, be a training set of class-labeled
tuples. Suppose the class label attribute has m distinct values defining m distinct classes, C; (for i =
1,...,m). Let C; p be the set of tuples of class C; in D. Let | D| and |C; p| denote the number of tuples
in D and C; p, respectively.

Information gain

ID3 uses information gain as its attribute selection measure. This measure is based on pioneering
work by Claude Shannon on information theory, which studied the value or “information content”
of messages. Let node N represent or hold the tuples of partition D. The attribute with the highest
information gain is chosen as the splitting attribute for node N. This attribute minimizes the information
needed to classify the tuples in the resulting partitions and reflects the least randomness or “impurity”
in these partitions. Such an approach minimizes the expected number of tests needed to classify a given
tuple and guarantees that a simple (but not necessarily the simplest) tree is found.
The expected information needed to classify a tuple in D is given by

Info(D) ==Y p;logy(pi), (6.2)
i=1

where p; is the nonzero probability that an arbitrary tuple in D belongs to class C; and is estimated by
|Ci.pl/|D]. A log function to the base 2 is used, because the information is encoded in bits. Info(D) is
just the average amount of information needed to identify the class label of a tuple in D. Note that, at
this point, the information we have is based solely on the proportions of tuples of each class. Info(D) is
also known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A having v distinct values,

{ai,az,...,a,}, as observed from the training data. If A is discrete-valued, these values correspond
directly to the v outcomes of a test on A. Attribute A can be used to split D into v partitions or subsets,
{D1,Ds, ..., Dy}, where D; contains those tuples in D that have outcome a; of A. These partitions

would correspond to the branches grown from node N. Ideally, we would like this partitioning to
produce an exact classification of the tuples. That is, we would like for each partition to be pure.
However, it is quite likely that the partitions will be impure (e.g., where a partition may contain a
collection of tuples from different classes rather than from a single class).

4 Depending on the measure, either the highest or lowest score is chosen as the best (i.e., some measures strive to maximize,
whereas others strive to minimize).

250 Chapter 6 Classification: basic concepts and methods

How much more information would we still need (after the partitioning) to arrive at an exact classi-
fication? This amount is measured by

Info (D)= % x Info(Dj). (6.3)
j=1

The term % acts as the weight of the jth partition. Info 4 (D) is the expected information required
to classify a tuple from D based on the partitioning by A. The smaller the expected information (still)
required, the greater the purity of the partitions. Info 4 (D) is also known as the conditional entropy of
D (conditioned on the attribute A).

Information gain is defined as the difference between the original information requirement (i.e.,
based on just the proportion of classes) and the new requirement (i.e., obtained after partitioning on A).
That is,

Gain(A) = Info(D) — Info 4 (D). (6.4)

In other words, Gain(A) tells us how much would be gained by branching on A. It is the expected reduc-
tion in the information requirement caused by knowing the value of A. The attribute A with the highest
information gain, Gain(A), is chosen as the splitting attribute at node N. This is equivalent to saying
that we want to partition on the attribute A that would do the “best classification,” so that the amount
of information still required to finish classifying the tuples is minimal (i.e., minimum /nfo 4 (D)).

Example 6.1. Induction of a decision tree using information gain. Table 6.1 presents a training set,
D, of class-labeled tuples randomly selected from the customer database of an electronics store. (The
data are adapted from Quinlan [Qui86]. In this example, each attribute is discrete-valued. Continuous-
valued attributes have been generalized.) The class label attribute, buys_computer, has two distinct

Table 6.1 Class-labeled training tuples from the customer database of
an electronics store.
RID age income student credit_rating Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middle_aged high no fair yes
4 senior medium no fair yes
S senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes
10 senior medium yes fair yes
11 youth medium yes excellent yes
12 middle_aged medium no excellent yes
13 middle_aged high yes fair yes
14 senior medium no excellent no

6.2 Decision tree induction 251

values (namely, {yes, no}); therefore, there are two distinct classes (i.e., m = 2). Let class C; correspond
to yes and class C, correspond to no. There are nine tuples of class yes and five tuples of class no.
A (root) node N is created for the tuples in D. To find the splitting criterion for these tuples, we
must compute the information gain of each attribute. We first use Eq. (6.2) to compute the expected
information needed to classify a tuple in D:

9 9 5 5 .
Info(D) = 17 log, (ﬁ) ~ 1 log, (ﬁ) = 0.940 bits.

Next, we need to compute the expected information requirement for each attribute. Let’s start with
the attribute age. We need to look at the distribution of yes and no tuples for each category of age. For
the age category “youth” there are two yes tuples and three no tuples. For the category “middle_aged,”
there are four yes tuples and zero no tuples. For the category “senior,” there are three yes tuples and two
no tuples. Using Eq. (6.3), the expected information needed to classify a tuple in D if the tuples are
partitioned according to age is

5 2 2 3 3

Info,ge (D)=, x| =5 log, 5 5lo%3
L4 4, 4
14 4082y

NERNAE NS N
14 508257 59873
— 0.694 bits.

Hence, the gain in information from such partitioning would be

Gain(age) = Info(D) — Info,4, (D) = 0.940 — 0.694 = 0.246 bits.

Similarly, we can compute Gain(income)=0.029 bits, Gain(student) =0.151 bits, and
Gain(credit_rating) = 0.048 bits. Because age has the highest information gain among the attributes,
it is selected as the splitting attribute. Node N is labeled with age, and branches are grown for each of
the attribute’s values. The tuples are then partitioned accordingly, as shown in Fig. 6.6. Notice that the
tuples falling into the partition for age = middle_aged all belong to the same class. Because they all
belong to class “yes,” a leaf should therefore be created at the end of this branch and labeled “yes.”
The final decision tree returned by the algorithm was shown earlier in Fig. 6.2. O

“But how can we compute the information gain of an attribute that is continuous-valued, unlike
in the example?” Suppose, instead, that we have an attribute A that is continuous-valued rather than
discrete-valued. (For example, suppose that instead of the discretized version of age from the example,
we have the raw values for this attribute.) For such a scenario, we must determine the “best” split-point
for A, where the split-point is a threshold on A.

We first sort the values of A in the increasing order. Typically, the midpoint between each pair of
adjacent values is considered as a possible split-point. Therefore, given v values of A, (v — 1) possible
splits are evaluated. For example, the midpoint between the values @; and a; 4| of A is

ai +ai+)

5 (6.5)

252 Chapter 6 Classification: basic concepts and methods
age? I
youth middle_aged senior
income student credit_rating class income student | credit_rating class
high no fair no medium no fair yes
high no excellent no low yes fair yes
medium | no fair no low yes excellent no
low yes fair yes medium yes fair yes
medium | yes excellent yes medium | no excellent no
income student credit_rating class
high no fair yes
low yes excellent yes
medium | no excellent yes
high yes fair yes
FIGURE 6.6

The attribute age has the highest information gain and therefore becomes the splitting attribute at the root node of
the decision tree. Branches are grown for each outcome of age. The tuples are shown partitioned accordingly.

If the values of A are sorted in advance, then determining the best split for A requires only one pass
through the values. For each possible split-point for A, we evaluate Info, (D), where the number of
partitions is two, that is, v =2 (or j = 1, 2) in Eq. (6.3). The point with the minimum expected infor-
mation requirement for A is selected as the split_point for A. D is the set of tuples in D satisfying
A < split_point, and D, is the set of tuples in D satisfying A > split_point.

Gain ratio
The information gain measure is biased toward tests with many outcomes. That is, it prefers to select
attributes having a large number of values. For example, consider an attribute that acts as a unique iden-
tifier, such as product_ID. A split on product_ID would result in a large number of partitions (as many
as there are values), each one containing just one tuple. Because each partition is pure, the information
required to classify data set D based on this partitioning would be Info . ogyc;_1p(D) = 0. Therefore the
information gained by partitioning on this attribute is maximal. Clearly, such a partitioning is useless
for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio, which attempts
to overcome this bias. It applies a kind of normalization to information gain using a “split information”
value defined analogously with Info(D) as

v
Splitinfo, (D) == log, (%) .

j=1

|Dj|

6.2 Decision tree induction 253

This value represents the potential information generated by splitting the training data set, D, into
v partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each outcome, it
considers the number of tuples having that outcome with respect to the total number of tuples in D.
It differs from information gain, which measures the information with respect to classification that is
acquired based on the same partitioning. The gain ratio is defined as

Gain(A)

GainRatio(A) = — 20D
ainRatio(A) = o 1o (D)

6.7)

The attribute with the maximum gain ratio is selected as the splitting attribute. Note, however, that
as the split information approaches 0, the ratio becomes unstable. A constraint is added to avoid this,
whereby the information gain of the test selected must be large—at least as great as the average gain
over all tests examined.

Example 6.2. Computation of gain ratio for the attribute income. A test on income splits the data
of Table 6.1 into three partitions, namely low, medium, and high, containing four, six, and four tuples,
respectively. To compute the gain ratio of income, we first use Eq. (6.6) to obtain

. 4 4 6 6 4 4
Splitlnfo;,come (D) = 12 x log, 14) 14 x logy 14) 12 x logy 14

=1.557.

From Example 6.1, we have Gain(income) = 0.029. Therefore GainRatio(income) = 0.029/1.557 =
0.019. 0

Gini impurity
The Gini impurity (or Gini in short) is used in CART. Using the notation previously described, the Gini
measures the impurity of D, a data partition or a set of training tuples, as

Gini(D)=1— Z P2, (6.8)

i=1

where p; is the probability that a tuple in D belongs to class C; and is estimated by |C; p|/|D|. The
sum is computed over m classes.

The Gini impurity considers a binary split for each attribute. Let’s first consider the case where A
is a discrete-valued attribute having v distinct values, {aj, as, ..., ay,}, occurring in D. To determine
the best binary split on A, we examine all the possible subsets that can be formed using known val-
ues of A. Each subset, S4, can be considered as a binary test for attribute A of the form “A € S47”
Given a tuple, this test is satisfied if the value of A for the tuple is among the values listed in Sg4.
If A has v possible values, then there are 2 possible subsets. For example, if income has three pos-
sible values, namely {low, medium, high}, then the possible subsets are {low, medium, high}, {low,
medium}, {low, high}, {medium, high}, {low}, {medium}, {high}, and {}. We exclude the power set,
{low, medium, high}, and the empty set from consideration since, conceptually, they do not represent
a split. Therefore there are (2¥ — 2)/2 possible ways to form two partitions of the data, D, based on a
binary split on A.

254 Chapter 6 Classification: basic concepts and methods

When considering a binary split, we compute a weighted sum of the impurity of each resulting
partition. For example, if a binary split on A partitions D into D1 and D;, the Gini impurity of D given
that partitioning is

. IDil .. . Dy .. .
Ginig (D) = —Gini(D1) + ——Gini(D»). (6.9)
|D |D|
For each attribute, each of the possible binary splits is considered. For a discrete-valued attribute, the
subset that gives the minimum Gini impurity for that attribute is selected as its splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The strategy is sim-
ilar to that described earlier for information gain, where the midpoint between each pair of (sorted)
adjacent values is taken as a possible split-point. The point giving the minimum Gini impurity for a
given (continuous-valued) attribute is taken as the split-point of that attribute. Recall that for a possible
split-point of A, D is the set of tuples in D satisfying A < split_point, and D5 is the set of tuples in D
satisfying A > split_point.

The reduction in impurity that would be incurred by a binary split on a discrete- or continuous-
valued attribute A is

AGini(A) = Gini(D) — Ginig (D). (6.10)

The attribute that maximizes the reduction in impurity (or, equivalently, has the minimum Gini impu-
rity) is selected as the splitting attribute. This attribute and either its splitting subset (for a discrete-
valued splitting attribute) or split-point (for a continuous-valued splitting attribute) together form the
splitting criterion.

Example 6.3. Induction of a decision tree using the Gini impurity. Let D be the training data shown
earlier in Table 6.1, where there are nine tuples belonging to the class buys_computer = yes and the
remaining five tuples belong to the class buys_computer = no. A (root) node N is created for the tuples
in D. We first use Eq. (6.8) for the Gini impurity to compute the impurity of D:

9\? 5\?
GiniDy=1—(=) — (=) =0.459.
14 14

To find the splitting criterion for the tuples in D, we need to compute the Gini impurity for each
attribute. Let’s start with the attribute income and consider each of the possible splitting subsets. Con-
sider the subset {/ow, medium}. This would result in 10 tuples in partition D satisfying the condition
“income € {low, medium}.” The remaining four tuples of D would be assigned to partition D,. The
Gini impurity value computed based on this partitioning is

Ginincome e {l()w,medium}(D)

_ 10 i(Dy) + 4 Gi i(Dy)
=1 ini(Dq i ini(Dy

10 7\? 3\? 4 2\2 /2\?
=—(1=(Z) = (=))+ (1=-(2) = (2
14 10 10 14 4 4
—=0.443

= Giniipcome € {high}(D)‘

6.2 Decision tree induction 255

Similarly, the Gini impurity values for splits on the remaining subsets are 0.458 (for the subsets {low,
high} and {medium}) and 0.450 (for the subsets {medium, high} and {low}). Therefore the best binary
split for attribute income is on {low, medium} (or {high}) because it minimizes the Gini impurity.
Evaluating age, we obtain {youth, senior} (or {middle_aged}) as the best split for age with a Gini
impurity of 0.375; the attributes student and credit_rating are both binary, with Gini impurity values of
0.367 and 0.429, respectively.

The attribute age and splitting subset {youth, senior} therefore give the minimum Gini impurity
overall, with a reduction in impurity of 0.459 — 0.357 =0.102. The binary split “age € {youth, se-
nior?}” results in the maximum reduction in impurity of the tuples in D and is returned as the splitting
criterion. Node N is labeled with the criterion, two branches are grown from it, and the tuples are
partitioned accordingly. d

“So, what is the relationship between Gini impurity and information gain?” Intuitively, both mea-
sures aim to quantify to what extent the impurity will be reduced if we split the current node based
on the given attribute. Information gain, rooted in information theory, measures the impurity based on
(the change of) the average amount of information needed to identify the class label of a tuple. Gini
impurity is related to mis-classification in the following way. Based on the class label distribution in
the current node, it tells how likely a randomly chosen tuple will be mis-classified if it is assigned to
a random class label. Gini impurity is always used for binary split, whereas information gain allows
multiway split. In terms of computation, Gini impurity is slightly more efficient than information gain,
since the latter involves the logarithm computation. In practice, however, both measures often lead to
very similar decision trees.

Other attribute selection measures

This section on attribute selection measures was not intended to be exhaustive. We have shown three
measures that are commonly used for building decision trees. These measures are not without their
biases. Information gain, as we saw, is biased toward multivalued attributes. Although the gain ratio
adjusts for this bias, it tends to prefer unbalanced splits in which one partition is much smaller than the
others. The Gini impurity is biased toward multivalued attributes and has difficulty when the number of
classes is large. It also tends to favor tests that result in equal-size partitions and purity in both partitions.
Although biased, these measures give reasonably good results in practice.

Many other attribute selection measures have been proposed. CHAID, a decision tree algorithm that
is popular in marketing, uses an attribute selection measure that is based on the statistical x? test for
independence. Other measures include C-SEP (which performs better than information gain and Gini
impurity in certain cases) and G-statistic (an information theoretic measure that is a close approximation
to x?2 distribution).

For regression tree, it is natural to use RSS (Eq. (6.1)) as the splitting criteria. That is, the best
split point for a given attribute is the one that leads the smallest RSS. We choose the attribute with the
minimum RSS to split the tree node into two nodes, including left leaf node and right leaf node.

Example 6.4. Let us look at an example in Table 6.2 on how to use RSS to find the best split point.
Suppose there are five training tuples at a regression tree node, and each training tuple has a true output
value y; and a continuous attribute x; (i = 1, ..., 5). We want to find the best split point for attribute x;
to split the tree node into two leaf nodes. More specifically, all the tuples whose x; is less than or equal
to the split point will go to the left leaf node, and the remaining training tuples will go to the right leaf
node.

256 Chapter 6 Classification: basic concepts and methods

Table 6.2 Training data for regression.

attribute x; | 1 2 3 4 5
output y; 10 12 8 20 22

Given five training tuples at a regression tree node, each with a

true output value y; and a continuous attribute x; (i =1, ..., 5).
We want to find the best split point for attribute x; to split the tree
node into two nodes (left node and right node).

Table 6.3 Using RSS to choose the best split point for data
tuples in Table 6.2.

candidate split point x; 1.5 2.5 35 4.5
predicted value of left leaf node y; 10 11 10 12.5
predicted value of right leaf node y, | 15.5 16.7 21 22
RSS 131 116.67 | 10 83

Since x; is a continuous attribute with five possible values, there are four candidate split points,
including x; = 1.5, x; = 2.5, x; = 3.5 and x; =4.5. For each candidate split point, we partition the
current tree node into two leaf nodes. The average output value y; of the training tuples in the left
leaf node is used to predict the output of all tuples residing in the left leaf node. Likewise, the average
output value y, of the training tuples in the right leaf node is used to predict the output of all tuples
residing in the right leaf node. For example, if the split point x; = 1.5, only the first training tuple
goes to the left leaf node, and we have that yy =y =10; and y, = (y2 + y3 + ya + y5)/4=(12+ 8 +
20 +22)/4 = 15.5. Using the predicted output values for all five training tuples (y; or y,), we can use
Eq. (6.1) to calculate RSS. Again, if the split point x; = 1.5, we have that RSS = Zle (i — 9=
01— y)% + (32— y)? + (3 — ¥)* + (4 — ¥)? + (s — y,)? = 122.25. The computation results for
all four possible split points are summarized in Table 6.3. Since x; = 3.5 has the smallest RSS, it is
chosen as the split point. O

Attribute selection measures based on the Minimum Description Length (MDL) principle have
the least bias toward multivalued attributes. MDL-based measures use encoding techniques to define
the “best” decision tree as the one that requires the fewest number of bits to both (1) encode the tree
and (2) encode the exceptions to the tree (i.e., cases that are not correctly classified by the tree). Its
main idea is that the simplest solution is preferred. The philosophy underlying the MLD principle is
Occam’s razor, also known as law of parsimony. In data mining and machine learning, Occam’s razor
is often translated into a design principle that one should favor a model with a shorter description (hence
minimum description length) for the data over a lengthier model, provided that everything else is equal
(e.g., both shorter and lengthier models share the same training set errors).

Other attribute selection measures consider multivariate splits (i.e., where the partitioning of tu-
ples is based on a combination of attributes, rather than on a single attribute). The CART system, for
example, can find multivariate splits based on a linear combination of attributes. Multivariate splits are
a form of attribute (or feature) construction, where new attributes are created based on the existing
ones. (Attribute construction was also discussed in Chapter 2 as a form of data transformation.) These

6.2 Decision tree induction 257

other measures mentioned here are beyond the scope of this book. Additional references are given in
the bibliographic notes at the end of this chapter (Section 6.10).

“Which attribute selection measure is the best?” All measures have some bias. It has been shown
that the time complexity of decision tree induction generally increases exponentially with tree height.
Hence, measures that tend to produce shallower trees (e.g., with multiway rather than binary splits, and
that favor more balanced splits) may be preferred. However, some studies have found that shallow trees
tend to have a large number of leaves and higher error rates. Despite several comparative studies, no
single attribute selection measure has been found to be significantly superior to others. Most measures
give quite good results.

6.2.3 Tree pruning

When a decision tree is built, many of the branches will reflect anomalies in the training data due to
noise or outliers. Tree pruning methods address this problem of overfitting the data. Such methods
typically use statistical measures to remove the least-reliable branches. An unpruned tree and a pruned
version of it are shown in Fig. 6.7. Pruned trees tend to be smaller and less complex and, thus, easier
to comprehend. They are usually faster and better at correctly classifying independent test data (i.e., of
previously unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning: prepruning
and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g., by deciding
not to further split or partition the subset of training tuples at a given node). Upon halting, the node be-
comes a leaf. The leaf may hold the most frequent class label among the subset tuples or the probability
distribution of the class labels of those tuples.

When constructing a tree, measures such as statistical significance, information gain, Gini impurity,
and so on, can be used to assess the goodness of a split. If partitioning the tuples at a node would result
in a split that falls below a prespecified threshold, then further partitioning of the given subset is halted.

FIGURE 6.7

An unpruned decision tree (left) and a pruned version of it (right).

258 Chapter 6 Classification: basic concepts and methods

There are difficulties, however, in choosing an appropriate threshold. High thresholds could result in
oversimplified trees, whereas low thresholds could result in very little simplification.

The second and more common approach is postpruning, which removes subtrees from a “fully
grown” tree. A subtree at a given node is pruned by removing its branches and replacing it with a leaf.
The leaf is labeled with the most frequent class label among the subtree being replaced. For example,
notice the subtree at node “A3?” in the unpruned tree of Fig. 6.7. Suppose that the most common class
within this subtree is “class B.” In the pruned version of the tree, the subtree in question is pruned by
replacing it with the leaf “class B.”

The cost complexity pruning algorithm used in CART is an example of the postpruning approach.
This approach considers the cost complexity of a tree to be a function of the number of leaves in the
tree and the error rate of the tree (where the error rate is the percentage of tuples misclassified by the
tree). It starts from the bottom of the tree. For each internal node, N, it computes the cost complexity
of the subtree at NV, and the cost complexity of the subtree at N if it were to be pruned (i.e., replaced by
a leaf node). The two values are compared. If pruning the subtree at node N would result in a smaller
cost complexity, then the subtree is pruned; otherwise, it is kept.

A pruning set of class-labeled tuples is used to estimate the cost complexity. This set is independent
(1) of the training set used to build the unpruned tree and (2) of any test set used for accuracy estimation.
The algorithm generates a set of progressively pruned trees. In general, the smallest decision tree that
minimizes the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost complexity method in
that it also uses error rate estimates to make decisions regarding subtree pruning. Pessimistic pruning,
however, does not require the use of a pruning set. Instead, it uses the training set to estimate error rates.
Recall that an estimate of accuracy or error based on the training set is overly optimistic and therefore
strongly biased. The pessimistic pruning method, therefore, adjusts the error rates obtained from the
training set by adding a penalty, so as to counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based on the number of
bits required to encode them. The “best” pruned tree is the one that minimizes the number of encoding
bits. This method adopts the MDL principle, which was briefly introduced in Section 6.2.2. The basic
idea is that the simplest solution is preferred. Unlike cost complexity pruning, it does not require an
independent set of tuples (i.e., the pruning set).

Alternatively, prepruning and postpruning may be interleaved for a combined approach. Postprun-
ing requires more computation than prepruning, yet generally leads to a more reliable tree. No single
pruning method has been found to be superior over all others. Although some pruning methods do de-
pend on the availability of additional data for pruning, this is usually not a concern when dealing with
large databases.

Although pruned trees tend to be more compact than their unpruned counterparts, they may still be
rather large and complex. Decision trees can suffer from repetition and replication (Fig. 6.8), making
them overwhelming to interpret. Repetition occurs when an attribute is repeatedly tested along a given
branch of the tree (e.g., “age < 60?,” followed by “age < 45?,” and so on). In replication, duplicate
subtrees exist within the tree. These situations can impede the accuracy and comprehensibility of a
decision tree. The use of multivariate splits (splits based on a combination of attributes) can prevent
these problems. Another approach is to use a different form of knowledge representation, such as rules,
instead of decision trees. This is described in Chapter 7, which shows how a rule-based classifier can
be constructed by extracting IF-THEN rules from a decision tree.

6.3 Bayes classification methods 259

FIGURE 6.8

An example of (a) subtree repetition, where an attribute is repeatedly tested along a given branch of the tree (e.g.,
age), and (b) subtree replication, where duplicate subtrees exist within a tree (e.g., the subtree headed by the node
“credit_rating?”).

6.3 Bayes classification methods

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can predict class
membership probabilities, such as the probability that a given tuple belongs to a particular class.

Bayesian classification is based on Bayes’ theorem, described next. Studies comparing classification
algorithms have found a simple Bayesian classifier known as the naive Bayesian classifier to be com-
parable in performance with decision trees and selected neural network classifiers. Bayesian classifiers
have also exhibited high accuracy and speed when applied to large databases.

260 Chapter 6 Classification: basic concepts and methods

Naive Bayesian classifiers assume that the effect of an attribute value on a given class is independent
of the values of the other attributes. This assumption is called class-conditional independence. It is made
to simplify the computations involved and, in this sense, is considered “naive.”

Section 6.3.1 reviews basic probability notation and Bayes’ theorem. In Section 6.3.2, you will learn
how to do naive Bayesian classification.

6.3.1 Bayes’ theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who did early work
in probability and decision theory during the 18th century. Let X be a data tuple. In Bayesian terms, X is
considered “evidence.” As usual, it is described by measurements made on a set of n attributes. Let H be
some hypothesis such as that the data tuple X belongs to a specified class C. For classification problems,
we want to determine P (H|X), the probability that the hypothesis H holds given the “evidence” or
observed data tuple X. In other words, we are looking for the probability that tuple X belongs to class
C, given that we know the attribute description of X.

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned on X. For
example, suppose our world of data tuples is confined to customers described by the attributes age and
income, respectively, and that X is a 35-year-old customer with an income of $40,000. Suppose that
H is the hypothesis that our customer will buy a computer. Then P (H|X) reflects the probability that
customer X will buy a computer given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H. For our example, this is
the probability that any given customer will buy a computer, regardless of age, income, or any other
information, for that matter. The posterior probability, P(H|X), is based on more information (e.g.,
customer information) than the prior probability, P(H), which is independent of X.

Similarly, P(X|H) is the conditional probability of X conditioned on H. That is, it is the probability
that a customer, X, is 35 years old and earns $40,000, given that we know the customer will buy a
computer. In classification, P(X|H) is also often referred to as likelihood.

P(X) is the prior probability of X. Using our example, it is the probability that a person from our
set of customers is 35 years old and earns $40,000. In classification, P(X) is also often referred to as
marginal probability.

“How are these probabilities estimated?” P(H), P(X|H), and P(X) may be estimated from the
given data, as we shall see next. Bayes’ theorem is useful in that it provides a way of calculating the
posterior probability, P(H|X), from P(H), P(X|H), and P(X). Bayes’ theorem is

P(X|H)P(H)
PHIX)=——. (6.11)
P(X)
“What does Bayes classifier look like?” Suppose that there are m classes, C1, Ca, ..., Cy,. Given a

tuple, X, we want to predict which class it belongs to. In Bayes classifier, it first calculates the posterior
probabilities for each of the m classes, P(C;|X) (i =1, ..., m), and then predicts that tuple X belongs
to the class with the highest posterior probability. In the above example, given a customer, X, of 35 years
old and earning $40,000, we want to predict if the customer will buy a computer. So, in this task, there
are two possible classes (buy computer vs. not buy computer). Suppose P (buy computer|X) = 0.8 and
P (not buy computer|X) = 0.2. Bayes classifier will predict that the customer X will buy a computer.

6.3 Bayes classification methods 261

“So, how good is Bayes classifier?” In theory, Bayes classifier is optimal in the sense that it has
the smallest classification error rate compared to all other classifiers. Since Bayes classifier is a prob-
abilistic method, it could make a wrong prediction for any given tuple. In the above example, Bayes
classifier predicts the customer will buy a computer. Since P (not buy computer|X) = 0.2, there is 20%
chance that the prediction the Bayes classifier makes is incorrect. However, since Bayes classifier
always predicts the class with the maximum posterior probability, the probability that its prediction is
wrong for a given tuple X (which is often called risk) is the lowest in comparison to all other classifiers.
In our example, the risk for the given customer is 0.2. In other words, there is 20% probability that the
prediction by Bayes classifier is wrong. Therefore, the overall classification error of Bayes classifier,
which is the expectation (i.e., the weighted average) of the risk of all possible tuples, is the lowest in
all possible classifiers. Given its theoretic optimality, Bayes classifier plays a foundational role in the
statistical machine learning community. For example, many classifiers (e.g., naive Bayesian classifier,
k-Nearest-Neighbor classifier, logistic regression, Bayesian network, etc.) can be viewed as approxi-
mated Bayes classifiers. Bayes classifier is also useful in that it provides a theoretical justification for
other classifiers that do not explicitly use Bayes’ theorem. For example, under certain assumptions, it
can be shown that many neural network and curve-fitting algorithms output the maximum posteriori
hypothesis, as does the Bayes classifier.

“Then, why do not we just use Bayes classifier?” According to Bayes’ theorem (Eq. (6.11)), in
order to calculate the posterior probabilities P(C;|X) (i =1,...,m), we need to know the conditional
probabilities P(X|C;) (i =1,...,m), the priors P(C;) (i =1,...,m) and the marginal probability
P(X). In Bayes classifier, we only need to know which class has the highest posterior probability
and for a given tuple X, its marginal probability is independent of different classes. In other words,
different posterior probabilities P(C;|X) (i =1,...,m) share the same marginal probability P(X).
Therefore for the purpose of predicting which class a given tuple belongs to, we only need to estimate
the conditional probabilities P(X|C;) (i =1, ...,m), and the priors P(C;) (i =1, ..., m).>

It is relatively easy to estimate the priors P(C;) (i =1, ..., m) from the training data set (the details
will be introduced in the next section). On the other hand, it is usually very challenging to directly
estimate the conditional probabilities P(X|C;) (i =1,...,m). To see this, let us assume there are n
binary attributes Ay, A, ..., A,. Then, the n-dimensional attribute vector X has 2" possible values
and we need to estimate the conditional probability of each possible value of the attribute vector with
respect to each class label.® In other words, the attribute value space is exponential! It is very difficult
to estimate such a large number of parameters for the conditional probabilities.’

Therefore the main difficulty for Bayes classifier lies in how to efficiently estimate the conditional
probabilities, often with some approximation. Many solutions have been developed. One of such efforts,
probably the simplest yet quite effective solution, is the naive Bayesian classifier, which we introduce
next.

5 The marginal probability P(X) itself can be calculated based on the conditional probabilities P(X|C;) (i =1,...,m), and
the priors P(C;) (i=1,..., m) based on the law of total probability, that is, P(X) = anl P(X|C;)P(C;). It is necessary to
calculate the marginal probability in some scenarios (e.g., to estimate the risk of Bayes classifier).

6 The total number of the parameters we need to estimate for conditional probabilities in this case is m(2" — 1). The details are
left as an exercise.

7 In statistics, it means that the estimation results bear high variance, which are not reliable.

262 Chapter 6 Classification: basic concepts and methods

6.3.2 Naive Bayesian classification

The naive Bayesian classifier, or simple Bayesian classifier, follows the same procedure as Bayes
classifier, except the way it estimates the conditional probabilities. In detail, it works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple is represented
by an n-dimensional attribute vector, X = (x, x2, ..., X,), depicting n measurements made on the
tuple from n attributes, respectively, A1, Az, ..., A,.

2. Suppose that there are m classes, C1, Ca, ..., Cy,. Given a tuple, X, the classifier will predict that
X belongs to the class having the highest posterior probability, conditioned on X. That is, the naive
Bayesian classifier predicts that tuple X belongs to the class C; if and only if

P(Ci|X) > P(Cj|X) for 1<j<m,j#i.

Thus we maximize P(C;|X). The class C; for which P(C;|X) is maximized is called the maximum
posteriori hypothesis. By Bayes’ theorem (Eq. (6.11)),

P(X|CHP(C;
P(CiIX) = % 6.12)

3. As P(X) is constant for all classes, we only need to find out which class maximizes P (X|C;) P(C;).
If the class prior probabilities are not known, then it is commonly assumed that the classes are
equally likely, thatis, P(Cy) = P(C2) =--- = P(Cy,), and we would therefore maximize P (X|C;).
Otherwise, we maximize P(X|C;)P(C;). Note that the class prior probabilities may be estimated
by P(C;) =|C; pl/|D|, where |C; p| is the number of training tuples of class C; in D.

4. Given a data set with many attributes, it would be extremely computationally expensive to compute
P(X|C;) for the aforementioned reasons. To reduce computation in evaluating P (X|C;), the naive
assumption of class-conditional independence is made. This presumes that the attributes’ values
are conditionally independent of one another, given the class label of the tuple (i.e., there are no
dependence relationships among the attributes, if we know which class the tuple belongs to.). Thus

P(X|C) =[] PCalCi) (6.13)
k=1
= P(x1|Ci) x P(x2]Ci) X -+ X P(xn|Cy).

We can easily estimate the probabilities P(x1|C;), P(x2|C;), ..., P(x,|C;) from the training tuples.

Recall that here x; refers to the value of attribute Ay for tuple X. For each attribute, we look at

whether the attribute is categorical or continuous-valued. For instance, to compute P(X|C;), we

consider the following:

a. If Ay is categorical, then P (xx|C;) is the number of tuples of class C; in D having the value xj
for A, divided by |C; p|, the number of tuples of class C; in D3

8 In statistics, this is the classic maximum likelihood estimation (MLE) method.

6.3 Bayes classification methods 263

h. If A; is continuous-valued, then we need to do a bit more work, but the calculation is pretty
straightforward. A continuous-valued attribute is typically assumed to have a Gaussian distri-
bution with a mean p and standard deviation o, defined by

1 _ew?
g(x,u,a):mae 202, (6.14)
so that
P (xx|Ci) = g(x, ;> o) (6.15)

These equations may appear daunting, but hold on! We need to compute jic; and oc,, which
are the mean (i.e., average) and standard deviation, respectively, of the values of attribute Ay
for training tuples of class C;. We then plug these two quantities into Eq. (6.14), together with
X, to estimate P (x;|C;).
For example, let X = (35, $40, 000), where A and A, are the attributes age and income, re-
spectively. Let the class label attribute be buys_computer. The associated class label for X is yes
(i.e., buys_computer = yes). Let’s suppose that age has not been discretized and therefore exists
as a continuous-valued attribute. Suppose that from the training set, we find that customers in
D who buy a computer are 38 & 12 years of age. In other words, for attribute age and this class
(i.e., buys_computer = yes), we have p = 38 years and o = 12. We can plug these quantities,
along with x; = 35 for our tuple X, into Eq. (6.14) to estimate P(age = 35|buys_computer =
yes). For a quick review of mean and standard deviation calculations, please see Section 2.2.
5. To predict the class label of X, P(X|C;)P(C;) is evaluated for each class C;. The classifier predicts
that the class label of tuple X is the class C; if and only if

P(X|C)HP(Ci) > P(X|C)HP(Cj) for 1 <j=<m,j#i. (6.16)
In other words, the predicted class label is the class C; for which P(X|C;) P (C;) is the maximum.

“How effective is naive Bayesian classifier?” Notice that the only difference between naive
Bayesian classifier and Bayes classifier is the class-conditional independence assumption. Therefore
if such an assumption indeed holds, naive Bayesian classifier would be optimal with the smallest pos-
sible classification error. However, in practice this is not always the case, owing to inaccuracies in the
assumptions made for its use, such as class-conditional independence, and the lack of available proba-
bility data. Nonetheless, various empirical studies of this classifier in comparison to decision trees and
selected neural network classifiers have found it to be comparable in some domains. Another advantage
of naive Bayesian classifier is that it can naturally handle the missing attribute(s).

Example 6.5. Predicting a class label using naive Bayesian classification. We wish to predict the
class label of a tuple using naive Bayesian classification, given the same training data as in Exam-
ple 6.3 for decision tree induction. The training data were shown earlier in Table 6.1. The data tuples are
described by the attributes age, income, student, and credit_rating. The class label attribute, buys_com-
puter, has two distinct values (namely, {yes, no}). Let C| correspond to the class buys_computer = yes
and C; correspond to buys_computer = no. The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit_rating = fair).

264 Chapter 6 Classification: basic concepts and methods

We need to find out which class maximizes P(X|C;) P(C;), fori = 1,2. P(C;), the prior probability
of each class, can be computed based on the training tuples:

P (buys_computer = yes) =9/14 = 0.643
P (buys_computer = no) =5/14 = 0.357.

To compute P(X|C;), fori =1, 2, we compute the following conditional probabilities:

P (age = youth | buys_computer = yes) =2/9=0.222
P (age = youth | buys_computer = no) =3/5=0.600
P (income = medium | buys_computer = yes) =4/9 =0.444
P (income = medium | buys_computer = no) =2/5=0.400
P (student = yes | buys_computer = yes) =6/9 =0.667
P (student = yes | buys_computer = no) =1/5=0.200
P(credit_rating = fair | buys_computer = yes) = 6/9 = 0.667
P (credit_rating = fair | buys_computer = no) =2/5 = 0.400.

Using these probabilities, we obtain

P (X |buys_computer = yes) = P(age = youth | buys_computer = yes)
x P(income = medium | buys_computer = yes)
x P(student = yes | buys_computer = yes)
x P(credit_rating = fair | buys_computer = yes)
=0.222 x 0.444 x 0.667 x 0.667 = 0.044.

Similarly,
P (X |buys_computer = no) = 0.600 x 0.400 x 0.200 x 0.400 = 0.019.
To find the class, C;, that maximizes P (X|C;)P(C;), we compute

P (X |buys_computer = yes) P (buys_computer = yes) = 0.044 x 0.643 = 0.028
P (X |buys_computer = no) P (buys_computer = no) = 0.019 x 0.357 = 0.007.

Therefore the naive Bayesian classifier predicts buys_computer = yes for tuple X. O

“What if I encounter probability values of zero?” Recall that in Eq. (6.13), we estimate P(X|C;) as
the product of the probabilities P(x1|C;), P(x2|C;), ..., P(x,|C;), based on the assumption of class-
conditional independence. These probabilities can be estimated from the training tuples (step 4). We
need to compute P(X|C;) for eachclass (i =1, 2, ..., m) to find the class C; for which P(X|C;) P(C;)
is the maximum (step 5). Let’s consider this calculation. For each attribute—value pair (i.e., Ax = xi, for
k=1,2,...,n)in tuple X, we need to count the number of tuples having that attribute—value pair, per
class (i.e., per C;, fori =1, ..., m). In Example 6.5, we have two classes (m = 2), namely buys_com-
puter = yes and buys_computer = no. Therefore, for the attribute—value pair student = yes of X, say,

6.3 Bayes classification methods 265

we need two counts—the number of customers who are students and for which buys_computer = yes
(which contributes to P (X |buys_computer = yes)) and the number of customers who are students and
for which buys_computer = no (which contributes to P (X |buys_computer = no)).

However, what if, say, there are no training tuples representing students for the class buys_
computer = no, resulting in P (student = yes|buys_computer = no) = 0? In other words, what happens
if we should end up with a probability value of zero for some P (xx|C;)? Plugging this zero value into
Eq. (6.13) would return a zero probability for P(X|C;), even though, without the zero probability, we
may have ended up with a high probability, suggesting that X belonged to class C;! A zero probability
cancels the effects of all the other (posteriori) probabilities (on C;) involved in the product.

There is a simple trick to avoid this problem. We can assume that our training database, D, is so large
that adding one to each count that we need would only make a negligible difference in the estimated
probability value yet would conveniently avoid the case of probability values of zero. This technique
for probability estimation is known as the Laplacian correction or Laplace estimator, named after
Pierre Laplace, a French mathematician who lived from 1749 to 1827.° If we have, say, ¢ counts to
which we each add one, then we must remember to add g to the corresponding denominator used in the
probability calculation. We illustrate this technique in Example 6.6.

Example 6.6. Using the Laplacian correction to avoid computing probability values of zero. Sup-
pose that for the class buys_computer = yes in some training database, D, containing 1000 tuples, we
have 0 tuples with income = low, 990 tuples with income = medium, and 10 tuples with income = high.
The probabilities of these events, without the Laplacian correction, are 0, 0.990 (from 990/1000), and
0.010 (from 10/1000), respectively. Using the Laplacian correction for the three quantities, we pretend
that we have one more tuple for each income-value pair. In this way, we instead obtain the following
probabilities (rounded up to three decimal places):

1 991 11
—— =0.001, — =0.988, and —— =0.011,
1003 1003 1003

respectively. The “corrected” probability estimates are close to their “uncorrected” counterparts, yet the
zero probability value is avoided. O

The main idea of naive Bayesian classifier lies in the class-conditional independence assumption,
which significantly simplifies the estimation of the conditional probabilities P(X|C;) (i =1, ..., m).
However, this (class-conditional independence assumption) is also one major limitation of naive
Bayesian classifier, since it might not be true for some applications. To address this issue, we need more
sophisticated ways to approximate the conditional probabilities, such as Bayesian networks, which will
be introduced in the next chapter.

9 In statistics, this belongs to the Maximum a Posteriori (MAP) method. This can also be viewed as a smoothing technique (i.e.,
to “smooth” the zero probabilities). In practice, we can also replace 1 by a small integer k. The intuition is that we have k (instead
of 1) more tuples for each attribute-value pair.

266 Chapter 6 Classification: basic concepts and methods

6.4 Lazy learners (or learning from your neighbors)

The classification methods discussed so far in this book—decision tree induction and Bayesian
classification—are both examples of eager learners. Eager learners, when given a set of training
tuples, will construct a generalization (i.e., classification) model before receiving new (e.g., test) tuples
to classify. We can think of the learned model as being ready and eager to classify previously unseen
tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until the last minute before
doing any model construction to classify a given test tuple. That is, when given a training tuple, a lazy
learner simply stores it (or does only a little minor processing) and waits until it is given a test tuple.
Only when it sees the test tuple does it perform generalization to classify the tuple based on its similarity
to the stored training tuples. Unlike eager learning methods, lazy learners do less work when a training
tuple is presented and more work when making a classification or numeric prediction. Because lazy
learners store the training tuples or “instances,” they are also referred to as instance-based learners,
even though all learning is essentially based on instances.

When making a classification or numeric prediction, lazy learners can be computationally expen-
sive. They require efficient storage techniques and are well suited to implementation on parallel hard-
ware. They offer little explanation or insight into the data’s structure. Lazy learners, however, naturally
support incremental learning. They are able to model complex decision spaces having hyperpolygonal
shapes that may not be as easily describable by other learning algorithms (such as hyperrectangular
shapes modeled by decision trees). In this section, we look at two examples of lazy learners: k-nearest-
neighbor classifiers (Section 6.4.1) and case-based reasoning classifiers (Section 6.4.2).

6.4.1 k-nearest-neighbor classifiers

The k-nearest-neighbor method was first described in the early 1950s. The method is labor-intensive
when given a large training set, and did not gain popularity until the 1960s when increased computing
power became available. It has since been widely used in the area of pattern recognition.

Suppose you want to make a decision on whether or not you should buy a computer. What would
you do? One possible way to make such a decision is to find out your friends’ decision on this (whether
or not to buy a computer). If most of your close friends buy a computer, maybe you will decide to
buy a computer as well. Nearest-neighbor classifiers follow a very similar idea of learning by analogy,
that is, by comparing a given test tuple with training tuples that are similar to it. The training tuples
are described by n attributes. Each tuple represents a point in an n-dimensional space. In this way, all
the training tuples are stored in an n-dimensional attribute space. When given an unknown tuple, a
k-nearest-neighbor classifier searches the attribute space for the & training tuples that are closest to
the unknown tuple (i.e., to find your close friends in the above example). These k training tuples are
the k “nearest neighbors” of the unknown tuple. Then k-nearest-neighbor classifier chooses the most
common class label among the k nearest neighbors as the predicted class label of the unknown tuple
(i.e., to follow the majority decision of your friends in the above example).

“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The Euclidean
distance between two points or tuples, say, X1 = (x11, X12, ..., X1») and X2 = (x21, X22, ..., X2), 18

6.4 Lazy learners (or learning from your neighbors) 267

D —xi) (6.17)

i=1

dist(X1,X2) =

In other words, for each numeric attribute, we take the difference between the corresponding values of
that attribute in tuple X and in tuple X», square this difference, and accumulate it. The square root
is taken of the total accumulated distance count. Typically, we normalize the values of each attribute
before using Eq. (6.17). This helps prevent attributes with initially large ranges (e.g., income) from
outweighing attributes with initially smaller ranges (e.g., binary attributes). Min-max normalization,
for example, can be used to transform a value v of a numeric attribute A to v’ in the range [0, 1] by
computing

o= v mina (6.18)

maxa —ming

where min 4 and max 4 are the minimum and maximum values of attribute A. Chapter 2 describes other
methods for data normalization as a form of data transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most common class label
among its k-nearest neighbors. When k = 1, the unknown tuple is assigned the class of the training
tuple that is closest to it in the attribute space. When k > 1, we can take a (weighted) majority voting
on the class labels among its k-nearest neighbors. Nearest-neighbor classifiers can also be used for
numeric prediction, that is, to return a real-valued prediction for a given unknown tuple. In this case,
the classifier returns the (weighted) average value of the real-valued labels associated with the k-nearest
neighbors of the unknown tuple.

“But how can distance be computed for attributes that are not numeric, but nominal (or categorical)
such as color?” The previous discussion assumes that the attributes used to describe the tuples are all
numeric. For nominal attributes, a simple method is to compare the corresponding value of the attribute
in tuple X| with that in tuple X». If the two are identical (e.g., tuples X| and X, both have the color
blue), then the difference between the two is taken as 0. If the two are different (e.g., tuple X is blue
but tuple X, is red), then the difference is considered to be 1. Other methods may incorporate more
sophisticated schemes for differential grading (e.g., where a larger difference score is assigned, say, for
blue and white than for blue and black).

“What about missing values?” In general, if the value of a given attribute A is missing in tuple X; or
in tuple X», we assume the maximum possible difference. Suppose that each of the attributes has been
mapped to the range [0, 1]. For nominal attributes, we take the difference value to be 1 if either one or
both of the corresponding values of A are missing. If A is numeric and missing from both tuples X
and X», then the difference is also taken to be 1. If only one value is missing and the other (which we
will call v’) is present and normalized, then we can take the difference to be either |1 —v’| or |0 — v’|
(i.e., 1 — v’ or v’), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This can be determined
experimentally. Starting with k = 1, we use a test set to estimate the error rate of the classifier. This
process can be repeated each time by incrementing k to allow for one more neighbor. The k value that
gives the minimum error rate may be selected. In general, the larger the number of training tuples, the
larger the value of k£ will be (so that classification and numeric prediction decisions can be based on a
larger portion of the stored tuples). As the number of training tuples approaches infinity and k = 1, the
error rate can be no worse than twice the Bayes error rate (the latter being the theoretical minimum). In

268 Chapter 6 Classification: basic concepts and methods

]‘Xz T(z
: N
| Lo e 4
R
i (01)
(1,0 | ~(1,0) (-1,0@ i Q(1,0) s
5(0;0) Xq :(0’0) X
i (0,-1)
KN
N >
+ JV
+
(a) decision boundary using L norm (b) decision boundary using Lo, norm.

FIGURE 6.9

The impact of distance metrics on 1-nearest-neighbor classifier. Given two training examples, including a positive
example at (1, 0) and a negative example at (—1, 0). The decision boundaries of 1-nearest-neighbor classifier using
different distance metrics are quite different from each other. Using L, norm (on the left), the decision boundary

is a vertical line at x = 0. Using L, norm (on the right), the decision boundary includes a line segment between
(0, —1) and (0, 1) and two shaded areas.

other words, 1-nearest-neighbor classifier is asymptotically near-optimal. If k approaches infinity, the
error rate approaches the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign equal weight to
each attribute. They, therefore, can suffer from poor accuracy when given noisy or irrelevant attributes.
The method, however, has been modified to incorporate attribute weighting and the pruning of noisy
data tuples. The choice of a distance metric can be critical. The Manhattan (city block) distance (Sec-
tion 2.3), or other distance measurements, may also be used. Fig. 6.9 presents an illustrative example
in terms of the impact of distance metrics on the decision boundary of k-nearest-neighbor classifier.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D is a training
database of | D| tuples and k = 1, then O (| D|) comparisons are required to classify a given test tuple. By
presorting and arranging the stored tuples into search trees, the number of comparisons can be reduced
to O(log(|D]). Parallel implementation can reduce the running time to a constant, that is, O (1), which
is independent of | D|.

Other techniques to speed up classification time include the use of partial distance calculations and
editing the stored tuples. In the partial distance method, we compute the distance based on a subset
of the n attributes. If this distance exceeds a threshold, then further computation for the given stored
tuple is halted, and the process moves on to the next stored tuple. The editing method removes training
tuples that are proven useless. This method is also referred to as pruning or condensing because it
reduces the total number of tuples stored. Another technique to speed up nearest-neighbor search is
via locality-sensitive-hashing (LSH). The key idea is to hash the similar tuples into the same bucket
with a high probability via locality-preserving hash functions. Then, given a test tuple, we first identify
which bucket it belongs to, and then we only search the training tuples in the same bucket to identify
its nearest neighbors.

6.5 Linear classifiers 269

6.4.2 Case-based reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve new problems.
Unlike k-nearest-neighbor classifiers, which store training tuples as points in Euclidean space, CBR
stores the tuples or “cases” for problem solving as complex symbolic descriptions. Business appli-
cations of CBR include problem resolution for customer service help desks, where cases describe
product-related diagnostic problems. CBR has also been applied to areas, such as engineering and
law, where cases are either technical designs or legal rulings in the common law system, respectively.
Medical education is another area for CBR, where patient case histories and treatments are used to help
diagnose and treat new patients.

When given a new case to classify, a case-based reasoner will first check if an identical training case
exists. If one is found, then the accompanying solution to that case is returned. If no identical case is
found, then the case-based reasoner will search for training cases having components that are similar
to those of the new case. Conceptually, these training cases may be considered as neighbors of the
new case. If cases are represented as graphs, this involves searching for subgraphs that are similar to
subgraphs within the new case. The case-based reasoner tries to combine the solutions of the neighbor-
ing training cases to propose a solution for the new case. If incompatibilities arise with the individual
solutions, then backtracking to search for other solutions may be necessary. The case-based reasoner
may employ background knowledge and problem-solving strategies to propose a feasible combined
solution.

Key challenges in case-based reasoning include finding a good similarity metric (e.g., for matching
subgraphs) and suitable methods for combining solutions. Other challenges include the selection of
salient features for indexing training cases and the development of efficient indexing techniques. A
trade-off between accuracy and efficiency evolves as the number of stored cases becomes very large.
As this number increases, the case-based reasoner becomes more intelligent. After a certain point,
however, the system’s efficiency will suffer as the time required to search for and process relevant
cases increases. As with nearest-neighbor classifiers, one solution is to edit the training database. Cases
that are redundant or those that have not proved useful may be discarded for the sake of improved
performance. These decisions, however, are not clear-cut, and their automation remains an active area
of research.

6.5 Linear classifiers

So far, we have learned a few classifiers which are capable of generating complex decision bound-
aries. For example, a decision tree classifier might output a hyperrectangular-shaped decision bound-
ary (Fig. 6.10(a)), and a k-nearest-neighbor classifier might output a hyperpolygonal-shaped decision
boundary (Fig. 6.10(b)). However, what about a simple, linear decision boundary? For the example in
Fig. 6.10, intuitively, a linear decision boundary (the straight line in Fig. 6.10(c)) is (almost) as good
as decision tree classifiers and k-nearest-neighbor classifier in separating the positive training tuples
from the negative training ones. Yet, such a linear decision boundary might offer additional advantages,
such as efficient computation for training the classifier, better generalization performance, and better
interpretability.

In this section, we introduce basic techniques to learn such linear classifiers. We will start with
linear regression, which forms the basis for linear classifiers. Then, we will introduce two linear classi-

270 Chapter 6 Classification: basic concepts and methods

K - ®
ol o o
© @ @
° ° o
oilielli® ol tol\® oile

(a) Decision Tree Classifier (b) 1—Nearest-Neighbor Classifier (¢) Linear Classifier

©

FIGURE 6.10

Decision boundaries by different classifiers. Note that this example is linearly separable, meaning that a linear
classifier (c) can perfectly separate all the positive training tuples from all the negative training tuples. If the training

set is linearly inseparable, we could still use a linear classifier, at the expense that some training tuples are on the
‘wrong’ side of the decision boundary. In Chapter 7, we will introduce techniques (e.g., support vector machines) to
handle linearly inseparable case.

fiers, including (1) perception, which is one of the earliest linear classifiers, and (2) logistic regression
which is one of the most widely used linear classifiers. Additional linear classifiers will be introduced
in Chapter 7, such as linear support vector machines.

6.5.1 Linear regression

Linear regression is a statistical technique that predicts a continuous value based on one or more inde-
pendent attributes. For example, we might want to predict the housing price based on the living area
or to predict the future income of a student based on which college she attended, in which major and
the overall GPA, etc. Since linear regression aims to predict a continuous value, it cannot be directly
applied to the classification task, where the output is a categorical variable. Nonetheless, the core tech-
niques in linear regression form the basis of linear classifiers. Therefore, let us first briefly introduce
linear regression.

Suppose we have n tuples, each of which is represented by p attributes x; = (x; 1, ..., x;, p)T and a
continuous output value y; (i =1, ..., n). In linear regression, we want to learn a linear function that
maps the p input attributes x; to the output variable y;, that is, §; = w’x; +b = Zle w;x; j+b,
where y; is the predicted output value for the ith tuple, w = (wy, ..., w ,,)T is a p-dimensional weight
vector and b is the bias scalar. In other words, linear regression assumes that the output value is a linear
weighted summation of the p input attribute values, offset by the bias scalar b. The entries in the weight
vector w; (j =1, ..., p) tell how important the corresponding attribute x; ; is in predicting the output
variable J;. In the aforementioned examples, a linear regression model would assume that the housing
prices are linearly correlated with the living area; the future income of a student can be predicted by a
linear weighted combination of the college she attended, the major, and the overall GPA (plus a bias
scalar b). If we know the weight vector w and the bias scalar b, we can make a prediction of the output
value based on its p input attribute values.

“So, how can we determine the weight vector w and the bias scalar b?” Intuitively, we want to
learn the “best” weight vector w and the “best” bias scalar b from the training data, so that the lin-

6.5 Linear classifiers 271

Attribute (x;) 1 3
Output (y;) 4 10 14 16

(a) Training tuples

output

attribute

(b) Least square regression

FIGURE 6.11

An example of least square regression. (a) Four training tuples. (b) Scatter-plot of the training tuples (black dots) and
least square regression model (the blue line). Red diamonds are the predicted output y; (i = 1,2, 3, 4) and dashed
lines indicate the prediction errors (|y; — J;|) of the corresponding training tuples.

ear regression model can make the “best” prediction. That is, the predicted value $; = w’x; + b is
as close as possible to the actual observed value y; (i =1,...,n). One of the most common linear
regression methods is called least square regression, which aims to minimize the following loss func-
tion L(w,b) =" (yi — $1)> =31, (yi — (w x; + b))?. Therefore the best weight vector w and
the bias scalar b are the ones that minimize the loss function L(w, b), which measures the sum of the
squared difference between the predicted output value y; and the actual observed value y;. For exam-

Z 1 -xl (yi—)_’)
= > and the
i=1%; (Z

optimal bias scalar b = % Yo (vi — wx;), where j = % Y7 vi is the average observed output value
among all n training tuples.

ple, if there is only one input attribute (i.e., p = 1), the optimal weight w =

Example 6.7. Let us look at an example of least square regression in Fig. 6.11. There are four training
tuples, each represented by a single-dimensional attribute x; and an output variable y; (i = 1,2, 3,4).
We want to find least square regression model y = wx + b that predicts the output y based on
the input attribute x. We use the two equations mentioned above to find the optimal weight w
and the optimal bias scalar b. We first find the optimal weight w as follows. The average out-
put of four tralning tuples is y=(y1 +y2 + y3 +y4)/4=(4+ 104 14 + 16)/4 = 11. Therefore we
have that Z %=y =14-11)+3(10-11) +5(14 - 11) +7(16 — 11) =40. In the mean-
while, we have that Y7_ x? =12 432 452 + 72 =84 and 1/4(X}_, x)?> = (1 + 34+ 5+ 7)2/4 = 64.

Z‘ 1% Eyz’ y)x = 84{)64 = 2. Based on the optimal weight w, the
i=1% "

S Gimwx) _ (4=2x1)+(10-2x3)+(14—2x5)+(16-2x7) _3 O
7 = 7 =2

Therefore the optimal weight w =

optimal bias scalar b =

272 Chapter 6 Classification: basic concepts and methods

“But, what if there are multiple p (p > 1) attributes?” In this case (which is called multi-
linear regression), let us first change our notation a little bit. We assume there is an additional
“dummy” attribute which always takes the value of 1 for any tuple. Let the weight for this dummy
attribute be wg. Then the overall weight vector w = (wo, w1, ..., wp) and the new input attribute vector
x; = (1, x;1,...,x; p) are both (p + 1)-dimensional vectors. The multilinear regression model can be
re-written as y; = wlx; = wo + W1X;1 + ... + wpx; p. We use the same loss function as before, that is,
Lw)=Y" (i —3)* =" — wTx;)) It turns out the optimal weight vector w can be com-
puted as w = (XXT)™1 Xy, where X = [x1, X2, ..., x,] is a (p + 1) x n matrix, and y = [y1, ..., yu]7
is an n x 1 vector. (How to derive the closed form solutions for single linear regression as well as
multilinear regression are left as exercises.)

In least square regression, we measure the “goodness” of the learned regression model by the
sum of the squared difference between predicted and actual output values. The squared loss might
be sensitive to the outliers in the training set. In robust regression, it uses alternative loss func-
tions that are less sensitive to such outliers. For example, the Huber method in robust regression
uses the following loss: L(w) =Y ", la(yi — 3i), where lg(yi — i) = (yi —)2 if |yi — il <6,
Ig(yi —¥;) =20]y;i — 9i| — 62 otherwise, and 6 > 0 is a user-specified parameter. Notice that the opti-
mal weight vector w for multilinear regression involves a matrix inverse (i.e., (X X y=1) In case p>n
(i.e., the number of attributes is more than the number of training tuples), such a matrix inverse does
not exist. An effective way to address this issue is to introduce a regularization term regarding the
norm of the weight vector w. For example, if we use /> norm of the weight vector w, the corresponding
regression model is called Ridge regression; if we use /1 norm of the weight vector w instead, the cor-
responding regression model is called Lasso regression which often learns a sparse weight vector. This
means that some entries of the learned weight vector w are zeros, which indicates that those attributes
are not used in the regression model. In Section 7.1, we will use Lasso regression for feature selection.

6.5.2 Perceptron: turning linear regression to classification

“How can we modify a linear regression model to perform classification task?” Suppose we have a
binary classification task.'” The output value y; for a given tuple is a binary variable: y; = 41 indicates
the ith tuple is a positive tuple (e.g., buy computer) and y; = 0 indicates the ith tuple is a negative one
(e.g., not buy computer). One way to modify the linear regression model for such a binary classification
task is to use the sign of the output of the linear regression model as the predicted class label, that is,
$; = sign(w’ x;), where §; is the predicted class label for ith tuple, sign(z) = 1 if z > 0 and sign(z) =0
otherwise. Notice that we use the same notation as multilinear regression where we have introduced a
“dummy” attribute which always takes the value of 1 for any tuple. Therefore if we know the weight
vector w, we can use it to predict the class label of a given tuple as follows. We compute a linear
combination of the attribute values of the given tuple, weighted by the corresponding entries of the
weight vector w. If the resulting value of such a linear combination is positive, we predict that the
given tuple is a positive tuple. Otherwise, we predict that it is a negative one.

“How can we find the optimal weight vector w from a set of training tuples?” The classic learning
algorithm to train a perceptron is as follows. We start with an initial guess of the weight vector w (e.g.,

10 For both perceptron and logistic regression classifiers that we will introduce next, we focus on binary classification task.
However, the techniques we introduce can be generalized to handle multiclass classification task for both classifiers.

6.5 Linear classifiers 273

we can simply set w = 0). Then, the learning algorithm will iterate until it converges, or the maximum
iteration number or some other preset stopping criteria are met. In each iteration, we do the following
for each training tuple x;. We try to predict the class label of x; using the current weight vector w,
that is, y; = sign(wa,-). If the prediction is correct (i.e., ; = y;), we do nothing about the weight
vector. However, if the prediction is incorrect (i.e., ; # y;), we update the current weight vector in one
of the following two ways. If y; =41 (i.e., the ith tuple is a positive tuple, but the current classifier
predicts it is a negative tuple), we update weight vector as w <— w + nx;. If y; =0 (i.e., the ith tuple
is a negative tuple, which is wrongly predicted by the current classifier as a positive tuple), we update
weight vector as w <— w — nx;, where n > 0 is the user-specified learning rate. So, the intuition is that
in each iteration of the training process, the algorithm will focus on those wrongly predicted training
tuples by the current weight vector w. If the wrongly predicted training tuple x; is a positive tuple,
we update the weight vector w by moving it fowards the attribute vector x; of this training tuple (i.e.,
w < w + nx;). On the other hand, if the wrongly predicted training tuple x; is a negative tuple, we

update the weight vector w by moving it away from the attribute vector x; of this training tuple (i.e.,
W < w — nx;).

Example 6.8. Let us look at an example in Fig. 6.12 for training a perceptron classifier. In Fig. 6.12, we
assume the bias wo = 0 for illustration clarity. Fig. 6.12(a) (left) shows the current decision boundary
and the weight vector w, where two training tuples are wrongly classified, including a positive tuple
x1 and a negative tuple xg. Therefore only these two tuples are used to update the weight vector in
the current iteration, that is, w <— w + nx; — nxg. The updated weight vector w and the corresponding
decision boundary are shown in Fig. 6.12(b) (right), where all training tuples are correctly classified.

O

“How effective is the perceptron learning algorithm?” If the training tuples are linearly separable
(e.g., the example in Fig. 6.12), the perceptron algorithm is guaranteed to find a weight vector (i.e.,
a hyperplane decision boundary) that perfectly separates all the positive training tuples from all the

negative training tuples. However, if the training tuples are not linearly separable, this algorithm will
fail to converge.

,
L
%0

Ox
X w o oXZ
axcet® X.

5 > [+ ¥
X 106 Xs’ °X4 xm‘ x6° : 6 X,

y ey,
’X Sogpecy
X ‘ 8, °x py 20,
° 9 X ‘ X 3 7° 8
(a) current weight vector w (b) updated weight vector w

FIGURE 6.12

Training a perceptron classifier.

274 Chapter 6 Classification: basic concepts and methods

Perceptron, one of the earliest linear classifiers, was first invented back in 1958. It can also be used
as a building block (called a “neuron”) in deep neural networks that will be introduced in Chapter 10.

6.5.3 Logistic regression

Perceptron that we have just introduced in the previous section is capable of predicting the binary class
label of a given tuple. However, can we also tell how confident such a prediction is? Again, let us
consider a binary classification task, and we assume that there are two possible class labels, that is,
y =1 for a positive tuple and y = 0 for a negative tuple. Recall that in (naive) Bayes classifier, we can
estimate the posterior probability P (y; = 1|x;), which can be directly used to indicate how confident
the predicted classification result is. For example, if P(y; = 1|x;) is close to 1, the classifier is highly
confident that the tuple x; is a positive example.

How can we make a linear classifier not only predict which class label a tuple has, but also tell
how confident it is in making such a prediction? An effective way to this end is via logistic regression
classifier. Let us first introduce an important function called sigmoid function, which is defined as

o(z)= H-% = < From Fig. 6.13, we can see that the sigmoid function maps a real number in

(=00, +00) (i.e.,ltfle x-axis of Fig. 6.13) to an output value in the range of (0, 1) (i.e., the y-axis
of Fig. 6.13). Therefore if we leverage the sigmoid function to map the output of a linear regression
model to a number between 0 and 1, we can interpret the mapping result as the posterior probability of
observing a positive class label. This is exactly what logistic regression classifier tries to do!

Formally, we have P (§; = 1|x;, w) = o (w’x;) = j, where J; is the predicted class label for
the tuple with attributes x;, and w is the weight Vector(.Z Notice that we have absorbed the bias term
b into the weight vector w by introducing a dummy attribute to simplify the notation, as we did in
the multilinear regression model and in perceptron. Naturally, if P(y; = 1|x;, w) > 0.5, the classifier
predicts that the tuple x; is a positive tuple (i.e., 3; = 1), otherwise, it predicts a negative tuple (i.e.,
9; = 0). This (details are left as an exercise) is equivalent to the following linear classifier: predict
y; =1 (i.e., positive tuple) if wlx; >0, and predict y; = 0 (i.e., negative tuple) if wTx; < 0. Therefore
if we know the weight vector w, the classification task for a given tuple is quite simple. That is, we

0.5+

FIGURE 6.13

Illustration of sigmoid function. The sigmoid function “squashes” an input from a larger range (—o00, +00) to a
smaller range (0, 1). For this reason, sigmoid function is also called squash function. In Chapter 10, we will see
other types of squash functions, which are called activation functions in the deep learning terminology.

6.5 Linear classifiers 275

only need to multiply the attribute vector x; of the given tuple with the weight vector w, and then make
a prediction based on the sign of w” x;. If w” x; is a positive number, we predict that the given tuple is
a positive tuple. Otherwise, we predict that it is a negative tuple.

“How can we determine the optimal weight vector w from a set of training tuples?” The classic
method to train a logistic regression classifier (i.e., to determine the best weight vector w from the
training set) is via maximum likelihood estimation (MLE). Again, let us assume there are n training
tuples (x;,y;) (i =1,...,n). Since we have a binary classification task, we can view the predicted
class label §; as a Bernoulli random variable, which can only take two possible values, including
P(3; = 1|x;, w) = p; and P($; =0|x;, w) = 1 — p;, where p; = o (w’ x;) = ﬁ is determined by
the sigmoid function and it describes the probability of observing a positive 01J1rt600me for the predicted
class label (i.e., §; = 1). Notice that the true class label y; for the ith tuple is a binary variable. Therefore
we have that P(y; = y;) = piy (1 — p;j)' Y. The maximum likelihood estimation method aims to solve
the following optimization problem, which says that we should choose the best weight vector w that
maximizes the likelihood of the training set. The intuition is that we want to find the optimal model
parameter (i.e., the weight vector w) so that there is the highest “chance” (i.e., the likelihood or the
probability) of observing the entire training set.

wl x; 1
% _ —1n Vi1 p Vi ¢ Vi 1—y;
w* = argmax,, L(w) =TI]_, p;" (1 — p;) = Hl:l(l +ewa,') (1 +ewai) (6.19)

“But, how can we develop an algorithm to solve this optimization problem to find the optimal
weight vector w?” First, we notice that the likelihood function L(w) has many nonnegative terms that
are multiplied with each other. In practice, it is often more convenient to work with the logarithm of
such a complicated function. Thus we have the following equivalent optimization problem, where /(w)
is called the log likelihood

n
w* = argmax,, [(w) = Z yixiTw —log(1+ ewa"). (6.20)
i=1

From the optimization perspective, the good news is that the log likelihood function in Eq. (6.20) is
a strictly concave function, and therefore its maximum (the optimal solution) uniquely exists. However,
the bad news is that the closed-form solution for the above optimization problem does not exist. In
this case, a common strategy is to find the optimal solution w* iteratively as follows. In each iteration,
we try to improve the current weight vector w so that the objective function we wish to maximize
(the log likelihood function /(w)) is improved most. In order to increase the current objective function
[(w) most, it turns out the best direction to update the current estimation of the weight vector w is
to follow its gradient. This leads to the following algorithm to learn the optimal weight vector w*
from the training set. We start with an initial guess of the weight vector w (e.g., we can simply set
w = 0). Then, the learning algorithm will iterate until it converges, or the maximum iteration number
or some other preset stopping criteria are met. In each iteration, it updates the weight vector w as
follows w <— w+n Y 7 (yi — P(3i = 1|x;, w))x;, where n > 0 is the user-specified learning rate.

“So, what is the intuition of the above algorithm?” Let us analyze the impact of each training
tuple (x;, y;) on updating the estimation of the weight vector w. We consider two situations depending
on whether it is a positive tuple (i.e., y; = 1) or a negative tuple (i.e., y; =0). For the former, the

276 Chapter 6 Classification: basic concepts and methods

impact of the given tuple on updating the weight vector w can be calculated as w < w + n(1 — P(3; =
1|x;, w))x;. The intuition is that we want update the current weight vector w fowards the direction of
the attribute vector x; of this positive tuple. For the latter case (i.e., y; = 0), the impact of the given tuple
on updating the weight vector w can be calculated as w <— w — nP (J; = 1|x;, w)x;. The intuition is
that we want update the current weight vector w away from the direction of the attribute vector x; of this
negative tuple. From this perspective, the learning algorithm for training a logistic regression classifier
bears some similarities to the perceptron algorithm. That is, both algorithms try to update the current
weight vector w so that is (1) more aligned with the attribute vectors of positive tuples and (2) more
mis-aligned with (i.e., towards the opposite direction of) the attribute vectors of negative tuples.

However, the two algorithms (perceptron vs. logistic regression) differ regarding to what extent the
algorithms update the weight vector w. In perceptron, it uses a fixed learning rate n for all wrongly
predicted tuples by the current weight vector w. On the other hand, in logistic regression, it depends
on the learning rate n as well as P(y; = 1|x;, w) (i.e., the probability that the given tuple belongs to
the positive class based on the current weight vector w). This makes the logistic regression algorithm
adaptive in the following sense. For example, if P(3; = 1|x;, w) is high for a positive tuple, it means
that the prediction by the current weight vector w for this positive tuple is not only correct (i.e., P(3; =
1]x;, w) > 0.5), but also quite confident (i.e., P(¥; = 1|x;, w) is close to 1). Then, the impact of this
positive tuple (i.e., n(1 — P(3; = 1|x;, w))) on updating the weight vector is relatively small. On the
other hand, if P(y; = 1|x;, w) is high for a negative tuple, it means that the prediction by the current
weight vector w for this negative tuple is either wrong (i.e., P(J; = 1|x;, w) > 0.5), or correct but with
low confidence (i.e., P(; = 1]x;, w) is barely below 0.5). Then, the impact of this negative tuple (i.e.,
nP(¥; = 1]x;, w)) on updating the weight vector will be relatively large. In other words, the logistic
regression learning algorithm pays more attention to those “hard” training tuples, which are either
wrongly predicted or correctly predicted with a low confidence by the current weight vector w. Recall
that for the example in Fig. 6.12(a), perceptron only uses x; and xg to update the current weight vector
w since these two tuples are wrongly classified by the current w. In contrast, logistic regression uses
all training tuples to update the weight vector w. Among them, x| and xg have the highest impact on
updating w since they are both wrongly classified by the current classifier; x», x3, x5, x9 and x1o have the
least impact since they are all correctly classified by the current weight vector w with a high confidence;
x4, x¢ and x7 have the moderate impact since they are correctly classified but with a relativel