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Foreword

Analyzing data is more important and prevalent than ever. Collecting and storing large datasets is easy;
disks and “clouds” are well within budget of even small institutions. There is no excuse to not analyze
the data to find patterns, trends, anomalies, and forecasts.

The 4th edition of Data Mining: Concepts and Techniques covers all the classics but adds signif-
icant material on recent developments. It has a whole chapter on deep learning, subchapters for vital
topics like text mining (including one of my favorite algorithms, TopMine), frequent-subgraph dis-
covery (covering gSpan and CloseGraph), and excellent summaries for explainability (LIME), genetic
algorithms, reinforcement learning, misinformation detection, productivity and team science, causality,
fairness, and social good.

The new appendix with mathematical background is extremely useful and convenient—it has all
the fundamental formulas for data mining in one place, like gradient descent, Newton, and related
material for optimization; SVD, eigenvalues and pseudo-inverse for matrix algebra; entropy and KL
for information theory; and DFT and FFT for signal processing.

The book has an impressive, carefully chosen list of more than 800 citations, with more than 250
citations for papers after 2015. In short, this edition continues serving both as an excellent textbook and
an encyclopedic reference book.

Christos Faloutsos
Carnegie Mellon University

Pittsburgh, June 2022
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Foreword to second edition

We are deluged by data—scientific data, medical data, demographic data, financial data, and marketing
data. People have no time to look at this data. Human attention has become the precious resource. So,
we must find ways to automatically analyze the data, to automatically classify it, to automatically sum-
marize it, to automatically discover and characterize trends in it, and to automatically flag anomalies.
This is one of the most active and exciting areas of the database research community. Researchers in
areas including statistics, visualization, artificial intelligence, and machine learning are contributing to
this field. The breadth of the field makes it difficult to grasp the extraordinary progress over the last few
decades.

Six years ago, Jiawei Han’s and Micheline Kamber’s seminal textbook organized and presented
Data Mining. It heralded a golden age of innovation in the field. This revision of their book reflects that
progress; more than half of the references and historical notes are to recent work. The field has matured
with many new and improved algorithms, and has broadened to include many more datatypes: streams,
sequences, graphs, time-series, geospatial, audio, images, and video. We are certainly not at the end of
the golden age—indeed research and commercial interest in data mining continues to grow—but we
are all fortunate to have this modern compendium.

The book gives quick introductions to database and data mining concepts with particular emphasis
on data analysis. It then covers in a chapter-by-chapter tour the concepts and techniques that underlie
classification, prediction, association, and clustering. These topics are presented with examples, a tour
of the best algorithms for each problem class, and with pragmatic rules of thumb about when to apply
each technique. The Socratic presentation style is both very readable and very informative. I certainly
learned a lot from reading the first edition and got re-educated and updated in reading the second
edition.

Jiawei Han and Micheline Kamber have been leading contributors to data mining research. This is
the text they use with their students to bring them up to speed on the field. The field is evolving very
rapidly, but this book is a quick way to learn the basic ideas and to understand where the field is today.
I found it very informative and stimulating, and believe you will too.

Jim Gray
In his memory
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Preface

The computerization of our society has substantially enhanced our capabilities for both generating and
collecting data from diverse sources. A tremendous amount of data has flooded almost every aspect
of our lives. This explosive growth in stored or transient data has generated an urgent need for new
techniques and automated tools that can intelligently assist us in transforming the vast amounts of data
into useful information and knowledge. This has led to the generation of a promising and flourishing
frontier in computer science called data mining and its various applications. Data mining, also popularly
referred to as knowledge discovery from data (KDD), is the automated or convenient extraction of
patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the
Web, other massive information repositories, or data streams.

This book explores the concepts and techniques of knowledge discovery and data mining. As a
multidisciplinary field, data mining draws on work from areas including statistics, machine learning,
pattern recognition, database technology, information retrieval, natural language processing, network
science, knowledge-based systems, artificial intelligence, high-performance computing, and data vi-
sualization. We focus on issues relating to the feasibility, usefulness, effectiveness, and scalability of
techniques for the discovery of patterns hidden in large data sets. As a result, this book is not intended
as an introduction to statistics, machine learning, database systems, or other such areas, although we
do provide some background knowledge to facilitate the reader’s comprehension of their respective
roles in data mining. Rather, the book is a comprehensive introduction to data mining. It is useful for
computer science students, application developers, and business professionals, as well as researchers
involved in any of the disciplines listed above.

Data mining emerged during the late 1980s, made great strides during the 1990s, and continues
to flourish into the new millennium. This book presents an overall picture of the field, introducing
interesting data mining concepts and techniques and discussing applications and research directions.
An important motivation for writing this book was the need to build an organized framework for
the study of data mining—a challenging task, owing to the extensive multidisciplinary nature of this
fast-developing field. We hope that this book will encourage people with different backgrounds and
experiences to exchange their views regarding data mining to contribute toward the further promotion
and shaping of this exciting and dynamic field.

Organization of the book
Since the publication of the first three editions of this book, great progress has been made in the field
of data mining. Many new data mining methodologies, systems, and applications have been developed,
especially for handling new kinds of data, including information networks, graphs, complex structures,
and data streams, as well as text, Web, multimedia, time-series, and spatiotemporal data. Such fast
development and rich, new technical contents make it difficult to cover the full spectrum of the field in
a single book. Instead of continuously expanding the coverage of this book, we have decided to cover
the core material in sufficient scope and depth, and leave the handling of complex data types and their
applications to the books dedicated to those specific topics.

xxi
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The 4th edition substantially revises the first three editions of the book, with numerous enhance-
ments and a reorganization of the technical contents. The core technical material, which handles
different mining methodologies on general data types, is expanded and substantially enhanced. To keep
the book concise and up-to-date, we have done the following major revisions: (1) Two chapters in the
3rd edition, “Getting to Know You Data” and “Data Preprocessing” are merged into one chapter “Data,
Measurements and Data Preprocessing,” with the “Data Visualization” section removed since the con-
cepts are easy to understand, the methods have been covered in multiple, dedicated data visualization
books, and the software tools are widely available on the web; (2) two chapters in the 3rd edition,
“Data Warehousing and Online Analytical Processing” and “Data Cube Technology” are merged into
one chapter, with some not well-adopted data cube computation methods and data cube extensions
omitted, but with a newer concept, “Data Lakes” introduced; (3) the key data mining method chapters
in the 3rd edition on pattern discovery, classification, clustering and outlier analysis are retained with
contents substantially enhanced and updated; (4) a new chapter “Deep Learning” is added, with a sys-
tematic introduction to neural network and deep learning methodologies; (5) the final chapter on “Data
Mining Trends and Research Frontiers” is completely rewritten with many new advanced topics on data
mining introduced in comprehensive and concise way; and finally, (6) a set of appendices that briefly
introduce essential mathematical background needed to understand the contents of this book.

The chapters of this new edition are described briefly as follows, with emphasis on the new material.
Chapter 1 provides an introduction to the multidisciplinary field of data mining. It discusses the

evolutionary path of information technology, which has led to the need for data mining, and the im-
portance of its applications. It examines various kinds of data to be mined, and presents a general
classification of data mining tasks, based on the kinds of knowledge to be mined, the kinds of technolo-
gies used, and the kinds of applications that are targeted. It shows that data mining is a confluence of
multiple disciplines, with broad applications. Finally, it discusses how data mining may impact society.

Chapter 2 introduces the data, measurements and data preprocessing. It first discusses data objects
and attribute types, and then introduces typical measures for basic statistical data descriptions. It also
introduces ways to measure similarity and dissimilarity for various kinds of data. Then, the chapter
moves to introduce techniques for data preprocessing. In particular, it introduces the concept of data
quality and methods for data cleaning and data integration. It also discusses various methods for data
transformation and dimensionality reduction.

Chapter 3 provides a comprehensive introduction to datawarehouses and online analytical process-
ing (OLAP). The chapter starts with a well-accepted definition of data warehouse, an introduction to
the architecture, and the concept of data lake. Then it studies the logical design of a data warehouse as a
multidimensional data model, and looks at OLAP operations and how to index OLAP data for efficient
analytics. The chapter includes an in-depth treatment of the techniques of building data cube as a way
of implementing a data warehouse.

Chapters 4 and 5 present methods for mining frequent patterns, associations, and correlations in
large data sets. Chapter 4 introduces fundamental concepts, such as market basket analysis, with many
techniques for frequent itemset mining presented in an organized way. These range from the basic
Apriori algorithm and its variations to more advanced methods that improve efficiency, including the
frequent pattern growth approach, frequent pattern mining with vertical data format, and mining closed
and max frequent itemsets. The chapter also discusses pattern evaluation methods and introduces mea-
sures for mining correlated patterns. Chapter 5 is on advanced pattern mining methods. It discusses
methods for pattern mining in multilevel and multidimensional space, mining quantitative association
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rules, mining high-dimensional data, mining rare and negative patterns, mining compressed or approx-
imate patterns, and constraint-based pattern mining. It then moves to advanced methods for mining
sequential patterns and subgraph patterns. It also presents applications of pattern mining, including
phrase mining in text data and mining copy and paste bugs in software programs.

Chapters 6 and 7 describe methods for data classification. Due to the importance and diversity of
classification methods, the contents are partitioned into two chapters. Chapter 6 introduces basic con-
cepts and methods for classification, including decision tree induction, Bayes classification, k-nearest
neighbor classifiers, and linear classifiers. It also discusses model evaluation and selection methods
and methods for improving classification accuracy, including ensemble methods and how to handle
imbalanced data. Chapter 7 discusses advanced methods for classification, including feature selection,
Bayesian belief networks, support vector machines, rule-based and pattern-based classification. Addi-
tional topics include classification with weak supervision, classification with rich data type, multiclass
classification, distant metric learning, interpretation of classification, genetic algorithms and reinforce-
ment learning.

Cluster analysis forms the topic of Chapters 8 and 9. Chapter 8 introduces the basic concepts
and methods for data clustering, including an overview of basic cluster analysis methods, partitioning
methods, hierarchical methods, density-based and grid-based methods. It also introduces methods for
the evaluation of clustering. Chapter 9 discusses advanced methods for clustering, including proba-
bilistic model-based clustering, clustering high-dimensional data, clustering graph and network data,
and semisupervised clustering.

Chapter 10 introduces deep learning, which is a powerful family of techniques based on artifi-
cial neural networks with broad applications in computer vision, natural language processing, machine
translation, social network analysis, and so on. We start with the basic concepts and a foundational tech-
nique called backpropagation algorithm. Then, we introduce various techniques to improve the training
of deep learning models, including responsive activation functions, adaptive learning rate, dropout,
pretraining, cross-entropy, and autoencoder. We also introduce several commonly used deep learning
architectures, ranging from feed-forward neural networks, convolutional neural networks, recurrent
neural networks, and graph neural networks.

Chapter 11 is dedicated to outlier detection. It introduces the basic concepts of outliers and outlier
analysis and discusses various outlier detection methods from the view of degree of supervision (i.e.,
supervised, semisupervised, and unsupervised methods), as well as from the view of approaches (i.e.,
statistical methods, proximity-based methods, reconstruction-based methods, clustering-based meth-
ods, and classification-based methods). It also discusses methods for mining contextual and collective
outliers, and for outlier detection in high-dimensional data.

Finally, in Chapter 12, we discuss future trends and research frontiers in data mining. We start with
a brief coverage of mining complex data types, including text data, graphs and networks, and spatiotem-
poral data. After that, we introduce a few data mining applications, ranging from sentiment and opinion
analysis, truth discovery and misinformation identification, information and disease propagation, to pro-
ductivity and team science. The chapter then moves ahead to cover other data mining methodologies,
including structuring unstructured data, data augmentation, causality analysis, network-as-a-context,
and auto-ML. Finally, it discusses social impacts of data mining, including privacy-preserving data
mining, human-algorithm interaction, fairness, interpretability and robustness, and data mining for so-
cial good.
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Throughout the text, italic font is used to emphasize terms that are defined, and bold font is used to
highlight or summarize main ideas. Sans serif font is used for reserved words. Bold italic font is used
to represent multidimensional quantities.

This book has several strong features that set it apart from other textbooks on data mining. It presents
a very broad yet in-depth coverage of the principles of data mining. The chapters are written to be as
self-contained as possible, so they may be read in order of interest by the reader. Advanced chapters of-
fer a larger-scale view and may be considered optional for interested readers. All of the major methods
of data mining are presented. The book presents important topics in data mining regarding multidi-
mensional OLAP analysis, which is often overlooked or minimally treated in other data mining books.
The book also maintains web sites with a number of online resources to aid instructors, students, and
professionals in the field. These are described further in the following.

To the instructor
This book is designed to give a broad, yet detailed overview of the data mining field. First, it can be used
to teach an introductory course on data mining at an advanced undergraduate level or at the first-year
graduate level. Moreover, the book also provides essential materials for an advanced graduate course
on data mining.

Depending on the length of the instruction period, the background of students, and your interests,
you may select subsets of chapters to teach in various sequential orderings. For example, an introductory
course may cover the following chapters.

• Chapter 1: Introduction
• Chapter 2: Data, measurements, and data preprocessing
• Chapter 3: Data warehousing and online analytical processing
• Chapter 4: Pattern mining: basic concepts and methods
• Chapter 6: Classification: basic concepts
• Chapter 8: Cluster analysis: basic concepts and methods

If time permits, some materials about deep learning (Chapter 10) or outlier detection (Chapter 11)
may be chosen. In each chapter, the fundamental concepts should be covered, while some sections on
advanced topics can be treated optionally.

As another example, for a place where a machine learning course is offered to cover supervised
learning well, a data mining course can discuss in depth on clustering. Such a course can be based on
the following chapters.

• Chapter 1: Introduction
• Chapter 2: Data, measurements, and data preprocessing
• Chapter 3: Data warehousing and online analytical processing
• Chapter 4: Pattern mining: basic concepts and methods
• Chapter 8: Cluster analysis: basic concepts and methods
• Chapter 9: Cluster analysis: advanced methods
• Chapter 11: Outlier detection
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An instructor teaching an advanced data mining course may find Chapter 12 particularly informa-
tive, since it discusses an extensive spectrum of new topics in data mining that are under dynamic and
fast development.

Alternatively, you may choose to teach the whole book in a two-course sequence that covers all of
the chapters in the book, plus, when time permits, some advanced topics such as graph and network
mining. Material for such advanced topics may be selected from the companion chapters available from
the book’s web site, accompanied with a set of selected research papers.

Individual chapters in this book can also be used for tutorials or for special topics in related courses,
such as machine learning, pattern recognition, data warehousing, and intelligent data analysis.

Each chapter ends with a set of exercises, suitable as assigned homework. The exercises are either
short questions that test basic mastery of the material covered, longer questions that require analytical
thinking, or implementation projects. Some exercises can also be used as research discussion topics.
The bibliographic notes at the end of each chapter can be used to find the research literature that contains
the origin of the concepts and methods presented, in-depth treatment of related topics, and possible
extensions.

To the student
We hope that this textbook will spark your interest in the young yet fast-evolving field of data mining.
We have attempted to present the material in a clear manner, with careful explanation of the topics
covered. Each chapter ends with a summary describing the main points. We have included many figures
and illustrations throughout the text to make the book more enjoyable and reader-friendly. Although
this book was designed as a textbook, we have tried to organize it so that it will also be useful to you as
a reference book or handbook, should you later decide to perform in-depth research in the related fields
or pursue a career in data mining.

What do you need to know to read this book?

• You should have some knowledge of the concepts and terminology associated with statistics,
database systems, and machine learning. However, we do try to provide enough background of
the basics, so that if you are not so familiar with these fields or your memory is a bit rusty, you will
not have trouble following the discussions in the book.

• You should have some programming experience. In particular, you should be able to read pseu-
docode and understand simple data structures such as multidimensional arrays and structures.

To the professional
This book was designed to cover a wide range of topics in the data mining field. As a result, it is an
excellent handbook on the subject. Because each chapter is designed to be as standalone as possible,
you can focus on the topics that most interest you. The book can be used by application programmers,
data scientists, and information service managers who wish to learn about the key ideas of data mining
on their own. The book would also be useful for technical data analysis staff in banking, insurance,
medicine, and retailing industries who are interested in applying data mining solutions to their busi-
nesses. Moreover, the book may serve as a comprehensive survey of the data mining field, which may
also benefit researchers who would like to advance the state-of-the-art in data mining and extend the
scope of data mining applications.
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The techniques and algorithms presented are of practical utility. Rather than selecting algorithms
that perform well on small “toy” data sets, the algorithms described in the book are geared for the
discovery of patterns and knowledge hidden in large, real data sets. Algorithms presented in the book
are illustrated in pseudocode. The pseudocode is similar to the C programming language, yet is designed
so that it should be easy to follow by programmers unfamiliar with C or C++. If you wish to implement
any of the algorithms, you should find the translation of our pseudocode into the programming language
of your choice to be a fairly straightforward task.

Book web site with resources
The book has a website with Elsevier at https:/ /educate.elsevier.com/book/details/9780128117606.
This website contains many supplemental materials for readers of the book or anyone else with an
interest in data mining. The resources include the following:

• Slide presentations for each chapter. Lecture notes in Microsoft PowerPoint slides are available
for each chapter.

• Instructors’ manual. This complete set of answers to the exercises in the book is available only to
instructors from the publisher’s web site.

• Figures from the book. This may help you to make your own slides for your classroom teaching.
• Table of Contents of the book in PDF format.
• Errata on the different printings of the book. We encourage you to point out any errors in this

book. Once the error is confirmed, we will update the errata list and include acknowledgment of
your contribution.

Interested readers may also like to check Authors’ course teaching websites. All the authors are uni-
versity professors in their respective universities. Please check their corresponding data mining course
websites which may contain their undergraduate and/or graduate course materials for introductory
and/or advanced courses on data mining, including updated course/chapter slides, syllabi, homeworks,
programming assignments, research projects, errata, and other related information.

https://educate.elsevier.com/book/details/9780128117606
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1
CHAPTER

Introduction

This book is an introduction to the young and fast-growing field of data mining (also known as knowl-
edge discovery from data, or KDD for short). The book focuses on fundamental data mining concepts
and techniques for discovering interesting patterns from data in various applications. In particular, we
emphasize prominent techniques for developing effective, efficient, and scalable data mining tools.

This chapter is organized as follows. In Section 1.1, we learn what is data mining and why data
mining is in high demand. Section 1.2 links data mining with the overall knowledge discovery process.
Next, we learn about data mining from multiple aspects, such as the kinds of data that can be mined
(Section 1.3), the kinds of knowledge to be mined (Section 1.4), the relationship between data mining
and other disciplines (Section 1.5), and data mining applications (Section 1.6). Finally, we discuss the
impact of data mining to society (Section 1.7).

1.1 What is data mining?
Necessity, who is the mother of invention.

– Plato

We live in a world where vast amounts of data are generated constantly and rapidly.
“We are living in the information age” is a popular saying; however, we are actually living in the data

age. Terabytes or petabytes of data pour into our computer networks, the World Wide Web (WWW),
and various kinds of devices every day from business, news agencies, society, science, engineering,
medicine, and almost every other aspect of daily life. This explosive growth of available data volume is
a result of the computerization of our society and the fast development of powerful computing, sensing,
and data collection, storage, and publication tools.

Businesses worldwide generate gigantic data sets, including sales transactions, stock trading
records, product descriptions, sales promotions, company profiles and performance, and customer
feedback. Scientific and engineering practices generate high orders of petabytes of data in a contin-
uous manner, from remote sensing, to process measuring, scientific experiments, system performance,
engineering observations, and environment surveillance. Biomedical research and the health industry
generate tremendous amounts of data from gene sequence machines, biomedical experiment and re-
search reports, medical records, patient monitoring, and medical imaging. Billions of Web searches
supported by search engines process tens of petabytes of data daily. Social media tools have become
increasingly popular, producing a tremendous number of texts, pictures, and videos, generating various
kinds of Web communities and social networks. The list of sources that generate huge amounts of data
is endless.

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00011-4
Copyright © 2023 Elsevier Inc. All rights reserved.
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2 Chapter 1 Introduction

This explosively growing, widely available, and gigantic body of data makes our time truly the data
age. Powerful and versatile tools are badly needed to automatically uncover valuable information from
the tremendous amounts of data and to transform such data into organized knowledge. This necessity
has led to the birth of data mining.

Essentially, data mining is the process of discovering interesting patterns, models, and other kinds
of knowledge in large data sets. The term, data mining, as a vivid view of searching for gold nuggets
from data, appeared in 1990s. However, to refer to the mining of gold from rocks or sand, we say gold
mining instead of rock or sand mining. Analogously, data mining should have been more appropriately
named “knowledge mining from data,” which is unfortunately somewhat long. However, the shorter
term, knowledge mining may not reflect the emphasis on mining from large amounts of data. Neverthe-
less, mining is a vivid term characterizing the process that finds a small set of precious nuggets from a
great deal of raw material. Thus, such a misnomer carrying both “data” and “mining” became a popular
choice. In addition, many other terms have a similar meaning to data mining—for example, knowl-
edge mining from data, KDD (i.e., Knowledge Discovery from Data), pattern discovery, knowledge
extraction, data archaeology, data analytics, and information harvesting.

Data mining is a young, dynamic, and promising field. It has made and will continue to make great
strides in our journey from the data age toward the coming information age.

Example 1.1. Data mining turns a large collection of data into knowledge. A search engine (e.g.,
Google) receives billions of queries every day. What novel and useful knowledge can a search engine
learn from such a huge collection of queries collected from users over time? Interestingly, some patterns
found in user search queries can disclose invaluable knowledge that cannot be obtained by reading
individual data items alone. For example, Google’s Flu Trends uses specific search terms as indicators
of flu activity. It found a close relationship between the number of people who search for flu-related
information and the number of people who actually have flu symptoms. A pattern emerges when all of
the search queries related to flu are aggregated. Using aggregated Google search data, Flu Trends can
estimate flu activity up to two weeks faster than what traditional systems can.1 This example shows
how data mining can turn a large collection of data into knowledge that can help meet a current global
challenge.

1.2 Data mining: an essential step in knowledge discovery
Many people treat data mining as a synonym for another popularly used term, knowledge discovery
from data, or KDD, whereas others view data mining as merely an essential step in the overall process
of knowledge discovery. The overall knowledge discovery process is shown in Fig. 1.1 as an iterative
sequence of the following steps:

1. Data preparation
a. Data cleaning (to remove noise and inconsistent data)
b. Data integration (where multiple data sources may be combined)2

1 This is reported in [GMP+09]. The Flu Trend reporting stopped in 2015.
2 A popular trend in the information industry is to perform data cleaning and data integration as a preprocessing step, where the
resulting data are stored in a data warehouse.
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FIGURE 1.1

Data mining: An essential step in the process of knowledge discovery.

c. Data transformation (where data are transformed and consolidated into forms appropriate for
mining by performing summary or aggregation operations)3

d. Data selection (where data relevant to the analysis task are retrieved from the database)
2. Data mining (an essential process where intelligent methods are applied to extract patterns or con-

struct models)
3. Pattern/model evaluation (to identify the truly interesting patterns or models representing knowl-

edge based on interestingness measures—see Section 1.4.7)
4. Knowledge presentation (where visualization and knowledge representation techniques are used

to present mined knowledge to users)

Steps 1(a) through 1(d) are different forms of data preprocessing, where data are prepared for min-
ing. The data mining step may interact with a user or a knowledge base. The interesting patterns are
presented to the user and may be stored as new knowledge in the knowledge base.

The preceding view shows data mining as one step in the knowledge discovery process, albeit an
essential one because it uncovers hidden patterns or models for evaluation. However, in industry, in
media, and in the research milieu, the term data mining is often used to refer to the entire knowledge
discovery process (perhaps because the term is shorter than knowledge discovery from data). Therefore,
we adopt a broad view of data mining functionality: Data mining is the process of discovering inter-

3 Data transformation and consolidation are often performed before the data selection process, particularly in the case of data
warehousing. Data reduction may also be performed to obtain a smaller representation of the original data without sacrificing its
integrity.
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esting patterns and knowledge from large amounts of data. The data sources can include databases,
data warehouses, the Web, other information repositories, or data that are streamed into the system
dynamically.

1.3 Diversity of data types for data mining
As a general technology, data mining can be applied to any kind of data as long as the data are mean-
ingful for a target application. However, different kinds of data may need rather different data mining
methodologies, from simple to rather sophisticated, making data mining a rich and diverse field.

Structured vs. unstructured data
Based on whether data have clear structures, we can categorize data as structured vs. unstructured

data.
Data stored in relational databases, data cubes, data matrices, and many data warehouses have

uniform, record- or table-like structures, defined by their data dictionaries, with a fixed set of attributes
(or fields, columns), each with a fixed set of value ranges and semantic meaning. These data sets are
typical examples of highly structured data. In many real applications, such strict structural requirement
can be relaxed in multiple ways to accommodate semistructured nature of the data, such as to allow
a data object to contain a set value, a small set of heterogeneous typed values, or nested structures
or to allow the structure of objects or subobjects to be defined flexibly and dynamically (e.g., XML
structures).

There are many data sets that may not be as structured as relational tables or data matrices. However,
they do have certain structures with clearly defined semantic meaning. For example, a transactional
data set may contain a large set of transactions each containing a set of items. A sequence data set may
contain a large set of sequences each containing an ordered set of elements that can in turn contain a
set of items. Many application data sets, such as shopping transaction data, time-series data, gene or
protein data, or Weblog data, belong to this category.

A more sophisticated type of semistructured data set is graph or network data, where a set of nodes
are connected by a set of edges (also called links); and each node/link may have its own semantic
description or substructures.

Each of such categories of structured and semistructured data sets may have special kinds of patterns
or knowledge to be mined and many dedicated data mining methods, such as sequential pattern mining,
graph pattern mining, and information network mining methods, have been developed to analyze such
data sets.

Beyond such structured or semistructured data, there are also large amounts of unstructured data,
such as text data and multimedia (e.g., audio, image, video) data. Although some studies treat them
as one-dimensional or multidimensional byte streams, they do carry a lot of interesting semantics.
Domain-specific methods have been developed to analyze such data in the fields of natural language
understanding, text mining, computer vision, and pattern recognition. Moreover, recent advances on
deep learning have made tremendous progress on processing text, image, and video data. Nevertheless,
mining hidden structures from unstructured data may greatly help understand and make good use of
such data.

The real-world data can often be a mixture of structured data, semistructured data, and unstructured
data. For example, an online shopping website may host information for a large set of products, which
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can be essentially structured data stored in a relational database, with a fixed set of fields on product
name, price, specifications, and so on. However, some fields may essentially be text, image, and video
data, such as product introduction, expert or user reviews, product images, and advertisement videos.
Data mining methods are often developed for mining some particular type of data, and their results can
be integrated and coordinated to serve the overall goal.

Data associated with different applications
Different applications may generate or need to handle very different data sets and require rather

different data analysis methods. Thus when categorizing data sets for data mining, we should take
specific applications into consideration.

Take sequence data as an example. Biological sequences such as DNA or protein sequences may
have very different semantic meaning from shopping transaction sequences or Web click streams, call-
ing for rather different sequence mining methods. A special kind of sequence data is time-series data
where a time-series may contain an ordered set of numerical values with equal time interval, which is
also rather different from shopping transaction sequences, which may not have fixed time gaps (a cus-
tomer may shop at anytime she likes).

Data in some applications can be associated with spatial information, time information, or both,
forming spatial, temporal, and spatiotemporal data, respectively. Special data mining methods, such
as spatial data mining, temporal data mining, spatiotemporal data mining, or trajectory pattern mining,
should be developed for mining such data sets as well.

For graph and network data, different applications may also need rather different data mining
methods. For example, social networks (e.g., Facebook or LinkedIn data), computer communication
networks, biological networks, and information networks (e.g., authors linking with keywords) may
carry rather different semantics and require different mining methods.

Even for the same data set, finding different kinds of patterns or knowledge may require different
data mining methods. For example, for the same set of software (source) programs, finding plagiarized
subprogram modules or finding copy-and-paste bugs may need rather different data mining techniques.

Rich data types and diverse application requirements call for very diverse data mining methods.
Thus data mining is a rich and fascinating research domain, with lots of new methods waiting to be
studied and developed.

Stored vs. streaming data
Usually, data mining handles finite, stored data sets, such as those stored in various kinds of large

data repositories. However, in some applications such as video surveillance or remote sensing, data may
stream in dynamically and constantly, as infinite data streams. Mining stream data will require rather
different methods than stored data, which may form another interesting theme in our study.

1.4 Mining various kinds of knowledge
Different kinds of patterns and knowledge can be uncovered via data mining. In general, data mining
tasks can be put into two categories: descriptive data mining and predictive data mining. Descrip-
tive mining characterizes properties of the interested set of data, whereas predictive mining performs
induction on the data set in order to make predictions.
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In this section, we introduce different data mining tasks. These include multidimensional data
summarization (Section 1.4.1); the mining of frequent patterns, associations, and correlations (Sec-
tion 1.4.2); classification and regression (Section 1.4.3); cluster analysis (Section 1.4.4); and outlier
analysis (Section 1.4.6). Different data mining functionalities generate different kinds of results that
are often called patterns, models, or knowledge. In Section 1.4.7, we will also introduce the interest-
ingness of a pattern or a model. In many cases, only interesting patterns or models will be considered
as knowledge.

1.4.1 Multidimensional data summarization
It is often tedious for a user to go over the details of a large set of data. Thus it is desirable to automati-
cally summarize an interested set of data and compare it with the contrasting sets at some high levels.
Such summaritive description of an interested set of data is called data summarization. Data sum-
marization can often be conducted in a multidimensional space. If the multidimensional space is well
defined and frequently used, such as product category, producer, location, or time, massive amounts
of data can be aggregated in the form of data cubes to facilitate user’s drill-down or roll-up of the
summarization space with mouse clicking. The output of such multidimensional summarization can be
presented in various forms, such as pie charts, bar charts, curves, multidimensional data cubes, and
multidimensional tables, including crosstabs.

For structured data, multidimensional aggregation methods have been developed to facilitate such
precomputation or online computation of multidimensional aggregations using data cube technology,
which will be discussed in Chapter 3. For unstructured data, such as text, this task becomes challenging.
We will give a brief discussion of such research frontiers in our last chapter.

1.4.2 Mining frequent patterns, associations, and correlations
Frequent patterns, as the name suggests, are patterns that occur frequently in data. There are many
kinds of frequent patterns, including frequent itemsets, frequent subsequences (also known as sequen-
tial patterns), and frequent substructures. A frequent itemset typically refers to a set of items that often
appear together in a transactional data set—for example, milk and bread, which are frequently bought
together in grocery stores by many customers. A frequently occurring subsequence, such as the pattern
that customers, tend to purchase first a laptop, followed by a computer bag, and then other accessories,
is a (frequent) sequential pattern. A substructure can refer to different structural forms (e.g., graphs,
trees, or lattices) that may be combined with itemsets or subsequences. If a substructure occurs fre-
quently, it is called a (frequent) structured pattern. Mining frequent patterns leads to the discovery of
interesting associations and correlations within data.

Example 1.2. Association analysis. Suppose that, a webstore manager wants to know which items are
frequently purchased together (i.e., in the same transaction). An example of such a rule, mined from
the transactional database, is

buys(X, “computer”) ⇒ buys(X, “webcam”) [support = 1%, confidence = 50%],
where X is a variable representing a customer. A confidence, or certainty, of 50% means that if a cus-
tomer buys a computer, there is a 50% chance that she will buy webcam as well. A 1% support means
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that 1% of all the transactions under analysis show that computer and webcam are purchased together.
This association rule involves a single attribute or predicate (i.e., buys) that repeats. Association rules
that contain a single predicate are referred to as single-dimensional association rules. Dropping the
predicate notation, the rule can be written simply as “computer ⇒ webcam [1%, 50%].”

Suppose, mining the same database generates another association rule:

age(X, “20..29”) ∧ income(X, “40K..49K”) ⇒ buys(X, “laptop”)

[support = 0.5%, confidence = 60%].
The rule indicates that of all its customers under study, 0.5% are 20 to 29 years old with an income
of $40,000 to $49,000 and have purchased a laptop (computer). There is a 60% probability that a
customer in this age and income group will purchase a laptop. Note that this is an association involving
more than one attribute or predicate (i.e., age, income, and buys). Adopting the terminology used in
multidimensional databases, where each attribute is referred to as a dimension, the above rule can be
referred to as a multidimensional association rule.

Typically, association rules are discarded as uninteresting if they do not satisfy both a minimum
support threshold and a minimum confidence threshold. Additional analysis can be performed to
uncover interesting statistical correlations between associated attribute–value pairs.

Frequent itemset mining is a fundamental form of frequent pattern mining. Mining frequent itemsets,
associations, and correlations will be discussed in Chapter 4. Mining diverse kinds of frequent pattern,
as well as mining sequential patterns and structured patterns, will be covered in Chapter 5.

1.4.3 Classification and regression for predictive analysis
Classification is the process of finding a model (or function) that describes and distinguishes data
classes or concepts. The model is derived based on the analysis of a set of training data (i.e., data
objects for which the class labels are known). The model is used to predict the class labels of objects
for which the class labels are unknown.

Depending on the classification methods, a derived model can be in various forms, such as a set of
classification rules (i.e., IF-THEN rules), a decision tree, a mathematical formula, or a learned neural
network (Fig. 1.2). A decision tree is a flowchart-like tree structure, where each node denotes a test
on an attribute value, each branch represents an outcome of the test, and tree leaves represent classes
or class distributions. Decision trees can easily be converted to classification rules. A neural network,
when used for classification, is typically a collection of neuron-like processing units with weighted
connections between the units. There are many other methods for constructing classification models,
such as naïve Bayesian classification, support vector machines, and k-nearest-neighbor classification.

Whereas classification predicts categorical (discrete, unordered) labels, regression models contin-
uous-valued functions. That is, regression is used to predict missing or unavailable numerical data
values rather than (discrete) class labels. The term prediction refers to both numeric prediction and class
label prediction. Regression analysis is a statistical methodology that is most often used for numeric
prediction, although other methods exist as well. Regression also encompasses the identification of
distribution trends based on the available data.

Classification and regression may need to be preceded by feature selection or relevance analysis,
which attempts to identify attributes (often called features) that are significantly relevant to the clas-
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FIGURE 1.2

A classification model can be represented in various forms: (a) IF-THEN rules, (b) a decision tree, or (c) a neural
network.

sification and regression process. Such attributes will be selected for the classification and regression
process. Other attributes, which are irrelevant, can then be excluded from consideration.

Example 1.3. Classification and regression. Suppose a webstore sales manager wants to classify a
large set of items in the store, based on three kinds of responses to a sales campaign: good response,
mild response, and no response. You want to derive a model for each of these three classes based on the
descriptive features of the items, such as price, brand, place_made, type, and category. The resulting
classification should maximally distinguish each class from the others, presenting an organized picture
of the data set.

Suppose that the resulting classification is expressed as a decision tree. The decision tree, for in-
stance, may identify price as being the first important factor that best distinguishes the three classes.
Other features that help further distinguish objects of each class from one another include brand and
place_made. Such a decision tree may help the manager understand the impact of the given sales cam-
paign and design a more effective campaign in the future.

Suppose instead, that rather than predicting categorical response labels for each store item, you
would like to predict the amount of revenue that each item will generate during an upcoming sale,
based on the previous sales data. This is an example of regression analysis because the regression
model constructed will predict a continuous function (or ordered value.)
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Chapters 6 and 7 discuss classification in further detail. Regression analysis is covered lightly in
these chapters since it is typically introduced in statistics courses. Sources for further information are
given in the bibliographic notes.

1.4.4 Cluster analysis
Unlike classification and regression, which analyze class-labeled (training) data sets, cluster analysis
(also called clustering) groups data objects without consulting class labels. In many cases, class-labeled
data may simply not exist at the beginning. Clustering can be used to generate class labels for a group of
data. The objects are clustered or grouped based on the principle of maximizing the intraclass similarity
and minimizing the interclass similarity. That is, clusters of objects are formed so that objects within a
cluster have high similarity in comparison to one another, but are rather dissimilar to objects in other
clusters. Each cluster so formed can be viewed as a class of objects, from which rules can be derived.
Clustering can also facilitate taxonomy formation, that is, the organization of observations into a
hierarchy of classes that group similar events together.

Example 1.4. Cluster analysis. Cluster analysis can be performed on the webstore customer data
to identify homogeneous subpopulations of customers. These clusters may represent individual target
groups for marketing. Fig. 1.3 shows a 2-D plot of customers with respect to customer locations in a
city. Three clusters of data points are evident.

Cluster analysis forms the topic of Chapters 8 and 9.

1.4.5 Deep learning
For many data mining tasks, such as classification and clustering, a key step often lies in finding “good
features,” which is a vector representation of each input data tuple. For example, in order to predict

FIGURE 1.3

A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.



10 Chapter 1 Introduction

whether a regional disease outbreak will occur, one might have collected a large number of features
from the health surveillance data, including the number of daily positive cases, number of daily tests,
number of daily hospitalization, etc. Traditionally, this step (called feature engineering) often heavily
relies on domain knowledge. Deep learning techniques provide an automatic way for feature engineer-
ing, which is capable of generating semantically meaningful features (e.g., weekly positive rate) from
the initial input features. The generated features often significantly improve the mining performance
(e.g., classification accuracy).

Deep learning is based on neural networks. A neural network is a set of connected input-output
units where each connection has a weight associated with it. During the learning phase, the network
learns by adjusting the weights to be able to predict the correct target values (e.g., class labels) of the
input tuples. The core algorithm to learn such weights is called backpropagation, which searches for
a set of weights and bias values that can model the data to minimize the loss function between the
network’s prediction and the actual target output of data tuples. Various forms (called architectures)
of neural networks have been developed, including feed-forward neural networks, convolutional neural
networks, recurrent neural networks, graph neural networks, and many more.

Deep learning has broad applications in computer vision, natural language processing, machine
translation, social network analysis, and so on. It has been used in a variety of data mining tasks,
including classification, clustering, outlier detection, and reinforcement learning.

Deep learning is the topic of Chapter 10.

1.4.6 Outlier analysis
A data set may contain objects that do not comply with the general behavior or model of the data.
These data objects are outliers. Many data mining methods discard outliers as noise or exceptions.
However, in some applications (e.g., fraud detection) the rare events can be more interesting than the
more regularly occurring ones. The analysis of outlier data is referred to as outlier analysis or anomaly
mining.

Outliers may be detected using statistical tests that assume a distribution or probability model for
the data, or using distance measures where objects that are remote from any other cluster are considered
outliers. Rather than using statistical or distance measures, density-based methods may identify outliers
in a local region, although they look normal from a global statistical distribution view.

Example 1.5. Outlier analysis. Outlier analysis may uncover fraudulent usage of credit cards by
detecting purchases of unusually large amounts for a given account number in comparison to regular
charges incurred by the same account. Outlier values may also be detected with respect to the locations
and types of purchase, or the purchase frequency.

Outlier analysis is discussed in Chapter 11.

1.4.7 Are all mining results interesting?
Data mining has the potential to generate a lot of results. A question can be, “Are all of the mining
results interesting?”

This is a great question. Each type of data mining functions has its own measures on the evaluation
of the mining quality. Nevertheless, there are some shared philosophy and principles.
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Take pattern mining as an example. Pattern mining may generate thousands or even millions of
patterns, or rules. You may wonder, “What makes a pattern interesting? Can a data mining system
generate all of the interesting patterns? Or, can the system generate only the interesting ones?”

To answer the first question, a pattern is interesting if it is (1) easily understood by humans, (2)
valid on new or test data with some degree of certainty, (3) potentially useful, and (4) novel. A pattern
is also interesting if it validates a hypothesis that the user sought to confirm.

Several objective measures of pattern interestingness exist. These are based on the structure of
discovered patterns and the statistics underlying them. An objective measure for association rules of the
form X ⇒ Y is rule support, representing the percentage of transactions from a transaction database
that the given rule satisfies. This is taken to be the probability P(X ∪ Y), where X ∪ Y indicates that a
transaction contains both X and Y , that is, the union of itemsets X and Y . Another objective measure for
association rules is confidence, which assesses the degree of certainty of the detected association. This
is taken to be the conditional probability P(Y |X), that is, the probability that a transaction containing
X also contains Y . More formally, support and confidence are defined as

support(X ⇒ Y) = P(X ∪ Y),

confidence(X ⇒ Y) = P(Y |X).

In general, each interestingness measure is associated with a threshold, which may be controlled by
the user. For example, rules that do not satisfy a confidence threshold of, say, 50% can be considered
uninteresting. Rules below the threshold likely reflect noise, exceptions, or minority cases and are
probably of less value.

There are also other objective measures. For example, one may like set of items to be strongly
correlated in an association rule. We will discuss such measures in the corresponding chapter.

Although objective measures help identify interesting patterns, they are often insufficient unless
combined with subjective measures that reflect a particular user’s needs and interests. For example,
patterns describing the characteristics of customers who shop frequently online should be interesting
to the marketing manager, but may be of little interest to other analysts studying the same database
for patterns on employee performance. Furthermore, many patterns that are interesting by objective
standards may represent common sense and, therefore, are actually uninteresting.

Subjective interestingness measures are based on user beliefs in the data. These measures find
patterns interesting if the patterns are unexpected (contradicting a user’s belief) or offer strategic in-
formation on which the user can act. In the latter case, such patterns are referred to as actionable. For
example, patterns like “a large earthquake often follows a cluster of small quakes” may be highly ac-
tionable if users can act on the information to save lives. Patterns that are expected can be interesting
if they confirm a hypothesis that the user wishes to validate or they resemble a user’s hunch.

The second question—“Can a data mining system generate all of the interesting patterns?”—refers
to the completeness of a data mining algorithm. It is often unrealistic and inefficient for a pattern mining
system to generate all possible patterns since there could be a very large number of them. However, one
may also worry whether one may miss some important ones if the system stops short. To solve this
dilemma, user-provided constraints and interestingness measures should be used to focus the search.
With well-defined interesting measures and user-provided constraints, it is quite realistic to ensure the
completeness of pattern mining. The methods involved are examined in detail in Chapter 4.

Finally, the third question—“Can a data mining system generate only interesting patterns?”—is an
optimization problem in data mining. It is highly desirable for a data mining system to generate only
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interesting patterns. This would be efficient for both the data mining system and the user because the
system may spend much less time to generate much fewer but interesting patterns, whereas the user
will not need to sift through a large number of patterns to identify the truly interesting ones. Constraint-
based pattern mining described in Chapter 5 is a good example in this direction.

Methods to assess the quality or interestingness of data mining results, and how to use them to
improve data mining efficiency, are discussed throughout the book.

1.5 Data mining: confluence of multiple disciplines
As a discipline that studies efficient and effective methods for uncovering patterns and knowledge
from various kinds of massive data sets for many applications, data mining naturally serves a conflu-
ence of multiple disciplines including machine learning, statistics, pattern recognition, natural language
processing, database technology, visualization and human computer interaction (HCI), algorithms,
high-performance computing, social sciences, and many application domains (Fig. 1.4). The interdis-
ciplinary nature of data mining research and development contributes significantly to the success of
data mining and its extensive applications. On the other hand, data mining is not only nurtured from the
knowledge and development of these disciplines, the dedicated research, development, and applications
of data mining on various kinds of big data may have substantially impacted the development of these
disciplines in recent years as well. In this section, we discuss several disciplines that strongly impact
and actively interact with the research, development, and applications of data mining.

1.5.1 Statistics and data mining
Statistics studies the collection, analysis, interpretation or explanation, and presentation of data. Data
mining has an inherent connection with statistics.

A statistical model is a set of mathematical functions that describe the behavior of the objects
in a target class in terms of random variables and their associated probability distributions. Statistical

FIGURE 1.4

Data mining: Confluence of multiple disciplines.
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models are widely used to model data and data classes. For example, in data mining tasks such as data
characterization and classification, statistical models of target classes can be built. In other words, such
statistical models can be the outcome of a data mining task. Alternatively, data mining tasks can be
built on top of statistical models. For example, we can use statistics to model noise and missing data
values. Then, when mining patterns in a large data set, the data mining process can use the model to
help identify and handle noisy or missing values in the data.

Statistics research develops tools for prediction and forecasting using data and statistical models.
Statistical methods can be used to summarize or describe a collection of data. Basic statistical descrip-
tions of data are introduced in Chapter 2. Statistics is useful for mining various patterns from data and
for understanding the underlying mechanisms generating and affecting the patterns. Inferential statis-
tics (or predictive statistics) models data in a way that accounts for randomness and uncertainty in the
observations and is used to draw inferences about the process or population under investigation.

Statistical methods can also be used to verify data mining results. For example, after a classification
or prediction model is mined, the model should be verified by statistical hypothesis testing. A statis-
tical hypothesis test (sometimes called confirmatory data analysis) makes statistical decisions using
experimental data. A result is called statistically significant if it is unlikely to have occurred by chance.
If the classification or prediction model holds, then the descriptive statistics of the model increases the
soundness of the model.

Applying statistical methods in data mining is far from trivial. Often, a serious challenge is how to
scale up a statistical method over a large data set. Many statistical methods have high complexity in
computation. When such methods are applied on large data sets that are also distributed on multiple
logical or physical sites, algorithms should be carefully designed and tuned to reduce the computational
cost. This challenge becomes even tougher for online applications, such as online query suggestions in
search engines, where data mining is required to continuously handle fast, real-time data streams.

Data mining research has developed many scalable and effective solutions for the analysis of mas-
sive data sets and data streams. Moreover, different kinds of data sets and different applications may
require rather different analysis methods. Effective solutions have been proposed and tested, which
leads to many new, scalable data mining-based statistical analysis methods.

1.5.2 Machine learning and data mining
Machine learning investigates how computers can learn (or improve their performance) based on data.
Machine learning is a fast-growing discipline, with many new methodologies and applications devel-
oped in recent years, from support vector machines to probabilistic graphical models and deep learning,
which we will cover in this book.

In general, machine learning addresses two classical problems: supervised learning and unsuper-
vised learning.

• Supervised learning: A classic example of supervised learning is classification. The supervision in
the learning comes from the labeled examples in the training data set. For example, to automatically
recognize handwritten postal codes on mails, the learning system takes a set of handwritten postal
code images and their corresponding machine-readable translations as the training examples, and
learns (i.e., computes) a classification model.

• Unsupervised learning: A classic example of unsupervised learning is clustering. The learning pro-
cess is unsupervised since the input examples are not class-labeled. Typically, we may use clustering
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to discover groups within the data. For example, an unsupervised learning method can take, as input,
a set of images of handwritten digits. Suppose that it finds 10 clusters of data. These clusters may
hopefully correspond to the 10 distinct digits of 0 to 9, respectively. However, since the training data
are not labeled, the learned model cannot tell us the semantic meaning of the clusters found.

As to these two basic problems, data mining and machine learning do share many similarities.
However, data mining differs from machine learning in several major aspects. First, even on similar
tasks like classification and clustering, data mining often works on very large data sets, or even on
infinite data streams, scalability can be an important concern, and many efficient and highly scalable
data mining algorithms or stream mining algorithms have to be developed to accomplish such tasks.

Second, in many data mining problems, the data sets are usually large, but the training data can still
be rather small since it is expensive for experts to provide quality labels for many examples. Therefore,
data mining has to put a lot of effort on developing weakly supervised methods. These include method-
ologies like semisupervised learning with a small set of labeled data but a large set of unlabeled data
(with the idea sketched in Fig. 1.5), integration or ensemble of multiple weak models obtained from
nonexperts (e.g., those obtained by crowd-sourcing), distant supervision, such as using popularly avail-
able and general (but distantly relevant to the problem to be solved) knowledge-bases (e.g., wikipedia,
DBPedia), actively learning by carefully selecting examples to ask human experts, or transfer learning
by integrating models learned from similar problem domains. Data mining has been extending such
weakly supervised methods for constructing quality classification models on large data sets with a very
limited set of high quality training data.

FIGURE 1.5

Semisupervised learning.



1.5 Data mining: confluence of multiple disciplines 15

Third, machine learning methods may not be able to handle many kinds of knowledge discovery
problems on big data. On the other hand, data mining, developing effective solutions for concrete ap-
plication problems, goes deep in the problem domain, and expands far beyond the scope covered by
machine learning. For example, many application problems, such as business transaction data analysis,
software program execution sequence analysis, and chemical and biological structural analysis, need
effective methods for mining frequent patterns, sequential patterns, and structured patterns. Data min-
ing research has generated many scalable, effective, and diverse mining methods for such tasks. As
another example, the analysis of large-scale social and information networks poses many challenging
problems that may not fit the typical scope of many machine learning methods due to the information
interaction across links and nodes in such networks. Data mining has developed a lot of interesting
solutions to such problems.

From this point of view, data mining and machine learning are two different but closely related
disciplines. Data mining dives deep into concrete, data-intensive application domains, does not con-
fine itself to a single problem-solving methodology, and develops concrete (sometimes rather novel),
effective and scalable solutions for many challenging application problems. It is a young, broad, and
promising research discipline for many researchers and practitioners to study and work on.

1.5.3 Database technology and data mining
Database system research focuses on the creation, maintenance, and use of databases for organizations
and end-users. Particularly, database system researchers have established well-recognized principles in
data models, query languages, query processing and optimization, data storage, and indexing methods.
Database technology is well known for its scalability in processing very large, relatively structured data
sets.

Many data mining tasks need to handle large data sets or even real-time, fast streaming data. Data
mining can make good use of scalable database technologies to achieve high efficiency and scalability
on large data sets. Moreover, data mining tasks can be used to extend the capability of existing database
systems to satisfy users’ sophisticated data analysis requirements.

Recent database systems have built systematic data analysis capabilities on database data using data
warehousing and data mining facilities. A data warehouse integrates data originated from multiple
sources and various timeframes. It consolidates data in multidimensional space to form partially ma-
terialized data cubes. The data cube model not only facilitates online analytical processing (OLAP)
in multidimensional databases but also promotes multidimensional data mining, which will be further
discussed in future chapters.

1.5.4 Data mining and data science
With the tremendous amount of data in almost every discipline and various kinds of applications,
big data and data science have become buzzwords in recent years. Big data generally refers to huge
amounts of structured and unstructured data of various forms, and data science is an interdisciplinary
field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights
from massive data of various forms. Clearly, data mining plays an essential role in data science.

For most people, data science is a concept that unifies statistics, machine learning, data mining,
and their related methods in order to understand and analyze massive data. It employs techniques and
theories drawn from many fields within the context of mathematics, statistics, information science, and
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computer science. For many industry people, the term “data science” often refers to business analyt-
ics, business intelligence, predictive modeling, or any meaningful use of data, and is being taken as
a glamorized term to re-brand statistics, data mining, machine learning, or any kind of data analytics.
So far, there exists no consensus on a definition or suitable curriculum contents in data science degree
programs of many universities. Nonetheless, most universities take basic knowledge generated in statis-
tics, machine learning, data mining, database, and human computer interaction as the core curriculum
in data science education.

In 1990s, the late Turing award winner Jim Gray envisioned data science as the “fourth paradigm”
of science (i.e., from empirical to theoretical, computational, and now data-driven) and asserted that
“everything about science is changing because of the impact of information technology” and the emer-
gence of massive data. So there is no wonder that data science, big data, and data mining are closely
interrelated and represent an inevitable trend in science and technology developments.

1.5.5 Data mining and other disciplines
Besides statistics, machine learning, and database technology, data mining has close relationships with
many other disciplines as well.

The majority of the real-world data are unstructured, in the form of natural language text, images, or
audio-video data. Therefore, natural language processing, computer vision, pattern recognition, audio-
video signal processing, and information retrieval will offer critical help at handling such data. Actually,
handling any special kinds of data will need a lot of domain knowledge to be integrated into the data
mining algorithm design. For example, mining biomedical data will need the integration of knowledge
from biological sciences, medical sciences, and bioinformatics. Mining geospatial data will need much
knowledge and techniques from geography and geospatial data sciences. Mining software bugs in large
software programs will need to integrate software engineering with data mining. Mining social media
and social networks will need knowledge and skills from social sciences and network sciences. Such
examples can go on and on since data mining will penetrate almost every application domain.

One major challenge in data mining is efficiency and scalability since we often have to handle huge
amounts of data with critical time and resource constraints. Data mining is critically connected with
efficient algorithm design such as low-complexity, incremental, and streaming data mining algorithms.
It often needs to explore high performance computation, parallel computation, and distributed compu-
tation, with advanced hardware and cloud computing or cluster computing environment.

Data mining is also closely tied with human-computer interaction. Users need to interact with a
data mining system or process in an effective way, telling the system what to mine, how to incorporate
background knowledge, how to mine, and how to present the mining results in an easy-to-understand
(e.g., by interpretation and visualization) and easy-to-interact way (e.g., with friendly graphic user
interface and interactive mining).

Actually, nowadays, there are not only many interactive data mining systems but also many more
data mining functions hidden in various kinds of application programs. It is unrealistic to expect every-
one in our society to understand and master data mining techniques. It is also forbidden for industries
to expose their large data sets. Many systems have data mining functions built within so that people
can perform data mining or use data mining results simply by mouse clicking. For example, intelli-
gent search engines and online retails perform such invisible data mining by collecting their data and
user’s search or purchase history, incorporating data mining into their components to improve their per-
formance, functionality, and user satisfaction. When your grandma shops online, she may be surprised
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when receiving some smart recommendations. This could likely be resulted from such invisible data
mining.

1.6 Data mining and applications
Where there are data, there are data mining applications

As a highly application-driven discipline, data mining has seen great successes in many applications. It
is impossible to enumerate all applications where data mining plays a critical role. Presentations of data
mining in knowledge-intensive application domains, such as bioinformatics and software engineering,
require more in-depth treatment and are beyond the scope of this book. To demonstrate the importance
of applications of data mining, we briefly discuss a few highly successful and popular application
examples of data mining: business intelligence; search engines; social media and social networks; and
biology, medical science, and health care.

Business intelligence
It is critical for businesses to acquire a better understanding of the commercial context of their organiza-
tion, such as their customers, the market, supply and resources, and competitors. Business intelligence
(BI) technologies provide historical, current, and predictive views of business operations. Examples
include reporting, online analytical processing, business performance management, competitive intel-
ligence, benchmarking, and predictive analytics.

“How important is data mining in business intelligence?” Without data mining, many businesses
may not be able to perform effective market analysis, compare customer feedback on similar products,
discover the strengths and weaknesses of their competitors, retain highly valuable customers, and make
smart business decisions.

Clearly, data mining is the core of business intelligence. Online analytical processing tools in
business intelligence rely on data warehousing and multidimensional data mining. Classification and
prediction techniques are the core of predictive analytics in business intelligence, for which there are
many applications in analyzing markets, supplies, and sales. Moreover, clustering plays a central role
in customer relationship management, which groups customers based on their similarities. Using multi-
dimensional summarization techniques, we can better understand features of each customer group and
develop customized customer reward programs.

Web search engines
A Web search engine is a specialized computer server that searches for information on the Web. The
search results of a user query are often returned as a list (sometimes called hits). The hits may consist of
web pages, images, and other types of files. Some search engines also search and return data available in
public databases or open directories. Search engines differ from web directories in that web directories
are maintained by human editors, whereas search engines operate algorithmically or by a mixture of
algorithmic and human input.

Search engines pose grand challenges to data mining. First, they have to handle a huge and ever-
growing amount of data. Typically, such data cannot be processed using one or a few machines. Instead,
search engines often need to use computer clouds, which consist of thousands or even hundreds of thou-
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sands of computers that collaboratively mine the huge amount of data. Scaling up data mining methods
over computer clouds and large distributed data sets is an area of active research and development.

Second, Web search engines often have to deal with online data. A search engine may be able to
afford constructing a model offline on huge datasets. To do this, it may construct a query classifier
that assigns a search query to predefined categories based on the query topic (i.e., whether the search
query “apple” is meant to retrieve information about a fruit or a brand of computers). Even if a model
is constructed offline, the adaptation of the model online must be fast enough to answer user queries in
real time.

Another challenge is maintaining and incrementally updating a model on fast-growing data streams.
For example, a query classifier may need to be incrementally maintained continuously since new queries
keep emerging and predefined categories and the data distribution may change. Most of the existing
model training methods are offline and static and thus cannot be used in such a scenario.

Third, Web search engines often have to deal with queries that are asked only a very small number
of times. Suppose a search engine wants to provide context-aware query recommendations. That is,
when a user poses a query, the search engine tries to infer the context of the query using the user’s
profile and his query history in order to return more customized answers within a small fraction of a
second. However, although the total number of queries asked can be huge, many queries may be asked
only once or a few times. Such severely skewed data are challenging for many data mining and machine
learning methods.

Social media and social networks
The prevalence of social media and social networks has fundamentally changed our life and the way
we exchange information and socialize nowadays. With tremendous amounts of social media and social
network data available, it is critical to analyze such data to extract actionable patterns and trends from
social media and social network data.

Social media mining is to sift through massive amounts of social media data (e.g., on social media
usage, online social behaviors, connections between individuals, online shopping behavior, content
exchange, etc.) in order to discern patterns and trends. These patterns and trends have been used for
social event detection, public health monitoring and surveillance, sentiment analysis in social media,
recommendation in social media, information provenance, social media trustability analysis, and social
spammer detection.

Social network mining is to investigate social network structures and the information associated
with such networks through the use of networks and graph theory and data mining methods. The social
network structures are characterized in terms of nodes (individual actors, people, or things within the
network) and the ties, edges, or links (relationships or interactions) that connect them. Examples of
social structures commonly visualized through social network analysis include social media networks,
memes spread, friendship and acquaintance networks, collaboration graphs, kinship, disease transmis-
sion, and sexual relationships. These networks are often visualized through sociograms in which nodes
are represented as points and ties are represented as lines.

Social network mining has been used to detect hidden communities, uncover the evolution and dy-
namics of social networks, compute network measures (e.g., centrality, transitivity, reciprocity, balance,
status, and similarity), analyze how information propagates in social media sites, measure and model
node/substructure influence and homophily, and conduct location-based social network analysis.

Social media mining and social network mining are important applications of data mining.
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Biology, medical science, and health care
Biology, medical science and health care have also been generating massive data at exponential scale.
Biomedical data take many forms, from “omics” to imaging, mobile health, and electronic health
records. With the availability of more efficient digital collection methods, biomedical scientists and
clinicians now find themselves confronting ever larger sets of data and trying to devise creative ways
to sift through this mountain of data and make sense of it. Indeed, data that used to be considered large
now seems small as the amount of data now being collected in a single day by an investigator can sur-
pass what might have been generated over his/her career even a decade ago. This deluge of biomedical
information requires new thinking about how data can be managed and analyzed to further scientific
understanding and for improving healthcare.

Biomedical data mining involves many challenging data mining tasks, including mining massive ge-
nomic and proteomic sequence data, mining frequent subgraph patterns for classifying biological data,
mining regulatory networks, characterization and prediction of protein-protein interactions, classifica-
tion and predictive analysis of medical images, biological text mining, biological information network
construction from biotext data, mining electronic health records, and mining biomedical networks.

1.7 Data mining and society
With data mining penetrating our everyday lives, it is important to study the impact of data mining
on society. How can we use data mining technology to benefit society? How can we guard against its
misuse? The improper disclosure or use of data and the potential violation of individual privacy and
data protection rights are areas of concern that need to be addressed.

Data mining will help scientific discovery, business management, economy recovery, and security
protection (e.g., the real-time discovery of intruders and cyberattacks). However, it also poses the risk
of unintentionally disclosing some confidential business or government information and disclosing an
individual’s personal information. Studies on data security in data mining and privacy-preserving data
publishing and data mining are important, ongoing research theme. The philosophy is to observe data
sensitivity and preserve data security and people’s privacy while performing successful data mining.

These issues and many additional ones relating to the research, development, and application of
data mining will be discussed throughout the book.

1.8 Summary
• Necessity is the mother of invention. With the mounting growth of data in every application, data

mining meets the imminent need for effective, scalable, and flexible data analysis in our society.
Data mining can be considered as a natural evolution of information technology and a confluence of
several related disciplines and application domains.

• Data mining is the process of discovering interesting patterns and knowledge from massive amounts
of data. As a knowledge discovery process, it typically involves data cleaning, data integration,
data selection, data transformation, pattern and model discovery, pattern or model evaluation, and
knowledge presentation.
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• A pattern or model is interesting if it is valid on test data with some degree of certainty, novel,
potentially useful (e.g., can be acted on or validates a hunch about which the user was curious),
and easily understood by humans. Interesting patterns represent knowledge. Measures of pattern
interestingness, either objective or subjective, can be used to guide the discovery process.

• Data mining can be conducted on any kind of data as long as the data are meaningful for a target
application, such as structured data (e.g., relational database, transaction data) and unstructured data
(e.g., text and multimedia data), as well as data associated with different applications. Data can
also be categorized as stored vs. stream data, whereas the latter may need to explore special stream
mining algorithms.

• Data mining functionalities are used to specify the kinds of patterns or knowledge to be found
in data mining tasks. The functionalities include characterization and discrimination; the mining of
frequent patterns, associations, and correlations; classification and regression; deep learning; cluster
analysis; and outlier detection. As new types of data, new applications, and new analysis demands
continue to emerge, there is no doubt we will see more and more novel data mining tasks in the
future.

• Data mining, is a confluence of multiple disciplines but it has its unique research focus, dedicated to
many advanced applications. We study the close relationships of data mining with statistics, machine
learning, database technology, and many other disciplines.

• Data mining has many successful applications, such as business intelligence, Web search, bioinfor-
matics, health informatics, finance, digital libraries, and digital governments.

• Data mining may already have its strong impact on the society and the study of such impact, such
as how to ensure the effectiveness of data mining and in the meantime ensure the data privacy and
security, has become an important issue in research.

1.9 Exercises
1.1. What is data mining? In your answer, address the following:

a. Is it a simple transformation or application of technology developed from databases, statis-
tics, machine learning, and pattern recognition?

b. Someone believes that data mining is an inevitable result of the evolution of information
technology. If you are a database researcher, show data mining is resulted from a nature
evolution of database technology. What about if you are a machine learner researcher, or a
statistician?

c. Describe the steps involved in data mining when viewed as a process of knowledge discovery.
1.2. Define each of the following data mining functionalities: association and correlation analysis,

classification, regression, clustering, deep learning, and outlier analysis. Give examples of each
data mining functionality, using a real-life database that you are familiar with.

1.3. Present an example where data mining is crucial to the success of a business. What data mining
functionalities does this business need (e.g., think of the kinds of patterns that could be mined)?
Can such patterns be generated alternatively by data query processing or simple statistical analy-
sis?

1.4. Explain the difference and similarity between correlation analysis and classification, between clas-
sification and clustering, and between classification and regression.
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1.5. Based on your observations, describe another possible kind of knowledge that needs to be dis-
covered by data mining methods but has not been listed in this chapter. Does it require a mining
methodology that is quite different from those outlined in this chapter?

1.6. Outliers are often discarded as noise. However, one person’s garbage could be another’s treasure.
For example, exceptions in credit card transactions can help us detect the fraudulent use of credit
cards. Using fraud detection as an example, propose two methods that can be used to detect outliers
and discuss which one is more reliable.

1.7. What are the major challenges of mining a huge amount of data (e.g., billions of tuples) in com-
parison with mining a small amount of data (e.g., data set of a few hundred tuples)?

1.8. Outline the major research challenges of data mining in one specific application domain, such as
stream/sensor data analysis, spatiotemporal data analysis, or bioinformatics.

1.10 Bibliographic notes
The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is
an early collection of research papers on knowledge discovery from data. The book Advances in
Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy
[FPSSe96], is another early collection of research results on knowledge discovery and data mining.
There have been many data mining textbook or research books published since then. Some popular
ones include Data Mining: Practical Machine Learning Tools and Techniques (4th ed.) by Witten,
Frank, Hall and Pal [WFHP16]; Data Mining: Concepts and Techniques (3rd ed.) by Han and Kam-
ber and Pei [HKP11], Introduction to Data Mining (2nd ed.) by Tan, Steinbach, Karpatne, and Kumar
[TSKK18]; Data Mining: The Textbook [Agg15b]; Data Mining and Machine Learning: Fundamental
Concepts and Algorithms (2nd ed.) by Zaki and Meira [ZJ20]; Mining of Massive Datasets (3rd ed.)
by Leskovec, Rajaraman and Ullman [ZJ20]; The Elements of Statistical Learning (2nd ed.) by Hastie,
Tibshirani, and Friedman [HTF09]; Data Mining Techniques: For Marketing, Sales, and Customer
Relationship Management (3rd ed.) by Linoff and Berry [LB11]; Principles of Data Mining (Adap-
tive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01]; Mining the Web:
Discovering Knowledge from Hypertext Data by Chakrabarti [Cha03]; Web Data Mining: Exploring
Hyperlinks, Contents, and Usage Data by Liu [Liu06]; and Data Mining: Multimedia, Soft Computing,
and Bioinformatics by Mitra and Acharya [MA03].

There are also numerous books that contain collections of papers or chapters on particular aspects of
knowledge discovery, such as cluster analysis, outlier detection, classification, association mining, and
mining particular kinds of data, such as mining text data, multimedia data, relational data, geospatial
data, social and information network data, and social media data. However, this list has gone very long
over the years and we will not list them individually. There are numerous tutorial notes on data mining
in major data mining, database, machine learning, statistics, and Web technology conferences.

KDNuggets is a regular electronic newsletter containing information relevant to knowledge dis-
covery and data mining, moderated by Piatetsky-Shapiro since 1991. The Internet site KDNuggets
(https://www.kdnuggets.com) contains a good collection of KDD-related information.

The data mining community started its first international conference on knowledge discovery and
data mining in 1995. The conference evolved from the four international workshops on knowledge
discovery in databases, held from 1989 to 1994. ACM-SIGKDD, a Special Interest Group on Knowl-

https://www.kdnuggets.com
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edge Discovery in Databases was set up under ACM in 1998 and has been organizing the international
conferences on knowledge discovery and data mining since 1999. IEEE Computer Science Society has
organized its annual data mining conference, International Conference on Data Mining (ICDM), since
2001. SIAM (Society on Industrial and Applied Mathematics) has organized its annual data mining
conference, SIAM Data Mining Conference (SDM), since 2002. A dedicated journal, Data Mining and
Knowledge Discovery, published by Springer, has been available since 1997. An ACM journal, ACM
Transactions on Knowledge Discovery from Data, published its first volume in 2007.

ACM-SIGKDD also publishes a bi-annual newsletter, SIGKDD Explorations. There are a few
other international or regional conferences on data mining, such as the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD), the
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), and the International
Conference on Web Search and Data Mining (WSDM).

Research in data mining has also been popularly published in many textbooks, research books,
conferences, and journals on data mining, database, statistics, machine learning, and data visualization.



2
CHAPTER

Data, measurements, and data
preprocessing

To conduct successful data mining, the first important thing is to get familiar with your data.
You may want to know the following: What are the types of attributes or fields that make up your
data? What kind of values does each attribute have? How are the values distributed? How can we
measure the similarity of some data objects with respect to others? Gaining such insights into the
data will help with the subsequent analysis. Moreover, real-world data are typically noisy, enormous
in volume (often several gigabytes or more), and may originate from a hodgepodge of heterogeneous
sources. How can we measure the quality of data? How can we clean and integrate data from multiple
heterogeneous sources? How can we normalize, compress, or transform the data? How can we reduce
the dimensionality of data to help subsequent analysis? These are the tasks of this chapter.

We begin in Section 2.1 by studying the various attribute types. These include nominal attributes,
binary attributes, ordinal attributes, and numeric attributes. Basic statistical descriptions can be used to
learn more about each attribute’s values, as described in Section 2.2. Given a temperature attribute, for
example, we can determine its mean (average value), median (middle value), and mode (most common
value). These are measures of central tendency, which give us an idea of the “middle” or center of a
distribution. Knowing such basic statistics regarding each attribute makes it easier to fill in missing
values, smooth noisy values, and spot outliers during data preprocessing. Knowledge of the attributes
and attribute values can also help in fixing inconsistencies incurred during data integration. Plotting the
measures of central tendency shows us if the data are symmetric or skewed. Quantile plots, histograms,
and scatter plots are other graphic displays of basic statistical descriptions. These can all be useful
during data preprocessing and can provide insight into areas for mining.

We may also want to examine how similar (or dissimilar) data objects are. For example, suppose we
have a database where the data objects are patients, described by their symptoms. We may want to find
the similarity or dissimilarity between individual patients. Such information can allow us to find clusters
of like patients within the data set. The similarity (or dissimilarity) between objects may also be used to
detect outliers in the data, or to perform nearest-neighbor classification. There are many measures for
assessing similarity and dissimilarity. In general, such measures are referred to as proximity measures.
Think of the proximity of two objects as a function of the distance between their attribute values,
although proximity can also be calculated based on probabilities rather than actual distance. Measures
of data proximity are described in Section 2.3.

Finally, we will discuss data preprocessing, which is to address today’s real-world challenges: data
sets are highly susceptible to noisy, missing, and inconsistent data due to their typically huge size
and their likely origin from multiple, heterogeneous sources. Low-quality data will lead to low-quality
mining results. Huge efforts need to be paid to preprocess the data to enhance the quality of data for
effective mining. Section 2.4 is on data cleaning and data integration. The former is to remove noise
and correct inconsistencies in data, whereas the latter is to merge data from multiple sources into a
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coherent data store such as a data warehouse. Section 2.5 is on data transformation, which transforms or
consolidates data into forms appropriate for mining. That is, it can make the resulting mining process be
more efficient, and the patterns found be easier to understand. Various strategies for data transformation
have been developed. For example, data normalization scales the attribute data to fall within a smaller
range, like 0.0 to 1.0; data discretization replaces the raw values of a numeric attribute by interval labels
or conceptual labels; and data reduction techniques (e.g., compression and sampling) transform the
input data to a reduced representation and can improve the accuracy and efficiency of mining algorithms
involving distance measurements. Last, Section 2.6 is on dimensionality reduction, which is the process
of reducing the number of random variables or attributes under consideration. Please note that various
data preprocessing techniques are not mutually exclusive; they may work together. For example, data
cleaning can involve transformations to correct wrong data, such as by transforming all entries for a
date field to a common format.

2.1 Data types
Data sets are made up of data objects. A data object represents an entity—in a sales database, the
objects may be customers, store items, and sales; in a medical database, the objects may be patients; in
a university database, the objects may be students, professors, and courses. Data objects are typically
described by attributes. Data objects can also be referred to as samples, examples, instances, data
points, or objects. If the data objects are stored in a database, they are data tuples. That is, the rows of
a database correspond to the data objects, and the columns correspond to the attributes. In this section,
we define attributes and look at the various attribute types.

What is an attribute? An attribute is a data field, representing a characteristic or feature of a data
object. The nouns attribute, dimension, feature, and variable are often used interchangeably in the
literature. The term dimension is commonly used in data warehousing. Machine learning literature
tends to use the term feature, whereas statisticians prefer the term variable. Data mining and database
professionals commonly use the term attribute, and we do here as well. Attributes describing a customer
object can include, for example, customer_ID, name, and address. Observed values for a given attribute
are known as observations. A set of attributes used to describe a given object is called an attribute vector
(or feature vector). The distribution of data involving one attribute (or variable) is called univariate.
A bivariate distribution involves two attributes, and so on.

The type of an attribute is determined by the set of possible values—nominal, binary, ordinal, or
numeric—the attribute can have. In the following subsections, we introduce each type.

2.1.1 Nominal attributes
Nominal means “relating to names.” The values of a nominal attribute are symbols or names of things.
Each value represents some kind of category, code, or state, and so nominal attributes are also referred
to as categorical. The values do not have any meaningful order. In computer science, the values are
also known as enumerations.

Example 2.1. Nominal attributes. Suppose that hair_color and marital_status are two attributes de-
scribing person objects. In our application, possible values for hair_color are black, brown, blond, red,
auburn, gray, and white. The attribute marital_status can take on the values single, married, divorced,
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and widowed. Both hair_color and marital_status are nominal attributes. Another example of a nominal
attribute is occupation, with the values teacher, dentist, programmer, farmer, and so on.

Although we said that the values of a nominal attribute are symbols or “names of things,” it is pos-
sible to represent such symbols or “names” with numbers. With hair_color, for instance, we can assign
a code of 0 for black, 1 for brown, and so on. Another example is customer_ID, with possible values
that are all numeric. However, in such cases, the numbers are not intended to be used quantitatively.
That is, mathematical operations on values of nominal attributes are not meaningful. It makes no sense
to subtract one customer ID number from another, unlike, say, subtracting an age value from another
(where age is a numeric attribute). Even though a nominal attribute may have integers as values, it is
not considered a numeric attribute because the integers are not meant to be used quantitatively. We will
say more on numeric attributes in Section 2.1.4.

Because nominal attribute values do not have any meaningful order about them and are not quantita-
tive, it makes no sense to find the mean (average) value or median (middle) value for such an attribute,
given a set of objects. One thing that is of interest, however, is the attribute’s most commonly occurring
value. This value, known as the mode, is one of the measures of central tendency. You will learn about
measures of central tendency in Section 2.2.

2.1.2 Binary attributes
A binary attribute is a nominal attribute with only two categories or states: 0 or 1, where 0 typically
means that the attribute is absent, and 1 means that it is present. Binary attributes are referred to as
Boolean if the two states correspond to true and false.

Example 2.2. Binary attributes. Given the attribute smoker describing a patient object, 1 indicates
that the patient smokes, whereas 0 indicates that the patient does not. Similarly, suppose the patient
undergoes a medical test that has two possible outcomes. The attribute medical_test is binary, where a
value of 1 means the result of the test for the patient is positive, whereas 0 means the result is negative.

A binary attribute is symmetric if both of its states are equally valuable and carry the same weight;
that is, there is no preference on which outcome should be coded as 0 or 1. One such example could be
the attribute gender having the states male and female.

A binary attribute is asymmetric if the outcomes of the states are not equally important, such as the
positive and negative outcomes of a medical test for HIV. By convention, we code the most important
outcome, which is usually the rarer one, by 1 (e.g., HIV positive) and the other by 0 (e.g., HIV negative).

Computing similarities between objects involving symmetric and asymmetric binary attributes will
be discussed in a later section of this chapter.

2.1.3 Ordinal attributes
An ordinal attribute is an attribute with possible values that have a meaningful order or ranking among
them, but the magnitude between successive values is not known.

Example 2.3. Ordinal attributes. Suppose that drink_size corresponds to the size of drinks available
at a fast-food restaurant. This nominal attribute has three possible values: small, medium, and large.
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The values have a meaningful sequence (which corresponds to increasing drink size); however, we
cannot tell from the values how much bigger, say, a large is than a medium. Other examples of ordinal
attributes include grade (e.g., A+, A, A−, B+, and so on) and professional_rank. Professional ranks
can be enumerated in a sequential order: for example, assistant, associate, and full for professors, and
private, private second class, private first class, specialist, corporal, sergeant, . . . for army ranks.

Ordinal attributes are useful for registering subjective assessments of qualities that cannot be mea-
sured objectively; thus ordinal attributes are often used in surveys for ratings. In one survey, participants
were asked to rate how satisfied they were as customers. Customer satisfaction had the following ordi-
nal categories: 1: very dissatisfied, 2: dissatisfied, 3: neutral, 4: satisfied, and 5: very satisfied.

Ordinal attributes may also be obtained from the discretization of numeric quantities by splitting the
value range into a finite number of ordered categories as described in a later section on data reduction.

The central tendency of an ordinal attribute can be represented by its mode and its median (the
middle value in an ordered sequence), but the mean cannot be defined.

Note that nominal, binary, and ordinal attributes are qualitative. That is, they describe a feature of
an object without giving an actual size or quantity. The values of such qualitative attributes are typically
words representing categories. If integers are used, they represent computer codes for the categories,
as opposed to measurable quantities (e.g., 0 for small drink size, 1 for medium, and 2 for large). In
the following subsection we look at numeric attributes, which provide quantitative measurements of an
object.

2.1.4 Numeric attributes
A numeric attribute is quantitative; that is, it is a measurable quantity, represented in integer or real
values. Numeric attributes can be interval-scaled or ratio-scaled.

Interval-scaled attributes
Interval-scaled attributes are measured on a scale of equal-size units. The values of interval-scaled
attributes have order and can be positive, 0, or negative. Thus, in addition to providing a ranking of
values, such attributes allow us to compare and quantify the difference between values.

Example 2.4. Interval-scaled attributes. A temperature attribute is interval-scaled. Suppose that we
have the outdoor temperature values for a number of different days, where each day is an object. By
ordering the values, we obtain a ranking of the objects with respect to temperature. In addition, we can
quantify the difference between values. For example, a temperature of 20 ◦C is five degrees higher than
a temperature of 15 ◦C. Calendar dates are another example. For instance, the years 2012 and 2020 are
eight years apart.

Temperatures in Celsius and Fahrenheit do not have a true zero-point, that is, neither 0 ◦C nor 0 ◦F
indicates “no temperature.” (On the Celsius scale, for example, the unit of measurement is 1/100 of
the difference between the melting temperature and the boiling temperature of water in atmospheric
pressure.) Although we can compute the difference between temperature values, we cannot talk of one
temperature value as being a multiple of another. Without a true zero, we cannot say, for instance, that
10 ◦C is twice as warm as 5 ◦C. That is, we cannot speak of the values in terms of ratios. Similarly, there
is no true zero-point for calendar dates. (The year 0 does not correspond to the beginning of time.) This
brings us to ratio-scaled attributes, for which a true zero-point exists.
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Because interval-scaled attributes are numeric, we can compute their mean value, in addition to the
median and mode measures of central tendency.

Ratio-scaled attributes
A ratio-scaled attribute is a numeric attribute with an inherent zero-point. That is, if a measurement
is ratio-scaled, we can speak of a value as being a multiple (or ratio) of another value. In addition,
the values are ordered, and we can also compute the difference between values, as well as the mean,
median, and mode.

Example 2.5. Ratio-scaled attributes. Unlike temperatures in Celsius and Fahrenheit, the Kelvin (K)
temperature scale has what is considered a true zero-point (0 K = −273.15 ◦C): It is the point at which
all thermal motion ceases in the classical description of thermodynamics. Other examples of ratio-
scaled attributes include count attributes such as years_of_experience (e.g., the objects are employees)
and number_of_words (e.g., the objects are documents). Additional examples include attributes to mea-
sure weight, height, and speed, and monetary quantities (e.g., you are 100 times richer with $100 than
with $1).

2.1.5 Discrete vs. continuous attributes
In our presentation, we have organized attributes into nominal, binary, ordinal, and numeric types.
There are many ways to organize attribute types. The types are not mutually exclusive.

Classification algorithms developed from the field of machine learning often consider attributes
as being either discrete or continuous. Each type may be processed differently. A discrete attribute
has a finite or countably infinite set of values, which may or may not be represented as integers. The
attributes hair_color, smoker, medical_test, and drink_size each have a finite number of values, and so
are discrete. Note that discrete attributes may have numeric values, such as 0 and 1 for binary attributes
or, the values 0 to 110 for the attribute age. An attribute is countably infinite if the set of possible values
is infinite but the values can be put in a one-to-one correspondence with natural numbers. For example,
the attribute customer_ID is countably infinite. The number of customers can grow to infinity, but in
reality, the actual set of values is countable (where the values can be put in one-to-one correspondence
with the set of integers). Zip codes are another example.

If an attribute is not discrete, it is continuous. The terms numeric attribute and continuous attribute
are often used interchangeably in the literature. (This can be confusing because, in the classic sense,
continuous values are real numbers, whereas numeric values can be either integers or real numbers.) In
practice, real values are represented using a finite number of digits. Continuous attributes are typically
represented as floating-point variables.

2.2 Statistics of data
For data preprocessing to be successful, it is essential to have an overall picture of your data. Basic
statistical descriptions can be used to identify properties of the data and highlight which data values
should be treated as noise or outliers.

This section discusses three areas of basic statistical descriptions. We start with measures of central
tendency (Section 2.2.1), which measure the location of the middle or center of a data distribution.
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Intuitively speaking, given an attribute, where do most of its values fall? In particular, we discuss the
mean, median, mode, and midrange.

In addition to assessing the central tendency of our data set, we also would like to have an idea
of the dispersion of the data. That is, how are the data spread out? The most common data dispersion
measures are the range, quartiles (e.g., Q1, which is the first quartile, i.e., the 25th percentile), and
interquartile range; the five-number summary and boxplots; and the variance and standard deviation of
the data. These measures are useful for identifying outliers and are described in Section 2.2.2.

To facilitate the description of relations among multiple variables, the concepts of co-variance and
correlation coefficient for numerical data and χ2 correlation test for nominal data are introduced in
Section 2.2.3.

Finally, we can use many graphic displays of basic statistical descriptions to visually inspect our data
(Section 2.2.4). Most statistical or graphical data presentation software packages include bar charts, pie
charts, and line graphs. Other popular displays of data summaries and distributions include quantile
plots, quantile-quantile plots, histograms, and scatter plots.

2.2.1 Measuring the central tendency
In this section, we look at various ways to measure the central tendency of data. Suppose that we have
some attribute X, like salary, which has been recorded for a set of objects. Let x1, x2, . . . , xN be the set
of N observed values or observations for X. Here, these values may also be referred to as the data set
(for X). If we were to plot the observations for salary, where would most of the values fall? This gives
us an idea of the central tendency of the data. Measures of central tendency include the mean, median,
mode, and midrange.

The most common and effective numeric measure of the “center” of a set of data is the (arithmetic)
mean. Let x1, x2, . . . , xN be a set of N values or observations, such as for some numeric attribute X,
like salary. The mean of this set of values is

x̄ =

N∑
i=1

xi

N
= x1 + x2 + · · · + xN

N
. (2.1)

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in relational
database systems.

Example 2.6. Mean. Suppose we have the following values for salary (in thousands of dollars), shown
in ascending order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. Using Eq. (2.1), we have

x̄ = 30 + 36 + 47 + 50 + 52 + 52 + 56 + 60 + 63 + 70 + 70 + 110

12

= 696

12
= 58.

Thus, the mean salary is $58,000.

Sometimes, each value xi in a set may be associated with a weight wi for i = 1, . . . ,N . The weights
reflect the significance, importance, or occurrence frequency attached to their respective values. In this
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case, we can compute

x̄ =

N∑
i=1

wixi

N∑
i=1

wi

= w1x1 + w2x2 + · · · + wNxN

w1 + w2 + · · · + wN

. (2.2)

This is called the weighted arithmetic mean or the weighted average.
Although the mean is the single most useful quantity for describing a data set, it is not always

the best way of measuring the center of the data. A major problem with the mean is its sensitivity
to extreme (e.g., outlier) values. Even a small number of extreme values can corrupt the mean. For
example, the mean salary at a company may be substantially pushed up by that of a few highly paid
managers. Similarly, the mean score of a class in an exam could be pulled down quite a bit by a few
very low scores. To offset the effect caused by a small number of extreme values, we can instead use
the trimmed mean, which is the mean obtained after chopping off values at the high and low extremes.
For example, we can sort the values observed for salary and remove the top and bottom 2% before
computing the mean. We should avoid trimming too large a portion (such as 20%) at both ends, as this
can result in the loss of valuable information.

For skewed (asymmetric) data, a better measure of the center of data is the median, which is the
middle value in a set of ordered data values. It is the value that separates the higher half of a data set
from the lower half.

In probability and statistics, the median generally applies to numeric data; however, we may extend
the concept to ordinal data. Suppose that a given data set of N values for an attribute X is sorted in
ascending order. If N is odd, then the median is the middle value of the ordered set. If N is even, then
the median is not unique; it is the two middlemost values and any value in between. If X is a numeric
attribute in this case, by convention, the median is taken as the average of the two middlemost values.

Example 2.7. Median. Let’s find the median of the data from Example 2.6. The data are already
sorted in ascending order. There is an even number of observations (i.e., 12); therefore, the median is
not unique. It can be any value within the two middlemost values of 52 and 56 (that is, within the sixth
and seventh values in the list). By convention, we assign the average of the two middlemost values as
the median; that is, 52+56

2 = 108
2 = 54. Thus, the median is $54,000.

Suppose that we had only the first 11 values in the list. Given an odd number of values, the median
is the middlemost value. This is the sixth value in this list, which has a value of $52,000.

The median is expensive to compute when we have a large number of observations. For numeric
attributes, however, we can easily approximate the value. Assume that data are grouped in intervals
according to their xi data values and that the frequency (i.e., number of data values) of each interval
is known. For example, employees may be grouped according to their annual salary in intervals such
as $10,001–20,000, $20,001–50,000, and so on. (A similar, concrete example can be seen in the data
table of Exercise 2.3.) Let the interval that contains the median frequency be the median interval. We
can approximate the median of the entire data set (e.g., the median salary) by interpolation using the
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formula

median ≈ L1 +
(

N/2 − (∑
freq

)
l

freqmedian

)
× width, (2.3)

where L1 is the lower boundary of the median interval, N is the number of values in the entire data set,(∑
freq

)
l

is the sum of the frequencies of all of the intervals that are lower than the median interval,
freqmedian is the frequency of the median interval, and width is the width of the median interval.

Mode is another measure of central tendency. The mode for a set of data is the value that occurs
most frequently compared to all neighboring values in the set. Therefore, it can be determined for
qualitative and quantitative attributes. It is possible for the greatest frequency to correspond to several
different values, which results in more than one mode. Data sets with one, two, or three modes are
respectively called unimodal, bimodal, and trimodal. In general, a data set with two or more modes
is multimodal.

Example 2.8. Mode. The data from Example 2.6 are bimodal. The two modes are $52,000 and
$70,000.

For unimodal numeric data that are moderately skewed (asymmetrical), we have the following em-
pirical relation:

mean − mode ≈ 3 × (mean − median). (2.4)

This implies that the mode for unimodal frequency curves that are moderately skewed can easily be
approximated if the mean and median values are known.

The midrange can also be used to assess the central tendency of a numeric data set. It is the average
of the largest and smallest values in the set. This measure is easy to compute using the SQL aggregate
functions, max() and min().

Example 2.9. Midrange. The midrange of the data of Example 2.6 is 30,000+110,000
2 = $70,000.

In a unimodal frequency curve with perfect symmetric data distribution, the mean, median, and
mode are all at the same center value, as shown in Fig. 2.1a.

FIGURE 2.1

Mean, median, and mode of symmetric vs. positively and negatively skewed data.
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Data in most real applications are not symmetric. They may instead be either positively skewed,
where the mode occurs at a value that is smaller than the median (Fig. 2.1b), or negatively skewed,
where the mode occurs at a value greater than the median (Fig. 2.1c).

2.2.2 Measuring the dispersion of data
We now look at measures to assess the dispersion or spread of numeric data. The measures include
range, quantiles, quartiles, percentiles, and the interquartile range. The five-number summary, which
can be displayed as a boxplot, is useful in identifying outliers. Variance and standard deviation also
indicate the spread of a data distribution.

Range, quartiles, and interquartile range
To start off, let’s study the range, quantiles, quartiles, percentiles, and the interquartile range as mea-
sures of data dispersion.

Let x1, x2, . . . , xN be a set of observations for some numeric attribute, X. The range of the set is
the difference between the largest (max()) and smallest (min()) values.

Suppose that the data for attribute X are sorted in ascending numeric order. Imagine that we can
pick certain data points so as to split the data distribution into equal-size consecutive sets, as in Fig. 2.2.
These data points are called quantiles. Quantiles are points taken at regular intervals of a data distri-
bution, dividing it into essentially equal-size consecutive sets. (We say “essentially” because there may
not be data values of X that divide the data into exactly equal-size subsets. For readability, we will refer
to them as equal.) The kth q-quantile for a given data distribution is the value x such that at most k/q

of the data values are less than x and at most (q − k)/q of the data values are more than x, where k is
an integer such that 0 < k < q. There are q − 1 q-quantiles.

The 2-quantile is the data point dividing the lower and upper halves of the data distribution. It
corresponds to the median. The 4-quantiles are the three data points that split the data distribution into
four equal parts; each part represents one-fourth of the data distribution. They are more commonly
referred to as quartiles. The 100-quantiles are more commonly referred to as percentiles; they divide

FIGURE 2.2

A plot of the data distribution for some attribute X. The quantiles plotted are quartiles. The three quartiles divide the
distribution into four equal-size consecutive subsets. The second quartile corresponds to the median.
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the data distribution into 100 equal-size consecutive sets. The median, quartiles, and percentiles are the
most widely used forms of quantiles.

The quartiles give an indication of a distribution’s center, spread, and shape. The first quartile,
denoted by Q1, is the 25th percentile. It cuts off the lowest 25% of the data. The third quartile,
denoted by Q3, is the 75th percentile—it cuts off the lowest 75% (or highest 25%) of the data. The
second quartile is the 50th percentile. As the median, it gives the center of the data distribution.

The distance between the first and third quartiles is a simple measure of spread that gives the range
covered by the middle half of the data. This distance is called the interquartile range (IQR) and is
defined as

IQR = Q3 − Q1. (2.5)

Example 2.10. Interquartile range. The quartiles are the three values that split the sorted data set into
four equal parts. The data of Example 2.6 contain 12 observations, already sorted in ascending order.
Since there are even number of elements on this list, the median of the list should be the mean of the
center two elements, that is ($52,000 + $56,000)/2 = $54,000. Then the first quartile should be the
mean of the 3rd and 4th elements, that is, ($47,000 + $50,000)/2 = $48,500, whereas the 3rd quartile
should be the mean of the 9th and 10th elements, that is, ($63,000 + $70,000)/2 = $66,500. Thus the
interquartile range is IQR = $66,500 − $48,500 = $18,000.

Five-number summary, boxplots, and outliers
No single numeric measure of spread (e.g., IQR) is very useful for describing skewed distributions.
Have a look at the symmetric and skewed data distributions of Fig. 2.1. In the symmetric distribution,
the median (and other measures of central tendency) splits the data into equal-size halves. This does
not occur for skewed distributions. Therefore it is more informative to also provide the two quartiles
Q1 and Q3, along with the median. A common rule of thumb for identifying suspected outliers is to
single out values falling at least 1.5 × IQR above the third quartile or below the first quartile.

Because Q1, the median, and Q3 together contain no information about the endpoints (e.g., tails)
of the data, a fuller summary of the shape of a distribution can be obtained by providing the lowest and
highest data values as well. This is known as the five-number summary. The five-number summary
of a distribution consists of the median (Q2), the quartiles Q1 and Q3, and the smallest and largest
individual observations, written in the order of Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the five-number
summary as follows:

• Typically, the ends of the box are at the quartiles so that the box length is the interquartile range.
• The median is marked by a line within the box.
• Two lines (called whiskers) outside the box extend to the smallest (Minimum) and largest (Maximum)

observations.

When dealing with a moderate number of observations, it is worthwhile to plot potential outliers
individually. To do this in a boxplot, the whiskers are extended to the extreme low and high observations
only if these values are less than 1.5 × IQR beyond the quartiles. Otherwise, the whiskers terminate at
the most extreme observations occurring within 1.5 × IQR of the quartiles. The remaining cases are
plotted individually. Boxplots can be used in the comparisons of several sets of compatible data.
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FIGURE 2.3

Boxplot for the unit price data for items sold at four branches of an online store during a given time period.

Example 2.11. Boxplot. Fig. 2.3 shows boxplots for unit price data for items sold at four branches of
an online store during a given time period. For branch 1, we see that the median price of items sold
is $80, Q1 is $60, and Q3 is $100. Notice that two outlying observations for this branch were plotted
individually, as their values of 175 and 202 are more than 1.5 times the IQR here of 40.

Variance and standard deviation
Variance and standard deviation are measures of data dispersion. They indicate how spread out a data
distribution is. A low standard deviation means that the data observations tend to be very close to the
mean, whereas a high standard deviation indicates that the data are spread out over a large range of
values.

The variance of N observations, x1, x2, . . . , xN (when N is large), for a numeric attribute X is

σ 2 = 1

N

N∑
i=1

(xi − x̄)2 =
(

1

N

N∑
i=1

x2
i

)
− x̄2, (2.6)

where x̄ is the mean value of the observations, as defined in Eq. (2.1). The standard deviation, σ , of
the observations is the square root of the variance, σ 2.
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Example 2.12. Variance and standard deviation. In Example 2.6, we found x̄ = $58,000 using
Eq. (2.1) for the mean. To determine the variance and standard deviation of the data from that example,
we set N = 12 and use Eq. (2.6) to obtain

σ 2 = 1

12
(302 + 362 + 472 . . . + 1102) − 582

≈ 379.17

σ ≈ √
379.17 ≈ 19.47.

The basic properties of the standard deviation, σ , as a measure of spread are as follows:

• σ measures spread about the mean and should be considered only when the mean is chosen as the
measure of center.

• σ = 0 only when there is no spread, that is, when all observations have the same value. Otherwise,
σ > 0.

Importantly, an observation is unlikely to be more than several standard deviations away from the

mean. Mathematically, using Chebyshev’s inequality, it can be shown that at least
(

1 − 1
k2

)
× 100%

of the observations are no more than k standard deviations from the mean. Therefore, the standard
deviation is a good indicator of the spread of a data set.

The computation of the variance and standard deviation is scalable in large data sets.

2.2.3 Covariance and correlation analysis
Covariance of numeric data
In probability theory and statistics, correlation and covariance are two similar measures for assessing
how much two attributes change together. Consider two numeric attributes A and B and a set of n real-
valued observations {(a1, b1), . . . , (an, bn)}. The mean values of A and B, respectively, are also known
as the expected values on A and B, that is,

E(A) = Ā =
∑n

i=1 ai

n

and

E(B) = B̄ =
∑n

i=1 bi

n
.

The covariance between A and B is defined as

Cov(A,B) = E((A − Ā)(B − B̄)) =
∑n

i=1(ai − Ā)(bi − B̄)

n
. (2.7)

Mathematically, it can also be shown that

Cov(A,B) = E(A · B) − ĀB̄. (2.8)

This equation may simplify calculations.
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For two attributes A and B that tend to change together, if a value ai of A is larger than Ā (the
expected value of A), then the corresponding value of bi of attribute B is likely to be larger than B̄

(the expected value of B). Therefore the covariance between A and B is positive. On the other hand, if
one of the attributes tends to be above its expected value when the other attribute is below its expected
value, then the covariance of A and B is negative.

If A and B are independent (i.e., they do not have correlation), then E(A · B) = E(A) · E(B).
Therefore the covariance is Cov(A,B) = E(A · B) − ĀB̄ = E(A) · E(B) − ĀB̄ = 0. However, the
converse is not true. Some pairs of random variables (attributes) may have a covariance of 0 but are
not independent. Only under some additional assumptions (e.g., the data follow multivariate normal
distributions) does a covariance of 0 imply independence.

Example 2.13. Covariance analysis of numeric attributes. Consider Table 2.1, which presents a
simplified example of stock prices observed at five time points for AllElectronics and HighTech, a
high-tech company. If the stocks are affected by the same industry trends, will their prices rise or fall
together?

E(AllElectronics) = 6 + 5 + 4 + 3 + 2

5
= 20

5
= $4

and

E(HighTech) = 20 + 10 + 14 + 5 + 5

5
= 54

5
= $10.80.

Thus, using Eq. (2.7), we compute

Cov(AllElectroncis,HighTech) = 6 × 20 + 5 × 10 + 4 × 14 + 3 × 5 + 2 × 5

5
− 4 × 10.80

= 50.2 − 43.2 = 7.

Therefore, given the positive covariance we can say that stock prices for both companies rise together.

Variance is a special case of covariance, where the two attributes are identical (i.e., the covariance
of an attribute with itself).

Table 2.1 Stock prices for AllElec-
tronics and HighTech.

Time point AllElectronics HighTech
t1 6 20

t2 5 10

t3 4 14

t4 3 5

t5 2 5
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Correlation coefficient for numeric data
For numeric attributes, we can evaluate the correlation between two attributes, A and B, by computing
the correlation coefficient (also known as Pearson’s product moment coefficient, named after its
inventer, Karl Pearson). This is

rA,B =

n∑
i=1

(ai − Ā)(bi − B̄)

nσAσB

=

n∑
i=1

(aibi) − nĀB̄

nσAσB

, (2.9)

where n is the number of tuples, ai and bi are the respective values of A and B in tuple i, Ā and B̄ are
the respective mean values of A and B, σA and σB are the respective standard deviations of A and B

(as defined in Section 2.2.2), and �(aibi) is the sum of the AB cross-product (i.e., for each tuple, the
value for A is multiplied by the value for B in that tuple). Note that −1 ≤ rA,B ≤ +1. If rA,B is greater
than 0, then A and B are positively correlated, meaning that the values of A increase as the values of
B increase. The higher the value, the stronger the correlation (i.e., the more each attribute implies the
other). Hence, a higher value may indicate that A (or B) may be removed as a redundancy.

If the resulting value is equal to 0, then A and B are independent, and there is no correlation be-
tween them. If the resulting value is less than 0, then A and B are negatively correlated, where the
values of one attribute increase as the values of the other attribute decrease. This means that each at-
tribute discourages the other. Scatter plots can also be used to view correlations between attributes
(Section 2.2.3). For example, Fig. 2.8’s scatter plots, respectively, show positively correlated data and
negatively correlated data, whereas Fig. 2.9 displays uncorrelated data.

Note that correlation does not imply causality. That is, if A and B are correlated, this does not nec-
essarily imply that A causes B or that B causes A. For example, in analyzing a demographic database,
we may find that attributes representing the number of hospitals and the number of car thefts in a region
are correlated. This does not mean that one causes the other. Both are actually causally linked to a third
attribute, namely, population.

χ2 correlation test for nominal data
For nominal data, a correlation relationship between two attributes, A and B, can be discovered by a χ2

(chi-square) test. Suppose A has c distinct values, namely, a1, a2, . . . ac, and B has r distinct values,
namely, b1, b2, . . . br . The data tuples described by A and B can be shown as a contingency table,
with the c values of A making up the columns and the r values of B making up the rows. Let (Ai,Bj )

denote the joint event that attribute A takes on value ai and attribute B takes on value bj , that is, where
(A = ai,B = bj ). Each and every possible (Ai,Bj ) joint event has its own cell (or slot) in the table.
The χ2 value (also known as the Pearson χ2 statistic) is computed as

χ2 =
c∑

i=1

r∑
j=1

(oij − eij )
2

eij

, (2.10)

where oij is the observed frequency (i.e., actual count) of the joint event (Ai,Bj ) and eij is the expected
frequency of (Ai,Bj ), which can be computed as

eij = count(A = ai) × count(B = bj )

n
, (2.11)
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where n is the number of data tuples, count (A = ai) is the number of tuples having value ai for A, and
count (B = bj ) is the number of tuples having value bj for B. The sum in Eq. (2.10) is computed over
all of the r × c cells. Note that the cells that contribute the most to the χ2 value are those for which the
actual count is very different from that expected.

The χ2 statistic tests the hypothesis that A and B are independent, that is, there is no correlation
between them. The test is based on a significance level, with (r − 1) × (c − 1) degrees of freedom. We
illustrate the use of this statistic in Example 2.14. If the hypothesis can be rejected, then we say that A

and B are statistically correlated.

Example 2.14. Correlation analysis of nominal attributes using χ2. Suppose that a group of 1500
people was surveyed. The gender of each person was noted. Each person was polled as to whether his
or her preferred type of reading material was fiction or nonfiction. Thus, we have two attributes, gender
and preferred_reading. The observed frequency (or count) of each possible joint event is summarized in
the contingency table shown in Table 2.2, where the numbers in parentheses are the expected frequen-
cies. The expected frequencies are calculated based on the data distribution for both attributes using
Eq. (2.11).

Using Eq. (2.11), we can verify the expected frequencies for each cell. For example, the expected
frequency for the cell (male, fiction) is

e11 = count(male) × count(fiction)

n
= 300 × 450

1500
= 90,

and so on. Notice that in any row, the sum of the expected frequencies must equal the total observed
frequency for that row, and the sum of the expected frequencies in any column must also equal the total
observed frequency for that column.

Using Eq. (2.10) for χ2 computation, we get

χ2 = (250 − 90)2

90
+ (50 − 210)2

210
+ (200 − 360)2

360
+ (1000 − 840)2

840
= 284.44 + 121.90 + 71.11 + 30.48 = 507.93.

For this 2 × 2 table, the degrees of freedom are (2 − 1) × (2 − 1) = 1. For 1 degree of freedom, the
χ2 value needed to reject the hypothesis at the 0.001 significance level is 10.828 (taken from the table
of upper percentage points of the χ2 distribution, typically available from any textbook on statistics).
Since our computed value is above this, we can reject the hypothesis that gender and preferred_reading

Table 2.2 Example 2.1’s 2 × 2 con-
tingency table data.

Male Female Total
fiction 250 (90) 200 (360) 450

non_fiction 50 (210) 1000 (840) 1050

Total 300 1200 1500

Note: Are gender and preferred_reading corre-
lated?
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are independent and conclude that the two attributes are (strongly) correlated for the given group of
people.

2.2.4 Graphic displays of basic statistics of data
In this section, we study graphic displays of basic statistical descriptions. These include quantile plots,
quantile-quantile plots, histograms, and scatter plots. Such graphs are helpful for the visual inspection
of data, which is useful for data preprocessing. The first three of these show univariate distributions (i.e.,
data for one attribute), whereas scatter plots show bivariate distributions (i.e., involving two attributes).

Quantile plot
A quantile plot is a simple and effective way to have a first look at a univariate data distribution. First,
it displays all of the data for the given attribute (allowing a user to assess both the overall behavior
and unusual occurrences). Second, it plots quantile information (see Section 2.2.2). Let xi , for i = 1
to N , be the data sorted in ascending order so that x1 is the smallest observation and xN is the largest
for some ordinal or numeric attribute X. Each observation, xi , is paired with a percentage, fi , which
indicates that approximately fi × 100% of the data are below the value, xi . We say “approximately”
because there may not be a value with exactly a fraction, fi , of the data below xi . Note that the 0.25
quantile corresponds to quartile Q1, the 0.50 quantile is the median, and the 0.75 quantile is Q3.

Let

fi = i − 0.5

N
. (2.12)

These numbers increase in equal steps of 1/N , ranging from 1
2N

(which is slightly above 0) to 1 − 1
2N

(which is slightly below 1). On a quantile plot, xi is graphed against fi . This allows us to compare
different distributions based on their quantiles. For example, given the quantile plots of sales data for
two different time periods, we can compare their Q1, median, Q3, and other fi values at a glance.

Example 2.15. Quantile plot. Fig. 2.4 shows a quantile plot for the unit price data of Table 2.3.

FIGURE 2.4

A quantile plot for the unit price data of Table 2.3.
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Table 2.3 A set of unit price data
for items sold at a branch of the
online store.

Unit price ($) Count of items sold
40 275

43 300

47 250
.
.
.

.

.

.

74 360

75 515

78 540
.
.
.

.

.

.

115 320

117 270

120 350

Quantile-quantile plot
A quantile-quantile plot, or q-q plot, graphs the quantiles of one univariate distribution against the
corresponding quantiles of another. It is a powerful visualization tool in that it allows the user to view
whether there is a shift in going from one distribution to another.

Suppose that we have two sets of observations for the attribute or variable unit price, taken from
two different branch locations. Let x1, . . . , xN be the data from the first branch, and y1, . . . , yM be the
data from the second, where each data set is sorted in ascending order. If M = N (i.e., the number of
points in each set is the same), then we simply plot yi against xi , where yi and xi are both (i − 0.5)/N

quantiles of their respective data sets. If M < N (i.e., the second branch has fewer observations than
the first), there can be only M points on the q-q plot. Here, yi is the (i − 0.5)/M quantile of the y data,
which is plotted against the (i − 0.5)/M quantile of the x data. This computation typically involves
interpolation.

Example 2.16. Quantile-quantile plot. Fig. 2.5 shows a quantile-quantile plot for unit price data of
items sold at two branches of the online store during a given time period. Each point corresponds to the
same quantile for each data set and shows the unit price of items sold at branch 1 vs. branch 2 for that
quantile. (To aid comparison, the straight line represents the case where, for each given quantile, the
unit price at each branch is the same. The darker points correspond to the data for Q1, the median, and
Q3, respectively.)

We see, for example, that at Q1, the unit price of items sold at branch 1 was slightly less than that
at branch 2. In other words, 25% of items sold at branch 1 were less than or equal to $60, whereas 25%
of items sold at branch 2 were less than or equal to $64. At the 50th percentile (marked by the median,
which is also Q2), we see that 50% of items sold at branch 1 were less than $78, whereas 50% of items
at branch 2 were less than $85. In general, we note that there is a shift in the distribution of branch 1
with respect to branch 2 in that the unit prices of items sold at branch 1 tend to be lower than those at
branch 2.
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FIGURE 2.5

A q-q plot for unit price data from two branches of the online store.

Histograms
Histograms (or frequency histograms) are at least a century old and are widely used. “Histos” means
pole or mast, and “gram” means chart, so a histogram is a chart of poles. Plotting histograms is a
graphical method for summarizing the distribution of a given attribute, X. According to the number
of poles desired in the chart, the range of values for X is partitioned into a set of disjoint consecutive
subranges. The subranges, referred to as buckets or bins, are disjoint subsets of the data distribution for
X. The range of a bucket is known as the width. Typically, the buckets are of equal width. For example,
a price attribute with a value range of $1–$200 (rounded up to the nearest dollar) can be partitioned
into subranges 1–20, 21–40, 41–60, and so on. For each subrange, a bar is drawn with a height that
represents the total count of items observed within the subrange.

Please note that histogram is different from another popularly used graph representation called bar
chart. Bar chart uses a set of bars (often separated with space) with X representing a set of categorical
data, such as automobile_model or item_type, and the height of the bar (column) indicates the size of
the group defined by the categories. On the other hand, histogram plots quantitative data with a range
of X values grouped into bins or intervals. Histograms are used to show distributions (along X axis)
while bar charts are used to compare categories. It is always appropriate to talk about the skewness of
a histogram; that is, the tendency of the observations to fall more on the low end or the high end of the
X axis. However, bar chart’s X axis does not have a low end or a high end; because the labels on the X

axis are categorical—not quantitative. Thus, bars can be reordered in bar charts but not in histograms.

Example 2.17. Histogram. Fig. 2.6 shows a histogram for a data set on research award distribution
for a region, where buckets (or bins) are defined by equal-width ranges representing $1000 increments,
and the frequency is the number of research awards in the corresponding buckets.

Although histograms are widely used, they may not be as effective as the quantile plot, q-q plot, and
boxplot methods in comparing groups of univariate observations.
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FIGURE 2.6

A histogram on research award distribution for a region.

Scatter plots and data correlation
A scatter plot is one of the most effective graphical methods for determining whether there appears
to be a relationship, pattern, or trend between two numeric attributes. To construct a scatter plot, each
pair of values is treated as a pair of coordinates in an algebraic sense and plotted as points in the plane.
Fig. 2.7 shows a scatter plot for the set of data in Table 2.3.

The scatter plot is a useful method for providing a first look at bivariate data to see clusters of
points and outliers, or to explore the possibility of correlation relationships. Two attributes, X and
Y , are correlated if the knowledge of one attribute enables to predict the other with some accuracy.
Correlations can be positive, negative, or null (uncorrelated). Fig. 2.8 shows examples of positive and
negative correlations between two attributes.

FIGURE 2.7

A scatter plot for Table 2.3 data set.
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FIGURE 2.8

Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.

FIGURE 2.9

Three cases where there is no observed correlation between the two plotted attributes in each of the data sets.

If the plotted points pattern slopes from lower left to upper right, this means that the values of
X increase as the values of Y increase, suggesting a positive correlation (Fig. 2.8a). If the pattern of
plotted points slopes from upper left to lower right, the values of X increase as the values of Y decrease,
suggesting a negative correlation (Fig. 2.8b). A line of best fit can be drawn to study the correlation
between the variables. Statistical tests for correlation are introduced in Appendix A.

Fig. 2.9 shows three cases for which there is no correlation relationship between the two attributes in
each of the given data sets. Scatter plots can also be extended to n attributes, resulting in a scatter-plot
matrix.

In summary, basic data descriptions (e.g., measures of central tendency and measures of dispersion)
and graphic statistical displays (e.g., quantile plots, histograms, and scatter plots) provide valuable in-
sight into the overall behavior of your data. By helping to identify noise and outliers, they are especially
useful for data cleaning.
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2.3 Similarity and distance measures
In data mining applications, such as clustering, outlier analysis, and nearest-neighbor classification, we
need ways to assess how alike or unalike objects are in comparison to one another. For example, a
store may want to search for clusters of customer objects, resulting in groups of customers with similar
characteristics (e.g., similar income, area of residence, and age). Such information can then be used for
marketing. A cluster is a collection of data objects such that the objects within a cluster are similar
to one another and dissimilar to the objects in other clusters. Outlier analysis also employs clustering-
based techniques to identify potential outliers as objects that are highly dissimilar to others. Knowledge
of object similarities can also be used in nearest-neighbor classification schemes where a given object
(e.g., a patient) is assigned a class label (relating to, say, a diagnosis) based on its similarity toward
other objects in the model.

This section presents similarity and dissimilarity measures, which are referred to as measures of
proximity. Similarity and dissimilarity are related. A similarity measure for two objects, i and j , will
typically return value 0 if the objects are completely unalike. The higher the similarity value, the greater
the similarity between objects. (Typically, a value of 1 indicates complete similarity, that is, the objects
are identical.) A dissimilarity measure works the opposite way. It returns a value of 0 if the objects
are the same (and therefore, far from being dissimilar). The higher the dissimilarity value, the more
dissimilar the two objects are.

In Section 2.3.1 we present two data structures that are commonly used in the above types of ap-
plications: the data matrix (used to store the data objects) and the dissimilarity matrix (used to store
dissimilarity values for pairs of objects). We also switch to a different notation for data objects than pre-
viously used in this chapter since now we are dealing with objects described by more than one attribute.
We then discuss how object dissimilarity can be computed for objects described by nominal attributes
(Section 2.3.2), by binary attributes (Section 2.3.3), by numeric attributes (Section 2.3.4), by ordinal
attributes (Section 2.3.5), or by combinations of these attribute types (Section 2.3.6). Section 2.3.7
provides similarity measures for very long and sparse data vectors, such as term-frequency vectors
representing documents in information retrieval. Finally, Section 2.3.8 discusses how to measure the
difference between two probability distributions over the same variable x, and introduces a measure,
called the Kullback-Leibler divergence, or simply, the KL divergence, which has been popularly used
in the data mining literature.

Knowing how to compute dissimilarity is useful in studying attributes and will also be referenced
in later topics on clustering (Chapters 8 and 9), outlier analysis (Chapter 11), and nearest-neighbor
classification (Chapter 6).

2.3.1 Data matrix vs. dissimilarity matrix
In Section 2.2, we looked at ways of studying the central tendency, dispersion, and spread of observed
values for some attribute X. Our objects there were one-dimensional, that is, described by a single
attribute. In this section, we talk about objects described by multiple attributes. Therefore we need a
change in notation. Suppose that we have n objects (e.g., persons, items, or courses) described by p

attributes (also called measurements or features, such as age, height, weight, or gender). The objects
are x1 = (x11, x12, . . . , x1p), x2 = (x21, x22, . . . , x2p), and so on, where xij is the value for object xi of
the j th attribute. For brevity, we hereafter refer to object xi as object i. The objects may be tuples in a
relational database and are also referred to as data samples or feature vectors.
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Main memory-based clustering and nearest-neighbor algorithms typically operate on either of the
following two data structures:

• Data matrix (or object-by-attribute structure): This structure stores the n data objects in the form
of a relational table or an n-by-p matrix (n objects ×p attributes):⎡

⎢⎢⎢⎢⎣
x11 · · · x1f · · · x1p

· · · · · · · · · · · · · · ·
xi1 · · · xif · · · xip

· · · · · · · · · · · · · · ·
xn1 · · · xnf · · · xnp

⎤
⎥⎥⎥⎥⎦ . (2.13)

Each row corresponds to an object. As part of our notation, we may use f to index through the p

attributes.
• Dissimilarity matrix (or object-by-object structure): This structure stores a collection of proximities

that are available for all pairs of n objects. It is often represented by an n-by-n table:⎡
⎢⎢⎢⎢⎢⎣

0
d(2,1) 0
d(3,1) d(3,2) 0

...
...

...

d(n,1) d(n,2) · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦ , (2.14)

where d(i, j) is the measured dissimilarity or “difference” between objects i and j . In general,
d(i, j) is a nonnegative number that is close to 0 when objects i and j are highly similar or “near”
each other, and becomes larger the more they differ. Note that d(i, i) = 0; that is, the difference
between an object and itself is 0. Furthermore, d(i, j) = d(j, i). (For readability, we do not show
the d(j, i) entries since the matrix is symmetric.) Measures of dissimilarity are discussed throughout
the remainder of this chapter.

Measures of similarity can often be expressed as a function of measures of dissimilarity. For example,
for nominal data,

sim(i, j) = 1 − d(i, j), (2.15)

where sim(i, j) is the similarity between objects i and j . Throughout the rest of this chapter, we will
also comment on measures of similarity.

A data matrix is made up of two entities or “things,” namely rows (for objects) and columns (for
attributes). Therefore, the data matrix is often called a two-mode matrix. The dissimilarity matrix
contains one kind of entity (dissimilarities) and so is called a one-mode matrix. Many clustering and
nearest-neighbor algorithms operate on a dissimilarity matrix. Data in the form of a data matrix can be
transformed into a dissimilarity matrix before applying such algorithms.

2.3.2 Proximity measures for nominal attributes
A nominal attribute can take on two or more states (Section 2.1.1). For example, map_color is a nominal
attribute that may have, say, five states: red, yellow, green, pink, and blue.
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Let the number of states of a nominal attribute be M . The states can be denoted by letters, symbols,
or a set of integers, such as 1,2, . . . ,M . Notice that such integers are used just for data handling and
do not represent any specific ordering.

“How is dissimilarity computed between objects described by nominal attributes?” The dissimilar-
ity between two objects i and j can be computed based on the ratio of mismatches:

d(i, j) = p − m

p
, (2.16)

where m is the number of matches (i.e., the number of attributes for which i and j are in the same state),
and p is the total number of attributes describing the objects. Weights can be assigned to increase the
effect of m or to assign greater weight to the matches in attributes having a larger number of states.

Example 2.18. Dissimilarity between nominal attributes. Suppose that we have the sample data
of Table 2.4, except that only the object-identifier and the attribute test-1 are available, where test-1
is nominal. (We will use test-2 and test-3 in later examples.) Let’s compute the dissimilarity matrix
Eq. (2.14), that is, ⎡

⎢⎢⎣
0

d(2,1) 0
d(3,1) d(3,2) 0
d(4,1) d(4,2) d(4,3) 0

⎤
⎥⎥⎦ .

Since here we have one nominal attribute, test-1, we set p = 1 in Eq. (2.16) so that d(i, j) evaluates to
0 if objects i and j match, and 1 if the objects differ. Thus, we get⎡

⎢⎢⎣
0
1 0
1 1 0
0 1 1 0

⎤
⎥⎥⎦ .

From this, we see that all objects are dissimilar except objects 1 and 4 (i.e., d(4,1) = 0).

Alternatively, similarity can be computed as

sim(i, j) = 1 − d(i, j) = m

p
. (2.17)

Table 2.4 A sample data table containing attributes of mixed
types.

Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3 (numeric)
1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28
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Proximity between objects described by nominal attributes can be computed using an alternative
encoding scheme. Nominal attributes can be encoded using asymmetric binary attributes by creating a
new binary attribute for each of the M states. For an object with a given state value, the binary attribute
representing that state is set to 1, whereas the remaining binary attributes are set to 0. For example, to
encode the nominal attribute map_color, a binary attribute can be created for each of the five colors
previously listed. For an object having the color yellow, the yellow attribute is set to 1, whereas the
remaining four attributes are set to 0. Proximity measures for this form of encoding can be calculated
using the methods discussed in the next subsection.

2.3.3 Proximity measures for binary attributes
Let’s look at dissimilarity and similarity measures for objects described by either symmetric or asym-
metric binary attributes.

Recall that a binary attribute has only one of two states, 0 and 1, where 0 means that the attribute is
absent, and 1 means that it is present (Section 2.1.2). Given the attribute smoker describing a patient,
for instance, 1 indicates that the patient smokes, whereas 0 indicates that the patient does not. Treating
binary attributes as if they are other numeric attributes can be misleading. Therefore methods specific
to binary data are necessary for computing dissimilarity.

“So, how can we compute the dissimilarity between two binary attributes?” One approach involves
computing a dissimilarity matrix from the given binary data. If all binary attributes are thought of as
having the same weight, we have the 2 × 2 contingency table of Table 2.5, where q is the number of
attributes that equal 1 for both objects i and j , r is the number of attributes that equal 1 for object i but
equal 0 for object j , s is the number of attributes that equal 0 for object i but equal 1 for object j , and
t is the number of attributes that equal 0 for both objects i and j . The total number of attributes is p,
where p = q + r + s + t .

Recall that for symmetric binary attributes, each state is equally valuable. Dissimilarity that is based
on symmetric binary attributes is called symmetric binary dissimilarity. If objects i and j are de-
scribed by symmetric binary attributes, then the dissimilarity between i and j is

d(i, j) = r + s

q + r + s + t
. (2.18)

For asymmetric binary attributes, the two states are not equally important, such as the positive (1)
and negative (0) outcomes of a disease test. Given two asymmetric binary attributes, the agreement of
two 1s (a positive match) is then considered more significant than that of two 0s (a negative match).
Therefore such binary attributes are often considered “monary” (having one state). The dissimilarity

Table 2.5 Contingency table for
binary attributes.

Object j

1 0 sum

Object i
1 q r q + r

0 s t s + t

sum q + s r + t p
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based on these attributes is called asymmetric binary dissimilarity, where the number of negative
matches, t , is considered unimportant and is thus ignored in the following computation:

d(i, j) = r + s

q + r + s
. (2.19)

Complementarily, we can measure the difference between two binary attributes based on the notion
of similarity instead of dissimilarity. For example, the asymmetric binary similarity between the
objects i and j can be computed as

sim(i, j) = q

q + r + s
= 1 − d(i, j). (2.20)

The coefficient sim(i, j) of Eq. (2.20) is called the Jaccard coefficient and is popularly referenced in
the literature.

When both symmetric and asymmetric binary attributes occur in the same data set, the approach for
mixed attributes described in Section 2.3.6 can be applied.

Example 2.19. Dissimilarity between binary attributes. Suppose that a patient record table (Ta-
ble 2.6) contains the attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where name
is an object identifier, gender is a symmetric binary attribute, and the remaining attributes are asym-
metric binary.

For asymmetric binary attribute values, let the values Y (yes) and P (positive) be set to 1, and the
value N (no or negative) be set to 0. Suppose that the distance between objects (patients) is computed
based only on the asymmetric binary attributes. According to Eq. (2.19), the distance between each pair
of the three patients—Jack, Mary, and Jim—is

d(Jack, Jim) = 1 + 1

1 + 1 + 1
= 0.67,

d(Jack,Mary) = 0 + 1

2 + 0 + 1
= 0.33,

d(Jim,Mary) = 1 + 2

1 + 1 + 2
= 0.75.

These measurements suggest that Jim and Mary are unlikely to have a similar disease because they
have the highest dissimilarity value among the three pairs. Of the three patients, Jack and Mary are the
most likely to have a similar disease.

Table 2.6 Relational table where patients are described
by binary attributes.

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N

Jim M Y Y N N N N

Mary F Y N P N P N
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
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2.3.4 Dissimilarity of numeric data: Minkowski distance
In this section, we describe distance measures that are commonly used for computing the dissimilarity
of objects described by numeric attributes. These measures include the Euclidean, Manhattan, and
Minkowski distances.

In some cases, the data are normalized before applying distance calculations. This involves trans-
forming the data to fall within a smaller or common range, such as [−1.0,1.0] or [0.0, 1.0]. Consider a
height attribute, for example, which could be measured in either meters or inches. In general, express-
ing an attribute in smaller units will lead to a larger range for that attribute and thus tend to give such
attributes greater effect or “weight.” Normalizing the data attempts to give all attributes an equal weight.
It may or may not be useful in a particular application. Methods for normalizing data are discussed in
detail in Section 2.5 on data transformation.

The most popular distance measure is Euclidean distance (i.e., straight line or “as the crow flies”).
Let i = (xi1, xi2, . . . , xip) and j = (xj1, xj2, . . . , xjp) be two objects described by p numeric attributes.
The Euclidean distance between objects i and j is defined as

d(i, j) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + · · · + (xip − xjp)2. (2.21)

Another well-known measure is the Manhattan (or city block) distance, named so because it is the
distance in blocks between any two points in a city (such as 2 blocks down and 3 blocks over for a total
of 5 blocks). It is defined as

d(i, j) = |xi1 − xj1| + |xi2 − xj2| + · · · + |xip − xjp|. (2.22)

Both the Euclidean and the Manhattan distance satisfy the following mathematical properties:

Nonnegativity: d(i, j) ≥ 0: Distance is a nonnegative number.
Identity of indiscernibles: d(i, i) = 0: The distance of an object to itself is 0.
Symmetry: d(i, j) = d(j, i): Distance is a symmetric function.
Triangle inequality: d(i, j) ≤ d(i, k) + d(k, j): Going directly from object i to object j in space is

no more than making a detour over any other object k.

A measure that satisfies these conditions is known as metric. Please note that the nonnegativity property
is implied by the other three properties.

Example 2.20. Euclidean distance and Manhattan distance. Let x1 = (1, 2) and x2 = (3, 5) represent
two objects as shown in Fig. 2.10. The Euclidean distance between the two is

√
22 + 32 = 3.61. The

Manhattan distance between the two is 2 + 3 = 5.

Minkowski distance is a generalization of the Euclidean and Manhattan distances. It is defined as

d(i, j) = h

√
|xi1 − xj1|h + |xi2 − xj2|h + · · · + |xip − xjp|h, (2.23)

where h is a real number such that h ≥ 1. (Such a distance is also called Lp norm in some literature,
where the symbol p refers to our notation of h. We have kept p as the number of attributes to be
consistent with the rest of this chapter.) It represents the Manhattan distance when h = 1 (i.e., L1 norm)
and Euclidean distance when h = 2 (i.e., L2 norm).
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FIGURE 2.10

Euclidean, Manhattan, and supremum distances between two objects.

The supremum distance (also referred to as Lmax , L∞ norm, and the Chebyshev distance) is a
generalization of the Minkowski distance for h → ∞. To compute it, we find the attribute f that gives
the maximum difference in values between the two objects. This difference is the supremum distance,
defined more formally as:

d(i, j) = lim
h→∞

⎛
⎝ p∑

f =1

|xif − xjf |h
⎞
⎠

1
h

= p
max

f
|xif − xjf |. (2.24)

The L∞ norm is also known as the uniform norm.

Example 2.21. Supremum distance. Let’s use the same two objects, x1 = (1, 2) and x2 = (3, 5), as in
Fig. 2.10. The second attribute gives the greatest difference between the values for the objects. That is,
max{(|3 − 1|, |5 − 2|} = 3. This is the supremum distance between the two objects.

If each attribute is assigned a weight according to its perceived importance, the weighted Euclidean
distance can be computed as

d(i, j) =
√

w1|xi1 − xj1|2 + w2|xi2 − xj2|2 + · · · + wm|xip − xjp|2. (2.25)

Weighting can also be applied to other distance measures as well.

2.3.5 Proximity measures for ordinal attributes
The values of an ordinal attribute have a meaningful order or ranking about them, yet the magnitude be-
tween successive values is unknown (Section 2.1.3). An example includes the sequence small, medium,
large for a size attribute. Ordinal attributes may also be obtained from the discretization of numeric
attributes by splitting the value range into a finite number of categories. These categories are organized
into ranks. That is, the range of a numeric attribute can be mapped to an ordinal attribute f having Mf
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states. For example, the range of the interval-scaled attribute temperature (in Celsius) can be organized
into the following states: −30 to −10, −10 to 10, and 10 to 30, representing the categories cold tem-
perature, moderate temperature, and warm temperature, respectively. Let Mf represent the number of
possible states that an ordinal attribute can have. These ordered states define the ranking 1, . . . ,Mf .

“How are ordinal attributes handled?” The treatment of ordinal attributes is quite similar to that of
numeric attributes when computing dissimilarity between objects. Suppose that f is an attribute from a
set of ordinal attributes describing n objects. The dissimilarity computation with respect to f involves
the following steps:

1. The value of f for the ith object is xif , and f has Mf ordered states, representing the ranking
1, . . . ,Mf . Replace each xif by its corresponding rank, rif ∈ {1, . . . ,Mf }.

2. Since each ordinal attribute can have a different number of states, it is often necessary to map the
range of each attribute onto [0.0, 1.0] so that each attribute has equal weight. We perform such data
normalization by replacing the rank rif of the ith object in the f th attribute by

zif = rif − 1

Mf − 1
. (2.26)

3. Dissimilarity can then be computed using any of the distance measures described in Section 2.3.4
for numeric attributes, using zif to represent the f value for the ith object.

Example 2.22. Dissimilarity between ordinal attributes. Suppose that we have the sample data
shown earlier in Table 2.4, except that this time only the object-identifier and the continuous ordi-
nal attribute, test-2, are available. There are three states for test-2: fair, good, and excellent, that is,
Mf = 3. For step 1, if we replace each value for test-2 by its rank, the four objects are assigned the
ranks 3, 1, 2, and 3, respectively. Step 2 normalizes the ranking by mapping rank 1 to 0.0, rank 2 to
0.5, and rank 3 to 1.0. For step 3, we can use, say, the Euclidean distance defined in Eq. (2.21), which
results in the following dissimilarity matrix:⎡

⎢⎢⎣
0

1.0 0
0.5 0.5 0
0 1.0 0.5 0

⎤
⎥⎥⎦ .

Therefore objects 1 and 2 are the most dissimilar, as are objects 2 and 4 (i.e., d(2,1) = 1.0 and d(4,2) =
1.0). This makes intuitive sense since objects 1 and 4 are both excellent. Object 2 is fair, which is at the
opposite end of the range of values for test-2.

Similarity values for ordinal attributes can be interpreted from dissimilarity as sim(i, j) = 1 −
d(i, j).

2.3.6 Dissimilarity for attributes of mixed types
Sections 2.3.2 through 2.3.5 discussed how to compute the dissimilarity between objects described by
attributes of the same type, where these types may be either nominal, symmetric binary, asymmetric
binary, numeric, or ordinal. However, in many real databases, objects are described by a mixture of
attribute types. In general, a database can contain all of these attribute types.
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“So, how can we compute the dissimilarity between objects of mixed attribute types?” One approach
is to group each type of attributes together, performing separate data mining (e.g., clustering) analysis
for each type. This is feasible if these analyses derive compatible results. However, in real applications,
it is unlikely that a separate analysis per attribute type will generate compatible results.

A more preferable approach is to process all attribute types together, performing a single analysis.
One such technique combines the different attributes into a single dissimilarity matrix, bringing all of
the meaningful attributes onto a common scale of the interval [0.0, 1.0].

Suppose that the data set contains p attributes of mixed types. The dissimilarity d(i, j) between
objects i and j is defined as

d(i, j) =
∑p

f =1 δ
(f )
ij d

(f )
ij∑p

f =1 δ
(f )
ij

, (2.27)

where the indicator δ
(f )
ij = 0 if either (1) xif or xjf is missing (i.e., there is no measurement of attribute

f for object i or object j ), or (2) xif = xjf = 0 and attribute f is asymmetric binary; otherwise, δ
(f )
ij =

1. The contribution of attribute f to the dissimilarity between i and j (i.e., d(f )
ij ) is computed dependent

on its type:

• If f is numeric: d
(f )
ij = |xif −xjf |

maxf −minf
, where maxf and minf are the maximum and minimum values

of attribute f , respectively;
• If f is nominal or binary: d

(f )
ij = 0 if xif = xjf ; otherwise, d

(f )
ij = 1; and

• If f is ordinal: compute the ranks rif and zif = rif −1
Mf −1 , and treat zif as numeric.

These steps are identical to what we have already seen for each of the individual attribute types. The
only difference is for numeric attributes, where we normalize so that the values map to the interval [0.0,
1.0]. Thus the dissimilarity between objects can be computed even when the attributes describing the
objects are of different types.

Example 2.23. Dissimilarity between attributes of mixed types. Let’s compute a dissimilarity matrix
for the objects in Table 2.4. Now we will consider all of the attributes, which are of different types. In
Examples 2.18 and 2.22, we worked out the dissimilarity matrices for each of the individual attributes.
The procedures we followed for test-1 (which is nominal) and test-2 (which is ordinal) are the same as
outlined earlier for processing attributes of mixed types. Therefore we can use the dissimilarity matrices
obtained for test-1 and test-2 later when we compute Eq. (2.27). First, however, we need to compute
the dissimilarity matrix for the third attribute, test-3 (which is numeric). That is, we must compute
d

(3)
ij . Following the case for numeric attributes, we let maxhxh = 64 and minhxh = 22. The difference

between the two is used in Eq. (2.27) to normalize the values of the dissimilarity matrix. The resulting
dissimilarity matrix for test-3 is ⎡

⎢⎢⎣
0

0.55 0
0.45 1.00 0
0.40 0.14 0.86 0

⎤
⎥⎥⎦ .
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We can now use the dissimilarity matrices for the three attributes in our computation of Eq. (2.27). The
indicator δ

(f )
ij = 1 for each of the three attributes, f . We get, for example, d(3,1)= 1(1)+1(0.50)+1(0.45)

3 =
0.65. The resulting dissimilarity matrix obtained for the data described by the three attributes of mixed
types is:

⎡
⎢⎢⎣

0
0.85 0
0.65 0.83 0
0.13 0.71 0.79 0

⎤
⎥⎥⎦ .

From Table 2.4, we can intuitively guess that objects 1 and 4 are the most similar, based on their values
for test-1 and test-2. This is confirmed by the dissimilarity matrix, where d(4,1) is the lowest value for
any pair of different objects. Similarly, the matrix indicates that objects 1 and 2 are the least similar.

2.3.7 Cosine similarity
Cosine similarity measures the similarity between two vectors of an inner product space. It is measured
by the cosine of the angle between two vectors and determines whether two vectors are pointing in
roughly the same direction. It is often used to measure document similarity in text analysis.

A document can be represented by thousands of attributes, each recording the frequency of a partic-
ular word (such as a keyword) or phrase in the document. Thus each document is an object represented
by what is called a term-frequency vector. For example, in Table 2.7, we see that Document1 contains
five instances of the word team, whereas hockey occurs three times. The word coach is absent from the
entire document, as indicated by a count value of 0. Such data can be highly asymmetric.

Term-frequency vectors are typically very long and sparse (i.e., they have many 0 values). Applica-
tions using such structures include information retrieval, text document clustering, and biological data
analysis. The traditional distance measures that we have studied in this chapter do not work well for
such sparse numeric data. For example, two term-frequency vectors may have many 0 values in com-
mon, meaning that the corresponding documents do not share many words, but this does not make them
similar. We need a measure that will focus on the words that the two documents do have in common,
and the occurrence frequency of such words. In other words, we need a measure for numeric data that
ignores zero-matches.

Cosine similarity is a measure of similarity that can be used to compare documents or, say, give
a ranking of documents with respect to a given vector of query words. Let x and y be two vectors for

Table 2.7 Document vector or term-frequency vector.

Document Team Coach Hockey Baseball Soccer Penalty Score Win Loss Season
Document1 5 0 3 0 2 0 0 2 0 0

Document2 3 0 2 0 1 1 0 1 0 1

Document3 0 7 0 2 1 0 0 3 0 0

Document4 0 1 0 0 1 2 2 0 3 0
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comparison. Using the cosine measure as a similarity function, we have

sim(x,y) = x · y
||x||||y|| , (2.28)

where ||x|| is the Euclidean norm of vector x = (x1, x2, . . . , xp), defined as
√

x2
1 + x2

2 + · · · + x2
p. Con-

ceptually, it is the length of the vector. Similarly, ||y|| is the Euclidean norm of vector y. The measure
computes the cosine of the angle between vectors x and y. A cosine value of 0 means that the two vec-
tors are at 90 degrees to each other (orthogonal) and have no match. The closer the cosine value to 1,
the smaller the angle and the greater the match between vectors. Note that because the cosine similarity
measure does not obey all of the properties of Section 2.3.4 defining metric measures, it is referred to
as a nonmetric measure.

Example 2.24. Cosine similarity between two term-frequency vectors. Suppose that x and y
are the first two term-frequency vectors in Table 2.7. That is, x = (5,0,3,0,2,0,0,2,0,0) and
y = (3,0,2,0,1,1,0,1,0,1). How similar are x and y? Using Eq. (2.28) to compute the cosine simi-
larity between the two vectors, we get:

x · y = 5 × 3 + 0 × 0 + 3 × 2 + 0 × 0 + 2 × 1 + 0 × 1 + 0 × 0 + 2 × 1

+ 0 × 0 + 0 × 1 = 25

||x|| =
√

52 + 02 + 32 + 02 + 22 + 02 + 02 + 22 + 02 + 02 = 6.48

||y|| =
√

32 + 02 + 22 + 02 + 12 + 12 + 02 + 12 + 02 + 12 = 4.12

sim(x,y) = 0.94.

Therefore if we were using the cosine similarity measure to compare these documents, they would be
considered quite similar.

When attributes are binary-valued, the cosine similarity function can be interpreted in terms of
shared features or attributes. Suppose an object x possesses the ith attribute if xi = 1. Then x · y is the
number of attributes possessed (i.e., shared) by both x and y, and ||x|| and ||y|| are the geometric mean
of the number of attributes possessed by x and that by y respectively. Thus, sim(x,y) is a measure of
relative possession of common attributes.

A simple variation of cosine similarity for the preceding scenario is

sim(x,y) = x · y
x · x + y · y − x · y , (2.29)

which is the ratio of the number of attributes shared by x and y to the number of attributes possessed
by x or y. This function, known as the Tanimoto coefficient or Tanimoto distance, is frequently used
in information retrieval and biology taxonomy.

2.3.8 Measuring similar distributions: the Kullback-Leibler divergence
Finally, we introduce Kullback-Leibler divergence, or simply, the KL divergence, a measure that has
been popularly used in the data mining literature to measure the difference between two probability
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distributions over the same variable x. This concept was originated in probability theory and informa-
tion theory.

The KL divergence, which is closely related to relative entropy, information divergence, and infor-
mation for discrimination, is a nonsymmetric measure of the difference between two probability distri-
butions p(x) and q(x). Specifically, the KL divergence of q(x) from p(x), denoted DKL(p(x)||q(x)),
is a measure of the information loss when q(x) is used to approximate p(x).

Let p(x) and q(x) be two probability distributions of a discrete random variable x. That is, both
p(x) and q(x) sum up to 1, and p(x) > 0 and q(x) > 0 for any x in X. DKL(p(x)||q(x)) is defined in
Eq. (2.30).

DKL(p(x)||q(x)) =
∑
x∈X

p(x) ln
p(x)

q(x)
(2.30)

The KL divergence measures the expected number of extra bits required to code samples from p(x)

when using a code based on q(x) rather than using a code based on p(x). Typically p(x) represents the
“true” distribution of data, observations, or a precisely calculated theoretical distribution. The measure
q(x) typically represents a theory, model, description, or approximation of p(x).

The continuous version of the KL divergence is

DKL(p(x)||q(x)) =
∫ ∞

−∞
p(x) ln

p(x)

q(x)
dx. (2.31)

Although the KL divergence measures the “distance” between two distributions, it is not a dis-
tance measure. This is because that the KL divergence is not a metric measure. It is not symmetric:
the KL from p(x) to q(x) is generally not the same as the KL from q(x) to p(x). Furthermore,
it need not satisfy triangular inequality. Nevertheless, DKL(p(x)||q(x)) is a nonnegative measure.
DKL(p(x)||q(x)) ≥ 0 and DKL(p(x)||q(x)) = 0 if and only if p(x) = q(x).

Notice that attention should be paid when computing the KL divergence. We know limp(x)→0
p(x) logp(x) = 0. However, when p(x) 
= 0 but q(x) = 0, DKL(p(x)||q(x)) is defined as ∞. This
means that if one event e is possible (i.e., p(e) > 0), and the other predicts it is absolutely impossible
(i.e., q(e) = 0), then the two distributions are absolutely different. However, in practice, two distribu-
tions P and Q are derived from observations and sample counting, that is, from frequency distributions.
It is unreasonable to predict in the derived probability distribution that an event is completely impos-
sible since we must take into account the possibility of unseen events. A smoothing method can be
used to derive the probability distribution from an observed frequency distribution, as illustrated in the
following example.

Example 2.25. Computing the KL divergence by smoothing. Suppose there are two sample distri-
butions P and Q as follows: P : (a : 3/5, b : 1/5, c : 1/5) and Q : (a : 5/9, b : 3/9, d : 1/9). To compute
the KL divergence DKL(P ||Q), we introduce a small constant ε, for example ε = 10−3, and define a
smoothed version of P and Q, P ′ and Q′, as follows.

The sample set observed in P , SP = {a, b, c}. Similarly, SQ = {a, b, d}. The union set is SU =
{a, b, c, d}. By smoothing, the missing symbols can be added to each distribution accordingly, with the
small probability ε. Thus we have P ′ : (a : 3/5 − ε/3, b : 1/5 − ε/3, c : 1/5 − ε/3, d : ε) and Q′ : (a :
5/9 − ε/3, b : 3/9 − ε/3, c : ε, d : 1/9 − ε/3). DKL(P ′,Q′) can be computed easily.
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2.3.9 Capturing hidden semantics in similarity measures
Similarity measure is a fundamental concept in data mining. We have introduced multiple measures for
computing similarities among objects consisting of numerical attribute, symmetric and asymmetric
binary attribute, ordinal attribute, and nominal attribute. We have also introduced how to compute
document similarity using the vector space model, and how to compare two distributions using the
notion of KL divergence. These notions and measures on object similarity will be used substantially in
our subsequent studies on methods for pattern discovery, classification, clustering, and outlier analysis.

In real-life applications, we may encounter the notion of object similarity beyond what we have
discussed in this chapter. Even for simple objects, similarities among objects are often closely related
to their semantic meanings, which cannot be captured based on the above defined similarity measures.
For example, people often consider geometry and algebra are more similar than geometry vs. music or
politics, even all are subjects studied in schools. Moreover, documents that consist of similar frequency
distributions of words (or similar bags of words) may express rather different meanings (e.g., consider-
ing “The cat bites a mouse” vs. “The mouse bites a cat”). This goes beyond what a vector space model
(i.e., expressing words as a set of vectors in a high-dimensional vector space as shown in Section 2.3.7)
can handle. Furthermore, objects can be composed of rather complex structures and connections. Sim-
ilarity measures for graphs and networks may need to be introduced, which is beyond the notions of
object similarity introduced here.

In the upcoming chapters, we will introduce additional similarity measures when encountered along
with the problems and methods to be discussed. In particular, in Chapter 12, we will briefly introduce
the notion of distributive representation and representation learning, where text embedding and deep
learning will be used to compute such advanced notion of similarities.

2.4 Data quality, data cleaning, and data integration
In this section, we start with a discussion of data quality measures (Section 2.4.1). Then, we introduce
common techniques for data cleaning (Section 2.4.2) and data integration (Section 2.4.3).

2.4.1 Data quality measures
Data have quality if they satisfy the requirements of the intended use. There are many factors com-
prising data quality, including accuracy, completeness, consistency, timeliness, believability, and in-
terpretability.

Imagine that you are a manager at an online webstore and have been charged with analyzing the
company’s data with respect to your branch’s sales. You immediately set out to perform this task. You
carefully inspect the company’s database and data warehouse, identifying and selecting the attributes
or dimensions (e.g., item, price, and units_sold) to be included in your analysis. Alas! You notice that
several of the attributes for various tuples have no recorded values. For your analysis, you would like to
include information as to whether each item purchased was advertised as on sale, yet you discover that
this information has not been recorded. Furthermore, users of your database system have reported er-
rors, unusual values, and inconsistencies in the data recorded for some transactions. In other words, the
data you wish to analyze by data mining techniques are incomplete (lacking attribute values or certain
attributes of interest, or containing only aggregate data); inaccurate or noisy (containing errors, or val-
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ues that deviate from the expected); and inconsistent (e.g., containing discrepancies in the department
codes used to categorize items). Welcome to the real world!

This scenario illustrates three of the elements defining data quality: accuracy, completeness, and
consistency. Inaccurate, incomplete, and inconsistent data are commonplace properties of large real-
world databases and data warehouses. There are many possible reasons for inaccurate data (i.e., having
incorrect attribute values). The data collection instruments used may be faulty. There may have been
human or computer errors occurring at data entry. Users may purposely submit incorrect data values
for mandatory fields when they do not wish to submit personal information (e.g., by choosing the de-
fault value “January 1” displayed for birthday). This is known as disguised missing data. Errors in data
transmission can also occur. There may be technology limitations such as limited buffer size for coordi-
nating synchronized data transfer and consumption. Incorrect data may also result from inconsistencies
in naming conventions or data codes or inconsistent formats for input fields (e.g., date). Duplicate tuples
also require data cleaning.

Incomplete data can occur for a number of reasons. Attributes of interest may not always be avail-
able, such as customer information for sales transaction data. Other data may not be included simply
because they were not considered important at the time of entry. Relevant data may not be recorded due
to a misunderstanding or because of equipment malfunctions. Data that were inconsistent with other
recorded data may have been deleted. Furthermore, the recording of the data history or modifications
may have been overlooked. Missing data, particularly for tuples with missing values for some attributes,
may need to be inferred.

Recall that data quality depends on the intended use of the data. Two different users may have very
different assessments of the quality of a given database. For example, a marketing analyst may need
to access the database mentioned before for a list of customer addresses. Some of the addresses are
outdated or incorrect, yet overall, 80% of the addresses are accurate. The marketing analyst considers
this to be a large customer database for target marketing purposes and is pleased with the database’s
accuracy, although as sales manager, you found the data inaccurate.

Timeliness also affects data quality. Suppose that you are overseeing the distribution of monthly
sales bonuses to the top sales representatives in a company. Several sales representatives, however,
fail to submit their sales records on time at the month-end. There are also a number of corrections and
adjustments that flow in after the month-end. For a period of time following each month, the data stored
in the database are incomplete. However, once all of the data are received, it is correct. The fact that the
month-end data are not updated in a timely fashion has a negative impact on the data quality.

Two other factors affecting data quality are believability and interpretability. Believability reflects
how much the data are trusted by users, whereas interpretability reflects how easily the data are under-
stood. Suppose that a database, at one point, had several errors, all of which have since been corrected.
The past errors, however, had caused many problems for sales department users, and so they no longer
trust the data. The data also use many accounting codes, which the sales department does not know
how to interpret. Even though the database is now accurate, complete, consistent, and timely, sales
department users may regard it as of low quality due to poor believability and interpretability.

2.4.2 Data cleaning
Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or data cleansing)
routines attempt to fill in missing values, smooth out noise while identifying outliers, and correct in-
consistencies in the data. In this section, you will study basic methods for data cleaning. First, we look
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at ways of handling missing values. Then, we explain data smoothing techniques. Finally, we discuss
approaches to data cleaning as a process.

Missing values
Imagine that you need to analyze the sales and customer data of a company. You note that many tuples
have no recorded value for several attributes such as customer income. How can you go about filling in
the missing values for this attribute? Let’s look at the following methods.

1. Ignore the tuple: This is usually done when the class label is missing (assuming the mining task
involves classification). This method is not very effective, unless the tuple contains several attributes
with missing values. It is especially poor when the percentage of missing values per attribute varies
considerably. By ignoring the tuple, we do not make use of the remaining attributes’ values in the
tuple. Such data could have been useful to the task at hand.

2. Fill in the missing value manually: In general, this approach is time consuming and may not be
feasible given a large data set with many missing values.

3. Use a global constant to fill in the missing value: Replace all missing attribute values by the same
constant such as a label like “Unknown” or −∞. If missing values are replaced by, say, “Unknown,”
then the mining program may mistakenly think that they form an interesting concept, since they all
have a value in common—that of “Unknown.” Hence, although this method is simple, it is not
foolproof.

4. Use a measure of central tendency for the attribute (e.g., the mean or median) to fill in the miss-
ing value: Section 2.2 discussed measures of central tendency, which indicate the “middle” value
of a data distribution. For normal (symmetric) data distributions, the mean can be used, whereas
skewed data distribution should employ the median (Section 2.2). For example, suppose that the
data distribution regarding the income of the customers is symmetric and that the mean income is
$56,000. Use this value to replace the missing value for income.

5. Use the attribute mean or median for all samples belonging to the same class as the given
tuple: For example, if classifying customers according to credit_risk, we may replace the missing
value with the mean income value for customers in the same credit risk category as that of the given
tuple. If the data distribution for a given class is skewed, the median value is a better choice.

6. Use the most probable value to fill in the missing value: This may be determined with regression,
inference-based tools using a Bayesian formalism or decision tree induction. For example, using the
other customer attributes in your data set, you may construct a decision tree to predict the missing
values for income. Decision trees, regression, and Bayesian inference are described in detail in
Chapters 6 and 7.

Methods 3 through 6 bias the data—the filled-in value may not be correct. Method 6, however, is a
popular strategy. In comparison to the other methods, it uses the most information from the present data
to predict missing values. By considering the values of other attributes in its estimation of the missing
value for income, there is a greater chance that the relationships between income and the other attributes
are preserved.

It is important to note that, in some cases, a missing value may not imply an error in the data!
For example, when applying for a credit card, candidates may be asked to supply their driver’s license
number. Candidates who do not have a driver’s license may naturally leave this field blank. Forms
should allow respondents to specify values such as “not applicable.” Software routines may also be
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used to uncover other null values (e.g., “don’t know,” “?”, or “none”). Ideally, each attribute should
have one or more rules regarding the null condition. The rules may specify whether or not nulls are
allowed and/or how such values should be handled or transformed. Fields may also be intentionally
left blank if they are to be provided in a later step of the business process. Hence, although we can try
our best to clean the data after it is seized, good database and data entry procedure design should help
minimize the number of missing values or errors in the first place.

Noisy data
“What is noise?” Noise is a random error or variance in a measured variable. Given a numeric attribute
such as, say, price, how can we “smooth” out the data to remove the noise? Let’s look at the following
data smoothing techniques.

Binning: Binning methods smooth a sorted data value by consulting its “neighborhood,” that is, the
values around it. The sorted values are distributed into a number of “buckets,” or bins. Because
binning methods consult the neighborhood of values, they perform local smoothing. Fig. 2.11 il-
lustrates some binning techniques. In this example, the data for price are first sorted and then
partitioned into equal-frequency bins of size 3 (i.e., each bin contains three values). In smoothing
by bin means, each value in a bin is replaced by the mean value of the bin. For example, the mean
of the values 4, 8, and 15 in Bin 1 is 9. Therefore each original value in this bin is replaced by the
value 9.
Similarly, smoothing by bin medians can be employed, in which each bin value is replaced by the
bin median. In smoothing by bin boundaries, the minimum and maximum values in a given bin
are identified as the bin boundaries. Each bin value is then replaced by the closest boundary value.
In general, the larger the width, the greater the effect of the smoothing. Alternatively, bins may be

Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15
Bin 2: 21, 21, 24
Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9
Bin 2: 22, 22, 22
Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15
Bin 2: 21, 21, 24
Bin 3: 25, 25, 34

FIGURE 2.11

Data smoothing with different binning methods.
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equal width, where the interval range of values in each bin is constant. Binning is also used as a
discretization technique.

Regression: Data smoothing can also be done by regression, a technique that conforms data values
to a function. Linear regression involves finding the “best” line to fit two attributes (or variables) so
that one attribute can be used to predict the other. Multiple linear regression is an extension of linear
regression, where more than two attributes are involved, and the data are fit to a multidimensional
surface. Regression is further described in Chapter 6.

Outlier analysis: Outliers may be detected by clustering, for example, where similar values are or-
ganized into groups or “clusters.” Intuitively, values that fall outside of the set of clusters may be
considered as outliers (Fig. 2.12). Chapter 11 is dedicated to the topic of outlier analysis.

Many data smoothing methods are also used for data discretization (a form of data transformation)
and data reduction. For example, the binning techniques described before reduce the number of distinct
values per attribute. This acts as a form of data reduction for logic-based data mining methods, such as
decision tree induction, which repeatedly makes value comparisons on sorted data. Concept hierarchies
are a form of data discretization that can also be used for data smoothing. A concept hierarchy for
price, for example, may map real price values into inexpensive, moderately_priced, and expensive,
thereby reducing the number of data values to be handled by the mining process. Data discretization is
discussed in Section 2.5.2. Some methods of classification have built-in data smoothing mechanisms.
Classification is the topic of Chapters 6 and 7.

FIGURE 2.12

A 2-D customer data plot with respect to customer locations in a city, showing three data clusters. Outliers may be
detected as values that fall outside of the cluster sets.
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Data cleaning as a process
Missing values, noise, and inconsistencies contribute to inaccurate data. So far, we have looked at
techniques for handling missing data and for smoothing data. “But data cleaning is a big job. What
about data cleaning as a process? How exactly does one proceed in tackling this task? Are there any
tools out there to help?”

The first step in data cleaning as a process is discrepancy detection. Discrepancies can be caused by
several factors, including poorly designed data entry forms that have many optional fields, human error
in data entry, deliberate errors (e.g., respondents not wanting to divulge information about themselves),
and data decay (e.g., outdated addresses). Discrepancies may also arise from inconsistent data represen-
tations and inconsistent use of codes. Other sources of discrepancies include errors in instrumentation
devices that record data and system errors. Errors can also occur when the data are (inadequately) used
for purposes other than originally intended. There may also be inconsistencies due to data integration
(e.g., where a given attribute can have different names in different databases).1

“So, how can we proceed with discrepancy detection?” As a starting point, use any knowledge you
may already have regarding properties of the data. Such knowledge or “data about data” is referred to
as metadata. This is where we can make use of the knowledge we gained about our data in the earlier
sections. For example, what are the data type and domain of each attribute? What are the acceptable
values for each attribute? The basic statistical data descriptions discussed in Section 2.2 are useful here
to grasp data trends and identify anomalies. For example, find the mean, median, and mode values.
Are the data symmetric or skewed? What is the range of values? Do all values fall within the expected
range? What is the standard deviation of each attribute? For Gaussian-like distributions, values that are
more than two standard deviations away from the mean for a given attribute may be flagged as potential
outliers. Are there any known dependencies between attributes? In this step, you may write your own
scripts and/or use some of the tools that we discuss further later. From this, you may find noise, outliers,
and unusual values that need investigation.

As a data analyst, you should be on the lookout for the inconsistent use of codes and any inconsistent
data representations (e.g., “2010/12/25” and “25/12/2010” for date). Field overloading is another error
source that typically results when developers squeeze new attribute definitions into unused (bit) portions
of already defined attributes (e.g., an unused bit of an attribute that has a value range that uses only, say,
31 out of 32 bits).

The data should also be examined regarding uniqueness, consecutiveness, and null conditions. A
uniqueness rule says that each value of the given attribute must be different from all other values for
that attribute. A consecutiveness rule says that there can be no missing values between the lowest and
highest values for the attribute, and that all values must also be unique (e.g., as in check numbers). A
null condition rule specifies the use of blanks, question marks, special characters, or other strings that
may indicate the null condition (e.g., where a value for a given attribute is not available), and how such
values should be handled. As mentioned earlier, reasons for missing values may include: (1) the person
originally asked to provide a value for the attribute refuses and/or finds that the information requested
is not applicable (e.g., a license_number attribute left blank by nondrivers); (2) the data entry person
does not know the correct value; or (3) the value is to be provided by a later step of the process. The
null rule should specify how to record the null condition, for example, such as to store zero for numeric

1 Data integration and the removal of redundant data that can result from such integration are further described in Section 2.4.3.
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attributes, a blank for categorical attributes, or any other conventions that may be in use (e.g., entries
like “don’t know” or “?” should be transformed to blank).

There are a number of different commercial tools that can aid in the discrepancy detection step.
Data scrubbing tools use simple domain knowledge (e.g., knowledge of postal addresses and spell-
checking) to detect errors and make corrections in the data. These tools rely on parsing and fuzzy
matching techniques when cleaning data from multiple sources. Data auditing tools find discrepancies
by analyzing the data to discover rules and relationships, and detecting data that violate such condi-
tions. They are variants of data mining tools. For example, they may employ statistical analysis to find
correlations, or clustering to identify outliers. They may also use the basic statistical data descriptions
presented in Section 2.2.

Some data inconsistencies may be corrected manually using external references. For example, errors
made at data entry may be corrected by performing a paper trace. Most errors, however, will require
data transformations. That is, once we find discrepancies, we typically need to define and apply (a
series of) transformations to correct them.

Commercial tools can assist in the data transformation step. Data migration tools allow simple
transformations to be specified such as to replace the string “gender” by “sex.” ETL (extraction/trans-
formation/loading) tools allow users to specify transforms through a graphical user interface (GUI).
These tools typically support only a restricted set of transformations so that often we may also choose
to write custom scripts for this step of the data cleaning process.

The two-step process of discrepancy detection and data transformation (to correct discrepancies)
iterates. This process, however, is error-prone and time-consuming. Some transformations may intro-
duce more discrepancies. Some nested discrepancies may only be detected after others have been fixed.
For example, a typo such as “20010” in a year field may only surface once all date values have been
converted to a uniform format. Transformations are often done as a batch process while the user waits
without feedback. Only after the transformation is complete can the user go back and check that no new
anomalies have been mistakenly created. Typically, numerous iterations are required before the user is
satisfied. Any tuples that cannot be automatically handled by a given transformation are typically writ-
ten to a file without any explanation regarding the reasoning behind their failure. As a result, the entire
data cleaning process also suffers from a lack of interactivity.

New approaches to data cleaning emphasize increased interactivity. Potter’s Wheel, for example, is
a publicly available data cleaning tool that integrates discrepancy detection and transformation. Users
gradually build a series of transformations by composing and debugging individual transformations, one
step at a time, on a spreadsheet-like interface. The transformations can be specified graphically or by
providing examples. Results are shown immediately on the records that are visible on the screen. The
user can choose to undo the transformations, so that transformations that have introduced additional
errors can be “erased.” The tool automatically performs discrepancy checking in the background on
the latest transformed view of the data. Users can gradually develop and refine transformations as
discrepancies are found, leading to more effective and efficient data cleaning. Section 2.5 will introduce
some common data transformation techniques, including normalization, discretization, compression,
and sampling.

Another approach to increasing interactivity in data cleaning is the development of declarative lan-
guages for the specification of data transformation operators. Such work focuses on defining powerful
extensions to SQL and algorithms that enable users to express data cleaning specifications efficiently.
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As we discover more about the data, it is important to keep updating the metadata to reflect this
knowledge. This will help speed up data cleaning on future versions of the same data store.

2.4.3 Data integration
Data mining often requires data integration—the merging of data from multiple data stores. Careful
integration can help reduce and avoid redundancies and inconsistencies in the resulting data set. This
can help improve the accuracy and speed of the subsequent data mining process.

The semantic heterogeneity and structure of data pose great challenges in data integration. In this
section, we first introduce the entity identification problem, which matches schema and objects from
different sources. Then, we present correlation tests for spotting correlated numeric and nominal data.
Finally, we introduce tuple duplication and the detection and resolution of data value conflicts.

Entity identification problem
It is likely that your data analysis task will involve data integration, which combines data from mul-
tiple sources into a coherent data store, as in data warehousing. These sources may include multiple
databases, data cubes, or flat files.

There are a number of issues to consider during data integration. Schema integration and object
matching can be tricky. How can equivalent real-world entities from multiple data sources be matched
up? This is referred to as the entity identification problem. For example, how can a data analyst or
a computer be sure that customer_id in one database and cust_number in another refer to the same
attribute? Moreover, metadata may be used to help entity identification (e.g., data codes for pay_type
in one database may be “H” and “S” but 1 and 2 in another). Examples of metadata for each attribute
include the name, meaning, data type, range of values permitted for the attribute, and null rules for
handling blank, zero, or null values (Section 2.4.2). Such metadata can be used to help avoid errors in
schema integration. Hence, this step also relates to data cleaning, as described earlier.

When matching attributes from one database to another during integration, special attention must
be paid to the structure of the data. This is to ensure that any attribute functional dependencies and
referential constraints in the source system match those in the target system. For example, in one system,
a discount may be applied to the order, whereas in another system, it is applied to each individual
line item within the order. If this is not caught before integration, items in the target system may be
improperly discounted.

Redundancy and correlation analysis
Redundancy is another important issue in data integration. An attribute (such as annual revenue, for
instance) may be redundant if it can be “derived” from another attribute or set of attributes. Inconsis-
tencies in attribute or dimension naming can also cause redundancies in the resulting data set.

Some redundancies can be detected by correlation analysis. Given two attributes, such analysis
can measure how strongly one attribute implies the other, based on the available data. For nominal data,
we can use the χ2 (chi-square) test. For numeric attributes, we can use the correlation coefficient and
covariance, both of which assess how one attribute’s values vary from those of another.
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Tuple duplication
In addition to detecting redundancies between attributes, duplication should also be detected at the
tuple level (e.g., where there are two or more identical tuples for a given unique data entry). The use
of denormalized tables (often done to improve performance by avoiding joins) is another source of
data redundancy. Inconsistencies often arise between various duplicates, due to inaccurate data entry or
updating some but not all data occurrences. For example, if a purchase order database contains attributes
for the purchaser’s name and address instead of a key to this information in a purchaser database,
discrepancies can occur, such as the same purchaser’s name appearing with different addresses within
the purchase order database.

Data value conflict detection and resolution
Data integration also involves the detection and resolution of data value conflicts. For example, for the
same real-world entity, attribute values from different sources may differ. This may be due to differences
in representation, scaling, or encoding. For instance, a weight attribute may be stored in metric units
in one system and British imperial units in another. For a hotel chain, the price of rooms in different
cities may involve not only different currencies but also different services (e.g., free breakfast) and
taxes. When exchanging information between schools, for example, each school may have its own
curriculum and grading scheme. One university may adopt a quarter system, offer three courses on
database systems, and assign grades from A+ to F, whereas another may adopt a semester system, offer
two courses on databases, and assign grades from 1 to 10. It is difficult to work out precise course-to-
grade transformation rules between the two universities, making information exchange difficult.

Attributes may also differ on the abstraction level, where an attribute in one system is recorded at,
say, a lower abstraction level than the “same” attribute in another. For example, the total_sales in one
database may refer to one branch of the company, whereas an attribute of the same name in another
database may refer to the total sales for the stores in a given region.

The topic of discrepancy detection was described in Section 2.4.2 on data cleaning as a process.

2.5 Data transformation
In data transformation, the data are transformed or consolidated into forms appropriate for mining.
Through appropriate data transformation, the resulting mining process may be more efficient, and the
patterns found may be easier to understand. Various strategies for data transformation have been de-
veloped. In this section, we start with the introduction of data normalization (Section 2.5.1), where the
attribute data are scaled so as to fall within a smaller range, such as −1.0 to 1.0 or 0.0 to 1.0. Then, we
will learn data discretization (Section 2.5.2), which replaces the raw values of a numeric attribute (e.g.,
age) by interval labels (e.g., 0–10, 11–20, etc.) or conceptual labels (e.g., youth, adult, senior). Data
compression (Section 2.5.3) and sampling (Section 2.5.4) are two data reduction techniques that trans-
form the input data to a reduced representation that is much smaller in volume, yet closely maintains
the integrity of the original data.
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2.5.1 Normalization
The measurement unit used can affect the data analysis. For example, changing measurement units from
meters to inches for height, or from kilograms to pounds for weight, may lead to very different results.
In general, expressing an attribute in smaller units will lead to a larger range for that attribute and thus
tend to give such an attribute greater effect or “weight.” To help avoid dependence on the choice of
measurement units, the data should be normalized or standardized. This involves transforming the data
to fall within a smaller or common range such as [−1.0,1.0] or [0.0, 1.0]. (The terms standardize and
normalize are used interchangeably in data preprocessing, although in statistics, the latter term also has
other connotations.)

Normalizing the data attempts to give all attributes an equal weight. Normalization is particu-
larly useful for classification algorithms involving neural networks or distance measurements such as
nearest-neighbor classification and clustering. If using the neural network backpropagation algorithm
for classification (Chapter 10), normalizing the input values for each attribute measured in the training
tuples will help speed up the learning phase. For distance-based methods, normalization helps prevent
attributes with initially large ranges (e.g., income) from outweighing attributes with initially smaller
ranges (e.g., binary attributes). It is also useful when given no prior knowledge of the data.

There are many methods for data normalization. We study min-max normalization, z-score normal-
ization, and normalization by decimal scaling. For our discussion, let A be a numeric attribute with n

observed values, v1, v2, . . . , vn.
Min-max normalization performs a linear transformation on the original data. Suppose that minA

and maxA are the minimum and maximum values of an attribute, A. Min-max normalization maps a
value, vi , of A to v′

i in the range [new_minA,new_maxA] by computing

v′
i = vi − minA

maxA − minA

(new_maxA − new_minA) + new_minA. (2.32)

Min-max normalization preserves the relationships among the original data values. It will encounter an
“out-of-bounds” error if a future input case for normalization falls outside of the original data range
for A.

Example 2.26. Min-max normalization. Suppose that the minimum and maximum values for
the attribute income are $12,000 and $98,000, respectively. We would like to map income to
the range [0.0,1.0]. By min-max normalization, a value of $73,600 for income is transformed to
73,600−12,000
98,000−12,000 (1.0 − 0) + 0 = 0.716.

In z-score normalization (or zero-mean normalization), the values for an attribute, A, are normal-
ized based on the mean (i.e., average) and standard deviation of A. A value, vi , of A is normalized to
v′
i by computing

v′
i = vi − Ā

σA

, (2.33)

where Ā and σA are the mean and standard deviation, respectively, of attribute A. The mean and stan-
dard deviation were discussed in Section 2.2, where Ā = 1

n
(v1 + v2 + · · · + vn), and σA is computed as

the square root of the variance of A (see Eq. (2.6)). This method of normalization is useful when the
actual minimum and maximum of attribute A are unknown or when there are outliers that dominate the
min-max normalization.
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Example 2.27. z-score normalization. Suppose that the mean and standard deviation of the values
for the attribute income are $54,000 and $16,000, respectively. With z-score normalization, a value of
$73,600 for income is transformed to 73,600−54,000

16,000 = 1.225.

A variation of this z-score normalization replaces the standard deviation of Eq. (2.33) by the mean
absolute deviation of A. The mean absolute deviation of A, denoted sA, is

sA = 1

n
(|v1 − Ā| + |v2 − Ā| + · · · + |vn − Ā|). (2.34)

Thus z-score normalization using the mean absolute deviation is

v′
i = vi − Ā

sA
. (2.35)

The mean absolute deviation, sA, is more robust to outliers than the standard deviation, σA. When
computing the mean absolute deviation, the deviations from the mean (i.e., |xi − x̄|) are not squared;
hence, the effect of outliers is somewhat reduced.

Normalization by decimal scaling normalizes by moving the decimal point of values of attribute
A. The number of decimal points moved depends on the maximum absolute value of A. A value, vi , of
A is normalized to v′

i by computing

v′
i = vi

10j
, (2.36)

where j is the smallest integer such that max(|v′
i |) < 1.

Example 2.28. Decimal scaling. Suppose that the recorded values of A range from −986 to 917. The
maximum absolute value of A is 986. To normalize by decimal scaling, we therefore divide each value
by 1000 (i.e., j = 3) so that −986 normalizes to −0.986 and 917 normalizes to 0.917.

Note that normalization can change the original data quite a bit, especially when using z-score
normalization or decimal scaling. It is also necessary to save the normalization parameters (e.g., the
mean and standard deviation if using z-score normalization) so that future data can be normalized in a
uniform manner.

2.5.2 Discretization
Data discretization is a common data transformation technique, where the raw values of a numeric
attribute (e.g., age) are replaced by interval labels (e.g., 0–10, 11–20, etc.) or conceptual labels (e.g.,
youth, adult, senior). The labels, in turn, can be recursively organized into higher-level concepts, re-
sulting in a concept hierarchy for the numeric attribute. Fig. 2.13 shows a concept hierarchy for the
attribute price. More than one concept hierarchy can be defined for the same attribute to accommodate
the needs of various users.

Discretization techniques can be categorized based on how the discretization is performed, such as
whether it uses class information or which direction it proceeds (i.e., top-down vs. bottom-up). If the
discretization process uses class information, then we say it is supervised discretization. Otherwise,
it is unsupervised. If the process starts by first finding one or a few points (called split points or cut
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FIGURE 2.13

A concept hierarchy for the attribute price, where an interval ($X . . .$Y ] denotes the range from $X (exclusive) to
$Y (inclusive).

points) to split the entire attribute range and then repeats this recursively on the resulting intervals, it
is called top-down discretization or splitting. This contrasts with bottom-up discretization or merging,
which starts by considering all of the continuous values as potential split-points, removes some by
merging neighborhood values to form intervals, and then recursively applies this process to the resulting
intervals.

We introduce two basic discretization techniques, including binning and histogram analysis. Other
methods for discretization include cluster analysis, decision tree analysis, and correlation analysis. Each
of these techniques can be used to generate concept hierarchies for numeric attributes.

Discretization by binning
Binning is a top-down splitting technique based on a specified number of bins. Section 2.4.2 discussed
binning methods for data smoothing. These methods are also used as discretization methods for data
reduction and concept hierarchy generation. For example, attribute values can be discretized by ap-
plying equal-width or equal-frequency binning and then replacing each bin value by the bin mean or
median, as in smoothing by bin means or smoothing by bin medians, respectively. These techniques can
be applied recursively to the resulting partitions to generate concept hierarchies.

Binning does not use class information and is therefore an unsupervised discretization technique. It
is sensitive to the user-specified number of bins, as well as the presence of outliers.

Discretization by histogram analysis
Histogram analysis is an unsupervised discretization technique because it does not use class in-
formation. Histograms were introduced in Section 2.2.4. A histogram partitions the values of an
attribute, A, into disjoint ranges called buckets or bins. If each bucket represents only a single
attribute-value/frequency pair, the buckets are called singleton buckets. Singleton buckets are useful
for storing high-frequency outliers. Often, buckets instead represent continuous ranges for the given
attribute.

Example 2.29. The following data are a list of prices for commonly sold items in the company (rounded
to the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14,
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FIGURE 2.14

A histogram for price using singleton buckets—each bucket represents one price–value/frequency pair.

14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25,
25, 25, 25, 25, 28, 28, 30, 30, 30.

Fig. 2.14 shows a histogram for the data using singleton buckets. To further reduce the data, it is
common to have each bucket denote a continuous value range for the given attribute. In Fig. 2.15, each
bucket represents a different $10 range for price.

“How are the buckets determined and the attribute values partitioned?” There are several partition-
ing rules, including the following:

• Equal-width: In an equal-width histogram, the width of each bucket range is uniform (e.g., the
width of $10 for the buckets in Fig. 2.15).

• Equal-frequency (or equal-depth): In an equal-frequency histogram, the buckets are created so
that, roughly, the frequency of each bucket is constant (i.e., each bucket contains roughly the same
number of contiguous data samples).

Histograms are highly effective at approximating both sparse and dense data, as well as highly
skewed and uniform data. The histograms described before for single attributes can be extended for
multiple attributes. Multidimensional histograms can capture dependencies between attributes. These
histograms have been found effective in approximating data with up to five attributes. More studies are
needed regarding the effectiveness of multidimensional histograms for high dimensionalities.

The histogram analysis algorithm can be applied recursively to each partition in order to auto-
matically generate a multilevel concept hierarchy, with the procedure terminating once a prespecified
number of concept levels has been reached. A minimum interval size can also be used per level to con-
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FIGURE 2.15

An equal-width histogram for price, where values are aggregated so that each bucket has a uniform width of $10.

trol the recursive procedure. This specifies the minimum width of a partition or the minimum number
of values for each partition at each level.

2.5.3 Data compression
In data compression, transformations are applied so as to obtain a reduced or “compressed” representa-
tion of the original data. If the original data can be reconstructed from the compressed data without any
information loss, the data reduction is called lossless. If, instead, we can reconstruct only an approxi-
mation of the original data, then the data reduction is called lossy. There are several lossless algorithms
for string compression; however, they typically allow only limited data manipulation. Dimensionality
reduction techniques (Section 2.6) can also be considered as forms of data compression.

The discrete wavelet transform (DWT) is a linear signal processing technique that, when applied
to a data vector x, transforms it to a numerically different vector, x′, of wavelet coefficients. The two
vectors are of the same length. When applying this technique to data reduction, we consider each tuple
as an n-dimensional data vector, that is, x = (x1, x2, . . . , xn), depicting n measurements made on the
tuple from n database attributes.

“How can this technique be useful for data reduction if the wavelet transformed data are of the same
length as the original data?” The usefulness lies in the fact that the wavelet transformed data can be
truncated. A compressed approximation of the data can be retained by storing only a small fraction of
the strongest wavelet coefficients. For example, all wavelet coefficients larger than some user-specified
threshold can be retained. All other coefficients are set to 0. The resulting data representation is there-
fore very sparse, so that operations that can take advantage of data sparsity are computationally very
fast if performed in wavelet space. The technique also works to remove noise without smoothing out
the main features of the data, making it effective for data cleaning as well. Given a set of coefficients,
an approximation of the original data can be constructed by applying the inverse of the DWT used.
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The DWT is closely related to the discrete Fourier transform (DFT), a signal processing technique
involving sines and cosines. In general, however, the DWT achieves better lossy compression. That is,
if the same number of coefficients is retained for a DWT and a DFT of a given data vector, the DWT
version will often provide a more accurate approximation of the original data. Hence, for an equivalent
approximation, the DWT requires less space than the DFT. Unlike the DFT, wavelets are quite localized
in space, contributing to the conservation of local detail.

There is only one DFT, yet there are several families of DWTs. Fig. 2.16 shows some wavelet
families. Popular wavelet transforms include the Haar-2, Daubechies-4, and Daubechies-6. The general
procedure for applying a discrete wavelet transform uses a hierarchical pyramid algorithm that halves
the data at each iteration, resulting in fast computational speed. The method is as follows:

1. The length, L, of the input data vector must be an integer power of 2. This condition can be met by
padding the data vector with zeros as necessary (L ≥ n).

2. Each transform involves applying two functions. The first applies some data smoothing, such as
sum or weighted average. The second performs a weighted difference, which acts to bring out the
detailed features of the data.

3. The two functions are applied to pairs of data points in X, that is, to all pairs of measurements
(x2i , x2i+1). This results in two data sets of length L/2. In general, these represent a smoothed or
low-frequency version of the input data and the high-frequency content of it, respectively.

4. The two functions are recursively applied to the data sets obtained in the previous iteration, until the
resulting data sets obtained are of length 2.

5. Selected values from the data sets obtained in the previous iterations are designated as the wavelet
coefficients of the transformed data.

Equivalently, a matrix multiplication can be applied to the input data in order to obtain the wavelet
coefficients, where the matrix used depends on the given DWT. The matrix must be orthonormal,
meaning that the columns are unit vectors and are mutually orthogonal, so that the matrix inverse is just
its transpose. Although we do not have room to discuss it here, this property allows the reconstruction
of the data from the smooth and smooth-difference data sets. Factoring the matrix used into a product

FIGURE 2.16

Examples of wavelet families. The number next to a wavelet name is the number of vanishing moments of the
wavelet. This is a set of mathematical relationships that the coefficients must satisfy and is related to the number of
coefficients.
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of a few sparse matrices, the resulting “fast DWT” algorithm has a complexity of O(n) for an input
vector of length n.

Wavelet transforms can be applied to multidimensional data such as a data cube. This is done by first
applying the transform to the first dimension, then to the second, and so on. The computational com-
plexity involved is linear with respect to the number of cells in the cube. Wavelet transforms give good
results on sparse or skewed data and on data with ordered attributes. Lossy compression by wavelets
is reportedly better than JPEG compression, the current commercial standard. Wavelet transforms have
many real-world applications, including the compression of fingerprint images, computer vision, anal-
ysis of time-series data, and data cleaning.

2.5.4 Sampling
Sampling can be used as a data reduction technique because it allows a large data set to be represented
by a much smaller random data sample (or subset). Suppose that a large data set, D, contains N tuples.
Let’s look at the most common ways that we could sample D for data reduction.

• Simple random sample without replacement (SRSWOR) of size s: This is created by drawing s

samples from D, and every time a sample is drawn, it is not to be placed back to the data set D.
• Simple random sample with replacement (SRSWR) of size s: This is similar to SRSWOR, except

that each time a tuple is drawn from D, it is recorded and then replaced. That is, after a tuple is
drawn, it is placed back in D so that it may be drawn again.

• Cluster sample: If the tuples in D are grouped into M mutually disjoint “clusters,” then a sample
of s clusters can be obtained, where s < M . For example, tuples in a database are usually retrieved
a page at a time, so that each page can be considered a cluster. A reduced data representation can be
obtained by applying, say, SRSWOR to the pages, resulting in a cluster sample of the tuples. Other
clustering criteria conveying rich semantics can also be explored. For example, in a spatial database,
we may choose to define clusters geographically based on how closely different areas are located.

• Stratified sample: If D is divided into mutually disjoint parts called strata, a stratified sample of D

is generated by obtaining a sample at each stratum. This helps ensure a representative sample, espe-
cially when the data are skewed. For example, a stratified sample may be obtained from customer
data, where a stratum is created for each customer age group. In this way, the age group having the
smallest number of customers will be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a sample is proportional to
the size of the sample, s, as opposed to N , the data set size. Hence, sampling complexity is potentially
sublinear to the size of the data. Other data reduction techniques can require at least one complete
pass through D. For a fixed sample size, sampling complexity increases only linearly as the number
of data dimensions, n, increases, whereas techniques using histograms, for example, could increase
exponentially in n.

When applied to data reduction, sampling is most commonly used to estimate the answer to an
aggregate query. It is possible (using the central limit theorem) to determine a sufficient sample size for
estimating a given function within a specified degree of error. This sample size, s, may be extremely
small in comparison to N . Sampling is a natural choice for the progressive refinement of a reduced data
set. Such a set can be further refined by simply increasing the sample size.
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2.6 Dimensionality reduction
Dimensionality reduction is the process of reducing the number of random variables or attributes or
features under consideration. Dimensionality reduction methods include principal components analy-
sis (PCA) (Section 2.6.1), which is a linear method that transforms or projects the original data onto
a smaller space. Attribute subset selection is a method of dimensionality reduction in which irrele-
vant, weakly relevant, or redundant attributes or dimensions are detected and removed (Section 2.6.2).
There are many nonlinear methods for dimensionality reduction (Section 2.6.3) such as kernel PCA
and stochastic neighbor embedding.

2.6.1 Principal components analysis
In this subsection, we provide an intuitive introduction to principal components analysis as a method
of dimensionality reduction. A detailed theoretical explanation is beyond the scope of this book. For
additional references, please see the bibliographic notes at the end of this chapter.

Suppose that the data to be reduced consist of tuples or data vectors described by d attributes or
dimensions. Principal components analysis (PCA; also called the Karhunen-Loeve, or K-L, method)
searches for k d-dimensional orthonormal vectors that can best be used to represent the data, where
k ≤ d . The original data are thus projected onto a much smaller space, resulting in dimensionality
reduction. Unlike attribute subset selection (Section 2.6.2), which reduces the attribute set size by re-
taining a subset of the initial set of attributes, PCA “combines” the essence of attributes by creating an
alternative, smaller set of variables. The initial data can then be projected onto this smaller set. PCA
often reveals relationships that were not previously suspected and thereby allows interpretations that
would not ordinarily result.

The basic procedure is as follows:

1. The input data are normalized, so that each attribute falls within the same range. This step helps
ensure that attributes with large domains will not dominate attributes with smaller domains.

2. PCA computes k orthonormal vectors that provide a basis for the normalized input data. These are
unit vectors that are perpendicular with each other. These vectors are referred to as the principal
components. The input data are a linear combination of the principal components.

3. The principal components are sorted in order of decreasing “significance” or strength. The principal
components essentially serve as a new set of axes for the data, providing important information
about variance. That is, the sorted axes are such that the first axis shows the most variance among
the data, the second axis shows the next highest variance, and so on. For example, Fig. 2.17 shows
the first two principal components, Y 1 and Y 2, for the given set of data originally mapped to the
axes X1 and X2. This information helps identify groups or patterns within the data.

4. Because the components are sorted in descending order of “significance,” the data size can be re-
duced by eliminating the weaker components, that is, those with low variance. Using the strongest
principal components, it should be possible to reconstruct a good approximation of the original data.

PCA can be applied to ordered and unordered attributes and can handle sparse data and skewed data.
Multidimensional data of more than two dimensions can be handled by reducing the problem to two
dimensions. Principal components may be used as inputs to multiple regression and cluster analysis.
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FIGURE 2.17

Principal components analysis. Y 1 and Y 2 are the first two principal components for the given data.

2.6.2 Attribute subset selection
Data sets for analysis may contain hundreds of attributes, many of which may be irrelevant to the mining
task or redundant. For example, if the task is to classify customers based on whether or not they are
likely to purchase a popular new music album when notified of a sale, attributes such as the customer’s
phone number are likely to be irrelevant, unlike attributes such as age or music_taste. Although it may
be possible for a domain expert to pick out some of the useful attributes, this can be a difficult and
time-consuming task, especially when the data’s behavior is not well known. (Hence, a reason behind
its analysis!) Leaving out relevant attributes or keeping irrelevant attributes may be detrimental, causing
confusion for the mining algorithm employed. This can result in discovered patterns of poor quality. In
addition, the added volume of irrelevant or redundant attributes can slow down the mining process.

Attribute subset selection2 reduces the data set size by removing irrelevant or redundant attributes
(or dimensions). This makes mining focused on the relevant dimensions. Mining on a reduced set of
attributes has an additional benefit: It reduces the number of attributes appearing in the discovered
patterns, helping to make the patterns easier to understand.

“How can we find a ‘good’ subset of the original attributes?” For d attributes, there are 2d possible
subsets. An exhaustive search for the optimal subset of attributes can be prohibitively expensive, espe-
cially as d and the number of data classes increase. Therefore, heuristic methods that explore a reduced
search space are commonly used for attribute subset selection. These methods are typically greedy in
that, while searching through attribute space, they always make what looks to be the best choice at the
time. Their strategy is to make a locally optimal choice in the hope that this will lead to a globally good

2 In machine learning, attribute subset selection is known as feature subset selection.
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FIGURE 2.18

Greedy (heuristic) methods for attribute subset selection.

solution. Such greedy methods are effective in practice and may come close to estimating an optimal
solution.

The “best” (and “worst”) attributes are typically determined using tests of statistical significance,
which assume that the attributes are independent of one another. Many other attribute evaluation
measures can be used such as the information gain measure used in building decision trees for classifi-
cation.3

Basic heuristic methods of attribute subset selection include the following techniques, some of
which are illustrated in Fig. 2.18.

1. Stepwise forward selection: The procedure starts with an empty set of attributes as the reduced set.
The best of the original attributes is determined and added to the reduced set. At each subsequent
iteration or step, the best of the remaining original attributes is added to the set.

2. Stepwise backward elimination: The procedure starts with the full set of attributes. At each step,
it removes the worst attribute remaining in the set.

3. Combination of forward selection and backward elimination: The stepwise forward selection
and backward elimination methods can be combined so that, at each step, the procedure selects the
best attribute and removes the worst from among the remaining attributes.

4. Decision tree induction: Decision tree algorithms (e.g., ID3, C4.5, and CART) were originally
intended for classification. Decision tree induction constructs a flowchart-like structure where each

3 The information gain measure is described in detail in Chapter 6.
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internal (nonleaf) node denotes a test on an attribute, each branch corresponds to an outcome of the
test, and each external (leaf) node denotes a class prediction. At each node, the algorithm chooses
the “best” attribute to partition the data into individual classes.
When decision tree induction is used for attribute subset selection, a tree is constructed from the
given data. All attributes that do not appear in the tree are assumed to be irrelevant. The set of
attributes appearing in the tree form the reduced subset of attributes.

The stopping criteria for the methods may vary. The procedure may employ a threshold on the measure
used to determine when to stop the attribute selection process.

In some cases, we may want to create new attributes based on others. Such attribute construction4

can help improve accuracy and understanding of structure in high-dimensional data. For example, we
may wish to add the attribute area based on the attributes height and width. By combining attributes,
attribute construction can discover missing information about the relationships between data attributes
that can be useful for knowledge discovery.

2.6.3 Nonlinear dimensionality reduction methods
PCA is a linear method for dimensionality reduction in that each principal component is a linear com-
bination of the original input attributes. This works well if the input data approximately follows a
Gaussian distribution or forms a few linearly separable clusters. When the input data are linearly insep-
arable, however, PCA becomes ineffective. Luckily, there are many nonlinear methods we can resort to
in this case.

General procedure
Suppose there are n data tuples xi , (i = 1, ..., n), each of which is represented by a d-dimensional
attribute vector. How can we reduce the dimensionality to k where k � d? In order words, we want to
represent each of input data tuples by a k-dimensional attribute vector x̂i , (i = 1, ..., n). Since k � d ,
we call the k-dimensional attribute vector x̂i , (i = 1, ..., n) as low-dimensional representations of the
original data tuples xi , (i = 1, ..., n).

For many nonlinear dimensionality reduction methods, they often follow the following two steps
(see Fig. 2.19 for an illustration). In the first step (constructing proximity matrix), we construct an n × n

proximity matrix P whose entry P(i, j) (i, j = 1, ..., n) indicates the affinity or relevance between the
two corresponding data tuples xi and xj . In the second step (preserving proximity), we learn the new,
low-dimensional representations of the input data tuples in the k-dimensional space x̂i (i = 1, ..., n) so
that the proximity matrix P constructed in the first step is somewhat preserved.

Depending on how the proximity matrix is constructed (Step 1) and how to preserve the constructed
proximity matrix (Step 2), a variety of nonlinear dimensionality reduction techniques have been devel-
oped. Let’s look at two representative techniques below, including kernel PCA (KPCA) and stochastic
hood embedding (SNE). A comparison of these two methods is summarized in Table 2.8.

4 In the machine learning literature, attribute construction is known as feature construction.
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FIGURE 2.19

An illustration of nonlinear dimensionality reduction.

Table 2.8 Comparison of KPCA and SNE.

Step 1: Proximity Construction Step 2: Preserving Proximity

KPCA P (i, j) = κ(xi ,xj ) min
∑n

i,j=1(P (i, j) − P̂ (i, j))2 = ‖P − P̂ ‖2
f ro

SNE P (i, j) = e
−d2

ij∑n
l=1,l 
=i e

−d2
il

min
∑n

i=1 KL(Pi ||P̂i )

Kernel PCA
In kernel PCA (KPCA), we use a kernel function κ(·) to construct the proximity matrix called kernel
matrix (Step 1): P(i, j) = κ(xi ,xj ), (i, j = 1, ..., n). We will save the full details of kernel function
κ(·) to the later chapters (e.g., Chapter 7). In the simplest term, a kernel function computes the similarity
of a pair of input data tuples in some high-dimensional, often nonlinear, space.

Meanwhile, we can also estimate such proximity (i.e., similarity) based on the learned low-
dimensional representations: P̂ (i, j) = x̂i · x̂j , (i, j = 1, ..., n) where · is the vector inner product. What
would be the best (i.e., optimal) low-dimensional representations x̂i , (i = 1, ..., n)? Intuitively we hope
that the estimated proximity matrix P̂ is as close as possible to the kernel matrix P . This leads to the fol-
lowing optimization problem (Step 2), which says that the best low-dimensional representations should
be those that minimize

∑n
i,j=1(P (i, j) − P̂ (i, j))2 = ‖P − P̂ ‖2

f ro, where ‖ · ‖f ro is the matrix Frobe-
nius norm. We will not go into the mathematical details of how to solve this optimization problem. To
make the long story short, it turns out the optimal low-dimensional representations x̂i , (i = 1, . . . , n)

can be obtained by the top-k eigenvectors and eigenvalues of the kernel matrix P . For a review of
eigenvectors and eigenvalues, see Appendix A.

Typical choices for the kernel functions include (1) polynomial kernel: κ(xi ,xj ) = (1 + xi · xj )
p

where p is the parameter, and (2) radial basis function (RBF) κ(xi ,xj ) = e
−‖xi−xj ‖2

2σ2 , where σ is the
parameter. If we choose a linear kernel: κ(xi ,xj ) = xi · xj , KPCA degenerates to the standard PCA.

Stochastic neighbor embedding
In stochastic neighbor embedding (SNE), we first construct the proximity matrix P as follows:

P(i, j) = e
−d2

ij∑n
l=1,l 
=i e

−d2
il

, where d2
ij = ‖xi−xj ‖2

2σ 2 and σ is the parameter. We can view P(i, j) as the prob-
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ability that data tuple xj is the neighbor of data tuple xi : the closer the two data tuples are (i.e., smaller
dij ), the more likely xj is the neighbor of xi .5

Suppose we have learned the low-dimensional representations x̂i , (i = 1, ..., n). We can obtain an-

other estimated proximity matrix in the similar way: P̂ (i, j) = e
−‖x̂i−x̂j ‖2∑n

l=1,l 
=i e−‖x̂i−x̂l‖2 . Again, the intuition

is that if two data tuples share the similar low-dimensional representations (i.e., a small ‖x̂i − x̂j‖),
the estimated proximity between them is large (i.e., a high P̂ (i, j)). Now, in order to figure out the
best low-dimensional representations x̂i , (i = 1, ..., n), we again seek those that make the estimated
proximity P̂ be as close as possible to the proximity matrix P : P ≈ P̂ .

Different from KPCA, in this case, each row of both matrices P and P̂ sums up to 1 and all the
entries are nonnegative. In other words, each row of matrices P and P̂ is a probability distribution that
tells the probability that each data tuple is the neighbor of a give data tuple. Naturally we can use KL di-
vergence (see Section 2.3.8) to measure the difference between them, and the optimal low-dimensional
representations x̂i , (i = 1, ..., n) are those that minimize the overall KL divergences between all rows of
P and that of P̂ : x̂i = arg minx̂i ,(i=1,...n)

∑n
i=1 DKL(Pi ||P̂i), where Pi and P̂i are the ith rows of P and

P̂ , respectively. Again, we will not go into the teeny weeny mathematical details of how to solve this
optimization problem. Many off-the-shelf optimization packages can be used, such as gradient descent
method.

A variant of SNE named t-SNE (t-distributed stochastic neighbor embedding) has been widely used
to project the multi-dimensional representation produced by various deep learning models (Chapter 10)
to a two- or three-dimensional space for the purpose of visualization.

Note that in the above introduction, we have omitted some implementation details of KPCA and
SNE. For example, we need to ensure the data tuples are centered in KPCA; we often set P(i, i) = 0 in
SNE; and a variant of SNE constructs a symmetric proximity matrix P . Interested readers can refer to
the related papers in the bibliographic notes.

Let us look at an example.

Example 2.30. Given a collection of data tuples in 2-D space (Fig. 2.20(a)). The input data naturally
form two clusters: one crescent shape facing up and one facing down. These two clusters are entangled
with each other, and there is no way we can find a linear subspace (a linear line in this case) to separate
them from each other. This means that no matter what kind of line we choose from the input space,
if we project the original data tuples onto this line, the projected portions (i.e., the low-dimensional
representation) will always be mixed with each other. This is what happens with PCA in Fig. 2.20(b),
where we plot the projection of the input data onto the space spanned by two principal components.
We can see that the two clusters are still mixed with each other, and the new representations by the
principal components are essentially a linear rotation of the input data.

In contrast, using a nonlinear dimensionality reduction technique KPCA (Fig. 2.20(c)) or t-SNE
(Fig. 2.20(d)), the two clusters are now better separated from each other in this new space.

Fig. 2.21 further shows the heatmaps of the similarity or proximity matrices in PCA (a), KPCA (b),
and t-SNE (c), respectively. The two diagonal blocks indicate the proximity within the two clusters,
respectively, and the two off-diagonal blocks indicate the proximity between the data from the two

5 An interesting observation is that the proximity matrix P here is the row-normalized kernel matrix in KPCA with the RBF
kernel.
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FIGURE 2.20

An example of linear vs. nonlinear dimensionality reduction methods.

clusters. We can see that, in general, by nonlinear methods (KPCA and t-SNE), the proximity between
data tuples from the same cluster is much higher than the proximity between data tuples from different
clusters. This in turn leads to better dimensionality reduction results than linear methods (e.g., PCA).
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FIGURE 2.21

The heatmaps of the similarity or proximity matrices in PCA (a), KPCA (b), and t-SNE (c), respectively. The two
diagonal blocks correspond to the two clusters in Fig. 2.20.

We can view PCA as the following process. First, we find principal components and project the
original data tuples into the subspace spanned by the principal components. Then, we use the projected
data tuples together with the principal components to reconstruct the original data tuples. This is a
linear process in that both the projection step and the reconstruction step are linear operations. Using
a specific deep learning technique called autoencoder, which will be introduced in Chapter 10, we
can make both projection and reconstruction steps to be nonlinear. The output from such a nonlinear
projection step thus forms the low-dimensional representations of the input data tuples.

PCA, attribute subset selection, KPCA, and SNE can be used as a data preprocessing step. That
is, we first apply one of these techniques on the input data tuples to produce their low-dimensional
representations before seeing the specific data mining task (e.g., classification, clustering, and outlier
detection). We can also perform dimensionality reduction together with a specific data mining task.
The rationality is that the dimensionality reduction and the corresponding data mining task are likely to
mutually complement with each other. For example, when combining attribute subset selection with the
classification task (called embedded feature selection), the classification model will guide the attribute
selection process, and the selected features will in turn help build a better classification model; when
combining dimensionality reduction with the clustering task, the clustering structure is likely to be more
evident in the new, low-dimensional space, and meanwhile such a clustering structure will help find
better low-dimensional representations. We will introduce such dimensionality reduction techniques in
the chapter on classification.

Dimensionality reduction, we introduced in this section, and data compression and sampling meth-
ods introduced in the previous section are common data reduction techniques. Another type of data
reduction technique is called numerosity reduction, which uses parametric or nonparametric models
to obtain smaller representations of the original data. Parametric models store only the model param-
eters instead of the actual data. Examples include regression and log-linear models. Nonparametric
methods include histograms, clustering, sampling, and data cube aggregation.
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2.7 Summary
• Data sets are made up of data objects. A data object represents an entity. Data objects are described

by attributes. Attributes can be nominal, binary, ordinal, or numeric.
• The values of a nominal (or categorical) attribute are symbols or names of things, where each

value represents some kind of category, code, or state.
• Binary attributes are nominal attributes with only two possible states (such as 1 and 0 or true and

false). If the two states are equally important, the attribute is symmetric; otherwise it is asymmetric.
• An ordinal attribute is an attribute with possible values that have a meaningful order or ranking

among them, but the magnitude between successive values is not known.
• A numeric attribute is quantitative (i.e., it is a measurable quantity) represented in integer or real

values. Numeric attribute types can be interval-scaled or ratio-scaled. The values of an interval-
scaled attribute are measured in fixed and equal units. Ratio-scaled attributes are numeric at-
tributes with an inherent zero-point. Measurements are ratio-scaled in that we can speak of values
as being an order of magnitude larger than the unit of measurement.

• Basic statistical descriptions provide the analytical foundation for data preprocessing. The basic
statistical measures for data summarization include mean, weighted mean, median, and mode for
measuring the central tendency of data; and range, quantiles, quartiles, interquartile range, vari-
ance, and standard deviation for measuring the dispersion of data. Graphical representations (e.g.,
boxplots, quantile plots, quantile-quantile plots, histograms, and scatter plots) facilitate visual in-
spection of the data and are thus useful for data preprocessing and mining.

• Measures of object similarity and dissimilarity are used in data mining applications such as
clustering, outlier analysis, and nearest-neighbor classification. Such measures of proximity can be
computed for each attribute type studied in this chapter, or for combinations of such attributes. Ex-
amples include the Jaccard coefficient for asymmetric binary attributes and Euclidean, Manhattan,
Minkowski, and supremum distances for numeric attributes. For applications involving sparse nu-
meric data vectors, such as term-frequency vectors, the cosine measure and the Tanimoto coefficient
are often used in the assessment of similarity. To measure the difference between two probabil-
ity distributions over the same variable x, Kullback-Leibler divergence (or the KL divergence) has
been popularly used. DKL(p(x)||q(x)) measures the expected number of extra bits required to code
samples from p(x) when using a code based on q(x) rather than using a code based on p(x).

• Data quality is defined in terms of accuracy, completeness, consistency, timeliness, believability,
and interpretability. These qualities are assessed based on the intended use of the data.

• Data cleaning routines attempt to fill in missing values, smooth out noise while identifying outliers,
and correct inconsistencies in the data. Data cleaning is usually performed as an iterative two-step
process consisting of discrepancy detection and data transformation.

• Data integration combines data from multiple sources to form a coherent data store. The resolu-
tion of semantic heterogeneity, metadata, correlation analysis, tuple duplication detection, and data
conflict detection contribute to smooth data integration.

• Data transformation routines convert the data into appropriate forms for mining. For example, in
normalization, attribute values are scaled; data discretization transforms numeric data by mapping
values to interval or concept labels; and data compression and data sampling, as two typical data
reduction techniques, transform the input data to a reduced representation.
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• Dimensionality reduction reduces the number of random variables or attributes under consider-
ation. Methods include principal components analysis, attribute subset selection, kernel principal
component analysis, and stochastic neighbor embedding.

2.8 Exercises
2.1. Give three additional commonly used statistical measures that are not already illustrated in this

chapter for the characterization of data dispersion, discuss how they can be computed efficiently
in large databases.

2.2. Suppose that the data for analysis include the attribute age. The age values for the data tuples
are (in ascending order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35,
35, 35, 36, 40, 45, 46, 52, 70.
a. What is the mean of the data? What is the median?
b. What is the mode of the data? Comment on the data’s modality (i.e., bimodal, trimodal,

etc.).
c. What is the midrange of the data?
d. Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?
e. Give the five-number summary of the data.
f. Show a boxplot of the data.

2.3. Suppose that the values for a given set of data are grouped into intervals. The intervals and
corresponding frequencies are as follows:

Age Frequency
1–5 200
6–15 450
16–20 300
21–50 1500
51–80 700
81–110 44

Compute an approximate median value for the data.
2.4. How is a quantile-quantile plot different from a quantile plot?
2.5. In our text, we state that the variance of N observations, x1, x2, . . . , xN (when N is large), for a

numeric attribute X is defined as

σ 2 = 1

N

N∑
i=1

(xi − x̄)2 =
(

1

N

N∑
i=1

x2
i

)
− x̄2, (2.37)

where x̄ is the mean value of the observations, as defined in Eq. (2.1). This is actually the for-
mula for calculating the variance for the whole population using all the data (hence called the
population variance). If we are calculation the variance using only a sample of data (hence called
sample variance), we will need to use the following formula:

s2 = 1

n − 1

n∑
i=1

(xi − x̄)2 = 1

n − 1

(
n∑

i=1

x2
i − nx̄2

)
, (2.38)
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where n is size of the sample. With the sample size n, sample standard deviation can be de-
fined similarly. Explain why there is such a minor difference at defining sample variance and
population variance.

2.6. Reason why variance and standard deviation can be computed efficiently in very large data sets.
2.7. Suppose that a hospital tested the age and body fat data for 18 randomly selected adults with the

following results:

age 23 23 27 27 39 41 47 49 50
%fat 9.5 26.5 7.8 17.8 31.4 25.9 27.4 27.2 31.2
age 52 54 54 56 57 58 58 60 61
%fat 34.6 42.5 28.8 33.4 30.2 34.1 32.9 41.2 35.7

a. Calculate the mean, median, and standard deviation of age and %fat
b. Draw the boxplots for age and %fat
c. Draw a scatter plot and a q-q plot based on these two variables

2.8. Briefly outline how to compute the dissimilarity between objects described by the following:
a. Nominal attributes
b. Asymmetric binary attributes
c. Numeric attributes
d. Term-frequency vectors

2.9. Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):
a. Compute the Euclidean distance between the two objects
b. Compute the Manhattan distance between the two objects
c. Compute the Minkowski distance between the two objects, using h = 3
d. Compute the supremum distance between the two objects

2.10. The median is one of the most important measures in data analysis. Propose several methods for
median approximation. Analyze their respective complexity under different parameter settings
and decide to what extent the real value can be approximated. Moreover, suggest a heuristic
strategy to balance between accuracy and complexity, and then apply it to all methods you have
given.

2.11. It is important to define or select similarity measures in data analysis. However, there is no
commonly accepted subjective similarity measure. Results can vary depending on the similarity
measures used. Nonetheless, seemingly different similarity measures may be equivalent after
some transformation.
Suppose we have the following 2-D data set:

A1 A2

x1 1.5 1.7
x2 2 1.9
x3 1.6 1.8
x4 1.2 1.5
x5 1.5 1.0

a. Consider the data as 2-D data points. Given a new data point, x = (1.4,1.6) as a query, rank
the database points based on similarity with the query using Euclidean distance, Manhattan
distance, supremum distance, and cosine similarity.
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b. Normalize the data set to make the norm of each data point equal to 1. Use Euclidean
distance on the transformed data to rank the data points.

2.12. Data quality can be assessed in terms of several issues, including accuracy, completeness, and
consistency. For each of the above three issues, discuss how data quality assessment can depend
on the intended use of the data, giving examples. Propose two other dimensions of data quality.

2.13. In real-world data, tuples with missing values for some attributes are a common occurrence.
Describe various methods for handling this problem.

2.14. Given the following data (in the ascending order) for the attribute age: 13, 15, 16, 16, 19, 20, 20,
21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.
a. Use smoothing by bin means to smooth these data, using equal-frequency bins of size 3.

Illustrate your steps. Comment on the effect of this technique for the given data.
b. How might you determine outliers in the data?
c. What other methods are there for data smoothing?

2.15. Discuss issues to consider during data integration.
2.16. What are the value ranges of the following normalization methods?

a. min-max normalization
b. z-score normalization
c. z-score normalization using the mean absolute deviation instead of standard deviation
d. normalization by decimal scaling

2.17. Use these methods to normalize the following group of data:

200,300,400,600,1000

a. min-max normalization by setting new_min = 0 and new_max = 1
b. z-score normalization
c. z-score normalization using the mean absolute deviation instead of standard deviation
d. normalization by decimal scaling

2.18. Using the data for age given in Exercise 2.14, answer the following:
a. Use min-max normalization to transform the value 35 for age onto the range [0.0,1.0]
b. Use z-score normalization to transform the value 35 for age, where the standard deviation

of age is 12.70 years
c. Use normalization by decimal scaling to transform the value 35 for age
d. Comment on which method you would prefer to use for the given data, giving reasons as to

why
2.19. Using the data for age and body fat given in Exercise 2.7, answer the following:

a. Normalize the two attributes based on z-score normalization
b. Calculate the correlation coefficient (Pearson’s product moment coefficient). Are these two

attributes positively or negatively correlated? Compute their covariance.
2.20. Suppose a group of 12 sales price records has been sorted as follows:

5,10,11,13,15,35,50,55,72,92,204,215.

Partition them into three bins by each of the following methods:
a. Equal-frequency (equal-depth) partitioning
b. Equal-width partitioning
c. Clustering
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2.21. Use a flowchart to summarize the following procedures for attribute subset selection:
a. Stepwise forward selection
b. Stepwise backward elimination
c. A combination of forward selection and backward elimination

2.22. Using the data for age given in Exercise 2.14,
a. Plot an equal-width histogram of width 10
b. Sketch examples of each of the following sampling techniques: SRSWOR, SRSWR, cluster

sampling, and stratified sampling, using samples of size 5 and the strata “youth,” “middle-
aged,” and “senior”

2.23. Robust data loading poses a challenge in database systems because the input data are often dirty.
In many cases, an input record may miss multiple values; some records could be contaminated,
with some data values out of range or of a different data type than expected. Work out an au-
tomated data cleaning and loading algorithm so that the erroneous data will be marked and
contaminated data will not be mistakenly inserted into the database during data loading.

2.9 Bibliographic notes
Data description, statistical data measurements, and descriptive data characterization have been intro-
duced in most statistics introductory textbooks. For statistics-based visualization of data using boxplots,
quantile plots, quantile-quantile plots, scatter plots, and loess curves, see Cleveland [Cle93].

Similarity and distance measures among various variables have been introduced in many text-
books that study cluster analysis, including Hartigan [Har75]; Jain and Dubes [JD88]; Kaufman and
Rousseeuw [KR90]; Arabie, Hubert, and de Soete [AHS96]. Methods for combining attributes of dif-
ferent types into a single dissimilarity matrix were introduced by Kaufman and Rousseeuw [KR90].

Data preprocessing is discussed in a number of textbooks, including Pyle [Pyl99], Loshin [Los01],
Redman [Red01], and Dasu and Johnson [DJ03], and García, Luengo, and Herrera [GLH15], and Lu-
engo et al. [LGGRG+20].

For discussion regarding data quality, see Redman [Red01]; Wang, Storey, and Firth [WSF95];
Wand and Wang [WW96]; Ballou and Tayi [BT99]; and Olson [Ols03]. Potter’s Wheel, an interactive
data cleaning tool described in Section 2.4.2, is presented by Raman and Hellerstein [RH01]. An exam-
ple of the development of declarative languages for the specification of data transformation operators is
given by Galhardas et al. [GFS+01]. The handling of missing attribute values is discussed by Friedman
[Fri77]; Breiman, Friedman, Olshen, and Stone [BFOS84]; and Quinlan [Qui89]. Hua and Pei [HP07]
present a heuristic approach to cleaning disguised missing data, where such data are captured when
users falsely select default values on forms (e.g., “January 1” for birthdate) when they do not want to
disclose personal information.

A method for the detection of outlier or “garbage” patterns in a handwritten character database
is given in Guyon, Matic, and Vapnik [GMV96]. Binning and data normalization are treated in many
texts, including Kennedy et al. [KLV+98], Weiss and Indurkhya [WI98], and Pyle [Pyl99]. Systems that
include attribute (or feature) construction include BACON by Langley, Simon, Bradshaw, and Zytkow
[LSBZ87]; Stagger by Schlimmer [Sch86]; FRINGE by Pagallo [Pag89]; and AQ17-DCI by Bloedorn
and Michalski [BM98a]. Attribute construction is also described in Liu and Motoda [LM98]. Dasu et al.
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build a BELLMAN system and propose a set of interesting methods for building a data quality browser
by mining database structures [DJMS02].

A survey of data reduction techniques can be found in Barbará et al. [BDF+97]. For algorithms on
data cubes and their precomputation, see Sarawagi and Stonebraker [SS94]; Agarwal et al. [AAD+96];
Harinarayan, Rajaraman, and Ullman [HRU96]; Ross and Srivastava [RS97]; and Zhao, Deshpande,
and Naughton [ZDN97]. Attribute subset selection (or feature subset selection) is described in many
texts such as Neter, Kutner, Nachtsheim, and Wasserman [NKNW96]; Dash and Liu [DL97]; and Liu
and Motoda [LM98]. A combination of forward selection and backward elimination method is proposed
by Siedlecki and Sklansky [SS88]. A wrapper approach to attribute selection is described by Kohavi
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CHAPTER

Data warehousing and online
analytical processing

Data analytics, also often known as business intelligence, is the strategies and technology that enable
enterprises to gain deep and actionable insights into business data. Data mining plays the core role in
data analytics and business intelligence. Fundamentally, data warehouses generalize and consolidate
data in multidimensional space. The construction of data warehouses involves data cleaning, data inte-
gration, and data transformation, and can be viewed as an important preparation step for data mining.
Moreover, data warehouses provide online analytical processing (OLAP) tools for interactive analysis
of multidimensional data of varied granularities, which facilitates effective data generalization and data
mining. Many other data mining functions, such as association, classification, prediction, and cluster-
ing, can be integrated with OLAP operations to enhance interactive mining of knowledge at multiple
levels of abstraction. OLAP tools typically use data cube, a multidimensional data model, to provide
flexible access to summarized data. Data lakes as enterprise information infrastructure collect exten-
sive data in enterprises and integrate metadata so that data exploration can be conducted effectively.
Hence, data warehouses, OLAP, data cubes, and data lakes have become essential data and information
backbone for enterprises. This chapter presents an in-depth and comprehensive introduction to data
warehouse, OLAP, data cube, and data lake technology. This overview is essential for understanding
the overall data mining and knowledge discovery process and practical applications. In addition, it can
serve as a well-informed introduction to data analytics and business intelligence.

In this chapter, we first study a well-accepted definition of the data warehouse, introduce the archi-
tecture, and discuss the concept of data lake (Section 3.1). We then study the logical design of a data
warehouse as a multidimensional data model (Section 3.2). Next, we look at OLAP operations and how
to index OLAP data for efficient analytics (Section 3.3). Last, we introduce the techniques of building
data cube as a way of implementing a data warehouse (Section 3.4).

3.1 Data warehouse
This section introduces data warehouses. We begin with a definition of data warehouses and explain
how data warehouses can serve as the foundation of business intelligence (Section 3.1.1). Next, we
discuss data warehouse architecture (Section 3.1.2). Last, we discuss data lakes (Section 3.1.3).

3.1.1 Data warehouse: what and why?
More often than not, data in organizations are recorded at the operational level. For example, for the
sake of business efficiency, an e-commerce company often records the details of customer transactions
in a table, the information about customers in another table, and the particulars about product suppliers
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in a third table. Operational data are mainly concerned about individual business functionings, such as
a purchase transaction, the registration of a new customer, and the shipment of a batch of products to a
store. The major advantage is that business operations, such as a customer purchasing a product, can be
conducted efficiently by inserting, deleting, or modifying only one or several records in one or a small
number of tables, and thus many business operations can be conducted concurrently.

At the same time, business analysts and executives often focus on historical, current, and predictive
views of business operations instead of individual transaction details. For example, a business analyst
in an e-commerce company may want to investigate the categories of customers, such as their demo-
graphical groups, who spend the most last month, and the major categories of products they purchase.
Computing answers to such analytic questions is often time and resource consuming, since it has to join
multiple data tables and conduct a large number of group-by aggregation operations, and thus needs
exclusive access to the data. Many analysis tasks may be periodic and some may be ad hoc and thus
may severely affect business operations, which are expected to be online, frequent, and concurrent.

To address the gap between business operations and analysis, data warehousing provides architec-
tures and tools for business analysts and executives to systematically organize, understand, and use
their data to make strategic decisions. Data warehouse systems are valuable tools in today’s competi-
tive, fast-evolving world. In the last two decades, many firms have spent billions of dollars in building
enterprise-wide data warehouses. It is well recognized that, with competition mounting in every indus-
try, data warehousing is the must-have business infrastructure—a way to retain customers by learning
more about their demands and behavior.

“Then, what exactly is a data warehouse?” In general, a data warehouse refers to a data repository
that is specific for analysis and is maintained separately from an organization’s operational databases.
Data warehouse systems support information processing by providing a solid platform of consolidated
historic data for analysis.

According to William H. Inmon, a leading architect in construction of data warehouse systems,
“A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in
support of management’s decision making process” [Inm96]. This short but comprehensive definition
presents the major features of a data warehouse. The four keywords—subject-oriented, integrated,
time-variant, and nonvolatile—distinguish data warehouses from other data repository systems, such
as relational database systems, transaction processing systems, and file systems.

• Subject-oriented: A data warehouse is organized around major subjects that are often identified
enterprise or department wise, such as customer, supplier, product, and sales. Rather than concen-
trating on the day-to-day operations and transaction processing of an organization, a data warehouse
focuses on modeling and analyzing data for decision makers. Hence, data warehouses typically pro-
vide a simple and concise view of particular subject issues by excluding data that are not useful in
the decision support process.

• Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources,
such as relational databases, flat files, and online transaction records. Data cleaning and data inte-
gration techniques are applied to ensure consistency in naming conventions, encoding structures,
attribute measures, and so on.

• Time-variant: Data are stored to provide information from a historic perspective (e.g., the past
5–10 years). Every key structure in a data warehouse contains, either implicitly or explicitly, a time
element. In other words, a data warehouse typically records data crossing a substantial history of
time.
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• Nonvolatile: A data warehouse is always a physically separate store of data transformed from the
application data found in the operational environment. Due to this separation, a data warehouse
does not require strong transaction processing, recovery, and concurrency control mechanisms and
thus has no interference with the operational systems. It usually requires only two operations in
data accessing: initial loading of data and access of data. In other words, the data stored in a data
warehouse are typically not deleted.

In sum, a data warehouse is a semantically consistent and persistent data store that serves as a
physical implementation of a decision support data model. It stores the information that an enterprise
needs to make strategic decisions. A data warehouse is also often viewed as an architecture, constructed
by integrating data from multiple heterogeneous sources to support structured and/or ad hoc queries,
analytical reporting, and decision making. Correspondingly, data warehousing is the process of con-
structing and using data warehouses. The construction of a data warehouse requires data cleaning, data
integration, and data consolidation.

“How do organizations use information from data warehouses?” Many organizations use this infor-
mation to support business decision-making activities. For example, by identifying the groups of most
active customers an e-commerce company can design promotion campaigns to retain those customers
firmly. By analyzing the sales patterns of products in different seasons, a company may design supply
chain strategies to reduce the stocking cost of seasonal products. Analytic results from data warehouses
are often presented to analysts and decision makers through periodic or ad hoc reports, such as daily,
weekly, and monthly sales analysis reports analyzing sales patterns on customer groups, regions, prod-
ucts, and promotions.

“What are the major differences between operational database systems and data warehouses?” The
major task of traditional operational database systems is to perform online transaction processing
(OLTP). These OLTP systems cover most of the day-to-day operations of an organization, such as
purchasing, inventory, manufacturing, banking, payroll, registration, and accounting. Data warehouse
systems serve business analysts and executives (in general, also known as knowledge workers) in the
role of obtaining business insights and making decisions by organizing and presenting data in various
perspectives in order to accommodate the diverse needs from different users. These systems are known
as online analytical processing (OLAP) systems.

The major distinguishing features of OLTP and OLAP are as follows:

• Users and system orientation: An OLTP system is transaction-oriented and is used for operation
execution by clerks and clients. An OLAP system is business insight-oriented and is used for data
summarization and analysis by knowledge workers, including managers, executives, and analysts.

• Data contents: An OLTP system manages current data that are typically too detailed to be easily
used for business decision making. An OLAP system manages large amounts of historic data, pro-
vides facilities for summarization and aggregation, and stores and manages information at different
levels of granularity, such as weekly-monthly-annually. These features make data easier to be used
for informed decision making.

• Database design: An OLTP system usually adopts an entity-relationship (ER) data model and an
application-oriented database design. An OLAP system typically adopts either a star model or a
snowflake model (see Section 3.2.2) and a subject-oriented database design.

• View: An OLTP system focuses mainly on the current data within an enterprise or department, with-
out referring to historic data or data in different organizations. In contrast, an OLAP system often
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spans multiple versions of a database schema, due to the evolutionary process of an organization.
OLAP systems also deal with information that originates from different organizations, integrating
information from many data stores.

• Access patterns: The access patterns of an OLTP system consist mainly of short, atomic transac-
tions, such as transferring an amount from one account to another. Such a system requires concur-
rency control and recovery mechanisms. However, accesses to OLAP systems are mostly read-only
operations (because most data warehouses store historic rather than up-to-date information). Many
accesses may be complex queries.

“Why not perform OLAP directly on operational databases instead of constructing a separate data
warehouse?” A major reason for a separation is to ensure the high performance of both systems. An
operational database is designed and tuned from known tasks and workloads like indexing and hashing
using primary keys, searching for particular records, and optimizing “canned” queries, which are pre-
programmed and frequently used queries in business. OLAP queries, however, are often complex. They
involve the computation of large data groups at summarized levels and may require the use of special
data organization, access, and implementation methods based on multidimensional views. Processing
OLAP queries directly in operational databases may substantially jeopardize the performance of op-
erational tasks. An operational database supports the concurrent processing of multiple transactions.
Concurrency control and recovery mechanisms (e.g., locking and logging) are required to ensure the
consistency and robustness of transactions. An OLAP query often needs read-only access of massive
data records for summarization and aggregation. Concurrency control and recovery mechanisms, if ap-
plied for such OLAP operations, may seriously delay the execution of concurrent transactions and thus
substantially reduce the throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on the different struc-
tures, contents, and uses of the data in these two kinds of systems. Decision support requires historic
data, whereas operational databases do not typically maintain historic data. In this context, the data
in operational databases are usually far from complete for decision making. Decision support requires
consolidation (e.g., aggregation and summarization) of data from heterogeneous sources, resulting in
high-quality, clean, and integrated data. In contrast, operational databases contain only detailed raw
data, such as transactions, which need to be consolidated before analysis. Because the two systems
provide quite different functionalities and require different kinds of data, it is presently necessary to
maintain separate databases.

3.1.2 Architecture of data warehouses: enterprise data warehouses and data
marts

“What does the architecture of a data warehouse look like?” To answer this question, we first intro-
duce the general three-tier architecture of data warehouses and then discuss two major data warehouse
models: the enterprise warehouse and the data mart.

The three-tier architecture
Data warehouses often adopt a three-tier architecture, as shown in Fig. 3.1.

The bottom level is a warehouse database server that is typically a main-stream database system,
such as a relational database or a key-value store. Back-end tools and data extraction/transforma-
tion/loading (ETL) utilities are used to feed data into the bottom tier from operational databases or
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FIGURE 3.1

A three-tier data warehousing architecture.

other external sources (e.g., customer profile information provided by external partners). These tools
and utilities perform data extraction, cleaning, and transformation, as well as load and refresh functions
to update the data warehouse. This tier also contains a metadata repository, which stores information
about the data warehouse and its contents.

The middle tier is an OLAP server that is typically implemented using either a relational OLAP
(ROLAP) model (i.e., an extended relational DBMS that maps operations on multidimensional data to
standard relational operations) or a multidimensional OLAP (MOLAP) model (i.e., a special-purpose
server that directly implements multidimensional data and operations). We will discuss OLAP servers
in detail soon.
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The top tier is a front-end client layer, which contains tools for querying, reporting, visualization,
analysis, and/or data mining, such as trend analysis and prediction.

“What are metadata in a warehouse database server?” Metadata are data about data. When used
in a data warehouse, metadata are the data that defines warehouse objects. Metadata are created for the
data names and definitions of the given warehouse. Additional metadata may be created and captured
for timestamping any extracted data, the source of the extracted data, and missing fields that have been
added by data cleaning or integration processes.

In addition, a metadata repository may contain a description of the data warehouse structure (e.g.,
the schema, view, dimensions, derived data definition, etc.), operational metadata (e.g., data transfor-
mation lineage, freshness of data), definitions of data summarization, mapping from operational data to
the data warehouse, system information, and related business information.

Metadata play a very different role than other data warehouse data and are important for many
reasons. For example, metadata are used as a directory to help analysts locate the contents of a data
warehouse and as a guide to data mapping when data are transformed from the operational environ-
ment to the data warehouse environment. Metadata also serve as a guide to the algorithms used for
summarization between the current detailed data and the lightly summarized data and between the
lightly summarized data and the highly summarized data. Metadata should be stored and managed
persistently (i.e., on disk).

Data warehouse systems use back-end tools and utilities to populate and refresh their data (Fig. 3.1).
These tools and utilities include the functions of data extraction (gathering data from multiple, het-
erogeneous, and external sources), data cleaning (detecting errors in data and rectifying them when
possible), data transformation (converting data from legacy or host format to warehouse format),
loading (sorting, summarizing, consolidating, computing views, checking integrity, and building in-
dices and partitions), and refreshing (propagating the updates from the data sources to the warehouse).
In addition, data warehouse systems usually provide a good set of data warehouse management tools.

ETL for data warehouses
In order to load and periodically refresh contents in data warehouses, typically data warehousing
systems implement some ETL modules. We discuss the essential techniques and methods for data ex-
traction, transformation, and loading in Chapter 2, which serve data warehousing, too. Here, we briefly
introduce some major tasks of ETL for data warehouses.

Data extraction
A data extraction process extracts data from external sources and is often the most important aspect of
ETL. For example, a data warehouse may need to extract transaction data from an OLTP database and
also user review data from social media repository. To encapsulate the details of various data sources,
wrappers are often developed and deployed, which interact with data sources and supply extracted data
to the ETL module. Due to the diversity and dynamics of data sources, manually developing wrappers
is often inefficient and ineffective in quality. Recently, more and more wrappers are data driven and can
automatically adapt to changes of data sources, such as changes in schema, update frequency, layout,
and encoding. For example, a wrapper for an OLTP database can monitor and adapt to schema updates.
A wrapper for a social media can crawl data from the social media and extract key fields from text,
such as product name and sentiment of user review. Moreover, the wrapper may also be able to adapt
to changes in social media layouts and remain robust against spamming.
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Data transformation
More often than not, data extracted from sources may not meet the requirements of a data warehouse
immediately. There may be some gaps, such as mismatching in data format, enforcement of business
integrity constraints, and requirements on data quality. Data transformation applies rules and functions
to transform the extracted data, enforce business logic and improve quality, so that the transformed data
is ready to be loaded into the data warehouse. For example, in the transformation step, data about ad-
dresses can be cleansed so that standard representation of addresses is used, and the correct information
about country, state, city, and postcode is identified and encoded. Moreover, through transformation,
we can enforce business logic, such as requiring that every transaction of amount over 1 million dollars
has to be associated with a customer representative. Data cleansing and quality improvement are also
important tasks in the data transformation stage.

Data transformation is a dynamic process. Data mining techniques are frequently used in data trans-
formation. For example, data mining techniques can be used to detect data quality issues and improve
data cleansing. Moreover, as business advances, business logic also evolves correspondingly. The data
transformation process has to be updated accordingly.

Data loading
After data extracted from sources and transformed, the loading phase loads data into data warehouses.
Loading may take many different ways. For example, a relative small data warehouse may load data
in a centralized and periodic way (e.g., loading on a daily, weekly, or monthly basis). A large data
warehouse crossing many distributed servers may have to load data in a distributed manner. If a data
warehouse supports a highly time-sensitive business, the data warehouse may have to load data in a
more frequent or even real-time manner. Loading data is often time consuming and the slowest part of
an ETL process. Loading may also affect the availability, usability, and bandwidth of a data warehouse.
Various techniques are developed to achieve high performance in loading data into data warehouses
and to minimize interferes to regular services provided by data warehouses.

Enterprise data warehouse and data mart
From the architecture point of view, there are two major data warehouse models, namely the enterprise
warehouse and the data mart.

Enterprise warehouse: An enterprise warehouse collects all information about subjects spanning
the entire organization. It provides corporate-wide data integration, usually from one or more op-
erational systems or external information providers, and is cross-functional in scope. It typically
contains detailed data and summarized data and can range in size from hundreds of gigabytes to
terabytes or beyond. It requires extensive business modeling at the enterprise level and may take
years to design and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a specific group
of users, such as those within a business department. The scope is confined to specific selected
subjects. For example, a marketing data mart may confine its subjects to customer, item, marketing
channel and sales. A risk control data mart may focus on customer credit, risk, and different types
of frauds. The data contained in data marts tend to be summarized. The implementation cycle of
a data mart is more likely to be measured in weeks rather than months or years. However, it may
involve complex integration in the long run if its design and planning are not enterprise-wide.
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Depending on the source of data, data marts can be categorized as independent or dependent. In-
dependent data marts are sourced from data captured from one or more operational systems or
external information providers, or from data generated locally within a particular department or
geographic area. Dependent data marts are sourced directly from enterprise data warehouses. In
practice, many data marks load data from both enterprise data warehouses and external or specific
internal data sources.

Some circumstances also employ a virtual warehouse, which is a set of views over operational
databases. For efficient query processing, only some of the possible summary views may be material-
ized. A virtual warehouse is easy to build but put excess overhead on operational database servers.

“It is often said that enterprises use artificial intelligence (AI for short) more and more in business
and data is a foundation of AI. What is the relationship between data warehouses and AI?” In general,
data warehouses can support deployment of AI and machine learning functionalities. At the same time,
artificial intelligence and machine learning tools can be used on top of data warehouses to take the best
advantage of data warehouses.

Artificial intelligence refers to various computer systems that can conduct tasks that normally need
human intelligence, such as playing board games, automatic driving, and dialog with humans. Machine
learning, one of the core technologies in AI, is to build computer systems that can learn without being
explicitly programmed the specific instructions. Many machine learning techniques are used by data
mining, such as classification and clustering, which will be discussed in detail later in this book.

Artificial intelligence and machine learning tools need to consume considerable amounts of data to
build various models for sophisticated tasks. Data warehouses organize and summarize data at proper
levels and thus can support deployment of AI and machine learning functionalities. For example, an
e-commerce company may want to build an AI model to categorize customers into different groups
for better customer-relation management. This sophisticated task can be substantially benefited from a
data mart of customer information, which can provide cleaned, integrated, and summarized data about
customers.

At the same time, AI and machine learning techniques are widely used in various steps of data
warehousing. For example, machine learning techniques can be used in constructing data warehouses,
such as filling in missing values and identifying entities in data cleaning (see Chapter 2). Moreover, the
output from AI models may be included in a data warehouse. For example, a data mart of customer
information may likely include customer profiles, where customers and customer groups are often la-
beled based on their behavior, such as age groups, income levels, and consumption preferences. Those
labels are often predicted by machine learning models trained from customer data. Third, AI and ma-
chine learning techniques can be used to optimize data warehouse performance. For example, machine
learning techniques can be used to tune up the performance of data indexing and task execution in data
warehouses distributed in large data centers and also can help to lower down power consumption sub-
stantially. Last but not least, AI and machine learning techniques are essential for knowledge workers
to explore and understand data in data warehouses and make well-informed decisions. For example, an
analyst can build machine learning models to explore the relationship between business growth rates in
different regions and the marketing cost. More examples will be given in the later part of this book.
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3.1.3 Data lakes
“In some organizations, people mention ‘data lakes’. What are data lakes and what are the relations
and differences between data lakes and data warehouses?” In a big organization, there are often a mas-
sive number of complicated data sources with a wild variety in data types, formats, and quality, such as
business data in relational databases, communication records between customers and the organization,
regulations, market analysis, and external market information. Many data exploration analyses are one-
time and may have to use data from different corners. It may take a long time to design and develop
a data warehouse, where data is integrated, transformed, structured, and loaded according to defined
usages. Moreover, many data-driven explorations have to be self-service business intelligence so that
data scientists can analyze and explore data by themselves. To address the vast data usage demands in
the organization, as an alternative, a data lake may be built.

Conceptually, a data lake is a single repository of all enterprise data in the natural format, such
as relational data, semistructured data (e.g., XML, CSV, JSON), unstructured data (e.g., emails, PDF
files), and even binary data (e.g., images, audio, video). More often than not, a data lake takes the
form of object blocks or files and is hosted using a cloud-based or distributed data repository. A data
lake often stores both raw data copies and transformed data. Many analytical tasks, such as reporting,
visualization, analytics, and data mining, can be conducted on data lakes.

“What are the essential differences between data warehouses and data lakes?” First, to build a data
warehouse, one has to analyze the data sources, understand the business processes, and develop the
corresponding data models. The subjects in data warehouses reflect the factors in the corresponding
business analysis and decision-making processes. In contrast, a data lake retains all data in an organi-
zation, including the current and historical data, as well as data being used now and that not used at
this time. The rationale is that the data lake as the complete repository can be used as the base of all
data-related tasks now and in the future.

Second, a data warehouse typically stores data extracted from transactional data, including quan-
titative metrics and attribute values and does not cover much nonrelational data, such as text, images,
and video. Data are loaded to data warehouses according to predefined schemas. In contrast, a data lake
natively embraces all data types. Data are transformed when it is used.

Third, a data warehouse is designed for data analysts and executives. The queries on a data ware-
house are typically supporting decision making. In contrast, since a data lake includes all data in the
natural form, it can support all users in an organization, including operational users, analysts, and ex-
ecutives.

Fourth, the well-designed structures in a data warehouse provide high-quality support to target ana-
lytical tasks. However, for new queries or business changes that are not covered by the data warehouse
design, it takes time to upgrade the data warehouse to address the new demands, which is the major
pain-point in data warehousing. In contrast, a data lake stores all data in the raw form and thus is always
available for exploring any novel usages. Data scientists can directly work on data lakes to conduct data
analysis. The analysis results may also become a part of the data lake.

Last, since building a data warehouse takes time and resource, a data warehouse typically cannot
cover all business and analytic users in an organization. For those business and users not supported by
a data warehouse, they can still use a data lake to obtain faster insights.

Data warehouses and data lakes represent two views on data analytics. Data warehouses are more
top-down, structured, and centralized. In contrast, data lakes are more bottom-up, quick prototyping,
and democratic. In enterprise practice, a combination is often exercised to harvest the best gain.
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“As a data lake has to store all enterprise data, which is often huge in size and diverse in type and
format, how are data in a data lake stored and organized?” Typically data lakes have a core storage
layer, which stores raw and/or lightly processed data. There are several important considerations in
designing and implementing the data lake storage. First, since data lakes are served as the centralized
data repository for an entire enterprise, the data storage has to be exceptionally scalable. Second, as
data lakes have to respond to a wide variety of queries and analytic tasks, data robustness is critical.
Consequently, the data storage layer has to have high durability. In other words, the data stored in a
data lake should be intact and pristine all the time. Third, to address the diversity of data in enterprises,
data lake storage has to support different types of data in various format, including structured data,
semistructured data, and unstructured data. All such data has to be stored and managed consistently
and harmonically in the same repository. Fourth, as data lakes are used to support different kinds of
queries, analyses, and applications, the data storage should be able to support various data schemas,
many of which may not be known or available when data lakes are designed. In other words, the
data lake storage must be independent from any fixed schema. Last, in contrast to many applications
where data and computation are corporate, the storage layer of data lakes should be decoupled with
computation resources, so that various computation resources, ranging from legacy mainframe servers
to clouds, can access data in data lakes. This separation can allow the maximum scalability in both data
lakes and applications supported by data lakes.

Conceptually, a data lake has a storage layer as a single repository. In implementation, the data
repository is still divided into multiple layers. Typically, the repository has three mandatory layers: raw
data, cleansed data, and application data. Optionally, a standardized data layer and a sandbox layer may
be added. Let us explain the layers bottom up. Fig. 3.2 summarizes the layers.

The raw data layer is the lowest layer and is also known as the ingestion layer or the landing
area. At this layer, raw data is loaded in the native format. No data processing is conducted, such as
cleansing, duplicate removing, or data transforming. Data are typically organized into folders by areas,
data sources, objects, and time of ingestion. The data at this level are not ready for use yet, and thus
end users of data lakes should not be allowed to access to the raw data layer.

FIGURE 3.2

The layers of data storage in data lakes.
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Optionally, a data lake may have a standardized data layer on top of the raw data layer. The main
objective of the standardized data layer is to facilitate high performance in data transferring and cleans-
ing. For example, in the raw data layer, data are stored in its native format. In the standardized data
layer, data may be transformed into some formats that are best for cleansing. Moreover, data may be
divided into structures of finer grain for more efficient access and processing.

The next layer is the cleansed data layer, also known as the curated layer or the conformed layer. At
this layer, data are cleansed and transformed, such as being denormalized or consolidated. Moreover,
data are organized into data sets and stored into tables or files. End users of data lakes are allowed to
access data at this layer.

On top of the cleansed data layer is the application data layer, also known as the trusted layer, the
secure layer, or the production layer. Business logics are implemented at this layer. Therefore, many
applications, including those data mining and machine learning applications, can be built based on this
layer.

In some organizations, data scientists and analysts may conduct experiments and find patterns and
correlations. Their projects may enrich the data substantially and thus create new data. Such data may
be stored at the optional sandbox data layer.

“Centered by the data lake storage, what is the architecture of data lakes? What are the other impor-
tant components in data lakes in addition to data storage?” Fig. 3.3 shows the conceptual architecture
of data lakes. A data lake takes data from a wide spectrum of data repositories in an enterprise or an

FIGURE 3.3

The conceptual architecture of data lakes.
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organization, such as the databases, the store of documents, data crawled from the web, social media,
images (e.g., products), and possibly external data sources. Data from those data sources are loaded
into the data lake through connectors in a continuous manner. Once data are ingested into a data lake,
the data goes through the layers that we just discussed.

Data lakes serve as the centralized data repositories of enterprises and organizations. End users,
such as analysts and data scientists, can access data sets in data lakes, at the cleansed data layer and
the upper layers. A major type of access is to discover the data sets that can be used to fulfill analytic
tasks. These “data discovery” tasks are conducted through an enterprise search engine. For example,
a data scientist designing a marketing campaign may want to find all data related to customers in
industry section “electronics manufacturing.” Through the search engine, the data scientist may find
data sets like purchase transactions from the operational databases, communication documents with
those related customers, product categories of those customers crawled from the web, product reviews
from social media, and product images and product availability data provided by those customers as
external data. Clearly, without a data lake as a centralized data repository, the data scientist may have
to spend a lot of time to find such data scattered in different departments of the enterprise and obtain
access to those data sets. In order to facilitate better utility of data in data lakes, data models and
dictionaries and business rules and dictionaries are employed as domain business knowledge bases
for the enterprise search engine so that the search of data sets is business oriented instead of technical
oriented. Last, many applications can be built on top of the data services provided by data lakes through
the corresponding application programming interfaces (APIs). Regular analytics and reporting services
can also be developed and maintained accordingly.

Data lakes as centralized data repositories in enterprises bring in huge efficiency and advantage
in data-driven business operation and decision making. At the same time, data lakes also post grand
challenges in management and administration. In addition to the data storage layer, data lakes also
need to address a series of important aspects. Among others, security is a central piece. Access to data
lakes should be properly defined and assigned to the right people for the right periods. Data stored in
data lakes should be protected properly. Authentication, accountability, authorization, and data protec-
tion should be held consistently and comprehensively. In order to ensure security and tune for high
performance, data lakes should be under systematic governance. For example, monitoring, logging,
and lineage should be conducted regularly. Availability, usability, security, and integrity of data lakes
should be monitored and managed all the time. In addition, data quality, data auditing, archives, and
stewardship are some other important aspects in data lakes.

3.2 Data warehouse modeling: schema and measures
As discussed in the last section, a data warehouse integrates historical and current data in a subject-
oriented and nonvolatile manner. The data models used in data warehouses organize data according
to subjects. Here, a subject, such as customers, is captured by dimensions, such as gender, age group,
and occupation, and measures, such as total purchase and average transaction amount. Naturally, data
warehouses and OLAP tools are based on multidimensional data models, which view data in the form
a data cube. In this section, you will learn how data cubes model n-dimensional data (Section 3.2.1). In
Section 3.2.2, various multidimensional models are explained: star schema, snowflake schema, and fact
constellation. Data in a data warehouse may be analyzed in different granularities, defined by concept
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hierarchies. You will learn concept hierarchies in Section 3.2.3. You will also learn about different
categories of measures and how they can be computed efficiently (Section 3.2.4).

3.2.1 Data cube: a multidimensional data model
“What is a data cube?” At the core of multidimensional data analysis is the efficient computation of
aggregations across many sets of dimensions. A data cube allows data to be modeled and viewed in
multiple dimensions. It is defined by dimensions and facts.

A multidimensional data model is typically organized around a central theme, also known as a
subject, such as sales. The information about a subject can be divided into two parts in analysis. The first
part is the perspectives that the subject is to be analyzed. For example, for subject sales in a company,
the possible perspectives may include time, item, branch, and location. Those perspectives are modeled
as dimensions. In the simplest multidimensional data model, a dimension table can be built for each
dimension. For example, a dimension table for item may contain the attributes item_name, brand and
type.

The second part is the measurements on a subject. Those measurements are called facts. For exam-
ple, for subject sales in a company, the facts may be dollars_sold (sales amount in dollars), units_sold
(number of units sold), and amount_budgeted. Facts are typically numerical, but still may take some
other data types, such as categorical data or text.

In a data warehouse, a fact table stores the names of the facts, or measures, as well as (foreign)
keys referencing to each of the related dimension tables.

In general, a data cube can have as many dimensions as the business needs and thus is n-
dimensional. To elaborate data cubes and the multidimensional data model, let us start by looking
at a simple 2-D data cube that is, in fact, a table or spreadsheet for sales data for a company. In par-
ticular, we will look at the sales data for items sold per quarter in a city, say Vancouver. The data are
shown in Table 3.1. In this 2-D representation, the sales for Vancouver are shown with respect to the
time dimension (organized in quarters) and the item dimension (organized according to the types of
items sold). The fact or measure displayed is dollars_sold (in thousands).

Now, suppose that we would like to view the sales data with a third dimension. For instance, suppose
we would like to view the data according to time and item, as well as location, for the cities Chicago,
New York, Toronto, and Vancouver. These 3-D data are shown in Table 3.2. The 3-D data in the table

Table 3.1 2-D view of sales data according to time and item.

location = “Vancouver”

time (quarter) item (type)
home entertainment computer phone security

Q1 605 825 14 400

Q2 680 952 31 512

Q3 812 1023 30 501

Q4 927 1038 38 580

Note: The sales are from branches located in the city of Vancouver. The measure
displayed is dollars_sold (in thousands).
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Table 3.2 3-D view of sales data according to time, item, and location.

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”

time item item item item
home
ent.

comp. phone sec. home
ent.

comp. phone sec. home
ent.

comp. phone sec. home
ent.

comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400

Q2 943 890 64 698 1130 1024 41 925 894 769 52 682 680 952 31 512

Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501

Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580

Note: The measure displayed is dollars_sold (in thousands).

FIGURE 3.4

A 3-D data cube representation of the data in Table 3.2, according to time, item, and location. The measure displayed
is dollars_sold (in thousands).

are represented as a series of 2-D tables. Conceptually, we may also represent the same data in the form
of a 3-D data cube, as in Fig. 3.4.

Suppose that we would now like to view our sales data with an additional fourth dimension, say
supplier. Visualizing things in 4-D becomes tricky. However, we can think of a 4-D cube as a series of
3-D cubes, as shown in Fig. 3.5. If we continue in this way, we may display any n-dimensional data as a
series of (n − 1)-dimensional “cubes.” The data cube is a metaphor for multidimensional data storage.
The actual physical storage of such data may differ from its logical representation. The important thing
to remember is that data cubes are n-dimensional and do not confine data to 3-D.

Tables 3.1 and 3.2 show the data at different degrees of summarization. In the data warehousing
research literature, a data cube like those shown in Figs. 3.4 and 3.5 is often referred to as a cuboid.
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FIGURE 3.5

A 4-D data cube representation of sales data, according to time, item, location, and supplier. The measure displayed
is dollars_sold (in thousands). For improved readability, only some of the cube values are shown.

In SQL terms, these aggregations are referred to as group-by’s. Each group-by can be represented by a
cuboid.

Given a set of dimensions, we can generate a cuboid for each of the possible subsets of the given
dimensions, including the empty set. The result would form a lattice of cuboids, each showing the data
at a different level of summarization, or group-by. The lattice of cuboids is then referred to as a data
cube. Fig. 3.6 shows a lattice of cuboids forming a data cube for dimensions time, item, location, and
supplier.

The cuboid that holds the lowest level of summarization is called the base cuboid. For example, the
4-D cuboid in Fig. 3.5 is the base cuboid for the given time, item, location, and supplier dimensions.
Fig. 3.4 is a 3-D (nonbase) cuboid for time, item, and location, summarized for all suppliers. The 0-D
cuboid, which holds the highest level of summarization, is called the apex cuboid. In our example, this
is the total sales, or dollars_sold, summarized over all four dimensions. The apex cuboid is typically
denoted by all.

3.2.2 Schemas for multidimensional data models: stars, snowflakes, and fact
constellations

The entity-relationship data model is commonly used in the design of relational databases, where a
database schema consists of a set of entities and the relationships among them. Normalization is con-
ducted to break a wide table into narrower tables so that many transactional operations only have to
access very few records in one or a small number of tables, and thus concurrency of transactional oper-
ations can be maximized. Such a data model is appropriate for online transaction processing. An online
data analysis often has to scan a lot of data. To support online data analysis, a data warehouse requires
a concise, subject-oriented schema that facilitates scanning a large amount of data efficiently.

The most popular data model for a data warehouse is a multidimensional model. The most common
paradigm of multidimensional model is star schema, in which a data warehouse contains (1) a large
central table (fact table) containing the bulk of the data, with no redundancy, and (2) a set of smaller
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FIGURE 3.6

Lattice of cuboids, making up a 4-D data cube for time, item, location, and supplier. Each cuboid represents a
different degree of summarization.

attendant tables (dimension tables), one for each dimension. The schema graph resembles a starburst,
with the dimension tables displayed in a radial pattern around the central fact table.

Example 3.1. Star schema. A star schema for sales is shown in Fig. 3.7. Sales are considered along
four dimensions: time, item, branch, and location. The schema contains a central fact table for sales that
contains the keys to each of the four dimensions, along with two measures: dollars_sold and units_sold.
To minimize the size of the fact table, dimension identifiers (e.g., time_key and item_key) are system-
generated identifiers.

Notice that in the star schema, each dimension is represented by only one table, and each table
contains a set of attributes. For example, the location dimension table contains the attribute set {loca-
tion_key, street, city, province_or_state, country}. This constraint may introduce some redundancy. For
example, “Urbana” and “Chicago” are both cities in the state of Illinois, USA. Entries for such cities
in the location dimension table create redundancy among the attributes province_or_state and country,
that is, (..., Urbana, IL, USA) and (..., Chicago, IL, USA).

Snowflake schema is a variant of star schema, where some dimension tables are normalized,
thereby further splitting the data into additional tables. The resulting schema graph forms a shape
similar to a snowflake.

The major difference between the snowflake schema and star schema models is that the dimension
tables of the snowflake model may be kept in normalized form to reduce redundancies. Such a table is
easy to maintain and saves storage space. However, this space savings is negligible in comparison to the
typical magnitude of the fact table. Furthermore, the snowflake structure may reduce the effectiveness
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FIGURE 3.7

Star schema of sales data warehouse.

of browsing, since more joins are needed to execute a query. Consequently, the system performance
may be adversely impacted. Hence, although the snowflake schema reduces redundancy, it is not as
popular as the star schema in data warehouse design.

Example 3.2. Snowflake schema. A snowflake schema for sales is given in Fig. 3.8. Here, the sales
fact table is identical to that of the star schema in Fig. 3.7. The main difference between the two
schemas is in the definition of dimension tables. The single dimension table for item in the star schema
is normalized in the snowflake schema, resulting in the new item and supplier tables. For example,
the item dimension table now contains attributes item_key, item_name, brand, type, and supplier_key,
where supplier_key is linked to the supplier dimension table, containing supplier_key and supplier_type
information. Similarly, the single dimension table for location in the star schema can be normalized into
two new tables: location and city. The city_key in the new location table links to the city dimension.
Notice that, when desirable, further normalization can be performed on province_or_state and country
in the snowflake schema shown in Fig. 3.8.

Sophisticated applications may require multiple fact tables to share dimension tables. This kind of
schema can be viewed as a collection of stars and hence is called a galaxy schema or a fact constella-
tion.

Example 3.3. Fact constellation. A fact constellation schema is shown in Fig. 3.9. This schema
specifies two fact tables, sales and shipping. The sales table definition is identical to that of the star
schema (Fig. 3.7). The shipping table has five dimensions, or keys—item_key, time_key, shipper_key,
from_location, and to_location—and two measures—dollars_cost and units_shipped. A fact constel-
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FIGURE 3.8

Snowflake schema of a sales data warehouse.

FIGURE 3.9

Fact constellation schema of a sales and shipping data warehouse.
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lation schema allows dimension tables to be shared between fact tables. For example, the dimension
tables for time, item, and location are shared between the sales and shipping fact tables.

3.2.3 Concept hierarchies
Dimensions define concept hierarchies. A concept hierarchy defines a sequence of mappings from a
set of low-level concepts to higher-level, more general concepts. Consider a concept hierarchy for the
dimension location. City values for location include Vancouver, Toronto, New York, and Chicago. Each
city, however, can be mapped to the province or state to which it belongs. For example, Vancouver can
be mapped to British Columbia and Chicago to Illinois. The provinces and states can in turn be mapped
to the country (e.g., Canada or the United States) to which they belong. These mappings form a concept
hierarchy for the dimension location, mapping a set of low-level concepts (i.e., cities) to higher-level,
more general concepts (i.e., countries). This concept hierarchy is illustrated in Fig. 3.10.

Many concept hierarchies are implicit within the database schema. For example, suppose that the
dimension location is described by the attributes number, street, city, province_or_state, zip_code, and
country. These attributes are related by a total order, forming a concept hierarchy such as “street < city
< province_or_state < country.” This hierarchy is shown in Fig. 3.11(a). Alternatively, the attributes
of a dimension may be organized in a partial order, forming an acyclic directed graph. An example
of a partial order for the time dimension based on the attributes day, week, month, quarter, and year
is “day < {month < quarter; week} < year.”1 This partial order structure is shown in Fig. 3.11(b).

FIGURE 3.10

A concept hierarchy for location. Due to space limitations, not all of the hierarchy nodes are shown, indicated by
ellipses between nodes.

1 Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower abstraction of month.
Instead, it is often treated as a lower abstraction of year, since a year contains approximately 52 weeks.
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FIGURE 3.11

Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for location and (b) a lattice
for time.

FIGURE 3.12

A concept hierarchy for price.

A concept hierarchy that is a total or partial order among attributes in a database schema is called a
schema hierarchy. Concept hierarchies that are common to many applications (e.g., for time) may be
predefined in the data mining system. Data mining systems should provide users with the flexibility to
tailor predefined hierarchies according to their particular needs. For example, users may want to define
a fiscal year starting on April 1 or an academic year starting on September 1.

Concept hierarchies may also be defined by discretizing or grouping values for a given dimension or
attribute, resulting in a set-grouping hierarchy. A total or partial order can be defined among groups
of values. An example of a set-grouping hierarchy is shown in Fig. 3.12 for the dimension price, where
an interval ($X . . .$Y ] denotes the range from $X (exclusive) to $Y (inclusive).
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There may be more than one concept hierarchy for a given attribute or dimension, based on different
user viewpoints. For instance, a user may prefer to organize price by defining ranges for inexpensive,
moderately_priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts or knowledge engi-
neers, or may be automatically generated based on statistical analysis of the data distribution. Concept
hierarchies allow data to be handled at varying levels of abstraction, as we will see in Section 3.2.4.

3.2.4 Measures: categorization and computation
“How are measures computed?” To answer this question, we first study how measures can be catego-
rized. Note that a multidimensional point in the data cube space, also known as a cell in the data cube,
can be defined by a set of dimension–value pairs; for example, 〈time = “Q1,” location = “Vancouver,”
item = “computer”〉. A measure in a data cube is a numeric function that can be evaluated at each
point in the data cube space. A measure value is computed for a given point by aggregating the data
corresponding to the respective dimension–value pairs defining the given point. For example, the mea-
sure total-sales for the cell 〈time = “Q1,” location = “Vancouver,” item = “computer”〉 is computed by
summing up all the amounts happened in Q1, at the branch of Vancouver, and about computers from
the fact table.

Measures can be organized into three categories—distributive, algebraic, and holistic—based on the
kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed manner as
follows. Suppose the data is partitioned into n sets arbitrarily. We apply the aggregate function to
each partition, resulting in n aggregate values. If the result derived by applying the function to the
n aggregate values is the same as that derived by applying the function to the entire data set (i.e.,
without partitioning), the function is said to be computed in a distributed manner.
For example, sum() can be computed for a data cube by first partitioning the cube into a set of
subcubes, computing sum() for each subcube, and then summing up the counts obtained for each
subcube. Hence sum() is a distributive aggregate function. For the same reason, count(), min(),
and max() are distributive aggregate functions. By treating the count value of each nonempty base
cell as 1 by default, count() of any cell in a cube can be viewed as the sum of the count values
of all of its corresponding child cells in its subcube. Thus count() is distributive. A measure is
distributive if it is obtained by applying a distributive aggregate function. Distributive measures
can be computed efficiently because of the way the computation can be partitioned.

Algebraic: An aggregate function is algebraic if it can be computed by an algebraic function with M

arguments (where M is a fixed positive integer), each of which is obtained by applying a distribu-
tive aggregate function. For example, avg() (average) can be computed by sum()/count() with
two arguments, where both sum() and count() are distributive aggregate functions. Similarly, it
can be shown that min_N() and max_N() (which find the N minimum and N maximum values, re-
spectively, in a given set) and standard_deviation() are algebraic aggregate functions. A measure
is algebraic if it is obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the storage size needed
to describe a subaggregate. That is, there does not exist an algebraic function with M arguments
(where M is a constant) that characterizes the computation. Some examples of holistic functions
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include median(), mode(), and rank(). A measure is holistic if it is obtained by applying a holistic
aggregate function.

Most large data cube applications require efficient and scalable computation, and thus distributive
and algebraic measures are often used. Many efficient techniques for computing data cubes using dis-
tributive and algebraic measures exist. We will introduce some principled methods later in this chapter.
In contrast, it is difficult to compute holistic measures efficiently. Efficient techniques to approximate
the computation of some holistic measures, however, do exist. In many cases, such techniques are suf-
ficient to overcome the difficulties of efficient computation of holistic measures.

3.3 OLAP operations
A data warehouse needs to support online multidimensional analytic queries. In this section, you will
learn a series of typical OLAP operations on data warehouses (Section 3.3.1) and how to index data to
support some OLAP queries (Section 3.3.2). An important problem is how data can be stored properly
to support OLAP operations, which will be explained in Section 3.3.3.

3.3.1 Typical OLAP operations
“How can multidimensional OLAP operations be used in data analysis?” In a multidimensional model,
data are organized into multiple dimensions, and each dimension contains multiple levels of abstraction
defined by concept hierarchies. This organization provides users with the flexibility to view data from
different perspectives. A number of OLAP data cube operations empower interactive querying and
analysis of the data at hand. Hence, OLAP provides a user-friendly environment for interactive data
analysis.

Example 3.4. OLAP operations. Let us look at some typical OLAP operations for multidimensional
data. Each of the following operations is illustrated in Fig. 3.13. At the center of the figure is a data
cube for sales in a company. The cube contains three dimensions, location, time, and item, where
location is aggregated with respect to city values, time is aggregated with respect to quarters, and item
is aggregated with respect to item types. To aid in our explanation, we refer to this cube as the central
cube. The measure displayed is dollars_sold (in thousands). (For the sake of readability, only some cell
values in the cubes are shown.) The data examined are for the cities Chicago, New York, Toronto, and
Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors) performs aggre-
gation on a data cube, either by climbing up a concept hierarchy for a dimension or by dimension
reduction. Fig. 3.13 shows the result of a roll-up operation performed on the central cube by climb-
ing up the concept hierarchy for location given in Fig. 3.10. This hierarchy was defined as the total
order “street < city < province_or_state < country.” The roll-up operation shown aggregates the
data by ascending the location hierarchy from the level of city to the level of country. In other
words, rather than grouping the data by city, the resulting cube groups the data by country.
When roll-up is performed by dimension reduction, one or more dimensions are removed from
the given cube. For example, consider a sales data cube containing only the location and time
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FIGURE 3.13

Examples of typical OLAP operations on multidimensional data.
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dimensions. Roll-up may be performed by removing, say, the location dimension, resulting in an
aggregation of the total sales by time of the whole company, rather than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to more detailed
data. Drill-down can be realized by either stepping down a concept hierarchy for a dimension or
introducing additional dimensions. Fig. 3.13 shows the result of a drill-down operation performed
on the central cube by stepping down a concept hierarchy for time defined as “day < month <

quarter < year.” Drill-down occurs by descending the time hierarchy from the level of quarter to
the more detailed level of month. The resulting data cube details the total sales per month rather
than summarizing them by quarter.
Because a drill-down adds more detail to the given data, it can also be performed by adding new
dimensions to a cube. For example, a drill-down on the central cube in Fig. 3.13 can be conducted
by introducing an additional dimension, such as customer_group.

Slice and dice: The slice operation performs a selection on one dimension of the given cube, resulting
in a subcube. Fig. 3.13 shows a slice operation where the sales data is selected from the central
cube for the dimension time using the criterion time = “Q1.” The dice operation defines a subcube
by performing a selection on two or more dimensions. Fig. 3.13 shows a dice operation on the
central cube based on the following selection criterion that involves three dimensions: (location
= “Toronto” or “Vancouver”) and (time = “Q1” or “Q2”) and (item = “home entertainment” or

“computer”).
Pivot (rotate): Pivot (also called rotate) is a visualization operation that rotates the data axes in view

to provide an alternative data presentation. Fig. 3.13 shows a pivot operation where the item and
location axes in a 2-D slice are rotated. Other examples include rotating the axes in a 3-D cube or
transforming a 3-D cube into a series of 2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For example,
drill-across executes queries involving (i.e., across) more than one fact table. The drill-through
operation uses relational SQL facilities to drill through the bottom level of a data cube down to its
back-end relational tables.
Other OLAP operations may include ranking the top N or bottom N items in lists, as well as
computing moving averages, growth rates, interests, internal return rates, depreciation, currency
conversions, and statistical functions.

OLAP offers analytical modeling capabilities, including a calculation engine for deriving ratios,
variance, and so on, and for computing measures across multiple dimensions. It can generate summa-
rizations, aggregations, and hierarchies at each granularity level and at every dimension intersection.
OLAP also supports functional models for forecasting, trend analysis, and statistical analysis. In this
context, an OLAP engine is a powerful data analysis tool.

3.3.2 Indexing OLAP data: bitmap index and join index
To facilitate efficient data accessing, most data warehouse systems support index structures and materi-
alized views (using cuboids). We will discuss the general methods to select cuboids for materialization
in Section 3.4. In this subsection, we examine how to index OLAP data by bitmap indexing and join
indexing.
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Bitmap indexing
The bitmap indexing method is popular in OLAP products because it allows quick searching in data
cubes. A bitmap index is an alternative representation of the record_ID (RID) list. In the bitmap index
for a given attribute, there is a distinct bit vector, Bv, for each value v in the attribute’s domain. If the
domain of a given attribute consists of n values, then n bits are needed for each entry in the bitmap
index (i.e., there are n bit vectors). If the attribute has the value v for a given row in the data table, then
the bit representing that value is set to 1 in the corresponding row of the bitmap index. All other bits
for that row are set to 0.

Example 3.5. Bitmap indexing. Consider a customer information table shown in Fig. 3.14, where
there is an attribute gender. To keep our discussion simple, assume there are two possible values on
attribute gender. We may use one character, that is, 8 bits, for each record to represent the gender value,
such as F for female and M for male. Bitmap index represents the gender value using one bit, such as
0 for female and 1 for male. This representation immediately brings in an eight-fold saving in storage.

More importantly, bitmap index can speed up many aggregate queries. For example, let us count the
number of female customers in the customer information table. A straightforward method has to scan
each record and count. For a table having 10,000 records and each record taking 100 bytes, the total
I/O cost is 10,000 × 100 = 1,000,000 bytes.

A bitmap index uses only 1 bit for each record. Those bits are packed into words in storage. For
example, for the first 8 records in the table, the bitmap index values are packed into a byte 01010011.
Scanning the whole bitmap index takes only 10,000 bits in I/O, that is 1250 bytes, 800 times less than
scanning the whole table.

To calculate the number of 0s in a byte, we can simply use a precomputed hash table that uses the
byte values as the index and stores the corresponding numbers of 0s. For example, the hash table stores
value 4 in the 83rd entry, since 83 is the decimal value of binary 01010011 and the binary string has 4
0s. Using the byte 01010011, which is 53 in decimal, to search the hash table, we immediately know
that there are 4 female customers in the first 8 records. We can compute the number of 0s in the whole

FIGURE 3.14

Indexing OLAP data using bitmap indices.
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FIGURE 3.15

Indexing OLAP data using bitmap indices.

gender attribute byte by byte using the bitmap index, and sum up the byte-wise counts to derive the
total number of female customers. In practice, one can use machine words instead of bytes to further
speed up the counting process.

Bitmap indexing is advantageous compared to hash and tree indices in answering some types of
OLAP queries. It is especially useful for low-cardinality domains because comparison, join, and aggre-
gation operations are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and input/output (I/O) since a string of charac-
ters can be represented by a single bit.

Bitmap indexing can be extended to bit-sliced indexing for numeric data. Let us illustrate the ideas
using an example.

Example 3.6. Bit-sliced indexing. Suppose we want to compute the sum of the amount attribute in the
fact table in Fig. 3.15. We can write an amount into an integer number of pennies and then represent
it as a binary number of n bits. If we represent an amount using 32 bits, that is, 4 bytes, it is good for
amounts up to $42,949,672.96 and sufficient for many application scenarios.

After we represent all amount numbers in binary, we can build a bitmap index for every bit. To
compute the sum of all amounts, we count for each bit the number of 1s. Denote by xi (i ≥ 0) the
number of 1s in the ith bits of the amounts from right to left, the rightmost being bit 0. Since a 1 at the
ith bit carries a weight of 2i pennies, the xi 1s in the ith bits of all amounts represent xi · 2i pennies in

the sum of the amounts. Therefore, the sum of amounts is
∑

i≥0 xi · 2i pennies or
∑

i≥0 xi ·2i

100 dollars.

Join indexing
In a data warehousing schema such as the star-schema, we often need to join the fact table and the
dimension tables. Joining tables again and again for various queries is definitely costly. Therefore, join
indexing is used to precompute and store the identifier pairs of the join results so that the join results
can be accessed efficiently.

Example 3.7. Join indexing. In Example 3.1, we defined a star schema of the form “sales_star [time,
item, branch, location]: dollars_sold = sum (sales_in_dollars).” An example of a join index between
the sales fact table and the locations and items dimension tables is shown in Fig. 3.16. Consider the
OLAP query “the total sales of smartphone and desktop in BC.” If no index presents, then we have to
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FIGURE 3.16

Join index.

join the fact table and the dimension tables locations and items and select only those join results about
“smartphone” and “desktop.”

A join index table records the primary keys of the matching tuples in two tables. For example, in
the join index table for location-sales, the pairs of location_id and TID of the matching tuples in the
dimension table locations and sales are recorded. From the join index table, we can quickly find out
the TIDs of the tuples in the sales fact table belonging to “BC.” Similarly, using the join index for
item-sales, we can identify the tuples in the sales table about “smartphone” and “desktop.” Using the
identified TIDs as such, we can accurately access the tuples in the fact table that are needed to compute
the OLAP aggregate and reduce the I/O cost. Typically, a data warehouse only contains a very small
percentage of transactions about a selected area and product categories. For example, there may be only
0.1% of the transactions in the fact table that are smartphones and desktops sold in BC. Without using
any index, we have to read the whole fact table into main memory in order to compute the aggregate.
Using the join indexes, even each page contains 100 transaction records in the fact table, and all those
transactions of smartphones and desktops sold in BC are evenly distributed, we only need to read 10%
of the pages into main memory and thus save 90% of I/O.

3.3.3 Storage implementation: column-based databases
“How to store data so that OLAP queries can be answered efficiently?” In many applications, a fact
table may be wide and contain tens or even hundreds of attributes. More often than not, an OLAP
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query may compute the aggregate of all records or a large portion of records on a small number of
attributes. If the data is stored in a traditional relational table where records are stored row by row, then
we have to scan all records in order to answer a query, but only a small segment in a record is used.
This observation presents a significant opportunity to develop more efficient storage scheme for OLAP
data.

To make the storage more efficient for answering OLAP queries, a column-based database stores a
wide table that is often used for aggregate queries in a column by column style. Specifically, a column-
based database stores the values of all records on a column in consecutive storage blocks. All records
are listed in the same order across all columns.

Example 3.8. Column-based database. Consider a fact table about customer information, which in-
cludes attributes and storage space in number of bytes customer_id (2), last_name (20), first_name
(20), gender (1), birthdate (2), address_street (50), address_city (2), address_province (1), ad-
dress_country (1), email (30), registration_date (2), and family_income (2). Each record occupies
133 bytes. If the fact table contains 10 million customer records, then the total space is over 1 GB.

If the data are stored row by row and we want to answer the OLAP query of the average family
income of female customers by province, then we have to scan the whole table, reading all records. The
I/O cost is 1 GB. At the same time, for each record, we only need to use 4 bytes among the 133 bytes,
that is, attributes gender, address_province, and family_income. In other words, only 4

133 = 3% of
the data read are useful to answer the query.

A column-based database stores the data attribute by attribute in column, as shown in Fig. 3.17.
To answer the above query, a column-based database only needs to read three columns, gender, ad-
dress_province, and family_income. It checks the values on gender and increments the total and
count for address_province accordingly. Overall, the total amount of I/O incurred to a column-based
database in this case is 4× 10 million = 40 MB. A huge saving in I/O is achieved.

In implementation, preferably a column-based database processes a column at a time and uses
bitmaps to keep the intermediate results so that they can be passed to the next column. In this ex-
ample, we can first process the column gender and use a bitmap to keep the list of female customers.
That is, each customer is associated with a bit, female being 0 and male being 1. Next, we can process
the column address_province, and form a bitmap for each province. If a customer lives in BC, for ex-
ample, then the associated bit in the bitmap of BC is set to 1, otherwise, it is set to 0. Last, to calculate
the average family income of customers in BC, we only need to conduct the bitwise AND operation
between the bitmap for gender and the bitmap for province BC. The resulting bitmap is used to select
the entries in column family_income to calculate the average.

FIGURE 3.17

Column-based storage.



3.4 Data cube computation 113

Column-based databases have been extensively implemented in industry data warehousing and
OLAP databases. Column-based databases have remarkable advantages for OLAP-like workloads, such
as those aggregate queries searching a few columns of all records in a wide table. At the same time,
column-based databases have to separate transactions into columns and compressed transactions as they
are stored, which make column-based databases costly for OLTP workloads.

3.4 Data cube computation
Data warehouses contain huge volumes of data. OLAP servers demand that decision support queries be
answered in the order of seconds. Data cubes are the core of data warehouses. Therefore, it is crucial for
data warehouse systems to support highly efficient dat cube computation, access, and query process-
ing. In this section, we present an overview of the ideas behind data cube computation. Section 3.4.1
introduces the basic terminology. Section 3.4.2 discusses various ideas in fully or partially material-
izing a data cube. Section 3.4.3 explains how data cubes may be stored using various architectures.
Section 3.4.4 overviews the general strategies frequently used in data cube computation. The detailed
algorithms for data cube computation will be introduced in Section 3.5.

3.4.1 Terminology of data cube computation
One approach to cube computation is to compute aggregates over all subsets of the dimensions specified
by a user. This can require excessive storage space, especially for large numbers of dimensions. To
discuss the details about data cube computation and analysis, we need some terminology.

Fig. 3.18 shows a 3-D data cube for three dimensions, A, B, and C, and an aggregate measure, M .
Hereafter in this chapter, we always use the term data cube to refer to a lattice of cuboids rather than
an individual cuboid. A tuple in a cuboid is also called a cell, which represents a point in the data cube
space. A cell in the base cuboid is a base cell. A cell from a nonbase cuboid is an aggregate cell. An ag-
gregate cell aggregates over one or more dimensions, where each aggregated dimension is indicated by a
∗ in the cell notation. Suppose we have an n-dimensional data cube. Let a = (a1, a2, . . . , an,measures)

FIGURE 3.18

Lattice of cuboids making up a 3-D data cube with the dimensions A, B, and C for some aggregate measure, M .
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be a cell from one of the cuboids making up the data cube. We say that a is an m-dimensional cell (i.e.,
from an m-dimensional cuboid) if exactly m (m ≤ n) values among {a1, a2, . . . , an} are not ∗. If m = n,
then a is a base cell; otherwise, it is an aggregate cell (i.e., where m < n).

Example 3.9. Base and aggregate cells. Consider a data cube with three dimensions, month, city,
and customer_group, and the measure sales. (Jan,∗,∗,2800) and (∗,Chicago,∗,1200) are 1-D cells;
(Jan,∗,Business,150) is a 2-D cell; and (Jan,Chicago,Business,45) is a 3-D cell. Here, since the data
cube has 3 dimensions, all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells.

(month, city,∗) is a 2-D cuboid, which contains all 2-D cells having non-∗ values on attributes
month and city. The base cuboid (month, city, customergroup) contains all base cells. The apex
cuboid ALL contains only one 0-D cell (∗,∗,∗).

An ancestor–descendant relationship may exist between cells. In an n-dimensional data cube, an
i-D cell a = (a1, a2, . . . , an,measuresa) is an ancestor of a j -D cell b = (b1, b2, . . . , bn,measuresb),
and b is a descendant of a, if and only if (1) i < j , and (2) for 1 ≤ k ≤ n, ak = bk whenever ak �= ∗. In
particular, cell a is called a parent of cell b, and b is a child of a, if and only if j = i + 1.

Example 3.10. Ancestor and descendant cells. Referring to Example 3.9, 1-D cell a = (Jan,∗,∗,

2800) and 2-D cell b = (Jan,∗,Business,150) are ancestors of 3-D cell c = (Jan,Chicago,

Business,45); c is a descendant of both a and b; b is a parent of c; and c is a child of b.

“How many cuboids are there in an n-dimensional data cube?” If there is no hierarchy associated
with any dimension, then the total number of cuboids for an n-dimensional data cube, as we have seen,
is

(
n
0

) + (
n
1

) + · · · + (
n
n

) = 2n. However, in practice, many dimensions do have hierarchies. For example,
time is often explored at multiple conceptual levels such as in the hierarchy “day < month < quarter
< year.” On a dimension that is associated with L levels, cuboid has L + 1 possible choices, that is,
one of the L levels or the virtual top level all meaning not including the dimension in the group-by.
Thus, for an n-dimensional data cube, the total number of cuboids that can be generated (including the
cuboids generated by climbing up the hierarchies along each dimension) is

T otal number of cuboids =
n∏

i=1

(Li + 1), (3.1)

where Li is the number of levels associated with dimension i.
For example, the time dimension as specified before has four conceptual levels, or five if we include

the virtual level all. If the cube has 10 dimensions and each dimension has five levels (including all),
the total number of cuboids that can be generated is 510 ≈ 9.8 × 106. The size of each cuboid, that is,
the number of cells in a cuboid, also depends on the cardinality (i.e., number of distinct values) of
each dimension. For example, if every item is sold in each city, there would be |city| × |item| tuples
in the (city, item) group-by alone. As the number of dimensions, number of conceptual hierarchies,
or cardinality increases, the storage space required for many of the group-by’s will grossly exceed the
(limited) size of the input relation. Indeed, given a base table and a set of dimensions, how to fast
calculate or estimate the number of tuples in the resulting data cube remains an unsolved challenge.
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3.4.2 Data cube materialization: ideas
By now, you probably realize that in large-scale applications, it may not be desirable or realistic to
precompute and materialize all cuboids that can possibly be generated for a data cube (i.e., from a base
cuboid). If there are many cuboids, and these cuboids are large in size, a more reasonable option is
partial materialization; that is, to materialize only some of the possible cuboids that can be generated.

There are three possible choices for data cube materialization.

1. No materialization: Do not precompute any of the “nonbase” cuboids. This leads to computing
expensive multidimensional aggregates on-the-fly, which can be extremely slow.

2. Full materialization: Precompute all of the cuboids. The resulting lattice of computed cuboids is
referred to as the full cube. This choice typically requires huge amounts of memory space in order
to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids,
such as a subset of the cube that contains only those cells that satisfy some user-specified criterion
(e.g., the aggregate count of each cell is above some threshold). We use the term subcube to refer
to the latter case, where only some of the cells may be precomputed for various cuboids. Partial
materialization of data cubes offers an interesting trade-off between storage space and response
time for OLAP. Instead of computing the full cube, we can compute only a subset of the data cube’s
cuboids, or subcubes consisting of subsets of cells from the various cuboids.

Nonetheless, full cube computation algorithms are important. We can use such algorithms to com-
pute smaller cubes, consisting of a subset of the given set of dimensions, or a smaller range of possible
values for some of the dimensions. In these cases, the smaller cube is a full cube for the given subset
of dimensions and/or dimension values. A thorough understanding of full cube computation methods
will help us develop efficient methods for computing partial cubes. Hence, it is important to explore
scalable methods for computing all the cuboids making up a data cube, that is, for full materialization.
These methods must take into consideration the limited amount of main memory available for cuboid
computation, the total size of the computed data cube, as well as the time required for such computation.

Many cells in a cuboid may actually be of little or no interest to data analysts. Recall that each cell
in a full cube records an aggregate value such as count or sum. For many cells in a cuboid, the measure
value will be zero. For example, if item “snow-tire” is not sold in city “Pheonix” in June at all, the
corresponding aggregate cell will have measure value of 0 for count or sum. In a cuboid, when most
of the cells have measure 0, that is, the product of the cardinalities for the dimensions in the cuboid is
much larger than the number of nonzero-valued tuples stored in the cuboid, then we say that the cuboid
is sparse. If a cube contains many sparse cuboids, we say that the cube is sparse.

In many cases, a substantial amount of the cube’s space could be taken up by a large number of
cells with very low measure values. This is because the cube cells are often quite sparsely distributed
within a multidimensional space. For example, a customer may only buy a few items in a store at a time.
Such an event will generate only a few nonempty cells, leaving most other cube cells empty. In such
situations, it is useful to materialize only those cells in a cuboid (group-by) with a measure value above
some minimum threshold. In a data cube about sales, say, we may wish to materialize only those cells
for which count ≥ 10 (i.e., where at least 10 tuples exist for the cell’s given combination of dimensions)
or only those cells representing sales ≥ $100. This not only saves processing time and disk space but
also leads to a more focused analysis. The cells that cannot pass the threshold are likely to be too trivial
to warrant further analysis.
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Such partially materialized cubes are known as iceberg cubes. The minimum threshold is called
the minimum support threshold, or minimum support (min_sup), for short. By materializing only a
fraction of the cells in a data cube, the result is seen as the “tip of the iceberg,” where the “iceberg”
is the potential full cube including all cells. An iceberg cube can be specified using an SQL query, as
shown in Example 3.11.

Example 3.11. Iceberg cube. Consider the following iceberg cube query.

compute cube sales_iceberg as
select month, city, customer_group, count(*)
from salesInfo
cube by month, city, customer_group
having count(*) >= min_sup

The compute cube statement specifies the precomputation of the iceberg cube, sales_iceberg, with
three dimensions, month, city, and customer_group, and the aggregate measure count(). The input
tuples are in the salesInfo relation. The cube by clause specifies that aggregates (group-by’s) are to
be formed for each of the possible subsets of the given dimensions. If we were computing the full
cube, each group-by would correspond to a cuboid in the data cube lattice. The constraint specified in
the having clause is known as the iceberg condition. Here, the iceberg measure is count(). Note that
the iceberg cube computed here can be used to answer group-by queries on any combination of the
specified dimensions of the form having count(*) >= v, where v ≥ min_sup. Instead of count(), the
iceberg condition may specify more complex measures, such as average().

If we were to omit the having clause, we would end up with the full cube. Let us call this cube
sales_cube. The iceberg cube, sales_iceberg, excludes all the cells of sales_cube with a count that is
less than min_sup. Obviously, if we were to set the minimum support to 1 in sales_iceberg, the resulting
cube would be the full cube, sales_cube.

A naïve approach to computing an iceberg cube would be to first compute the full cube and then
prune the cells that do not satisfy the iceberg condition. However, this is still prohibitively expensive.
An efficient approach is to compute only the iceberg cube directly without computing the full cube.
Section 3.5.2 discusses methods for efficient iceberg cube computation.

Introducing iceberg cubes lessens the burden of computing trivial aggregate cells in a data cube.
However, we may still end up with a large number of uninteresting cells to compute. For example,
suppose that there are 2 base cells for a database of 100 dimensions, denoted as {(a1, a2, a3, . . . , a100) :
10, (a1, a2, b3, . . . , b100) : 10}, where each has a cell count of 10. If the minimum support is set to 10,
there are still be an impermissible number of cells to compute and store, although most of them are not
interesting. For example, there are 2101 − 6 distinct aggregate cells,2 like {(a1, a2, a3, a4, . . . , a99,∗) :
10, . . . , (a1, a2,∗, a4, . . . , a99, a100) : 10, . . . , (a1, a2, a3,∗, . . . ,∗,∗) : 10}, but most of them do not
contain much new information. If we ignore all the aggregate cells that can be obtained by replac-
ing some constants with ∗’s while keeping the same measure value, there are only three distinct
cells left: {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10, (a1, a2,∗, . . . ,∗) : 20}. That is, out of
2101 − 4 distinct base and aggregate cells, only three really offer valuable information.

2 The proof is left as an exercise for the reader.
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FIGURE 3.19

Three closed cells forming the lattice of a closed cube.

To systematically compress a data cube, we need to introduce the concept of closed coverage. The
coverage of a cell c is the set of base cells that are descendants of c. The measure of c is computed by
the base cells that are descendants of c. In other words, the measure of c is determined by the coverage
of c. Clearly, if two cells c1 and c2 have the same coverage, they have same measure no mater what
aggregate functions are used. Based on this observation, A cell, c, is a closed cell if there exists no cell,
d , such that d is a descendant of c (i.e., d is obtained by replacing at least one ∗ in c with a non-∗ value),
and d has the same coverage as c. A quotient cube is a data cube consisting of only closed cells. For
example, the three cells derived in the preceding paragraph are the three closed cells of the data cube
for the data set {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}. They form the lattice of a closed
cube as shown in Fig. 3.19. Other nonclosed cells can be derived from their corresponding closed cells
in this lattice. For example, “(a1,∗,∗, . . . ,∗) : 20” can be derived from “(a1, a2,∗, . . . ,∗) : 20” because
the former is a generalized nonclosed cell of the latter. Similarly, we have “(a1, a2, b3,∗, . . . ,∗) : 10.”

Another strategy for partial materialization is to precompute only the cuboids involving a small
number of dimensions such as three to five. These cuboids form a cube shell for the corresponding
data cube. Queries on additional combinations of the dimensions will have to be computed on-the-fly.
For example, we could compute all cuboids with three dimensions or less in an n-dimensional data
cube, resulting in a cube shell of size 3. This, however, can still result in a large number of cuboids
to compute, particularly when n is large. Alternatively, we can choose to precompute only portions or
fragments of the cube shell based on cuboids of interest. Section 3.5.3 discusses a method for computing
shell fragments and explores how they can be used for efficient OLAP query processing.

3.4.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP
There are many methods for efficient data cube computation, based on the various kinds of cubes de-
scribed earlier in this section. In general, there are two basic data structures used for storing cuboids.
The implementation of relational OLAP (ROLAP) uses relational tables, whereas multidimensional ar-
rays are used in multidimensional OLAP (MOLAP). In some situations, we may also combine ROLAP
and MOLAP to obtain the hybrid OLAP (HOLAP) approach. Let us look at the details here.

Logically, OLAP servers present business users with multidimensional data from data warehouses
or data marts, without concerns regarding how or where the data are stored. However, the physical
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architecture and implementation of OLAP servers must consider data storage issues. Implementations
of a data warehouse server for OLAP processing may have the following options.

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in between a re-
lational back-end server and client front-end tools. They use a relational or extended-relational
DBMS to store and manage warehouse data, and OLAP middleware to support missing pieces.
ROLAP servers include optimization for each DBMS back end, implementation of aggregation
navigation logic, and additional tools and services. ROLAP technology tends to have greater scal-
ability than MOLAP technology.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional data views
through array-based multidimensional storage engines. They map multidimensional views directly
to data cube array structures. The advantage of using a data cube is that it allows fast indexing to
precomputed summarized data. Notice that with multidimensional data stores, the storage utiliza-
tion may be low if the data set is sparse. In such cases, sparse matrix compression techniques should
be explored.
Many MOLAP servers adopt a two-level storage representation to handle dense and sparse data
sets: Denser subcubes are identified and stored as array structures, whereas sparse subcubes employ
compression technology for efficient storage utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and MOLAP
technology, benefiting from the greater scalability of ROLAP and the faster computation of MO-
LAP. For example, a HOLAP server may allow large volumes of detailed data to be stored in a
relational database, whereas aggregations are kept in a separate MOLAP store.

Specialized SQL servers: To meet the growing demand of OLAP processing in relational databases,
some database system vendors implement specialized SQL servers that provide advanced query
language and query processing support for SQL queries over star and snowflake schemas in a read-
only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look at ROLAP.
As its name implies, ROLAP uses relational tables to store data for online analytical processing. Recall
that the fact table associated with a base cuboid is referred to as a base fact table. The base fact table
stores data at the abstraction level indicated by the join keys in the schema for the given data cube.
Aggregated data can also be stored in fact tables, referred to as summary fact tables. Some summary
fact tables store both base fact table data and aggregated data. Alternatively, separate summary fact
tables can be used for each abstraction level to store only aggregated data.

Example 3.12. A ROLAP data store. Table 3.3 shows a summary fact table that contains both base
fact data and aggregated data. The schema is “〈record_identifier (RID), item, . . . , day, month, quarter,
year, dollars_sold〉,” where day, month, quarter, and year define the sales date, and dollars_sold is the
sales amount. Consider the tuples with an RID of 1001 and 1002, respectively. The data of these tuples
are at the base fact level, where the sales dates are October 15, 2010, and October 23, 2010, respectively.
Consider the tuple with an RID of 5001. This tuple is at a more general level of abstraction than the
tuples 1001 and 1002. The day value has been generalized to all, so that the corresponding time value is
October 2010. That is, the dollars_sold amount shown is an aggregation representing the entire month
of October 2010, rather than just October 15 or 23, 2010. The special value all is used to represent
subtotals in summarized data.
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Table 3.3 Single table for base and summary facts.

RID item . . . day month quarter year dollars_sold
1001 TV . . . 15 10 Q4 2010 250.60

1002 TV . . . 23 10 Q4 2010 175.00

. . . . . . . . . . . . . . . . . . . . . . . .

5001 TV . . . all 10 Q4 2010 45,786.08

. . . . . . . . . . . . . . . . . . . . . . . .

MOLAP uses multidimensional array structures to store data for online analytical processing.
Most data warehouse systems adopt a client-server architecture. A relational data store always re-

sides at the data warehouse/data mart server site. A multidimensional data store can reside at either the
database server site or the client site.

3.4.4 General strategies for data cube computation
Although ROLAP and MOLAP may each explore different cube computation techniques, some opti-
mization techniques are popularly used.

Optimization Technique 1: sorting, hashing, and grouping
Sorting, hashing, and grouping operations should be applied to the dimension attributes to reorder and
cluster related tuples.

In cube computation, aggregation is performed on the tuples (or cells) that share the same set of
dimension values. Thus it is important to explore sorting, hashing, and grouping operations to access
and group such data together to facilitate computation of such aggregates.

To compute total sales by branch, day, and item, for example, it can be more efficient to sort tuples
or cells first by branch, then by day, and last by item. Using the sorted data, it is easy to group them
according to the item name. Efficient implementations of such operations in large data sets have been
extensively studied in the algorithm and database research communities, such as counting sort. Such
implementations can be extended to data cube computation.

This technique can also be further extended to perform shared-sorts (i.e., sharing sorting costs
across multiple cuboids when sort-based methods are used), or to perform shared-partitions (i.e.,
sharing the partitioning cost across multiple cuboids when hash-based algorithms are used). For exam-
ple, using the data sorted first by branch, then by day and last by item, we can compute not only the
cuboid (branch, day, item) but also the cuboids (branch, day, ∗), (branch, ∗, ∗) and ().

Optimization Technique 2: simultaneous aggregation and caching of intermediate results
In cube computation, it is efficient to compute higher-level aggregates from previously computed
lower-level aggregates, rather than from the base fact table, since the number of tuples of higher-level
aggregates is far less than the number of tuples at the base fact table. For example, to computer the
total sales amount of a year, it is more efficient to aggregate from the subtotals of different items of the
year. Moreover, simultaneous aggregation from cached intermediate computation results may lead to
a reduction of expensive disk input/output (I/O) operations. This technique can be further extended to
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perform amortized scans (i.e., computing as many cuboids as possible at the same time to amortize
disk reads).

Optimization Technique 3: aggregation from the smallest child when there exist multiple
child cuboids
When there exist multiple child cuboids, it is usually more efficient to compute the desired parent (i.e.,
more generalized) cuboid from the smallest in size, previously computed child cuboid. For example, to
compute a sales cuboid, Cbranch, when there exist two previously computed cuboids, C{branch,year} and
C{branch,item}, it is obviously more efficient to compute Cbranch from the former than from the latter if
there are many more distinct items than distinct years.

Optimization Technique 4: the downward antimonotonicity can be used to prune search
space in iceberg cube computation
For many aggregate measures, the downward antimonotonicity may hold. If a given cell does not satisfy
the iceberg condition, then no descendant of the cell (i.e., more specialized cell) can satisfy the iceberg
condition.

For example, consider the iceberg condition “count(*) >= 1000.” If a cell (*, Bellingham, *): 800
fails the iceberg condition, then any descendant of the cell, such as (March, Bellingham, *) and (*,
Bellingham, small-business), must also fail the condition, and thus cannot be entitled to be included in
the iceberg cube.

The antimonotonicity property can be used to substantially reduce the computation of iceberg cubes.
A common iceberg condition is that the cells must satisfy a minimum support threshold such as a
minimum count or sum. In this situation, the antimonotonicity property can be used to prune away the
exploration of the cell’s descendants.

In the next section, we introduce several popular methods for efficient cube computation that explore
these optimization strategies.

3.5 Data cube computation methods
Data cube computation is an essential task in data warehouse implementation. The precomputation of
all or part of a data cube can greatly reduce the response time and enhance the performance of online
analytical processing. However, such computation is challenging because it may require substantial
computational time and storage space. This section explores efficient methods for data cube compu-
tation. Section 3.5.1 describes the multiway array aggregation (MultiWay) method for computing full
cubes. Section 3.5.2 describes the BUC method, which computes iceberg cubes from the apex cuboid
downward. Section 3.5.3 describes a shell-fragment cubing approach that computes shell fragments for
efficient high-dimensional OLAP. Last, Section 3.5.4 demonstrates how to answer OLAP queries using
cuboids in data cubes.

To simplify our discussion, we exclude the cuboids that would be generated by climbing up any ex-
isting hierarchies for the dimensions. Those cube types can be computed by straightforward extensions
of the discussed methods. Methods for the efficient computation of closed cubes are left as an exercise
for interested readers.



3.5 Data cube computation methods 121

3.5.1 Multiway array aggregation for full cube computation
The multiway array aggregation (or simply MultiWay) method computes a full data cube using a
multidimensional array as its basic data structure. It is a typical MOLAP approach that uses direct
array addressing, where dimension values are accessed via the position or index of their corresponding
array locations. MultiWay constructs an array-based cube as follows.

1. Partition the array into chunks. A chunk is a subcube that is small enough to fit into the memory
available for cube computation. Chunking is a method for dividing an n-dimensional array into
small n-dimensional chunks, where each chunk is stored as an object on disk. The chunks are com-
pressed to remove wasted space resulting from empty array cells. A cell is empty if it does not
contain any valid data (i.e., its cell count is 0). For instance, “chunkID + offset” can be used as
a cell-addressing mechanism to compress a sparse array structure and when searching for cells
within a chunk. Such a compression technique is powerful at handling sparse cubes, both on disk
and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The order in which cells are
visited can be optimized to minimize the number of times that each cell must be revisited, thereby
reducing memory access and storage costs. The idea is to exploit this ordering so that portions of the
aggregate cells in multiple cuboids can be computed simultaneously, and any unnecessary revisiting
of cells is avoided.

This chunking technique involves “overlapping” some of the aggregation computations; therefore it is
referred to as multiway array aggregation. It performs simultaneous aggregation, that is, it computes
aggregations simultaneously on multiple dimensions.

We explain this approach to array-based cube construction by looking at a concrete example.

Example 3.13. Multiway array cube computation. Consider a 3-D data array containing three di-
mensions A, B, and C. The 3-D array is partitioned into small, memory-based chunks. In this example,
the array is partitioned into 64 chunks as shown in Fig. 3.20. Dimension A is organized into four equal-
sized partitions: a0, a1, a2, and a3. Dimensions B and C are similarly organized into four partitions
each. Chunks 1, 2, . . . , 64 correspond to the subcubes a0b0c0, a1b0c0, . . . , a3b3c3, respectively. Sup-
pose that the cardinality of the dimensions A, B, and C is 40, 400, and 4000, respectively. Thus the size
of the array for each dimension, A, B, and C, is also 40, 400, and 4000, respectively. Since the number
of partitions of each dimension is 4, the size of each partition in A, B, and C is therefore 10, 100, and
1000, respectively. Full materialization of the corresponding data cube involves the computation of all
the cuboids defining this cube. The resulting full cube consists of the following cuboids:

• The base cuboid, denoted by ABC (from which all the other cuboids are directly or indirectly
computed). This cube is already computed and corresponds to the given 3-D array.

• The 2-D cuboids, AB, AC, and BC, which respectively correspond to the group-by’s AB, AC, and
BC. These cuboids need to be computed.

• The 1-D cuboids, A, B, and C, which respectively correspond to the group-by’s A, B, and C. These
cuboids need to be computed.

• The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by (); that is, there is no
group-by here. These cuboids need to be computed. It consists of only one value. If, say, the data
cube measure is count, then the value to be computed is simply the total count of all the tuples in
ABC.
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FIGURE 3.20

A 3-D array for the dimensions A, B, and C, organized into 64 chunks. Each chunk is small enough to fit into the
memory available for cube computation. The ∗’s indicate the chunks from 1 to 13 that have been aggregated so far in
the process.

Let’s look at how the multiway array aggregation technique is used in this computation. There are
many possible orderings with which chunks can be read into memory for use in cube computation.
Consider the ordering labeled from 1 to 64, shown in Fig. 3.20. Suppose we want to compute the b0c0

chunk of the BC cuboid. We allocate space for this chunk in chunk memory. By scanning ABC chunks
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1 through 4, the b0c0 chunk is computed. That is, the cells for b0c0 are aggregated over a0 to a3. The
chunk memory can then be assigned to the next chunk, b1c0, which completes its aggregation after the
scanning of the next four ABC chunks: 5 through 8. Continuing in this way, the entire BC cuboid can
be computed. Therefore only one BC chunk needs to be in memory at a time for the computation of all
the BC chunks.

In computing the BC cuboid, we will have scanned each of the 64 chunks. “Is there a way to
avoid having to rescan all of these chunks for the computation of other cuboids, such as AC and
AB?” The answer is, most definitely, yes. This is where the “multiway computation” or “simultaneous
aggregation” idea comes in. For example, when chunk 1 (i.e., a0b0c0) is being scanned (say, for the
computation of the 2-D chunk b0c0 of BC, as described previously), all of the other 2-D chunks related
to a0b0c0 can be simultaneously computed. That is, when a0b0c0 is being scanned, each of the three
chunks (b0c0, a0c0, and a0b0) on the three 2-D aggregation planes (BC, AC, and AB) should be
computed then as well. In other words, multiway computation simultaneously aggregates to each of the
2-D planes while a 3-D chunk is in memory.

Now let’s look at how different orderings of chunk scanning and of cuboid computation can affect
the overall data cube computation efficiency. Recall that the size of the dimensions A, B, and C is 40,
400, and 4000, respectively. Therefore the largest 2-D plane is BC (of size 400 × 4000 = 1,600,000).
The second largest 2-D plane is AC (of size 40 × 4000 = 160,000). AB is the smallest 2-D plane (of
size 40 × 400 = 16,000).

Suppose that the chunks are scanned in the order shown, from chunks 1 to 64. As previously men-
tioned, b0c0 is fully aggregated after scanning the row containing chunks 1 through 4; b1c0 is fully
aggregated after scanning chunks 5 through 8, and so on. Thus we need to scan four chunks of the 3-D
array to fully compute one chunk of the BC cuboid (where BC is the largest of the 2-D planes). In other
words, by scanning in this order, one BC chunk is fully computed for each row scanned. In compar-
ison, the complete computation of one chunk of the second largest 2-D plane, AC, requires scanning
13 chunks, given the ordering from 1 to 64. That is, a0c0 is fully aggregated only after the scanning of
chunks 1, 5, 9, and 13.

Finally, the complete computation of one chunk of the smallest 2-D plane, AB, requires scanning
49 chunks. For example, a0b0 is fully aggregated after scanning chunks 1, 17, 33, and 49. Hence, AB

requires the longest scan of chunks to complete its computation. To avoid bringing a 3-D chunk into
memory more than once, the minimum memory requirement for holding all relevant 2-D planes in
chunk memory, according to the chunk ordering of 1 to 64, is as follows: 40 × 400 (for the whole AB

plane) + 40 × 1000 (for one column of the AC plane) + 100 × 1000 (for one BC plane chunk) =
16,000 + 40,000 + 100,000 = 156,000 memory units.

Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21, 37, 53, and so on.
That is, suppose the scan is in the order of first aggregating toward the AB plane and then toward the
AC plane, and lastly toward the BC plane. The minimum memory requirement for holding 2-D planes
in chunk memory would be as follows: 400 × 4000 (for the whole BC plane) + 10 × 4000 (for one AC

plane row) + 10 × 100 (for one AB plane chunk) = 1,600,000 + 40,000 + 1000 = 1,641,000 memory
units. Notice that this is more than 10 times the memory requirement of the scan ordering of 1 to 64.

Similarly, we can work out the minimum memory requirements for the multiway computation of
the 1-D and 0-D cuboids. Fig. 3.21 shows the most efficient way to compute 1-D cuboids. Chunks
for 1-D cuboids A and B are computed during the computation of the smallest 2-D cuboid, AB. The
smallest 1-D cuboid, A, will have all of its chunks allocated in memory, whereas the larger 1-D cuboid,
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FIGURE 3.21

Memory allocation and computation order for computing Example 5.4’s 1-D cuboids. (a) The 1-D cuboids, A and
B, are aggregated during the computation of the smallest 2-D cuboid, AB. (b) The 1-D cuboid, C, is aggregated
during the computation of the second smallest 2-D cuboid, AC. The ∗’s represent chunks that so far have been
aggregated to.

B, will have only one chunk allocated in memory at a time. Similarly, chunk C is computed during the
computation of the second smallest 2-D cuboid, AC, requiring only one chunk in memory at a time.
Based on this analysis, we see that the most efficient ordering in this array cube computation is the
chunk ordering of 1 to 64, with the stated memory allocation strategy.

Example 3.13 assumes that there is enough memory space for one-pass cube computation (i.e., to
compute all of the cuboids from one scan of all the chunks). If there is insufficient memory space, the
computation will require more than one pass through the 3-D array. In such cases, however, the basic
principle of ordered chunk computation remains the same. MultiWay is most effective when the product
of the cardinalities of dimensions is moderate and the data are not too sparse. When the dimensionality
is high or the data are very sparse, the in-memory arrays become too large to fit in memory, and this
method becomes impractical.

With the use of appropriate sparse array compression techniques and careful ordering of the com-
putation of cuboids, it has been shown by experiments that MultiWay array cube computation is
significantly faster than traditional ROLAP (relational record-based) computation. Unlike ROLAP, the
array structure of MultiWay does not require saving space to store search keys. Furthermore, MultiWay
uses direct array addressing, which is faster than ROLAP’s key-based addressing search strategy. For
ROLAP cube computation, instead of cubing a table directly, it can be faster to convert the table to an
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array, cube the array, and then convert the result back to a table. However, this observation works only
for cubes with a relatively small number of dimensions, because the number of cuboids to be computed
is exponential to the number of dimensions.

“What would happen if we tried to use MultiWay to compute iceberg cubes?” Remember that the
downward antimonotonicity property states that if a given cell does not satisfy the iceberg property,
then neither will any of its descendants. Unfortunately, MultiWay’s computation starts from the base
cuboid and progresses upward toward more generalized, ancestor cuboids. It cannot take advantage of
possible pruning using the antimonotonicity, which requires a parent node to be computed before its
child (i.e., more specific) nodes. For example, if the count of a cell c in, say, AB, does not satisfy the
minimum support specified in the iceberg condition, we cannot prune away cell c, because the count of
c’s ancestors in the A or B cuboids may be greater than the minimum support, and their computation
will need aggregation involving the count of c.

3.5.2 BUC: computing iceberg cubes from the apex cuboid downward
BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike MultiWay, BUC con-
structs the cube from the apex cuboid toward the base cuboid. This allows BUC to share data partition-
ing costs. This processing order also allows BUC to prune during construction, using the downward
antimonotonicity property.

Fig. 3.22 shows a lattice of cuboids, making up a 3-D data cube with the dimensions A, B, and C.
The apex (0-D) cuboid, representing the concept all (i.e., (∗,∗,∗)), is at the top of the lattice. This is the
most aggregated or generalized level. The 3-D base cuboid, ABC, is at the bottom of the lattice. It is the
least aggregated (most detailed or specialized) level. This representation of a lattice of cuboids, with the
apex at the top and the base at the bottom, is commonly accepted in data warehousing. It consolidates
the notions of drill-down (where we can move from a highly aggregated cell to lower, more detailed
cells) and roll-up (where we can move from detailed, low-level cells to higher-level, more aggregated
cells).

BUC stands for “Bottom-Up Construction.” However, according to the lattice convention described
before and used throughout this book, the BUC processing order is actually top-down! The BUC authors
view a lattice of cuboids in the reverse order, with the apex cuboid at the bottom and the base cuboid
at the top. In that view, BUC does bottom-up construction. However, because we adopt the application
worldview where drill-down refers to drilling from the apex cuboid down toward the base cuboid, the
exploration process of BUC is regarded as top-down. BUC’s exploration for the computation of a 3-D
data cube is shown in Fig. 3.22.

The BUC algorithm is shown in Fig. 3.23. We first give an explanation of the algorithm and then
follow up with an example. Initially, the algorithm is called with the input relation (set of tuples). BUC
aggregates the entire input (line 1) and writes the resulting total (line 3). (Line 2 is an optimization
feature that is discussed later in our example.) For each dimension d (line 4), the input is partitioned
on d (line 6). On return from Partition(), dataCount contains the total number of tuples for each
distinct value of dimension d . Each distinct value of d forms its own partition. Line 8 iterates through
each partition. Line 10 tests the partition for minimum support. That is, if the number of tuples in the
partition satisfies (i.e., is ≥) the minimum support, then the partition becomes the input relation for a
recursive call made to BUC, which computes the iceberg cube on the partitions for dimensions d + 1
to numDims (line 12).
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FIGURE 3.22

BUC’s exploration for a 3-D data cube computation. Note that the computation starts from the apex cuboid.

Note that for a full cube (i.e., where minimum support in the having clause is 1), the minimum
support condition is always satisfied. Thus the recursive call descends one level deeper into the lattice.
On return from the recursive call, we continue with the next partition for d . After all the partitions have
been processed, the entire process is repeated for each of the remaining dimensions.

Example 3.14. BUC construction of an iceberg cube. Consider the iceberg cube expressed in SQL
as follows:

compute cube iceberg_cube as
select A, B, C, D, count(*)
from R

cube by A, B, C, D

having count(*) >= 3

Let’s see how BUC constructs the iceberg cube for the dimensions A, B, C, and D, where 3 is the
minimum support count. Suppose that dimension A has four distinct values, a1, a2, a3, a4; B has four
distinct values, b1, b2, b3, b4; C has two distinct values, c1, c2; and D has two distinct values, d1, d2. If
we consider each group-by to be a partition, then we must compute every combination of the grouping
attributes that satisfy the minimum support (i.e., that have three tuples).

Fig. 3.24 illustrates how the input is partitioned first according to the different attribute values of
dimension A and then B, C, and D. To do so, BUC scans the input, aggregating the tuples to obtain
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Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.

Input:

• input: the relation to aggregate;
• dim: the starting dimension for this iteration.

Globals:

• constant numDims: the total number of dimensions;
• constant cardinality[numDims]: the cardinality of each dimension;
• constant min_sup: the minimum number of tuples in a partition for it to be output;
• outputRec: the current output record;
• dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers of size cardinality[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.
Method:

(1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(2) if input.count() == 1 then // Optimization

WriteDescendants(input[0], dim); return;
endif

(3) write outputRec;
(4) for (d = dim; d < numDims; d + +) do //Partition each dimension
(5) C = cardinality[d];
(6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d

(7) k = 0;
(8) for (i = 0; i < C; i + +) do // for each partition (each value of dimension d)
(9) c = dataCount[d][i];
(10) if c >= min_sup then // test the iceberg condition
(11) outputRec.dim[d] = input[k].dim[d];
(12) BUC(input[k..k + c − 1], d + 1); // aggregate on next dimension
(13) endif
(14) k +=c;
(15) endfor
(16) outputRec.dim[d] = all;
(17) endfor

FIGURE 3.23

BUC algorithm for sparse or iceberg cube computation. Source: Beyer and Ramakrishnan [BR99].

a count for all, corresponding to the cell (∗,∗,∗,∗). Dimension A is used to split the input into four
partitions, one for each distinct value of A. The number of tuples (counts) for each distinct value of A

is recorded in dataCount.
BUC uses the downward antimonotonicity property to save time while searching for tuples that sat-

isfy the iceberg condition. Starting with A dimension value, a1, the a1 partition is aggregated, creating
one tuple for the A group-by, corresponding to the cell (a1,∗,∗,∗). Suppose (a1,∗,∗,∗) satisfies the
minimum support, in which case a recursive call is made on the partition for a1. BUC partitions a1 on
the dimension B. It checks the count of (a1, b1,∗,∗) to see if it satisfies the minimum support. If it
does, it outputs the aggregated tuple to the AB group-by and recurses on (a1, b1,∗,∗) to partition on
C, starting with c1. Suppose the cell count for (a1, b1, c1,∗) is 2, which does not satisfy the minimum
support. According to the downward antimonotonicity property, if a cell does not satisfy the minimum
support, then neither can any of its descendants. Therefore, BUC prunes any further exploration of
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FIGURE 3.24

BUC partitioning snapshot given an example 4-D data set.

(a1, b1, c1,∗). That is, it avoids partitioning this cell on dimension D. It backtracks to the a1, b1 par-
tition and recurses on (a1, b1, c2,∗), and so on. By checking the iceberg condition each time before
performing a recursive call, BUC saves a great deal of processing time whenever a cell’s count does not
satisfy the minimum support.

The partition process is facilitated by a linear sorting method, CountingSort. CountingSort is fast
because it does not perform any key comparisons to find partition boundaries. For example, to sort
10,000 tuples according to an attribute A whose value is an integer in the range between 1 and 100, we
can set up 100 counters and scan the data once to count the number of 1’s, 2’s, . . . , 100’s on attribute
A. Suppose there are i1 tuples having 1 on A, i2 tuples having 2 on A, and so on. Then, in the next
scan, we can move all the tuples having value 1 on attribute A to the first i1 slots, the tuples having
value 2 on attribute A to the slots i1 + 1, . . . , i1 + i2, and so on. After those two scans, the tuples are
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sorted according to A. In addition, the counts computed during the sort can be reused to compute the
group-by’s in BUC.

Line 2 is an optimization for partitions having a count of 1 such as (a1, b2,∗,∗) in our example.
To save on partitioning costs, the count is written to each of the tuple’s descendant group-by’s. This is
particularly useful since, in practice, many partitions may have a single tuple.

The BUC performance is sensitive to the order of the dimensions and to skew in the data. Ideally,
the most discriminating dimensions should be processed first. Dimensions should be processed in the
order of decreasing cardinality. The higher the cardinality, the smaller the partitions, and thus the more
partitions there will be, thereby providing BUC with a greater opportunity for pruning. Similarly, the
more uniform a dimension (i.e., having less skew), the better it is for pruning.

BUC’s major contribution is the idea of sharing partitioning costs. However, unlike MultiWay, it
does not share the computation of aggregates between parent and child group-by’s. For example, the
computation of cuboid AB does not help that of ABC. The latter needs to be computed essentially
from scratch.

3.5.3 Precomputing shell fragments for fast high-dimensional OLAP
Materializing data cubes facilitates flexible and fast OLAP operations. However, computing full data
cube of high dimensionality needs massive storage space and unrealistic computation time. Although
there are proposals of computing iceberg cubes and closed cubes, they are still confined to low-
dimensional data (e.g., less than 12 dimensions) and cannot handle the challenges of high dimension-
ality. One possible alternative is to compute a thin cube shell, such as computing all cuboids with three
dimensions or less in a 60-dimensional data cube, resulting in a cube shell of size 3. However, such a
cube shell cannot support OLAP or query involving four or more dimensions.

Here we introduce a shell fragment approach for high-dimensional OLAP, based on the following
observation: Although a data cube may contain many dimensions, most OLAP operations are per-
formed only on a small number of dimensions relevant to some query-selected conditions at a time. In
other words, an OLAP query is likely to ignore many dimensions (i.e., treating them as irrelevant), con-
strain certain conditions in some dimensions (e.g., using query constants), and leave only a few to be
manipulated (for drilling, pivoting, etc.). This is because it is neither realistic nor fruitful for anyone to
comprehend thousands of cells involving dozens of dimensions simultaneously in a high-dimensional
space at the same time.

Based on this observation, it is natural to first locate some low-dimensional cuboids of interest
within a high-dimension cube and then conduct OLAP on such low-dimensional cuboids. This implies
that if multidimensional aggregates can be computed quickly on a small number of dimensions inside
a high-dimensional space, we may still achieve fast OLAP without materializing the original high-
dimensional data cube. This leads to a semionline computation approach, called shell fragment as
follows: First, given a base cuboid, we can precompute (i.e., offline) cube shell fragments. Then, when
query comes, one can quickly assembly a low-dimensional cube online using the preprocessed data, and
conduct OLAP operations. The shell fragment approach can handle databases of high dimensionality
and can quickly compute small local cubes online. It explores the inverted index data structure, which
is popular in information retrieval and Web-based information systems.

The basic idea is as follows. Given a high-dimensional data set, we partition the dimensions into a
set of disjoint dimension fragments, convert each fragment into its corresponding inverted index repre-
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Table 3.4 Original
database.

TID A B C D E
1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

sentation, and then construct cube shell fragments while keeping the inverted indices associated with
the cube cells. Using the precomputed cubes’ shell fragments, we can dynamically assemble and com-
pute cuboid cells of the required data cube online. This is made efficient by set intersection operations
on the inverted indices.

To illustrate the shell fragment approach, we use a tiny database of Table 3.4 as a running example.
Let the cube measure be count(). Other measures will be discussed later. We first look at how to
construct the inverted index for the given database.

Example 3.15. Construct the inverted index. For each attribute value in each dimension, list the tuple
identifiers (TIDs) of all the tuples that have that value. For example, attribute value a2 appears in tuples
4 and 5. The TID list for a2 then contains exactly two items, namely 4 and 5. The resulting inverted
index table is shown in Table 3.5. It retains all the information of the original database.

“How do we compute shell fragments of a data cube?” We first partition all the dimensions of
the given data set into independent groups of dimensions, called fragments. We scan the base cuboid
and construct an inverted index for each attribute. For each fragment, we compute the full local (i.e.,
fragment-based) data cube while retaining the inverted indices. Consider a database of 60 dimensions,
namely, A1,A2, . . . ,A60. We can first partition the 60 dimensions into 20 fragments of size 3, such
as (A1,A2,A3), (A4,A5,A6), . . ., (A58,A59,A60). For each fragment, we compute its full data cube
while recording the inverted indices. For example, in fragment (A1,A2,A3), we would compute seven

Table 3.5 Inverted index.

Attribute Value TID List List Size
a1 {1, 2, 3} 3

a2 {4, 5} 2

b1 {1, 4, 5} 3

b2 {2, 3} 2

c1 {1, 2, 3, 4, 5} 5

d1 {1, 3, 4, 5} 4

d2 {2} 1

e1 {1, 2} 2

e2 {3, 4} 2

e3 {5} 1
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cuboids: A1,A2,A3,A1A2,A2A3,A1A3,A1A2A3. Furthermore, an inverted index is retained for each
cell in the cuboids. That is, for each cell, its associated TID list is recorded.

The benefit of computing local cubes of each shell fragment instead of computing the complete
cube shell can be seen by a simple calculation. For a base cuboid of 60 dimensions, there are only
7 × 20 = 140 cuboids to be computed according to the preceding shell fragment partitioning. This is in
contrast to the 36,050 cuboids computed for the cube shell of size 3! Notice that the above fragment
partitioning is based simply on the grouping of consecutive dimensions. A more desirable approach
would be to partition based on popular dimension groupings. This information can be obtained from
domain experts or the past history of OLAP queries.

Let’s return to our running example to see how shell fragments are computed.

Example 3.16. Compute shell fragments. Suppose we are to compute the shell fragments of size
3. We first divide the five dimensions into two fragments, namely (A,B,C) and (D,E). For each
fragment, we compute the full local data cube by intersecting the TID lists in Table 3.5 in a top-down
depth-first order in the cuboid lattice. For example, to compute the cell (a1, b2,∗), we intersect the TID
lists of a1 and b2 to obtain a new list of {2, 3}. Cuboid AB is shown in Table 3.6.

After computing cuboid AB, we can then compute cuboid ABC by intersecting all pairwise combi-
nations between Table 3.6 and the row c1 in Table 3.5. Notice that because cell (a2, b2) is empty, it can
be effectively discarded in subsequent computations, based on the downward antimonotonicity prop-
erty. The same process can be applied to compute fragment (D, E), which is completely independent
from computing (A,B,C). Cuboid DE is shown in Table 3.7.

If the measure in the iceberg condition is count() (as in tuple counting), there is no need to reference
the original database because the length of the TID list is equivalent to the tuple count. “Do we need to
reference the original database if computing other measures such as average()?” Actually, we can build
and reference an ID_measure array instead, which stores what we need to compute other measures.
For example, to compute average(), we let the ID_measure array hold three elements, namely, (TID,
item_count, sum), for each cell. The average() measure for each aggregate cell can then be computed
using sum()/item_count(), by accessing only this ID_measure array. Since ID_measure array is a

Table 3.6 Cuboid AB.

Cell Intersection TID List List Size
(a1, b1) {1, 2, 3} ∩ {1, 4, 5} {1} 1

(a1, b2) {1, 2, 3} ∩ {2, 3} {2, 3} 2

(a2, b1) {4, 5} ∩ {1, 4, 5} {4, 5} 2

(a2, b2) {4, 5} ∩ {2, 3} {} 0

Table 3.7 Cuboid DE.

Cell Intersection TID List List Size
(d1, e1) {1, 3, 4, 5} ∩ {1, 2} {1} 1

(d1, e2) {1, 3, 4, 5} ∩ {3, 4} {3, 4} 2

(d1, e3) {1, 3, 4, 5} ∩ {5} {5} 1

(d2, e1) {2} ∩ {1, 2} {2} 1
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more compact data structure than the corresponding high-dimensional database, it is more likely to fit
in memory.

“Once we have computed the shell fragments, how can they be used to answer OLAP queries?”
Given the precomputed shell fragments, the cube space can be viewed as a virtual cube to support
OLAP queries. In general, two types of queries are possible: (1) point query and (2) subcube query. In a
point query, all of the relevant dimensions in the cube have been instantiated and only the corresponding
measure is inquired, whereas in a subcube query, at least one of the relevant dimensions in the cube is
inquired. Let’s examine only the subcube query. In an n-dimensional data cube A1A2 . . .An, a subcube
query could be in the form 〈A1,A5?,A9,A21? : M?〉, where A1 = {a11, a18} and A9 = a94, A5 and A21

are the inquired dimensions, and M is the inquired measure.
A subcube query returns a local data cube based on the instantiated and inquired dimensions. Such

a data cube needs to be aggregated in a multidimensional way so that online analytical processing
(drilling, dicing, pivoting, etc.) can be made available to users for flexible manipulation and analysis.
Because instantiated dimensions usually provide highly selective constants that dramatically reduce
the size of the valid TID lists, we should make maximal use of the precomputed shell fragments by
finding the fragments that best fit the set of instantiated dimensions and fetching and intersecting the
associated TID lists to derive the reduced TID list. This list can then be used to intersect the best-fitting
shell fragments consisting of the inquired dimensions. This will generate the relevant and inquired base
cuboid, which can then be used to compute the relevant subcube on-the-fly using an efficient online
cubing algorithm.

Let the subcube query be of the form 〈αi , αj , Ak?, αp,Aq? : M?〉, where αi , αj , and αp represent
a set of instantiated values of dimension Ai , Aj , and Ap, respectively, and Ak and Aq represent two
inquired dimensions. First, we check the shell fragment schema to determine which dimensions among
(1) Ai , Aj , and Ap, and (2) Ak and Aq are in the same fragment partition. Suppose Ai and Aj belong to
the same fragment, as do Ak and Aq , but that Ap is in a different fragment. We fetch the corresponding
TID lists in the precomputed 2-D fragment for Ai and Aj using the instantiations αi and αj , then fetch
the TID list on the precomputed 1-D fragment for Ap using instantiation αp, and then fetch the TID lists
on the precomputed 2-D fragments for Ak and Aq , respectively, using no instantiations (i.e., all possible
values). The obtained TID lists are intersected to derive the final TID lists, which are used to fetch the
corresponding measures from the ID_measure array to derive the “base cuboid” of a 2-D subcube for
two dimensions (Ak,Aq). A fast cube computation algorithm can be applied to compute this 2-D cube
based on the derived base cuboid. The computed 2-D cube is then ready for OLAP operations.

3.5.4 Efficient processing of OLAP queries using cuboids
The purpose of materializing cuboids and constructing OLAP index structures is to speed up query
processing in data cubes. Given materialized views, query processing should proceed as follows:

1. Determine which operations should be performed on the available cuboids: This involves trans-
forming any selection, projection, roll-up (group-by), and drill-down operations specified in the
query into corresponding SQL and/or OLAP operations. For example, slicing and dicing a data
cube may correspond to selection and/or projection operations on a materialized cuboid.

2. Determine to which materialized cuboid(s) the relevant operations should be applied: This
involves identifying all of the materialized cuboids that may potentially be used to answer the query,
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pruning the set using knowledge of “dominance” relationships among the cuboids, estimating the
costs of using the remaining materialized cuboids, and selecting the cuboid with the least cost.

Example 3.17. OLAP query processing. Suppose that a data cube for a retail company is defined in
the form of “sales_cube [time, item, location]: sum(sales_in_dollars).” The dimension hierarchies used
are “day < month < quarter < year” for time; “item_name < brand < type” for item; and “street <

city < province_or_state < country” for location.
Suppose that the query to be processed is on {brand, province_or_state}, with the selection constant

“year = 2010.” Also, suppose that there are four materialized cuboids available, as follows:

• cuboid 1: {year, item_name, city}
• cuboid 2: {year, brand, country}
• cuboid 3: {year, brand, province_or_state}
• cuboid 4: {item_name, province_or_state}, where year = 2010

“Which of these four cuboids should be selected to process the query?” Finer-granularity data
cannot be generated from coarser-granularity data. Therefore cuboid 2 cannot be used because country
is a more general concept than province_or_state. Cuboids 1, 3, and 4 can be used to process the query
because (1) they have the same set or a superset of the dimensions in the query, (2) the selection clause
in the query can imply the selection in the cuboid, and (3) the abstraction levels for the item and location
dimensions in these cuboids are at a finer level than brand and province_or_state, respectively.

“How would the costs of each cuboid compare if used to process the query?” It is likely that using
cuboid 1 would cost the most because both item_name and city are at a lower level than the brand and
province_or_state concepts specified in the query. If there are not many year values associated with
items in the cube, but there are several item_names for each brand, then cuboid 3 will be smaller than
cuboid 4, and thus cuboid 3 should be chosen to process the query. However, if efficient indices are
available for cuboid 4, then cuboid 4 may be a better choice. Therefore some cost-based estimation is
required to decide which set of cuboids should be selected for query processing.

3.6 Summary
• A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile data collection

organized in support of management decision making. Several factors distinguish data warehouses
from operational databases. Because the two systems provide quite different functionalities and re-
quire different kinds of data, it is necessary to maintain data warehouses separately from operational
databases.

• Data warehouses often adopt a three-tier architecture. The bottom tier is a warehouse database
server, which is typically a relational database system. The middle tier is an OLAP server, and the
top tier is a client that contains query and reporting tools.

• A data warehouse contains back-end tools and utilities for populating and refreshing the ware-
house. These cover data extraction, data cleaning, data transformation, loading, refreshing, and
warehouse management.

• Data warehouse metadata are data defining the warehouse objects. A metadata repository provides
details regarding the warehouse structure, data history, the algorithms used for summarization, map-
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pings from the source data to the warehouse form, system performance, and business terms and
issues.

• A data lake is a single repository of all enterprise data in the natural format. A data lake often
stores both raw data copies and transformed data. Many analytical tasks can be conducted on data
lakes. In enterprises and organizations, data warehouses and data lakes serve different purposes and
complement with each other.

• The layers of data storage in data lakes include, from bottom up, the raw data layer, the optional
standardized data layer, the cleansed data layer, the application data layer, and the optional sandbox
data layer.

• A multidimensional data model is typically used for the design of corporate data warehouses
and departmental data marts. Such a model can adopt a star schema, snowflake schema, or fact
constellation schema. The core of the multidimensional model is the data cube, which consists
of a large set of facts (or measures) and a number of dimensions. Dimensions are the entities or
perspectives with respect to which an organization wants to keep records and are hierarchical in
nature.

• A data cube consists of a lattice of cuboids, each corresponding to a different degree of summariza-
tion of the given multidimensional data.

• Concept hierarchies organize the values of attributes or dimensions into gradual abstraction levels.
They are useful in mining at multiple abstraction levels.

• OLAP servers may adopt a relational OLAP (ROLAP), a multidimensional OLAP (MOLAP),
or a hybrid OLAP (HOLAP) implementation. A ROLAP server uses an extended relational DBMS
that maps OLAP operations on multidimensional data to standard relational operations. A MOLAP
server maps multidimensional data views directly to array structures. A HOLAP server combines
ROLAP and MOLAP. For example, it may use ROLAP for historic data while maintaining fre-
quently accessed data in a separate MOLAP store.

• A measure in a data cube is a numeric function that can be evaluated at each point (i.e., cell) in the
data cube space. Measures can be organized into three categories, namely distributive, algebraic,
and holistic.

• Online analytical processing can be performed in data warehouses/marts using the multidimen-
sional data model. Typical OLAP operations include roll-up, and drill-(down, across, through),
slice-and-dice, and pivot (rotate), as well as statistical operations such as ranking and computing
moving averages and growth rates. OLAP operations can be implemented efficiently using the data
cube structure.

• To facilitate efficient data accessing, most data warehouse systems use index structures. bimap
index represents a given attribute of low cardinality using bits and can substantially reduce the I/O
cost and speed up the computation for many aggregate queries. Join index precomputes and stores
identifier pairs of join results between a fact table and a dimension table, and thus can dramatically
reduce I/O cost in aggregate computation.

• In many applications, a fact table may contain many attributes, but an OLAP query may only use
several attributes. A column-based database stores the values of all records column by column
instead of row by row and can save dramatic I/O cost and processing time in computing aggregates.

• A data cube consists of a lattice of cuboids. Each cuboid corresponds to a different degree of
summarization of the given multidimensional data. Full materialization refers to the computation
of all the cuboids in a data cube lattice. Partial materialization refers to the selective computation



3.7 Exercises 135

of a subset of the cuboid cells in the lattice. Iceberg cubes and shell fragments are examples of
partial materialization. A data cube may contain much redundant information. A quotient cube as a
concise representation of data cube contains only closed cells and reduces redundant information. An
iceberg cube is a data cube that stores only those cube cells that have an aggregate value (e.g., count)
above some minimum support threshold. For shell fragments of a data cube, only some cuboids
involving a small number of dimensions are computed, and queries on additional combinations of
the dimensions can be computed on-the-fly.

• There are several efficient data cube computation methods. In this chapter, we discussed some
cube computation methods in detail: (1) MultiWay array aggregation for materializing full data
cubes in sparse-array-based, bottom-up, shared computation; (2) BUC for computing iceberg cubes
by exploring ordering and sorting for efficient top-down computation; and (3) shell-fragment
cubing, which supports high-dimensional OLAP by precomputing only the partitioned cube shell
fragments.

3.7 Exercises
3.1. Consider the data about students, instructors, courses, and departments in a college setting. When

such data is used as operational data, please give three example operations. If we want to build a
data warehouse using such data, what may be a subject of the data warehouse?

3.2. Use one example to discuss how data mart, enterprise data warehouse, and machine learning
applications can be connected and build up one over another.

3.3. Is it possible that an enterprise runs both a data warehouse and a data lake? If so, what is the
relation between the data warehouse and the data lake? Can you describe one scenario where
maintaining both a data warehouse and a data lake is necessary and beneficial?

3.4. Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and
the two measures count and charge, where charge is the fee that a doctor charges a patient for a
visit.
a. Enumerate three classes of schemas that are popularly used for modeling data warehouses.
b. Draw a schema diagram for the above data warehouse using one of the schema classes listed

in (a).
c. Starting with the base cuboid [day, doctor,patient], what specific OLAP operations

should be performed in order to list the total fee collected by each doctor in 2010?
d. To obtain the same list, write an SQL query assuming the data is stored in a relational

database with the schema fee (day, month, year, doctor, hospital, patient, count, charge).
3.5. Suppose that a data warehouse for Big_University consists of the four dimensions student,

course, semester, and instructor, and two measures count and avg_grade. At the lowest concep-
tual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade
measure stores the actual course grade of the student. At higher conceptual levels, avg_grade
stores the average grade for the given combination.
a. Draw a snowflake schema diagram for the data warehouse.
b. Starting with the base cuboid [student, course, semester, instructor], what specific

OLAP operations (e.g., roll-up from semester to year) should you perform in order to list
the average grade of CS courses for each Big_University student.
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c. If each dimension has five levels (including all), such as “student < major < status <

university < all,” how many cuboids will this cube contain (including the base and apex
cuboids)?

3.6. Suppose that a data warehouse consists of the four dimensions date, spectator, location, and
game, and the two measures count and charge, where charge is the fare that a spectator pays
when watching a game on a given date. Spectators may be students, adults, or seniors, with each
category having its own charge rate.
a. Draw a star schema diagram for the data warehouse.
b. Starting with the base cuboid [date, spectator, location,game], what specific OLAP op-

erations should you perform in order to list the total charge paid by student spectators at
GM_Place in 2010?

c. Bitmap indexing is useful in data warehousing. Taking this cube as an example, briefly
discuss advantages and problems of using a bitmap index structure.

3.7. A data warehouse can be modeled by either a star schema or a snowflake schema. Briefly de-
scribe the similarities and the differences of the two models, and then analyze their advantages
and disadvantages with regard to one another. Give your opinion of which might be more empir-
ically useful and state the reasons behind your answer.

3.8. Design a data warehouse for a regional weather bureau. The weather bureau has about 1000
probes, which are scattered throughout various land and ocean locations in the region to collect
basic weather data, including air pressure, temperature, and precipitation at each hour. All data
are sent to the central station, which has collected such data for more than 10 years. Your design
should facilitate efficient querying and online analytical processing and derive general weather
patterns in multidimensional space.

3.9. A popular data warehouse implementation is to construct a multidimensional database, known
as a data cube. Unfortunately, this may often generate a huge, yet very sparse, multidimensional
matrix.
a. Present an example illustrating such a huge and sparse data cube.
b. Design an implementation method that can elegantly overcome this sparse matrix problem.

Note that you need to explain your data structures in detail and discuss the space needed, as
well as how to retrieve data from your structures.

c. Modify your design in (b) to handle incremental data updates. Give the reasoning behind
your new design.

3.10. Regarding the computation of measures in a data cube:
a. Enumerate three categories of measures, based on the kind of aggregate functions used in

computing a data cube.
b. For a data cube with the three dimensions time, location, and item, which category does

the function variance belong to? Describe how to compute it if the cube is partitioned into
many chunks.
Hint: The formula for computing variance is 1

N

∑N
i=1(xi − x̄i )

2, where x̄i is the average of
xis.

c. Suppose the function is “top 10 sales.” Discuss how to efficiently compute this measure in
a data cube.

3.11. Suppose a company wants to design a data warehouse to facilitate the analysis of moving ve-
hicles in an online analytical processing manner. The company registers huge amounts of auto
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movement data in the format of (Auto_ID, location, speed, time). Each Auto_ID represents a
vehicle associated with information (e.g., vehicle_category, driver_category), and each location
may be associated with a street in a city. Assume that a street map is available for the city.
a. Design such a data warehouse to facilitate effective online analytical processing in multidi-

mensional space.
b. The movement data may contain noise. Discuss how you would develop a method to auto-

matically discover data records that were likely erroneously registered in the data repository.
c. The movement data may be sparse. Discuss how you would develop a method that con-

structs a reliable data warehouse despite the sparsity of data.
d. If you want to drive from A to B starting at a particular time, discuss how a system may use

the data in this warehouse to work out a fast route.
3.12. Radio-frequency identification is commonly used to trace object movement and perform inven-

tory control. An RFID reader can successfully read an RFID tag from a limited distance at any
scheduled time. Suppose a company wants to design a data warehouse to facilitate the analysis of
objects with RFID tags in an online analytical processing manner. The company registers huge
amounts of RFID data in the format of (RFID, at_location, time), and also has some information
about the objects carrying the RFID tag, for example, (RFID, product_name, product_category,
producer, date_produced, price).
a. Design a data warehouse to facilitate effective registration and online analytical processing

of such data.
b. The RFID data may contain lots of redundant information. Discuss a method that maximally

reduces redundancy during data registration in the RFID data warehouse.
c. The RFID data may contain lots of noise such as missing registration and misread IDs.

Discuss a method that effectively cleans up the noisy data in the RFID data warehouse.
d. You may want to perform online analytical processing to determine how many TV sets

were shipped from the LA seaport to BestBuy in Champaign, IL, by month, brand, and
price_range. Outline how this could be done efficiently if you were to store such RFID data
in the warehouse.

e. If a customer returns a jug of milk and complains that it has spoiled before its expiration
date, discuss how you can investigate such a case in the warehouse to find out what the
problem is, either in shipping or in storage.

3.13. In many applications, new data sets are incrementally added to the existing large data sets. Thus,
an important consideration is whether a measure can be computed efficiently in an incremental
manner. Use count, standard deviation, and median as examples to show that a distributive or
algebraic measure facilitates efficient incremental computation, whereas a holistic measure does
not.

3.14. Suppose that we need to record three measures in a data cube: min(), average(), and median().
Design an efficient computation and storage method for each measure given that the cube allows
data to be deleted incrementally (i.e., in small portions at a time) from the cube.

3.15. In data warehouse technology, a multiple dimensional view can be implemented by a relational
database technique (ROLAP), by a multidimensional database technique (MOLAP), or by a hy-
brid database technique (HOLAP).
a. Briefly describe each implementation technique.
b. For each technique, explain how each of the following functions may be implemented:
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i. The generation of a data warehouse (including aggregation)
ii. Roll-up

iii. Drill-down
iv. Incremental updating

c. Which implementation techniques do you prefer, and why?
3.16. Suppose that a data warehouse contains 20 dimensions, each with about five levels of granularity.

a. Users are mainly interested in four particular dimensions, each having three frequently ac-
cessed levels for rolling up and drilling down. How would you design a data cube structure
to support this preference efficiently?

b. At times, a user may want to drill through the cube to the raw data for one or two particular
dimensions. How would you support this feature?

3.17. A data cube, C, has n dimensions, and each dimension has exactly p distinct values in the base
cuboid. Assume that there are no concept hierarchies associated with the dimensions.
a. What is the maximum number of cells possible in the base cuboid?
b. What is the minimum number of cells possible in the base cuboid?
c. What is the maximum number of cells possible (including both base cells and aggregate

cells) in the C data cube?
d. What is the minimum number of cells possible in C?

3.18. Assume that a 10-D base cuboid contains only three base cells: (1) (a1, d2, d3, d4, . . . , d9, d10),
(2) (d1, b2, d3, d4, . . . , d9, d10), and (3) (d1, d2, c3, d4, . . . , d9, d10), where a1 �= d1, b2 �= d2, and
c3 �= d3. The measure of the cube is count().
a. How many nonempty cuboids will a full data cube contain?
b. How many nonempty aggregate (i.e., nonbase) cells will a full cube contain?
c. How many nonempty aggregate cells will an iceberg cube contain if the condition of the

iceberg cube is “count ≥ 2”?
d. A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization of cell c

(i.e., d is obtained by replacing a ∗ in c by a non-∗ value) and d has the same measure value
as c. A closed cube is a data cube consisting of only closed cells. How many closed cells
are in the full cube?

3.19. There are several typical cube computation methods, such as MultiWay [ZDN97], BUC [BR99],
and Star-Cubing [XHLW03]. Briefly describe these three methods (i.e., use one or two lines
to outline the key points) and compare their feasibility and performance under the following
conditions:
a. Computing a dense full cube of low dimensionality (e.g., less than eight dimensions).
b. Computing an iceberg cube of around 10 dimensions with a highly skewed data distribution.
c. Computing a sparse iceberg cube of high dimensionality (e.g., over 100 dimensions).

3.20. Suppose a data cube, C, has D dimensions, and the base cuboid contains k distinct tuples.
a. Present a formula to calculate the minimum number of cells that the cube, C, may contain.
b. Present a formula to calculate the maximum number of cells that C may contain.
c. Answer parts (a) and (b) as if the count in each cube cell must be no less than a threshold, v.
d. Answer parts (a) and (b) as if only closed cells are considered (with the minimum count

threshold, v).
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3.21. Suppose that a base cuboid has three dimensions, A,B,C, with the following number of cells:
|A| = 1,000,000, |B| = 100, and |C| = 1000. Suppose that each dimension is evenly partitioned
into 10 portions for chunking.
a. Assuming each dimension has only one level, draw the complete lattice of the cube.
b. If each cube cell stores one measure with four bytes, what is the total size of the computed

cube if the cube is dense?
c. State the order for computing the chunks in the cube that requires the least amount of space,

and compute the total amount of main memory space required for computing the 2-D planes.
3.22. When computing a cube of high dimensionality, we encounter the inherent curse of dimension-

ality problem: There exists a huge number of subsets of combinations of dimensions.
a. Suppose that there are only two base cells, {(a1, a2, a3, . . . , a100) and (a1, a2, b3, . . . , b100)},

in a 100-D base cuboid. Compute the number of nonempty aggregate cells. Comment on
the storage space and time required to compute these cells.

b. Suppose we are to compute an iceberg cube from (a). If the minimum support count in the
iceberg condition is 2, how many aggregate cells will there be in the iceberg cube? Show
the cells.

c. Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells in a
data cube. However, even with iceberg cubes, we could still end up having to compute a
large number of trivial uninteresting cells (i.e., with small counts). Suppose that a database
has 20 tuples that map to (or cover) the two following base cells in a 100-D base cuboid,
each with a cell count of 10: {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}.

i. Let the minimum support be 10. How many distinct aggregate cells will there be like
the following: {(a1, a2, a3, a4, . . . , a99,∗) : 10, . . . , (a1, a2,∗, a4, . . . , a99, a100) : 10,
. . . , (a1, a2, a3,∗, . . . ,∗,∗) : 10}?

ii. If we ignore all the aggregate cells that can be obtained by replacing some constants
with ∗’s while keeping the same measure value, how many distinct cells remain?
What are the cells?

3.23. Propose an algorithm that computes closed iceberg cubes efficiently.
3.24. Suppose that we want to compute an iceberg cube for the dimensions, A,B,C,D, where we

wish to materialize all cells that satisfy a minimum support count of at least v, and where car-
dinality(A) < cardinality(B) < cardinality(C) < cardinality(D). Show the BUC processing tree
(which shows the order in which the BUC algorithm explores a data cube’s lattice, starting from
all) for the construction of this iceberg cube.

3.25. Discuss how you might extend the Star-Cubing algorithm to compute iceberg cubes where the
iceberg condition tests for an avg that is no bigger than some value, v.

3.26. A flight data warehouse for a travel agent consists of six dimensions: traveler, departure (city),
departure_time, arrival, arrival_time, and flight; and two measures: count() and avg_fare(),
where avg_fare() stores the concrete fare at the lowest level but the average fare at other levels.
a. Suppose the cube is fully materialized. Starting with the base cuboid [traveler, departure,

departure_time, arrival, arrival_time, flight], what specific OLAP operations (e.g., roll-up
flight to airline) should one perform to list the average fare per month for each business
traveler who flies American Airlines (AA) from Los Angeles in 2009?
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b. Suppose we want to compute a data cube where the condition is that the minimum number
of records is 10 and the average fare is over $500. Outline an efficient cube computation
method (based on common sense about flight data distribution).

3.27. (Implementation project) There are four typical data cube computation methods: MultiWay
[ZDN97], BUC [BR99], H-Cubing [HPDW01], and Star-Cubing [XHLW03].
a. Implement any one of these cube computation algorithms and describe your implemen-

tation, experimentation, and performance. Find another student who has implemented a
different algorithm on the same platform (e.g., C++ on Linux) and compare your algorithm
performance with his or hers.
Input:

i. An n-dimensional base cuboid table (for n < 20), which is essentially a relational
table with n attributes.

ii. An iceberg condition: count (C) ≥ k, where k is a positive integer as a parameter.
Output:

i. The set of computed cuboids that satisfy the iceberg condition, in the order of your
output generation.

ii. Summary of the set of cuboids in the form of “cuboid ID: the number of nonempty
cells,” sorted in alphabetical order of cuboids (e.g., A: 155, AB: 120, ABC: 22, ABCD:
4, ABCE: 6, ABD: 36), where the number after : represents the number of nonempty
cells. (This is used to quickly check the correctness of your results.)

b. Based on your implementation, discuss the following:
i. What challenging computation problems are encountered as the number of dimen-

sions grows large?
ii. How can iceberg cubing solve the problems of part (a) for some data sets (and char-

acterize such data sets)?
iii. Give one simple example to show that sometimes iceberg cubes cannot provide a

good solution.
c. Instead of computing a high-dimensionality data cube, we may choose to materialize the

cuboids that have only a small number of dimension combinations. For example, for a 30-D
data cube, we may only compute the 5-D cuboids for every possible 5-D combination. The
resulting cuboids form a shell cube. Discuss how easy or hard it is to modify your cube
computation algorithm to facilitate such computation.

3.28. The sampling cube was proposed for multidimensional analysis of sampling data (e.g., survey
data). In many real applications, sampling data can be of high dimensionality (e.g., it is not
unusual to have more than 50 dimensions in a survey data set).
a. How can we construct an efficient and scalable high-dimensional sampling cube in large

sampling data sets?
b. Design an efficient incremental update algorithm for such a high-dimensional sampling

cube.
c. Discuss how to support quality drill-down given that some low-level cells may be empty or

contain too few data for reliable analysis.
3.29. The ranking cube was designed to support top-k (ranking) queries in relational database systems.

However, ranking queries are also posed to data warehouses, where ranking is on multidimen-
sional aggregates instead of on measures of base facts. For example, consider a product manager
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who is analyzing a sales database that stores the nationwide sales history, organized by location
and time. To make investment decisions, the manager may pose the following query: “What are
the top-10 (state, year) cells having the largest total product sales?” He may further drill down
and ask, “What are the top-10 (city, month) cells?” Suppose the system can perform such partial
materialization to derive two types of materialized cuboids: a guiding cuboid and a supporting
cuboid, where the former contains a number of guiding cells that provide concise, high-level
data statistics to guide the ranking query processing, whereas the latter provides inverted indices
for efficient online aggregation.
a. Derive an efficient method for computing such aggregate ranking cubes.
b. Extend your framework to handle more advanced measures. One such example could be as

follows. Consider an organization donation database, where donors are grouped by “age,”
“income,” and other attributes. Interesting questions include: “Which age and income groups
have made the top-k average amount of donation (per donor)?” and “Which income group
of donors has the largest standard deviation in the donation amount?”

3.30. Recently, researchers have proposed another kind of query, called a skyline query. A skyline
query returns all the objects pi such that pi is not dominated by any other object pj , where
dominance is defined as follows. Let the value of pi on dimension d be v(pi, d). We say pi is
dominated by pj if and only if for each preference dimension d , v(pj , d) ≤ v(pi, d), and there
is at least one d where the equality does not hold.
a. Design a ranking cube (see the previous question) so that skyline queries can be processed

efficiently.
b. Skyline queries are sometimes too strict to be desirable to some users. One may generalize

the concept of skyline into generalized skyline as follows: Given a d-dimensional database
and a query q, the generalized skyline is the set of the following objects: (1) the skyline
objects and (2) the nonskyline objects that are ε-neighbors of a skyline object, where r is
an ε-neighbor of an object p if the distance between p and r is no more than ε. Design a
ranking cube to process generalized skyline queries efficiently.

3.31. The prediction cube is a good example of multidimensional data mining in cube space.
a. Propose an efficient algorithm that computes prediction cubes in a given multidimensional

database.
b. For what kind of classification models can your algorithm be applied? Explain.

3.32. Multifeature cubes allow us to construct interesting data cubes based on rather sophisticated
query conditions. Can you construct the following multifeature cube by translating the following
user requests into queries using the form introduced in this textbook?
a. Construct a smart shopper cube where a shopper is smart if at least 10% of the goods she

buys in each shopping trip are on sale.
b. Construct a data cube for best-deal products where best-deal products are those products

for which the price is the lowest for this product in the given month.
3.33. Discovery-driven cube exploration is a desirable way to mark interesting points among a large

number of cells in a data cube. Individual users may have different views on whether a point
should be considered interesting enough to be marked. Suppose one would like to mark those ob-
jects of which the absolute value of z score is over 2 in every row and column in a d-dimensional
plane.
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a. Derive an efficient computation method to identify such points during the data cube com-
putation.

b. Suppose a partially materialized cube has (d − 1)-dimensional and (d + 1)-dimensional
cuboids materialized but not the d-dimensional one. Derive an efficient method to mark
those (d − 1)-dimensional cells with d-dimensional children that contain such marked
points.

3.8 Bibliographic notes
There are a good number of introductory-level textbooks on data warehousing and OLAP technology—
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4
CHAPTER

Pattern mining: basic concepts and
methods

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that appear frequently
in a data set. For example, a set of items, such as milk and bread, that appear frequently together in
a transaction data set is a frequent itemset. A subsequence, such as buying first a smartphone, then a
smart TV, and then a smart home device, if it occurs frequently in a shopping history database, is a
(frequent) sequential pattern. A substructure can refer to different structural forms, such as subgraphs,
subtrees, or sublattices. If a substructure occurs frequently, it is called a (frequent) structured pattern.
Finding frequent patterns plays an essential role in mining associations, correlations, and many other
interesting relationships among data. Moreover, it helps in data classification, clustering, and other data
mining tasks. Thus, frequent pattern mining has become an important data mining task and a focused
theme in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, associations, and correla-
tions (Section 4.1) and study how they can be mined efficiently (Section 4.2). We also discuss how
to judge whether the patterns found are interesting (Section 4.3). In the subsequent chapter, we extend
our discussion to advanced frequent pattern mining, including mining more complex forms of frequent
patterns, and their applications.

4.1 Basic concepts
Frequent pattern mining uncovers recurring relationships in a given data set. This section introduces the
basic concepts of frequent pattern mining for the discovery of interesting associations and correlations
between itemsets in transactional and relational databases. We begin in Section 4.1.1 by presenting an
example of market basket analysis, the earliest form of frequent pattern mining for association rules.
The basic concepts of mining frequent patterns and associations are discussed in Section 4.1.2.

4.1.1 Market basket analysis: a motivating example
A set of items is referred to as an itemset.1 Frequent itemset mining leads to the discovery of associa-
tions and correlations among items in large transactional or relational data sets. With massive amounts
of data continuously being collected and stored, many industries are interested in mining such pat-
terns from their databases. The discovery of interesting correlation relationships among huge amounts

1 In the data mining research literature, “itemset” is more commonly used than “item set.”
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FIGURE 4.1

Market basket analysis.

of business transaction records can help in many business decision-making processes such as catalog
design, cross-marketing, and customer shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. This process analyzes
customer buying habits by finding associations between the different items that customers place in their
“shopping baskets” (Fig. 4.1). The discovery of these associations can help retailers develop marketing
strategies by gaining insight into which items are frequently purchased together by customers. For
instance, if customers are buying milk, how likely are they to also buy bread (and what kind of bread)
on the same trip to the supermarket? This information can lead to increased sales, revenue, and customer
acquisition by helping retailers do selective marketing and planned shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 4.1. Market basket analysis. Suppose, as manager of a retail company, you would like to
learn more about the buying habits of your customers. Specifically, you wonder, “Which groups or sets
of items are customers likely to purchase on a given trip to the store?” To answer your question, market
basket analysis may be performed on the retail data of customer transactions at your store. You can
then use these results to choose marketing strategies and help create a new catalog. For instance, market
basket analysis may help you design different store layouts. In one strategy, items that are frequently
purchased together can be placed in proximity to further encourage the combined sale of such items. If
customers who purchase computers also tend to buy antivirus software at the same time, then placing
the hardware display close to the software display may help increase the sales of both items.

In an alternative strategy, placing hardware and software at opposite ends of the store may entice
customers who purchase such items to pick up other items along the way. For instance, after deciding
on an expensive computer, a customer may observe security systems for sale while heading toward the
software display to purchase antivirus software and may decide to purchase a home security system as
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well. Market basket analysis can also help retailers plan which items to put on sale at reduced prices. If
customers tend to purchase computers and printers together, then reducing the prices on printers may
encourage the sale of printers as well as computers.

If we think of the universe as the set of items available at the store, then each item has a Boolean
variable representing the presence or absence of that item. Each basket can then be represented by a
Boolean vector of values assigned to these variables. The Boolean vectors can be analyzed to extract
buying patterns that reflect items that are frequently associated or purchased together. These patterns
can be represented in the form of association rules. For example, the information that customers who
purchase computers also tend to buy antivirus software at the same time is represented in the following
association rule:

computer ⇒ antivirus_software [support = 2%, confidence = 60%]. (4.1)

Rule support and confidence are two measures of rule interestingness. They reflect the usefulness
and certainty of discovered rules, respectively. A support of 2% for Rule (4.1) means that 2% of all the
transactions under analysis show that computer and antivirus software are purchased together. A con-
fidence of 60% means that 60% of the customers who purchased a computer also bought the software.
Typically, association rules are considered interesting if they satisfy a minimum support threshold
and a minimum confidence threshold. These thresholds can be set by users or domain experts. Ad-
ditional analysis can be performed to discover interesting statistical correlations between associated
items.

4.1.2 Frequent itemsets, closed itemsets, and association rules
Let I = {I1, I2, . . . , Im} be an itemset. Let D, the task-relevant data, be a set of database transactions
where each transaction T is a nonempty itemset such that T ⊆ I. Each transaction is associated with
an identifier, called a TID. Let A be a set of items. A transaction T is said to contain A if A ⊆ T .
An association rule is an implication of the form A ⇒ B, where A ⊂ I, B ⊂ I, A �= ∅, B �= ∅, and
A ∩ B = φ. The rule A ⇒ B holds in the transaction set D with support s, where s is the percentage
of transactions in D that contain A ∪ B (i.e., the union of sets A and B say, or, both A and B). This
is taken to be the probability, P(A ∪ B).2 The rule A ⇒ B has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that also contain B. This is taken to be the
conditional probability, P(B|A). That is,

support (A⇒B) =P(A ∪ B) (4.2)

confidence (A⇒B) =P(B|A). (4.3)

Rules that satisfy both a minimum support threshold (min_sup) and a minimum confidence threshold
(min_conf ) are called strong. By convention, support and confidence values are represented as percent-
ages.

2 Notice that the notation P(A ∪ B) indicates the probability that a transaction contains the union of sets A and B (i.e., it contains
every item in A and B). This should not be confused with P(A or B), which indicates the probability that a transaction contains
either A or B.
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An itemset that contains k items is a k-itemset. The set {computer, antivirus_software} is a 2-
itemset. The occurrence frequency of an itemset is the number of transactions that contain the itemset.
Occurrence frequency is also referred as the frequency, support count, or count of the itemset. Note
that the itemset support defined in Eq. (4.2) is sometimes referred to as relative support, whereas the
occurrence frequency is called the absolute support. If the relative support of an itemset I satisfies a
prespecified minimum support threshold (i.e., the absolute support of I satisfies the corresponding
minimum support count threshold), then I is a frequent itemset.3 The set of frequent k-itemsets is
commonly denoted by Lk .4

From Eq. (4.3), we have

confidence (A⇒B) = P(B|A) = support (A ∪ B)

support (A)
= support_count (A ∪ B)

support_count (A)
. (4.4)

Eq. (4.4) shows that the confidence of rule A ⇒ B can be easily derived from the support counts of
A and A ∪ B. That is, once the support counts of A, B, and A ∪ B are found, it is straightforward to
derive the corresponding association rules A ⇒ B and B ⇒ A and check whether they are strong. Thus
the problem of mining association rules can be reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets. By definition, each of these itemsets will occur at least as frequently as
a predetermined minimum support count, min_sup.

2. Generate strong association rules from the frequent itemsets. By definition, these rules must
satisfy minimum support and minimum confidence.

Additional interestingness measures that can be applied for the discovery of correlation relation-
ships between associated items will be discussed in Section 4.3. The overall performance of mining
association rules is determined by the first step since the second step is much less costly than the first.

A major challenge in mining frequent itemsets from a large data set is the fact that such mining often
generates a huge number of itemsets satisfying the minimum support (min_sup) threshold, especially
when min_sup is set low. This is because if an itemset is frequent, each of its subsets is frequent as
well. A long itemset will contain a combinatorial number of shorter frequent subitemsets. For example,
a frequent itemset of length 100, such as {a1, a2, . . . , a100}, contains

(100
1

) = 100 frequent 1-itemsets:

{a1}, {a2}, . . . , {a100};
(100

2

)
frequent 2-itemsets: {a1, a2}, {a1, a3}, {a1, a4}, . . . , {a2, a3}, {a2, a4}, . . . ,

{a99, a100}; and so on. The total number of frequent itemsets that it contains is thus(
100

1

)
+

(
100

2

)
+ · · · +

(
100

100

)
= 2100 − 1 ≈ 1.27 × 1030. (4.5)

This is too huge a number of itemsets for any computer to compute or store. To overcome this difficulty,
we introduce the concepts of closed frequent itemset and maximal frequent itemset.

3 In early work, itemsets satisfying minimum support were referred to as large. This term, however, is somewhat confusing as it
has connotations of the number of items in an itemset rather than the frequency of occurrence of the set. Hence, we use the more
recent term frequent.
4 Although the term frequent is preferred over large, for historic reasons frequent k-itemsets are still denoted as Lk .
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An itemset X is closed in a data set D if there exists no proper superitemset Y 5 such that Y has the
same support count as X in D. An itemset X is a closed frequent itemset in set D if X is both closed
and frequent in D. An itemset X is a maximal frequent itemset (or max-itemset) in a data set D if X

is frequent, and there exists no superitemset Y such that X ⊂ Y and Y is frequent in D.
Let C be the set of closed frequent itemsets for a data set D satisfying a minimum support threshold,

min_sup. Let M be the set of maximal frequent itemsets for D satisfying min_sup. Suppose that we
have the support count of each itemset in C and M. Notice that C and its count information can be used
to derive the whole set of frequent itemsets. Thus we say that C contains complete information regarding
its corresponding frequent itemsets. On the other hand, M registers only the support of the maximal
itemsets. It usually does not contain the complete support information regarding its corresponding
frequent itemsets. We illustrate these concepts with Example 4.2.

Example 4.2. Closed and maximal frequent itemsets. Suppose that a transaction database has
only two transactions: {〈a1, a2, . . . , a100〉; 〈a1, a2, . . . , a50〉}. Let the minimum support count thresh-
old be min_sup = 1. We find two closed frequent itemsets and their support counts, that is, C =
{{a1, a2, . . . , a100} : 1; {a1, a2, . . . , a50} : 2}. There is only one maximal frequent itemset: M=
{{a1, a2, . . . , a100} : 1}. Notice that we cannot include {a1, a2, . . . , a50} as a maximal frequent item-
set because it has a frequent superset, {a1, a2, . . . , a100}. Compare this to the preceding where we
determined that there are 2100 − 1 frequent itemsets, which are too many to be enumerated!

The set of closed frequent itemsets contains complete information regarding the frequent itemsets.
For example, from C, we can derive, say, (1) {a2, a45 : 2} since {a2, a45} is a subitemset of the itemset
{a1, a2, . . . , a50 : 2}; and (2) {a8, a55 : 1} since {a8, a55} is not a subitemset of the previous itemset but
of the itemset {a1, a2, . . . , a100 : 1}. However, from the maximal frequent itemset, we can only assert
that both itemsets ({a2, a45} and {a8, a55}) are frequent, but we cannot assert their actual support
counts.

4.2 Frequent itemset mining methods
In this section, you will learn methods for mining the simplest form of frequent patterns such as those
discussed for market basket analysis in Section 4.1.1. We begin by presenting Apriori, the basic algo-
rithm for finding frequent itemsets in Section 4.2.1. In Section 4.2.2, we look at how to generate strong
association rules from frequent itemsets. Section 4.2.3 describes several variations to the Apriori algo-
rithm for improved efficiency and scalability. Section 4.2.4 presents pattern-growth methods for mining
frequent itemsets that confine the subsequent search space to only the data sets containing the current
frequent itemsets. Section 4.2.5 presents methods for mining frequent itemsets that take advantage of
the vertical data format.

5 Y is a proper superitemset of X if X is a proper subitemset of Y , that is, if X ⊂ Y . In other words, every item of X is contained
in Y , but there is at least one item of Y that is not in X.
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4.2.1 Apriori algorithm: finding frequent itemsets by confined candidate
generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent
itemsets for Boolean association rules [AS94b]. The name of the algorithm is based on the fact that the
algorithm uses prior knowledge of frequent itemset properties, as we shall see later. Apriori employs an
iterative approach known as a level-wise search, where k-itemsets are used to explore (k + 1)-itemsets.
First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each
item, and collecting those items that satisfy minimum support. The resulting set is denoted by L1. Next,
L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and so on, until no more
frequent k-itemsets can be found. The finding of each Lk requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an important property
called the Apriori property is used to reduce the search space.

Apriori property: all nonempty subsets of a frequent itemset must also be frequent.

The Apriori property is based on the following observation. By definition, if an itemset I does not
satisfy the minimum support threshold, min_sup, then I is not frequent, that is, P(I) < min_sup. If an
item A is added to the itemset I , then the resulting itemset (i.e., I ∪ A) cannot occur more frequently
than I . Therefore I ∪ A is not frequent either, that is, P(I ∪ A) < min_sup.

This property belongs to a special category of properties called antimonotonicity in the sense that
if a set cannot pass a test, all of its supersets will fail the same test as well. It is called antimonotonicity
because the property is monotonic in the context of failing a test.

“How is the Apriori property used in the algorithm?” To understand this, let us look at how Lk−1
is used to find Lk for k ≥ 2. A two-step process is followed, consisting of join and prune actions.

1. The join step. To find Lk , a set of candidate k-itemsets is generated by joining Lk−1 with itself.
This set of candidates is denoted Ck . Let l1 and l2 be itemsets in Lk−1. The notation li[j ] refers to the
j th item in li (e.g., l1[k − 2] refers to the second to the last item in l1). For efficient implementation,
Apriori assumes that items within a transaction or itemset are sorted in lexicographic order. For
the (k − 1)-itemset, li , this means that the items are sorted such that li[1] < li[2] < · · · < li[k − 1].
The join, Lk−1 �� Lk−1, is performed, where members of Lk−1 are joinable if their first (k − 2)

items are in common. That is, members l1 and l2 of Lk−1 are joined if (l1[1] = l2[1]) ∧ (l1[2] =
l2[2]) ∧ · · · ∧ (l1[k − 2] = l2[k − 2]) ∧(l1[k − 1] < l2[k − 1]). The condition l1[k − 1] < l2[k − 1]
simply ensures that no duplicates are generated. The resulting itemset formed by joining l1 and l2 is
{l1[1], l1[2], . . . , l1[k − 2], l1[k − 1], l2[k − 1]}.

2. The prune step. Ck is a superset of Lk , that is, its members may or may not be frequent, but all of
the frequent k-itemsets are included in Ck . A database scan to determine the count of each candidate
in Ck would result in the determination of Lk (i.e., all candidates having a count no less than the
minimum support count are frequent by definition and therefore belong to Lk). Ck , however, can be
huge, and so this could involve heavy computation. To reduce the size of Ck , the Apriori property is
used as follows. Any (k − 1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.
Hence, if any (k − 1)-subset of a candidate k-itemset is not in Lk−1, then the candidate cannot
be frequent either and so can be removed from Ck . This subset testing can be done quickly by
maintaining a hash tree of all frequent itemsets.
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Example 4.3. Apriori. Let’s look at a concrete example, based on the transaction database, D, of
Table 4.1. There are nine transactions in this database, that is, |D| = 9. We use Fig. 4.2 to illustrate the
Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets, C1.
The algorithm simply scans all of the transactions to count the number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min_sup = 2. (Here, we are referring
to absolute support because we are using a support count. The corresponding relative support is
2/9 = 22%.) The set of frequent 1-itemsets, L1, can then be determined. It consists of the candidate
1-itemsets satisfying minimum support. In our example, all of the candidates in C1 satisfy minimum
support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 �� L1 to generate
a candidate set of 2-itemsets, C2.6 C2 consists of

(|L1|
2

)
2-itemsets. Note that no candidates are

removed from C2 during the prune step because each subset of the candidates is also frequent.
4. Next, the transactions in D are scanned and the support count of each candidate itemset in C2 is

accumulated, as shown in the middle table of the second row in Fig. 4.2.
5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate 2-itemsets in

C2 having minimum support.
6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Fig. 4.3. From the join step,

we first get C3 = L2 �� L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4,
I5}}. Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we
can determine that the four latter candidates cannot possibly be frequent. We therefore remove them
from C3, thereby saving the effort of unnecessarily obtaining their counts during the subsequent
scan of D to determine L3. Note that when given a candidate k-itemset, we only need to check if
its (k − 1)-subsets are frequent since the Apriori algorithm uses a level-wise search strategy. The
resulting pruned version of C3 is shown in the first table of the bottom row of Fig. 4.2.

7. The transactions in D are scanned to determine L3, consisting of those candidate 3-itemsets in C3
having minimum support (Fig. 4.2).

Table 4.1 A transac-
tional data set.

TID List of item_IDs
T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

6 L1 �� L1 is equivalent to L1 × L1, since the definition of Lk �� Lk requires the two joining itemsets to share k − 1 = 0 items.
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FIGURE 4.2

Generation of the candidate itemsets and frequent itemsets, where the minimum support count is 2.

8. The algorithm uses L3 �� L3 to generate a candidate set of 4-itemsets, C4. Although the join results
in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset {I2, I3, I5} is not frequent.
Thus, C4 = φ, and the algorithm terminates, having found all of the frequent itemsets.

Fig. 4.4 shows pseudocode for the Apriori algorithm and its related procedures. Step 1 of Apriori
finds the frequent 1-itemsets, L1. In steps 2 through 10, Lk−1 is used to generate candidates Ck to find
Lk for k ≥ 2. The apriori_gen procedure generates the candidates and then uses the Apriori property
to eliminate those having a subset that is not frequent (step 3). Once all of the candidates have been
generated, the database is scanned (step 4). For each transaction, a subset function is used to find all
subsets of the transaction that are candidates (step 5), and the count for each of these candidates is
accumulated (steps 6 and 7). Finally, all the candidates satisfying the minimum support (step 9) form
the set of frequent itemsets, L (step 11). A procedure can then be called to generate association rules
from the frequent itemsets. Such a procedure is described in Section 4.2.2.



4.2 Frequent itemset mining methods 153

a. Join: C3 = L2 �� L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}
�� {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}

= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.
b. Prune using the Apriori property: all nonempty subsets of a frequent itemset must also be frequent. Do any of the candidates

have a subset that is not frequent?

• The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item subsets of {I1, I2, I3} are members of
L2. Therefore, keep {I1, I2, I3} in C3.

• The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of {I1, I2, I5} are members of
L2. Therefore, keep {I1, I2, I5} in C3.

• The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not a member of L2, and so it is not
frequent. Therefore, remove {I1, I3, I5} from C3.

• The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a member of L2, and so it is not
frequent. Therefore, remove {I2, I3, I4} from C3.

• The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not a member of L2, and so it is not
frequent. Therefore, remove {I2, I3, I5} from C3.

• The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a member of L2, and so it is not
frequent. Therefore, remove {I2, I4, I5} from C3.

c. Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning.

FIGURE 4.3

Generation and pruning of candidate 3-itemsets, C3, from L2 using the Apriori property.

The apriori_gen procedure performs two kinds of actions, namely, join and prune, as described
before. In the join component, Lk−1 is joined with Lk−1 to generate potential candidates (steps 1–4).
The prune component (steps 5–7) employs the Apriori property to remove candidates that have a subset
that is not frequent. The test for infrequent subsets is shown in procedure has_infrequent_subset.

4.2.2 Generating association rules from frequent itemsets
Once the frequent itemsets from transactions in a database D have been found, it is straightforward
to generate strong association rules from them (where strong association rules satisfy both minimum
support and minimum confidence). This can be done using Eq. (4.4) for confidence, which we show
again here for completeness:

confidence (A ⇒ B) = P(B|A) = support_count (A ∪ B)

support_count (A)
.

The conditional probability is expressed in terms of itemset support count, where
support_count (A ∪ B) is the number of transactions containing the itemsets A ∪ B, and
support_count (A) is the number of transactions containing the itemset A. Based on this equation,
association rules can be generated as follows.

• For each frequent itemset l, generate all nonempty subsets of l.
• For every nonempty subset s of l, output the rule “s ⇒ (l − s)” if support_count (l)

support_count (s)
≥ min_conf, where

min_conf is the minimum confidence threshold.
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Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

Input:

• D, a database of transactions;
• min_sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

(1) L1 = find_frequent_1-itemsets(D);
(2) for (k = 2;Lk−1 �= φ;k++) {
(3) Ck = apriori_gen(Lk−1);
(4) for each transaction t ∈ D { // scan D for counts
(5) Ct = subset(Ck, t); // get the subsets of t that are candidates
(6) for each candidate c ∈ Ct

(7) c.count++;
(8) }
(9) Lk = {c ∈ Ck |c.count ≥ min_sup}
(10) }
(11) return L = ∪kLk ;

procedure apriori_gen(Lk−1:frequent (k − 1)-itemsets)
(1) for each itemset l1 ∈ Lk−1
(2) for each itemset l2 ∈ Lk−1
(3) if (l1[1] = l2[1]) ∧ (l1[2] = l2[2])

∧... ∧ (l1[k − 2] = l2[k − 2]) ∧ (l1[k − 1] < l2[k − 1]) then {
(4) c = l1 �� l2; // join step: generate candidates
(5) if has_infrequent_subset(c,Lk−1) then
(6) delete c; // prune step: remove unfruitful candidate
(7) else add c to Ck ;
(8) }
(9) return Ck ;

procedure has_infrequent_subset(c: candidate k-itemset;
Lk−1: frequent (k − 1)-itemsets); // use prior knowledge

(1) for each (k − 1)-subset s of c

(2) if s /∈ Lk−1 then
(3) return TRUE;
(4) return FALSE;

FIGURE 4.4

Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

Because the rules are generated from frequent itemsets, each one automatically satisfies the mini-
mum support. Frequent itemsets can be stored ahead of time in hash tables along with their counts so
that they can be accessed quickly.

Example 4.4. Generating association rules. Let’s try an example based on the transactional data
shown before in Table 4.1. The data contain frequent itemset X = {I1, I2, I5}. What are the association
rules that can be generated from X? The nonempty subsets of X are {I1, I2}, {I1, I5}, {I2, I5}, {I1},
{I2}, and {I5}. The resulting association rules are as shown below, each listed with its confidence:
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{I1, I2} ⇒ I5, confidence = 2/4 = 50%
{I1, I5} ⇒ I2, confidence = 2/2 = 100%
{I2, I5} ⇒ I1, confidence = 2/2 = 100%
I1 ⇒ {I2, I5}, confidence = 2/6 = 33%
I2 ⇒ {I1, I5}, confidence = 2/7 = 29%
I5 ⇒ {I1, I2}, confidence = 2/2 = 100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and last rules are
output, because these are the only ones generated that are strong. Note that, unlike conventional classi-
fication rules, association rules can contain more than one conjunct in the right side of the rule.

4.2.3 Improving the efficiency of Apriori
“How can we further improve the efficiency of Apriori-based mining?” Many variations of the Apriori
algorithm have been proposed that focus on improving the efficiency of the original algorithm. Several
of these variations are summarized as follows.

Hash-based technique (hashing itemsets into corresponding buckets). A hash-based technique can
be used to reduce the size of the candidate k-itemsets, Ck , for k > 1. For example, when scanning
each transaction (e.g., let t = {i1, i2, i4}) in the database to generate the frequent 1-itemsets, L1, we
can generate all the 2-itemsets for each transaction (e.g., three 2-itemsets {i1, i2}, {i1, i4}, and {i2, i4}
for transaction t), hash (i.e., map) them into the different buckets of a hash table structure, and
increase the corresponding bucket counts as shown in Fig. 4.5. A 2-itemset with a corresponding
bucket count in the hash table that is below the support threshold cannot be frequent and thus
should be removed from the candidate set. Such a hash-based technique may substantially reduce
the number of candidate k-itemsets examined (especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in future iterations). A trans-
action that does not contain any frequent k-itemsets cannot contain any frequent (k + 1)-itemsets.
Therefore such a transaction can be marked or removed from further consideration because subse-
quent database scans for j -itemsets, where j > k, will not need to consider such a transaction.

FIGURE 4.5

Hash table, H2, for candidate 2-itemsets. This hash table was generated by scanning Table 4.1’s transactions while
determining L1. If the minimum support count is, say, 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be fre-
quent and so they should not be included in C2.
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FIGURE 4.6

Mining by partitioning the data.

Partitioning (partitioning the data to find candidate itemsets). A partitioning technique can be used
that requires just two database scans to mine the frequent itemsets (Fig. 4.6). It consists of two
phases. In phase I, the algorithm divides the transactions of D into n nonoverlapping partitions.
If the minimum relative support threshold for transactions in D is min_sup, then the minimum
support count for a partition is min_sup × the number of transactions in that partition. For each
partition, all the local frequent itemsets (i.e., the itemsets frequent within the partition) are found.
A local frequent itemset may or may not be frequent with respect to the entire database, D. How-
ever, any itemset that is potentially frequent with respect to D must occur as a frequent itemset
in at least one of the partitions.7 Therefore all local frequent itemsets are candidate itemsets with
respect to D. The collection of frequent itemsets from all partitions forms the global candidate
itemsets with respect to D. In phase II, a second scan of D is conducted in which the actual support
of each candidate is assessed to determine the global frequent itemsets. Partition size and the num-
ber of partitions are set so that each partition can fit into main memory and therefore be read only
once in each phase.

Sampling (mining on a subset of the given data). The basic idea of the sampling approach is to pick
a random sample S of the given data D, and then search for frequent itemsets in S instead of D.
In this way, we trade off some degree of accuracy against efficiency. The S sample size is such
that the search for frequent itemsets in S can be done in main memory, and so only one scan of
the transactions in S is required overall. Because we are searching for frequent itemsets in S rather
than in D, it is possible that we will miss some of the global frequent itemsets.
To reduce this possibility, we use a lower support threshold than the minimum support to find the
frequent itemsets local to S (denoted LS). The rest of the database is then used to compute the
actual frequencies of each itemset in LS . A mechanism is used to determine whether all the global
frequent itemsets are included in LS . If LS actually contains all the frequent itemsets in D, then
only one scan of D is required. Otherwise, a second pass can be done to find the frequent itemsets
that were missed in the first pass. The sampling approach is especially beneficial when efficiency is
of utmost importance such as in computationally intensive applications that must be run frequently.

7 The proof of this property is left as an exercise (see Exercise 4.3d).
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Dynamic itemset counting (adding candidate itemsets at different points during a scan). A dynamic
itemset counting technique is proposed in which the database is partitioned into blocks marked
by start points. In this variation, new candidate itemsets can be added at any start point, unlike
in Apriori, which determines new candidate itemsets only after each complete database scan. The
technique uses the count-so-far as the lower bound of the actual count. If the count-so-far passes
the minimum support, the itemset is added into the frequent itemset collection and can be used to
generate longer candidates. This leads to fewer database scans than with Apriori for finding all the
frequent itemsets.

Other variations are discussed in the next chapter or left as exercises.

4.2.4 A pattern-growth approach for mining frequent itemsets
As we have seen, in many cases the Apriori candidate generate-and-test method significantly reduces
the size of candidate sets, leading to good performance gain. However, it can suffer from two nontrivial
costs.

• It may still need to generate a huge number of candidate sets. For example, if there are 104 frequent
1-itemsets, the Apriori algorithm will need to generate more than 107 candidate 2-itemsets.

• It may need to repeatedly scan the whole database and check a large set of candidates by pattern
matching. It is costly to go over each transaction in the database to determine the support of the
candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets without such a costly can-
didate generation process?” An interesting method in this attempt is called frequent pattern growth,
or simply FP-growth, which adopts a divide-and-conquer strategy as follows. First, it compresses the
database representing frequent items into a frequent pattern tree, or FP-tree, which retains the itemset
association information. It then divides the compressed database into a set of conditional databases (a
special kind of projected database), each associated with one itemset found so far, or “pattern fragment,”
and mines each database separately. For each “pattern fragment,” only its associated data sets need to
be examined. Therefore this approach may substantially reduce the size of the data sets to be searched,
along with the “growth” of patterns being examined. You will see how it works in Example 4.5.

Example 4.5. FP-growth (finding frequent itemsets without candidate generation). We reexamine
the mining of transaction database, D, of Table 4.1 in Example 4.3 using the frequent pattern growth
approach.

The first scan of the database is the same as Apriori, which derives the set of frequent items (1-
itemsets) and their support counts (frequencies). Let the minimum support count be 2. The set of
frequent items is sorted in the order of descending support count. This resulting set or list is denoted by
L. Thus, we have L = {{I2: 7}, {I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with “null.” Scan
database D a second time. The items in each transaction are processed in L order (i.e., sorted according
to descending support count), and a branch is created for each transaction. For example, the scan of
the first transaction, “T100: I1, I2, I5,” which contains three items (I2, I1, I5 in L order), leads to the
construction of the first branch of the tree with three nodes, 〈I2: 1〉, 〈I1: 1〉, and 〈I5: 1〉, where I2 is
linked as a child to the root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200,
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FIGURE 4.7

An FP-tree registers compressed frequent pattern information.

contains the items I2 and I4 in L order, which would result in a branch where I2 is linked to the root
and I4 is linked to I2. However, this branch would share a common prefix, I2, with the existing path
for T100. Therefore, we instead increment the count of the I2 node by 1, and create a new node, 〈I4:
1〉, which is linked as a child to 〈I2: 2〉. In general, when considering the branch to be added for a
transaction, the count of each node along a common prefix is incremented by 1, and nodes for the items
following the prefix are created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its occurrences
in the tree via a chain of node-links. The tree obtained after scanning all the transactions is shown in
Fig. 4.7 with the associated node-links. In this way, the problem of mining frequent patterns in databases
is transformed into that of mining the FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an initial suffix
pattern), construct its conditional pattern base (a “subdatabase,” which consists of the set of prefix
paths in the FP-tree cooccurring with the suffix pattern), then construct its (conditional) FP-tree, and
perform mining recursively on the tree. The pattern growth is achieved by the concatenation of the
suffix pattern with the frequent patterns generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 4.2 and detailed as follows.

• We first consider I5, which is the last item in L, rather than the first. The reason for starting at the
end of the list will become apparent as we explain the FP-tree mining process. I5 occurs in two
FP-tree branches of Fig. 4.7. (The occurrences of I5 can easily be found by following its chain of
node-links.) The paths formed by these branches are 〈I2, I1, I5: 1〉 and 〈I2, I1, I3, I5: 1〉. Therefore,
considering I5 as a suffix, its corresponding two prefix paths are 〈I2, I1: 1〉 and 〈I2, I1, I3: 1〉, which
form its conditional pattern base. Using this conditional pattern base as a transaction database, we
build an I5-conditional FP-tree, which contains only a single path, 〈I2: 2, I1: 2〉; I3 is not included
because its support count of 1 is less than the minimum support count. The single path generates all
the combinations of frequent patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.
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Table 4.2 Mining the FP-tree by creating conditional (sub-)pattern bases.

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated
I5 {{I2, I1: 1}, {I2, I1, I3: 1}} 〈I2: 2, I1: 2〉 {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}

I4 {{I2, I1: 1}, {I2: 1}} 〈I2: 2〉 {I2, I4: 2}

I3 {{I2, I1: 2}, {I2: 2}, {I1: 2}} 〈I2: 4, I1: 2〉, 〈I1: 2〉 {I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}

I1 {{I2: 4}} 〈I2: 4〉 {I2, I1: 4}

Algorithm: FP_growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

• D, a transaction database;
• min_sup, the minimum support count threshold.

Output: The complete set of frequent patterns.
Method:

1. The FP-tree is constructed in the following steps:
a. Scan the transaction database D once. Collect F , the set of frequent items, and their support counts. Sort F in support

count descending order as L, the list of frequent items.
b. Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the following.

Select and sort the frequent items in Trans according to the order of L. Let the sorted frequent item list in Trans be
[p|P ], where p is the first element and P is the remaining list. Call insert_tree([p|P ], T ), which is performed as
follows. If T has a child N such that N.item-name = p.item-name, then increment N ’s count by 1; else create a new
node N , and let its count be 1, its parent link be linked to T , and its node-link to the nodes with the same item-name via
the node-link structure. If P is nonempty, call insert_tree(P,N) recursively.

2. The FP-tree is mined by calling FP_growth(FP_tree,null), which is implemented as follows.

procedure FP_growth(Tree, α)
(1) if T ree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path P

(3) generate pattern β ∪ α with support_count = minimum support count of nodes in β;
(4) else for each ai in the header of T ree {
(5) generate pattern β = ai ∪ α with support_count = ai .support_count ;
(6) construct β’s conditional pattern base and then β’s conditional FP_tree T reeβ ;
(7) if T reeβ �= ∅ then
(8) call FP_growth(Treeβ ,β); }

FIGURE 4.8

FP-growth algorithm for discovering frequent itemsets without candidate generation.

• For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}}, which generates
a single-node conditional FP-tree, 〈I2: 2〉, and derives one frequent pattern, {I2, I4: 2}.

• Similar to the preceding analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2}, {I1: 2}}. Its
conditional FP-tree has two branches, 〈I2: 4, I1: 2〉 and 〈I1: 2〉, as shown in Fig. 4.9, which generates
the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}.

• Finally, I1’s conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one node,
〈I2: 4〉, which generates one frequent pattern, {I2, I1: 4}.

This mining process is summarized in Fig. 4.8.
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FIGURE 4.9

The conditional FP-tree associated with the conditional node I3.

The FP-growth method transforms the problem of finding long frequent patterns into searching for
shorter ones in much smaller conditional databases recursively and then concatenating the suffix. It
uses the least frequent items as a suffix, offering good selectivity. The method substantially reduces the
search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-based FP-tree.
An interesting alternative is to first partition the database into a set of projected databases and then
construct an FP-tree and mine it in each projected database. This process can be recursively applied to
any projected database if its FP-tree still cannot fit in main memory.

4.2.5 Mining frequent itemsets using the vertical data format
Both the Apriori and FP-growth methods mine frequent patterns from a set of transactions in TID-
itemset format (i.e., {T ID : itemset}), where TID is a transaction ID and itemset is the set of items
bought in transaction TID. This is known as the horizontal data format. Alternatively, data can be
presented in item-TID_set format (i.e., {item : T ID_set}), where item is an item name, and TID_set is
the set of transaction identifiers containing the item. This is known as the vertical data format.

In this subsection, we look at how frequent itemsets can also be mined efficiently using vertical data
format, which is the essence of the Eclat (Equivalence Class Transformation) algorithm.

Example 4.6. Mining frequent itemsets using the vertical data format. Consider the horizontal data
format of the transaction database, D, of Table 4.1 in Example 4.3. This can be transformed into the
vertical data format shown in Table 4.3 by scanning the data set once.

Table 4.3 The vertical data format of the trans-
action data set D of Table 4.1.

itemset TID_set
I1 {T100, T400, T500, T700, T800, T900}

I2 {T100, T200, T300, T400, T600, T800, T900}

I3 {T300, T500, T600, T700, T800, T900}

I4 {T200, T400}

I5 {T100, T800}
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Table 4.4 2-Itemsets in vertical
data format.

itemset TID_set
{I1, I2} {T100, T400, T800, T900}
{I1, I3} {T500, T700, T800, T900}
{I1, I4} {T400}
{I1, I5} {T100, T800}
{I2, I3} {T300, T600, T800, T900}
{I2, I4} {T200, T400}
{I2, I5} {T100, T800}
{I3, I5} {T800}

Table 4.5 3-Itemsets in
vertical data format.

itemset TID_set
{I1, I2, I3} {T800, T900}
{I1, I2, I5} {T100, T800}

Mining can be performed on this data set by intersecting the TID_sets of every pair of frequent
single items. The minimum support count is 2. Because every single item is frequent in Table 4.3, there
are 10 intersections performed in total, which lead to eight nonempty 2-itemsets, as shown in Table 4.4.
Notice that because the itemsets {I1, I4} and {I3, I5} each contain only one transaction, they do not
belong to the set of frequent 2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every one of its
2-itemset subsets is frequent. The candidate generation process here will generate only two 3-itemsets:
{I1, I2, I3} and {I1, I2, I5}. By intersecting the TID_sets of any two corresponding 2-itemsets of these
candidate 3-itemsets, it derives Table 4.5, where there are only two frequent 3-itemsets: {I1, I2, I3: 2}
and {I1, I2, I5: 2}.

Example 4.6 illustrates the process of mining frequent itemsets by exploring the vertical data format.
First, we transform the horizontally formatted data into the vertical format by scanning the data set
once. The support count of an itemset is simply the length of the TID_set of the itemset. Starting with
k = 1, the frequent k-itemsets can be used to construct the candidate (k + 1)-itemsets based on the
Apriori property. The computation is done by intersection of the TID_sets of the frequent k-itemsets to
compute the TID_sets of the corresponding (k + 1)-itemsets. This process repeats, with k incremented
by 1 each time, until no frequent itemsets or candidate itemsets can be found.

Besides taking advantage of the Apriori property in the generation of candidate (k + 1)-itemset
from frequent k-itemsets, another merit of this method is that there is no need to scan the database to
find the support of (k + 1)-itemsets (for k ≥ 1). This is because the TID_set of each k-itemset carries
the complete information required for counting such support. However, the TID_sets can be quite long,
taking substantial memory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID_sets, as well as the subsequent costs of intersec-
tions, we can use a technique called diffset, which keeps track of only the differences of the TID_sets of
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a (k + 1)-itemset and a corresponding k-itemset. For instance, in Example 4.6 we have {I1} = {T100,
T400, T500, T700, T800, T900} and {I1, I2} = {T100, T400, T800, T900}. The diffset between the
two is diffset({I1, I2}, {I1}) = {T500, T700}. Thus rather than recording the four TIDs that make up
the intersection of {I1} and {I2}, we can instead use diffset to record just two TIDs, indicating the
difference between {I1} and {I1, I2}. With such compressed bookkeeping, itemset frequency can still
be calculated correctly. Experiments show that in certain situations, such as when the data set contains
many dense and long patterns, this technique can substantially reduce the total cost of vertical format
mining of frequent itemsets.

4.2.6 Mining closed and max patterns
In Section 4.1.2 we saw how frequent itemset mining may generate a huge number of frequent itemsets,
especially when the min_sup threshold is set low or when there exist long patterns in the data set.
Example 4.2 showed that closed frequent itemsets8 can substantially reduce the number of patterns
generated in frequent itemset mining while preserving the complete information regarding the set of
frequent itemsets. That is, from the set of closed frequent itemsets, we can easily derive the set of
frequent itemsets and their support. Thus in practice, it is more desirable to mine the set of closed
frequent itemsets rather than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A naïve approach would be to first mine the complete
set of frequent itemsets and then remove every frequent itemset that is a proper subset of, and carries the
same support as, an existing frequent itemset. However, this is quite costly. As shown in Example 4.2,
this method would have to first derive 2100 − 1 frequent itemsets to obtain a length-100 frequent itemset,
all before it could begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there
exist only a very small number of closed frequent itemsets in Example 4.2’s data set.

A recommended methodology is to prune the search space as soon as we can identify the case of
closed itemsets during mining. For example, an itemset merging method is introduced as follows.

Itemset merging. If every transaction containing a frequent itemset X also contains an itemset Y but
not any proper superset of Y , then X ∪ Y forms a frequent closed itemset and there is no need to
search for any itemset containing X but no Y .

For example, in Table 4.2 of Example 4.5, the projected conditional database for prefix itemset
{I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each of its transactions contains
itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2, I1} can be merged with {I5} to
form the closed itemset {I5, I2, I1: 2}, and we do not need to mine for closed itemsets that contain
I5 but not {I2, I1}.

Many search space pruning and closure checking methods have been developed for mining frequent
closed itemsets. Moreover, because maximal frequent itemsets share many similarities with closed
frequent itemsets, many of the optimization techniques developed for mining closed itemset can be
extended to mining maximal frequent itemsets. Interested readers may like to dig deeper by studying
related research papers.

8 Remember that X is a closed frequent itemset in a data set S if there exists no proper superitemset Y such that Y has the same
support count as X in S, and X satisfies minimum support.
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4.3 Which patterns are interesting?—Pattern evaluation methods
Most association rule mining algorithms employ a support–confidence framework. Although minimum
support and confidence thresholds help weed out or exclude the exploration of a good number of unin-
teresting rules, many of the rules generated are still not interesting to many users. This is especially true
when mining at low support thresholds or mining for long patterns. This has been a major bottleneck
for successful application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting and mis-
leading (Section 4.3.1). We then discuss how the support–confidence framework can be supplemented
with additional interestingness measures based on correlation analysis (Section 4.3.2). Section 4.3.3
presents additional pattern evaluation measures. It then provides an overall comparison of all the mea-
sures discussed here. By the end, you will learn which pattern evaluation measures are most effective
for the discovery of only interesting rules.

4.3.1 Strong rules are not necessarily interesting
The interestingness of a rule can be assessed either subjectively or objectively. Ultimately, only the user
can judge if a given rule is interesting, and this judgment, being subjective, may differ from one user to
another. However, objective interestingness measures, based on the statistics “behind” the data, can be
used as one step toward the goal of weeding out uninteresting rules that would otherwise be presented
to the user.

“How can we tell which strong association rules are really interesting?” Let’s examine the follow-
ing example.

Example 4.7. A misleading “strong” association rule. Suppose we are interested in analyzing trans-
actions with respect to the purchase of computer games and videos. Let game refer to the transactions
containing computer games, and video refer to those containing videos. Of the 10,000 transactions an-
alyzed, the data show that 6000 of the customer transactions included computer games, whereas 7500
included videos, and 4000 included both computer games and videos. Suppose that a data mining pro-
gram for discovering association rules is run on the data, using a minimum support of, say, 30% and a
minimum confidence of 60%. The following association rule is discovered:

buys (X, “computer games”) ⇒ buys (X, “videos”)

[support = 40%, conf idence = 66%]. (4.6)

Rule (4.6) is a strong association rule and would therefore be reported, since its support value of
4000

10,000 = 40% and confidence value of 4000
6000 = 66% satisfy the minimum support and minimum confi-

dence thresholds, respectively. However, Rule (4.6) is misleading because the probability of purchasing
videos is 75%, which is even larger than 66%. In fact, computer games and videos are negatively as-
sociated because the purchase of one of these items actually decreases the likelihood of purchasing the
other. Without fully understanding this phenomenon, we could easily make unwise business decisions
based on Rule (4.6).

Example 4.7 also illustrates that the confidence of a rule A ⇒ B can be deceiving. It does not mea-
sure the real strength (or lack of strength) of the correlation and implication between A and B. Hence,
alternatives to the support–confidence framework can be useful in mining interesting data relationships.
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4.3.2 From association analysis to correlation analysis
As we have seen so far, the support and confidence measures are insufficient at filtering out uninteresting
association rules. To tackle this weakness, a correlation measure can be augmented to the support–
confidence framework for association rules. This leads to correlation rules of the form

A ⇒ B [support, confidence, correlation]. (4.7)

That is, a correlation rule is measured not only by its support and confidence but also by the correlation
between itemsets A and B. There are many different correlation measures for us to choose. In this
subsection, we study several correlation measures to determine which would be good for mining large
data sets.

Lift is a simple correlation measure that is given as follows. The occurrence of itemset A is inde-
pendent of the occurrence of itemset B if P(A ∪ B) = P(A)P (B); otherwise, itemsets A and B are
dependent and correlated. This definition can easily be extended to more than two itemsets. The lift
between the occurrence of A and B can be measured by computing

lift (A,B) = P(A ∪ B)

P (A)P (B)
. (4.8)

If the resulting value of Eq. (4.8) is less than 1, then the occurrence of A is negatively correlated
with the occurrence of B, meaning that the occurrence of one likely leads to the absence of the other
one. If the resulting value is greater than 1, then A and B are positively correlated, meaning that the
occurrence of one implies the occurrence of the other. If the resulting value is equal to 1, then A and B

are independent, and there is no correlation between them.
Eq. (4.8) is equivalent to P(B|A)/P (B), or conf (A ⇒ B)/P (B), which is also referred to as the

lift of the association (or correlation) rule A ⇒ B. In other words, it assesses the degree to which the
occurrence of one “lifts” the occurrence of the other. For example, if A corresponds to the sale of
computer games and B corresponds to the sale of videos, then given the current market conditions, the
sale of games is said to increase or “lift” the likelihood of the sale of videos by a factor of the value
returned by Eq. (4.8).

Let’s go back to the computer game and video data of Example 4.7.

Example 4.8. Correlation analysis using lift. To help filter out misleading “strong” associations of
the form A ⇒ B from the data of Example 4.7, we need to study how the two itemsets, A and B, are
correlated. Let game refer to the transactions of Example 4.7 that do not contain computer games, and
video refer to those that do not contain videos. The transactions can be summarized in a contingency
table, as shown in Table 4.6.

From the table, we can see that the probability of purchasing a computer game is P({game}) = 0.60,
the probability of purchasing a video is P({video}) = 0.75, and the probability of purchasing both is
P({game, video}) = 0.40. By Eq. (4.8), the lift of Rule (4.6) is P({game, video})/(P ({game}) ×
P({video})) = 0.40/(0.60 × 0.75) = 0.89. Because this value is less than 1, there is a negative corre-
lation between the occurrence of {game} and {video}. The numerator is the likelihood of a customer
purchasing both, whereas the denominator is what the likelihood would have been if the two purchases
were completely independent. Such a negative correlation cannot be identified by a support–confidence
framework.
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Table 4.6 2 × 2 contingency
table summarizing the trans-
actions with respect to game
and video purchases.

game game �row

video 4000 3500 7500

video 2000 500 2500

�col 6000 4000 10,000

Table 4.7 Table 4.6 contingency table,
now with the expected values.

game game �row

video 4000 (4500) 3500 (3000) 7500

video 2000 (1500) 500 (1000) 2500

�col 6000 4000 10,000

The second correlation measure that we study is the χ2 measure, which was introduced in Chapter 3
(Eq. (3.1)). To compute the χ2 value, we take the squared difference between the observed and expected
value for a slot (A and B pair) in the contingency table, divided by the expected value. This amount is
summed for all slots of the contingency table. Let’s perform a χ2 analysis of Example 4.8.

Example 4.9. Correlation analysis using χ2. To compute the correlation using χ2 analysis for nom-
inal data, we need the observed value and expected value (displayed in parenthesis) for each slot of the
contingency table, as shown in Table 4.7. From the table, we can compute the χ2 value as follows:

χ2 = �
(observed − expected)2

expected
= (4000 − 4500)2

4500
+ (3500 − 3000)2

3000

+ (2000 − 1500)2

1500
+ (500 − 1000)2

1000
= 555.6.

Because the χ2 value is greater than 1, and the observed value of the slot (game, video) = 4000, which
is less than the expected value of 4500, buying game and buying video are negatively correlated. This
is consistent with the conclusion derived from the analysis of the lift measure in Example 4.8.

4.3.3 A comparison of pattern evaluation measures
The above discussion shows that instead of using the simple support–confidence framework to evaluate
frequent patterns, other measures, such as lift and χ2, often disclose more intrinsic pattern relationships.
How effective are these measures? Should we also consider other alternatives?

Researchers have studied many pattern evaluation measures even before the start of in-depth re-
search on scalable methods for mining frequent patterns. In the data mining community, several other
pattern evaluation measures have attracted interest. In this subsection, we present four such measures:
all_confidence, max_confidence, Kulczynski, and cosine. Each of these four measures has an interesting
property: the value of each measure is only influenced by the supports of A, B, and A ∪ B, or more
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exactly, by the conditional probabilities of P(A|B) and P(B|A), but not by the total number of trans-
actions. Another common property is that each measure ranges from 0 to 1, and the higher the value,
the closer the relationship between A and B.

Given two itemsets, A and B, the all_confidence measure of A and B is defined as

all_conf (A,B) = sup(A ∪ B)

max {sup(A), sup(B)} = min {P(A|B),P (B|A)}, (4.9)

where max{sup(A), sup(B)} is the maximum support of the itemsets A and B. Thus all_conf (A,B) is
also the minimum confidence of the two association rules related to A and B, namely, “A ⇒ B” and
“B ⇒ A.”

Given two itemsets, A and B, the max_confidence measure of A and B is defined as

max_conf (A,B) = max{P(A |B),P (B |A)}. (4.10)

The max_conf measure is the maximum confidence of the two association rules, “A ⇒ B” and
“B ⇒ A.”

Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as Kulc) is defined
as

Kulc (A,B) = 1

2
(P (A|B) + P(B|A)). (4.11)

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be viewed as an average of
two confidence measures. That is, it is the average of two conditional probabilities: the probability of
itemset B given itemset A, and the probability of itemset A given itemset B.

Finally, given two itemsets, A and B, the cosine measure of A and B is defined as

cosine (A,B) = P(A ∪ B)√
P(A) × P(B)

= sup(A ∪ B)√
sup(A) × sup(B)

= √
P(A|B) × P(B|A). (4.12)

The cosine measure can be viewed as a harmonized lift measure. The two formulae are similar except
that for cosine, the square root is taken on the product of the probabilities of A and B. This is an
important difference, however, because by taking the square root, the cosine value is only influenced
by the supports of A, B, and A ∪ B, and not by the total number of transactions.

Now, together with lift and χ2, we have introduced in total six pattern evaluation measures. You
may wonder, “Which is the best in assessing the discovered pattern relationships?” To answer this
question, we examine their performance on some typical data sets.

Example 4.10. Comparison of six pattern evaluation measures on typical data sets. The relation-
ships between the purchases of two items, milk and coffee, can be examined by summarizing their
purchase history in Table 4.8, a 2 × 2 contingency table, where an entry such as mc represents the
number of transactions containing both milk and coffee.
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Table 4.8 2 × 2 contingency
table for two items.

milk milk �row

coffee mc mc c

coffee mc mc c

�col m m �

Table 4.9 Comparison of six pattern evaluation measures using contingency tables for
a variety of data sets.

Data Set mc mc mc mc χ2 lift all_conf. max_conf. Kulc. cosine
D1 10,000 1000 1000 100,000 90,557 9.26 0.91 0.91 0.91 0.91

D2 10,000 1000 1000 100 0 1 0.91 0.91 0.91 0.91

D3 100 1000 1000 100,000 670 8.44 0.09 0.09 0.09 0.09

D4 1000 1000 1000 100,000 24,740 25.75 0.5 0.5 0.5 0.5

D5 1000 100 10,000 100,000 8173 9.18 0.09 0.91 0.5 0.29

D6 1000 10 100,000 100,000 965 1.97 0.01 0.99 0.5 0.10

Table 4.9 shows a set of transactional data sets with their corresponding contingency tables and the
associated values for each of the six evaluation measures. Let’s first examine the first four data sets,
D1 through D4. From the table, we see that m and c are positively associated in D1 and D2, negatively
associated in D3, and neutral in D4. For D1 and D2, m and c are positively associated because mc

(10,000) is considerably greater than mc (1000) and mc (1000). Intuitively, for people who bought milk
(m = 10,000 + 1000 = 11,000), it is very likely that they also bought coffee (mc/m = 10/11 = 91%),
and vice versa.

The results of the four newly introduced measures show that m and c are strongly positively associ-
ated in both data sets by producing a measure value of 0.91. However, lift and χ2 generate dramatically
different measure values for D1 and D2 due to their sensitivity to mc. In fact, in many real-world sce-
narios, mc is usually huge and unstable. For example, in a market basket database, the total number
of transactions could fluctuate on a daily basis and overwhelmingly exceed the number of transactions
containing any particular itemset. Therefore a good interestingness measure should not be affected by
transactions that do not contain the itemsets of interest; otherwise, it would generate unstable results,
as illustrated in D1 and D2.

Similarly, in D3, the four new measures correctly show that m and c are strongly negatively associ-
ated because the mc to c ratio equals the mc to m ratio, that is, 100/1100 = 9.1%. However, lift and χ2

both contradict this in an incorrect way: their values for D2 are between those for D1 and D3.
For data set D4, both lift and χ2 indicate a highly positive association between m and c, whereas

the others indicate a “neutral” association because the ratio of mc to mc equals the ratio of mc to mc,
which is 1. This means that if a customer buys coffee (or milk), the probability that he or she will also
purchase milk (or coffee) is exactly 50%.

“Why are lift and χ2 so poor at distinguishing pattern association relationships in the previous
transactional data sets?” To answer this, we have to consider the null-transactions. A null-transaction
is a transaction that does not contain any of the itemsets being examined. In our example, mc rep-
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resents the number of null-transactions. Lift and χ2 have difficulty distinguishing interesting pattern
association relationships because they are both strongly influenced by mc. Typically, the number of
null-transactions can outweigh the number of individual purchases because, for example, many people
may buy neither milk nor coffee. On the other hand, the other four measures are good indicators of
interesting pattern associations because their definitions remove the influence of mc (i.e., they are not
influenced by the number of null-transactions).

This discussion shows that it is highly desirable to have a measure that is independent of the
number of null-transactions. A measure is null-invariant if its value is free from the influence of
null-transactions. Null-invariance is an important property for measuring association patterns in large
transaction databases. Among the six discussed measures in this subsection, only lift and χ2 are not
null-invariant measures.

“Among the all_confidence, max_confidence, Kulczynski, and cosine measures, which is best at
indicating interesting pattern relationships?”

To answer this question, we introduce the imbalance ratio (IR), which assesses the imbalance of
two itemsets, A and B, in rule implications. It is defined as

IR(A,B) = |sup(A) − sup(B)|
sup(A) + sup(B) − sup(A ∪ B)

, (4.13)

where the numerator is the absolute value of the difference between the support of the itemsets A

and B, and the denominator is the number of transactions containing A or B. If the two directional
implications between A and B are the same, then IR(A,B) will be zero. Otherwise, the larger the
difference between the two, the larger the imbalance ratio. This ratio is independent of the number of
null-transactions and independent of the total number of transactions.

Let’s continue examining the remaining data sets in Example 4.10.

Example 4.11. Comparing null-invariant measures in pattern evaluation. Although the four mea-
sures introduced in this section are null-invariant, they may present dramatically different values on
some subtly different data sets. Let’s examine data sets D5 and D6, shown earlier in Table 4.9, where
the two events m and c have unbalanced conditional probabilities. That is, the ratio of mc to c is greater
than 0.9. This means that knowing that c occurs should strongly suggest that m occurs also. The ratio of
mc to m is less than 0.1, indicating that m implies that c is quite unlikely to occur. The all_confidence
and cosine measures view both cases as negatively associated and the Kulc measure views both as neu-
tral. The max_confidence measure claims strong positive associations for these cases. The measures
give very diverse results!

“Which measure intuitively reflects the true relationship between the purchase of milk and cof-
fee?” Actually, in this case, it is difficult to argue whether the two data sets have positive or negative
association. From one point of view, only mc/(mc + mc) = 1000/(1000 + 10,000) = 9.09% of milk-
related transactions contain coffee in D5, and this percentage is 1000/(1000 + 100,000) = 0.99% in
D6, both indicating a negative association. On the other hand, 90.9% of transactions in D5 (i.e.,
mc/(mc + mc) = 1000/(1000 + 100)) and 9% in D6 (i.e., 1000/(1000 + 10)) containing coffee con-
tain milk as well, which indicates a positive association between milk and coffee, a very different
conclusion.

In this case, it is fair to treat it as neutral, as Kulc does. In the meantime, it will be good to
also indicate its skewness using the imbalance ratio (IR). According to Eq. (4.13), for D4 we have
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IR(m, c) = 0, a perfectly balanced case; for D5, IR(m, c) = 0.89, a rather imbalanced case; whereas
for D6, IR(m, c) = 0.99, a very skewed case. Therefore the two measures, Kulc and IR, work together,
presenting a clear picture for all three data sets, D4 through D6.

In summary, the use of only support and confidence measures to mine associations may generate
a large number of rules, many of which can be uninteresting to users. Instead, we can augment the
support–confidence framework with a pattern interestingness measure, which helps focus the mining
toward rules with strong pattern relationships. The added measure substantially reduces the number
of rules generated and leads to the discovery of more meaningful rules. Besides those introduced in
this section, many other interestingness measures have been studied in the literature. Unfortunately,
most of them do not have the null-invariance property. Because large data sets typically have many
null-transactions, it is important to consider the null-invariance property when selecting appropriate
interestingness measures for pattern evaluation. Among the four null-invariant measures studied here,
namely all_confidence, max_confidence, Kulc, and cosine, we recommend using Kulc in conjunction
with the imbalance ratio.

4.4 Summary
• The discovery of frequent patterns, associations, and correlation relationships among huge amounts

of data is useful in selective marketing, decision analysis, and business management. A popular area
of application is market basket analysis, which studies customers’ buying habits by searching for
itemsets that are frequently purchased together (or in sequence).

• Association rule mining consists of first finding frequent itemsets (sets of items, such as A and
B, satisfying a minimum support threshold, or percentage of the task-relevant tuples), from which
strong association rules in the form of A ⇒ B are generated. These rules also satisfy a minimum
confidence threshold (a prespecified probability of satisfying B under the condition that A is satis-
fied). Associations can be further analyzed to uncover correlation rules, which convey statistical
correlations between itemsets A and B.

• Many efficient and scalable algorithms have been developed for frequent itemset mining, from
which association and correlation rules can be derived. These algorithms can be classified into three
categories: (1) Apriori-like algorithms, (2) frequent pattern growth–based algorithms such as FP-
growth, and (3) algorithms that use the vertical data format.

• The Apriori algorithm is a seminal algorithm for mining frequent itemsets for Boolean association
rules. It explores the level-wise mining Apriori property that all nonempty subsets of a frequent
itemset must also be frequent. At the kth iteration (for k ≥ 2), it forms frequent k-itemset candidates
based on the frequent (k − 1)-itemsets, and scans the database once to find the complete set of
frequent k-itemsets, Lk .
Variations involving hashing and transaction reduction can be used to make the procedure more
efficient. Other variations include partitioning the data (mining on each partition and then combining
the results) and sampling the data (mining on a data subset). These variations can reduce the number
of data scans required to as little as two or even one.

• Frequent pattern growth is a method of mining frequent itemsets without candidate generation.
It constructs a highly compact data structure (an FP-tree) to compress the original transaction
database. Rather than employing the generate-and-test strategy of Apriori-like methods, it focuses
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on frequent pattern (fragment) growth, which avoids costly candidate generation, resulting in greater
efficiency.

• Mining frequent itemsets using the vertical data format (Eclat) is a method that transforms a
given data set of transactions in the horizontal data format of TID-itemset into the vertical data
format of item-TID_set. It mines the transformed data set by TID_set intersections based on the
Apriori property and additional optimization techniques such as diffset.

• Not all strong association rules are interesting. Therefore, the support–confidence framework should
be augmented with a pattern evaluation measure, which promotes the mining of interesting rules.
A measure is null-invariant if its value is free from the influence of null-transactions (i.e., the
transactions that do not contain any of the itemsets being examined). Among many pattern eval-
uation measures, we examined lift, χ2, all_confidence, max_confidence, Kulczynski, and cosine,
and showed that only the latter four are null-invariant. We suggest using the Kulczynski measure,
together with the imbalance ratio, to present pattern relationships among itemsets.

4.5 Exercises
4.1. Suppose you have the set C of all frequent closed itemsets on a data set D, as well as the support

count for each frequent closed itemset. Describe an algorithm to determine whether a given
itemset X is frequent or not, and the support of X if it is frequent.

4.2. An itemset X is called a generator on a data set D if there does not exist a proper subitemset Y ⊂
X such that support (X) = support (Y ). A generator X is a frequent generator if support (X)

passes the minimum support threshold. Let G be the set of all frequent generators on a data set D.
a. Can you determine whether an itemset A is frequent and the support of A, if it is frequent,

using only G and the support counts of all frequent generators? If yes, present your algo-
rithm. Otherwise, what other information is needed? Can you give an algorithm assuming
the information needed is available?

b. What is the relationship between closed itemsets and generators?
4.3. The Apriori algorithm makes use of prior knowledge of subset support properties.

a. Prove that all nonempty subsets of a frequent itemset must also be frequent.
b. Prove that the support of any nonempty subset s′ of itemset s must be at least as great as the

support of s.
c. Given frequent itemset l and subset s of l, prove that the confidence of the rule “s′ ⇒

(l − s′)” cannot be more than the confidence of “s ⇒ (l − s),” where s′ is a subset of s.
d. A partitioning variation of Apriori subdivides the transactions of a database D into n

nonoverlapping partitions. Prove that any itemset that is frequent in D must be frequent
in at least one partition of D.

4.4. Let c be a candidate itemset in Ck generated by the Apriori algorithm. How many length-(k − 1)

subsets do we need to check in the prune step? Per your previous answer, can you give an
improved version of procedure has_infrequent_subset in Fig. 4.4?

4.5. Section 4.2.2 describes a method for generating association rules from frequent itemsets. Pro-
pose a more efficient method. Explain why it is more efficient than the one proposed there. (Hint:
consider incorporating the properties of Exercises 4.3(b), (c) into your design.)
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4.6. A database has five transactions. Let min_sup = 60% and min_conf = 80%.

TID items_bought
T100 {M, O, N, K, E, Y}
T200 {D, O, N, K, E, Y }
T300 {M, A, K, E}
T400 {M, U, C, K, Y}
T500 {C, O, O, K, I, E}

a. Find all frequent itemsets using Apriori and FP-growth, respectively. Compare the effi-
ciency of the two mining processes.

b. List all the strong association rules (with support s and confidence c) matching the follow-
ing metarule, where X is a variable representing customers, and itemi denotes variables
representing items (e.g., “A,” “B,”):

∀x ∈ transaction, buys(X, item1) ∧ buys(X, item2) ⇒ buys(X, item3) [s, c]
4.7. (Implementation project) Using a programming language that you are familiar with, such as

C++ or Java, implement three frequent itemset mining algorithms introduced in this chapter:
(1) Apriori [AS94b], (2) FP-growth [HPY00], and (3) Eclat [Zak00] (mining using the vertical
data format). Compare the performance of each algorithm with various kinds of large data sets.
Write a report to analyze the situations (e.g., data size, data distribution, minimal support thresh-
old setting, and pattern density) where one algorithm may perform better than the others, and
state why.

4.8. A database has four transactions. Let min_sup = 60% and min_conf = 80%.

cust_ID TID items_bought (in the form of brand-item_category)
01 T100 {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}
02 T200 {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread}
01 T300 {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}
03 T400 {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}

a. At the granularity of item_category (e.g., itemi could be “Milk”), for the rule template,

∀X ∈ transaction, buys(X, item1) ∧ buys(X, item2) ⇒ buys(X, item3) [s, c],
list the frequent k-itemset for the largest k, and all the strong association rules (with their
support s and confidence c) containing the frequent k-itemset for the largest k.

b. At the granularity of brand-item_category (e.g., itemi could be “Sunset-Milk”), for the rule
template,

∀X ∈ customer, buys(X, item1) ∧ buys(X, item2) ⇒ buys(X, item3),

list the frequent k-itemset for the largest k (but do not print any rules).
4.9. Suppose that a large store has a transactional database that is distributed among four locations.

Transactions in each component database have the same format, namely Tj : {i1, . . . , im}, where
Tj is a transaction identifier, and ik (1 ≤ k ≤ m) is the identifier of an item purchased in the trans-
action. Propose an efficient algorithm to mine global association rules. Your algorithm should not
require shipping all the data to one site and should not cause excessive network communication
overhead.



172 Chapter 4 Patter mining: basic concepts and methods

4.10. Suppose that frequent itemsets are saved for a large transactional database, DB. Discuss how to
efficiently mine the (global) association rules under the same minimum support threshold, if a
set of new transactions, denoted as �DB, is (incrementally) added in?

4.11. Most frequent pattern mining algorithms consider only distinct items in a transaction. However,
multiple occurrences of an item in the same shopping basket, such as four cakes and three jugs
of milk, can be important in transactional data analysis. How can one mine frequent itemsets
efficiently considering multiple occurrences of items? Propose modifications to the well-known
algorithms, such as Apriori and FP-growth, to adapt to such a situation.

4.12. (Implementation project) Many techniques have been proposed to further improve the per-
formance of frequent itemset mining algorithms. Taking FP-tree–based frequent pattern growth
algorithms (e.g., FP-growth) as an example, implement one of the following optimization tech-
niques. Compare the performance of your new implementation with the unoptimized version.
a. The frequent pattern mining method of Section 4.2.4 uses an FP-tree to generate conditional

pattern bases using a bottom-up projection technique (i.e., project onto the prefix path of
an item p). However, one can develop a top-down projection technique, that is, project
onto the suffix path of an item p in the generation of a conditional pattern base. Design
and implement such a top-down FP-tree mining method. Compare its performance with the
bottom-up projection method.

b. Nodes and pointers are used uniformly in an FP-tree in the FP-growth algorithm design.
However, such a structure may consume a lot of space when the data are sparse. One possi-
ble alternative design is to explore array- and pointer-based hybrid implementation, where
a node may store multiple items when it contains no splitting point to multiple subbranches.
Develop such an implementation and compare it with the original one.

c. It is time and space consuming to generate numerous conditional pattern bases during
pattern-growth mining. An interesting alternative is to push right the branches that have
been mined for a particular item p, that is, to push them to the remaining branch(es) of
the FP-tree. This is done so that fewer conditional pattern bases have to be generated and
additional sharing can be explored when mining the remaining FP-tree branches. Design
and implement such a method and conduct a performance study on it.

4.13. Give a short example to show that items in a strong association rule actually may be negatively
correlated.

4.14. The following contingency table summarizes supermarket transaction data, where hot dogs refers
to the transactions containing hot dogs, hot dogs refers to the transactions that do not contain
hot dogs, hamburgers refers to the transactions containing hamburgers, and hamburgers refers
to the transactions that do not contain hamburgers.

hotdogs hot dogs �row

hamburgers 2000 500 2500

hamburgers 1000 1500 2500
�col 3000 2000 5000

a. Suppose that the association rule “hot dogs ⇒ hamburgers” is mined. Given a minimum
support threshold of 25% and a minimum confidence threshold of 50%, is this association
rule strong?
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b. Based on the given data, is the purchase of hot dogs independent of the purchase of ham-
burgers? If not, what kind of correlation relationship exists between the two?

c. Compare the use of the all_confidence, max_confidence, Kulczynski, and cosine measures
with lift and correlation on the given data.

4.15. (Implementation project) The DBLP data set (https:/ /dblp.uni-trier.de/xml/ ) consists of over
three million entries of research papers published in computer science conferences and journals.
Among these entries, there are a good number of authors that have coauthor relationships.
a. Propose a method to efficiently mine a set of coauthor relationships that are closely corre-

lated (e.g., often coauthoring papers together).
b. Based on the mining results and the pattern evaluation measures discussed in this chapter,

discuss which measure may convincingly uncover close collaboration patterns better than
others.

c. Based on the study in (a), develop a method that can roughly predict advisor and advisee
relationships and the approximate period for such advisory supervision.
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CHAPTER

Pattern mining: advanced methods

Frequent pattern mining has reached far beyond the basics due to substantial research, numerous
extensions of the problem scope, and broad application studies. In this chapter, we will learn methods
for advanced pattern mining. We first introduce methods for mining various kinds of patterns, including
mining multilevel patterns, multidimensional patterns, patterns in continuous data, rare patterns, neg-
ative patterns, and frequent patterns in high-dimensional data. We also examine methods for mining
compressed and approximate patterns. Then we examine the methodologies of utilizing constraints to
reduce the cost of frequent pattern mining. Since sequential patterns and structural patterns are popu-
larly encountered but they need rather different mining methods, we introduce concepts and methods
for mining sequential patterns in sequence data sets and mining subgraph patterns in graph data sets. To
get the flavor on how to extend pattern mining methods to facilitate diverse applications, we examine
one example on mining copy-and-paste bugs in large software programs. Notice that pattern mining is
a more general term than frequent pattern mining since the former covers rare and negative patterns as
well. However, when there is no ambiguity, the two terms are used interchangeably.

5.1 Mining various kinds of patterns
In the last chapter we have studied methods for mining patterns and associations at a single concept level
and single dimensional space (e.g., products purchased). However, in many applications, people may
like to uncover more complex patterns from massive data. For example, one may like to find multilevel
associations that involve concepts at different abstraction levels, multidimensional associations that
involve more than one dimension or predicate (e.g., rules that relate what a customer buys to his or
her age), quantitative association rules that involve numeric attributes (e.g., age, salary), rare patterns
that may suggest interesting although rare item combinations, and negative patterns that show negative
correlations between items.

In this section we examine methods for mining patterns and associations at multiple abstraction
levels (Section 5.1.1) and at multidimensional spaces (Section 5.1.2), handling data with quantitative
attributes (Section 5.1.3), mining patterns in high-dimensional space (Section 5.1.4), and mining rare
patterns and negative patterns (Section 5.1.5).

5.1.1 Mining multilevel associations
For many applications, strong associations discovered at high abstraction levels, though often having
high support, could be commonsense knowledge (e.g., buying bread and milk frequently together).
We may want to drill down to find novel patterns at more detailed levels (e.g., buying what kind of
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bread and what kind of milk frequently together). On the other hand, there could be too many scattered
patterns at low or primitive abstraction levels, some of which are just trivial specializations of patterns
at higher levels. Therefore, it is interesting to examine how to develop effective methods for mining
meaningful patterns at multiple abstraction levels, with sufficient flexibility for easy traversal among
different abstraction spaces.

Example 5.1. Mining multilevel association rules. Suppose we are given the task-relevant set of
transactional data in Table 5.1 for sales in an e-store, showing the items purchased for each transaction.
The concept hierarchy for the items is shown in Fig. 5.1. A concept hierarchy defines a sequence
of mappings from a set of low-level concepts to a higher-level, more general concept set. Data can
be generalized by replacing low-level concepts within the data by their corresponding higher-level
concepts, or ancestors, from a concept hierarchy.

The concept hierarchy in Fig. 5.1 has five levels, respectively, referred to as levels 0 through 4,
starting with level 0 at the root node for all (the most general abstraction level). Here, level 1 includes
computer, software, printer and camera, and computer accessory; level 2 includes laptop computer,
desktop computer, office software, antivirus software, etc.; and level 3 includes Dell desktop computer,
. . . , Microsoft office software, etc. Level 4 is the most specific abstraction level of this hierarchy. It
consists of concrete products.

Table 5.1 Task-relevant data, D.

TID Items Purchased
T100 Apple 15′′ MacBook Pro, HP Photosmart 7520 printer

T200 Microsoft Office Professional 2020, Microsoft Surface Mobile Mouse

T300 Logitech MX Master 2S Wireless Mouse, Gimars GEL Wrist Rest

T400 Dell Studio XPS 16 Notebook, Canon PowerShot SX70 HS Digital Camera

T500 Apple iPad Air (10.5-inch, Wi-Fi, 256GB), Norton Security Premium
. . . . . .

FIGURE 5.1

Concept hierarchy for computer items of an e-store.
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Concept hierarchies for nominal attributes may be specified by users familiar with the data such
as store managers. Alternatively, they can be generated from data, based on the analysis of product
specifications, attribute values, or data distributions. Concept hierarchies for numeric attributes can be
generated using discretization techniques, such as those introduced in Chapter 2. For our example, the
concept hierarchy of Fig. 5.1 is provided.

The items in Table 5.1 are at the lowest level of Fig. 5.1’s concept hierarchy. It is difficult to find in-
teresting purchase patterns in such primitive-level data. For instance, if “Dell Studio XPS 16 Notebook”
or “Logitech VX Nano Cordless Laser Mouse” occurs in a very small fraction of the transactions, then
it can be difficult to find strong associations involving these specific items. Few people may buy these
items together, making it unlikely that the itemset will satisfy minimum support. However, we would
expect that it is easier to find strong associations between generalized abstractions of these items, such
as between “Dell Notebook” and “Cordless Mouse.”

Association rules generated from mining data at multiple abstraction levels are called multiple-level
or multilevel association rules. Multilevel association rules can be mined efficiently using concept
hierarchies under a support-confidence framework. In general, a top-down strategy can be employed,
where counts are accumulated for the calculation of frequent itemsets at each concept level, starting at
concept level 1 and working downward in the hierarchy toward the more specific concept levels, until
no more frequent itemsets can be found. For each level, any algorithm for discovering frequent itemsets
may be used, such as Apriori or its variations.

A number of variations to this approach are described next, where each variation involves “playing”
with the support threshold in a slightly different way. The variations are illustrated in Figs. 5.2 and 5.3,
where nodes indicate an item or itemset that has been examined, and nodes with thick borders indicate
that an examined item or itemset is frequent.

• Using uniform minimum support for all levels (referred to as uniform support): The same min-
imum support threshold is used when mining at each abstraction level. For example, in Fig. 5.2, a
minimum support threshold of 5% is used throughout (e.g., for mining from “computer” downward
to “laptop computer”). Both “computer” and “laptop computer” are found to be frequent, whereas
“desktop computer” is not.
When a uniform minimum support threshold is used, the search procedure is simplified. The method
is also simple in that users are required to specify only one minimum support threshold. An Apriori-
like optimization technique can be adopted, based on the knowledge that an ancestor is a superset of

FIGURE 5.2

Multilevel mining with uniform support.



178 Chapter 5 Pattern mining: advanced methods

FIGURE 5.3

Multilevel mining with reduced support.

its descendants: The search avoids examining itemsets containing any item or itemset of which the
ancestors do not have minimum support.
The uniform support approach, however, has some drawbacks. It is unlikely that items at lower ab-
straction levels will occur as frequently as those at higher abstraction levels. If the minimum support
threshold is set too high, it could miss some meaningful associations occurring at low abstraction
levels. If the threshold is set too low, it may generate many uninteresting associations occurring at
high abstraction levels. This provides the motivation for the next approach.

• Using reduced minimum support at lower levels (referred to as reduced support): Each abstrac-
tion level has its own minimum support threshold. The deeper the abstraction level, the smaller the
corresponding threshold. For example, in Fig. 5.3, the minimum support thresholds for levels 1 and
2 are 5% and 3%, respectively. In this way, “computer,” “laptop computer,” and “desktop computer”
are all considered frequent.
For mining multilevel patterns with reduced support, the minimum support threshold at the lowest
abstraction level should be used during the mining process to allow mining to penetrate down to the
lowest abstraction level. However, for the final pattern/rule extraction, thresholds associated with the
corresponding items should be enforced to print out only interesting associations.

• Using item or group-based minimum support (referred to as group-based support): Because
users or experts often have insights as to which groups are more important than others, it is some-
times desirable to set up user-specific, item-based, or group-based minimal support thresholds when
mining multilevel rules. For example, a user could set up the minimum support thresholds based
on product price or on items of interest, such as by setting particularly low support thresholds for
“camera with price over $ 1000,” to pay particular attention to the association patterns containing
items in these categories.
For mining patterns with mixed items from groups with different support thresholds, usually the
lowest support threshold among all the participating groups is taken as the support threshold in
mining. This will avoid filtering out valuable patterns containing items from the group with the
lowest support threshold. In the meantime, the minimal support threshold for each individual group
should be kept to avoid generating uninteresting itemsets from each group. Other interestingness
measures can be used after the itemset mining to extract truly interesting rules.

A serious side effect of mining multilevel association rules is its generation of many redundant
rules across multiple abstraction levels due to the “ancestor” relationships among items. For example,
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consider the following rules where “laptop computer” is an ancestor of “Dell laptop computer” based
on the concept hierarchy of Fig. 5.1, and where X is a variable representing customers who purchased
items.

buys(X, “laptop computer”) ⇒ buys(X, “HP printer”)

[support = 8%, conf idence = 70%] (5.1)

buys(X, “Dell laptop computer”) ⇒ buys(X, “HP printer”)

[support = 2%, conf idence = 72%] (5.2)

“If Rules (5.1) and (5.2) are both mined, does Rule (5.2) provide any novel information?” We say
a rule R1 is an ancestor of a rule R2, if R1 can be obtained by replacing the items in R2 by their
ancestors in a concept hierarchy. For example, Rule (5.1) is an ancestor of Rule (5.2) because “laptop
computer” is an ancestor of “Dell laptop computer.” Based on this definition, a rule can be considered
redundant if its support and confidence are close to their “expected” values, based on an ancestor of the
rule.

Example 5.2. Checking redundancy among multilevel association rules. Suppose that about one-
quarter of all “laptop computer” sales are for “Dell laptop computers.” Since Rule (5.1) has a 70%
confidence and 8% support, we may expect Rule (5.2) to have a confidence of around 70% (since all
data samples of “Dell laptop computer” are also samples of “laptop computer”) and a support of around
2% (i.e., 8% × 1

4 ). If this is indeed the case, then Rule (5.2) is not interesting because it does not offer
any additional information and is less general than Rule (5.1).

5.1.2 Mining multidimensional associations
So far, we have studied association rules that imply a single predicate, that is, the predicate buys. For
instance, at mining a data set, we may discover the Boolean association rule

buys(X, “Apple iPad air”) ⇒ buys(X, “HP printer”). (5.3)

Following the terminology used in multidimensional databases, we refer to each distinct predicate in a
rule as a dimension. Hence, we can refer to Rule (5.3) as a single-dimensional or intradimensional
association rule because it contains a single distinct predicate (e.g., buys) with multiple occurrences
(i.e., the predicate occurs more than once within the rule). Such rules are commonly mined from trans-
actional data.

Instead of considering transactional data only, sales and related information are often linked with
relational data or integrated into a data warehouse. Such data stores are multidimensional in nature.
For instance, in addition to keeping track of the items purchased in sales transactions, a relational
database may record other attributes associated with the items and/or transactions such as the item
description or the branch location of the sale. Additional relational information regarding the customers
who purchased the items (e.g., customer age, occupation, credit rating, income, and address) may also
be stored. Considering each database attribute or warehouse dimension as a predicate, we can therefore
mine association rules containing multiple predicates such as

age(X, “18 . . .25”) ∧ occupation(X, “student”)⇒buys(X, “laptop”). (5.4)
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Association rules that involve two or more dimensions or predicates can be referred to as multidi-
mensional association rules. Rule (5.4) contains three predicates (age, occupation, and buys), each of
which occurs only once in the rule. Hence, we say that it has no repeated predicates. Multidimensional
association rules with no repeated predicates are called interdimensional association rules. We can
also mine multidimensional association rules with repeated predicates, which contain multiple occur-
rences of some predicates. These rules are called hybrid-dimensional association rules. An example
of such a rule is the following, where the predicate buys is repeated:

age(X, “18 . . .25”) ∧ buys(X, “laptop”)⇒buys(X, “HP printer”). (5.5)

Database attributes can be nominal or quantitative. The values of nominal (or categorical) attributes
are “names of things.” Nominal attributes have a finite number of possible values, with no ordering
among the values (e.g., occupation, brand, color). Quantitative attributes are numeric and have an
implicit ordering among values (e.g., age, income, price). Techniques for mining multidimensional
association rules can be categorized into two basic approaches regarding the treatment of quantitative
attributes.

In the first approach, quantitative attributes are discretized using predefined concept hierarchies.
This discretization occurs before mining. For instance, a concept hierarchy for income may be used to
replace the original numeric values of this attribute by interval labels such as “0..20K,” “21K..30K,”
“31K..40K,” and so on. Here, discretization is static and predetermined. Chapter 2 on data preprocess-
ing gave several techniques for discretizing numeric attributes. The discretized numeric attributes, with
their interval labels, can then be treated as nominal attributes (where each interval is considered a cat-
egory). We refer to this as mining multidimensional association rules using static discretization of
quantitative attributes.

In the second approach, quantitative attributes are discretized or clustered into “bins” based on the
data distribution. These bins may be further combined during the mining process. The discretization
process is dynamic and established to satisfy some mining criteria such as maximizing the confidence
of the rules mined. Because this strategy treats the numeric attribute values as quantities rather than
as predefined ranges or categories, association rules mined from this approach are also referred to as
(dynamic) quantitative association rules.

Let’s study each of these approaches for mining multidimensional association rules. For simplic-
ity, we confine our discussion to interdimensional association rules. Note that rather than searching
for frequent itemsets (as is done for single-dimensional association rule mining), in multidimensional
association rule mining we search for frequent predicate sets. A k-predicate set is a set containing k

conjunctive predicates. For instance, the set of predicates {age, occupation, buys} from Rule (5.4) is a
3-predicate set.

5.1.3 Mining quantitative association rules
As discussed earlier, relational and data warehouse data often involve quantitative attributes or mea-
sures. We can discretize quantitative attributes into multiple intervals and then treat them as nominal
data in association mining. However, such simple discretization may lead to the generation of an enor-
mous number of rules, many of which may not be useful. Here we introduce three methods that can
help overcome this difficulty to discover novel association relationships: (1) a data cube method, (2) a
clustering-based method, and (3) a statistical analysis method to uncover exceptional behaviors.
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Data cube–based mining of quantitative associations
In many cases quantitative attributes can be discretized before mining using predefined concept hierar-
chies or data discretization techniques, where numeric values are replaced by interval labels. Nominal
attributes may also be generalized to higher conceptual levels if desired. If the resulting task-relevant
data are stored in a relational table, then any of the frequent itemset mining algorithms we have dis-
cussed can easily be modified so as to find all frequent predicate sets. In particular, instead of searching
on only one attribute like buys, we need to search through all of the relevant attributes, treating each
attribute-value pair as an itemset.

Alternatively, the transformed multidimensional data may be used to construct a data cube. Data
cubes are well suited for the mining of multidimensional association rules: They store aggregates (e.g.,
counts) in multidimensional space, which is essential for computing the support and confidence of
multidimensional association rules. An overview of data cube technology and data cube computation
algorithms were presented in Chapter 3. Fig. 5.4 shows the lattice of cuboids defining a data cube for
the dimensions age, income, and buys. The cells of an n-dimensional cuboid can be used to store the
support counts of the corresponding n-predicate sets. The base cuboid aggregates the task-relevant data
by age, income, and buys; the 2-D cuboid, (age, income), aggregates by age and income, and so on; the
0-D (apex) cuboid contains the total number of transactions in the task-relevant data.

Due to the ever-increasing use of data warehouse and OLAP technology, it is possible that a data
cube containing the dimensions that are of interest to the user may already exist, fully or partially
materialized. If this is the case, we can simply fetch the corresponding aggregate values or compute
them using lower-level materialized aggregates, and return the rules needed using a rule generation
algorithm. Notice that even in this case, the Apriori property can still be used to prune the search
space. If a given k-predicate set has support sup, which does not satisfy minimum support, then further
exploration of this set should be terminated. This is because any more-specialized version of the k-
itemset will have support no greater than sup and, therefore, will not satisfy minimum support either.
In cases where no relevant data cube exists for the mining task, we must create one on-the-fly. This

FIGURE 5.4

Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by. The base cuboid con-
tains the three predicates age, income, and buys.
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becomes an iceberg cube computation problem, where the minimum support threshold is taken as the
iceberg condition (Chapter 3).

Mining clustering-based quantitative associations
Besides using discretization-based or data cube–based data sets to generate quantitative association
rules, we can also generate quantitative association rules by clustering data in the quantitative dimen-
sions. (Recall that objects within a cluster are similar to one another and dissimilar to those in other
clusters.) The general assumption is that interesting frequent patterns or association rules are in general
found at relatively dense clusters of quantitative attributes. Here, we describe a top-down approach and
a bottom-up approach to clustering that finds quantitative associations.

A typical top-down approach for finding clustering-based quantitative frequent patterns is as fol-
lows. For each quantitative dimension, a standard clustering algorithm (e.g., k-means or a density-based
clustering algorithm, as described in Chapter 8) can be applied to find clusters in this dimension that
satisfy the minimum support threshold. For each cluster, we then examine the 2-D spaces generated by
combining the cluster with a cluster or nominal value of another dimension to see if such a combination
passes the minimum support threshold. If it does, we continue to search for clusters in this 2-D region
and progress to even higher-dimensional combinations. The Apriori pruning still applies in this process:
If, at any point, the support of a combination does not have minimum support, its further partitioning
or combination with other dimensions cannot have minimum support either.

A bottom-up approach for finding clustering-based frequent patterns works by first clustering in
high-dimensional space to form clusters with support that satisfies the minimum support threshold, and
then projecting and merging those clusters in the space containing fewer dimensional combinations.
However, for high-dimensional data sets, finding high-dimensional clustering itself is a tough problem.
Thus, this approach is less realistic.

Using statistical theory to disclose exceptional behavior
It is possible to discover quantitative association rules that disclose exceptional behavior, where “excep-
tional” is defined based on a statistical theory. For example, the following association rule may indicate
exceptional behavior:

gender = female ⇒ mean wage = $7.90/hr (overall _mean_wage = $9.02/hr). (5.6)

This rule states that the average wage for females is only $7.90/hr. This rule is (subjectively) interest-
ing because it reveals a group of people earning a significantly lower wage than the average wage of
$9.02/hr.

An integral aspect of our definition involves applying statistical tests to confirm the validity of our
rules. That is, Rule (5.6) is only accepted if a statistical test (in this case, a Z-test) confirms that with
high confidence it can be inferred that the mean wage of the female population is indeed lower than the
mean wage of the rest of the population.1

1 The above rule was mined from a real database based on a 1985 U.S. census.
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5.1.4 Mining high-dimensional data
Our discussions of mining multidimensional patterns in the above two subsections are confined to
patterns involving a small number of dimensions. However, some applications may need to mine high-
dimensional data (i.e., data with hundreds or thousands of dimensions). However, it is not easy to
extend the previous multidimensional pattern mining methods to mine high-dimensional data because
the search spaces of such methods grow exponentially with the number of dimensions.

One interesting direction to handle high-dimensional data is to extend a pattern growth approach by
exploring the vertical data format to handle data sets with a large number of dimensions (also called fea-
tures or items, e.g., genes) but a small number of rows (also called transactions or tuples, e.g., samples).
This is useful in applications like the analysis of gene expressions in bioinformatics, for example, where
we often need to analyze microarray data that contain a large number of genes (e.g., 10,000 to 100,000)
but only a small number of samples (e.g., dozens to hundreds).

Another direction is to develop a new methodology that focuses its mining effort on colossal pat-
terns, that is, patterns of rather long length, instead of the complete set of patterns. One interesting
such method is called Pattern-Fusion, which takes leaps in the pattern search space, leading to a good
approximation of the complete set of colossal frequent patterns. We briefly outline the idea of pattern-
fusion here and refer interested readers to the detailed technical paper.

In some applications (e.g., bioinformatics), a researcher can be more interested in finding colos-
sal patterns (e.g., long DNA and protein sequences) than finding small (i.e., short) ones since colossal
patterns usually carry more significant meanings. Finding colossal patterns is challenging because in-
cremental mining tends to get “trapped” by an explosive number of midsize patterns before it can even
reach candidate patterns of large size.

All of the pattern mining strategies we have studied so far, such as Apriori and FP-growth, use an
incremental growth strategy by nature, that is, they increase the length of candidate patterns by one at
a time. Breadth-first search methods like Apriori cannot bypass the generation of an explosive number
of midsize patterns generated, making it impossible to reach colossal patterns. Even depth-first search
methods like FP-growth can be easily trapped in a huge number of subtrees before reaching colossal
patterns. Clearly, a completely new mining methodology is needed to overcome such a hurdle.

As we have observed in Fig. 5.5, there could be a small number of colossal patterns (e.g., patterns
of size close to 100) but such patterns may generate an exponential number of mid-sized patterns.
Instead of mining a complete set of mid-sized patterns, Pattern-Fusion fuses a small number of shorter
patterns into bigger colossal pattern candidates, and checks against the data set to see which of such
candidates are the true frequent patterns, which can be further fused to generate even larger colossal
pattern candidates. Such step-by-step fusing takes leaps in the pattern search space and avoids the
pitfalls of both breadth-first and depth-first searches, as shown in Fig. 5.6.

Note that a colossal pattern such as {a1, a2, . . . , a100} : 55 implies that the data set contains many,
many short subpatterns like {a1, a2, a9, . . . , a30} : 55+; . . . , {a1, a9, . . . , a40} : 55+; . . . ), where 55+
means with support count of at least 55. That is, a colossal pattern should generate far more small
patterns than smaller patterns do. Thus, a colossal pattern is more robust in the sense that if a small
number of items are removed from the pattern, the resulting pattern would have a similar support set.
The larger the pattern size, the more prominent this robustness. Such a robustness relationship between
a colossal pattern and its corresponding short patterns can be extended to multiple levels.
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FIGURE 5.5

A high-dimensional data set may contain a small set of colossal patterns but exponentially many midsize patterns.

FIGURE 5.6

Pattern tree traversal: Candidates are taken from a pool of patterns, which results in shortcuts through pattern space
to the colossal patterns.

Thus Pattern-Fusion has the capability to identify good merging candidates, which are the patterns
that share some subpatterns and have some similar support sets. This does help the search leaps through
pattern space more directly toward colossal patterns.

It has been theoretically shown that Pattern-Fusion leads to a good approximation of colossal pat-
terns (see [ZYH+07]). The method was tested on synthetic and real data sets constructed from program
tracing data and microarray data. Experiments show that the method can find most of the colossal
patterns with high efficiency.
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5.1.5 Mining rare patterns and negative patterns
All the methods presented so far in this chapter have been for mining frequent patterns. Sometimes,
however, it is interesting to find patterns that are rare instead of frequent, or patterns that reflect a
negative correlation between items. These patterns are respectively referred to as rare patterns and
negative patterns. In this subsection, we consider various ways of defining rare patterns and negative
patterns, which are also useful to mine.

Example 5.3. Rare patterns and negative patterns. In jewelry sales data, sales of diamond watches
are rare; however, patterns involving the selling of diamond watches could be interesting. In supermar-
ket data, if we find that customers frequently buy Coca-Cola Classic or Diet Coke but not both, then
buying Coca-Cola Classic and buying Diet Coke together is considered a negative (correlated) pattern.
In car sales data, a dealer sells a few fuel-thirsty vehicles (e.g., SUVs) to a given customer, and then
later sells electric cars to the same customer. Even though buying SUVs and buying electric cars may be
negatively correlated events, it can be interesting to discover and examine such exceptional cases.

An infrequent (or rare) pattern is a pattern with a frequency support that is below (or far below) a
user-specified (relative) minimum support threshold. However, since the occurrence frequencies of the
majority of itemsets are usually below or even far below the minimum support threshold, it is desirable
in practice for users to specify other conditions for rare patterns. For example, if we want to find
patterns containing at least one item with a value that is over $500, we should specify such a constraint
explicitly. Efficient mining of such itemsets is discussed under mining multidimensional associations
(Section 5.1.1), where the strategy is to adopt multiple (e.g., item- or group-based) minimum support
thresholds. Other applicable methods are discussed under constraint-based pattern mining (Section 5.3),
where user-specified constraints are pushed deep into the iterative mining process.

There are various ways we could define a negative pattern. We will consider three such definitions.

Definition 5.1. If itemsets X and Y are both frequent but rarely occur together (i.e., sup(X ∪ Y) <

sup(X) × sup(Y )), then itemsets X and Y are negatively correlated, and the pattern X ∪ Y is a nega-
tively correlated pattern. If sup(X ∪ Y) � sup(X) × sup(Y ), then X and Y are strongly negatively
correlated, and the pattern X ∪ Y is a strongly negatively correlated pattern.

This definition can easily be extended for patterns containing k-itemsets for k > 2.
A problem with the definition, however, is that it is not null-invariant. That is, its value can be

misleadingly influenced by null transactions, where a null-transaction is a transaction that does not
contain any of the itemsets being examined (Section 4.3.3). This is illustrated in Example 5.4.

Example 5.4. Null-transaction problem with Definition 5.1. If there are a lot of null-transactions
in the data set, then the number of null-transactions rather than the patterns observed may strongly
influence a measure’s assessment as to whether a pattern is negatively correlated. For example, suppose
a sewing store sells needle packages A and B. The store sold 100 packages each of A and B, but only
one transaction contains both A and B. Intuitively, A is negatively correlated with B since the purchase
of one does not seem to encourage the purchase of the other.

Let’s see how the above definition handles this scenario. If there are 200 transactions, we have
sup(A ∪ B) = 1/200 = 0.005 and sup(A) × sup(B) = 100/200 × 100/200 = 0.25. Thus, sup(A ∪
B) � sup(A) × sup(B), and so Definition 5.1 indicates that A and B are strongly negatively corre-
lated. What if, instead of only 200 transactions in the database, there are 106? In this case, there
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are many null-transactions, that is, many contain neither A nor B. How does the definition hold
up? It computes sup(A ∪ B) = 1/106 and sup(X) × sup(Y ) = 100/106 × 100/106 = 1/108. Thus,
sup(A ∪ B) � sup(X) × sup(Y ), which contradicts the earlier finding even though the number of oc-
currences of A and B has not changed. The measure in Definition 5.1 is not null-invariant, where
null-invariance is essential for quality interestingness measures as discussed in Section 4.3.3.

Definition 5.2. If X and Y are strongly negatively correlated, then

sup(X ∪ Y) × sup(X ∪ Y) � sup(X ∪ Y) × sup(X ∪ Y ).

Intuitively, it says that two itemsets X and Y are strongly negatively correlated if the probability of
a transaction contains either X or Y is far bigger than the probability that it contains both X and Y or it
contains neither X nor Y .

Example 5.5. Null-transaction problem with Definition 5.2. Given our needle package example,
when there are in total 200 transactions in the database, we have

sup(A ∪ B) × sup(A ∪ B) = 99/200 × 99/200 ≈ 0.245

� sup(A ∪ B) × sup(A ∪ B) = 1/200 × (200 − 199)/200 ≈ 0.25 × 10−4,

which, according to Definition 5.2, indicates that A and B are strongly negatively correlated. However,
if there are 106 transactions in the database, the measure would compute

sup(A ∪ B) × sup(A ∪ B) = 99/106 × 99/106 = 9.8 × 10−9

� sup(A ∪ B) × sup(A ∪ B) = 1/106 × (106 − 199)/106 ≈ 10−6.

This time, the measure indicates that A and B are positively correlated, hence, a contradiction. The
measure is not null-invariant.

As a third alternative, consider Definition 5.3, which is based on the Kulczynski measure (i.e., the
average of conditional probabilities). It follows the spirit of interestingness measures introduced in
Section 4.3.3.

Definition 5.3. Suppose that itemsets X and Y are both frequent, that is, sup(X) ≥ min_sup and
sup(Y ) ≥ min_sup, where min_sup is the minimum support threshold. If (P (X|Y) + P(Y |X))/2 < ε,
where ε is a negative pattern threshold, then pattern X ∪ Y is a negatively correlated pattern.

Example 5.6. Negatively correlated patterns using Definition 5.3, based on the Kulczynski mea-
sure. Let’s reexamine our needle package example. Let min_sup be 0.01% and ε = 0.02. When
there are 200 transactions in the database, we have sup(A) = sup(B) = 100/200 = 0.5 > 0.01% and
(P (B|A) + P(A|B))/2 = (0.01 + 0.01)/2 < 0.02; thus A and B are negatively correlated. Does this
still hold true if we have many more transactions? When there are 106 transactions in the database,
the measure computes sup(A) = sup(B) = 100/106 = 0.01% ≥ 0.01% and (P (B|A) + P(A|B))/2 =
(0.01 + 0.01)/2 < 0.02, again indicating that A and B are negatively correlated. This matches our in-
tuition. The measure does not have the null-invariance problem of the first two definitions considered.

Let’s examine another case: Suppose that among 100,000 transactions, the store sold 1000 needle
packages of A but only 10 packages of B; however, every time package B is sold, package A is also sold
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(i.e., they appear in the same transaction). In this case, the measure computes (P (B|A) + P(A|B))/2 =
(0.01 + 1)/2 = 0.505 � 0.02, which indicates that A and B are positively correlated instead of nega-
tively correlated. This also matches our intuition.

With this new definition of negative correlation, efficient methods can easily be derived for mining
negative patterns in large databases. This is left as an exercise for interested readers.

5.2 Mining compressed or approximate patterns
A major challenge in frequent pattern mining is the huge number of discovered patterns. Using a mini-
mum support threshold to control the number of patterns found has limited effect. Too low a value can
lead to the generation of an explosive number of output patterns, whereas too high a value can lead to
the discovery of only commonsense patterns.

To reduce the huge set of frequent patterns generated in mining while maintaining high-quality
patterns, we can instead mine a compressed or approximate set of frequent patterns. Top-k most frequent
patterns were proposed to make the mining process concentrate on only the set of k most frequent
patterns. Although interesting, they usually do not epitomize the k most representative patterns because
of the uneven frequency distribution among itemsets. Constraint-based mining of frequent patterns
(Section 5.3) incorporates user-specified constraints to filter out uninteresting patterns. Measures of
pattern/rule interestingness and correlation (Section 5.3) can also be used to help confine the search to
patterns/rules of interest.

Recall in the last chapter, we introduced two preliminary forms of “compression” of frequent pat-
terns: closed pattern, which is a lossless compression of the set of frequent patterns, and max-pattern,
which is a lossy compression. In this section, we examine two advanced forms of “compression” of
frequent patterns that build on the concepts of closed patterns and max-patterns. Section 5.2.1 explores
clustering-based compression of frequent patterns, which groups patterns together based on their sim-
ilarity and frequency support. Section 5.2.2 takes a “summarization” approach, where the aim is to
derive redundancy-aware top-k representative patterns that cover the whole set of (closed) frequent
itemsets. The approach considers not only the representativeness of patterns but also their mutual inde-
pendence to avoid redundancy in the set of generated patterns. The k representatives provide compact
compression over the collection of frequent patterns, making them easier to interpret and use.

5.2.1 Mining compressed patterns by pattern clustering
Pattern compression can be achieved by pattern clustering. Clustering techniques are described in detail
in Chapters 8 and 9. In this section, it is not necessary to know the fine details of clustering. Rather,
you will learn how the concept of clustering can be applied to compress frequent patterns. Clustering is
the automatic process of grouping similar objects together, so that objects within a cluster are similar
to one another and dissimilar to objects in other clusters. In this case, the objects are frequent patterns.
The frequent patterns are clustered using a tightness measure called δ-cluster. A representative pattern
is selected for each cluster, thereby offering a compressed version of the set of frequent patterns.

Before we begin, let’s review some definitions. An itemset X is a closed frequent itemset in a data
set D if X is frequent and there exists no proper superitemset Y of X such that Y has the same support
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Table 5.2 Subset of frequent
itemsets.

ID Itemsets Support
P1 {b, c, d, e} 205,227

P2 {b, c, d, e, f } 205,211

P3 {a, b, c, d, e, f } 101,758

P4 {a, c, d, e, f } 161,563

P5 {a, c, d, e} 161,576

count as X in D. An itemset X is a maximal frequent itemset in data set D if X is frequent, and there
exists no superitemset Y such that X ⊂ Y and Y is frequent in D. Using these concepts alone is not
enough to obtain a good representative compression of a data set, as we see in Example 5.7.

Example 5.7. Shortcomings of closed itemsets and maximal itemsets for compression. Table 5.2
shows a subset of frequent itemsets on a large data set, where a, b, c, d, e, f represent individual items.
There is no nonclosed itemset here; therefore we cannot use closed frequent itemsets to compress the
data. The only maximal frequent itemset is P3. However, we observe that itemsets P2, P3, and P4
are significantly different with respect to their support counts. If we were to use P3 to represent a
compressed version of the data, we would lose this support count information entirely. Consider the
two pairs (P1, P2) and (P4, P5). From visual inspection, the patterns within each pair are very similar
with respect to their support and expression. Therefore intuitively, P2, P3, and P4, collectively, should
serve as a better compressed version of the data.

Let’s see if we can find a way of clustering frequent patterns as a means of obtaining a compressed
representation of them. We will need to define a good similarity measure, cluster patterns according to
this measure, and then select and output only a representative pattern for each cluster. Since the set of
closed frequent patterns is a lossless compression over the original frequent patterns set, it is a good
idea to discover representative patterns around the collection of approximately closed patterns.

We can use the following distance measure between closed patterns. Let P1 and P2 be two closed
patterns. Their supporting transaction sets are T (P1) and T (P2), respectively. The pattern distance of
P1 and P2, Pat_Dist (P1,P2), is defined as

Pat_Dist (P1,P2) = 1 − |T (P1) ∩ T (P2)|
|T (P1) ∪ T (P2)| . (5.7)

Pattern distance is a distance metric defined on the set of transactions. It incorporates the support
information of patterns, as desired previously.

Example 5.8. Pattern distance. Suppose P1 and P2 are two patterns such that T (P1) = {t1, t2, t3, t4, t5}
and T (P2) = {t1, t2, t3, t4, t6}, where ti is a transaction in the database. The distance between P1 and P2
is Pat_Dist (P1,P2) = 1 − 4

6 = 1
3 .

Now, let’s consider the expression of patterns. Given two patterns A and B, we say B can be
expressed by A if O(B) ⊂ O(A), where O(A) is the corresponding itemset of pattern A. Follow-
ing this definition, assume patterns P1,P2, . . . ,Pk are in the same cluster. The representative pattern
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Pr of the cluster should be able to express all the other patterns in the cluster. Clearly, we have
∪k

i=1O(Pi) ⊆ O(Pr).
Using the distance measure, we can simply apply a clustering method, such as k-means (Sec-

tion 9.2), on the collection of frequent patterns. However, this introduces two problems. First, the quality
of the clusters cannot be guaranteed; second, it may not be able to find a representative pattern for each
cluster (i.e., the pattern Pr may not belong to the same cluster). To overcome these problems, this is
where the concept of δ-cluster comes in, where δ (0 ≤ δ ≤ 1) measures the tightness of a cluster.

A pattern P is δ-covered by another pattern P ′ if O(P ) ⊆ O(P ′) and Pat_ Dist (P,P ′) ≤ δ. A
set of patterns form a δ-cluster if there exists a representative pattern Pr such that for each pattern P

in the set, P is δ-covered by Pr .
Note that according to the concept of δ-cluster, a pattern can belong to multiple clusters. Also, using

δ-cluster, we only need to compute the distance between each pattern and the representative pattern of
the cluster. Because a pattern P is δ-covered by a representative pattern Pr only if O(P ) ⊆ O(Pr), we
can simplify the distance calculation by considering only the supports of the patterns:

Pat_Dist (P,Pr) = 1 − |T (P ) ∩ T (Pr)|
|T (P ) ∪ T (Pr)| = 1 − |T (Pr)|

|T (P )| . (5.8)

If we restrict the representative pattern to be frequent, then the number of representative patterns
(i.e., clusters) is no less than the number of maximal frequent patterns. This is because a maximal
frequent pattern can only be covered by itself. To achieve more succinct compression, we relax the
constraints on representative patterns, that is, we allow the support of representative patterns to be
somewhat less than min_sup.

For any representative pattern Pr , assume its support is k. Since it has to cover at least one frequent
pattern (i.e., P ) with support that is at least min_sup, we have

δ ≥ Pat_Dist (P,Pr) = 1 − |T (Pr)|
|T (P )| ≥ 1 − k

min_sup
. (5.9)

That is, k ≥ (1 − δ) × min_sup. This is the minimum support for a representative pattern, denoted as
min_supr .

Based on the preceding discussion, the pattern compression problem can be defined as follows:
Given a transaction database, a minimum support min_sup, and the cluster quality measure δ, the
pattern compression problem is to find a set of representative patterns R such that for each frequent
pattern P (with respect to min_sup), there is a representative pattern Pr ∈ R (with respect to min_supr ),
which covers P , and the value of |R| is minimized.

Finding a minimum set of representative patterns is an NP-Hard problem. However, efficient meth-
ods have been developed that reduce the number of closed frequent patterns generated by orders of
magnitude with respect to the original collection of closed patterns. The methods succeed in finding a
high-quality compression of the pattern set.

5.2.2 Extracting redundancy-aware top-k patterns
Mining the top-k most frequent patterns is a strategy for reducing the number of patterns returned during
mining. However, in many cases, frequent patterns are not mutually independent but often clustered in
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small regions. This is somewhat like finding 20 population centers in the world, which may result in
cities clustered in a small number of countries rather than evenly distributed across the globe. Instead,
most users would prefer to derive the k most interesting patterns, which are not only significant but also
mutually independent and containing little redundancy. A small set of k representative patterns that have
not only high significance but also low redundancy are called redundancy-aware top-k patterns.

Example 5.9. Redundancy-aware top-k strategy vs. other top-k strategies. Fig. 5.7 illustrates the
intuition behind redundancy-aware top-k patterns vs. traditional top-k patterns and k-summarized pat-
terns. Suppose we have the frequent patterns set shown in Fig. 5.7(a), where each circle represents
a pattern of which the significance is colored in grayscale. The distance between two circles reflects
the redundancy of the two corresponding patterns: The closer the circles are, the more redundant the
respective patterns are to one another. Let’s say we want to find three patterns that will best represent
the given set, that is, k = 3. Which three should we choose?

Arrows are used to show the patterns chosen if using redundancy-aware top-k patterns (Fig. 5.7b),
traditional top-k patterns (Fig. 5.7c), or k-summarized patterns (Fig. 5.7d). In Fig. 5.7(c), the tra-
ditional top-k strategy relies solely on significance: It selects the three most significant patterns to
represent the set.

FIGURE 5.7

Conceptual view comparing top-k methodologies (where gray levels represent pattern significance, and the closer
that two patterns are displayed, the more redundant they are to one another): (a) original patterns, (b) redundancy-
aware top-k patterns, (c) traditional top-k patterns, and (d) k-summarized patterns.
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In Fig. 5.7(d), the k-summarized pattern strategy selects patterns based solely on nonredundancy.
It detects three clusters and finds the most representative patterns to be the “centermost”’ pattern from
each cluster. These patterns are chosen to represent the data. The selected patterns are considered “sum-
marized patterns” in the sense that they represent or “provide a summary” of the clusters they stand for.

By contrast, in Fig. 5.7(b) the redundancy-aware top-k patterns make a trade-off between sig-
nificance and redundancy. The three patterns chosen here have high significance and low redundancy.
Observe, for example, the two highly significant patterns that, based on their redundancy, are displayed
next to each other. The redundancy-aware top-k strategy selects only one of them, taking into consider-
ation that two would be redundant. To formalize the definition of redundancy-aware top-k patterns, we
need to define the concepts of significance and redundancy.

A significance measure S is a function mapping a pattern p ∈ P to a real value such that S(p) is
the degree of interestingness (or usefulness) of the pattern p. In general, significance measures can be
either objective or subjective. Objective measures depend only on the structure of the given pattern and
the underlying data used in the discovery process. Commonly used objective measures include support,
confidence, correlation, and tf-idf (or term frequency vs. inverse document frequency), where the latter
is often used in information retrieval. Subjective measures are based on user beliefs in the data. They
therefore depend on the users who examine the patterns. A subjective measure is usually a relative
score based on user prior knowledge or a background model. It often measures the unexpectedness
of a pattern by computing its divergence from the background model. Let S(p,q) be the combined
significance of patterns p and q, and S(p|q) = S(p,q) − S(q) be the relative significance of p given
q. Note that the combined significance, S(p,q), means the collective significance of two individual
patterns p and q, not the significance of a single super pattern p ∪ q.

Given the significance measure S, the redundancy R between two patterns p and q is defined as
R(p,q) = S(p) + S(q) − S(p,q). Subsequently, we have S(p|q) = S(p) − R(p,q).

We assume that the combined significance of two patterns is no less than the significance of any
individual pattern (since it is a collective significance of two patterns) and does not exceed the sum of
two individual significance patterns (since there exists redundancy). That is, the redundancy between
two patterns should satisfy

0 ≤ R(p,q) ≤ min(S(p), S(q)). (5.10)

The ideal redundancy measure R(p,q) is usually hard to obtain. However, we can approximate redun-
dancy using distance between patterns such as with the distance measure defined in Section 5.2.1.

The problem of finding redundancy-aware top-k patterns can thus be transformed into finding a
k-pattern set that maximizes the marginal significance, which is a well-studied problem in information
retrieval. In this field, a document has high marginal relevance if it is both relevant to the query and
contains minimal marginal similarity to previously selected documents, where the marginal similarity
is computed by choosing the most relevant selected document. The detailed computational method is
omitted here. Experimental studies have shown that the computation based on this principle is efficient
and is able to find high-significance and low-redundancy top-k patterns.

5.3 Constraint-based pattern mining
A pattern mining process may uncover thousands of patterns from a given data set, many of which may
end up being unrelated or uninteresting to users. Often, a user has a good sense of which “direction” of
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mining may lead to interesting patterns and the “form” of the patterns or rules they want to find. They
may also have a sense of “conditions” for the rules, which would eliminate the discovery of certain
rules that they know would not be of interest. Thus a good option is to have users specify such intuition
or expectations as constraints to confine the search space or perform constraint refinement interactively
based on the intermediate mining results. This strategy is known as constraint-based mining. The
constraints can include the following:

• Knowledge type constraints: These specify the type of knowledge to be mined, such as association,
correlation, classification, or clustering.

• Data constraints: These specify the set of task-relevant data.
• Dimension/level constraints: These specify the desired dimensions (or attributes) of the data, the

abstraction levels, or the level of the concept hierarchies to be used in mining.
• Interestingness constraints: These specify thresholds on statistical measures of rule interestingness

such as support, confidence, and correlation.
• Rule/pattern constraints: These specify the form of, or conditions on, the rules/patterns to be

mined. Such constraints may be expressed as metarules (rule templates), as the maximum or mini-
mum number of predicates that can occur in the rule antecedent or consequent, or as relationships
among attributes, attribute values, and/or aggregates.

These constraints can be specified using a high-level data mining query language or a template-based
graphical user interface.

The first four constraint types have already been addressed earlier in the book. In this section, we
discuss the use of rule/pattern constraints to focus on the mining task. This form of constraint-based
mining allows users to describe the rules or patterns that they would like to uncover, thereby making
the data mining process more effective. In the meantime, a sophisticated mining query optimizer can be
used to exploit the constraints specified by the user, thereby making the mining process more efficient.

In some cases, a user may like to specify some syntactic form of rules (also called metarules) that
she is interested in mining. Such syntactic forms help the user to express her expectation and also help
the system to confine search space and improve mining efficiency.

For example, a metarule can be in the form of

P1(X,Y ) ∧ P2(X,W) ⇒ buys(X, “iPad”), (5.11)

where P1 and P2 are predicate variables that can be instantiated to attributes in a given database
during the mining process, X is a variable representing a customer, and Y and W take on values of
the attributes assigned to P1 and P2, respectively. Typically, a user can specify a list of attributes to be
considered for instantiation with P1 and P2. Otherwise, a default set may be used.

A metarule forms a hypothesis regarding the relationships that the user is interested in probing or
confirming. Following such a template, a system can then mine concrete rules that match the given
metarule. Possibly, Rule (5.12) that complies with Metarule (5.11) will be returned as mining results

age(X, “20..29”) ∧ income(X, “41K..60K”)⇒buys(X, “iPad”). (5.12)

In order to generate interesting and useful mining results, users may have multiple ways to specify
rule/pattern constraints. It is desirable for a mining system to use rule/pattern constraints to prune the
search space, that is, to push such constraints deeply into the mining process while still ensure the
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completeness of the answer returned for a mining query. However, this is a nontrivial task, and its study
leads to constraint-based pattern mining.

To study how to use constraints at mining frequent patterns or association rules, we examine the
following running example.

Example 5.10. Constraints on shopping transaction mining. Suppose that a multidimensional shop-
ping transaction database contains the following interrelated relations:

• item(item_ID, item_name, description, category, price)
• sales(transaction_ID, day, month, year, store_ID, city)
• trans_item(item_ID, transaction_ID)

Here, the item table contains attributes item_ID, item_name, description, category, and price; the sales
table contains attributes transaction_ID, day, month, year, store_ID, and city; and the two tables are
linked via the foreign key attributes, item_ID and transaction_ID, in the table trans_item.

A mining query may contain multiple constraints, For example, we may have a query: “From the
sales in Chicago in 2020, find the patterns (i.e., item sets) that which cheap items (where the sum of
the prices is less than $10) appear in the same transaction with (hence may promote) which expensive
items (where the minimum price is $50).”

This query contains the following four constraints: (1) sum(I.price) < $10, where I represents the
item_ID of a cheap item; (2) min(J.price) ≥ $50), where J represents the item_ID of an expensive
item; (3) T .city = Chicago; and (4) T .year = 2020, where T represents a transaction_ID.

In constraint-based pattern mining, the search space can be pruned in the mining process with two
strategies: pruning pattern search space and pruning data search space. The former checks candidate
patterns and decides whether a pattern should be eliminated from further processing. For example, it
may prune a pattern if all of its superpattern will be useless in the remaining mining process, say, based
on the Apriori property. The latter checks the data set to determine whether a particular data object will
not be able to contribute to the subsequent generation of satisfiable patterns in the remaining mining
process (hence safely pruning the data object).

We examine these pruning strategies in the following subsections.

5.3.1 Pruning pattern space with pattern pruning constraints
Based on how a constraint may interact with the pattern mining process, we partition pattern mining
constraints into four categories: (1) antimonotonic, (2) monotonic, (3) convertible, and (4) nonconvert-
ible. Let’s examine them one by one.

Pattern antimonotonicity
The first group of constraints are characterized with pattern antimonotonicity. A constraint C is pat-
tern antimonotonic if it has the following property: If an itemset does not satisfy constraint C, none
of its supersets will satisfy C.

Let’s examine a constraint “C1 : sum(I.price) ≤ $100” and see what may happen if the constraint is
added to our shopping transaction mining query. Suppose we are mining itemsets of size k at the kth it-
eration using the Apriori algorithm or the like. If the summation of the prices of the items in a candidate
itemset S1 is greater than $100, this itemset should be pruned from the search space, since not only the
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current set cannot satisfy the constraint, but also adding more items into the set (assuming that the price
of any item is no less than zero) will never be able to satisfy the constraint. Notice that the pruning of
this pattern (frequent itemset) for constraint C1 is not confined to the Apriori candidate-generation-and-
test framework. For example, for the same reason, S1 should be pruned in the pattern-growth framework
since pattern S1 and the further growth from it can never make constraint C1 satisfiable.

This property is called antimonotonicity because monotonicity of a constraint usually means if a
pattern p satisfies a constraint C, its further expansion will always satisfy C; however, here we claim
that this constraint may have a reverse behavior: once a pattern p1 violates the constraint C1, its further
growth (or expansion) will always violate C1. Pattern pruning by antimonotonicity can be applied at
each iteration of Apriori-style algorithms to help improve the efficiency of the overall mining process
while guaranteeing the completeness of the data mining task.

It is interesting to note that the very basic Apriori property itself (which states that all nonempty
subsets of a frequent itemset must also be frequent) is antimonotonic: If an itemset does not satisfy the
minimum support threshold, none of its supersets can. This property has been used at each iteration of
the Apriori algorithm to reduce the number of candidate itemsets to be examined, thereby reducing the
search space for frequent pattern mining.

There are many constraints that are antimonotonic. For example, the constraint “min(J.price) ≥
$50,” and “count (I ) ≤ 10,” are antimonotonic. However, there are also many constraints that are not
antimonotonic. For example, the constraint “avg(I.price) ≤ $10” is not antimonotonic. This is because
even for a given itemset S that does not satisfy this constraint, a superset created by adding some (cheap)
items may make it satisfy the constraint. Hence, pushing this constraint inside the mining process will
not guarantee the completeness of the data mining process. A list of popularly encountered constraints
is given in the first column of Table 5.3. The antimonotonicity of the constraints is indicated in the
second column. To simplify our discussion, only existence operators (e.g., =,∈, but not �=, /∈) and
comparison (or containment) operators with equality (e.g., ≤,⊆) are given.

Pattern monotonicity
The second category of constraints is pattern monotonicity. A constraint C is pattern monotonic if
it has the following property: If an itemset satisfies constraint C, all of its supersets will satisfy C.

Let’s examine another constraint “C2 : sum(I.price) ≥ $100” and see what may happen if the con-
straint is added to our example query. Suppose we are mining itemsets of size k at the kth iteration using
the Apriori algorithm or the like. If the summation of the prices of the items in a candidate itemset S1

is less than $100, this itemset should not be pruned from the search space, since adding more items
to the current set may make the itemset satisfy the constraint. However, once the sum of the prices of
the items in itemset S satisfies the constraint C2, there is no need to check this constraint for S any
more since adding more items will not decrease the sum value and will always satisfy the constraint.
In other words, if an itemset satisfies the constraint, so do all of its supersets. Please note that the prop-
erty is independent of particular iterative pattern mining algorithms. For example, the same pruning
methodology should be adopted for pattern-growth algorithms as well.

There are many pattern monotonic constraints in practice. For example, “min(I.price) ≤ $10” and
“count (I ) ≥ 10” are such constraints. The pattern monotonicity of the list of frequently encountered
constraints is indicated in the third column of Table 5.3.
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Table 5.3 Characterization of commonly used pattern pruning
constraints.

Constraint Antimonotonic Monotonic Succinct
v ∈ S no yes yes

S ⊇ V no yes yes

S ⊆ V yes no yes

min(S) ≤ v no yes yes

min(S) ≥ v yes no yes

max(S) ≤ v yes no yes

max(S) ≥ v no yes yes

count (S) ≤ v yes no no

count (S) ≥ v no yes no

sum(S) ≤ v (∀a ∈ S, a ≥ 0) yes no no

sum(S) ≥ v (∀a ∈ S, a ≥ 0) no yes no

range(S) ≤ v yes no no

range(S) ≥ v no yes no

avg(S) θ v, θ ∈ {≤,≥} convertible convertible no

support (S) ≥ ξ yes no no

support (S) ≤ ξ no yes no

all_conf idence(S) ≥ ξ yes no no

all_conf idence(S) ≤ ξ no yes no

Convertible constraints: ordering data in transactions
There are constraints that are neither pattern antimonotonic nor pattern monotonic. For example, it is
hard to directly push the constraint “C3 : avg(I.price) ≤ $10” deeply into an iterative mining process
because the next item to be added to the current itemset can be more expensive or less expensive
than the average price of the itemset computed so far. At the first glance, it seems to be hard to explore
constraint pushing for such kind of constraints in pattern mining. However, observing that the items in a
transaction can be treated as a set, and thus it is possible to arrange items in a transaction in any specific
ordering. Interestingly, when the items in the itemset are arranged in a price ascending or descending
order, it is possible to explore efficient pruning in frequent itemset mining as we did before. In this
context, it is possible to convert such kind of constraints into monotonic or antimonotonic constraints.
Hence we call such constraints as convertible constraints.

Let’s re-examine the constraint C3. If the items in all the transactions are sorted in the price-
ascending order (or items in any transaction are added in this order) in the pattern-growth mining
process, the constraint C3 becomes antimonotonic, because if an itemset I violates the constraint (i.e.,
with an average price greater than $10), then further addition of more expensive items into the itemset
will never make it satisfy the constraint. Similarly, if items in all the transaction are sorted (or being
added to the itemset being mined) in the price-descending order, it becomes monotonic, because if the
itemset satisfies the constraint (i.e., with an average price no greater than $10), then adding cheaper
items into the current itemset will still make the average price no greater than $10.

Will the Apriori-like algorithm make good use of the convertible constraint to prune its search
space? Unfortunately, such a constraint satisfaction checking cannot be done easily with an Apriori-like
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candidate-generation-and-test algorithm, because an Apriori-like algorithm requires all of the subsets
(say, {ab}, {bc}, {ac}) of a candidate {abc} must be frequent and satisfies the constraint. However, even
{abc} itself could be a valid itemset (i.e., avg({abc}.price) ≤ $10), the subset {bc} may have violated
C3, and we will never be able to generate {abc} since {bc} has been pruned.

Let S represent a set of items and its value be price. Besides “avg(S) ≤ c” and “avg(S) ≥ c,” there
are also other convertible constraints. For example, “variance(S) ≥ c,” “standard_deviation(S) ≥
c” are convertible constraints. However, this does not imply that every nonmonotonic or nonantimono-
tonic constraint is convertible. For example, if the aggregation function for item values in the set has
random sampling behavior, it will be hard to arrange the items in a monotonically increasing or decreas-
ing order. Therefore, there still exists a category of constraints that are nonconvertible. The good news
is that although there exist some tough constraints that are not convertible, most simple and frequently
used constraints belong to one of the three categories we just described, antimonotonic, monotonic, and
convertible, to which efficient constraint mining methods can be applied.

5.3.2 Pruning data space with data pruning constraints
The second way of search space pruning in constraint-based frequent pattern mining is pruning data
space. This strategy prunes pieces of data if they will not contribute to the subsequent generation of
satisfiable patterns in the mining process. We examine data antimonotonicity in this section.

Interestingly, many constraints are data-antimonotonic in the sense that during the mining process,
if a data entry cannot satisfy a data-antimonotonic constraint based on the current pattern, then it can
be pruned. We prune it because it will not be able to contribute to the generation of any superpattern of
the current pattern in the remaining mining process.

Example 5.11. Data antimonotonicity. We examine constraint C1 : sum(I.price) ≥ $100, that is, the
sum of the prices of the items in the mined pattern must be no less than $100. Suppose that the current
frequent itemset, S, does not satisfy constraint C1 (say, because the sum of the prices of the items in S is
$50). If the remaining frequent items in a transaction Ti cannot make S satisfy the constraint (e.g., the
remaining frequent items in Ti are {i2.price = $5, i5.price = $10, i8.price = $20}), then Ti cannot
contribute to the patterns to be mined from S, and can be pruned from further mining.

Note that such pruning may not be effective by enforcing it only at the beginning of the mining
process. This is because it may prune those transactions whose sum of items do not satisfy the constraint
C1. However, we may encounter a case that i3.price = $90, but later in the mining process, i3 becomes
infrequent with S in the transaction data set, and at this point, Ti should be pruned. Therefore such
checking and pruning should be enforced at each iteration to reduce the data search space.

Notice that constraint C1 is a monotonic constraint with respect to pattern space pruning. As we have
seen, this pattern monotonic constraint has very limited power for reducing the search space in pattern
pruning. However, the same constraint is data antimonotonic and can be used for effective reduction of
the data search space.

For a pattern antimonotonic constraint, such as C2 : sum(I.price) ≤ $100, we can prune both pat-
tern and data search spaces at the same time. Based on our study of pattern pruning, we already know
that the current itemset can be pruned if the sum of the prices in it is over $100 (since its further expan-
sion can never satisfy C2). At the same time, we can also prune any remaining items in a transaction Ti

that cannot make the constraint C2 valid. For example, if the sum of the prices of items in the current
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itemset S is $90, any item with price over $10 in the remaining frequent items in Ti can be pruned.
If none of the remaining items in Ti can make the constraint valid, the entire transaction Ti should be
pruned.

Consider pattern constraints that are neither antimonotonic nor monotonic such as “C3 :
avg(I.price) ≤ 10.” These can be data-antimonotonic because if the remaining items in a transac-
tion Ti cannot make the constraint valid, then Ti can be pruned as well. Therefore data-antimonotonic
constraints can be quite useful for constraint-based data space pruning.

Notice that search space pruning by data antimonotonicity is confined only to a pattern growth-
based mining algorithm because the pruning of a data entry is determined based on whether it can
contribute to a specific pattern. Data antimonotonicity cannot be used for pruning the data space if
the Apriori algorithm is used because the data are associated with all of the currently active patterns.
At any iteration, there are usually many active patterns. A data entry that cannot contribute to the
formation of the superpatterns of a given pattern may still be able to contribute to the superpattern of
other active patterns. Thus, the power of data space pruning can be very limited for nonpattern growth-
based algorithms.

5.3.3 Mining space pruning with succinctness constraints
For pattern mining, there is another category of constraints called succinct constraints. A constraint c

is succinct if it can be enforced by directly pruning some data objects from the database or by directly
enumerating all and only those sets that are guaranteed to satisfy the constraint. The former is called
data succinct since it enables direct data space pruning, whereas the latter is called pattern succinct
since it enables direct pattern generation by starting with initial patterns that satisfy the constraint. Let’s
examine a few examples.

First, let’s examine the constraint i ∈ S, that is, the pattern must contain item i. To find the patterns
containing item i, one can mine only i-projected database since a transaction does not contain i will not
contribute to the patterns containing i, and for those containing i, all the remaining items can participate
the remaining of the mining process. This facilitates data space pruning at the beginning and thus this
constraint is both data and pattern succinct. On the other hand, to find the patterns that do not contain
item i (i.e., i /∈ S), one can mine it by mining the transaction database with i removed since i in a
transaction will not contribute to the pattern. This facilitates data space pruning at the beginning and
also facilitate pattern space pruning (since it avoids mine any intermediate patterns containing i, thus
the constraint is succinct, and it is both pattern succinct and data succinct.

As another example, a constraint “min(S.price) ≥ $50” is data succinct since we can remove all
items whose price is less than $50 from the transactions since any item whose price is no less than $50
will not contribute to the pattern mining process. Similarly, min(S.P rice) ≤ v is pattern succinct since
we can start with only those items whose price is no greater than v.

Notice that not all the constraints are succinct. For example, the constraint sum(S.P rice) ≥ v is
not succinct because it cannot be used to facilitate the pruning of any item from a transaction at the
beginning of the process since the sum of the price of an itemset S will keep increasing.

The pattern succinctness of the list of SQL primitives–based constraints is indicated in the fourth
column of Table 5.3.

From the above discussion, we can see that the same constraint may belong to more than one cate-
gory. For example, the constraint “min(I.price) ≤ $10” is pattern monotonic and also data succinct. In
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this case, we can use data succinctness to start only with those items whose price is no more than $10.
By doing so, it has implicitly applied pattern monotonicity property already since once the constraint
is used at the starting point (i.e., satisfied), we will not need to check it any more. As another example,
the constraint “c0 : sum(I.price) ≥ $100” is both pattern monotonic and data antimonotonic, we can
use the data antimonotonicity to prune those transactions whose prices of the remaining items adding
together cannot reach $100. In the meantime, once a pattern satisfies c0, we will not need to check c0
again in the mining process.

In applications, a user may pose a mining query that may contain multiple constraints. In many
cases, multiple constraints can be enforced together to jointly prune mining space, which may lead to
more efficient processing. However, in some cases, different constraints may require different item-
ordering for the effective constraint enforcement, especially for convertible constraints. For example,
a query may contain both c1 : avg(S.prof it) > 20 and c2 : avg(S.price) < 50. Unfortunately, sorting
on profit in value-descending order may not result in value-descending order of their associated item
price. In this case, it is the best to estimate which ordering may lead to more effective pruning, and
mining following the more effective pruning ordering will lead to more efficient processing. Suppose it
is hard to find patterns satisfying c1 but easy to find pattern satisfying c2. Then the system should sort
the items in transactions in profit descending ordering. Once the average profit of the current itemset
drops to below $20, the itemset can be tossed (i.e., no further mining with it), which will lead to efficient
processing.

5.4 Mining sequential patterns
A sequence database consists of sequences of ordered elements or events, recorded with or without
a concrete notion of time. There are many applications involving sequence data. Typical examples
include customer shopping sequences, Web clickstreams, biological sequences, and sequences of events
in science and engineering, and in natural and social developments. In this section, we study sequential
pattern mining in transactional databases, and with proper extensions, such mining algorithms can help
find sequential patterns for many other applications, such as finding sequential patterns for Webclick
streams, and for science, engineering, and social event mining. We start with the basic concepts of
sequential pattern mining in Section 5.4.1. Section 5.4.2 presents several scalable methods for such
mining. We will discuss constraint-based sequential pattern mining in Section 5.4.3.

5.4.1 Sequential pattern mining: concepts and primitives
“What is sequential pattern mining?” Sequential pattern mining is the mining of frequently occur-
ring ordered events or subsequences as patterns. An example of a sequential pattern is “Customers
who buy an iPad Pro are likely to buy an Apple pencil within 90 days.” For retail data, sequential
patterns are useful for shelf placement and promotions. This industry, as well as telecommunications
and other businesses, may also use sequential patterns for targeted marketing, customer retention, and
many other tasks. Other areas in which sequential patterns can be applied include Web access pattern
analysis, production processes, and network intrusion detection. Notice that most studies of sequential
pattern mining concentrate on categorical or symbolic patterns, whereas numerical curve analysis usu-
ally belongs to the scope of trend analysis and forecasting in statistical time-series analysis discussed
in many statistics or time-series analysis textbooks.
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The sequential pattern mining problem was first introduced by Agrawal and Srikant in 1995 based
on their study of customer purchase sequences, as follows: Given a set of sequences, where each se-
quence consists of a list of events (or elements) and each event consists of a set of items, and given
a user-specified minimum support threshold of min_sup, sequential pattern mining finds all frequent
subsequences, that is, the subsequences whose occurrence frequency in the set of sequences is no less
than min_sup.

Let’s establish some vocabulary for our discussion of sequential pattern mining. Let I =
{I1, I2, . . . , Ip} be the set of all items. An itemset is a nonempty set of items. A sequence is an or-
dered list of events. A sequence s is denoted 〈e1e2e3 · · · el〉, where event e1 occurs before e2, which
occurs before e3, and so on. Event ej is also called an element of s. In the case of customer purchase
data, an event refers to a shopping trip in which a customer bought items at a certain store. The event
is thus an itemset, that is, an unordered list of items that the customer purchased during the trip. The
itemset (or event) is denoted as (x1x2 · · ·xq), where xk is an item. For brevity, the brackets are omitted
if an element has only one item, that is, element (x) is written as x. Suppose that a customer made
several shopping trips to the store. These ordered events form a sequence for the customer. That is,
the customer first bought the items in e1, then later bought the items in e2, and so on. An item can
occur at most once in an event of a sequence,2 but can occur multiple times in different events of a
sequence. The number of instances of items in a sequence is called the length of the sequence. A
sequence with length l is called an l-sequence. A sequence α = 〈a1a2 · · ·an〉 is called a subsequence
of another sequence β = 〈b1b2 · · ·bm〉, and β is a supersequence of α, denoted as α � β, if there
exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn . For example, if
α = 〈(ab), d〉 and β = 〈(abc), (de)〉 where a, b, c, d , and e are items, then α is a subsequence of β and
β is a supersequence of α.

A sequence database, S, is a set of tuples, 〈SID, s〉, where SID is a sequence_ID and s is a
sequence. For our example, S contains sequences for all customers of the store. A tuple 〈SID, s〉 is said
to contain a sequence α, if α is a subsequence of s. The support of a sequence α in a sequence database
S is the number of tuples in the database containing α, that is, supportS(α)= | {〈SID, s〉|(〈SID, s〉 ∈
S) ∧ (α � s)} |. It can be denoted as support (α) if the sequence database is clear from the context.
Given a positive integer min_sup as the minimum support threshold, a sequence α is frequent in
sequence database S if supportS(α) ≥ min_sup. That is, for sequence α to be frequent, it must occur
at least min_sup times in S. A frequent sequence is called a sequential pattern. A sequential pattern
with length l is called an l-pattern. The following example illustrates these concepts.

Example 5.12. Sequential patterns. Consider the sequence database, S, given in Table 5.4, which
will be used in examples throughout this section. Let min_sup = 2. The set of items in the database is
{a, b, c, d, e, f, g}. The database contains four sequences.

Let’s have a close look at sequence 1, which is 〈a(abc)(ac)d(cf )〉. It has five events, namely (a),
(abc), (ac), (d) and (cf ), which occur in the order listed. Items a and c each appear more than once
in different events of the sequence. There are nine instances of items in sequence 1. Therefore it has a
length of nine and is called a 9-sequence. Item a occurs three times in sequence 1 and so contributes
three to the length of the sequence. However, the entire sequence contributes only one to the support

2 We simplify our discussion here in the same spirit as frequent itemset mining, but the developed method can be extended to
consider multiple identical items.
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Table 5.4 A sequence data-
base.

Sequence_ID Sequence
1 〈a(abc)(ac)d(cf )〉
2 〈(ad)c(bc)(ae)〉
3 〈(ef )(ab)(df )cb〉
4 〈eg(af )cbc〉

of 〈a〉. Sequence 〈a(bc)df 〉 is a subsequence of sequence 1 since the events of the former are each
subsets of events in sequence 1, and the order of events is preserved. Consider subsequence s = 〈(ab)c〉.
Looking at the sequence database, S, we see that sequences 1 and 3 are the only ones that contain the
subsequence s. The support of s is thus 2, which satisfies minimum support. Therefore s is frequent,
and so we call it a sequential pattern. It is a 3-pattern since it is a sequential pattern of length three.

This model of sequential pattern mining is an abstraction of customer-shopping sequence analysis.
Scalable methods for sequential pattern mining on such data are described in Section 5.4.2, which
follows. Many other sequential pattern mining applications may not be covered by this model. For
example, when analyzing Web clickstream sequences, gaps between clicks become important if one
wants to predict what the next click might be. In DNA sequence analysis, approximate patterns become
useful since DNA sequences may contain (symbol) insertions, deletions, and mutations. Such diverse
requirements can be viewed as constraint relaxation or enforcement. In Section 5.4.3, we discuss how
to extend the basic sequential mining model to constrained sequential pattern mining in order to handle
these cases.

5.4.2 Scalable methods for mining sequential patterns
Sequential pattern mining is computationally challenging since such mining may generate and/or test a
combinatorially explosive number of intermediate subsequences.

“How can we develop efficient and scalable methods for sequential pattern mining?” We may cate-
gorize the sequential pattern mining methods into two categories: (1) efficient methods for mining the
full set of sequential patterns, and (2) efficient methods for mining only the set of closed sequential pat-
terns, where a sequential pattern s is closed if there exists no sequential pattern s′ where s′ is a proper
supersequence of s, and s′ has the same (frequency) support as s.3 Since all of the subsequences of a
frequent sequence are also frequent, mining the set of closed sequential patterns may avoid the gen-
eration of unnecessary subsequences and thus lead to more compact results as well as more efficient
methods than mining the full set. We will first examine methods for mining the full set and then study
how they can be extended for mining the closed set. In addition, we discuss modifications for mining
multilevel, multidimensional sequential patterns (that is, with multiple levels of granularity).

The major approaches for mining the full set of sequential patterns are similar to those introduced
for frequent itemset mining in Chapter 5. Here, we discuss three such approaches for sequential pat-
tern mining, represented by the algorithms GSP, SPADE, and PrefixSpan, respectively. GSP adopts a

3 Closed frequent itemsets were introduced in Chapter 4. Here, the definition is applied to sequential patterns.
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candidate generate-and-test approach using horizontal data format (where the data are represented as
〈sequence_ID : sequence_of _itemsets〉, as usual, where each itemset is an event). SPADE adopts
a candidate generate-and-test approach using vertical data format (where the data are represented
as 〈itemset : (sequence_ID, event_ID)〉). The vertical data format can be obtained by transform-
ing from a horizontally formatted sequence database in just one scan. PrefixSpan is a pattern growth
method, which does not require candidate generation.

All three approaches either directly or indirectly explore the Apriori property, stated as follows:
every nonempty subsequence of a sequential pattern is a sequential pattern. (Recall that for a pattern
to be called sequential, it must be frequent. That is, it must satisfy minimum support.) The Apriori
property is antimonotonic (or downward-closed) in that, if a sequence cannot pass a test (e.g., regarding
minimum support), all of its supersequences will also fail the test. Use of this property to prune the
search space can help make the discovery of sequential patterns more efficient.

GSP: a sequential pattern mining algorithm based on candidate generate-and-test
GSP (generalize sequential patterns) is a sequential pattern mining method that was developed by
Srikant and Agrawal in 1996. It is an extension of their seminal algorithm for frequent itemset min-
ing, known as Apriori (Section 5.2). GSP makes use of the downward-closure property of sequential
patterns and adopts a multiple-pass, candidate generate-and-test approach. The algorithm is outlined as
follows. In the first scan of the database, it finds all of the frequent items, that is, those with minimum
support. Each such item yields a length-1 frequent sequence consisting of that item. Each subsequent
pass starts with a seed set of sequential patterns—the set of sequential patterns found in the previous
pass. This seed set is used to generate new potentially frequent patterns, called candidate sequences.
Each candidate sequence contains one more item than the seed sequential pattern from which it was
generated. Recall that the number of instances of items in a sequence is the length of the sequence.
Therefore all of the candidate sequences in a given pass will have the same length. We refer to a se-
quence with length k as a k-sequence. Let Ck denote the set of candidate k-sequences. A pass over the
database finds the support for each candidate k-sequence. The candidates in Ck with at least min_sup
form Lk , the set of all frequent k-sequences. This set then becomes the seed set for the next pass, k + 1.
The algorithm terminates when no new sequential pattern is found in a pass, or no candidate sequence
can be generated.

The method is illustrated in the following example.

Example 5.13. GSP: candidate generate-and-test (using horizontal data format). Suppose we are
given the same sequence database, S, of Table 5.4 from Example 5.12, with min_sup = 2. Note that
the data are represented in horizontal data format. In the first scan (k = 1), GSP collects the support for
each item. The set of candidate 1-sequences is thus (shown here in the form of “sequence : support”):
〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, 〈f 〉 : 3, 〈g〉 : 1.

The sequence 〈g〉 has a support of only 1, and is the only sequence that does not satisfy minimum
support. By filtering it out, we obtain the first seed set, L1 = {〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f 〉}. Each member
in the set represents a length-1 sequential pattern. Each subsequent pass starts with the seed set found
in the previous pass and uses it to generate new candidate sequences, which are potentially frequent.

Using L1 as the seed set, this set of 6 length-1 sequential patterns generates a set of 6 ×
6 + 6×5

2 = 51 candidate sequences of length 2, C2 = {〈aa〉, 〈ab〉, . . . , 〈af 〉, 〈ba〉, 〈bb〉, . . . , 〈ff 〉,
〈(ab)〉, 〈(ac)〉, . . . , 〈(ef )〉}. Note that 〈aa〉 indicates that 〈a〉 happens twice in sequel, and 〈ab〉 indicates
that 〈a〉 happens followed by 〈b〉.
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In general, the set of candidates is generated by a self-join of the sequential patterns found in the pre-
vious pass (see Section 5.2.1 for details). GSP applies the Apriori property to prune the set of candidates
as follows. In the kth pass, a sequence is a candidate only if each of its length-(k − 1) subsequences
is a sequential pattern found at the (k − 1)th pass. A new scan of the database collects the support for
each candidate sequence and finds a new set of sequential patterns, Lk . This set becomes the seed for
the next pass. The algorithm terminates when no sequential pattern is found in a pass, or when there
is no candidate sequence generated. Clearly, the number of scans is at least the maximum length of
sequential patterns. GSP needs one more scan if the sequential patterns obtained in the last scan still
generate new candidates.

Although GSP benefits from the Apriori pruning, it still generates a large number of candidates.
In this example, 6 length-1 sequential patterns generate 51 length-2 candidates; 22 length-2 sequential
patterns generate 64 length-3 candidates; and so on. Some candidates generated by GSP may not appear
in the database at all. In this example, 13 out of 64 length-3 candidates do not appear in the database,
resulting in wasted search effort.

The example shows that although an Apriori-like sequential pattern mining method, such as GSP,
reduces search space, it typically needs to scan the database multiple times. It will likely generate a
huge set of candidate sequences, especially when mining long sequences. There is a need for more
efficient mining method.

SPADE: an Apriori-based vertical data format sequential pattern mining algorithm
The Apriori-like sequential pattern mining approach (based on candidate generate-and-test) can also
be explored by mapping a sequence database into vertical data format. In vertical data format, the
database becomes a set of tuples of the form 〈itemset : (sequence_ID, event_ID)〉. That is, for a
given itemset, we record the sequence identifier and corresponding event identifier for which the itemset
occurs. The event identifier serves as a timestamp within a sequence. The event_ID of the ith itemset
(or event) in a sequence is i. Note that an itemset can occur in more than one sequence. The set of
(sequence_ID, event_ID) pairs for a given itemset forms the ID_list of the itemset. The mapping
from horizontal to vertical format requires one scan of the database. A major advantage of using this
format is that we can determine the support of any k-sequence by simply joining the ID_lists of any
two of its (k − 1)-length subsequences. The length of the resulting ID_list (i.e., unique sequence_ID

values) is equal to the support of the k-sequence, which tells us whether or not the sequence is frequent.
SPADE (sequential pattern discovery using equivalent classes) is an Apriori-based sequential pat-

tern mining algorithm that uses vertical data format. As with GSP, SPADE requires one scan to find
the frequent 1-sequences. To find candidate 2-sequences, we join all pairs of single items if they are
frequent (therein, it applies the Apriori property), share the same sequence identifier, and their event
identifiers follow a sequential ordering. That is, the first item in the pair must occur as an event before
the second item, where both occur in the same sequence. Similarly, we can grow the length of itemsets
from length 2 to length three, and so on. The procedure stops when no frequent sequences can be found
or no such sequences can be formed by such joins. The following example helps illustrate the process.

Example 5.14. SPADE: candidate generate-and-test using vertical data format. Let min_sup = 2.
Our running example sequence database, S, of Table 5.4 is in horizontal data format. SPADE first scans
S and transforms it into the vertical format, as shown in Fig. 5.8(a). Each itemset (or event) is associated
with its ID_list, which is the set of SID (sequence_ID) and EID (event_ID) pairs that contain the itemset.
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FIGURE 5.8

The SPADE mining process: (a) vertical format database; and (b) to (d) show fragments of the ID_lists for 1-
sequences, 2-sequences, and 3-sequences, respectively.
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The ID_list for individual items, a, b, and so on, is shown in Fig. 5.8(b). For example, the ID_list for
item b consists of the following (SID,EID) pairs: {(1,2), (2,3), (3,2), (3,5), (4,5)}, where the entry
(1,2) means that b occurs in sequence 1, event 2, etc. Items a and b are frequent. They can be joined to
form the length-2 sequence, 〈a, b〉. We find the support of this sequence as follows. We join the ID_lists
of a and b by joining on the same sequence_ID wherever, according to the event_IDs, a occurs before
b. That is, the join must preserve the temporal order of the events involved. The result of such a join for
a and b is shown in the ID_list for ab of Fig. 5.8(c). For example, the ID_list for 2-sequence ab is a set
of triples, (SID,EID(a),EID(b)), namely {(1,1,2), (2,1,3), (3,2,5), (4,3,5)}. The entry (2,1,3),
for example, shows that both a and b occur in sequence 2, and that a (event 1 of the sequence) occurs
before b (event 3), as required. Furthermore, the frequent 2-sequences can be joined (while considering
the Apriori pruning heuristic that the (k-1)-subsequences of a candidate k-sequence must be frequent)
to form 3-sequences, as in Fig. 5.8(d), and so on. The process terminates when no frequent sequences
can be found or no candidate sequences can be formed.

The use of vertical data format, with the creation of ID_lists, reduces scans of the sequence database.
The ID_lists carry the information necessary to find the support of candidates. As the length of a
frequent sequence increases, the size of its ID_list decreases, resulting in fast joins. However, the basic
search methodology of SPADE and GSP is breadth-first search (e.g., exploring 1-sequences, then 2-
sequences, and so on) and Apriori pruning. Despite the pruning, both algorithms have to generate
large sets of candidates in breadth-first manner in order to grow longer sequences. Thus, most of the
difficulties suffered in the GSP algorithm will reoccur in SPADE as well.

PrefixSpan: prefix-projected sequential pattern growth
Pattern growth is a method of frequent-pattern mining that does not require candidate generation. The
technique originated in the FP-growth algorithm for transaction databases, presented in Section 5.6.
The general idea of this approach is as follows: it finds the frequent single items, then compresses this
information into a frequent-pattern tree, or FP-tree. The FP-tree is used to generate a set of projected
databases, each associated with one frequent item. Each of these databases is mined separately and
recursively, avoiding candidate generation. Interestingly, the pattern-growth approach can be extended
to mining sequential patterns, which leads to a new algorithm, PrefixSpan, illustrated below.

Without loss of generality, all the items within an event can be listed alphabetically. For example,
instead of listing the items in an event as, say, (bac), we can list them as (abc). Given a sequence
α = 〈e1e2 · · · en〉 (where each ei corresponds to a frequent event in a sequence database, S), a sequence
β = 〈e′

1e
′
2 · · · e′

m〉 (m ≤ n) is called a prefix of α if and only if (1) e′
i = ei for (i ≤ m − 1); (2) e′

m ⊆
em; and (3) all the frequent items in (em − e′

m) are alphabetically after those in e′
m. Sequence γ =

〈e′′
mem+1 · · · en〉 is called the suffix of α with respect to prefix β, denoted as γ = α/β, where e′′

m =
(em − e′

m).4 We also denote α = β · γ . Note if β is not a subsequence of α, the suffix of α with respect
to β is empty.

We illustrate these concepts with the following example.

Example 5.15. Prefix and suffix. Let sequence s = 〈a(abc)(ac)d(cf )〉, which corresponds to se-
quence 1 of our running example sequence database. 〈a〉, 〈aa〉, 〈a(ab)〉, and 〈a(abc)〉 are four prefixes

4 If e′′
m is not empty, the suffix is also denoted as 〈(_ items ine′′

m)em+1 · · · en〉.
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of s. 〈(abc)(ac)d(cf )〉 is the suffix of s with respect to the prefix 〈a〉; 〈(_bc)(ac)d(cf )〉 is its suffix
with respect to the prefix 〈aa〉; and 〈(_c)(ac)d(cf )〉 is its suffix with respect to the prefix 〈a(ab)〉.

Based on the concepts of prefix and suffix, the problem of mining sequential patterns can be decom-
posed into a set of subproblems as shown below.

1. Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential patterns in a sequence database,
S. The complete set of sequential patterns in S can be partitioned into n disjoint subsets. The ith
subset (1 ≤ i ≤ n) is the set of sequential patterns with prefix 〈xi〉.

2. Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of all length-(l + 1) sequential
patterns with prefix α. The complete set of sequential patterns with prefix α, except for α itself, can
be partitioned into m disjoint subsets. The j th subset (1 ≤ j ≤ m) is the set of sequential patterns
prefixed with βj .

Based on this observation, the problem can be partitioned recursively. That is, each subset of sequen-
tial patterns can be further partitioned when necessary. This forms a divide-and-conquer framework.
To mine the subsets of sequential patterns, we construct corresponding projected databases and mine
each one recursively.

Let’s use our running example to examine how to use the prefix-based projection approach for
mining sequential patterns.

Example 5.16. PrefixSpan: a pattern-growth approach. Using the same sequence database, S, of
Table 5.4 with min_sup = 2, sequential patterns in S can be mined by a prefix-projection method in
the following steps.

1. Find length-1 sequential patterns. Scan S once to find all of the frequent items in sequences. Each of
these frequent items is a length-1 sequential pattern. They are 〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3,
and 〈f 〉 : 3, where the notation “〈pattern〉 : count” represents the pattern and its associated support
count.

2. Partition the search space. The complete set of sequential patterns can be partitioned into the fol-
lowing six subsets according to the six prefixes: (1) the ones with prefix 〈a〉, (2) the ones with prefix
〈b〉, . . . , and (6) the ones with prefix 〈f 〉.

3. Find subsets of sequential patterns. The subsets of sequential patterns mentioned in step 2 can be
mined by constructing corresponding projected databases and mining each recursively. The pro-
jected databases, as well as the sequential patterns found in them, are listed in Table 5.5, while the
mining process is explained as follows.
a. Find sequential patterns with prefix 〈a〉. Only the sequences containing 〈a〉 should be collected.

Moreover, in a sequence containing 〈a〉, only the subsequence prefixed with the first occurrence
of 〈a〉 should be considered. For example, in sequence 〈(ef )(ab)(df )cb〉, only the subsequence
〈(_b)(df )cb〉 should be considered for mining sequential patterns prefixed with 〈a〉. Notice that
(_b) means that the last event in the prefix, which is a, together with b, form one event.
The sequences in S containing 〈a〉 are projected with respect to 〈a〉 to form the 〈a〉-projected
database, which consists of four suffix sequences: 〈(abc)(ac)d(cf )〉, 〈(_d)c(bc)(ae)〉,
〈(_b)(df )cb〉 and 〈(_f )cbc〉.
By scanning the 〈a〉-projected database once, its locally frequent items are a : 2, b : 4, _b : 2,
c : 4, d : 2, and f : 2. Thus all the length-2 sequential patterns prefixed with 〈a〉 are found, and
they are 〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2, 〈ac〉 : 4, 〈ad〉 : 2, and 〈af 〉 : 2.
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Table 5.5 Projected databases and sequential patterns.

Prefix Projected Database Sequential Patterns
〈a〉 〈(abc)(ac)d(cf )〉, 〈(_d)c(bc)(ae)〉,

〈(_b)(df )cb〉, 〈(_f )cbc〉
〈a〉, 〈aa〉, 〈ab〉, 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉, 〈abc〉, 〈(ab)〉, 〈(ab)c〉,
〈(ab)d〉, 〈(ab)f 〉, 〈(ab)dc〉, 〈ac〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈ad〉, 〈adc〉, 〈af 〉

〈b〉 〈(_c)(ac)d(cf )〉, 〈(_c)(ae)〉,
〈(df )cb〉, 〈c〉

〈b〉, 〈ba〉, 〈bc〉, 〈(bc)〉, 〈(bc)a〉, 〈bd〉, 〈bdc〉, 〈bf 〉

〈c〉 〈(ac)d(cf )〉, 〈(bc)(ae)〉, 〈b〉, 〈bc〉 〈c〉, 〈ca〉, 〈cb〉, 〈cc〉
〈d〉 〈(cf )〉, 〈c(bc)(ae)〉, 〈(_f )cb〉 〈d〉, 〈db〉, 〈dc〉, 〈dcb〉
〈e〉 〈(_f )(ab)(df )cb〉, 〈(af )cbc〉 〈e〉, 〈ea〉, 〈eab〉, 〈eac〉, 〈eacb〉, 〈eb〉, 〈ebc〉, 〈ec〉, 〈ecb〉, 〈ef 〉, 〈ef b〉,

〈ef c〉, 〈ef cb〉.
〈f 〉 〈(ab)(df )cb〉, 〈cbc〉 〈f 〉, 〈f b〉, 〈f bc〉, 〈f c〉, 〈f cb〉

Recursively, all sequential patterns with prefix 〈a〉 can be partitioned into six subsets: (1) those
prefixed with 〈aa〉, (2) those with 〈ab〉, . . . , and finally, (6) those with 〈af 〉. These subsets
can be mined by constructing respective projected databases and mining each recursively as
follows.

i. The 〈aa〉-projected database consists of two nonempty (suffix) subsequences prefixed
with 〈aa〉: {〈(_bc)(ac)d(cf )〉, {〈(_e)〉}. Since there is no hope of generating any fre-
quent subsequence from this projected database, the processing of the 〈aa〉-projected
database terminates.

ii. The 〈ab〉-projected database consists of three suffix sequences: 〈(_c)(ac)d(cf )〉, 〈(_c)a〉,
and 〈c〉. Recursively mining the 〈ab〉-projected database returns four sequential patterns:
〈(_c)〉, 〈(_c)a〉, 〈a〉, and 〈c〉 (i.e., 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉, and 〈abc〉.) They form the
complete set of sequential patterns prefixed with 〈ab〉.

iii. The 〈(ab)〉-projected database contains only two sequences: 〈(_c)(ac) d(cf )〉 and
〈(df )cb〉, which leads to the finding of the following sequential patterns prefixed with
〈(ab)〉: 〈c〉, 〈d〉, 〈f 〉, and 〈dc〉.

iv. The 〈ac〉-, 〈ad〉- and 〈af 〉- projected databases can be constructed and recursively mined
in a similar manner. The sequential patterns found are shown in Table 5.5.

b. Find sequential patterns with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉 and 〈f 〉, respectively. This can be done
by constructing the 〈b〉-, 〈c〉- 〈d〉-, 〈e〉-, and 〈f 〉-projected databases and mining them. The
projected databases and the sequential patterns found are also shown in Table 5.5.

4. The set of sequential patterns is the collection of patterns found in the above recursive mining
process.

The method described above generates no candidate sequences in the mining process. However, it
may generate many projected databases, one for each frequent prefix-subsequence. Forming a large
number of projected databases recursively may become the major cost of the method if such databases
have to be generated physically. An important optimization technique is pseudo-projection, as shown
in Fig. 5.9. For example, for a sequence 〈a(abc)(ac)d(cf )〉, 〈a〉’s projection will generate a projected
subsequence 〈(abc)(ac)d(cf )〉 (i.e., 〈a〉’s suffix), and a subsequent projection on 〈b〉 generates an
〈ab〉’s projected sequence 〈(_c)(ac)d(cf )〉. Such physical projection may take a lot of time and space to
copy and store the projected subsequences, which contains a lot of redundancy. The pseudo-projection
method registers the index (or identifier) of the corresponding sequence and the starting position of the
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FIGURE 5.9

Pseudo projection vs. physical project in PrefixSpan.

projected suffix in the sequence instead of performing physical projection. That is, a physical projection
of a sequence is replaced by registering a sequence identifier and the projected position index point.
For example, in the above two projections, instead of generating two physical projected suffixes, only
two pointers are created (one pointing at position 2 shown by the solid arrow and the other at position
5 shown by the dashed arrow). This may save time to copy and paste suffixes and save spaces to store
such suffixes.

Pseudo-projection reduces the cost of projection substantially when such projection can be done in
main memory. However, it may not be efficient if the pseudo-projection is used for disk-based accessing
since random access to disk space is costly. The suggested approach is that if the original sequence
database or the projected databases are too big to fit in memory, the physical projection should be
applied, however, the execution should be swapped to pseudo-projection once the projected databases
can fit in memory. This methodology is adopted in the PrefixSpan implementation.

A performance comparison of GSP, SPADE, and PrefixSpan shows that PrefixSpan has the best
overall performance. SPADE, though weaker than PrefixSpan in most cases, outperforms GSP. Gener-
ating huge candidate sets may consume a tremendous amount of memory, thereby causing candidate
generate-and-test algorithms to become rather slow. The comparison also found that when there is a
large number of frequent subsequences, all three algorithms run slowly. This problem can be partially
solved by closed sequential pattern mining.

Mining closed sequential patterns
Since mining the complete set of frequent subsequences can generate a huge number of sequential
patterns, an interesting alternative is to mine frequent closed subsequences only, that is, those containing
no supersequence with the same support. Mining closed sequential patterns can produce a significantly
less number of sequences than the full set of sequential patterns. Note that the full set of frequent
subsequences, together with their supports, can easily be derived from the closed subsequences. Thus
closed subsequences have the same expressive power as the corresponding full set of subsequences.
Because of their compactness, they may also be quicker to find.

CloSpan is an efficient closed sequential pattern mining method. Similar to mining closed frequent
patterns, it can skip mining redundant closed sequential pattern if it finds the continuous mining will
not generate any new results. For example, as shown in Fig. 5.10, if the projected database 	 of prefix
〈ac〉 is identical to the later projected database 	 of prefix 〈c〉 (which is called backward subpattern
since 〈c〉	 arrives late and is a subpattern of 〈ac〉	), CloSpan will prune the later 	 mining to avoid
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FIGURE 5.10

The pruning of a backward subpattern or a backward superpattern.

redundancy. Similarly, CloSpan will search for backward superpatterns for pruning to avoid redundant
mining. More concretely, it will stop growing a prefix-based projected databases S|β if it is of the
same size as that of the prefix-based projected database S|α and α and β have substring/superstring
relationships.

This is based on a property of sequence databases, called equivalence of projected databases,
stated as follows: Two projected sequence databases, S|α = S|β ,5 α � β (i.e., α is a subsequence of β),
are equivalent if and only if the total number of items in S|α is equal to the total number of items in
S|β .

Let’s examine one such example.

Example 5.17. CloSpan: Pruning redundant projected database. Given a small sequence database,
S, shown in Fig. 5.11, with min_sup = 2. The prefix project sequence database of the prefix 〈af 〉 is
(〈acg〉, 〈egb(ac)〉, 〈ea〉) with 12 symbols (including parentheses), and the projected sequence database
of the prefix 〈f 〉 is of the same size. Clearly, the two projected databases should be identical and there
is no need to mine the latter, the 〈f 〉-projected sequence database. This is understandable since for
any sequence s, if its projections on 〈af 〉 and 〈f 〉 respectively are not identical, the latter must contain
more symbols than the former (e.g., it may contain only 〈f 〉 but not 〈a . . . f 〉 or has 〈f 〉 in front of
〈a . . . f 〉). However, now, the two sizes are equal. This implies that their projected databases must be
identical. Such backward subpattern pruning and backward superpattern pruning can reduce the search
space substantially.

Empirical results show that CloSpan often derives a much smaller set of sequential patterns in a
shorter time than PrefixSpan, which mines the complete set of sequential patterns.

5 In S|α , a sequence database S is projected with respect to sequence (e.g., prefix) α. The notation S|β can be similarly defined.
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FIGURE 5.11

The pruning of a backward subpattern or a backward superpattern.

Mining multidimensional, multilevel sequential patterns
Sequence identifiers (representing individual customers, for example) and sequence items (such as
products bought) are often associated with additional pieces of information. Sequential pattern mining
may take advantage of such additional information to discover interesting patterns in multidimensional,
multilevel information space. Take customer shopping transactions, for instance. In a sequence database
for such data, the additional information associated with sequence IDs could include customer residen-
tial area, group, and profession. Information associated with items could include item category, brand,
model type, model number, place manufactured, and manufacture date. Mining multidimensional, mul-
tilevel sequential patterns is the discovery of interesting patterns in such a broad dimensional space, at
different levels of detail.

Example 5.18. Multidimensional, multilevel sequential patters. The discovery that “Retired cus-
tomers who purchase a smart home thermostat are likely to purchase a video doorbell within a month”
and that “Young adults who purchase a laptop are likely to buy laser printer within 90 days” are
examples of multidimensional, multilevel sequential patterns. By grouping customers into “retired cus-
tomers” and “young adults” according to the values in the age dimension, and by generalizing items
to, say, “smart thermostat” rather than a specific model, the patterns mined here are associated with
certain dimensions and are at a higher level of abstraction.

“Can a typical sequential pattern algorithm such as PrefixSpan be extended to efficiently mine
multidimensional, multilevel sequential patterns?” One suggested modification is to associate the mul-
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tidimensional, multilevel information with the sequence_ID and item_ID, respectively, which the min-
ing method can take into consideration when finding frequent subsequences. For example, (Chicago,
middle_aged, business) can be associated with sequence_ID_1002 (for a given customer), whereas
(laserprinter , HP , LaserJ etP ro, G3Q47A, USA, 2020) can be associated with item_ID_543005
in the sequence. A sequential pattern mining algorithm will use such information in the mining process
to find sequential patterns associated with multidimensional, multilevel information.

5.4.3 Constraint-based mining of sequential patterns
As shown in our study of frequent-pattern mining, mining that is performed without user-specified con-
straints may generate numerous patterns that are of no interest. Such unfocused mining can reduce both
the efficiency and usability of frequent-pattern mining. Thus we promote constraint-based mining,
which incorporates user-specified constraints to reduce the search space and derive only patterns that
are of interest to the user.

Constraints can be expressed in many forms. They may specify desired relationships between at-
tributes, attribute values, or aggregates within the resulting patterns mined. Regular expressions can
also be used as constraints in the form of “pattern templates,” which specify the desired form of the
patterns to be mined. The general concepts introduced for constraint-based frequent pattern mining ap-
ply to constraint-based sequential pattern mining as well. The key idea to note is that these kinds of
constraints can be used during the mining process to confine the search space, thereby improving (1)
the efficiency of the mining, and (2) the interestingness of the resulting patterns found. This idea is also
referred to as “pushing the constraints deep into the mining process.”

We now examine some typical examples of constraints for sequential pattern mining.
First, constraints can be related to the duration, T , of a sequence. The duration can be user-

specified, related to a particular time period, such as within the last 6 months. Sequential pattern mining
can then be confined to the data within the specified duration, T . Constraints related to a specific du-
ration, can be considered as succinct constraints. A constraint is succinct if we can enumerate all and
only those sequences that are guaranteed to satisfy the constraint, even before support counting begins.
In this case, we can push the data selection process deep into the mining process, and select sequences
in the desired period before mining begins to reduce the search space.

Second, a user may confine the maximal or minimal length of the sequential patterns to be mined.
The maximal or minimal length of sequential patterns can be treated as antimonotonic or monotonic
constraints, respectively. For example, the constraint L ≤ 10 is antimonotonic since, if a sequential
pattern violates this constraint, further mining following it will always violate the constraint. Simi-
larly, data antimonotonicity and its search space pruning rules can be established correspondingly for
sequential pattern mining as well.

Third, in sequential pattern mining, a constraint can be related to an event folding window, w. A
set of events occurring within a specified period of time can be viewed as occurring together. If w is set
to 0 (i.e., no event sequence folding), sequential patterns are found where each event occurs at a distinct
time instant, such as “a customer bought a laptop, then a digital camera, and then a laser printer” will
be considered as a length-3 sequence, even if all these happen within the same day. However, if w is
set to be weekly based, then these transactions are considered as occurring within the same period, and
such sequences are “folded” into a set in the analysis. On the extreme, if w is set to be as long as the
whole duration, T , sequential pattern mining is degenerated into sequence-insensitive frequent pattern
mining.
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Fourth, a desired time gap between events in the discovered patterns may be specified as a con-
straint. For example, min_gap ≤ gap ≤ max_gap is to find patterns that are separated by at least
min_gap but at most max_gap. A pattern like “If a person rents movie A, it is likely she will rent
movie B not within 6 days but within 30 days” implies 6 < gap ≤ 30 (days). It is straightforward to
push gap constraints into the sequential pattern mining process. With minor modifications to the min-
ing process, it can handle constraints with approximate gaps as well.

Finally, a user can specify constraints on the kinds of sequential patterns by providing “pattern tem-
plates” in the form of regular expressions. Here we discuss mining serial episodes and parallel episodes
using regular expressions. A serial episode is a set of events that occurs in total order, whereas a par-
allel episode is a set of events whose occurrence ordering is trivial. Consider the following example.

Example 5.19. Specifying serial episodes and parallel episodes with regular expressions. Let the
notation (E, t) represent event type E at time t. Consider the data (A, 1), (C, 2), and (B, 5) with an
event folding window width of w = 2, where the serial episode A → B and the parallel episode A &
C both occur in the data. The user can specify constraints in the form of a regular expression, such as
{A|B}C ∗ {D|E}, which indicates that the user would like to find patterns where event A and B first
occur (but they are parallel in that their relative ordering is unimportant), followed by one or a set of
events C, followed by the events D and E (where D can occur either before or after E). Other events
can occur in between those specified in the regular expression.

A regular expression constraint may be neither antimonotonic nor monotonic. In such cases, we
cannot use it to prune the search space in the same ways as described above. However, by modifying
the PrefixSpan-based pattern-growth approach, such constraints can be handled in an elegant manner.
Let’s examine one such example.

Example 5.20. Constraint-based sequential pattern mining with a regular expression constraint.
Suppose that our task is to mine sequential patterns, again using the sequence database, S, of Table 5.4.
This time, however, we are particularly interested in patterns that match the regular expression con-
straint, C = 〈a ∗ {bb|(bc)d|dd}〉, with minimum support.

This constraint cannot be pushed deep into the mining process. Nonetheless, it can easily be inte-
grated with the pattern-growth mining process as follows. First, only the 〈a〉-projected database, S|〈a〉,
needs to be mined since the regular expression constraint C starts with a. Retain only the sequences
in S|〈a〉 that contain items within the set {b, c, d}. Second, the remaining mining can proceed from the
suffix. This is essentially the Suffix-Span algorithm, which is symmetric to PrefixSpan in that it grows
suffixes from the end of the sequence forward. The growth should match the suffix as the constraint,
〈{bb|(bc)d|dd}〉. For the projected databases that match these suffixes, we can grow sequential patterns
either in prefix- or suffix-expansion manner to find all of the remaining sequential patterns.

Thus we have seen several ways in which constraints can be used to improve the efficiency and
usability of sequential pattern mining.

5.5 Mining subgraph patterns
Graphs become increasingly important in modeling complicated structures, such as circuits, images,
workflows, XML documents, webpages, chemical compounds, protein structures, biological networks,
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social networks, information networks, knowledge graphs, and the Web. Many graph search algorithms
have been developed in chemical informatics, computer vision, video indexing, Web search, and text
retrieval. With the increasing demand on the analysis of large amounts of structured data, graph mining
has become an active and important theme in data mining.

Among the various kinds of graph patterns, frequent substructures or subgraphs are the very basic
patterns that can be discovered in a collection of graphs. They are useful for characterizing graph sets,
discriminating different groups of graphs, classifying and clustering graphs, building graph indices, and
facilitating similarity search in graph databases. Recent studies have developed several graph mining
methods and applied them to the discovery of interesting patterns in various applications. For example,
there have been reports on the discovery of active chemical structures in HIV-screening data sets by
contrasting the support of frequent graphs between different classes. There have been studies on the use
of frequent structures as features to classify chemical compounds, on the frequent graph mining tech-
nique to study protein structural families, on the detection of considerably large frequent subpathways
in metabolic networks, and on the use of frequent graph patterns for graph indexing and similarity
search in graph databases. Although graph mining may include mining frequent subgraph patterns,
graph classification, clustering, and other analysis tasks, in this section we focus on mining frequent
subgraphs. We look at various methods, their extensions, and applications.

5.5.1 Methods for mining frequent subgraphs
Before presenting graph mining methods, it is necessary to first introduce some preliminary concepts
relating to frequent graph mining.

We denote the vertex set of a graph g by V (g) and the edge set by E(g). A label function, L,
maps a vertex or an edge to a label. A graph g is a subgraph of another graph g′ if there exists a
subgraph isomorphism from g to g′. Given a labeled graph data set, D = {G1,G2, . . . ,Gn}, we define
support (g) (or f requency(g)) as the percentage (or number) of graphs in a graph database (i.e., a
collection of graphs) D where g is a subgraph. A frequent graph is a graph whose support is no less
than a minimum support threshold, min_sup.

Example 5.21. Frequent subgraph. Fig. 5.12 shows a sample set of chemical structures. Fig. 5.13
depicts two of the frequent subgraphs in this data set, given a minimum support of 66.6%.

“How can we discover frequent substructures?” The discovery of frequent substructures usually
consists of two steps. In the first step, we generate frequent substructure candidates. The frequency of
each candidate is checked in the second step. Most studies on frequent substructure discovery focus on

FIGURE 5.12

A sample graph data set.
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FIGURE 5.13

Frequent graphs.

the optimization of the first step. This is because the second step involves a subgraph isomorphism test
whose computational complexity is excessively high (that is, NP-complete).

In this section, we look at various methods for frequent substructure mining. In general, there are
two basic approaches to this problem: an Apriori-based approach and a pattern-grown approach.

Apriori-based approach
Apriori-based frequent substructure mining algorithms share similar characteristics with Apriori-based
frequent itemset mining algorithms (Chapter 4). The search for frequent graphs starts with graphs of
small “size,” and proceeds in a bottom-up manner by generating candidates having an extra vertex,
edge, or path. The definition of graph size depends on the algorithm used.

The general framework of Apriori-based methods for frequent substructure mining is outlined in
Fig. 5.14. We refer to this algorithm as AprioriGraph. Sk is the frequent substructure set of size k.
We will clarify the definition of graph size when we describe specific Apriori-based methods further
below. AprioriGraph adopts a level-wise mining methodology. At each iteration, the size of newly
discovered frequent substructures is increased by one. These new substructures are first generated by
joining two similar but slightly different frequent subgraphs that were discovered in the previous call
to AprioriGraph. This candidate generation procedure is outlined on line 4. The frequency of the newly
formed structures is then checked. Those found to be frequent are used to generate larger candidates in
the next round.

Algorithm: AprioriGraph(D, minsup, Sk)

Input: a graph data set D, and min_support.
Output: The frequent substructure set Sk .

1: Sk+1 ← ∅;
2: for each frequent gi ∈ Sk do
3: for each frequent gj ∈ Sk do
4: for each size (k + 1) graph g formed by the merge of gi and gj do
5: if g is frequent in D and g /∈ Sk+1 then
6: insert g to Sk+1;
7: if sk+1 �= ∅ then
8: call AprioriGraph(D, minsup, Sk+1);
9: return;

FIGURE 5.14

AprioriGraph.
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FIGURE 5.15

FSG: Two substructure patterns and their potential candidates.

The main design complexity of Apriori-based substructure mining algorithms is the candidate gen-
eration step. The candidate generation in frequent itemset mining is straightforward. For example,
suppose we have two frequent itemsets of size-3: (abc) and (bcd). The frequent itemset candidate
of size-4 generated from them is simply (abcd), derived from a join. However, the candidate genera-
tion problem in frequent substructure mining is harder than that in frequent itemset mining, since there
are many ways to join two substructures, as shown below.

Apriori-based algorithms for frequent substructure mining include AGM, FSG, and a path-join
method. AGM shares similar characteristics with Apriori-based itemset mining. FSG and the path-
join method explore edges and connections in an Apriori-based fashion. Since edge is a bigger unit
than vertex and it enforces more constraints than single vertex, the edge-based candidate generation
method FSG leads to improved efficiency over the vertex-based candidate generation method, AGM.
We examine the FSG method here.

The FSG algorithm adopts an edge-based candidate generation strategy that increases the substruc-
ture size by one edge in each call of AprioriGraph. Two size-k patterns are merged if and only if they
share the same subgraph having k − 1 edges, which is called the core. Here, graph size is taken to be
the number of edges in the graph. The newly formed candidate includes the core and the additional two
edges from the size-k patterns. Fig. 5.15 shows potential candidates formed by two structure patterns.
Each candidate has one more edge than these two patterns, but this additional edge can be associated
with different vertices. This example illustrates the complexity of joining two structures to form a large
pattern candidate.

In a third Apriori-based approach, an edge-disjoint path method was proposed, where graphs are
classified by the number of disjoint paths they have, and two paths are edge-disjoint if they do not share
any common edge. A substructure pattern with k + 1 disjoint paths is generated by joining substructures
with k disjoint paths.

Apriori-based algorithms have considerable overhead when joining two size-k frequent substruc-
tures to generate size-(k + 1) graph candidates. The overhead occurs when (1) joining two size-k
frequent graphs (or other structures like paths) to generate size-(k + 1) graph candidates, and (2)
checking the frequency of these candidates separately. These two operations constitute the performance
bottlenecks of the Apriori-like algorithms. In order to avoid such overhead, non–Apriori-based algo-
rithms have been developed, most of which adopt the pattern-growth methodology. This methodology
tries to extend patterns directly from a single pattern. In the following, we introduce the pattern-growth
approach for frequent subgraph mining.
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Pattern-growth approach
The Apriori-based approach has to use the breadth-first search (BFS) strategy because of its level-wise
candidate generation. In order to determine whether a size-(k + 1) graph is frequent, it must check
all of its corresponding size-k subgraphs to obtain an upper bound of its frequency. Thus before min-
ing any size-(k + 1) subgraph, the Apriori-like approach usually has to complete the mining of size-k
subgraphs. Therefore, BFS is necessary in the Apriori-like approach. In contrast, the pattern-growth
approach is more flexible regarding its search method. It can use breadth-first search and depth-first
search (DFS), the latter of which consumes less memory.

A graph g can be extended by adding a new edge e. The newly formed graph is denoted by g �x e.
Edge e may or may not introduce a new vertex to g. If e introduces a new vertex, we denote the
new graph by g �xf e, otherwise, g �xb e, where f or b indicates that the extension is in a forward or
backward direction.

Fig. 5.16 illustrates a general framework for pattern growth-based frequent substructure mining.
We refer to the algorithm as PatternGrowthGraph. For each discovered graph g, it performs extensions
recursively until all the frequent graphs with g embedded are discovered. The recursion stops once no
frequent graph can be generated.

PatternGrowthGraph is simple, but not efficient. The bottleneck is at the inefficiency of extending a
graph. The same graph can be discovered many times. For example, there may exist n different (n − 1)-
edge graphs that can be extended to the same n-edge graph. The repeated discovery of the same graph
is computationally inefficient. We call a graph that is discovered at the second time a duplicate graph.
Although line 1 of PatternGrowthGraph gets rid of duplicate graphs, the generation and detection of
duplicate graphs may increase the workload. In order to reduce the generation of duplicate graphs, each
frequent graph should be extended as conservatively as possible. This principle leads to the design of
several new algorithms. A typical example is the gSpan algorithm as described below.

The gSpan algorithm is designed to reduce the generation of duplicate graphs. It does not need to
search previously discovered frequent graphs for duplicate detection. It does not extend any duplicate
graph, yet still guarantees the discovery of the complete set of frequent graphs.

Let’s see how the gSpan algorithm works. To traverse graphs, it adopts depth-first search. Initially,
a starting vertex is randomly chosen and the vertices in a graph are marked so that we can tell which
vertices have been visited. The visited vertex set is expanded repeatedly until a full depth-first search
(DFS) tree is built. One graph may have various DFS trees depending on how the depth-first search is

Algorithm: PatternGrowthGraph(g, D, minsup, S)

Input: A frequent graph g, a graph data set D, and the support threshold minsup.
Output: The frequent graph set S.

1: if g ∈ S then return;
2: else insert g to S;
3: scan D once, find all the edges e such that g can be extended to g �x e ;
4: for each frequent g �x e do
5: Call PatternGrowthGraph(g �x e, D, minsup, S);
6: return;

FIGURE 5.16

PatternGrowthGraph.
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FIGURE 5.17

DFS subscripting.

performed, that is, the vertex visiting order. The darkened edges in Figs. 5.17(b) to 5.17(d) show three
DFS trees for the same graph of Fig. 5.17(a). The vertex labels are x, y, and z; the edge labels are a and
b. Alphabetic order is taken as the default order in the labels. When building a DFS tree, the visiting
sequence of vertices forms a linear order. We use subscripts to record this order, where i < j means vi

is visited before vj when the depth-first search is performed. A graph G subscripted with a DFS tree T

is written as GT . T is called a DFS subscripting of G. Given a DFS tree T , we call the starting vertex
in T , v0, the root, and the last visited vertex, vn, the right-most vertex. The straight path from v0 to vn is
called the right-most path. In Figs. 5.17(b) to 5.17(d), three different subscriptings are generated based
on the corresponding DFS trees. The right-most path is (v0, v1, v3) in Figs. 5.17(b) and 5.17(c), and
(v0, v1, v2, v3) in Fig. 5.17(d).

PatternGrowth extends a frequent graph in every possible position, which may generate a large
number of duplicate graphs. The gSpan algorithm introduces a more sophisticated extension method.
The new method restricts the extension as follows: Given a graph G and a DFS tree T in G, a new
edge e can be added between the right-most vertex and other vertices on the right-most path (backward
extension); or it can introduce a new vertex and connect to vertices on the right-most path (forward
extension). Since both kinds of extensions take place on the right-most path, we call them right-most
extension, denoted by G �r e (for brevity, T is omitted here).

Example 5.22. Backward extension and forward extension. If we want to extend the graph in
Fig. 5.17(b), the backward extension candidates can be (v3, v0). The forward extension candidates
can be edges extending from v3, v1, or v0 with a new vertex introduced.

Figs. 5.18(b) to 5.18(g) show all the potential right-most extensions of Fig. 5.18(a). The darkened
vertices show the rightmost path. Among these, Figs. 5.18(b) to 5.18(d) grow from the rightmost vertex
while Figs. 5.18(e) to 5.18(g) grow from other vertices on the rightmost path. Figs. 5.18(b.0) to 5.18(b.4)
are children of Fig. 5.18(b), and Figs. 5.18(f.0) to 5.18(f.3) are children of Fig. 5.18(f). In summary,
backward extension only takes place on the rightmost vertex while forward extension introduces a new
edge from vertices on the rightmost path.

Since many DFS trees/subscriptings may exist for the same graph, we choose one of them as the
base subscripting and only conduct right-most extension on that DFS tree/subscripting. Otherwise,
right-most extension cannot reduce the generation of duplicate graphs because we would have to extend
the same graph for every DFS subscripting.

We transform each subscripted graph to an edge sequence, called a DFS code, so that we can build
an order among these sequences. The goal is to select the subscripting that generates the minimum
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FIGURE 5.18

Right-most extension.

Table 5.6 DFS code for Fig. 5.17(b), 5.17(c), and
5.17(d).

edge γ0 γ1 γ2

e0 (0,1,X,a,X) (0,1,X,a,X) (0,1, Y, b,X)

e1 (1,2,X,a,Z) (1,2,X,b,Y ) (1,2,X,a,X)

e2 (2,0,Z, b,X) (1,3,X,a,Z) (2,3,X,b,Z)

e3 (1,3,X,b,Y ) (3,0,Z, b,X) (3,1,Z, a,X)

sequence as its base subscripting. There are two kinds of orders in this transformation process: (1) edge
order, which maps edges in a subscripted graph into a sequence; and (2) sequence order, which builds
an order among edge sequences, that is, graphs.

First, we introduce edge order. Intuitively, DFS tree defines the discovery order of forward edges.
For the graph shown in Fig. 5.17(b), the forward edges are visited in the order of (0,1), (1,2), (1,3).
Now we put backward edges into the order as follows. Given a vertex v, all of its backward edges
should appear just before its forward edges. If v does not have any forward edge, we put its backward
edges after the forward edge where v is the second vertex. For vertex v2 in Fig. 5.17(b), its backward
edge (2,0) should appear after (1,2) since v2 does not have any forward edge. Among the backward
edges from the same vertex, we can enforce an order. Assume that a vertex vi has two backward edges,
(i, j1) and (i, j2). If j1 < j2, then edge (i, j1) will appear before edge (i, j2). So far, we have completed
the ordering of the edges in a graph. Based on this order, a graph can be transformed into an edge
sequence. A complete sequence for Fig. 5.17(b) is (0,1), (1,2), (2,0), (1,3).

Based on this ordering, three different DFS codes, γ0, γ1, and γ2, generated by DFS subscriptings
in Figs. 5.17(b), 5.17(c), and 5.17(d), respectively, are shown in Table 5.6. An edge is represented by a
5-tuple, (i, j, li , l(i,j), lj ), li and lj are the labels of vi and vj , respectively, and l(i,j) is the label of the
edge connecting them.

Through DFS coding, a one-to-one mapping is built between a subscripted graph and a DFS code
(a one-to-many mapping between a graph and DFS codes). When the context is clear, we treat a sub-
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FIGURE 5.19

Lexicographic search tree.

scripted graph and its DFS code as the same. All the notations on subscripted graphs can also be applied
to DFS codes. The graph represented by a DFS code α is written Gα .

Second, we define an order among edge sequences. Since one graph may have several DFS codes,
we want to build an order among these codes and select one code to represent the graph. Since we
are dealing with labeled graphs, the label information should be considered as one of the ordering
factors. The labels of vertices and edges are used to break the tie when two edges have the exactly
same subscript, but different labels. Let the edge order relation ≺T take the first priority, the vertex
label li take the second priority, the edge label l(i,j) take the third, and the vertex label lj take the
fourth to determine the order of two edges. For example, the first edge of the three DFS codes in
Table 5.6 is (0,1,X,a,X), (0,1,X,a,X), and (0,1, Y, b,X), respectively. All of them share the same
subscript (0,1). Therefore relation ≺T cannot tell the difference among them. However, using label
information, following the order of first vertex label, edge label, and second vertex label, we have
(0,1,X,a,X) < (0,1, Y, b,X). The ordering based on the above rules is called DFS Lexicographic
Order. According to this ordering, we have γ0 < γ1 < γ2 for the DFS codes listed in Table 5.6.

Based on the DFS lexicographic ordering, the minimum DFS code of a given graph G, written as
dfs(G), is the minimal one among all the DFS codes. For example, code γ0 in Table 5.6 is the minimum
DFS code of the graph in Fig. 5.17(a). The subscripting that generates the minimum DFS code is called
the base subscripting.

We have the following important relationship between the minimum DFS code and the isomorphism
of the two graphs: Given two graphs G and G′, G is isomorphic to G′ if and only if dfs(G) = dfs(G′).
Based on this property, what we need to do for mining frequent subgraphs is to perform only the right-
most extensions on the minimum DFS codes since such an extension will guarantee the completeness
of mining results.

Fig. 5.19 shows how to arrange all DFS codes in a search tree through right-most extensions. The
root is an empty code. Each node is a DFS code encoding a graph. Each edge represents a right-most
extension from a (k − 1)-length DFS code to a k-length DFS code. The tree itself is ordered: left
siblings are smaller than right siblings in the sense of DFS lexicographic order. Since any graph has at
least one DFS code, the search tree can enumerate all possible subgraphs in a graph data set. However,
one graph may have several DFS codes, minimum and nonminimum. The search of nonminimum DFS
codes does not produce a useful result. “Is it necessary to perform right-most extension on nonminimum
DFS codes?” The answer is “no.” If codes s and s′ in Fig. 5.19 encode the same graph, the search space
under s′ can be safely pruned.
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Algorithm: gSpan(s, D, minsup, S)

Input: A DFS code s, a graph data set D, and min_support.
Output: The frequent graph set S.

1: if s �= df s(s), then
2: return;
3: insert s into S;
4: set C to ∅;
5: scan D once, find all the edges e such that s can be right-most extended to s �r e;

insert s �r e into C and count its frequency;
6: sort C in DFS lexicographic order;
7: for each frequent s �r e in C do
8: Call gSpan(s �r e, D, minsup, S);
9: return;

FIGURE 5.20

gSpan: A pattern-growth algorithm for frequent substructure mining.

The details of gSpan are depicted in Fig. 5.20. gSpan is called recursively to extend graph patterns
so that their frequent descendants are found until their support is lower than minsup or its code is not
minimum any more. The difference between gSpan and PatternGrowth is at the right-most extension
and extension termination of nonminimum DFS codes (lines 1–2). We replace the existence judgment
in lines 1–2 of PatternGrowth with the inequation s �= df s(s). Actually, s �= df s(s) is more efficient to
calculate. Line 5 requires exhaustive enumeration of s in D in order to count the frequency of all the
possible right-most extensions of s.

The algorithm of Fig. 5.20 implements a depth-first search version of gSpan. Actually, breadth-first
search works too: for each newly discovered frequent subgraph in line 8, instead of directly calling
gSpan, we insert it into a global first-in-first-out queue Q, which records all subgraphs that have not
been extended. We then “gSpan” each subgraph in Q one by one. The performance of a breadth-
first search version of gSpan is very close to that of the depth-first search although the latter usually
consumes less memory.

5.5.2 Mining variant and constrained substructure patterns
The frequent subgraph mining discussed in the previous section handles only one special kind of graph:
labeled, undirected, connected simple graphs without any specific constraints. That is, we assume that
the database to be mined contains a set of graphs each consisting of a set of labeled vertices and labeled
but undirected edges, with no other constraints. However, many applications or users may need to
enforce various kinds of constraints on the patterns to be mined or seek variant substructure patterns.
For example, we may like to mine patterns, each of which contains certain specific vertices/edges,
or where the total number of vertices/edges is within a specified range. Or what if we seek patterns
where the average density of the graph patterns is above a threshold? Although it is possible to develop
customized algorithms for each such case, there are too many variant cases to consider. Instead, a
general framework is needed—one that can organize variants and constraints and help develop efficient
mining methods systematically. In this section, we study several variants and constrained substructure
patterns and look at how they can be mined.
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Mining closed frequent substructures
The first important variation of a frequent substructure is the closed frequent substructure. Take
mining frequent subgraph as an example. Similar to mining frequent itemsets and mining sequential
patterns, mining graph patterns may generate an explosive number of patterns. According to the Apri-
ori property, all the subgraphs of a frequent graph are frequent. Thus a large graph pattern may generate
an exponential number of frequent subgraphs. For example, among 423 confirmed active chemical com-
pounds in an AIDS antiviral screen data set, there are nearly 1,000,000 frequent graph patterns whose
support is at least 5%. This renders the further analysis on frequent graphs nearly impossible.

One way to alleviate this problem is to mine only frequent closed graphs, where a frequent graph
G is closed if and only if there does not exist a proper supergraph G′ that has the same support as
G. Alternatively, we can mine maximal subgraph patterns where a frequent pattern G is maximal if
and only if there does not exist a frequent superpattern of G. A set of closed subgraph patterns has the
same expressive power as the full set of subgraph patterns under the same minimum support threshold
because the latter can be generated by the derived set of closed graph patterns. On the other hand, the
maximal pattern set is a subset of the closed pattern set. It is usually more compact than the closed
pattern set. However, we cannot use it to reconstruct the entire set of frequent patterns—the support
information of a pattern is lost if it is a proper subpattern of a maximal pattern, yet carries a different
support.

Example 5.23. Maximal frequent graph. The two graphs in Fig. 5.13 are closed frequent graphs but
only the first graph is a maximal frequent graph. The second graph is not maximal because it has a
frequent supergraph.

Mining closed graphs leads to a complete but more compact representation. For example, for the
AIDS antiviral data set mentioned above, among the one million frequent graphs, only about 2000 are
closed frequent graphs. If further analysis, such as classification or clustering, is performed on closed
frequent graphs instead of frequent graphs, it will achieve similar accuracy with less redundancy and
higher efficiency.

An efficient method, called CloseGraph, was developed for mining closed frequent graphs by exten-
sion of the gSpan algorithm. The key for efficient mining of closed frequent subgraphs is to figure out at
what condition that the further growth of a frequent subgraph g should be pruned when its e-expanded
subgraph g′ has the same support as g. Experimental study has shown that CloseGraph often generates
far fewer graph patterns and runs more efficiently than gSpan, which mines the full subgraph pattern
set.

Extension of pattern-growth approach: mining alternative substructure patterns
A typical pattern-growth graph mining algorithm, such as gSpan or CloseGraph, mines labeled, con-
nected, undirected frequent or closed subgraph patterns. Such a graph mining framework can be
extended easily for mining alternative substructure patterns. Here we discuss a few such alternatives.

First, the method can be extended for mining unlabeled or partially labeled graphs. Each vertex
and each edge in our previously discussed graphs contain labels. Alternatively, if none of the vertices
and edges in a graph are labeled, the graph is unlabeled. A graph is partially labeled if only some
of the edges and/or vertices are labeled. To handle such cases, we can build a label set that contains
the original label set and a new empty label, φ. Label φ is assigned to vertices and edges that do not
have labels. Notice that label φ may match with any label or with φ only, depending on the application
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semantics. With this transformation, gSpan (and CloseGraph) can directly mine unlabeled or partially
labeled graphs.

Second, we examine whether gSpan can be extended to mining nonsimple graphs. A nonsimple
graph may have a self-loop (i.e., an edge joins a vertex to itself) and multiple edges (i.e., several edges
connecting two of the same vertices). In gSpan, we always first grow backward edges and then forward
edges. In order to accommodate self-loops, the growing order should be changed to backward edges,
self-loops, and forward edges. If we allow sharing of the same vertices in two neighboring edges in a
DFS code, the definition of DFS lexicographic order can handle multiple edges smoothly. Thus gSpan
can mine nonsimple graphs efficiently too.

Third, we see how gSpan can be extended to handle mining directed graphs. In a directed graph,
each edge of the graph has a defined direction. If we use a 5-tuple, (i, j, li , l(i,j), lj ), to represent an
undirected edge, then for directed edges, a new state is introduced to form a 6-tuple, (i, j, d, li , l(i,j), lj ),
where d represents the direction of an edge. Let d = +1 be the direction from i (vi) to j (vj ), whereas
d = −1 be that from j (vj ) to i (vi). Notice that the sign of d is not related with the forwardness or
backwardness of an edge. When extending a graph with one more edge, this edge may have two choices
of d , which only introduces a new state in the growing procedure and need not change the framework
of gSpan.

Fourth, the method can also be extended to mining disconnected graphs. There are two cases
to be considered: (1) the graphs in the data set may be disconnected, and (2) the graph patterns may
be disconnected. For the first case, we can transform the original data set by adding a virtual vertex
to connect the disconnected graphs in each graph. We then apply gSpan on the new graph data set.
For the second case, we redefine the DFS code. A disconnected graph pattern can be viewed as a
set of connected graphs, r = {g0, g1, . . . , gm}, where gi is a connected graph, 0 ≤ i ≤ m. Since each
graph can be mapped to a minimum DFS code, a disconnected graph r can be translated into a code,
γ = (s0, s1, . . . , sm), where si is the minimum DFS code of gi . The order of gi in r is irrelevant. Thus,
we enforce an order in {si} such that s0 ≤ s1 ≤ . . . ≤ sm. γ can be extended by either adding one-edge
sm+1 (sm ≤ sm+1) or by extending sm, . . . , and s0. When checking the frequency of γ in the graph data
set, make sure that g0, g1, . . ., and gm are disconnected with each other.

Finally, if we view a tree as a degenerated graph, it is straightforward to extend the method to mining
frequent subtrees. In comparison with a general graph, a tree can be considered as a degenerated
direct graph that does not contain any edges that can go back to its parent or ancestor nodes. Thus if
we consider that our traversal always starts at the root (since the tree does not contain any backward
edges), gSpan is ready to mine tree structures. Based on the mining efficiency of the pattern-growth-
based approach, it is expected that gSpan can achieve good performance in tree-structure mining.

Mining substructure patterns with user-specified constraints
Various kinds of constraints or specific requirements can be associated with a user’s mining request.
Rather than developing many case-specific substructure mining algorithms, it is more appropriate to set
up a general framework to facilitate such mining.

Constraint-based mining of frequent substructures. Constraint-based mining of frequent substruc-
tures can be developed systematically, similar to the constraint-based mining of frequent patterns and
sequential patterns introduced previously. Take graph mining as an example. With the constraint-
based frequent pattern mining framework, graph constraints can also be classified into a few cate-
gories, including pattern antimonotonic, pattern monotonic, data antimonotonic, and succinct. Efficient
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constraint-based mining methods can be developed in a similar way by extending efficient graph-pattern
mining algorithms, such as gSpan and CloseGraph.

Example 5.24. Constraint-based substructure mining. Let’s examine a few commonly encountered
classes of constraints to see how the constraint-pushing technique can be integrated into the pattern-
growth mining framework.

1. Element, set, or subgraph containment constraint. Suppose a user requires that the mined pattern
contains a particular set of subgraphs. This is a succinct constraint that can be pushed deep into
the beginning of the mining process. That is, we can take the given set of subgraphs as a query,
perform selection first using the constraint, and then mine on the selected data set by growing (i.e.,
extending) the patterns from such given set of subgraphs. A similar strategy can be developed if we
require that the mined graph pattern must contain a particular set of edges or vertices.

2. Geometric constraint. A geometric constraint can be that the angle between each pair of con-
nected edges must be within a range, written as “CG = min_angle ≤ angle(e1, e2, v, v1, v2) ≤
max_angle,” where two edges e1 and e2 are connected at vertex v with the two vertices at the
other ends as v1 and v2, respectively. CG is a pattern antimonotonic constraint since if one angle
in a graph formed by two edges does not satisfy CG, further growth on the graph will never satisfy
CG. Thus CG can be pushed deep into the edge growth process and reject any growth that does not
satisfy CG. CG is also a data antimonotonic constraint: for any data graph gi , with respect to a
candidate subgraph gc, if there is no component in the remaining gi containing edges satisfying CG,
gi should not be further considered for gc since it will not support gc’s further expansion.

3. Value-sum constraint. One example of such a constraint can be that the sum of (positive) weights
on the edges Sume be within a range from low to high. This constraint can be split into two con-
straints, Sume ≥ low and Sume ≤ high. The former is a pattern monotonic constraint, since once
it is satisfied, further “growth” on the graph by adding more edges will always satisfy the constraint.
The latter is a pattern antimonotonic constraint, because once the condition it is not satisfied,
further growth of Sume will never satisfy it. Both constraints are data antimonotonic in the sense
that any data graph that cannot satisfy these constraints during the pattern growth process should be
pruned. The constraint pushing strategy can then be worked out easily.

Notice that a graph-mining query may contain multiple constraints. For example, we may want
to mine graph patterns satisfying constraints on both the geometry and the range of the sum of edge
weights. In such cases, we should try to push multiple constraints simultaneously, exploring a method
similar to that developed for frequent itemset mining. For the multiple constraints that are difficult to
push in simultaneously, customized constraint-based mining algorithms can be developed accordingly.

Mining approximate frequent substructures
An alternative way to reduce the number of patterns to be generated is to mine approximate frequent
substructures, which allow slight structural variations. With this technique, we can represent several
slightly different frequent substructures using one approximate substructure.

The principle of minimum description length (Chapter 6) is adopted in a substructure discovery
system called SUBDUE, which mines approximate frequent substructures. It looks for a substructure
pattern that can best compress a graph set based on the Minimum Description Length (MDL) principle,
which essentially states that the simplest representation is preferred. SUBDUE adopts a constrained
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beam search method. It grows a single vertex incrementally by expanding a node in it. At each ex-
pansion, it searches for the best total description length: the description length of the pattern and the
description length of the graph set with all the instances of the pattern condensed into single nodes.
SUBDUE performs approximate matching to allow slight variations of substructures, thus supporting
the discovery of approximate substructures.

There should be many different ways to mine approximate substructure patterns. Some may lead
to a better representation of the entire set of substructure patterns, whereas others may lead to more
efficient mining techniques. More research is needed in this direction.

Mining coherent substructures
A frequent substructure G is a coherent subgraph if the mutual information between G and each of its
own subgraphs is above some threshold. The number of coherent substructures is significantly smaller
than that of frequent substructures. Thus mining coherent substructures can efficiently prune redundant
patterns—that is, patterns that are similar to each other and have the similar support. A promising
method was developed for mining such substructures. Its experiments demonstrate that in mining spatial
motifs from protein structure graphs, the discovered coherent substructures are usually statistically
significant. This indicates that coherent substructure mining selects a small subset of features that have
high distinguishing power between protein classes.

5.6 Pattern mining: application examples
Besides mining frequent patterns in shopping basket analysis, pattern mining captures intrinsic cooc-
currence properties of multiple components in massive data sets and plays an important role in various
applications. Here we introduce two such cases: phrase mining in massive text data and software bug
analysis.

5.6.1 Phrase mining in massive text data
Text data are ubiquitous and plays an essential role at conveying semantics in human communications.
However, text data are unstructured and high dimensional. Thus transforming unstructured text into
structured units will substantially reduce semantic ambiguity and enhance the power and efficiency at
manipulating such data. One such structured unit is semantically meaningful phrases. Although word
has been considered as a basic unit at conveying semantics in human languages, a single word (which
is often called “unigram”) is often ambiguous at expressing semantic meanings. For example, a single
word “united” could form United Airline, United States, United Kingdom, and so on when combining
with other words, and the word itself may not be an independent semantic unit. However, a phrase
like “United States” or “United Airline” will not lead to any ambiguity. Clearly, phrase represents a
natural, meaningful, unambiguous semantic unit. Phrase mining, that is, extracting meaningful phrases
from massive text, may transform text data from word granularity to phrase granularity and enhance
the power and efficiency at manipulating unstructured data.

Phrase mining plays a key role in named entity recognition, a basic natural language processing task.
Named entity recognition is often modeled as a sequence labeling problem. To solve such a problem,
one can first label the words in a sentence by marking a word with “B,” as the beginning of a noun
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phrase, the next word could be “I,” representing it is still in the same phrase, or “O,” representing it is
out of the phrase, and some even uses “S” to represent the singleton of a phrase (i.e., unigram entity).
Such kind of annotation may require human to annotate hundreds of documents as training data and then
train a supervised model based on part-of-speech features. However, such kind of training can be costly
since it requires human to do a lot of tedious labeling work. Further, this kind of human annotation
process is not scalable to a new language, a new domain (e.g., science and engineering), or an emerging
application, such as analyzing social media data. Obviously, an automated or semiautomated process
could be more desirable for phrase mining.

A simple way to automate the phrase finding process is to take frequent recurring word sequences
in text, such as frequent bigrams and tri-grams as phrases. Unfortunately, many frequent bigrams or
tri-grams do not form meaningful phrases. For example, “study of” could be a frequent bigram but it
is not a meaningful phrase, and the bigram “this paper,” though frequent, may not carry much useful
information. Moreover, some highly frequent bigrams or tri-grams may not even occur “independently.”
For example, “vector machine” could be a frequently occurring bigram in a machine learning literature
corpus but may not exist independently since “vector machine” may only exist as a subsequence of a
genuine frequent phrase “support vector machine.”

How to judge the quality of a phrase?
This leads to an important problem in phrase mining: how to judge a phrase is in high quality with
respect to a given corpus. A phrase is a sequence of words that appear contiguously in the text, forming
a complete semantic unit in certain context of the given documents. The raw frequency of a phrase is the
total count of its occurrences. There is no universally accepted definition of phrase quality. However,
it is useful to quantify phrase quality as the probability of a word sequence being a complete semantic
unit, meeting the following criteria:

• Popularity: A quality phrase should occur with sufficient frequency in the given collection of doc-
uments.

• Concordance: The collocation of tokens in quality phrases should occur with significantly higher
probability than what is expected due to chance. For example, “strong tea” (but not “powerful tea”)
could likely be a phrase formed by two collocated words.

• Informativeness: A phrase is informative if it is indicative of a specific topic or concept. “This
paper” is a popular and concordant phrase but not informative in a research paper corpus.

• Completeness: A phrase is complete if it can be interpreted as a whole semantic unit in certain
context. For example, “vector machine” does not appear as a complete phrase in a machine learning
corpus since almost every occurrence of “vector machine” is just a subcomponent of “support vector
machine.” Note that a phrase and its subphrase can both be valid in appropriate context. For example,
“relational database system,” “relational database,” and “database system” can all be valid in certain
context.

Phrasal segmentation and computing phrase quality
Phrase quality can be defined to be the possibility of a multiword sequence being a coherent semantic
unit, according to the above four criteria. Given a phrase v, its phrase quality can be defined as: Q(v) =
p(�v�|v) ∈ [0,1] where �v� refers to the event that the words in v compose a phrase. For a single
word w, we define Q(w) = 1. For phrases, Q is to be learned from data. For example, a good quality
estimator is able to return Q(relational database system) ≈ 1 and Q(vector machine) ≈ 0.
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Concordance computation. Concordance contributes significantly to the evaluate the phrase quality
since tokens in high quality phrases should cooccur (also called “colocation”) with significantly higher
probability than what is expected due to chance. There are multiple measures that can be used to eval-
uate how a sequence of words that cooccur more frequently than expected in a corpus.

To make phrases with different lengths comparable, we partition each phrase candidate into two
disjoint parts in all possible ways and derive effective features measuring their concordance.

Suppose for each word or phrase u ∈ U , we have its raw frequency f [u]. Its probability p(u) is
defined as

p(u) = f [u]∑
u′∈U f [u′] .

Given a phrase v ∈P , we split it into two most-likely subunits 〈ul, ur 〉 such that pointwise mutual infor-
mation is minimized. Pointwise mutual information quantifies the discrepancy between the probability
of their true collocation and the presumed collocation under independence assumption. Mathematically,

〈ul, ur 〉 = arg min
ul⊕ur=v

log
p(v)

p(ul)p(ur)
.

With 〈ul, ur 〉, we can directly use the pointwise mutual information as one of the concordance features.

PMI (ul, ur) = log
p(v)

p(ul)p(ur)
.

Another feature is also from information theory, called pointwise Kullback-Leibler divergence:

PKL(v‖〈ul, ur 〉) = p(v) log
p(v)

p(ul)p(ur)
.

The additional p(v) is multiplied with pointwise mutual information, leading to less bias toward rare-
occurred phrases.

Both features are supposed to be positively correlated with concordance. Concordance can also be
evaluated using other statistical measures, such as t-test, z-test, chi-squared test, and likelihood ratio.

Many of these measures can be used to guide an agglomerative phrasal segmentation process.

Phrasal segmentation. A phrasal segmentation corresponds to a partition of a word sequence into
multiple subsequences, such that every subsequence corresponds to either a single word or a phrase.
Phrasal segmentation provides the necessary granularity we need to extract quality phrases. Consider
the raw frequency of a phrase is the total count of its occurrences in the original corpus. The total count
for a phrase to appear in the segmented corpus is called rectified frequency.

A sequence’s segmentation may not be unique. A sequence could be ambiguous and may have dif-
ferent interpretations based on different ways of segmentation. For example, “�support vector machine�
learning” and “�support vector� �machine learning�” may both be valid partitions, with different
meanings. Nevertheless, in most cases, it does not require perfect segmentation, no matter if such a
segmentation exists, to extract quality phrases. In a large document collection, the popularly adopted
phrases appear many times in a variety of context. Even with a few mistakes or debatable partitions,
a reasonably high quality segmentation would retain sufficient support (i.e., rectified frequency) for
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these quality phrases. On the other hand, a quality segmentation will unlikely generate partitions like
“support �vector machine�.” Thus, “vector machine,” even with high raw frequency, is a false phrase
since it will have very low rectified frequency.

Informativeness computation. Some candidates are unlikely to be informative because they are func-
tional or stopwords. The following stopword-based features can be used to compute informativeness:

• Whether stopwords are located at the beginning or the end of the phrase candidate, which requires
a dictionary of stopwords. Phrases that begin or end with stopwords, such as “I am,” are often
functional rather than informative.

A more generic feature is to measure the informativeness based on corpus statistics.

• Average inverse document frequency (IDF) computed over words, where IDF for a word w is com-
puted as

IDF(w) = log
|C|

|{d ∈ [D] : w ∈ Cd}| ,
where the IDF score of a word or phrase w is the logarithm of the total number of documents in the
corpus (i.e., |C|) divided by the number of documents where w appears (i.e., |{d ∈ [D] : w ∈ Cd}|). It
is a traditional information retrieval measure of how much information a word provides in order to
retrieve a small subset of documents from a corpus. In general, quality phrases are expected to have not
too small average IDF.

In addition to word-based features, punctuation is frequently used in text to aid interpretations of
specific concept or idea. This information is helpful for our task. Specifically, we adopt the following
feature:

• Punctuation: probabilities of a phrase in quotes, brackets or capitalized.

Higher probability usually indicates that a phrase is more likely to be informative.

Phrase mining methods
With such quality measures as guidance, phrase mining can adopt an unsupervised, a weakly super-
vised, or a distantly supervised approach.

Unsupervised phrase mining: ToPMine. ToPMine finds quality phrases based on statistics in the
corpus without using any human supervision or annotation. It first mines frequent phrases using a
contiguous sequential pattern mining, and then use these phrases to segment each document through
an agglomerative phrase construction method. For the frequent phrase mining process, it uses a typical
contiguous sequential pattern mining algorithm such as PrefixSpan with the gap between the candidate
words set to zero. Then it simply collects aggregate counts for all contiguous words in a corpus that
satisfy a certain minimum support threshold.

For the agglomerative phrase construction process, it adopts a bottom-up phrase/word merging pro-
cess. At each iteration, it makes locally optimal decisions in merging single- and multiword phrases as
guided by a statistical significance score (i.e., merging two contiguous phrases such that their merging
is of highest significance). The following iteration then considers the newly merged phrase as a single
unit and assesses the significance of merging two phrases. The algorithm terminates when the next
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FIGURE 5.21

Five topics from a 50-topic run of ToPMine on a full DBLP abstracts data set. Overall we see coherent topics and
high-quality topical phrases, which can be interpreted as “search/optimization,” “NLP,” “machine learning,” “pro-
gramming languages,” and “data mining.”

merging with the highest significance does not meet a predetermined significance threshold or when all
the terms have been merged into a single phrase. While the frequent phrase mining algorithm satisfies
the frequency requirement, the phrase construction algorithm satisfies the collocation and completeness
criterion.

By integrating such a phrase mining process with a refined LDA (Latent Dirichlet Allocation)-based
topic modeling process, ToPMine generates topic clusters consisting of high quality phrases, without
human supervision, as shown in Fig. 5.21.

Weakly supervised phrase mining: SegPhrase. It is possible to mine quality phrases without any
human supervision; however, it is often more desirable to assist phrase mining with a small set of
human-provided labeled data due to various ways to form phrases in diverse domains.

Here we introduce a weakly supervised phrase mining method, called SegPhrase, which takes a
corpus with a small set L of labeled quality phrases and L̄ of inferior ones as the input and generates
a ranked list of phrases with decreasing quality, together with a segmented corpus, as output. Taking
a small set of labeled data, one can work with various classifiers that can be effectively trained with a
small set of labeled data and output a probabilistic score between 0 and 1. For instance, we can adopt the
random forest algorithm, which is a typical ensemble-based classification algorithm to be introduced
in Chapter 7, and is effective to train a quality classifier with a small number of positive (i.e., quality
phrases) and negative labels (i.e., inferior phrases). The ratio of positive predictions among all decision
trees can be interpreted as a phrase’s quality estimation. The experiments show that 200–300 labels are
enough to train a satisfactory classifier. Classification results will be fed into a phrasal segmentation
process to compute rectified frequency of each phrase. Combined with phrase quality estimation, bad
phrases with high raw frequency get removed as their rectified frequencies approach zero. Furthermore,
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FIGURE 5.22

Interesting phrases mined from papers published in SIGMOD and SIGKDD conferences.

rectified phrase frequencies can be fed back to generate additional features and improve the phrase
quality estimation.

Such a phrase quality estimation and phrasal segmentation form a mutually enhancement process.
A better phrase quality estimator can guide a better segmentation, and a better segmentation will further
improve phrase quality estimation. As a result, misclassified phrase candidates can get mostly corrected
after retraining the classifier. Therefore, such an integrated, mutual enhancement framework is expected
to leverage the quality on both quality estimation and phrasal segmentation and address all the four
phrase quality requirements organically. The experiments show that the benefits brought by retraining
the classifier with rectified frequency just need one round iteration, leaving performance curves over
the next several iterations similar.

With only a small set of human crafted training data, SegPhrase has shown high performance on
generating a large set of quality phrases from different kinds of corpora, in multiple natural languages.
A performance study on the quality of phrases generated by different methods also show that Seg-
Phrase outperforms many other phrase mining or chucking methods. Fig. 5.22 shows a set of interesting
phrases mined from a large set of papers published in SIGMOD and SIGKDD conferences, which obvi-
ously outperforms the set of phrases generated by a phrase chucking methods adopted in JATE (https://
code.google.com/p/jatetoolkit).

Distantly supervised phrase mining: AutoPhrase. AutoPhrase is an automated phrase mining frame-
work, which further avoids additional manual labeling effort and enhances the performance with two
techniques: (1) robust positive-only distant training and (2) POS-guided phrasal segmentation.

Many high-quality phrases are freely available in general knowledge bases, and they can be easily
obtained to a scale that is much larger than that produced by human experts. Domain-specific corpora
usually contain quality phrases encoded either in general knowledge bases or in domain-specific knowl-
edge bases (e.g., biomedical knowledge bases). We can leverage the existing high-quality phrases from

https://code.google.com/p/jatetoolkit
https://code.google.com/p/jatetoolkit
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FIGURE 5.23

Autophrase: automated phrase mining by distant supervision.

general knowledge bases (e.g., Wikipedia and Freebase) or domain-specific ones as available “positive”
labels for distant training.

Knowledge bases, however, rarely, if ever, identify inferior phrases that fail to meet our criteria.
An important observation is that the number of phrase candidates, based on n-grams, is huge, and the
majority of them are actually of inferior quality (e.g., “Francisco opera and”). In practice, based on
the experiments, among millions of phrase candidates, usually, only about 10% are in good quality.
Therefore phrase candidates that are derived from the given corpus but that fail to match any high-
quality phrase derived from the given knowledge base are used to populate a large but noisy negative
pool. A framework for exploring knowledge-bases in distant supervision is outlined in Fig. 5.23.

Directly training a classifier based on the noisy label pools is not a wise choice: some phrases of
high quality from the given corpus may have been missed (i.e., inaccurately binned into the negative
pool) simply because they were not present in the knowledge base. Instead, a clever way is to utilize an
ensemble classifier that averages the results of T independently trained base classifiers. For each base
classifier, K phrase candidates are randomly drawn with replacement from the positive pool and the
negative pool respectively. This size-2K subset of the full set of all phrase candidates is called a per-
turbed training set, because the labels of some quality phrases are switched from positive to negative. In
order for the ensemble classifier to alleviate the effect of such noise, we need to use base classifiers with
the lowest possible training errors. An unpruned decision tree can be grown to the point of separating
all phrases to meet this requirement. The phrase quality score of a particular phrase is computed as the
proportion of all decision trees that predict that phrase is a quality phrase.

To further enhance the performance of phrase mining, a pretrained part-of-speech (POS) tagger can
be incorporated to take advantage of linguistic knowledge. The POS-guided phrasal segmentation lever-
ages the shallow syntactic information in POS tags to guide the phrasal segmentation model locating the
boundaries of phrases more accurately. POS tags may provide shallow, language-specific knowledge,
which may help boost phrase detection accuracy, especially at syntactic constituent boundaries for that
language. For example, suppose the whole POS tag sequence is “NN NN NN V B DT NN .” A good
POS sequence quality estimator might return Q(NN NN NN) ≈ 1 and Q(NN V B) ≈ 0 where NN

refers to singular or mass noun (e.g., database), V B means verb in the base form (e.g., is), and DT is
for determiner (e.g., the).

The extensive experiments show that AutoPhrase is domain-independent, outperforms other phrase
mining methods, and supports multiple languages (e.g., English, Spanish, and Chinese) effectively, with
minimal human effort.
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5.6.2 Mining copy and paste bugs in software programs
Pattern mining has found its interesting applications in software program analysis since the source
code of a program module consists of long sequences of programming statements and the execution
of a software program forms a sequence of executed codes. A large software program may consist of
many program modules and its executions may leave tremendous amount of execution traces. Manual
examination of such programming code or execution traces could be tedious and costly. Frequent and
sequential pattern mining could provide useful tools to uncover interesting regularities or irregularities.
Typical examples may include mining software bugs from source programs or execution sequences,
mining programming rules from program revision histories, mining software function precedence pro-
tocols by examination of frequent subsequences, and revealing neglected conditions by frequent itemset
or subgraph mining.

Here we examine one example which explores pattern discovery to find copy-pasting software pro-
gram bugs from source code. Because a lot of program fragments may share some similar functions,
code copy-pasting has become popular in software programming. A programmer may highlight a few
lines of program code at one location of a program, copy these lines, paste them to another location in
a program, and then perform appropriate modifications of the pasted programming code.

Copy-pasting is a common programming practice. Some statistic shows that about 12% of program
code in the Linux file system and about 19% in the X Window system are copy-pasted. However,
copy-pasted code is error-prone. Due to programmer’s carelessness, changes on pasted code may not
always be done consistently throughout. Such “forget-to-change” bugs can be common and lead to
buggy programs.

Interestingly, such copy-pasting bugs can be mined by transforming source code into a sequence
data set, on which sequential pattern mining can be conducted to identify likely mismatched identifier
names, and hence catch the “forget-to-change” bugs.

Let’s examine such an example. Fig. 5.24 shows a program module that contains a copy-pasting bug:
The first for-loop block is copied and pasted to form the second for-loop block, and every occurrence
of the pasted identifier “total” should be consistently changed to “taken.” Unfortunately, the last change
of “total” was missing, leading to a bug.

FIGURE 5.24

A program fragment that contains a copy-pasting bug.



5.6 Pattern mining: application examples 231

FIGURE 5.25

Transform a sequence of statements into a sequence of numbers.

The key to find such a programming bug is to identify the corresponding copy-pasting blocks and
examine whether the modifications of the statements in the pasted block were conducted consistently.
“How to automatically identify such copy-pasting blocks?” An interesting strategy is to map a long
source program into a long sequence of numbers, where each statement is represented by a number.
If a statement being copied and that being pasted can be mapped to the same number, the blocks of
statements being copied and pasted will show a similar sequence, and a sequential pattern mining
algorithm will be able to identify such copy-pasting blocks.

Let’s see how two statements, one copied and one pasted, can be mapped to the same number, by
a clever design. To map the statements “total[i].adr = list[i].addr;” and “taken[i].adr = list[i].addr;” to
the same number, we may design the following mapping rules: (1) the identifiers of the same type are
mapped to the same token, (2) different operators, constants, and key words are mapped to different
tokens, and (3) a statement consisting of the same sequence of tokens is mapped to the same number
and that consisting of a different sequence of tokens is mapped to different numbers.

Following this set of rules, the name identifiers “total,” “list,” “taken,” “i,” and “addr” are mapped
to the same token (e.g., 3). Similarly, we may have “[” mapped to 5, “]” to 6; “.” to 8, “=” to 9, “;” to 1,
and “&” to 2. Then the statement “total[i].adr = list[i].addr;” is mapped to a sequence of tokens “3 5 3
6 8 3 9 3 5 3 6 8 3 1.” Such a sequence could be mapped (e.g., using a hash function) to a number (e.g.,
16). By such mapping, each statement in a program is mapped to a number; and two statements with
similar functions, such as “total[i].adr = list[i].addr;” and “taken[i].adr = list[i].addr;,” will be mapped
to the same number 16, despite their different identifier names, since they have the same sequence of
tokens. Thus, a sequence of statements shown in Fig. 5.24 are transformed into a sequence of numbers
(or hash values) as shown in Fig. 5.25.

The above-described transformation maps a program to a sequence of numbers. One can further cut
a long sequence by blocks. Thus, our program code in Fig. 5.24 will be transformed into a sequence data
set: (65), (16, 16, 71), . . . , (65), (16, 16, 71). By sequential pattern mining, one can find the sequential
pattern “(65), (16, 16, 71).”

Note that even some other statements are inserted in the middle of such a sequence of statements,
a typical sequential pattern mining algorithm such as PrefixSpan will still be able to find the correct
sequential pattern. For example, mining the two sequences (16, 16, 71) and (16, 18, 16, 25, 71) will
generate the same frequent subsequence (16, 16, 71). This will allow the method to detect copy-pasting
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bugs even if a few other statements are inserted into the pasted program code as long as such an insertion
are confined to a predefined maximal gap (for sequential pattern mining).

After identification of copy-pasting blocks, the next step is to find inconsistent modifications in the
pasted statements. This can be done easily by comparing the two copy-pasting blocks. If the majority
occurrences of one identifier (e.g., “total”) have been changed to another one (e.g., “taken”), the mi-
nority unchanged (e.g., the retained “total”) is likely the bug. An “unchanged ratio” can be easily set to
identify such “forget to change” errors.

A software bug mining program, CP-Miner, adopting the mining methodology described here, has
successfully uncovered many copy-pasting bugs in Linux, Apache, and other open source programs,
out of millions of lines of code.

5.7 Summary
• The scope of frequent pattern mining research reaches far beyond the basic concepts and methods

introduced in Chapter 4 for mining frequent itemsets and associations. This chapter presented a road
map of the field, where topics are organized with respect to the kinds of patterns and rules that can
be mined, mining methods, and applications.

• In addition to mining for basic frequent itemsets and associations, advanced forms of patterns
can be mined such as multilevel associations and multidimensional associations, quantitative asso-
ciation rules, rare patterns, and negative patterns. We can also mine high-dimensional patterns and
compressed or approximate patterns.

• Multilevel associations involve data at more than one abstraction level (e.g., “buys computer” and
“buys laptop”). These may be mined using multiple minimum support thresholds. Multidimen-
sional associations contain more than one dimension. Techniques for mining such associations
differ in how they handle repetitive predicates. Quantitative association rules involve quantitative
attributes. Discretization, clustering, and statistical analysis that discloses exceptional behavior can
be integrated with the pattern mining process.

• Rare patterns occur rarely but are of special interest. Negative patterns are patterns with compo-
nents that exhibit negatively correlated behavior. Care should be taken in the definition of negative
patterns, with consideration of the null-invariance property. Rare and negative patterns may highlight
exceptional behavior in the data, which is likely of interest.

• Constraint-based mining strategies can be used to help direct the mining process toward patterns
that match users’ intuition or satisfy certain constraints. Many user-specified constraints can be
pushed deep into the mining process. Constraints can be categorized into pattern-pruning and data-
pruning constraints. Properties of such constraints include monotonicity, antimonotonicity, data-
antimonotonicity, and succinctness. Constraints with such properties can be properly incorporated
into efficient pattern mining processes.

• Methods have been developed for mining patterns in high-dimensional space. This includes a
pattern growth approach based on row enumeration for mining data sets where the number of di-
mensions is large and the number of data tuples is small (e.g., for microarray data), as well as mining
colossal patterns (i.e., patterns of very long length) by a Pattern-Fusion method.

• To reduce the number of patterns returned in mining, we can instead mine compressed patterns or ap-
proximate patterns. Compressed patterns can be mined with representative patterns defined based on
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the concept of clustering, and approximate patterns can be mined by extracting redundancy-aware
top-k patterns (i.e., a small set of k-representative patterns that have not only high significance but
also low redundancy with respect to one another).

• Sequential pattern mining is the mining of frequently occurring ordered events or subsequences as
patterns. The Apriori pruning principles can be used for pruning in sequential pattern mining, which
leads to efficient sequential mining algorithms, such as GSP, SPADE and PrefixSpan. CloSpan is
an efficient method for mining closed sequential patterns. Efficient methods have also been devel-
oped for mining multidimensional and multilevel sequential patterns and constraint-based sequential
pattern mining.

• Subgraph pattern mining is the mining of frequent subgraphs in a collection of graphs. The Apri-
ori pruning principles can be used for pruning in subgraph pattern mining, which leads to efficient
subgraph mining algorithms, such as AGM, FSG and gSpan (a pattern-growth approach). CloseG-
raph is an efficient method for mining closed subgraph patterns. Efficient methods have also been
developed for mining other frequent substructure patterns, such as directed graphs, tree structures,
and disconnected graphs, mining frequent substructures with user-specified constraints, mining ap-
proximate frequent substructures, and mining coherent substructures.

• Pattern mining has broad and interesting applications. Besides popular market analysis application,
this chapter discusses phrase mining from massive text and software copy-pasting bug mining in
software engineering. For phrase mining, an unsupervised method ToPMine, a weakly supervised
method SegPhrase and a distantly supervised method AutoPhrase are introduced. For software copy-
pasting bug mining, a methodology adopted in CP-Miner is introduced.

5.8 Exercises
5.1. Propose and outline a level-shared mining approach to mining multilevel association rules in

which each item is encoded by its level position. Design it so that an initial scan of the database
collects the count for each item at each concept level, identifying frequent and subfrequent items.
Comment on the processing cost of mining multilevel associations with this method in compar-
ison to mining single-level associations.

5.2. Suppose, as manager of a chain of stores, you would like to use sales transactional data to
analyze the effectiveness of your store’s advertisements. In particular, you would like to study
how specific factors influence the effectiveness of advertisements that announce a particular
category of items on sale. The factors to study are the region in which customers live and the day-
of-the-week and time-of-the-day of the ads. Discuss how to design an efficient method to mine
the transaction data sets and explain how multidimensional and multilevel mining methods can
help you derive a good solution.

5.3. Quantitative association rules may disclose exceptional behaviors within a data set, where
“exceptional” can be defined based on statistical theory. For example, Section 5.1.3 shows the
association rule

gender = f emale ⇒ mean_wage = $7.90/hr (overall_mean_wage = $9.02/hr),

which suggests an exceptional pattern. The rule states that the average wage for females is only
$7.90 per hour, which is a significantly lower wage than the overall average of $9.02 per hour.
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Discuss how such quantitative rules can be discovered systematically and efficiently in large data
sets with quantitative attributes.

5.4. In multidimensional data analysis, it is interesting to extract pairs of similar cell characteristics
associated with substantial changes in measure in a data cube, where cells are considered similar
if they are related by roll-up (i.e., ancestors), drill-down (i.e., descendants), or 1-D mutation
(i.e., siblings) operations. Such an analysis is called cube gradient analysis.
Suppose the measure of the cube is average. A user poses a set of probe cells and would like to
find their corresponding sets of gradient cells, each of which satisfies a certain gradient threshold.
For example, find the set of corresponding gradient cells that have an average sale price greater
than 20% of that of the given probe cells. Develop an algorithm than mines the set of constrained
gradient cells efficiently in a large data cube.

5.5. Section 5.1.5 presented various ways of defining negatively correlated patterns. Consider Def-
inition 5.3: “Suppose that itemsets X and Y are both frequent, that is, sup(X) ≥ min_sup

and sup(Y ) ≥ min_sup, where min_sup is the minimum support threshold. If (P (X|Y) +
P(Y |X))/2 < ε, where ε is a negative pattern threshold, then pattern X ∪ Y is a negatively cor-
related pattern.” Design an efficient pattern growth algorithm for mining the set of negatively
correlated patterns.

5.6. Prove that each entry in the following table correctly characterizes its corresponding rule con-
straint for frequent itemset mining.

Rule Constraint Antimonotonic Monotonic Succinct
a. v ∈ S no yes yes
b. S ⊆ V yes no yes
c. min(S) ≤ v no yes yes
d. range(S) ≤ v yes no no

5.7. The price of each item in a store is nonnegative. The store manager is only interested in mining
the rules, following the constraints given below. For each of the following cases, identify the
kinds of constraints they represent and briefly discuss how to mine such association rules using
constraint-based pattern mining.
a. Containing at least one Blu-ray DVD movie.
b. Containing items with a sum of the prices that is less than $150.
c. Containing one free item and other items with a sum of the prices that is at least $200,

whereas the average price of all the items is between $100 and $500.
5.8. Section 5.1.4 introduced a core Pattern-Fusion method for mining high-dimensional data. Ex-

plain why a long pattern, if existing in the data set, is likely to be discovered by this method.
5.9. Section 5.2.1 defined a pattern distance measure between closed patterns P1 and P2 as

Pat_Dist (P1,P2) = 1 − |T (P1) ∩ T (P2)|
|T (P1) ∪ T (P2)| ,

where T (P1) and T (P2) are the supporting transaction sets of P1 and P2, respectively. Is this a
valid distance metric? Show the derivation to support your answer.

5.10. Association rule mining often generates a large number of rules, many of which may be similar,
thus not containing much novel information. Design an efficient algorithm that compresses a
large set of patterns into a small compact set. Discuss whether your mining method is robust
under different pattern similarity definitions.
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5.11. Frequent pattern mining may generate many superfluous patterns. Therefore, it is important to
develop methods that mine compressed patterns. Suppose a user would like to obtain only k

patterns (where k is a small integer). Outline an efficient method that generates the k most
representative patterns, where more distinct patterns are preferred over very similar patterns.
Illustrate the effectiveness of your method using a small data set.

5.12. Sequential pattern mining is to mine sequential patterns for a set of items occurring in sequence
order. In practice, people may like to find sequential patterns for types of items instead of for
concrete items, such as sequence patterns formed by high-level concepts. For example, instead
of finding sequential patterns composed of concrete models of i-phones in shopping transactions,
but finding patterns composed of Apple products, smart-phones, electronics, and so on. Outline
an efficient sequential pattern mining algorithm that simultaneously mines sequential patterns
at multiple levels of abstraction.

5.13. At studying customer shopping sequences, one may find if a customer buys a sequence of prod-
ucts from one company, the chance for him/her to buy the products of the similar kind from
another company will be much reduced. Can you outline an efficient algorithm that will be able
to capture such negatively associated sequential patterns?

5.14. Our study of subgraph pattern mining has been on how to mine frequent substructures from a col-
lection of graph data sets. The current Web page structures (e.g., Wikipedia) or social networks
may form one or a small number of gigantic network structures. One may need to find frequent
common substructures from one gigantic network. Outline an efficient method that finds top-k
large substructural patterns in a massive network.

5.15. In this chapter, we introduce an effective method for mining copy-and-paste bugs in software
programs. Typically, a software program may take different inputs which may lead to different
program execution sequences. For some inputs, the program execution finishes successfully but
for some other inputs, the program fails (e.g., getting a core dump). Can you work out an algo-
rithm that may use sequential pattern mining to identify what execution sequences may be used
to distinguish program failure from program success?

5.9 Bibliographic notes
This chapter described various ways in which the basic techniques of frequent itemset mining (pre-
sented in Chapter 4) have been extended. One line of extension is mining multilevel and multidimen-
sional association rules. Multilevel association mining was studied in Srikant and Agrawal [SA95] and
Han and Fu [HF95]. In Srikant and Agrawal [SA95], such mining was studied in the context of gener-
alized association rules, and an R-interest measure was proposed for removing redundant rules. Mining
multidimensional association rules using static discretization of quantitative attributes and data cubes
was studied by Kamber, Han, and Chiang [KHC97].

Another line of extension is to mine patterns on numeric attributes. Srikant and Agrawal [SA96]
proposed a nongrid-based technique for mining quantitative association rules, which uses a measure
of partial completeness. Mining quantitative association rules based on rule clustering was proposed
by Lent, Swami, and Widom [LSW97]. Techniques for mining quantitative rules based on x-monotone
and rectilinear regions were presented by Fukuda, Morimoto, Morishita, and Tokuyama [FMMT96] and
Yoda et al. [YFM+97]. Mining (distance-based) association rules over interval data was proposed by
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Miller and Yang [MY97]. Aumann and Lindell [AL99] studied the mining of quantitative association
rules based on a statistical theory to present only those rules that deviate substantially from normal data.

Mining rare patterns by pushing group-based constraints was proposed by Wang, He, and Han
[WHH00]. Mining negative association rules was discussed by Savasere, Omiecinski, and Navathe
[SON98] and by Tan, Steinbach, and Kumar [TSK05].

Constraint-based mining directs the mining process toward patterns that are likely of interest to
the user. The use of metarules as syntactic or semantic filters defining the form of interesting single-
dimensional association rules was proposed in Klemettinen et al. [KMR+94]. Metarule-guided mining,
where the metarule consequent specifies an action (e.g., Bayesian clustering or plotting) to be ap-
plied to the data satisfying the metarule antecedent, was proposed in Shen, Ong, Mitbander, and
Zaniolo [SOMZ96]. A relation-based approach to metarule-guided mining of association rules was
studied in Fu and Han [FH95].

Methods for constraint-based mining using pattern pruning constraints were studied by Ng, Laksh-
manan, Han, and Pang [NLHP98]; Lakshmanan, Ng, Han, and Pang [LNHP99]; and Pei, Han, and
Lakshmanan [PHL01]. Constraint-based pattern mining by data reduction using data pruning con-
straints was studied by Bonchi, Giannotti, Mazzanti, and Pedreschi [BGMP03] and Zhu, Yan, Han,
and Yu [ZYHY07]. An efficient method for mining constrained correlated sets was given in Grahne,
Lakshmanan, and Wang [GLW00]. A dual mining approach was proposed by Bucila, Gehrke, Kifer,
and White [BGKW03]. Other ideas involving the use of templates or predicate constraints in min-
ing have been discussed in Anand and Kahn [AK93]; Dhar and Tuzhilin [DT93]; Hoschka and Klösgen
[HK91]; Liu, Hsu, and Chen [LHC97]; Silberschatz and Tuzhilin [ST96]; and Srikant, Vu, and Agrawal
[SVA97].

Traditional pattern mining methods encounter challenges when mining high-dimensional patterns,
with applications like bioinformatics. Pan et al. [PCT+03] proposed CARPENTER, a method for find-
ing closed patterns in high-dimensional biological data sets, which integrates the advantages of vertical
data formats and pattern growth methods. Pan, Tung, Cong, and Xu [PTCX04] proposed COBBLER,
which finds frequent closed itemsets by integrating row enumeration with column enumeration. Liu,
Han, Xin, and Shao [LHXS06] proposed TDClose to mine frequent closed patterns in high-dimensional
data by starting from the maximal rowset, integrated with a row-enumeration tree. It uses the pruning
power of the minimum support threshold to reduce the search space. For mining rather long patterns,
called colossal patterns, Zhu et al. [ZYH+07] developed a core Pattern-Fusion method that leaps over
an exponential number of intermediate patterns to reach colossal patterns.

To generate a reduced set of patterns, recent studies have focused on mining compressed sets of
frequent patterns. Closed patterns can be viewed as a lossless compression of frequent patterns, whereas
maximal patterns can be viewed as a simple lossy compression of frequent patterns. Top-k patterns,
such as by Wang, Han, Lu, and Tsvetkov [WHLT05], and error-tolerant patterns, such as by Yang,
Fayyad, and Bradley [YFB01], are alternative forms of interesting patterns. Afrati, Gionis, and Mannila
[AGM04] proposed to use k-itemsets to cover a collection of frequent itemsets. For frequent itemset
compression, Yan, Cheng, Han, and Xin [YCHX05] proposed a profile-based approach, and Xin, Han,
Yan, and Cheng [XHYC05] proposed a clustering-based approach. By taking into consideration both
pattern significance and pattern redundancy, Xin, Cheng, Yan, and Han [XCYH06] proposed a method
for extracting redundancy-aware top-k patterns.

Automated semantic annotation of frequent patterns is useful for explaining the meaning of patterns.
Mei et al. [MXC+07] studied methods for semantic annotation of frequent patterns.
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An important extension to frequent itemset mining is mining sequence and structural data. This
includes mining sequential patterns (Agrawal and Srikant [AS95]; Pei et al. [PHMA+01,PHMA+04];
and Zaki [Zak01]); mining frequent episodes (Mannila, Toivonen, and Verkamo [MTV97]); mining
structural patterns (Inokuchi, Washio, and Motoda [IWM98]; Kuramochi and Karypis [KK01]; and Yan
and Han [YH02]); mining cyclic association rules (Özden, Ramaswamy, and Silberschatz [ORS98]);
intertransaction association rule mining (Lu, Han, and Feng [LHF98]); and calendric market basket
analysis (Ramaswamy, Mahajan, and Silberschatz [RMS98]). Although the major graph pattern mining
studies are on mining frequent graph patterns in a collection of graphs, there are also studies on mining
large substructural patterns in a single large network, such as Zhu et al. [ZQL+11].

Pattern mining has been extended to help effective data classification and clustering. Pattern-based
classification (Liu, Hsu, and Ma [LHM98] and Cheng, Yan, Han, and Hsu [CYHH07]) is discussed in
Chapter 7. Pattern-based cluster analysis (Agrawal, Gehrke, Gunopulos, and Raghavan [AGGR98] and
Wang, Wang, Yang, and Yu [WWYY02]) is discussed in Chapter 9.

Pattern mining also helps many other data analysis and processing tasks such as cube gradient
mining and discriminative analysis (Imielinski, Khachiyan, and Abdulghani [IKA02]; Dong et al.
[DHL+04]; Ji, Bailey, and Dong [JBD05]), discriminative pattern-based indexing (Yan, Yu, and Han
[YYH05]), and discriminative pattern-based similarity search (Yan, Zhu, Yu, and Han [YZYH06]).

Pattern mining has been extended to mining spatial, temporal, time-series, multimedia data, and
data streams. Mining spatial association rules or spatial collocation rules was studied by Koperski
and Han [KH95]; Xiong et al. [XSH+04]; and Cao, Mamoulis, and Cheung [CMC05]. Pattern-based
mining of time-series data is discussed in Shieh and Keogh [SK08] and Ye and Keogh [YK09]. There
are many studies on pattern-based mining of multimedia data such as Zaïane, Han, and Zhu [ZHZ00]
and Yuan, Wu, and Yang [YWY07]. Methods for mining frequent patterns on stream data have been
proposed by many researchers, including Manku and Motwani [MM02]; Karp, Papadimitriou, and
Shenker [KPS03]; and Metwally, Agrawal, and El Abbadi [MAA05].

Pattern mining has broad applications. Application areas include computer science such as software
bug analysis, sensor network mining, and performance improvement of operating systems. For example,
CP-Miner by Li, Lu, Myagmar, and Zhou [LLMZ04] uses pattern mining to identify copy-pasted code
for bug isolation. PR-Miner by Li and Zhou [LZ05] uses pattern mining to extract application-specific
programming rules from source code. Discriminative pattern mining is used for program failure detec-
tion to classify software behaviors (Lo et al. [LCH+09]) and for troubleshooting in sensor networks
(Khan et al. [KLA+08]).

As another pattern mining application, phrase mining from massive text data has been studied in
recent years. An unsupervised phrase mining method ToPMine, which explores frequent contiguous
patterns is developed by El-Kishki et al. [EKSW+14]; a weakly supervised phrase mining method
SegPhrase, which explores phrasal segmentation and pattern-guided classification is developed by Liu
et al. [LSW+15]; AutoPhrase, which uses Wikipedia as a source for distant supervision for phrase
mining is introduced by Shang et al. [SLJ+18]; and UCPhrase that explores the information derived
from pretrained language models is developed by Gu et al. [GWB+21].
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6
CHAPTER

Classification: basic concepts and
methods

Classification is a form of data analysis that extracts models describing important data classes. Such
models, called classifiers, predict categorical (discrete, unordered) class labels. For example, we can
build a classification model to categorize bank loan applications as either safe or risky, or identify the
early sign of cognitive impairment based on a patient’s functional magnetic resonance imaging (fMRI)
scan, or help a self-driving car automatically recognize various road signs. Such analysis can help pro-
vide us with a better understanding of the data at large. Many classification methods have been proposed
by researchers in machine learning, pattern recognition, and statistics. Traditional classification algo-
rithms typically assume a small or medium data size. Modern classification techniques have built on
such work, developing scalable classification and prediction techniques capable of handling very large
amounts of data. Classification belongs to supervised learning and is closely connected to many other
data mining tasks. Classification has numerous applications, including fraud detection, target market-
ing, performance prediction, manufacturing, medical diagnosis, and many more.

We start off by introducing the main ideas of classification in Section 6.1. In the rest of this chapter,
you will learn the basic techniques for data classification such as how to build decision tree classifiers
(Section 6.2), Bayes classifiers (Section 6.3), lazy learners (Section 6.4), and linear classifiers (Sec-
tion 6.5). Section 6.6 discusses how to evaluate and compare different classifiers. Various measures of
accuracy are given, as well as techniques for obtaining reliable accuracy estimates. Methods for improv-
ing classifier accuracy are presented in Section 6.7, including ensemble methods and class-imbalanced
data (i.e., where the main class of interest is rare).

6.1 Basic concepts
We introduce the concept of classification in Section 6.1.1. Section 6.1.2 describes the general approach
to classification as a two-step process. In the first step, we build a classification model based on previous
data. In the second step, we determine if the model’s accuracy is acceptable, and if so, we use the model
to classify new data.

6.1.1 What is classification?
A bank loans officer needs analysis of her data to learn which loan applicants are “safe” and which
are “risky” for the bank, and her colleague from the risk management department wishes to detect
fraudulent transactions. A marketing manager at an electronics store needs data analysis to help guess
whether a customer with a given profile will buy a new computer, or understand the sentiment of social
media posts regarding a newly released product, or detect fake reviews about a new product from an
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online review site, or identify a subscribed customer who is likely to switch to a competitive electronics
store (i.e., churn prediction). An IT security analyst wants to know if the network system is under
attack (intrusion detection) or if a given application is contaminated with malware (malware detection).
A teacher wishes to know if a student enrolled in an online course will drop out before she completes the
course. A talent recruiter wants to know if an individual is looking for the next career move. A medical
researcher wants to analyze breast cancer data to predict which one of three specific treatments a patient
should receive, a cardiologist wants to identify the patient who is likely to have a congestive heart failure
based on her chronic medical history, a neuroscientist wants to identify the early sign of cognitive
impairment (which could lead to, say Alzheimer’s disease) based on a patient’s functional magnetic
resonance imaging (fMRI) scan. An intelligent question-answering system needs to understand what
type of question the user is asking (question classification), as the first step to automatically provide
a high-quality answer. A self-driving car needs to automatically recognize various road signs (e.g.,
‘stop,’ ‘detour,’ etc.). A physicist needs to identify high energy event from massive experiment data,
which might lead to new discoveries. Law enforcement wishes to predict the crime hot spot so that the
precaution measures can be taken proactively.

In each of these examples, the data analysis task is classification, where a model or classifier is
constructed to predict class (categorical) labels, such as “safe” or “risky” for the loan application data;
or “positive” or “negative” for sentiment classification; or “yes” or “no” for the marketing data; or
“dropout” or “stay” for online course enrollment, or “treatment A,” “treatment B,” or “treatment C”
for the medical data; or various question types for a question-answering system. These categories can
be represented by discrete values, where the ordering among values has no meaning. For example, the
values 1, 2, and 3 may be used to represent treatments A, B, and C, where there is no ordering implied
among this group of treatment regimes.

Suppose that the marketing manager wants to predict how much a given customer will spend during
a sale; or a realtor might be interested in knowing the average house pricing of the next year in different
residential areas; or a career planner wants to forecast the average yearly income of students immedi-
ately after graduating from the college in different majors. This kind of data analysis task is an example
of numeric prediction, where the model constructed predicts a continuous-valued function, or ordered
value, as opposed to a class label. Regression analysis is a statistical methodology that is most often
used for numeric prediction; hence the two terms tend to be used synonymously, although other methods
for numeric prediction exist. Ranking is another type of numerical prediction where the model predicts
the ordered values (i.e., ranks), for example, a web search engine (e.g., Google) ranks the relevant web-
pages with respect to a given query, with the higher-ranked webpages being more relevant to the query.
Classification and numeric prediction are the two major types of prediction problems. This chapter
primarily focuses on classification. It is worth pointing out that classification and numerical prediction
(e.g., regression) are closely related to each other. Many classification techniques can be modified for
the purpose of regression. We will see some examples, including regression trees (Section 6.2), lazy
learners (Section 6.4.1), linear regression (Section 6.5), and gradient tree boosting (Section 6.7.1).

6.1.2 General approach to classification
“How does classification work?” Data classification is a two-step process, consisting of a learning
step (where a classification model is constructed) and a classification step (where the model is used



6.1 Basic concepts 241

FIGURE 6.1

The data classification process: (a) Learning: Training data are analyzed by a classification algorithm. Here, the class
label attribute is loan_decision, and the learned model or classifier is represented in the form of classification rules.
(b) Classification: Test data are used to estimate the accuracy of the classification rules. If the accuracy is acceptable,
the rules can be applied to the classification of new data tuples.

to predict class labels for given data). The process is shown for the loan application data in Fig. 6.1.
The data are simplified for illustrative purposes. In reality, we may expect many more attributes to be
considered.
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In the first step, a classifier is built describing a predetermined set of data classes or concepts. This
is the learning step (also known as the training phase), where a classification algorithm builds the clas-
sifier by analyzing or “learning from” a training set made up of database tuples and their associated
class labels. A tuple, X, is represented by an n-dimensional attribute vector, X = (x1, x2, . . . , xn),
depicting n measurements made on the tuple from n database attributes, respectively, A1,A2, . . . ,An.1

Each tuple, X, is assumed to belong to a predefined class as determined by another database attribute
called the class label attribute. The class label attribute is discrete-valued and unordered. It is cate-
gorical (or nominal) in that each value serves as a category or class. The individual tuples making up
the training set are referred to as training tuples and are randomly sampled from the database under
analysis. In the context of classification, data tuples can be referred to as samples, examples, instances,
data points, or objects.2

Because the class label of each training tuple is provided, this step belongs to supervised learning
(i.e., the learning of the classifier is “supervised” in that it is told to which class each training tuple
belongs). The scope of supervised learning is larger than classification, and it broadly encompasses
learning methods for training a numerical prediction model (e.g., regression, ranking) if the true target
values of training tuples are known during the learning step. Supervised learning contrasts with unsu-
pervised learning (e.g., clustering), in which the true target value (e.g., class label) of each training
tuple is not known, and the number or set of classes to be learned may not be known in advance. For
example, if we did not have the loan_decision data available for the training set, we could use clus-
tering to try to determine “groups of like tuples” which may correspond to risk groups within the loan
application data. Likewise, we could use clustering techniques to find social media posts sharing sim-
ilar topics without knowing their actual class labels. Clustering is the topic of Chapters 8 and 9. The
landscape of the prediction problem (e.g., classification, regression, ranking) has gone beyond super-
vised vs. unsupervised learning. To name a few, in semisupervised classification, it builds a classifier
based on a limited number of labeled training tuples (whose true class labels are given during training)
and a large number of unlabeled training tuples (whose class labels are unknown during training); in
zero-shot learning, some class label might appear after the classification model has been built. In other
words, during the training phase, there are no (i.e., zero) labeled training tuples for such a class label.
Both semisupervised learning and zero-shot learning belong to weakly supervised learning in that the
supervision information for training the model is weaker than the standard supervised learning. For
the classification task, this means that the supervision (i.e., the true class labels of training tuples) is
known only for a small fraction of the entire training set in semisupervised learning; or is absent for
certain class label(s) in zero-shot learning. Classification with weak supervision will be introduced in
Chapter 7.

The first step of the classification process can also be viewed as the learning of a mapping or func-
tion, y = f (X), that can predict the associated class label y of a given tuple X. In this view, we wish
to learn a mapping or function that separates the data classes. Typically, this mapping is represented
in the form of classification rules, decision trees, or mathematical formulae. In our example, the map-

1 Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term feature vector rather than
attribute vector. In our discussion, we use these two terms interchangeably. In our notation, any variable representing a vector is
typically shown in bold italic font; measurements depicting the vector are shown in italic font (e.g., X = (x1, x2, x3)).
2 In the machine learning literature, training tuples are commonly referred to as training samples. Throughout this text, we prefer
to use the term tuples instead of samples.
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ping is represented as classification rules that identify loan applications as being either safe or risky
(Fig. 6.1(a)). The rules can be used to categorize future data tuples, as well as provide deeper insight
into the data contents. They also provide a compressed data representation.

“What about classification accuracy?” In the second step (Fig. 6.1(b)), the model is used for clas-
sification. First, the predictive accuracy of the classifier is estimated. If we were to use the training set
to measure the classifier’s accuracy, this estimate would likely be too optimistic, because the classifier
tends to overfit the data (i.e., during learning it may incorporate some particular anomalies of the train-
ing data that do not represent the general data set). Therefore a test set is used, made up of test tuples
and their associated class labels. They are independent of the training tuples, meaning that they were
not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test tuples that are correctly
classified by the classifier. The associated class label of each test tuple is compared with the learned
classifier’s class prediction for that tuple. Section 6.6 describes several methods for estimating classifier
accuracy. If the accuracy of the classifier is considered acceptable, the classifier can be used to classify
future data tuples for which the class label is not known. Such data are also referred to in the machine
learning literature as “unknown” or “previously unseen” data. For example, the classification rules
learned in Fig. 6.1(a) from the analysis of data from previous loan applications can be used to approve
or reject new or future loan applicants.

6.2 Decision tree induction
Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision
tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an
attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds a
class label. The topmost node in a tree is the root node. A typical decision tree is shown in Fig. 6.2. It
represents the concept buys_computer; that is, it predicts whether a customer at an electronics store is

FIGURE 6.2

A decision tree for the concept buys_computer, indicating whether a customer is likely to purchase a computer. Each
internal (nonleaf) node represents a test on an attribute. Each leaf node represents a class (either buys_computer =
yes or buys_computer = no).
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likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes are denoted by
ovals (or circles). Some decision tree algorithms produce only binary trees (where each internal node
branches to exactly two other nodes), whereas others can produce nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the associated class
label is unknown, the attribute values of the tuple are tested against the decision tree. A path is traced
from the root to a leaf node, which holds the class prediction for that tuple. Decision trees can easily be
converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers does
not require any domain knowledge or parameter setting and therefore is appropriate for exploratory
knowledge discovery. Decision trees can handle multidimensional data. Their representation of ac-
quired knowledge in tree form is intuitive and generally easy to assimilate by humans. The learning
and classification steps of decision tree induction are simple and fast. In general, decision tree clas-
sifiers have good accuracy. However, successful use may depend on the data at hand. Decision tree
induction algorithms have been used for classification in many application areas such as medicine,
manufacturing and production, financial analysis, astronomy, and molecular biology. Decision trees are
the basis of several commercial rule induction systems.

In Section 6.2.1, we describe a basic algorithm for learning decision trees. During tree construction,
attribute selection measures are used to select the attribute that best partitions the tuples into distinct
classes. Popular measures of attribute selection are given in Section 6.2.2. When decision trees are
built, many of the branches may reflect noise or outliers in the training data. Tree pruning attempts to
identify and remove such branches, with the goal of improving classification accuracy on unseen data.
Tree pruning is described in Section 6.2.3.

6.2.1 Decision tree induction
During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning, developed a
decision tree algorithm known as ID3 (Iterative Dichotomizer). This work expanded on earlier work on
concept learning systems, described by E. B. Hunt, J. Marin, and P. T. Stone. Quinlan later presented
C4.5 (a successor of ID3), which became a benchmark to which newer supervised learning algorithms
are often compared. In 1984, a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone)
published the book Classification and Regression Trees (CART), which described the generation of bi-
nary decision trees. ID3 and CART were invented independent of one another at around the same time,
yet follow a similar approach for learning decision trees from training tuples. These two cornerstone
algorithms spawned a flurry of work on decision tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which decision trees are
constructed in a top-down recursive divide-and-conquer manner. Most algorithms for decision tree
induction also follow a top-down approach, which starts with a training set of tuples and their associated
class labels. The training set is recursively partitioned into smaller subsets as the tree is being built. A
basic decision tree algorithm is summarized in Fig. 6.3. At first glance, the algorithm may appear long,
but fear not! It is quite straightforward. The strategy is as follows.

• The algorithm is called with three parameters: D, attribute_list, and Attribute_selection_method. D

is a data partition. Initially, it is the complete set of training tuples and their associated class labels.
The parameter attribute_list is a list of attributes describing the tuples. Attribute_selection_method
specifies a heuristic procedure for selecting the attribute that “best” discriminates the given tuples
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Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition, D.

Input:

• Data partition, D, which is a set of training tuples and their associated class labels;
• attribute_list, the set of candidate attributes;
• Attribute_selection_method, a procedure to determine the splitting criterion that “best” partitions the data tuples into

individual classes. This criterion consists of a splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.
Method:

(1) create a node N ;
(2) if tuples in D are all of the same class, C, then
(3) return N as a leaf node labeled with the class C;
(4) if attribute_list is empty then
(5) return N as a leaf node labeled with the majority class in D; // majority voting
(6) apply Attribute_selection_method(D, attribute_list) to find the “best” splitting_criterion;
(7) label node N with splitting_criterion;
(8) if splitting_attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees
(9) attribute_list ← attribute_list − splitting_attribute; // remove splitting_attribute
(10) for each outcome j of splitting_criterion

// partition the tuples and grow subtrees for each partition
(11) let Dj be the set of data tuples in D satisfying outcome j ; // a partition
(12) if Dj is empty then
(13) attach a leaf labeled with the majority class in D to node N ;
(14) else attach the node returned by Generate_decision_tree(Dj , attribute_list) to node N ;

endfor
(15) return N .

FIGURE 6.3

Basic algorithm for inducing a decision tree from training tuples.

according to class. This procedure employs an attribute selection measure such as information gain
or the Gini impurity. (We will introduce these measures in the next subsection.) Whether the tree
is strictly binary is generally driven by the attribute selection measure. Some attribute selection
measures, such as the Gini impurity, enforce the resulting tree to be binary. Others, like information
gain, do not, therein allowing multiway splits (i.e., two or more branches to be grown from a node).

• The tree starts as a single node, N , representing the training tuples in D (step 1).3

• If the tuples in D are all of the same class, then node N becomes a leaf and is labeled with that class
(steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All terminating conditions are
explained at the end of the algorithm.

• Otherwise, the algorithm calls Attribute_selection_method to determine the splitting criterion. The
splitting criterion tells us which attribute to test at node N by determining the “best” way to separate

3 The partition of class-labeled training tuples at node N is the set of tuples that follow a path from the root of the tree to node
N when being processed by the tree. This set is sometimes referred to in the literature as the family of tuples at node N . We have
referred to this set as the “tuples represented at node N ,” “the tuples that reach node N ,” or simply “the tuples at node N .” Rather
than storing the actual tuples at a node, most implementations store pointers to these tuples.
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or partition the tuples in D into individual classes (step 6). The splitting criterion also tells us which
branches to grow from node N with respect to the outcomes of the chosen test. More specifically,
the splitting criterion indicates the splitting attribute and may also indicate either a split-point or a
splitting subset. The splitting criterion is determined so that, ideally, the resulting partitions at each
branch are as “pure” as possible. A partition is pure if all the tuples in it belong to the same class.
In other words, if we split up the tuples in D according to the mutually exclusive outcomes of the
splitting criterion, we hope for the resulting partitions to be as pure as possible.

• The node N is labeled with the splitting criterion, which serves as a test at the node (step 7). A
branch is grown from node N for each of the outcomes of the splitting criterion. The tuples in D are
partitioned accordingly (steps 10–11). There are three possible scenarios, as illustrated in Fig. 6.4.
Let A be the splitting attribute. A has v distinct values, {a1, a2, . . . , av}, based on the training data.

1. A is discrete-valued: In this case, the outcomes of the test at node N directly correspond to the
known values of A. A branch is created for each known value, aj , of A and labeled with that
value (Fig. 6.4(a)). Partition Dj is the subset of class-labeled tuples in D having value aj of
A. Because all the tuples in a given partition have the same value for A, A does not need to be

FIGURE 6.4

This figure shows three possibilities for partitioning tuples based on the splitting criterion, each with examples. Let
A be the splitting attribute. (a) If A is discrete-valued, then one branch is grown for each known value of A. (b) If A

is continuous-valued, then two branches are grown, corresponding to A ≤ split_point and A > split_point. (c) If A

is discrete-valued and a binary tree must be produced, then the test is of the form A ∈ SA, where SA is the splitting
subset for A.
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considered in any future partitioning of the tuples. Therefore it is removed from attribute_list
(steps 8 and 9).

2. A is continuous-valued: In this case, the test at node N has two possible outcomes, corresponding
to the conditions A ≤ split_point and A > split_point, respectively, where split_point is the split-
point returned by Attribute_selection_method as part of the splitting criterion. (In practice, the
split-point, a, is often taken as the midpoint of two known adjacent values of A and therefore
may not actually be a preexisting value of A from the training data.) Two branches are grown
from N and labeled according to the previous outcomes (Fig. 6.4(b)). The tuples are partitioned
such that D1 holds the subset of class-labeled tuples in D for which A ≤ split_point, while D2
holds the rest.

3. A is discrete-valued and a binary tree must be produced (as dictated by the attribute selection
measure or algorithm being used): The test at node N is of the form “A ∈ SA?,” where SA is the
splitting subset for A, returned by Attribute_selection_method as part of the splitting criterion. It
is a subset of the known values of A. If a given tuple has value aj of A, and if aj ∈ SA, then the
test at node N is satisfied. Two branches are grown from N (Fig. 6.4(c)). By convention, the left
branch out of N is labeled yes so that D1 corresponds to the subset of class-labeled tuples in D

that satisfy the test. The right branch out of N is labeled no so that D2 corresponds to the subset
of class-labeled tuples from D that do not satisfy the test.

• The algorithm uses the same process recursively to form a decision tree for the tuples at each result-
ing partition, Dj , of D (step 14).

• The recursive partitioning stops only when any one of the following terminating conditions is true:

1. All the tuples in partition D (represented at node N ) belong to the same class (steps 2 and 3).
2. There are no remaining attributes on which the tuples may be further partitioned (step 4). In this

case, majority voting is employed (step 5). This involves converting node N into a leaf and
labeling it with the most common class in D. Alternatively, the class distribution of the node
tuples may be stored.

3. There are no tuples for a given branch, that is, a partition Dj is empty (step 12). In this case, a
leaf is created with the majority class in D (step 13).

• The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n × |D| × log(|D|)),
where n is the number of attributes describing the tuples in D and |D| is the number of training tuples
in D. This means that the computational cost of growing a tree grows at most n × |D| × log(|D|) with
|D| tuples. The proof is left as an exercise for the reader.

Incremental versions of decision tree induction have also been proposed. When given new train-
ing data, it restructures the decision tree acquired from learning on previous training data rather than
relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in creating the tree
(Section 6.2.2) and the mechanisms used for pruning (Section 6.2.3).

Decision tree is closely related to another type of tree, called regression tree, which is used to
predict the continuous output value. A regression tree is very similar to a decision tree in that it also
partitions the entire attribute space into multiple subregions, each corresponding to a leaf node. The
main difference is as follows. In a regression tree, a leaf node holds a continuous value instead of a
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FIGURE 6.5

A regression tree for predicting the average yearly income based on an individual’s education. The values of the
three leaf nodes are calculated as follows. $50K is the average yearly income of all training individuals who do
not have a college degree; $60K is the average yearly income of all training individuals who have a college degree
with a GPA less than or equal to 3.5; and $100K is the average yearly income of all training individuals who have a
college degree with a GPA higher than 3.5. The leaf node values ($50K, $60K, and $100K) are used to predict the
yearly income of any test individual who falls into the corresponding leaf nodes.

categorical value (i.e., class label) in a decision tree. The continuous value of a leaf node is learned
during the training phase, which is set as the average output value of all training tuples fallen in the
corresponding subregions. CART uses residual sum of squares (RSS) as the objective function, which
is the sum of the squared difference between the actual and predicted output values of training tuples

RSS =
∑

i

(yi − ŷi )
2, (6.1)

where yi is the actual output value of the ith training tuple, and ŷi is the predicted output by the
regression tree. Choosing the average output of all training tuples in the corresponding subregion is
optimal in that it minimizes the RSS in Eq. (6.1). Each leaf node value is then used to predict the output
of a test tuple which falls into it. Fig. 6.5 presents an example of a regression tree for predicting the
average yearly income based on an individual’s education (e.g., whether or not the individual attended
the college, the average GPA at college, etc.).

6.2.2 Attribute selection measures
An attribute selection measure is a heuristic for selecting the splitting criterion that “best” separates
a given data partition, D, of class-labeled training tuples into individual classes. If we were to split D

into smaller partitions according to the outcomes of the splitting criterion, ideally, each partition would
be pure (i.e., all the tuples that fall into a given partition would belong to the same class). Conceptually,
the “best” splitting criterion is the one that most closely results in such a scenario. Attribute selection
measures are also known as splitting rules because they determine how the tuples at a given node are
to be split.
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The attribute selection measure provides a ranking for each attribute describing the given training
tuples. The attribute having the best score for the measure4 is chosen as the splitting attribute for the
given tuples. If the splitting attribute is continuous-valued or if we are restricted to binary trees, then,
respectively, either a split point or a splitting subset must also be determined as part of the splitting
criterion. The tree node created for partition D is labeled with the splitting criterion, branches are grown
for each outcome of the criterion, and the tuples are partitioned accordingly. This section describes three
popular attribute selection measures—information gain, gain ratio, and Gini impurity.

The notation used herein is as follows. Let D, the data partition, be a training set of class-labeled
tuples. Suppose the class label attribute has m distinct values defining m distinct classes, Ci (for i =
1, . . . ,m). Let Ci,D be the set of tuples of class Ci in D. Let |D| and |Ci,D| denote the number of tuples
in D and Ci,D , respectively.

Information gain
ID3 uses information gain as its attribute selection measure. This measure is based on pioneering
work by Claude Shannon on information theory, which studied the value or “information content”
of messages. Let node N represent or hold the tuples of partition D. The attribute with the highest
information gain is chosen as the splitting attribute for node N . This attribute minimizes the information
needed to classify the tuples in the resulting partitions and reflects the least randomness or “impurity”
in these partitions. Such an approach minimizes the expected number of tests needed to classify a given
tuple and guarantees that a simple (but not necessarily the simplest) tree is found.

The expected information needed to classify a tuple in D is given by

Info(D) = −
m∑

i=1

pi log2(pi), (6.2)

where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci and is estimated by
|Ci,D|/|D|. A log function to the base 2 is used, because the information is encoded in bits. Info(D) is
just the average amount of information needed to identify the class label of a tuple in D. Note that, at
this point, the information we have is based solely on the proportions of tuples of each class. Info(D) is
also known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A having v distinct values,
{a1, a2, . . . , av}, as observed from the training data. If A is discrete-valued, these values correspond
directly to the v outcomes of a test on A. Attribute A can be used to split D into v partitions or subsets,
{D1,D2, . . . ,Dv}, where Dj contains those tuples in D that have outcome aj of A. These partitions
would correspond to the branches grown from node N . Ideally, we would like this partitioning to
produce an exact classification of the tuples. That is, we would like for each partition to be pure.
However, it is quite likely that the partitions will be impure (e.g., where a partition may contain a
collection of tuples from different classes rather than from a single class).

4 Depending on the measure, either the highest or lowest score is chosen as the best (i.e., some measures strive to maximize,
whereas others strive to minimize).
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How much more information would we still need (after the partitioning) to arrive at an exact classi-
fication? This amount is measured by

InfoA(D) =
v∑

j=1

|Dj |
|D| × Info(Dj ). (6.3)

The term
|Dj |
|D| acts as the weight of the j th partition. InfoA(D) is the expected information required

to classify a tuple from D based on the partitioning by A. The smaller the expected information (still)
required, the greater the purity of the partitions. InfoA(D) is also known as the conditional entropy of
D (conditioned on the attribute A).

Information gain is defined as the difference between the original information requirement (i.e.,
based on just the proportion of classes) and the new requirement (i.e., obtained after partitioning on A).
That is,

Gain(A) = Info(D) − InfoA(D). (6.4)

In other words, Gain(A) tells us how much would be gained by branching on A. It is the expected reduc-
tion in the information requirement caused by knowing the value of A. The attribute A with the highest
information gain, Gain(A), is chosen as the splitting attribute at node N . This is equivalent to saying
that we want to partition on the attribute A that would do the “best classification,” so that the amount
of information still required to finish classifying the tuples is minimal (i.e., minimum InfoA(D)).

Example 6.1. Induction of a decision tree using information gain. Table 6.1 presents a training set,
D, of class-labeled tuples randomly selected from the customer database of an electronics store. (The
data are adapted from Quinlan [Qui86]. In this example, each attribute is discrete-valued. Continuous-
valued attributes have been generalized.) The class label attribute, buys_computer, has two distinct

Table 6.1 Class-labeled training tuples from the customer database of
an electronics store.

RID age income student credit_rating Class: buys_computer
1 youth high no fair no

2 youth high no excellent no

3 middle_aged high no fair yes

4 senior medium no fair yes

5 senior low yes fair yes

6 senior low yes excellent no

7 middle_aged low yes excellent yes

8 youth medium no fair no

9 youth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle_aged medium no excellent yes

13 middle_aged high yes fair yes

14 senior medium no excellent no
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values (namely, {yes, no}); therefore, there are two distinct classes (i.e., m = 2). Let class C1 correspond
to yes and class C2 correspond to no. There are nine tuples of class yes and five tuples of class no.
A (root) node N is created for the tuples in D. To find the splitting criterion for these tuples, we
must compute the information gain of each attribute. We first use Eq. (6.2) to compute the expected
information needed to classify a tuple in D:

Info(D) = − 9

14
log2

(
9

14

)
− 5

14
log2

(
5

14

)
= 0.940 bits.

Next, we need to compute the expected information requirement for each attribute. Let’s start with
the attribute age. We need to look at the distribution of yes and no tuples for each category of age. For
the age category “youth” there are two yes tuples and three no tuples. For the category “middle_aged,”
there are four yes tuples and zero no tuples. For the category “senior,” there are three yes tuples and two
no tuples. Using Eq. (6.3), the expected information needed to classify a tuple in D if the tuples are
partitioned according to age is

Infoage(D) = 5

14
×

(
−2

5
log2

2

5
− 3

5
log2

3

5

)

+ 4

14
×

(
−4

4
log2

4

4

)

+ 5

14
×

(
−3

5
log2

3

5
− 2

5
log2

2

5

)
= 0.694 bits.

Hence, the gain in information from such partitioning would be

Gain(age) = Info(D) − Infoage(D) = 0.940 − 0.694 = 0.246 bits.

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits, and
Gain(credit_rating) = 0.048 bits. Because age has the highest information gain among the attributes,
it is selected as the splitting attribute. Node N is labeled with age, and branches are grown for each of
the attribute’s values. The tuples are then partitioned accordingly, as shown in Fig. 6.6. Notice that the
tuples falling into the partition for age = middle_aged all belong to the same class. Because they all
belong to class “yes,” a leaf should therefore be created at the end of this branch and labeled “yes.”
The final decision tree returned by the algorithm was shown earlier in Fig. 6.2.

“But how can we compute the information gain of an attribute that is continuous-valued, unlike
in the example?” Suppose, instead, that we have an attribute A that is continuous-valued rather than
discrete-valued. (For example, suppose that instead of the discretized version of age from the example,
we have the raw values for this attribute.) For such a scenario, we must determine the “best” split-point
for A, where the split-point is a threshold on A.

We first sort the values of A in the increasing order. Typically, the midpoint between each pair of
adjacent values is considered as a possible split-point. Therefore, given v values of A, (v − 1) possible
splits are evaluated. For example, the midpoint between the values ai and ai+1 of A is

ai + ai+1

2
. (6.5)
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FIGURE 6.6

The attribute age has the highest information gain and therefore becomes the splitting attribute at the root node of
the decision tree. Branches are grown for each outcome of age. The tuples are shown partitioned accordingly.

If the values of A are sorted in advance, then determining the best split for A requires only one pass
through the values. For each possible split-point for A, we evaluate InfoA(D), where the number of
partitions is two, that is, v = 2 (or j = 1,2) in Eq. (6.3). The point with the minimum expected infor-
mation requirement for A is selected as the split_point for A. D1 is the set of tuples in D satisfying
A ≤ split_point, and D2 is the set of tuples in D satisfying A > split_point.

Gain ratio
The information gain measure is biased toward tests with many outcomes. That is, it prefers to select
attributes having a large number of values. For example, consider an attribute that acts as a unique iden-
tifier, such as product_ID. A split on product_ID would result in a large number of partitions (as many
as there are values), each one containing just one tuple. Because each partition is pure, the information
required to classify data set D based on this partitioning would be Infoproduct_ID(D) = 0. Therefore the
information gained by partitioning on this attribute is maximal. Clearly, such a partitioning is useless
for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio, which attempts
to overcome this bias. It applies a kind of normalization to information gain using a “split information”
value defined analogously with Info(D) as

SplitInfoA(D) = −
v∑

j=1

|Dj |
|D| × log2

( |Dj |
|D|

)
. (6.6)
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This value represents the potential information generated by splitting the training data set, D, into
v partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each outcome, it
considers the number of tuples having that outcome with respect to the total number of tuples in D.
It differs from information gain, which measures the information with respect to classification that is
acquired based on the same partitioning. The gain ratio is defined as

GainRatio(A) = Gain(A)

SplitInfoA(D)
. (6.7)

The attribute with the maximum gain ratio is selected as the splitting attribute. Note, however, that
as the split information approaches 0, the ratio becomes unstable. A constraint is added to avoid this,
whereby the information gain of the test selected must be large—at least as great as the average gain
over all tests examined.

Example 6.2. Computation of gain ratio for the attribute income. A test on income splits the data
of Table 6.1 into three partitions, namely low, medium, and high, containing four, six, and four tuples,
respectively. To compute the gain ratio of income, we first use Eq. (6.6) to obtain

SplitInfoincome(D) = − 4

14
× log2

(
4

14

)
− 6

14
× log2

(
6

14

)
− 4

14
× log2

(
4

14

)
= 1.557.

From Example 6.1, we have Gain(income) = 0.029. Therefore GainRatio(income) = 0.029/1.557 =
0.019.

Gini impurity
The Gini impurity (or Gini in short) is used in CART. Using the notation previously described, the Gini
measures the impurity of D, a data partition or a set of training tuples, as

Gini(D) = 1 −
m∑

i=1

p2
i , (6.8)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by |Ci,D|/|D|. The
sum is computed over m classes.

The Gini impurity considers a binary split for each attribute. Let’s first consider the case where A

is a discrete-valued attribute having v distinct values, {a1, a2, . . . , av}, occurring in D. To determine
the best binary split on A, we examine all the possible subsets that can be formed using known val-
ues of A. Each subset, SA, can be considered as a binary test for attribute A of the form “A ∈ SA?”
Given a tuple, this test is satisfied if the value of A for the tuple is among the values listed in SA.
If A has v possible values, then there are 2v possible subsets. For example, if income has three pos-
sible values, namely {low, medium, high}, then the possible subsets are {low, medium, high}, {low,
medium}, {low, high}, {medium, high}, {low}, {medium}, {high}, and {}. We exclude the power set,
{low, medium, high}, and the empty set from consideration since, conceptually, they do not represent
a split. Therefore there are (2v − 2)/2 possible ways to form two partitions of the data, D, based on a
binary split on A.
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When considering a binary split, we compute a weighted sum of the impurity of each resulting
partition. For example, if a binary split on A partitions D into D1 and D2, the Gini impurity of D given
that partitioning is

GiniA(D) = |D1|
|D| Gini(D1) + |D2|

|D| Gini(D2). (6.9)

For each attribute, each of the possible binary splits is considered. For a discrete-valued attribute, the
subset that gives the minimum Gini impurity for that attribute is selected as its splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The strategy is sim-
ilar to that described earlier for information gain, where the midpoint between each pair of (sorted)
adjacent values is taken as a possible split-point. The point giving the minimum Gini impurity for a
given (continuous-valued) attribute is taken as the split-point of that attribute. Recall that for a possible
split-point of A, D1 is the set of tuples in D satisfying A ≤ split_point, and D2 is the set of tuples in D

satisfying A > split_point.
The reduction in impurity that would be incurred by a binary split on a discrete- or continuous-

valued attribute A is

�Gini(A) = Gini(D) − GiniA(D). (6.10)

The attribute that maximizes the reduction in impurity (or, equivalently, has the minimum Gini impu-
rity) is selected as the splitting attribute. This attribute and either its splitting subset (for a discrete-
valued splitting attribute) or split-point (for a continuous-valued splitting attribute) together form the
splitting criterion.

Example 6.3. Induction of a decision tree using the Gini impurity. Let D be the training data shown
earlier in Table 6.1, where there are nine tuples belonging to the class buys_computer = yes and the
remaining five tuples belong to the class buys_computer = no. A (root) node N is created for the tuples
in D. We first use Eq. (6.8) for the Gini impurity to compute the impurity of D:

Gini(D) = 1 −
(

9

14

)2

−
(

5

14

)2

= 0.459.

To find the splitting criterion for the tuples in D, we need to compute the Gini impurity for each
attribute. Let’s start with the attribute income and consider each of the possible splitting subsets. Con-
sider the subset {low, medium}. This would result in 10 tuples in partition D1 satisfying the condition
“income ∈ {low, medium}.” The remaining four tuples of D would be assigned to partition D2. The
Gini impurity value computed based on this partitioning is

Giniincome ∈ {low,medium}(D)

= 10

14
Gini(D1) + 4

14
Gini(D2)

= 10

14

(
1 −

(
7

10

)2

−
(

3

10

)2
)

+ 4

14

(
1 −

(
2

4

)2

−
(

2

4

)2
)

= 0.443

= Giniincome ∈ {high}(D).
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Similarly, the Gini impurity values for splits on the remaining subsets are 0.458 (for the subsets {low,
high} and {medium}) and 0.450 (for the subsets {medium, high} and {low}). Therefore the best binary
split for attribute income is on {low, medium} (or {high}) because it minimizes the Gini impurity.
Evaluating age, we obtain {youth, senior} (or {middle_aged}) as the best split for age with a Gini
impurity of 0.375; the attributes student and credit_rating are both binary, with Gini impurity values of
0.367 and 0.429, respectively.

The attribute age and splitting subset {youth, senior} therefore give the minimum Gini impurity
overall, with a reduction in impurity of 0.459 − 0.357 = 0.102. The binary split “age ∈ {youth, se-
nior?}” results in the maximum reduction in impurity of the tuples in D and is returned as the splitting
criterion. Node N is labeled with the criterion, two branches are grown from it, and the tuples are
partitioned accordingly.

“So, what is the relationship between Gini impurity and information gain?” Intuitively, both mea-
sures aim to quantify to what extent the impurity will be reduced if we split the current node based
on the given attribute. Information gain, rooted in information theory, measures the impurity based on
(the change of) the average amount of information needed to identify the class label of a tuple. Gini
impurity is related to mis-classification in the following way. Based on the class label distribution in
the current node, it tells how likely a randomly chosen tuple will be mis-classified if it is assigned to
a random class label. Gini impurity is always used for binary split, whereas information gain allows
multiway split. In terms of computation, Gini impurity is slightly more efficient than information gain,
since the latter involves the logarithm computation. In practice, however, both measures often lead to
very similar decision trees.

Other attribute selection measures
This section on attribute selection measures was not intended to be exhaustive. We have shown three
measures that are commonly used for building decision trees. These measures are not without their
biases. Information gain, as we saw, is biased toward multivalued attributes. Although the gain ratio
adjusts for this bias, it tends to prefer unbalanced splits in which one partition is much smaller than the
others. The Gini impurity is biased toward multivalued attributes and has difficulty when the number of
classes is large. It also tends to favor tests that result in equal-size partitions and purity in both partitions.
Although biased, these measures give reasonably good results in practice.

Many other attribute selection measures have been proposed. CHAID, a decision tree algorithm that
is popular in marketing, uses an attribute selection measure that is based on the statistical χ2 test for
independence. Other measures include C-SEP (which performs better than information gain and Gini
impurity in certain cases) and G-statistic (an information theoretic measure that is a close approximation
to χ2 distribution).

For regression tree, it is natural to use RSS (Eq. (6.1)) as the splitting criteria. That is, the best
split point for a given attribute is the one that leads the smallest RSS. We choose the attribute with the
minimum RSS to split the tree node into two nodes, including left leaf node and right leaf node.

Example 6.4. Let us look at an example in Table 6.2 on how to use RSS to find the best split point.
Suppose there are five training tuples at a regression tree node, and each training tuple has a true output
value yi and a continuous attribute xi(i = 1, ...,5). We want to find the best split point for attribute xi

to split the tree node into two leaf nodes. More specifically, all the tuples whose xi is less than or equal
to the split point will go to the left leaf node, and the remaining training tuples will go to the right leaf
node.
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Table 6.2 Training data for regression.

attribute xi 1 2 3 4 5

output yi 10 12 8 20 22

Given five training tuples at a regression tree node, each with a
true output value yi and a continuous attribute xi(i = 1, ...,5).
We want to find the best split point for attribute xi to split the tree
node into two nodes (left node and right node).

Table 6.3 Using RSS to choose the best split point for data
tuples in Table 6.2.

candidate split point xi 1.5 2.5 3.5 4.5

predicted value of left leaf node yl 10 11 10 12.5

predicted value of right leaf node yr 15.5 16.7 21 22

RSS 131 116.67 10 83

Since xi is a continuous attribute with five possible values, there are four candidate split points,
including xi = 1.5, xi = 2.5, xi = 3.5 and xi = 4.5. For each candidate split point, we partition the
current tree node into two leaf nodes. The average output value yl of the training tuples in the left
leaf node is used to predict the output of all tuples residing in the left leaf node. Likewise, the average
output value yr of the training tuples in the right leaf node is used to predict the output of all tuples
residing in the right leaf node. For example, if the split point xi = 1.5, only the first training tuple
goes to the left leaf node, and we have that yl = y1 = 10; and yr = (y2 + y3 + y4 + y5)/4 = (12 + 8 +
20 + 22)/4 = 15.5. Using the predicted output values for all five training tuples (yl or yr ), we can use
Eq. (6.1) to calculate RSS. Again, if the split point xi = 1.5, we have that RSS = ∑5

i=1(yi − ŷi )
2 =

(y1 − yl)
2 + (y2 − yr)

2 + (y3 − yr)
2 + (y4 − yr)

2 + (y5 − yr)
2 = 122.25. The computation results for

all four possible split points are summarized in Table 6.3. Since xi = 3.5 has the smallest RSS, it is
chosen as the split point.

Attribute selection measures based on the Minimum Description Length (MDL) principle have
the least bias toward multivalued attributes. MDL-based measures use encoding techniques to define
the “best” decision tree as the one that requires the fewest number of bits to both (1) encode the tree
and (2) encode the exceptions to the tree (i.e., cases that are not correctly classified by the tree). Its
main idea is that the simplest solution is preferred. The philosophy underlying the MLD principle is
Occam’s razor, also known as law of parsimony. In data mining and machine learning, Occam’s razor
is often translated into a design principle that one should favor a model with a shorter description (hence
minimum description length) for the data over a lengthier model, provided that everything else is equal
(e.g., both shorter and lengthier models share the same training set errors).

Other attribute selection measures consider multivariate splits (i.e., where the partitioning of tu-
ples is based on a combination of attributes, rather than on a single attribute). The CART system, for
example, can find multivariate splits based on a linear combination of attributes. Multivariate splits are
a form of attribute (or feature) construction, where new attributes are created based on the existing
ones. (Attribute construction was also discussed in Chapter 2 as a form of data transformation.) These
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other measures mentioned here are beyond the scope of this book. Additional references are given in
the bibliographic notes at the end of this chapter (Section 6.10).

“Which attribute selection measure is the best?” All measures have some bias. It has been shown
that the time complexity of decision tree induction generally increases exponentially with tree height.
Hence, measures that tend to produce shallower trees (e.g., with multiway rather than binary splits, and
that favor more balanced splits) may be preferred. However, some studies have found that shallow trees
tend to have a large number of leaves and higher error rates. Despite several comparative studies, no
single attribute selection measure has been found to be significantly superior to others. Most measures
give quite good results.

6.2.3 Tree pruning
When a decision tree is built, many of the branches will reflect anomalies in the training data due to
noise or outliers. Tree pruning methods address this problem of overfitting the data. Such methods
typically use statistical measures to remove the least-reliable branches. An unpruned tree and a pruned
version of it are shown in Fig. 6.7. Pruned trees tend to be smaller and less complex and, thus, easier
to comprehend. They are usually faster and better at correctly classifying independent test data (i.e., of
previously unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning: prepruning
and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g., by deciding
not to further split or partition the subset of training tuples at a given node). Upon halting, the node be-
comes a leaf. The leaf may hold the most frequent class label among the subset tuples or the probability
distribution of the class labels of those tuples.

When constructing a tree, measures such as statistical significance, information gain, Gini impurity,
and so on, can be used to assess the goodness of a split. If partitioning the tuples at a node would result
in a split that falls below a prespecified threshold, then further partitioning of the given subset is halted.

FIGURE 6.7

An unpruned decision tree (left) and a pruned version of it (right).
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There are difficulties, however, in choosing an appropriate threshold. High thresholds could result in
oversimplified trees, whereas low thresholds could result in very little simplification.

The second and more common approach is postpruning, which removes subtrees from a “fully
grown” tree. A subtree at a given node is pruned by removing its branches and replacing it with a leaf.
The leaf is labeled with the most frequent class label among the subtree being replaced. For example,
notice the subtree at node “A3?” in the unpruned tree of Fig. 6.7. Suppose that the most common class
within this subtree is “class B.” In the pruned version of the tree, the subtree in question is pruned by
replacing it with the leaf “class B.”

The cost complexity pruning algorithm used in CART is an example of the postpruning approach.
This approach considers the cost complexity of a tree to be a function of the number of leaves in the
tree and the error rate of the tree (where the error rate is the percentage of tuples misclassified by the
tree). It starts from the bottom of the tree. For each internal node, N , it computes the cost complexity
of the subtree at N , and the cost complexity of the subtree at N if it were to be pruned (i.e., replaced by
a leaf node). The two values are compared. If pruning the subtree at node N would result in a smaller
cost complexity, then the subtree is pruned; otherwise, it is kept.

A pruning set of class-labeled tuples is used to estimate the cost complexity. This set is independent
(1) of the training set used to build the unpruned tree and (2) of any test set used for accuracy estimation.
The algorithm generates a set of progressively pruned trees. In general, the smallest decision tree that
minimizes the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost complexity method in
that it also uses error rate estimates to make decisions regarding subtree pruning. Pessimistic pruning,
however, does not require the use of a pruning set. Instead, it uses the training set to estimate error rates.
Recall that an estimate of accuracy or error based on the training set is overly optimistic and therefore
strongly biased. The pessimistic pruning method, therefore, adjusts the error rates obtained from the
training set by adding a penalty, so as to counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based on the number of
bits required to encode them. The “best” pruned tree is the one that minimizes the number of encoding
bits. This method adopts the MDL principle, which was briefly introduced in Section 6.2.2. The basic
idea is that the simplest solution is preferred. Unlike cost complexity pruning, it does not require an
independent set of tuples (i.e., the pruning set).

Alternatively, prepruning and postpruning may be interleaved for a combined approach. Postprun-
ing requires more computation than prepruning, yet generally leads to a more reliable tree. No single
pruning method has been found to be superior over all others. Although some pruning methods do de-
pend on the availability of additional data for pruning, this is usually not a concern when dealing with
large databases.

Although pruned trees tend to be more compact than their unpruned counterparts, they may still be
rather large and complex. Decision trees can suffer from repetition and replication (Fig. 6.8), making
them overwhelming to interpret. Repetition occurs when an attribute is repeatedly tested along a given
branch of the tree (e.g., “age < 60?,” followed by “age < 45?,” and so on). In replication, duplicate
subtrees exist within the tree. These situations can impede the accuracy and comprehensibility of a
decision tree. The use of multivariate splits (splits based on a combination of attributes) can prevent
these problems. Another approach is to use a different form of knowledge representation, such as rules,
instead of decision trees. This is described in Chapter 7, which shows how a rule-based classifier can
be constructed by extracting IF-THEN rules from a decision tree.
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FIGURE 6.8

An example of (a) subtree repetition, where an attribute is repeatedly tested along a given branch of the tree (e.g.,
age), and (b) subtree replication, where duplicate subtrees exist within a tree (e.g., the subtree headed by the node
“credit_rating?”).

6.3 Bayes classification methods
“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can predict class
membership probabilities, such as the probability that a given tuple belongs to a particular class.

Bayesian classification is based on Bayes’ theorem, described next. Studies comparing classification
algorithms have found a simple Bayesian classifier known as the naïve Bayesian classifier to be com-
parable in performance with decision trees and selected neural network classifiers. Bayesian classifiers
have also exhibited high accuracy and speed when applied to large databases.
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Naïve Bayesian classifiers assume that the effect of an attribute value on a given class is independent
of the values of the other attributes. This assumption is called class-conditional independence. It is made
to simplify the computations involved and, in this sense, is considered “naïve.”

Section 6.3.1 reviews basic probability notation and Bayes’ theorem. In Section 6.3.2, you will learn
how to do naïve Bayesian classification.

6.3.1 Bayes’ theorem
Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who did early work
in probability and decision theory during the 18th century. Let X be a data tuple. In Bayesian terms, X is
considered “evidence.” As usual, it is described by measurements made on a set of n attributes. Let H be
some hypothesis such as that the data tuple X belongs to a specified class C. For classification problems,
we want to determine P(H |X), the probability that the hypothesis H holds given the “evidence” or
observed data tuple X. In other words, we are looking for the probability that tuple X belongs to class
C, given that we know the attribute description of X.

P(H |X) is the posterior probability, or a posteriori probability, of H conditioned on X. For
example, suppose our world of data tuples is confined to customers described by the attributes age and
income, respectively, and that X is a 35-year-old customer with an income of $40,000. Suppose that
H is the hypothesis that our customer will buy a computer. Then P(H |X) reflects the probability that
customer X will buy a computer given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H . For our example, this is
the probability that any given customer will buy a computer, regardless of age, income, or any other
information, for that matter. The posterior probability, P(H |X), is based on more information (e.g.,
customer information) than the prior probability, P(H), which is independent of X.

Similarly, P(X|H) is the conditional probability of X conditioned on H . That is, it is the probability
that a customer, X, is 35 years old and earns $40,000, given that we know the customer will buy a
computer. In classification, P(X|H) is also often referred to as likelihood.

P(X) is the prior probability of X. Using our example, it is the probability that a person from our
set of customers is 35 years old and earns $40,000. In classification, P(X) is also often referred to as
marginal probability.

“How are these probabilities estimated?” P(H), P(X|H), and P(X) may be estimated from the
given data, as we shall see next. Bayes’ theorem is useful in that it provides a way of calculating the
posterior probability, P(H |X), from P(H), P(X|H), and P(X). Bayes’ theorem is

P(H |X) = P(X|H)P (H)

P (X)
. (6.11)

“What does Bayes classifier look like?” Suppose that there are m classes, C1,C2, . . . ,Cm. Given a
tuple, X, we want to predict which class it belongs to. In Bayes classifier, it first calculates the posterior
probabilities for each of the m classes, P(Ci |X) (i = 1, . . . ,m), and then predicts that tuple X belongs
to the class with the highest posterior probability. In the above example, given a customer, X, of 35 years
old and earning $40,000, we want to predict if the customer will buy a computer. So, in this task, there
are two possible classes (buy computer vs. not buy computer). Suppose P(buy computer|X) = 0.8 and
P(not buy computer|X) = 0.2. Bayes classifier will predict that the customer X will buy a computer.
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“So, how good is Bayes classifier?” In theory, Bayes classifier is optimal in the sense that it has
the smallest classification error rate compared to all other classifiers. Since Bayes classifier is a prob-
abilistic method, it could make a wrong prediction for any given tuple. In the above example, Bayes
classifier predicts the customer will buy a computer. Since P(not buy computer|X) = 0.2, there is 20%
chance that the prediction the Bayes classifier makes is incorrect. However, since Bayes classifier
always predicts the class with the maximum posterior probability, the probability that its prediction is
wrong for a given tuple X (which is often called risk) is the lowest in comparison to all other classifiers.
In our example, the risk for the given customer is 0.2. In other words, there is 20% probability that the
prediction by Bayes classifier is wrong. Therefore, the overall classification error of Bayes classifier,
which is the expectation (i.e., the weighted average) of the risk of all possible tuples, is the lowest in
all possible classifiers. Given its theoretic optimality, Bayes classifier plays a foundational role in the
statistical machine learning community. For example, many classifiers (e.g., naïve Bayesian classifier,
k-Nearest-Neighbor classifier, logistic regression, Bayesian network, etc.) can be viewed as approxi-
mated Bayes classifiers. Bayes classifier is also useful in that it provides a theoretical justification for
other classifiers that do not explicitly use Bayes’ theorem. For example, under certain assumptions, it
can be shown that many neural network and curve-fitting algorithms output the maximum posteriori
hypothesis, as does the Bayes classifier.

“Then, why do not we just use Bayes classifier?” According to Bayes’ theorem (Eq. (6.11)), in
order to calculate the posterior probabilities P(Ci |X) (i = 1, . . . ,m), we need to know the conditional
probabilities P(X|Ci) (i = 1, . . . ,m), the priors P(Ci) (i = 1, . . . ,m) and the marginal probability
P(X). In Bayes classifier, we only need to know which class has the highest posterior probability
and for a given tuple X, its marginal probability is independent of different classes. In other words,
different posterior probabilities P(Ci |X) (i = 1, . . . ,m) share the same marginal probability P(X).
Therefore for the purpose of predicting which class a given tuple belongs to, we only need to estimate
the conditional probabilities P(X|Ci) (i = 1, . . . ,m), and the priors P(Ci) (i = 1, . . . ,m).5

It is relatively easy to estimate the priors P(Ci) (i = 1, . . . ,m) from the training data set (the details
will be introduced in the next section). On the other hand, it is usually very challenging to directly
estimate the conditional probabilities P(X|Ci) (i = 1, . . . ,m). To see this, let us assume there are n

binary attributes A1,A2, . . . ,An. Then, the n-dimensional attribute vector X has 2n possible values
and we need to estimate the conditional probability of each possible value of the attribute vector with
respect to each class label.6 In other words, the attribute value space is exponential! It is very difficult
to estimate such a large number of parameters for the conditional probabilities.7

Therefore the main difficulty for Bayes classifier lies in how to efficiently estimate the conditional
probabilities, often with some approximation. Many solutions have been developed. One of such efforts,
probably the simplest yet quite effective solution, is the naïve Bayesian classifier, which we introduce
next.

5 The marginal probability P(X) itself can be calculated based on the conditional probabilities P(X|Ci) (i = 1, . . . ,m), and
the priors P(Ci) (i = 1, . . . ,m) based on the law of total probability, that is, P(X) = ∑m

i=1 P(X|Ci)P (Ci). It is necessary to
calculate the marginal probability in some scenarios (e.g., to estimate the risk of Bayes classifier).
6 The total number of the parameters we need to estimate for conditional probabilities in this case is m(2n − 1). The details are
left as an exercise.
7 In statistics, it means that the estimation results bear high variance, which are not reliable.



262 Chapter 6 Classification: basic concepts and methods

6.3.2 Naïve Bayesian classification
The naïve Bayesian classifier, or simple Bayesian classifier, follows the same procedure as Bayes
classifier, except the way it estimates the conditional probabilities. In detail, it works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple is represented
by an n-dimensional attribute vector, X = (x1, x2, . . . , xn), depicting n measurements made on the
tuple from n attributes, respectively, A1,A2, . . . ,An.

2. Suppose that there are m classes, C1,C2, . . . ,Cm. Given a tuple, X, the classifier will predict that
X belongs to the class having the highest posterior probability, conditioned on X. That is, the naïve
Bayesian classifier predicts that tuple X belongs to the class Ci if and only if

P(Ci |X) > P (Cj |X) for 1 ≤ j ≤ m,j �= i.

Thus we maximize P(Ci |X). The class Ci for which P(Ci |X) is maximized is called the maximum
posteriori hypothesis. By Bayes’ theorem (Eq. (6.11)),

P(Ci |X) = P(X|Ci)P (Ci)

P (X)
. (6.12)

3. As P(X) is constant for all classes, we only need to find out which class maximizes P(X|Ci)P (Ci).
If the class prior probabilities are not known, then it is commonly assumed that the classes are
equally likely, that is, P(C1) = P(C2) = · · · = P(Cm), and we would therefore maximize P(X|Ci).
Otherwise, we maximize P(X|Ci)P (Ci). Note that the class prior probabilities may be estimated
by P(Ci) = |Ci,D|/|D|, where |Ci,D| is the number of training tuples of class Ci in D.

4. Given a data set with many attributes, it would be extremely computationally expensive to compute
P(X|Ci) for the aforementioned reasons. To reduce computation in evaluating P(X|Ci), the naïve
assumption of class-conditional independence is made. This presumes that the attributes’ values
are conditionally independent of one another, given the class label of the tuple (i.e., there are no
dependence relationships among the attributes, if we know which class the tuple belongs to.). Thus

P(X|Ci) =
n∏

k=1

P(xk|Ci) (6.13)

= P(x1|Ci) × P(x2|Ci) × · · · × P(xn|Ci).

We can easily estimate the probabilities P(x1|Ci),P (x2|Ci), . . . ,P (xn|Ci) from the training tuples.
Recall that here xk refers to the value of attribute Ak for tuple X. For each attribute, we look at
whether the attribute is categorical or continuous-valued. For instance, to compute P(X|Ci), we
consider the following:
a. If Ak is categorical, then P(xk|Ci) is the number of tuples of class Ci in D having the value xk

for Ak , divided by |Ci,D|, the number of tuples of class Ci in D.8

8 In statistics, this is the classic maximum likelihood estimation (MLE) method.
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b. If Ak is continuous-valued, then we need to do a bit more work, but the calculation is pretty
straightforward. A continuous-valued attribute is typically assumed to have a Gaussian distri-
bution with a mean μ and standard deviation σ , defined by

g(x,μ,σ ) = 1√
2πσ

e
− (x−μ)2

2σ2 , (6.14)

so that

P(xk|Ci) = g(xk,μCi
, σCi

). (6.15)

These equations may appear daunting, but hold on! We need to compute μCi
and σCi

, which
are the mean (i.e., average) and standard deviation, respectively, of the values of attribute Ak

for training tuples of class Ci . We then plug these two quantities into Eq. (6.14), together with
xk , to estimate P(xk|Ci).
For example, let X = (35,$40,000), where A1 and A2 are the attributes age and income, re-
spectively. Let the class label attribute be buys_computer. The associated class label for X is yes
(i.e., buys_computer = yes). Let’s suppose that age has not been discretized and therefore exists
as a continuous-valued attribute. Suppose that from the training set, we find that customers in
D who buy a computer are 38 ± 12 years of age. In other words, for attribute age and this class
(i.e., buys_computer = yes), we have μ = 38 years and σ = 12. We can plug these quantities,
along with x1 = 35 for our tuple X, into Eq. (6.14) to estimate P(age = 35|buys_computer =
yes). For a quick review of mean and standard deviation calculations, please see Section 2.2.

5. To predict the class label of X, P(X|Ci)P (Ci) is evaluated for each class Ci . The classifier predicts
that the class label of tuple X is the class Ci if and only if

P(X|Ci)P (Ci) > P (X|Cj )P (Cj ) for 1 ≤ j ≤ m,j �= i. (6.16)

In other words, the predicted class label is the class Ci for which P(X|Ci)P (Ci) is the maximum.

“How effective is naïve Bayesian classifier?” Notice that the only difference between naïve
Bayesian classifier and Bayes classifier is the class-conditional independence assumption. Therefore
if such an assumption indeed holds, naïve Bayesian classifier would be optimal with the smallest pos-
sible classification error. However, in practice this is not always the case, owing to inaccuracies in the
assumptions made for its use, such as class-conditional independence, and the lack of available proba-
bility data. Nonetheless, various empirical studies of this classifier in comparison to decision trees and
selected neural network classifiers have found it to be comparable in some domains. Another advantage
of naïve Bayesian classifier is that it can naturally handle the missing attribute(s).

Example 6.5. Predicting a class label using naïve Bayesian classification. We wish to predict the
class label of a tuple using naïve Bayesian classification, given the same training data as in Exam-
ple 6.3 for decision tree induction. The training data were shown earlier in Table 6.1. The data tuples are
described by the attributes age, income, student, and credit_rating. The class label attribute, buys_com-
puter, has two distinct values (namely, {yes, no}). Let C1 correspond to the class buys_computer = yes
and C2 correspond to buys_computer = no. The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit_rating = fair).
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We need to find out which class maximizes P(X|Ci)P (Ci), for i = 1, 2. P(Ci), the prior probability
of each class, can be computed based on the training tuples:

P(buys_computer = yes) = 9/14 = 0.643

P(buys_computer = no) = 5/14 = 0.357.

To compute P(X|Ci), for i = 1, 2, we compute the following conditional probabilities:

P(age = youth | buys_computer = yes) = 2/9 = 0.222

P(age = youth | buys_computer = no) = 3/5 = 0.600

P(income = medium | buys_computer = yes) = 4/9 = 0.444

P(income = medium | buys_computer = no) = 2/5 = 0.400

P(student = yes | buys_computer = yes) = 6/9 = 0.667

P(student = yes | buys_computer = no) = 1/5 = 0.200

P(credit_rating = fair | buys_computer = yes) = 6/9 = 0.667

P(credit_rating = fair | buys_computer = no) = 2/5 = 0.400.

Using these probabilities, we obtain

P(X|buys_computer = yes) = P(age = youth | buys_computer = yes)

× P(income = medium | buys_computer = yes)

× P(student = yes | buys_computer = yes)

× P(credit_rating = fair | buys_computer = yes)

= 0.222 × 0.444 × 0.667 × 0.667 = 0.044.

Similarly,

P(X|buys_computer = no) = 0.600 × 0.400 × 0.200 × 0.400 = 0.019.

To find the class, Ci , that maximizes P(X|Ci)P (Ci), we compute

P(X|buys_computer = yes)P (buys_computer = yes) = 0.044 × 0.643 = 0.028

P(X|buys_computer = no)P (buys_computer = no) = 0.019 × 0.357 = 0.007.

Therefore the naïve Bayesian classifier predicts buys_computer = yes for tuple X.

“What if I encounter probability values of zero?” Recall that in Eq. (6.13), we estimate P(X|Ci) as
the product of the probabilities P(x1|Ci),P (x2|Ci), . . . ,P (xn|Ci), based on the assumption of class-
conditional independence. These probabilities can be estimated from the training tuples (step 4). We
need to compute P(X|Ci) for each class (i = 1,2, . . . ,m) to find the class Ci for which P(X|Ci)P (Ci)

is the maximum (step 5). Let’s consider this calculation. For each attribute–value pair (i.e., Ak = xk , for
k = 1,2, . . . , n) in tuple X, we need to count the number of tuples having that attribute–value pair, per
class (i.e., per Ci , for i = 1, . . . ,m). In Example 6.5, we have two classes (m = 2), namely buys_com-
puter = yes and buys_computer = no. Therefore, for the attribute–value pair student = yes of X, say,
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we need two counts—the number of customers who are students and for which buys_computer = yes
(which contributes to P(X|buys_computer = yes)) and the number of customers who are students and
for which buys_computer = no (which contributes to P(X|buys_computer = no)).

However, what if, say, there are no training tuples representing students for the class buys_
computer = no, resulting in P(student = yes|buys_computer = no) = 0? In other words, what happens
if we should end up with a probability value of zero for some P(xk|Ci)? Plugging this zero value into
Eq. (6.13) would return a zero probability for P(X|Ci), even though, without the zero probability, we
may have ended up with a high probability, suggesting that X belonged to class Ci! A zero probability
cancels the effects of all the other (posteriori) probabilities (on Ci) involved in the product.

There is a simple trick to avoid this problem. We can assume that our training database, D, is so large
that adding one to each count that we need would only make a negligible difference in the estimated
probability value yet would conveniently avoid the case of probability values of zero. This technique
for probability estimation is known as the Laplacian correction or Laplace estimator, named after
Pierre Laplace, a French mathematician who lived from 1749 to 1827.9 If we have, say, q counts to
which we each add one, then we must remember to add q to the corresponding denominator used in the
probability calculation. We illustrate this technique in Example 6.6.

Example 6.6. Using the Laplacian correction to avoid computing probability values of zero. Sup-
pose that for the class buys_computer = yes in some training database, D, containing 1000 tuples, we
have 0 tuples with income = low, 990 tuples with income = medium, and 10 tuples with income = high.
The probabilities of these events, without the Laplacian correction, are 0, 0.990 (from 990/1000), and
0.010 (from 10/1000), respectively. Using the Laplacian correction for the three quantities, we pretend
that we have one more tuple for each income-value pair. In this way, we instead obtain the following
probabilities (rounded up to three decimal places):

1

1003
= 0.001,

991

1003
= 0.988, and

11

1003
= 0.011,

respectively. The “corrected” probability estimates are close to their “uncorrected” counterparts, yet the
zero probability value is avoided.

The main idea of naïve Bayesian classifier lies in the class-conditional independence assumption,
which significantly simplifies the estimation of the conditional probabilities P(X|Ci) (i = 1, ...,m).
However, this (class-conditional independence assumption) is also one major limitation of naïve
Bayesian classifier, since it might not be true for some applications. To address this issue, we need more
sophisticated ways to approximate the conditional probabilities, such as Bayesian networks, which will
be introduced in the next chapter.

9 In statistics, this belongs to the Maximum a Posteriori (MAP) method. This can also be viewed as a smoothing technique (i.e.,
to “smooth” the zero probabilities). In practice, we can also replace 1 by a small integer k. The intuition is that we have k (instead
of 1) more tuples for each attribute-value pair.
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6.4 Lazy learners (or learning from your neighbors)
The classification methods discussed so far in this book—decision tree induction and Bayesian
classification—are both examples of eager learners. Eager learners, when given a set of training
tuples, will construct a generalization (i.e., classification) model before receiving new (e.g., test) tuples
to classify. We can think of the learned model as being ready and eager to classify previously unseen
tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until the last minute before
doing any model construction to classify a given test tuple. That is, when given a training tuple, a lazy
learner simply stores it (or does only a little minor processing) and waits until it is given a test tuple.
Only when it sees the test tuple does it perform generalization to classify the tuple based on its similarity
to the stored training tuples. Unlike eager learning methods, lazy learners do less work when a training
tuple is presented and more work when making a classification or numeric prediction. Because lazy
learners store the training tuples or “instances,” they are also referred to as instance-based learners,
even though all learning is essentially based on instances.

When making a classification or numeric prediction, lazy learners can be computationally expen-
sive. They require efficient storage techniques and are well suited to implementation on parallel hard-
ware. They offer little explanation or insight into the data’s structure. Lazy learners, however, naturally
support incremental learning. They are able to model complex decision spaces having hyperpolygonal
shapes that may not be as easily describable by other learning algorithms (such as hyperrectangular
shapes modeled by decision trees). In this section, we look at two examples of lazy learners: k-nearest-
neighbor classifiers (Section 6.4.1) and case-based reasoning classifiers (Section 6.4.2).

6.4.1 k-nearest-neighbor classifiers
The k-nearest-neighbor method was first described in the early 1950s. The method is labor-intensive
when given a large training set, and did not gain popularity until the 1960s when increased computing
power became available. It has since been widely used in the area of pattern recognition.

Suppose you want to make a decision on whether or not you should buy a computer. What would
you do? One possible way to make such a decision is to find out your friends’ decision on this (whether
or not to buy a computer). If most of your close friends buy a computer, maybe you will decide to
buy a computer as well. Nearest-neighbor classifiers follow a very similar idea of learning by analogy,
that is, by comparing a given test tuple with training tuples that are similar to it. The training tuples
are described by n attributes. Each tuple represents a point in an n-dimensional space. In this way, all
the training tuples are stored in an n-dimensional attribute space. When given an unknown tuple, a
k-nearest-neighbor classifier searches the attribute space for the k training tuples that are closest to
the unknown tuple (i.e., to find your close friends in the above example). These k training tuples are
the k “nearest neighbors” of the unknown tuple. Then k-nearest-neighbor classifier chooses the most
common class label among the k nearest neighbors as the predicted class label of the unknown tuple
(i.e., to follow the majority decision of your friends in the above example).

“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The Euclidean
distance between two points or tuples, say, X1 = (x11, x12, . . . , x1n) and X2 = (x21, x22, . . . , x2n), is
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dist(X1,X2) =
√√√√ n∑

i=1

(x1i − x2i )2. (6.17)

In other words, for each numeric attribute, we take the difference between the corresponding values of
that attribute in tuple X1 and in tuple X2, square this difference, and accumulate it. The square root
is taken of the total accumulated distance count. Typically, we normalize the values of each attribute
before using Eq. (6.17). This helps prevent attributes with initially large ranges (e.g., income) from
outweighing attributes with initially smaller ranges (e.g., binary attributes). Min-max normalization,
for example, can be used to transform a value v of a numeric attribute A to v ′ in the range [0,1] by
computing

v ′ = v − minA

maxA − minA

, (6.18)

where minA and maxA are the minimum and maximum values of attribute A. Chapter 2 describes other
methods for data normalization as a form of data transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most common class label
among its k-nearest neighbors. When k = 1, the unknown tuple is assigned the class of the training
tuple that is closest to it in the attribute space. When k > 1, we can take a (weighted) majority voting
on the class labels among its k-nearest neighbors. Nearest-neighbor classifiers can also be used for
numeric prediction, that is, to return a real-valued prediction for a given unknown tuple. In this case,
the classifier returns the (weighted) average value of the real-valued labels associated with the k-nearest
neighbors of the unknown tuple.

“But how can distance be computed for attributes that are not numeric, but nominal (or categorical)
such as color?” The previous discussion assumes that the attributes used to describe the tuples are all
numeric. For nominal attributes, a simple method is to compare the corresponding value of the attribute
in tuple X1 with that in tuple X2. If the two are identical (e.g., tuples X1 and X2 both have the color
blue), then the difference between the two is taken as 0. If the two are different (e.g., tuple X1 is blue
but tuple X2 is red), then the difference is considered to be 1. Other methods may incorporate more
sophisticated schemes for differential grading (e.g., where a larger difference score is assigned, say, for
blue and white than for blue and black).

“What about missing values?” In general, if the value of a given attribute A is missing in tuple X1 or
in tuple X2, we assume the maximum possible difference. Suppose that each of the attributes has been
mapped to the range [0,1]. For nominal attributes, we take the difference value to be 1 if either one or
both of the corresponding values of A are missing. If A is numeric and missing from both tuples X1
and X2, then the difference is also taken to be 1. If only one value is missing and the other (which we
will call v ′) is present and normalized, then we can take the difference to be either |1 − v ′| or |0 − v ′|
(i.e., 1 − v ′ or v ′), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This can be determined
experimentally. Starting with k = 1, we use a test set to estimate the error rate of the classifier. This
process can be repeated each time by incrementing k to allow for one more neighbor. The k value that
gives the minimum error rate may be selected. In general, the larger the number of training tuples, the
larger the value of k will be (so that classification and numeric prediction decisions can be based on a
larger portion of the stored tuples). As the number of training tuples approaches infinity and k = 1, the
error rate can be no worse than twice the Bayes error rate (the latter being the theoretical minimum). In
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FIGURE 6.9

The impact of distance metrics on 1-nearest-neighbor classifier. Given two training examples, including a positive
example at (1,0) and a negative example at (−1,0). The decision boundaries of 1-nearest-neighbor classifier using
different distance metrics are quite different from each other. Using L2 norm (on the left), the decision boundary
is a vertical line at x2 = 0. Using L∞ norm (on the right), the decision boundary includes a line segment between
(0,−1) and (0,1) and two shaded areas.

other words, 1-nearest-neighbor classifier is asymptotically near-optimal. If k approaches infinity, the
error rate approaches the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign equal weight to
each attribute. They, therefore, can suffer from poor accuracy when given noisy or irrelevant attributes.
The method, however, has been modified to incorporate attribute weighting and the pruning of noisy
data tuples. The choice of a distance metric can be critical. The Manhattan (city block) distance (Sec-
tion 2.3), or other distance measurements, may also be used. Fig. 6.9 presents an illustrative example
in terms of the impact of distance metrics on the decision boundary of k-nearest-neighbor classifier.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D is a training
database of |D| tuples and k = 1, then O(|D|) comparisons are required to classify a given test tuple. By
presorting and arranging the stored tuples into search trees, the number of comparisons can be reduced
to O(log(|D|). Parallel implementation can reduce the running time to a constant, that is, O(1), which
is independent of |D|.

Other techniques to speed up classification time include the use of partial distance calculations and
editing the stored tuples. In the partial distance method, we compute the distance based on a subset
of the n attributes. If this distance exceeds a threshold, then further computation for the given stored
tuple is halted, and the process moves on to the next stored tuple. The editing method removes training
tuples that are proven useless. This method is also referred to as pruning or condensing because it
reduces the total number of tuples stored. Another technique to speed up nearest-neighbor search is
via locality-sensitive-hashing (LSH). The key idea is to hash the similar tuples into the same bucket
with a high probability via locality-preserving hash functions. Then, given a test tuple, we first identify
which bucket it belongs to, and then we only search the training tuples in the same bucket to identify
its nearest neighbors.
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6.4.2 Case-based reasoning
Case-based reasoning (CBR) classifiers use a database of problem solutions to solve new problems.
Unlike k-nearest-neighbor classifiers, which store training tuples as points in Euclidean space, CBR
stores the tuples or “cases” for problem solving as complex symbolic descriptions. Business appli-
cations of CBR include problem resolution for customer service help desks, where cases describe
product-related diagnostic problems. CBR has also been applied to areas, such as engineering and
law, where cases are either technical designs or legal rulings in the common law system, respectively.
Medical education is another area for CBR, where patient case histories and treatments are used to help
diagnose and treat new patients.

When given a new case to classify, a case-based reasoner will first check if an identical training case
exists. If one is found, then the accompanying solution to that case is returned. If no identical case is
found, then the case-based reasoner will search for training cases having components that are similar
to those of the new case. Conceptually, these training cases may be considered as neighbors of the
new case. If cases are represented as graphs, this involves searching for subgraphs that are similar to
subgraphs within the new case. The case-based reasoner tries to combine the solutions of the neighbor-
ing training cases to propose a solution for the new case. If incompatibilities arise with the individual
solutions, then backtracking to search for other solutions may be necessary. The case-based reasoner
may employ background knowledge and problem-solving strategies to propose a feasible combined
solution.

Key challenges in case-based reasoning include finding a good similarity metric (e.g., for matching
subgraphs) and suitable methods for combining solutions. Other challenges include the selection of
salient features for indexing training cases and the development of efficient indexing techniques. A
trade-off between accuracy and efficiency evolves as the number of stored cases becomes very large.
As this number increases, the case-based reasoner becomes more intelligent. After a certain point,
however, the system’s efficiency will suffer as the time required to search for and process relevant
cases increases. As with nearest-neighbor classifiers, one solution is to edit the training database. Cases
that are redundant or those that have not proved useful may be discarded for the sake of improved
performance. These decisions, however, are not clear-cut, and their automation remains an active area
of research.

6.5 Linear classifiers
So far, we have learned a few classifiers which are capable of generating complex decision bound-
aries. For example, a decision tree classifier might output a hyperrectangular-shaped decision bound-
ary (Fig. 6.10(a)), and a k-nearest-neighbor classifier might output a hyperpolygonal-shaped decision
boundary (Fig. 6.10(b)). However, what about a simple, linear decision boundary? For the example in
Fig. 6.10, intuitively, a linear decision boundary (the straight line in Fig. 6.10(c)) is (almost) as good
as decision tree classifiers and k-nearest-neighbor classifier in separating the positive training tuples
from the negative training ones. Yet, such a linear decision boundary might offer additional advantages,
such as efficient computation for training the classifier, better generalization performance, and better
interpretability.

In this section, we introduce basic techniques to learn such linear classifiers. We will start with
linear regression, which forms the basis for linear classifiers. Then, we will introduce two linear classi-
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FIGURE 6.10

Decision boundaries by different classifiers. Note that this example is linearly separable, meaning that a linear
classifier (c) can perfectly separate all the positive training tuples from all the negative training tuples. If the training
set is linearly inseparable, we could still use a linear classifier, at the expense that some training tuples are on the
‘wrong’ side of the decision boundary. In Chapter 7, we will introduce techniques (e.g., support vector machines) to
handle linearly inseparable case.

fiers, including (1) perception, which is one of the earliest linear classifiers, and (2) logistic regression
which is one of the most widely used linear classifiers. Additional linear classifiers will be introduced
in Chapter 7, such as linear support vector machines.

6.5.1 Linear regression
Linear regression is a statistical technique that predicts a continuous value based on one or more inde-
pendent attributes. For example, we might want to predict the housing price based on the living area
or to predict the future income of a student based on which college she attended, in which major and
the overall GPA, etc. Since linear regression aims to predict a continuous value, it cannot be directly
applied to the classification task, where the output is a categorical variable. Nonetheless, the core tech-
niques in linear regression form the basis of linear classifiers. Therefore, let us first briefly introduce
linear regression.

Suppose we have n tuples, each of which is represented by p attributes xi = (xi,1, ..., xi,p)T and a
continuous output value yi (i = 1, ..., n). In linear regression, we want to learn a linear function that
maps the p input attributes xi to the output variable yi , that is, ŷi = wT xi + b = ∑p

j=1 wjxi,j + b,

where ŷi is the predicted output value for the ith tuple, w = (w1, ...,wp)T is a p-dimensional weight
vector and b is the bias scalar. In other words, linear regression assumes that the output value is a linear
weighted summation of the p input attribute values, offset by the bias scalar b. The entries in the weight
vector wj (j = 1, ..., p) tell how important the corresponding attribute xi,j is in predicting the output
variable ŷi . In the aforementioned examples, a linear regression model would assume that the housing
prices are linearly correlated with the living area; the future income of a student can be predicted by a
linear weighted combination of the college she attended, the major, and the overall GPA (plus a bias
scalar b). If we know the weight vector w and the bias scalar b, we can make a prediction of the output
value based on its p input attribute values.

“So, how can we determine the weight vector w and the bias scalar b?” Intuitively, we want to
learn the “best” weight vector w and the “best” bias scalar b from the training data, so that the lin-
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FIGURE 6.11

An example of least square regression. (a) Four training tuples. (b) Scatter-plot of the training tuples (black dots) and
least square regression model (the blue line). Red diamonds are the predicted output ŷi (i = 1,2,3,4) and dashed
lines indicate the prediction errors (|yi − ŷi |) of the corresponding training tuples.

ear regression model can make the “best” prediction. That is, the predicted value ŷi = wT xi + b is
as close as possible to the actual observed value yi (i = 1, ..., n). One of the most common linear
regression methods is called least square regression, which aims to minimize the following loss func-
tion L(w,b) = ∑n

i=1(yi − ŷi )
2 = ∑n

i=1(yi − (wT xi + b))2. Therefore the best weight vector w and
the bias scalar b are the ones that minimize the loss function L(w,b), which measures the sum of the
squared difference between the predicted output value ŷi and the actual observed value yi . For exam-

ple, if there is only one input attribute (i.e., p = 1), the optimal weight w =
∑n

i=1 xi (yi−ȳ)∑n
i=1 x2

i − 1
n
(
∑n

i=1 xi )
2 and the

optimal bias scalar b = 1
n

∑n
i=1(yi − wxi), where ȳ = 1

n

∑n
i=1 yi is the average observed output value

among all n training tuples.

Example 6.7. Let us look at an example of least square regression in Fig. 6.11. There are four training
tuples, each represented by a single-dimensional attribute xi and an output variable yi (i = 1,2,3,4).
We want to find least square regression model y = wx + b that predicts the output y based on
the input attribute x. We use the two equations mentioned above to find the optimal weight w

and the optimal bias scalar b. We first find the optimal weight w as follows. The average out-
put of four training tuples is ȳ = (y1 + y2 + y3 + y4)/4 = (4 + 10 + 14 + 16)/4 = 11. Therefore we
have that

∑4
i=1 xi(yi − ȳ) = 1(4 − 11) + 3(10 − 11) + 5(14 − 11) + 7(16 − 11) = 40. In the mean-

while, we have that
∑4

i=1 x2
i = 12 + 32 + 52 + 72 = 84 and 1/4(

∑4
i=1 xi)

2 = (1 + 3 + 5 + 7)2/4 = 64.

Therefore the optimal weight w =
∑n

i=1 xi (yi−ȳ)∑n
i=1 x2

i − 1
n
(
∑n

i=1 xi )
2 = 40

84−64 = 2. Based on the optimal weight w, the

optimal bias scalar b =
∑4

i=1(yi−wxi)

4 = (4−2×1)+(10−2×3)+(14−2×5)+(16−2×7)
4 = 3.
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“But, what if there are multiple p (p > 1) attributes?” In this case (which is called multi-
linear regression), let us first change our notation a little bit. We assume there is an additional
“dummy” attribute which always takes the value of 1 for any tuple. Let the weight for this dummy
attribute be w0. Then the overall weight vector w = (w0,w1, ...,wp) and the new input attribute vector
xi = (1, xi,1, ..., xi,p) are both (p + 1)-dimensional vectors. The multilinear regression model can be
re-written as ŷi = wT xi = w0 + w1xi,1 + ... + wpxi,p. We use the same loss function as before, that is,
L(w) = ∑n

i=1(yi − ŷi )
2 = ∑n

i=1(yi − (wT xi))
2. It turns out the optimal weight vector w can be com-

puted as w = (XXT )−1Xy, where X = [x1, x2, ..., xn] is a (p + 1) × n matrix, and y = [y1, ..., yn]T
is an n × 1 vector. (How to derive the closed form solutions for single linear regression as well as
multilinear regression are left as exercises.)

In least square regression, we measure the “goodness” of the learned regression model by the
sum of the squared difference between predicted and actual output values. The squared loss might
be sensitive to the outliers in the training set. In robust regression, it uses alternative loss func-
tions that are less sensitive to such outliers. For example, the Huber method in robust regression
uses the following loss: L(w) = ∑n

i=1 lH (yi − ŷi ), where lH (yi − ŷi ) = (yi − ŷi )
2 if |yi − ŷi | < θ ,

lH (yi − ŷi ) = 2θ |yi − ŷi | − θ2 otherwise, and θ > 0 is a user-specified parameter. Notice that the opti-
mal weight vector w for multilinear regression involves a matrix inverse (i.e., (XXT )−1). In case p > n

(i.e., the number of attributes is more than the number of training tuples), such a matrix inverse does
not exist. An effective way to address this issue is to introduce a regularization term regarding the
norm of the weight vector w. For example, if we use l2 norm of the weight vector w, the corresponding
regression model is called Ridge regression; if we use l1 norm of the weight vector w instead, the cor-
responding regression model is called Lasso regression which often learns a sparse weight vector. This
means that some entries of the learned weight vector w are zeros, which indicates that those attributes
are not used in the regression model. In Section 7.1, we will use Lasso regression for feature selection.

6.5.2 Perceptron: turning linear regression to classification
“How can we modify a linear regression model to perform classification task?” Suppose we have a
binary classification task.10 The output value yi for a given tuple is a binary variable: y1 = +1 indicates
the ith tuple is a positive tuple (e.g., buy computer) and yi = 0 indicates the ith tuple is a negative one
(e.g., not buy computer). One way to modify the linear regression model for such a binary classification
task is to use the sign of the output of the linear regression model as the predicted class label, that is,
ŷi = sign(wT xi), where ŷi is the predicted class label for ith tuple, sign(z) = 1 if z > 0 and sign(z) = 0
otherwise. Notice that we use the same notation as multilinear regression where we have introduced a
“dummy” attribute which always takes the value of 1 for any tuple. Therefore if we know the weight
vector w, we can use it to predict the class label of a given tuple as follows. We compute a linear
combination of the attribute values of the given tuple, weighted by the corresponding entries of the
weight vector w. If the resulting value of such a linear combination is positive, we predict that the
given tuple is a positive tuple. Otherwise, we predict that it is a negative one.

“How can we find the optimal weight vector w from a set of training tuples?” The classic learning
algorithm to train a perceptron is as follows. We start with an initial guess of the weight vector w (e.g.,

10 For both perceptron and logistic regression classifiers that we will introduce next, we focus on binary classification task.
However, the techniques we introduce can be generalized to handle multiclass classification task for both classifiers.
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we can simply set w = 0). Then, the learning algorithm will iterate until it converges, or the maximum
iteration number or some other preset stopping criteria are met. In each iteration, we do the following
for each training tuple xi . We try to predict the class label of xi using the current weight vector w,
that is, ŷi = sign(wT xi). If the prediction is correct (i.e., ŷi = yi), we do nothing about the weight
vector. However, if the prediction is incorrect (i.e., ŷi �= yi), we update the current weight vector in one
of the following two ways. If yi = +1 (i.e., the ith tuple is a positive tuple, but the current classifier
predicts it is a negative tuple), we update weight vector as w ← w + ηxi . If yi = 0 (i.e., the ith tuple
is a negative tuple, which is wrongly predicted by the current classifier as a positive tuple), we update
weight vector as w ← w − ηxi , where η > 0 is the user-specified learning rate. So, the intuition is that
in each iteration of the training process, the algorithm will focus on those wrongly predicted training
tuples by the current weight vector w. If the wrongly predicted training tuple xi is a positive tuple,
we update the weight vector w by moving it towards the attribute vector xi of this training tuple (i.e.,
w ← w + ηxi). On the other hand, if the wrongly predicted training tuple xi is a negative tuple, we
update the weight vector w by moving it away from the attribute vector xi of this training tuple (i.e.,
w ← w − ηxi).

Example 6.8. Let us look at an example in Fig. 6.12 for training a perceptron classifier. In Fig. 6.12, we
assume the bias w0 = 0 for illustration clarity. Fig. 6.12(a) (left) shows the current decision boundary
and the weight vector w, where two training tuples are wrongly classified, including a positive tuple
x1 and a negative tuple x8. Therefore only these two tuples are used to update the weight vector in
the current iteration, that is, w ← w + ηx1 − ηx8. The updated weight vector w and the corresponding
decision boundary are shown in Fig. 6.12(b) (right), where all training tuples are correctly classified.

“How effective is the perceptron learning algorithm?” If the training tuples are linearly separable
(e.g., the example in Fig. 6.12), the perceptron algorithm is guaranteed to find a weight vector (i.e.,
a hyperplane decision boundary) that perfectly separates all the positive training tuples from all the
negative training tuples. However, if the training tuples are not linearly separable, this algorithm will
fail to converge.

FIGURE 6.12

Training a perceptron classifier.
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Perceptron, one of the earliest linear classifiers, was first invented back in 1958. It can also be used
as a building block (called a “neuron”) in deep neural networks that will be introduced in Chapter 10.

6.5.3 Logistic regression
Perceptron that we have just introduced in the previous section is capable of predicting the binary class
label of a given tuple. However, can we also tell how confident such a prediction is? Again, let us
consider a binary classification task, and we assume that there are two possible class labels, that is,
y = 1 for a positive tuple and y = 0 for a negative tuple. Recall that in (naïve) Bayes classifier, we can
estimate the posterior probability P(yi = 1|xi), which can be directly used to indicate how confident
the predicted classification result is. For example, if P(yi = 1|xi) is close to 1, the classifier is highly
confident that the tuple xi is a positive example.

How can we make a linear classifier not only predict which class label a tuple has, but also tell
how confident it is in making such a prediction? An effective way to this end is via logistic regression
classifier. Let us first introduce an important function called sigmoid function, which is defined as
σ(z) = 1

1+e−z = ez

1+ez . From Fig. 6.13, we can see that the sigmoid function maps a real number in
(−∞,+∞) (i.e., the x-axis of Fig. 6.13) to an output value in the range of (0,1) (i.e., the y-axis
of Fig. 6.13). Therefore if we leverage the sigmoid function to map the output of a linear regression
model to a number between 0 and 1, we can interpret the mapping result as the posterior probability of
observing a positive class label. This is exactly what logistic regression classifier tries to do!

Formally, we have P(ŷi = 1|xi,w) = σ(wT xi) = 1

1+e−wT xi
, where ŷi is the predicted class label for

the tuple with attributes xi , and w is the weight vector. Notice that we have absorbed the bias term
b into the weight vector w by introducing a dummy attribute to simplify the notation, as we did in
the multilinear regression model and in perceptron. Naturally, if P(ŷi = 1|xi,w) > 0.5, the classifier
predicts that the tuple xi is a positive tuple (i.e., ŷi = 1), otherwise, it predicts a negative tuple (i.e.,
ŷi = 0). This (details are left as an exercise) is equivalent to the following linear classifier: predict
ŷi = 1 (i.e., positive tuple) if wT xi > 0, and predict ŷi = 0 (i.e., negative tuple) if wT xi < 0. Therefore
if we know the weight vector w, the classification task for a given tuple is quite simple. That is, we

FIGURE 6.13

Illustration of sigmoid function. The sigmoid function “squashes” an input from a larger range (−∞,+∞) to a
smaller range (0,1). For this reason, sigmoid function is also called squash function. In Chapter 10, we will see
other types of squash functions, which are called activation functions in the deep learning terminology.
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only need to multiply the attribute vector xi of the given tuple with the weight vector w, and then make
a prediction based on the sign of wT xi . If wT xi is a positive number, we predict that the given tuple is
a positive tuple. Otherwise, we predict that it is a negative tuple.

“How can we determine the optimal weight vector w from a set of training tuples?” The classic
method to train a logistic regression classifier (i.e., to determine the best weight vector w from the
training set) is via maximum likelihood estimation (MLE). Again, let us assume there are n training
tuples (xi, yi) (i = 1, ..., n). Since we have a binary classification task, we can view the predicted
class label ŷi as a Bernoulli random variable, which can only take two possible values, including
P(ŷi = 1|xi,w) = pi and P(ŷi = 0|xi,w) = 1 − pi , where pi = σ(wT xi) = 1

1+e−wT xi
is determined by

the sigmoid function and it describes the probability of observing a positive outcome for the predicted
class label (i.e., ŷi = 1). Notice that the true class label yi for the ith tuple is a binary variable. Therefore
we have that P(ŷi = yi) = p

yi

i (1 − pi)
1−yi . The maximum likelihood estimation method aims to solve

the following optimization problem, which says that we should choose the best weight vector w that
maximizes the likelihood of the training set. The intuition is that we want to find the optimal model
parameter (i.e., the weight vector w) so that there is the highest “chance” (i.e., the likelihood or the
probability) of observing the entire training set.

w∗ = argmaxw L(w) = �n
i=1p

yi

i (1 − pi)
1−yi = �n

i=1(
ewT xi

1 + ewT xi
)yi (

1

1 + ewT xi
)1−yi (6.19)

“But, how can we develop an algorithm to solve this optimization problem to find the optimal
weight vector w?” First, we notice that the likelihood function L(w) has many nonnegative terms that
are multiplied with each other. In practice, it is often more convenient to work with the logarithm of
such a complicated function. Thus we have the following equivalent optimization problem, where l(w)

is called the log likelihood

w∗ = argmaxw l(w) =
n∑

i=1

yix
T
i w − log(1 + ewT xi ). (6.20)

From the optimization perspective, the good news is that the log likelihood function in Eq. (6.20) is
a strictly concave function, and therefore its maximum (the optimal solution) uniquely exists. However,
the bad news is that the closed-form solution for the above optimization problem does not exist. In
this case, a common strategy is to find the optimal solution w∗ iteratively as follows. In each iteration,
we try to improve the current weight vector w so that the objective function we wish to maximize
(the log likelihood function l(w)) is improved most. In order to increase the current objective function
l(w) most, it turns out the best direction to update the current estimation of the weight vector w is
to follow its gradient. This leads to the following algorithm to learn the optimal weight vector w∗
from the training set. We start with an initial guess of the weight vector w (e.g., we can simply set
w = 0). Then, the learning algorithm will iterate until it converges, or the maximum iteration number
or some other preset stopping criteria are met. In each iteration, it updates the weight vector w as
follows w ← w + η

∑n
i=1(yi − P(ŷi = 1|xi,w))xi , where η > 0 is the user-specified learning rate.

“So, what is the intuition of the above algorithm?” Let us analyze the impact of each training
tuple (xi, yi) on updating the estimation of the weight vector w. We consider two situations depending
on whether it is a positive tuple (i.e., yi = 1) or a negative tuple (i.e., yi = 0). For the former, the
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impact of the given tuple on updating the weight vector w can be calculated as w ← w + η(1 − P(ŷi =
1|xi,w))xi . The intuition is that we want update the current weight vector w towards the direction of
the attribute vector xi of this positive tuple. For the latter case (i.e., yi = 0), the impact of the given tuple
on updating the weight vector w can be calculated as w ← w − ηP (ŷi = 1|xi,w)xi . The intuition is
that we want update the current weight vector w away from the direction of the attribute vector xi of this
negative tuple. From this perspective, the learning algorithm for training a logistic regression classifier
bears some similarities to the perceptron algorithm. That is, both algorithms try to update the current
weight vector w so that is (1) more aligned with the attribute vectors of positive tuples and (2) more
mis-aligned with (i.e., towards the opposite direction of) the attribute vectors of negative tuples.

However, the two algorithms (perceptron vs. logistic regression) differ regarding to what extent the
algorithms update the weight vector w. In perceptron, it uses a fixed learning rate η for all wrongly
predicted tuples by the current weight vector w. On the other hand, in logistic regression, it depends
on the learning rate η as well as P(ŷi = 1|xi,w) (i.e., the probability that the given tuple belongs to
the positive class based on the current weight vector w). This makes the logistic regression algorithm
adaptive in the following sense. For example, if P(ŷi = 1|xi,w) is high for a positive tuple, it means
that the prediction by the current weight vector w for this positive tuple is not only correct (i.e., P(ŷi =
1|xi,w) > 0.5), but also quite confident (i.e., P(ŷi = 1|xi,w) is close to 1). Then, the impact of this
positive tuple (i.e., η(1 − P(ŷi = 1|xi,w))) on updating the weight vector is relatively small. On the
other hand, if P(ŷi = 1|xi,w) is high for a negative tuple, it means that the prediction by the current
weight vector w for this negative tuple is either wrong (i.e., P(ŷi = 1|xi,w) > 0.5), or correct but with
low confidence (i.e., P(ŷi = 1|xi,w) is barely below 0.5). Then, the impact of this negative tuple (i.e.,
ηP (ŷi = 1|xi,w)) on updating the weight vector will be relatively large. In other words, the logistic
regression learning algorithm pays more attention to those “hard” training tuples, which are either
wrongly predicted or correctly predicted with a low confidence by the current weight vector w. Recall
that for the example in Fig. 6.12(a), perceptron only uses x1 and x8 to update the current weight vector
w since these two tuples are wrongly classified by the current w. In contrast, logistic regression uses
all training tuples to update the weight vector w. Among them, x1 and x8 have the highest impact on
updating w since they are both wrongly classified by the current classifier; x2, x3, x5, x9 and x10 have the
least impact since they are all correctly classified by the current weight vector w with a high confidence;
x4, x6 and x7 have the moderate impact since they are correctly classified but with a relatively low
confidence.

“How good is the logistic regression algorithm? What are the potential limitations and how to miti-
gate?” Since the log likelihood function l(w) is a concave function, the algorithm for training a logistic
regression classifier described above is guaranteed to converge to its optimal solution. However, if the
training set is linearly separable, the algorithm might converge to a weight vector w with an infinitely
large norm. (See an illustrative example in Fig. 6.14.) A “large” weight vector w could make the trained
classifier prone to the noise of certain attributes of a given tuple. This will, in turn, lead to a poor gen-
eralization performance of the learned logistic regression classifier. In other words, the learned logistic
regression classifier overfits the training set. An effective way to mitigate the overfitting is to introduce
a regularization term ‖w‖2

2 into the objective function l(w) to prevent the learned weight vector from
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FIGURE 6.14

Illustration of the infinitely large weight vector of logistic regression in linearly separable case. There are
two training tuples in 2d space, with one positive training tuple x1 = (1,1) and one negative training tuple
x2 = (−1,−1). For simplicity, we let the bias scalar b = 0 and the learning rate η = 1. Suppose that at iteration
1, the weight vector w = (1,1). Then, logistic regression algorithm introduced above will update the weight vector
as wnew = wold + (1 − P (ŷ1 = 1|x1,wold))x1 − P (ŷ2 = 1|x2,wold)x2 = (0.5,0.5) + a(1,1) = (1 + 2a)wold, where
a = 1 − P (ŷ1 = 1|x1,wold) + P (ŷ2 = 1|x2,wold) > 0. As such, the new weight vector wnew shares the same direc-
tion as the old wold. Therefore, the decision boundary remains the same, but new weight vector wnew grows in the
magnitude by a factor of (1 + 2a). This trend will continue as the logistic regression algorithm progresses, leading to
a weight vector with an infinitely large magnitude.

becoming “too large.”11 The second potential limitation is the independence assumption behind logistic
regression. Recall that when we calculate the likelihood L(w) of the training set, we simply multiply the
likelihood of each training tuple together (Eq. (6.19)). This means that we have implicitly assumed that
different training tuples are independent of each other. However, this assumption might be violated in
some applications (e.g., users on a social network are interconnected with each other). The graph-based
classification might provide a natural remedy for this issue. The third potential limitation lies in the
computational challenge. Notice that in the updating rule w ← w + η

∑n
i=1(yi − P(ŷi = 1|xi,w))xi

described above, we need to calculate the gradients (yi − P(ŷi = 1|xi,w)) for all training tuples and
then sum them up to update the weight vector w. If there are millions of training tuples, it is compu-
tationally very expensive to perform such computation. An efficient way to address this issue is to use
stochastic gradient descent method to train a logistic regression classifier. That is, at each iteration, we
will randomly sample a small subset of training tuples (this is often referred to as a minibatch) and only
use the sampled tuples (instead of all training tuples) to update the weight vector. It is worth pointing
out that the stochastic gradient descent is extensively used in many other data mining algorithms, such
as deep learning methods, which will be introduced in Chapter 10.

11 From the statistical parameter estimation perspective, we are switching from the maximum likelihood estimation (MLE) to
maximum a posterior estimation (MAP). Adding a regularization term ‖w‖2

2 into l(w) is equivalent to imposing a Gaussian prior
with the mean vector at the origin for the weight vector w.
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6.6 Model evaluation and selection
Now that you may have built a classification model, there may be many questions going through your
mind. For example, suppose you have used data from previous sales to build a classifier to predict
customer purchasing behavior. You would like an estimate of how accurately the classifier can predict
the purchasing behavior of future customers, that is, future customer data on which the classifier has
not been trained. You may even have tried different methods to build more than one classifier and now
wish to compare their accuracy. But what is accuracy? How can we estimate it? Are some measures of
a classifier’s accuracy more appropriate than others? How can we obtain a reliable accuracy estimate?
These questions are addressed in this section.

Section 6.6.1 describes various evaluation metrics for the predictive accuracy of a classifier. Based
on randomly sampled partitions of the given data, holdout and random subsampling (Section 6.6.2),
cross-validation (Section 6.6.3), and bootstrap methods (Section 6.6.4) are common techniques for
assessing accuracy. What if we have more than one classifier and want to choose the “best” one? This is
referred to as model selection (i.e., choosing one classifier over another). The last two sections address
this issue. Section 6.6.5 discusses how to use tests of statistical significance to assess whether the
difference in accuracy between two classifiers is due to chance. Section 6.6.6 presents how to compare
classifiers based on cost–benefit and receiver operating characteristic (ROC) curves.

6.6.1 Metrics for evaluating classifier performance
This section presents measures for assessing how good or how “accurate” your classifier is at predict-
ing the class label of tuples. We will consider the case where the class tuples are more or less evenly
distributed, as well as the case where classes are unbalanced (e.g., where an important class of inter-
est is rare such as in medical tests). The classifier evaluation measures presented in this section are
summarized in Fig. 6.15. They include accuracy (also known as recognition rate), sensitivity (or re-
call), specificity, precision, F1, and Fβ . Note that although accuracy is a specific measure, the word
“accuracy” is also used as a general term to refer to a classifier’s predictive abilities.

Using training data to derive a classifier and then estimate the accuracy of the learned model can
result in misleading overoptimistic estimates due to overspecialization of the learning algorithm to the
data. (We will say more on this in a moment!) Instead, it is better to measure the classifier’s accuracy
on a test set consisting of class-labeled tuples that were not used to train the model.

Before we discuss the various measures, we need to become comfortable with some terminology.
Recall that we can talk in terms of positive tuples (tuples of the main class of interest) and negative
tuples (all other tuples).12 Given two classes, for example, the positive tuples may be buys_computer
= yes while the negative tuples are buys_computer = no. Suppose we use our classifier on a test set
of labeled tuples. P is the number of positive tuples, and N is the number of negative tuples. For each
tuple, we compare the classifier’s class label prediction with the tuple’s known class label.

There are four additional terms we need to know that are the “building blocks” used in computing
various evaluation measures. Understanding them will make it easy to grasp the meaning of the various
measures.

12 In the machine learning and pattern recognition literature, these are referred to as positive samples and negative samples,
respectively.
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Measure Formula

accuracy, recognition rate T P +T N
P +N

error rate, misclassification rate FP +FN
P +N

sensitivity, true positive rate, recall T P
P

specificity, true negative rate T N
N

precision T P
T P +FP

F , F1, F -score, harmonic mean of precision and recall 2×precision× recall
precision+ recall

Fβ , where β is a nonnegative real number (1+β2)×precision× recall

β2 ×precision+ recall

FIGURE 6.15

Evaluation measures. Note that some measures are known by more than one name. T P , T N , FP , FN , P , N refer
to the number of true positive, true negative, false positive, false negative, positive, and negative samples, respec-
tively (see text).

Predicted class
yes no Total

Actual class yes T P FN P

no FP T N N

Total P ′ N ′ P + N

FIGURE 6.16

Confusion matrix, shown with totals for positive and negative tuples.

• True positives (T P ): These refer to the positive tuples that were correctly labeled by the classifier.
Let T P be the number of true positives.

• True negatives (T N): These are the negative tuples that were correctly labeled by the classifier. Let
T N be the number of true negatives.

• False positives (FP ): These are the negative tuples that were incorrectly labeled as positive (e.g.,
tuples of class buys_computer = no for which the classifier predicted buys_computer = yes). Let
FP be the number of false positives.

• False negatives (FN): These are the positive tuples that were mislabeled as negative (e.g., tuples of
class buys_computer = yes for which the classifier predicted buys_computer = no). Let FN be the
number of false negatives.

These terms are summarized in the confusion matrix of Fig. 6.16.
A confusion matrix is a useful tool for analyzing how well your classifier can recognize tuples of

different classes. T P and T N tell us when the classifier is getting things right, whereas FP and FN

tell us when the classifier is getting things wrong (i.e., mislabeling). Given m classes (where m ≥ 2), a
confusion matrix is a table of at least size m by m. An entry, CMi,j at the ith row and the j th column
indicates the number of tuples of class i that were labeled by the classifier as class j . For a classifier to
have good accuracy, ideally most of the tuples would be represented along the diagonal of the confusion
matrix, from entry CM1,1 to entry CMm,m, with the rest of the entries being zero or close to zero. That
is, ideally, FP and FN are around zero.
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Classes buys_computer = yes buys_computer = no Total Recognition (%)
buys_computer = yes 6954 46 7000 99.34
buys_computer = no 412 2588 3000 86.27
Total 7366 2634 10,000 95.42

FIGURE 6.17

Confusion matrix for the classes buys_computer = yes and buys_computer = no, where an entry in row i and col-
umn j shows the number of tuples of class i that were labeled by the classifier as class j . Ideally, the nondiagonal
entries should be zero or close to zero.

The table may have additional rows or columns to provide totals. For example, in the confusion
matrix of Fig. 6.16, P and N are shown. In addition, P ′ is the number of tuples that were labeled
as positive (T P + FP), and N ′ is the number of tuples that were labeled as negative (T N + FN).
The total number of tuples is T P + T N + FP + T N , or P + N , or P ′ + N ′. Note that although the
confusion matrix shown is for a binary classification problem, confusion matrices can be easily drawn
for multiple classes in a similar manner.

Now let’s look at the evaluation measures, starting with accuracy. The accuracy of a classifier on a
given test set is the percentage of test set tuples that are correctly classified by the classifier. That is,

accuracy = T P + T N

P + N
. (6.21)

In the pattern recognition literature, this is also referred to as the overall recognition rate of the clas-
sifier; that is, it reflects how well the classifier recognizes tuples of the various classes. An example of
a confusion matrix for the two classes buys_computer = yes (positive) and buys_computer = no (neg-
ative) is given in Fig. 6.17. Totals are shown, as well as the recognition rates per class and overall. By
glancing at a confusion matrix, it is easy to see if the corresponding classifier is confusing two classes.

For example, we see that it mislabeled 412 “no” tuples as “yes.” Accuracy is most effective when
the class distribution is relatively balanced.

We can also speak of the error rate or misclassification rate of a classifier, M , which is simply
1 − accuracy(M), where accuracy(M) is the accuracy of M . This also can be computed as

error rate = FP + FN

P + N
. (6.22)

If we were to use the training set (instead of a test set) to estimate the error rate of a model, this quantity
is known as the resubstitution error.13 This error estimate is optimistic of the true error rate (and
similarly, the corresponding accuracy estimate is optimistic) because the model is not tested on any
samples that it has not already seen.

We now consider the class imbalance problem, where the main class of interest is rare. That is,
the data set distribution reflects a significant majority of the negative class and a minority positive
class. For example, in fraud detection applications, the class of interest (or positive class) is “fraud”
which occurs much less frequently than the negative “nonfraudulant” class. In medical data, there may

13 In machine learning literature, it is often referred to as the training error.



6.6 Model evaluation and selection 281

Classes yes no Total Recognition (%)
yes 90 210 300 30.00
no 140 9560 9700 98.56
Total 230 9770 10,000 96.40

FIGURE 6.18

Confusion matrix for the classes cancer = yes and cancer = no.

be a rare class, such as “cancer.” Suppose that you have trained a classifier to classify medical data
tuples, where the class label attribute is “cancer” and the possible class values are “yes” and “no.” An
accuracy rate of, say, 97% may make the classifier seem quite accurate, but what if only, say, 3% of
the training tuples are actually cancer? Clearly, an accuracy rate of 97% may not be acceptable—the
classifier could be correctly labeling only the noncancer tuples, for instance, and misclassifying all the
cancer tuples. Instead, we need other measures, which assess how well the classifier can recognize the
positive tuples (cancer = yes) and how well it can recognize the negative tuples (cancer = no).

The sensitivity and specificity measures can be used, respectively, for this purpose. Sensitivity is
also referred to as the true positive (recognition) rate (i.e., the proportion of positive tuples that are
correctly identified), whereas specificity is the true negative rate (i.e., the proportion of negative tuples
that are correctly identified). These measures are defined as

sensitivity = T P

P
(6.23)

specificity = T N

N
. (6.24)

It can be shown that accuracy is a function of sensitivity and specificity:

accuracy = sensitivity
P

(P + N)
+ specificity

N

(P + N)
. (6.25)

Example 6.9. Sensitivity and specificity. Fig. 6.18 shows a confusion matrix for medical data
where the class values are yes and no for a class label attribute, cancer. The sensitivity of the classifier is
90
300 = 30.00%. The specificity is 9560

9700 = 98.56%. The classifier’s overall accuracy is 9650
10,000 = 96.50%.

Thus we note that although the classifier has a high accuracy, it’s ability to correctly label the positive
(rare) class is poor given its low sensitivity. It has high specificity, meaning that it can accurately rec-
ognize negative tuples. Techniques for handling class-imbalanced data are given in Section 6.7.5.

The precision and recall measures are also widely used in classification. Precision can be thought of
as a measure of exactness (i.e., what percentage of tuples labeled as positive are actually such), whereas
recall is a measure of completeness (what percentage of positive tuples are labeled as such). If recall
seems familiar, that’s because it is the same as sensitivity (or the true positive rate). These measures
can be computed as

precision = T P

T P + FP
(6.26)
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recall = T P

T P + FN
= T P

P
. (6.27)

Example 6.10. Precision and recall. The precision of the classifier in Fig. 6.18 for the yes class is
90
230 = 39.13%. The recall is 90

300 = 30.00%, which is the same calculation for sensitivity in Example 6.9.

A perfect precision score of 1.0 for a class C means that every tuple that the classifier labeled
as belonging to class C does indeed belong to class C. However, it does not tell us anything about
the number of class C tuples that the classifier mislabeled. A perfect recall score of 1.0 for C means
that every item from class C was labeled as such, but it does not tell us how many other tuples were
incorrectly labeled as belonging to class C. There tends to be an inverse relationship between precision
and recall, where it is possible to increase one at the cost of reducing the other. For example, our
medical classifier may achieve high precision by labeling all cancer tuples that present a certain way
as cancer but may have low recall if it mislabels many other instances of cancer tuples. Precision and
recall scores are typically used together, where precision values are compared for a fixed value of recall,
or vice versa. For example, we may compare precision values at a recall value of, say, 0.75.

An alternative way to use precision and recall is to combine them into a single measure. This is
the approach of the F measure (also known as the F1 score or F -score) and the Fβ measure. They are
defined as

F = 2 × precision × recall

precision + recall
(6.28)

Fβ = (1 + β2) × precision × recall

β2 × precision + recall
, (6.29)

where β is a nonnegative real number. The F measure is the harmonic mean of precision and recall (the
proof of which is left as an exercise). It gives equal weights to precision and recall. The Fβ measure is
a weighted measure of precision and recall. It assigns β times as much weight to recall as to precision.
Commonly used Fβ measures are F2 (which weights recall twice as much as precision) and F0.5 (which
weights precision twice as much as recall).

“Are there other cases where accuracy may not be appropriate?” In classification problems, it is
commonly assumed that all tuples are uniquely classifiable, that is, each training tuple can belong to
only one class. Yet, owing to the wide diversity of data in large databases, it is not always reasonable to
assume that all tuples are uniquely classifiable. Rather, it is more probable to assume that each tuple may
belong to more than one class. How then can the accuracy of classifiers on large databases be measured?
The accuracy measure is not appropriate, because it does not take into account the possibility of tuples
belonging to more than one class.

Rather than returning a class label, it is useful to return a class probability distribution. Accuracy
measures may then use a second guess heuristic, whereby a class prediction is judged as correct if it
agrees with the first or second most probable class. Although this does take into consideration, to some
degree, the nonunique classification of tuples, it is not a complete solution.

In addition to accuracy-based measures, classifiers can also be compared with respect to the follow-
ing additional aspects:

• Speed: This refers to the computational cost involved in generating and using the given classifier.
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FIGURE 6.19

Estimating accuracy with the holdout method.

• Robustness: This is the ability of the classifier to make correct predictions given noisy data or data
with missing values. Robustness is typically assessed with a series of synthetic data sets representing
increasing degrees of noise and missing values.

• Scalability: This refers to the ability to construct the classifier efficiently given large amounts of
data. Scalability is typically assessed with a series of data sets of increasing size.

• Interpretability: This refers to the level of understanding and insight that is provided by the classi-
fier or predictor. Interpretability could be subjective and therefore more difficult to assess. Decision
trees and classification rules can be easy to interpret, yet their interpretability may diminish the more
they become complex. We will introduce some basic techniques to improve the interpretability of
classification models in Chapter 7.

In summary, we have presented several evaluation measures. The accuracy measure works best
when the data classes are fairly evenly distributed. Other measures, such as sensitivity (or recall), speci-
ficity, precision, F , and Fβ , are better suited to the class imbalance problem, where the main class of
interest is rare. The remaining subsections focus on obtaining reliable classifier accuracy estimates.

6.6.2 Holdout method and random subsampling
The holdout method is what we have alluded to so far in our discussions about accuracy. In this method,
the given data are randomly partitioned into two independent sets, a training set and a test set. Typically,
two-thirds of the data are allocated to the training set, and the remaining one-third is allocated to the
test set. The training set is used to derive the model. The model’s accuracy is then estimated with the
test set (Fig. 6.19). The estimate is pessimistic because only a portion of the initial data is used to derive
the model.

Random subsampling is a variation of the holdout method in which the holdout method is repeated
k times. The overall accuracy estimate is taken as the average of the accuracies obtained from each
iteration.

6.6.3 Cross-validation
In k-fold cross-validation, the initial data are randomly partitioned into k mutually exclusive subsets
or “folds” D1,D2, . . . ,Dk , each of approximately equal size. Training and testing are performed k



284 Chapter 6 Classification: basic concepts and methods

times. In iteration i, partition Di is reserved as the test set, and the remaining partitions are collectively
used to train the model. That is, in the first iteration, subsets D2, . . . ,Dk collectively serve as the
training set to obtain the first model, which is tested on D1; the second iteration is trained on subsets
D1,D3, . . . ,Dk and tested on D2; and so on. Unlike the holdout and random subsampling methods,
here each sample is used the same number of times for training and once for testing. For classification,
the accuracy estimate is the overall number of correct classifications from the k iterations, divided by
the total number of tuples in the initial data.

Leave-one-out-cross-validation is a special case of k-fold cross-validation where k is set to the
number of initial tuples. That is, only one sample is “left out” at a time for the test set. Leave-one-out-
cross-validation is often used when the initial data set is small. In stratified cross-validation, the folds
are stratified so that the class distribution of the tuples in each fold is approximately the same as that in
the initial data.

In practice, stratified 10-fold cross-validation is recommended for estimating accuracy (even if com-
putation power allows using more folds) due to its relatively low bias and variance.

6.6.4 Bootstrap
Unlike the accuracy estimation methods just mentioned, the bootstrap method samples the given train-
ing tuples uniformly with replacement. That is, each time a tuple is selected, it is equally likely to be
selected again and re-added to the training set. For instance, imagine a machine that randomly selects
tuples for our training set. In sampling with replacement, the machine is allowed to select the same
tuple more than once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap, which works as
follows. Suppose we are given a data set of d tuples. The data set is sampled d times, with replacement,
resulting in a bootstrap sample or training set of d samples. Some of the original data tuples will likely
occur more than once in this sample. The data tuples that did not make it into the training set end up
forming the test set. Suppose we were to try this out several times. As it turns out, on average, 63.2%
of the original data tuples will end up in the bootstrap sample, and the remaining 36.8% will form the
test set (hence, the name, .632 bootstrap).

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of being selected,
so the probability of not being chosen is (1 − 1/d). We have to select d times, so the probability that a
tuple will not be chosen during this whole time is (1 − 1/d)d . If d is large, the probability approaches
e−1 = 0.368.14 Thus 36.8% of tuples will not be selected for training and thereby end up in the test set,
and the remaining 63.2% will form the training set.

We can repeat the sampling procedure k times, wherein each iteration, we use the current test set
to obtain an estimated accuracy of the model obtained from the current bootstrap sample. The overall
accuracy of the model, M , is then estimated as

Acc(M) = 1

k

k∑
i=1

(0.632 × Acc(Mi)test_set + 0.368 × Acc(Mi)train_set ), (6.30)

14 e is the base of natural logarithms, that is, e = 2.718.
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where Acc(Mi)test_set is the accuracy of the model obtained with bootstrap sample i when it is applied
to test set i. Acc(Mi)train_set is the accuracy of the model obtained with bootstrap sample i when it is
applied to the original set of data tuples. Bootstrapping tends to be overly optimistic. It works best with
small data sets.

6.6.5 Model selection using statistical tests of significance
Suppose that we have generated two classification models, M1 and M2, from our data. We have per-
formed 10-fold cross-validation to obtain a mean error rate15 for each. How can we determine which
model is best? It may seem intuitive to select the model with the lowest error rate; however, the mean
error rates are just estimates of the error on the true population of future data cases. There can be con-
siderable variance between error rates within any given 10-fold cross-validation experiment. Although
the mean error rates obtained for M1 and M2 may appear different, that difference may not be statisti-
cally significant. What if any difference between the two may just be attributed to chance? This section
addresses these questions.

To determine if there is any “real” difference in the mean error rates of two models, we need to
employ a test of statistical significance. In addition, we want to obtain some confidence limits for our
mean error rates so that we can make statements like, “Any observed mean will not vary by ± two
standard errors 95% of the time for future samples” or “One model is better than the other by a margin
of error of ± 4%.”

What do we need to perform the statistical test? Suppose that for each model, we did 10-fold cross-
validation, say, 10 times, each time using a different 10-fold data partitioning. Each partitioning is
independently drawn. We can average the 10 error rates obtained each for M1 and M2, respectively, to
obtain the mean error rate for each model. For a given model, the individual error rates calculated in
the cross-validations may be considered different, independent samples from a probability distribution.
In general, they follow a t-distribution with k − 1 degrees of freedom where, here, k = 10. (This distri-
bution looks very similar to a normal, or Gaussian, distribution even though the functions defining the
two are quite different. Both are unimodal, symmetric, and bell-shaped.) This allows us to do hypothe-
sis testing where the significance test used is the t-test, or Student’s t-test. Our hypothesis is that the
two models are the same, or in other words, that the difference in mean error rate between the two is
zero. If we can reject this hypothesis (referred to as the null hypothesis), then we can conclude that the
difference between the two models is statistically significant, in which case we can select the model
with the lower error rate.

In data mining practice, we may often employ a single test set, that is, the same test set can be used
for both M1 and M2. In such cases, we do a pairwise comparison of the two models for each 10-fold
cross-validation round. That is, for the ith round of 10-fold cross-validation, the same cross-validation
partitioning is used to obtain an error rate for M1 and M2. Let err(M1)i (or err(M2)i) be the error rate
of model M1 (or M2) on round i. The error rates for M1 are averaged to obtain a mean error rate for
M1, denoted err(M1). Similarly, we can obtain err(M2). The variance of the difference between the
two models is denoted var(M1 − M2). The t-test computes the t-statistic with k − 1 degrees of freedom
for k samples. In our example, we have k = 10 since, here, the k samples are our error rates obtained

15 Recall that the error rate of a model, M , is 1 − accuracy(M).
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from ten 10-fold cross-validations for each model. The t-statistic for pairwise comparison is computed
as follows:

t = err(M1) − err(M2)√
var(M1 − M2)/k

, (6.31)

where

var(M1 − M2) = 1

k

k∑
i=1

[err(M1)i − err(M2)i − (err(M1) − err(M2))]
2 . (6.32)

To determine whether M1 and M2 are significantly different, we compute t and select a significance
level, sig. In practice, a significance level of 5% or 1% is typically used. We then consult a table for
the t-distribution, available in standard textbooks on statistics. This table is usually shown arranged by
degrees of freedom as rows and significance levels as columns. Suppose we want to ascertain whether
the difference between M1 and M2 is significantly different for 95% of the population, that is, sig = 5%
or 0.05. We need to find the t-distribution value corresponding to k − 1 degrees of freedom (or 9 degrees
of freedom for our example) from the table. However, because the t-distribution is symmetric, typically
only the upper percentage points of the distribution are shown. Therefore we look up the table value
for z = sig/2, which, in this case, is 0.025, where z is also referred to as a confidence limit. If t > z or
t < −z, then our value of t lies in the rejection region, within the distribution’s tails. This means that
we can reject the null hypothesis that the means of M1 and M2 are the same and conclude that there
is a statistically significant difference between the two models. Otherwise, if we cannot reject the null
hypothesis, we conclude that any difference between M1 and M2 can be attributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version of the t-test is used,
where the variance between the means of the two models is estimated as

var(M1 − M2) = var(M1)

k1
+ var(M2)

k2
, (6.33)

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross-validation rounds)
used for M1 and M2, respectively. This is also known as the two sample t-test. When consulting the
table of t-distribution, the number of degrees of freedom used is taken as the minimum number of
degrees of the two models.

6.6.6 Comparing classifiers based on cost–benefit and ROC curves
The true positives, true negatives, false positives, and false negatives are also useful in assessing the
costs and benefits (or risks and gains) associated with a classification model. The cost associated
with a false negative (such as incorrectly predicting that a cancerous patient is not cancerous) is far
greater than those of a false positive (incorrectly yet conservatively labeling a noncancerous patient as
cancerous). In such cases, we can outweigh one type of error over another by assigning a different cost
to each. These costs may consider the danger to the patient, financial costs of resulting therapies, and
other hospital costs. Similarly, the benefits associated with a true positive decision may be different
from those of a true negative. Up to now, to compute the classifier’s accuracy, we have assumed equal
costs and essentially divided the sum of true positives and true negatives by the total number of test
tuples.
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Alternatively, we can incorporate costs and benefits by computing the average cost (or benefit)
per decision. Other applications involving cost–benefit analysis include loan application decisions and
target marketing mailouts. For example, the cost of loaning to a defaulter greatly exceeds that of the lost
business incurred by denying a loan to a nondefaulter. Similarly, in an application that tries to identify
households that are likely to respond to mailouts of certain promotional material, the cost of mailouts
to numerous households that do not respond may outweigh the cost of lost business from not mailing to
households that would have responded. Other costs to consider in the overall analysis include the costs
to collect the data and to develop the classification tools.

Receiver operating characteristic curves are a useful visual tool for comparing two classification
models. ROC curves come from signal detection theory that was developed during World War II for the
analysis of radar images. A ROC curve for a given model shows the trade-off between the true positive
rate (T PR) and the false positive rate (FPR).16 Given a test set and a model, T PR is the proportion
of positive (or “yes”) tuples that are correctly labeled by the model; FPR is the proportion of negative
(or “no”) tuples that are mislabeled as positive. Recall that T P , FP , P , and N are the number of true
positive, false positive, positive, and negative tuples, respectively. From Section 6.6.1, we know that
T PR = T P

P
, which is sensitivity. Furthermore, FPR = FP

N
, which is 1 − specificity.

For a two-class problem, a ROC curve allows us to visualize the trade-off between the rate at which
the model can accurately recognize positive cases vs. the rate at which it mistakenly identifies negative
cases as positive for different portions of the test set. Any increase in T PR occurs at the cost of an
increase in FPR. The area under the ROC curve is a measure of the accuracy of the model.

To plot a ROC curve for a given classification model, M , the model must be able to return a proba-
bility of the predicted class for each test tuple. With this information, we rank and sort the tuples so that
the tuple that is most likely to belong to the positive or “yes” class appears at the top of the list, and the
tuple that is least likely to belong to the positive class lands at the bottom of the list. Naïve Bayesian
(Section 6.3) and logistic regression (Section 6.5) classifiers return a class probability distribution for
each prediction and, therefore, are appropriate, although other classifiers, such as decision tree classi-
fiers (Section 6.2), can easily be modified to return class probability predictions. Let the value that a
probabilistic classifier returns for a given tuple X be f (X) → [0,1]. For a binary problem, a threshold
t is typically selected so that tuples where f (X) ≥ t are considered positive and all the other tuples are
considered negative. Note that the number of true positives and the number of false positives are both
functions of t , so that we could write T P (t) and FP(t). Both are monotonic nonincreasing functions.

We first describe the general idea behind plotting a ROC curve and then follow up with an example.
The vertical axis of a ROC curve represents T PR. The horizontal axis represents FPR. To plot a ROC
curve for M , we begin as follows. Starting at the bottom left corner (where T PR = FPR = 0), we
check the tuple’s actual class label at the top of the list. If we have a true positive (i.e., a positive tuple
that was correctly classified), then T P and thus T PR increase. On the graph, we move up and plot a
point. If, instead, the model classifies a negative tuple as positive, we have a false positive, and so both
FP and FPR increase. On the graph, we move right and plot a point. This process is repeated for each
of the test tuples in ranked order, each time moving up on the graph for a true positive or toward the
right for a false positive.

16 T PR and FPR are the two operating characteristics being compared.
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Tuple # Class Prob. TP FP TN FN TPR FPR
1 P 0.90 1 0 5 4 0.2 0
2 P 0.80 2 0 5 3 0.4 0
3 N 0.70 2 1 4 3 0.4 0.2
4 P 0.60 3 1 4 2 0.6 0.2
5 P 0.55 4 1 4 1 0.8 0.2
6 N 0.54 4 2 3 1 0.8 0.4
7 N 0.53 4 3 2 1 0.8 0.6
8 N 0.51 4 4 1 1 0.8 0.8
9 P 0.50 5 4 1 0 1.0 0.8

10 N 0.40 5 5 0 0 1.0 1.0

FIGURE 6.20

Tuples sorted by decreasing score, where the score is the value returned by a probabilistic classifier.

Example 6.11. Plotting a ROC curve. Fig. 6.20 shows the probability value (column 3) returned by a
probabilistic classifier for each of the 10 tuples in a test set, sorted in the decreasing probability order.
Column 1 is merely a tuple identification number, which aids in our explanation. Column 2 is the actual
class label of the tuple. There are five positive tuples and five negative tuples; thus P = 5 and N = 5. As
we examine the known class label of each tuple, we can determine the values of the remaining columns,
T P , FP , T N , FN , T PR, and FPR. We start with tuple 1, which has the highest probability score, and
take that score as our threshold, that is, t = 0.9. Thus the classifier considers tuple 1 to be positive, and
all the other tuples are considered negative. Since the actual class label of tuple 1 is positive, we have a
true positive, hence T P = 1 and FP = 0. Among the remaining nine tuples, which are all classified as
negative, five actually are negative (thus, T N = 5). The remaining four are all actually positive; thus,
FN = 4. We can therefore compute T PR = T P

P
= 1

5 = 0.2, whereas FPR = 0. Thus we have the point
(0.2,0) for the ROC curve.

Next, threshold t is set to 0.8, the probability value for tuple 2, so this tuple is now also considered
positive, whereas tuples 3 through 10 are considered negative. The actual class label of tuple 2 is
positive, thus now T P = 2. The rest of the row can easily be computed, resulting in the point (0.4,0).
Next, we examine the class label of tuple 3 and let t be 0.7, the probability value returned by the
classifier for that tuple. Thus tuple 3 is considered positive, yet its actual label is negative, and so it is
a false positive. Thus T P stays the same and FP increments so that FP = 1. The rest of the values
in the row can also be easily computed, yielding the point (0.4,0.2). The resulting ROC graph, from
examining each tuple, is the jagged line shown in Fig. 6.21.

There are many methods to obtain a curve out of these points, the most common of which is to use
a convex hull. The plot also shows a diagonal line where for every true positive of such a model, we are
just as likely to encounter a false positive. For comparison, this line represents random guessing.

Fig. 6.22 shows the ROC curves of two classification models. The diagonal line representing random
guessing is also shown. Thus the closer the ROC curve of a model is to the diagonal line, the less
accurate the model. If the model is really good, initially we are more likely to encounter true positives
as we move down the ranked list. Thus the curve moves steeply up from zero. Later, as we start to
encounter fewer and fewer true positives, and more and more false positives, the curve eases off and
becomes more horizontal.
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FIGURE 6.21

ROC curve for the data in Figure 6.20.

FIGURE 6.22

ROC curves of two classification models, M1 and M2. The diagonal shows where, for every true positive, we are
equally likely to encounter a false positive. The closer a ROC curve is to the diagonal line, the less accurate the
model is. Thus M1 is more accurate here.

To assess the accuracy of a model, we can measure the area under the curve (AUC). Several soft-
ware packages are able to perform such calculation. The closer the area is to 0.5, the less accurate the
corresponding model is. A model with perfect accuracy will have an AUC of 1.0.
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6.7 Techniques to improve classification accuracy
In this section, you will learn some tricks for increasing classification accuracy. We focus on ensemble
methods. An ensemble for classification is a composite model, made up of a combination of classifiers.
The individual classifiers vote, and a class label prediction is returned by the ensemble based on the
collection of votes. Ensembles tend to be more accurate than their component classifiers. We start
off in Section 6.7.1 by introducing ensemble methods in general. Bagging (Section 6.7.2), boosting
(Section 6.7.3), and random forests (Section 6.7.4) are popular ensemble methods.

Traditional learning models assume that the data classes are well distributed. In many real-world
data domains, however, the data are class-imbalanced, where the main class of interest is represented
by only a few tuples. This is known as the class imbalance problem. We also study techniques for
improving the classification accuracy of class-imbalanced data. These are presented in Section 6.7.5.

6.7.1 Introducing ensemble methods
Bagging, boosting, and random forests are examples of ensemble methods (Fig. 6.23). An ensemble
combines a series of k learned models (or base classifiers), M1,M2, . . . ,Mk , with the aim of creating
an improved composite classification model, M∗. A given data set, D, is used to create k training
sets, D1,D2, . . . ,Dk , where Di (1 ≤ i ≤ k) is used to generate classifier Mi . Given a new data tuple
to classify, the base classifiers each vote by returning a class prediction. The ensemble returns a class
prediction based on the votes of the base classifiers.

An ensemble tends to be more accurate than its base classifiers. For example, consider an ensemble
that performs majority voting. That is, given a tuple X to classify, it collects the class label predic-
tions returned from the base classifiers and outputs the class in the majority. The base classifiers may
make mistakes, but the ensemble will misclassify X only if over half of the base classifiers are in error.
Ensembles yield better results when there is significant diversity among the models. That is, ideally,

FIGURE 6.23

Increasing classifier accuracy. Ensemble methods generate a set of classification models, M1,M2, . . . ,Mk . Given a
new data tuple to classify, each classifier “votes” for the class label of that tuple. The ensemble combines the votes to
return a class prediction.
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FIGURE 6.24

Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a linearly separable prob-
lem (i.e., where the actual decision boundary is a straight line). The decision tree struggles with approximating a
linear boundary. The decision boundary of the ensemble is closer to the true boundary. Source: From Seni and Elder
[SE10]. © 2010 Morgan & Claypool Publishers; used with permission.

there is little correlation among classifiers. The base classifiers should also perform better than ran-
dom guessing. Each base classifier can be allocated to a different CPU and so ensemble methods are
parallelizable.

To help illustrate the power of an ensemble, consider a simple two-class problem described by two
attributes, x1 and x2. The problem has a linear decision boundary. Fig. 6.24(a) shows the decision
boundary of a decision tree classifier on the problem. Fig. 6.24(b) shows the decision boundary of an
ensemble of decision tree classifiers on the same problem. Although the ensemble’s decision boundary
is still piecewise constant, it has a finer resolution and is better than that of a single tree.

6.7.2 Bagging
We now take an intuitive look at how bagging works as a method of increasing accuracy. Suppose that
you are a patient and would like to have a diagnosis made based on your symptoms. Instead of asking
one doctor, you may choose to ask several. If a certain diagnosis occurs more than any other, you may
choose this as the final or best diagnosis. That is, the final diagnosis is made based on a majority vote,
where each doctor gets an equal vote. Now replace each doctor by a classifier, and you have the basic
idea behind bagging. Intuitively, a majority vote made by a large group of doctors may be more reliable
than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i (i = 1,2, . . . , k), a training
set, Di , of d tuples is sampled with replacement from the original set of tuples, D. Note that the
term bagging stands for bootstrap aggregation. Each training set is a bootstrap sample, as described in
Section 6.6.4. Because sampling with replacement is used, some of the original tuples of D may not
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Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models for a learning scheme where each
model gives an equally weighted prediction.

Input:

• D, a set of d training tuples;
• k, the number of models in the ensemble;
• a classification learning scheme (e.g., decision tree algorithm, naïve Bayesian, etc.).

Output: The ensemble—a composite model, M∗.
Method:

(1) for i = 1 to k do // create k models:
(2) create bootstrap sample, Di , by sampling D with replacement;
(3) use Di and the learning scheme to derive a model, Mi .
(4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;

FIGURE 6.25

Bagging.

be included in Di , whereas others may occur more than once. A classifier model, Mi , is learned for
each training set, Di . To classify an unknown tuple, X, each classifier, Mi , returns its class prediction,
which counts as one vote. The bagged classifier, M∗, counts the votes and assigns the class with the
most votes to X. Bagging can be applied to the prediction of continuous values by taking the average
value of each prediction for a given test tuple. The algorithm is summarized in Fig. 6.25.

The bagged classifier often has significantly greater accuracy than a single classifier derived from
D, the original training data. It is often more robust to the effects of noisy data and overfitting. The in-
creased accuracy occurs because the composite model reduces the variance of the individual classifiers.

6.7.3 Boosting
We now look at the ensemble method of boosting. As in the previous section, suppose that as a patient,
you have certain symptoms. Instead of consulting one doctor, you choose to consult several. Suppose
you assign weights to the value or worth of each doctor’s diagnosis based on the accuracies of previous
diagnoses they have made. The final diagnosis is then a combination of the weighted diagnoses. This is
the essence behind boosting.

In boosting, weights are also assigned to each training tuple. A series of k classifiers is iteratively
learned. After a classifier, Mi , is learned, the weights are updated to allow the subsequent classifier,
Mi+1, to “pay more attention” to the training tuples that were misclassified by Mi . The final boosted
classifier, M∗, combines the votes of each individual classifier, where the weight of each classifier’s
vote is a function of its accuracy.

AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose we want to
boost the accuracy of a learning method. We are given D, a data set of d class-labeled tuples,
(X1, y1), (X2, y2), . . . , (Xd , yd), where yi is the class label of tuple Xi . Initially, AdaBoost assigns
each training tuple an equal weight of 1/d . Generating k classifiers for the ensemble requires k rounds
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Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote.

Input:

• D, a set of d class-labeled training tuples;
• k, the number of rounds (one classifier is generated per round);
• a classification learning scheme.

Output: A composite model.
Method:

(1) initialize the weight of each tuple in D to 1/d;
(2) for i = 1 to k do // for each round:
(3) sample D with replacement according to the tuple weights to obtain Di ;
(4) use training set Di to derive a model, Mi ;
(5) compute error(Mi), the error rate of Mi (Eq. (6.34))
(6) if error(Mi) > 0.5 then
(7) abort the loop;
(8) endif
(9) for each tuple in D that was correctly classified do
(10) multiply the weight of the tuple by error(Mi)/(1 − error(Mi)); // update weights
(11) normalize the weight of each tuple.
(12) endfor

To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;
(2) for i = 1 to k do // for each classifier:

(3) wi = log
1−error(Mi )
error(Mi )

; // weight of the classifier’s vote

(4) c = Mi(X); // get class prediction for X from Mi

(5) add wi to the weight for class c

(6) endfor
(7) return the class with the largest weight.

FIGURE 6.26

AdaBoost, a boosting algorithm.

through the rest of the algorithm. We can sample to form any sized training set, not necessarily of size
d . Sampling with replacement is used—the same tuple may be selected more than once. Each tuple’s
chance of being selected is based on its weight. A classifier model, Mi , is derived from the training
tuples of Di . Its error is then calculated using D as the test set. The weights of the tuples are then
adjusted according to how they were classified.

If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly classified, its
weight is decreased. A tuple’s weight reflects how difficult it is to classify—the higher the weight, the
more often it has been misclassified. These weights will be used to generate the training samples for the
classifier of the next round. The basic idea is that when we build a classifier, we want it to focus more
on the misclassified tuples of the previous round. Some classifiers may be better at classifying some
“difficult” tuples than others. In this way, we build a series of classifiers that complement each other.
The algorithm is summarized in Fig. 6.26.
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Now, let’s look at some of the math that’s involved in the algorithm. To compute the error rate of
model Mi , we sum the weights of each of the tuples in D that Mi misclassified. That is,

error(Mi) =
d∑

j=1

wj × err(Xj ), (6.34)

where err(Xj ) is the misclassification error of tuple Xj : If the tuple was misclassified, then err(Xj )

is 1; otherwise, it is 0. If the performance of classifier Mi is so poor that its error exceeds 0.5, then we
abandon it. Instead, we try again by generating a new Di training set, from which we derive a new Mi .

The error rate of Mi affects how the weights of the training tuples are updated. If a tuple in the round
i was correctly classified, its weight is multiplied by error(Mi)/(1 − error(Mi)). Once the weights of
all the correctly classified tuples are updated, the weights for all tuples (including the misclassified ones)
are normalized so that their sum remains the same as it was before. To normalize a weight, we multiply
it by the sum of the old weights, divided by the sum of the new weights. As a result, the weights
of misclassified tuples are increased, and the weights of correctly classified tuples are decreased, as
described before.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class label of a
tuple, X?” Unlike bagging, where each classifier was assigned an equal vote, boosting assigns a weight
to each classifier’s vote, based on how well the classifier performed. The lower a classifier’s error rate,
the more accurate it is, and therefore, the higher its weight for voting should be. The weight of classifier
Mi’s vote is

log
1 − error(Mi)

error(Mi)
. (6.35)

For each class, c, we sum the weights of each classifier that assigned class c to X. The class with the
highest sum is the “winner” and is returned as the class prediction for tuple X.

Gradient boosting is another powerful boosting technique, which can be used for classification,
regression, and ranking. If we use a tree (e.g., decision tree for classification, regression tree for regres-
sion) as the base model (i.e., the weak learner), it is called gradient tree boosting, or gradient boosted
tree. Fig. 6.27 presents the gradient tree boosting algorithm for the regression task. It works as follows.

Gradient tree boosting algorithm starts with a simple regression model F(x) (line 1), which outputs
a constant (i.e., the average output of all training tuples). Then, similar to Adaboost, it tries to find a
new base model (i.e., weak leaner) Mt(x) at each round (line 3). The newly constructed base model
Mt(x) is added to the regression model F(x) (line 8). In other words, the composite regression model
F(x) consists of k additive base models Mt(x) (t = 1, ..., k). When we search for a new base model
Mt(x), all the previously constructed base models (i.e., M1(x), ...Mt−1(x)) are kept unchanged.

In order to construct a new base model Mt(x), we first compute the predicted output ŷi of each
training tuple by the current regression model F(x) (line 4) and calculate the negative gradient ri of
the loss function with respect to the predicted output ŷi (line 5). Then, we fit a regression tree model
for the training set {(x1, r1), ..., (xn, rn)}, where the negative gradient ri is treated as the targeted output
value of the ith training tuple. Since the negative gradient ri (i = 1, ..., n) changes in different rounds,
we end up with different base models Mt(x) (t = 1, ..., k).

“But, why do we use the negative gradients to construct the new base model?” Suppose the loss
function L(yi,F (xi)) = 1

2 (yi − ŷi )
2 (recall that we have used the similar loss function for the regres-

sion tree and the least square linear regression model). Then, we can show that the negative gradient
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Algorithm: Gradient Tree Boosting for Regression.

Input:

• D, a set of n training tuples {(x1, y1), ..., (xn, yn)}, where xi is the attribute vector of the ith training tuple and yi is its true
target output value;

• k, the number of rounds (one base regression model is generated per round);
• a differential loss function Loss = ∑n

i=1 L(yi ,F (xi )).

Output: A composite regression model F(x).
Method:

(1) initialize the regression model F(x) =
∑n

i=1 yi
n ;

(2) for t = 1 to k do // construct a new weak learner Mt(x) for each round:
(3) for i = 1 to n //each training tuple:
(4) calculate ŷi = F(xi ); //predicted value by the current model F(x)

(5) calculate the negative gradient ri = − ∂L(yi ,ŷi )

∂ŷi
;

(6) endfor
(7) fit a regression tree model Mt(x) for the training set {(x1, r1), ..., (xn, rn)};
(8) update the composite regression model F(x) ← F(x) + Mt(x).
(9) endfor

FIGURE 6.27

Gradient tree boosting for regression.

ri = yi − ŷi , which is the difference between the actual output value and predicted output value by the
current regression model F(x) (i.e., the residual). In other words, the negative gradient ri reveals the
“shortcoming” of the current regression model F(x) (i.e., how far away the predicted output is from
its actual output value). If we use other loss functions (e.g., the Huber loss in robust regression), the
negative gradient is no longer equal to the residual yi − ŷi , but still provides a good indicator in terms
of the prediction quality of the current regression model F(x) on the ith training tuple. For this rea-
son, the negative gradients are also referred to as pseudo residuals. By fitting a regression tree model
with respect to the negative gradients (i.e., where the “shortcoming” of the current regression model
F(x) is), the newly constructed base model, Mt(x), is expected to dramatically improve the composite
regression model F(x).

In addition to the algorithm in Fig. 6.27, several alternative design choices for gradient tree boosting
exist. For example, similar to Adaboost, we can learn a weight for each base model Mt(x), and then the
composite regression model F(x) becomes the weighted sum of the k base models. In practice, it was
found that shrinking the newly constructed base model helps improve the generalization performance
of the composite model F(x) (i.e. F(x) ← F(x) + ηMt(x) in line 8, where 0 < η < 1 is the shrinkage
constant.). The number of leaf nodes T of the regression tree Mt(x) plays an important role in the
learning performance of the composite model F(x). That is, F(x) might underfit the training set if T

is too small, but could overfit the training set with a large T . The typical choice for T is between 4 and
8. At a given round t , we could use a subsample of the entire training set to construct the base model
Mt(x). Gradient tree boosting equipped with such a subsampling strategy is referred to as stochastic
gradient (tree) boosting and it was found to significantly improve the accuracy of the composite model
F(x). A highly scalable end-to-end gradient tree boosting system is called XGBoost, which is capable
to handle a billion-scale training set. XGBoost has made a number of innovations for training gradient
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tree boosting, including a new tree construction algorithm designed for sparse data, feature subsampling
(as opposed to training tuple subsampling in stochastic gradient boosting), and a highly efficient cache-
aware block structure. XGBoost has been successfully used by data scientists in many data mining
challenges, often leading to top competitive results.

“How does boosting compare with bagging?” Because of the way boosting focuses on the mis-
classified tuples, it risks overfitting the resulting composite model to such data. Therefore sometimes
the resulting “boosted” model may be less accurate than a single model derived from the same data.
Bagging is less susceptible to model overfitting. While both can significantly improve accuracy in com-
parison to a single model, boosting tends to achieve greater accuracy.

6.7.4 Random forests
We now present another ensemble method called random forests. Imagine that each of the classifiers in
the ensemble is a decision tree classifier so that the collection of classifiers is a “forest.” The individual
decision trees are generated using a random selection of attributes at each node to determine the split.
More formally, each tree depends on the values of a random vector sampled independently and with the
same distribution for all trees in the forest. During classification, each tree votes, and the most popular
class is returned.

Random forests can be built using bagging (Section 6.7.2) in tandem with random attribute selec-
tion. A training set, D, of d tuples is given. The general procedure to generate k decision trees for the
ensemble is as follows. For each iteration, i (i = 1,2, . . . , k), a training set, Di , of d tuples is sampled
with replacement from D. That is, each Di is a bootstrap sample of D (Section 6.6.4), so that some tu-
ples may occur more than once in Di , while others may be excluded. Let F be the number of attributes
to be used to determine the split at each node, where F is much smaller than the number of available
attributes. To construct a decision tree classifier, Mi , randomly select, at each node, F attributes as can-
didates for the split at the node. The CART methodology is used to grow the trees. The trees are grown
to maximum size and are not pruned. Random forests formed this way, with random input selection,
are called Forest-RI.

Another form of random forest, called Forest-RC, uses random linear combinations of the input
attributes. Instead of randomly selecting a subset of the attributes, it creates new attributes (or features)
that are a linear combination of the existing attributes. That is, an attribute is generated by specifying
L, the number of original attributes to be combined. At a given node, L attributes are randomly selected
and added together with coefficients that are uniform random numbers on [−1,1]. F linear combina-
tions are generated, and a search is made over these for the best split. This form of random forest is
useful when there are only a few attributes available, so as to reduce the correlation between individual
classifiers.

Random forests are comparable in accuracy to AdaBoost, yet are more robust to errors and outliers.
The generalization error for a forest converges as long as the number of trees in the forest is large. Thus,
overfitting is less likely to be a problem. The accuracy of a random forest depends on the strength of
the individual classifiers and a measure of the dependence between them. The ideal is to maintain the
strength of individual classifiers without increasing their correlation. Random forests are insensitive to
the number of attributes selected for consideration at each split. Typically, up to log2d + 1 are chosen.
(An interesting empirical observation was that using a single random input attribute may result in good
accuracy that is often higher than when using several attributes.) Because random forests consider much
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fewer attributes for each split, they are efficient on very large databases. They can be faster than either
bagging or boosting. Random forests give internal estimates of variable importance.

6.7.5 Improving classification accuracy of class-imbalanced data
In this section, we revisit the class imbalance problem. In particular, we study approaches to improving
the classification accuracy of class-imbalanced data.

Given two-class data, the data are class-imbalanced if the main class of interest (the positive class)
is represented by only a few tuples, while the majority of tuples represent the negative class. For
multiclass-imbalanced data, the data distribution of each class differs substantially where, again, the
main class or classes of interest are rare. The class imbalance problem is closely related to cost-sensitive
learning, wherein the costs of errors per class are not equal. In medical diagnosis, for example, it is
much more costly to falsely diagnose a cancerous patient as healthy (a false negative) than to misdiag-
nose a healthy patient as having cancer (a false positive). A false negative error could lead to the loss
of life and therefore is much more expensive than a false positive error. Other applications involving
class-imbalanced data include fraud detection, the detection of oil spills from satellite radar images,
and fault monitoring.

Traditional classification algorithms aim to minimize the number of errors made during classifica-
tion. They assume that the costs of false positive and false negative errors are equal. By assuming
a balanced distribution of classes and equal error costs, they are therefore not suitable for class-
imbalanced data. Earlier parts of this chapter presented ways of addressing the class imbalance problem.
Although the accuracy measure assumes that the cost of classes are equal, alternative evaluation metrics
can be used that consider the different types of classifications. Section 6.6.1, for example, presented sen-
sitivity or recall (the true positive rate) and specificity (the true negative rate), which help to assess how
well a classifier can predict the class label of imbalanced data. Additional relevant measures discussed
include F1 and Fβ . Section 6.6.6 showed how ROC curves plot sensitivity vs. 1 − specificity (i.e., the
false positive rate). Such curves can provide insight when studying the performance of classifiers on
class-imbalanced data.

In this section, we look at general approaches for improving the classification accuracy of class-
imbalanced data. These approaches include (1) oversampling, (2) undersampling, (3) threshold moving,
and (4) ensemble techniques. The first three do not involve any changes to the construction of the
classification model. That is, oversampling and undersampling change the distribution of tuples in
the training set; threshold moving affects how the model makes decisions when classifying new data.
Ensemble methods follow the techniques described in Section 6.7.2 through Section 6.7.4. For ease
of explanation, we describe these general approaches with respect to the two-class imbalanced data
problem, where the higher-cost classes are rarer than the lower-cost classes.

Both oversampling and undersampling change the training data distribution so that the rare (pos-
itive) class is well represented. Oversampling works by resampling the positive tuples so that the
resulting training set contains an equal number of positive and negative tuples. Undersampling works
by decreasing the number of negative tuples. It randomly eliminates tuples from the majority (negative)
class until there are an equal number of positive and negative tuples.

Example 6.12. Oversampling and undersampling. Suppose the original training set contains 100
positive and 1000 negative tuples. In oversampling, we replicate tuples of the rare class to form a new
training set containing 1000 positive tuples and 1000 negative tuples. In undersampling, we randomly
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eliminate negative tuples so that the new training set contains 100 positive tuples and 100 negative
tuples.

Several variations to oversampling and undersampling exist. They may vary, for instance, in how
tuples are added or eliminated. For example, the SMOTE algorithm uses oversampling where synthetic
tuples are added, which are “close to” the given positive tuples in tuple space.

The threshold-moving approach to the class imbalance problem does not involve any sampling.
It applies to classifiers that, given an input tuple, return a continuous output value (just like in Sec-
tion 6.6.6, where we discussed how to construct ROC curves). That is, for an input tuple, X, such
a classifier returns as output a mapping, f (X) → [0,1]. Rather than manipulating the training tuples,
this method returns a classification decision based on the output values. In the simplest approach, tuples
for which f (X) ≥ t , for some threshold, t , are considered positive, while all other tuples are considered
negative. Other approaches may involve manipulating the outputs by weighting. In general, threshold
moving moves the threshold, t , so that the rare class tuples are easier to classify (and hence, there is less
chance of costly false negative errors). Examples of such classifiers include naïve Bayesian classifiers
(Section 6.3) and neural networks (Chapter 10). The threshold-moving method, although not as popular
as over- and undersampling, is simple and has shown some success for the two-class-imbalanced data.

Ensemble methods (Section 6.7.2 through Section 6.7.4) have also been applied to the class im-
balance problem. The individual classifiers making up the ensemble may include versions of the
approaches described here, such as oversampling and threshold moving.

These methods work relatively well for the class imbalance problem on two-class tasks. Threshold-
moving and ensemble methods were empirically observed to outperform oversampling and undersam-
pling. Threshold moving works well even on extremely imbalanced data sets. The class imbalance
problem on multiclass tasks is much more difficult where oversampling and threshold moving are less
effective. Although threshold-moving and ensemble methods show promise, finding a solution for the
multiclass imbalance problem remains an area of future work.

6.8 Summary
• Classification is a form of data analysis that extracts models describing data classes. A classifier, or

classification model, predicts categorical labels (classes). Numeric prediction models continuous-
valued functions. Classification and numeric prediction are the two major types of prediction prob-
lems.

• Decision tree induction is a top-down recursive tree induction algorithm, which uses an attribute
selection measure to select the attribute tested for each nonleaf node in the tree. ID3, C4.5, and
CART are examples of such algorithms using different attribute selection measures. Tree pruning
algorithms attempt to improve accuracy by removing tree branches reflecting noise in the data.

• Naïve Bayesian classification is based on Bayes’ theorem of the posterior probability. It assumes
class-conditional independence—that the effect of an attribute value on a given class is independent
of the values of other attributes.

• Linear classifiers compute a linear weighted combination of the input attribute values, based on
which it predicts the class label for a given tuple. Perceptron and logistic regression are two classic
examples of linear classifiers.
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• Decision tree classifiers, Bayesian classifiers, and linear classifiers are all examples of eager learn-
ers in that they use training tuples to construct a generalization model and in this way are ready
for classifying new tuples. This contrasts with lazy learners or instance-based methods of clas-
sification, such as nearest-neighbor classifiers and case-based reasoning classifiers, which store all
of the training tuples in pattern space and wait until presented with a test tuple before performing
generalization. Hence lazy learners require efficient indexing techniques.

• A confusion matrix can be used to evaluate a classifier’s quality. For a two-class problem, it shows
the true positives, true negatives, false positives, and false negatives. Measures that assess a classi-
fier’s predictive ability include accuracy, sensitivity (also known as recall), specificity, precision,
F , and Fβ . Reliance on the accuracy measure can be deceiving when the main class of interest is in
the minority.

• Construction and evaluation of a classifier require partitioning labeled data into a training set and
a test set. Holdout, random sampling, cross-validation, and bootstrapping are typical methods
used for such partitioning.

• Significance tests and ROC curves are useful tools for model selection. Significance tests can be
used to assess whether the difference in accuracy between two classifiers is due to chance. ROC
curves plot the true positive rate (or sensitivity) vs. the false positive rate (or 1 − specificity) of one
or more classifiers.

• Ensemble methods can be used to increase overall accuracy by learning and combining a series of
individual (base) classifier models. Bagging, boosting, and random forests are popular ensemble
methods.

• The class imbalance problem occurs when the main class of interest is represented by only a
few tuples. Strategies to address this problem include oversampling, undersampling, threshold
moving, and ensemble techniques.

6.9 Exercises
6.1. Briefly outline the major steps of decision tree classification.
6.2. Why is tree pruning useful in decision tree induction? What is a drawback of using a separate

set of tuples to evaluate pruning?
6.3. Given a decision tree, you have the option of (a) converting the decision tree to rules and then

pruning the resulting rules, or (b) pruning the decision tree and then converting the pruned tree
to rules. What advantage does (a) have over (b)?

6.4. It is important to calculate the worst-case computational complexity of the decision tree algo-
rithm. Given data set, D, the number of attributes, n, and the number of training tuples, |D|,
analyze the computational complexity in terms of n and |D|.

6.5. Given a 5-GB data set with 50 attributes (each containing 100 distinct values) and 512 MB of
main memory in your laptop, outline an efficient method that constructs decision trees in such
large data sets. Justify your answer by a rough calculation of your main memory usage.

6.6. Why is naïve Bayesian classification called “naïve”? Briefly outline the major ideas of naïve
Bayesian classification.

6.7. The following table consists of training data from an employee database. The data have been
generalized. For example, “31 . . . 35” for age represents the age range of 31 to 35. For a given
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row entry, count represents the number of data tuples having the values for department, status,
age, and salary given in that row.

department status age salary count
sales senior 31 . . .35 46K . . .50K 30
sales junior 26 . . .30 26K . . .30K 40
sales junior 31 . . .35 31K . . .35K 40
systems junior 21 . . .25 46K . . .50K 20
systems senior 31 . . .35 66K . . .70K 5
systems junior 26 . . .30 46K . . .50K 3
systems senior 41 . . .45 66K . . .70K 3
marketing senior 36 . . .40 46K . . .50K 10
marketing junior 31 . . .35 41K . . .45K 4
secretary senior 46 . . .50 36K . . .40K 4
secretary junior 26 . . .30 26K . . .30K 6

Let status be the class label attribute.
a. How would you modify the basic decision tree algorithm to take into consideration the

count of each generalized data tuple (i.e., of each row entry)?
b. Use your algorithm to construct a decision tree from the given data.
c. Given a data tuple having the values “systems,” “26 . . . 30,” and “46–50K” for the attributes

department, age, and salary, respectively, what would a naïve Bayesian classification of the
status for the tuple be?

6.8. Compare the advantages and disadvantages of eager classification (e.g., decision tree, Bayesian,
neural network) vs. lazy classification (e.g., k-nearest neighbor, case-based reasoning).

6.9. Write an algorithm for k-nearest-neighbor classification given k, the nearest number of neigh-
bors, and n, the number of attributes describing each tuple.

6.10. RainForest is a scalable algorithm for decision tree induction. Develop a scalable naïve Bayesian
classification algorithm that requires just a single scan of the entire data set for most databases.
Discuss whether such an algorithm can be refined to incorporate boosting to further enhance its
classification accuracy.

6.11. Design an efficient method that performs effective naïve Bayesian classification over an infinite
data stream (i.e., you can scan the data stream only once). If we wanted to discover the evolution
of such classification schemes (e.g., comparing the classification scheme at this moment with
earlier schemes such as one from a week ago), what modified design would you suggest?

6.12. The perceptron model y = f (x) = sign(wT x + b) can be used to learn a binary classifier from
training data.
a. Assume there are two training samples. The positive one is x1 = (2,1)T ; the negative one

is x2 = (1,0)T . The learning rate η = 1. Starting from w = (1,1)T and b = 0, solve the
parameters of the classifier.

b. Assume there are four training samples. The positive samples are x1 = (1,1)T and x2 =
(0,0)T ; the negative samples are x3 = (1,0)T and x4 = (0,1)T . Can we classify all training
samples correctly using the perceptron model? Why?

6.13. Suppose we have three positive examples x1 = (1,0,0), x2 = (0,0,1) and x3 = (0,1,0) and
three negative examples x4 = (−1,0,0), x5 = (0,−1,0) and x6 = (0,0,−1). Apply standard
gradient ascent method to train a logistic regression classifier (without regularization terms).
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Tuple # Class Probability
1 P 0.95
2 N 0.85
3 P 0.78
4 P 0.66
5 N 0.60
6 P 0.55
7 N 0.53
8 N 0.52
9 N 0.51

10 P 0.40

FIGURE 6.28

Tuples sorted by decreasing score, where the score is the value returned by a probabilistic classifier.

Initialize the weight vector with two different values and set w0
0 = 0 (e.g. w0 = (0,0,0,0)′, w0 =

(0,0,1,0)′). Would the final weight vector (w∗) be the same for the two different initial values?
What are the values? Please explain your answer in detail. You may assume the learning rate to
be a positive real constant η.

6.14. Suppose that we are training a naïve Bayes classifier and a logistic regression classifier: f :
X → Y , which maps a d-dimensional real-valued feature vector X ∈R

d to a binary class label
Y ∈ {0,1}. In the naïve Bayes classifier, we assume that all Xi where i = 1, ..., n are conditionally
independent given the class label Y and the class prior P(Y ) follow the Bernoulli distribution
with P(Y = 1) = θ . Now, prove the equivalence of logistic regression and naïve Bayes under
these two assumptions.
a. For each Xi , we assume it is drawn from the Gaussian distribution P(Xi |Y = k) ∼

N (μik, σik) where k = 0,1. We also assume that σi0 = σi1 = σi .
b. For each Xi , we assume it is drawn from the Bernoulli distribution P(Xi = 1|Y = k) = pk

where k = 0,1.
6.15. Show that accuracy is a function of sensitivity and specificity, that is, prove Eq. (6.25).
6.16. The harmonic mean is one of several kinds of averages. Chapter 2 discussed how to compute the

arithmetic mean, which is what most people typically think of when they compute an average.
The harmonic mean, H , of the positive real numbers, x1, x2, . . . , xn, is defined as

H = n

1
x1

+ 1
x2

+ · · · + 1
xn

= n∑n
i=1

1
xi

.

The F measure is the harmonic mean of precision and recall. Use this fact to derive Eq. (6.28)
for F . In addition, write Fβ as a function of true positives, false negatives, and false positives.

6.17. The data tuples of Fig. 6.28 are sorted by decreasing probability value, as returned by a classifier.
For each tuple, compute the values for the number of true positives (T P ), false positives (FP ),
true negatives (T N), and false negatives (FN). Compute the true positive rate (T PR) and false
positive rate (FPR). Plot the ROC curve for the data.
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6.18. It is difficult to assess classification accuracy when individual data objects may belong to more
than one class at a time. In such cases, comment on what criteria you would use to compare
different classifiers modeled after the same data.

6.19. Suppose that we want to select between two prediction models, M1 and M2. We have performed
10 rounds of 10-fold cross-validation on each model, where the same data partitioning in round i

is used for both M1 and M2. The error rates obtained for M1 are 30.5, 32.2, 20.7, 20.6, 31.0, 41.0,
27.7, 26.0, 21.5, 26.0. The error rates for M2 are 22.4, 14.5, 22.4, 19.6, 20.7, 20.4, 22.1, 19.4,
16.2, 35.0. Comment on whether one model is significantly better than the other considering a
significance level of 1%.

6.20. What is boosting? State why it may improve the accuracy of decision tree induction.
6.21. Outline methods for addressing the class imbalance problem. Suppose a bank wants to develop

a classifier that guards against fraudulent credit card transactions. Illustrate how you can induce
a quality classifier based on a large set of legitimate examples and a very small set of fraudulent
cases.

6.22. XGBoost is a scalable machine learning system for tree boosting. Its objective function has a
training loss and a regularization term: L = ∑

i l(yi, ŷi) + ∑
k �(fk). Read the XGBoost paper

and answer the following questions:
a. What is ŷi? At the t th iteration, XGBoost fixes f1, ..., ft−1 and trains the t th tree model ft .

How does XGBoost approximate the training loss l(yi, ŷi) here?
b. What is �(fk)? Which part in the regularization term needs to be considered at the t th

iteration?
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Bayesian classifiers when the class-conditional independence assumption is violated, see Domingos and
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moving “useless” training tuples was first proposed by Hart [Har68]. For speeding-up the computation
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Zhang, Huang, Geng and Liu [ZHGL13].
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theoretical and empirical study by Kohavi [Koh95]. See Freedman, Pisani, and Purves [FPP07] for the
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and naïve Bayesian classification (Elkan [Elk97]). Friedman [Fri01] proposed the gradient boosting
machine. Chen and Guestrin designed a highly scalable system called Xgboost [CG16]. The ensem-
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include Weiss [Wei04], Zhou and Liu [ZL06], Zapkowicz and Stephen [ZS02], Elkan [Elk01], Domin-
gos [Dom99], and Huang, Li, Loy and Tang [HLLT16].
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for the development and testing of classification algorithms. It also maintains a Knowledge Discovery
in Databases (KDD) Archive, an online repository of large data sets that encompasses a wide vari-
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ety of data types, analysis tasks, and application areas. For information on these two repositories, see
http://www.ics.uci.edu/~mlearn/MLRepository.html and http://kdd.ics.uci.edu.

No classification method is superior to all others for all data types and domains. Empirical com-
parisons of classification methods include Quinlan [Qui88]; Shavlik, Mooney, and Towell [SMT91];
Brown, Corruble, and Pittard [BCP93]; Curram and Mingers [CM94]; Michie, Spiegelhalter, and Tay-
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7
CHAPTER

Classification: advanced methods

In this chapter, you will learn advanced techniques for data classification. We start with feature selec-
tion and engineering (Section 7.1). Then, we will introduce Bayesian belief networks (Section 7.2),
which unlike naïve Bayesian classifiers, do not assume class conditional independence. A powerful
approach to classification known as support vector machines is presented in Section 7.3. A support
vector machine transforms training data into a higher dimensional space, where it finds a hyperplane
that separates the data by class using essential training tuples called support vectors. Section 7.4 de-
scribes rule-based and pattern-based classification. For the former, our classifier is in the form of
a set of IF-THEN rules, whereas the latter explores relationships between attribute–value pairs that
occur frequently in data. This methodology builds on research on frequent pattern mining (Chapters 4
and 5). Classification with weak supervision is introduced in Section 7.5. Section 7.6 introduces var-
ious techniques for classification on rich data types, such as stream data, sequence data, and graph
data. Other related techniques to classification, such as multiclass classification, distance metric learn-
ing, interpretability of classification, reinforcement learning, and genetic algorithms are introduced in
Section 7.7.

7.1 Feature selection and engineering
For the classification setting introduced in Chapter 6, in order to train a classifier (e.g., naïve Bayes
Classifier, k-nearest-neighbor classifier), we assume that there exists a training set with n tuples, each
of which is represented by p attributes or features. “But, where do these p features come from at the
first place?” Let us consider two scenarios. In the first scenario (Feature Selection), you might have
collected a large number of (say hundreds or thousands or even more) features. However, most of them
might be irrelevant with respect to the classification task or redundant with each other. For example, in
order to predict whether an online student will drop out before finishing the program, the student ID
is an irrelevant feature. In another example of predicting whether a customer will buy a computer, one
of the two features, namely yearly income and monthly income, is redundant since one (e.g., yearly
income) can be inferred from the other (e.g., monthly income). Including such irrelevant or redundant
features during the classifier training process will not help improve the classification accuracy, yet they
are likely to make the trained classifier sensitive to noise, leading to degraded generalization perfor-
mance. “How can we select a subset of most relevant features from the initial p input features to train
a classification model? This is the main focus of this section.

In the second scenario (Feature Engineering), you might wonder “How can I construct p features
so that all of them are critical for the classification task I have?” or “Given the initial p features,
how can I transform them into another p′ attributes so that these transformed features will be more
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effective for the given classification task?” These are the questions that feature engineering tries to
answer. For example, in order to predict whether a regional disease outbreak will occur, one might
have collected a large number of features from the health surveillance data, including the number of
daily positive cases, the number of daily tests, and the number of daily hospitalization. It turns out a
powerful indicator (or feature) to predict the disease outbreak is weekly positive rate. In this example,
the weekly positive rate, which is the ratio of the number of positive cases and the number of tests
of a week, can be constructed (or engineered) based on the initial features (e.g., daily positive cases,
daily test cases). In practice, feature engineering plays a very important role in the performance of the
classification model. Traditionally, feature engineering requires substantial domain knowledge. Some
data transformation techniques (e.g., DWT, DFT, and PCA), that were introduced in Chapter 2 can
be viewed as feature engineering methods. The deep learning techniques that we will introduce in
Chapter 10 provide an automatic way for feature engineering, capable of generating powerful features
from the initial input features. The engineered features are often semantically more meaningful with a
significant classification performance improvement.

In this section, we will introduce three types of feature selection methods, namely filter methods,
wrapper methods, and embedded methods. A filter method selects features based on some goodness
measure that is independent of the specific classification model. A wrapper method combines the feature
selection and classifier model construction steps together, and it iteratively uses the currently selected
feature subset to construct a classification model, which is in turn used to update the selected feature
subset. An embedded method simultaneously constructs the classification model and selects the relevant
features. In other words, it embeds the feature selection step during the classification model construction
step. Fig. 7.1 provides a pictorial comparison of these three methods.

Feature selection can be used for both classification and regression. It can also be applied to unsu-
pervised data mining tasks, such as clustering. For both filter and wrapper methods, we will illustrate
them with classification tasks. We will mainly use the linear regression task, which was introduced in
Section 6.5, to explain the embedded methods.

7.1.1 Filter methods
A filter method selects “good” features based on a certain “goodness” measure of the input features.
A filter method is independent of the specific classification model and is often used as a preprocessing
step of other feature selection methods (e.g., wrapper or embedded methods). The idea is quite straight-
forward. Suppose we have p initial features and we wish to select k out of p features (where k < p). If
we have a goodness score for each feature, we can simply select k features with the highest goodness
scores.

“So, how shall we measure the goodness of a feature?” Intuitively, we might say that a feature is
good if it is highly correlated with the class label we want to predict. Suppose there are n training
tuples. We wish to measure the correlation between a feature (i.e., attribute) x and the class label y.
How can we measure the correlation between the given feature x and the class label y? If the given
feature x is a categorical attribute (e.g., job title), a natural choice is χ2 test, which was introduced
in Section 2.2.3. To be specific, a higher χ2 value indicates a stronger correlation between the given
feature x and the class label y. We select k features with the highest χ2 values.

“But, what if the given feature x is a continuous attribute (e.g., yearly income)?” We have two
choices. First, we can discretize the continuous attribute x into a categorical attribute (e.g., high,
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FIGURE 7.1

An overview of three feature selection methods.

medium vs. low income) and then use the χ2 test to measure the correlation between the discretized
attribute and the class label to select k most correlated features. Second, we can resort to Fisher score
to directly measure the correlation between a continuous variable (the given feature x) and a categorical
variable (the class label y).

Suppose we have a binary class label y (i.e., whether or not the customer will buy a computer).
Intuitively, the feature x (e.g., income) is strongly correlated with the class label y if (1) the average
income of all customers who buy a computer is significantly different from the average income of all
customers who do not buy a computer, (2) all customers who buy a computer share similar income, and
(3) all customers who do not buy a computer share similar income. Formally, Fisher score is defined as
follows:

s =
∑c

j=1 nj (μj − μ)2∑c
j=1 njσ

2
j

, (7.1)

where c is the total number of classes (c = 2 in our example), nj is the number of training tuples in
class j , μj and σ 2

j are the mean value and variance of feature x among all tuples that belong to class
j , respectively, and μ is the mean value of feature x among all training tuples. Therefore a feature x

would have a high Fisher score if the following conditions hold. First, the class-specific mean values
uj (j = 1, ..., c) are dramatically different from each other (e.g., a large numerator of the Fisher score
in Eq. (7.1)). Intuitively, this implies that on average, the feature values from different classes are quite
different from each other. Second, the class-specific variance σ 2

j is small (e.g., a small denominator of
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FIGURE 7.2

Feature section by Fisher score. (a) Ten training tuples, each of which is represented by two attributes (attribute A
and attribute B) and a binary class label (+ vs. −). (b) Scatter-plot of training tuples. Intuitively, attribute B better
separates the positive training tuples from negative ones than attribute A. This is consistent with Fisher scores:
s(attribute B) = 200 > s(attribute A) = 0.125.

the Fisher score in Eq. (7.1)). This indicates that, within a class, different training tuples share similar
feature values.

Example 7.1. We are given 10 training tuples in Fig. 7.2(a), each of which is represented by two at-
tributes (attribute A and attribute B) and a binary class label (+ vs. −). We want to use Fisher scores to
decide which attribute is more correlated with the class label. There are five positive tuples and five neg-
ative tuples n1 = n2 = 5. For attribute A, the mean value among all training tuples μ = (1 + 2 + 3 +
4 + 5 + 2 + 3 + 4 + 5 + 6)/10 = 3.5, the mean value among positive training tuples μ1 = (1 + 2 +
3 + 4 + 5)/5 = 3, the mean value among negative training tuples μ2 = (2 + 3 + 4 + 5 + 6)/5 = 4, the
variance of the positive tuples σ 2

1 = ((1 − 3)2 + (2 − 3)2 + (3 − 3)2 + (4 − 3)2 + (5 − 3)2)/5 = 2, and
the variance of the negative tuples σ 2

2 = ((2 − 4)2 + (3 − 4)2 + (4 − 4)2 + (5 − 4)2 + (6 − 4)2)/5 = 2.
Therefore the Fisher score for attribute A is s(attribute A) = (5 × (3 − 3.5)2 + 5 × (4 − 3.5)2))/(5 ×
2 + 5 × 2) = 0.125. We compute the Fisher score for attribute B in a similar way and have that
s(attribute B) = 200. According to Fisher scores, attribute B is more correlated with the class label
than attribute A. This is consistent with the scatter-plot in Fig. 7.2(b), where the positive tuples are well
separated from negative tuples along the vertical axis (attribute B), whereas they are mixed together
along the horizontal axis (attribute A).

In addition to correlation measures (e.g., χ2 test for categorical feature, Fisher score for continuous
feature), we might say that a feature x is good if it contains “a lot of information” about the class
label y that we want to predict. This suggests information-theoretic goodness measures for feature
selection. For example, we can use information gain as the goodness measure for feature selection.
The information gain, entropy, and conditional entropy were introduced in Section 6.2. In a nutshell,
let H(y) be the entropy of the class label y and H(y|x) be the conditional entropy of the class label y

given the feature x. The information gain of the feature x is defined as the difference between H(y) and
H(y|x). The intuition is that a feature x with a larger information gain can better reduce the impurity
(e.g., entropy) of the class label y. Thus it contains “more information” about predicting the class label
y. In addition to information gain, another commonly used information theoretic goodness measure for
feature selection is mutual information (MI). Intuitively, the mutual information between a feature x and
the class label measures how much information the feature x provides to make the correct prediction of
the class label y. Therefore features with the largest mutual information should be selected. The details
about how to compute mutual information can be found in Appendix A.
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With filter methods, the general process of training a classification model is as follows (Fig. 7.1(a)).
Given a set of p initial features, we first use a filter method to select k features (e.g., k out of p

features with the highest Fisher scores). Then, using these k selected features, we build a classifier
(e.g., a logistic regression classifier). Finally, we evaluate the performance of the trained classifier,
such as cross-validation accuracy. Notice that during the feature selection process, a filter method is
independent of the specific classification model that will be trained with the selected features. Another
potential limitation with a filter method is that it does not consider the interaction between different
features, and thus might select redundant features.

7.1.2 Wrapper methods
A wrapper method adopts a different strategy for feature selection by combining the feature selection
step and classifier training step together. A wrapper method is often an iterative process (Fig. 7.1(b)).
At each iteration, it tries to build a classifier based on the currently selected feature subset, and then
based on the built classifier, it updates (e.g., add, remove, swap) the selected feature subset. In other
words, it wraps the feature selection and classifier training together, hence the name of wrapper.

The most important component of a wrapper method is how to search for the best feature subset.
A straightforward way (i.e., exhaustive search) is to try all the possible subsets of the p given features.
We use each subset of the feature to build a classification model and evaluate its performance, such
as the classification accuracy using either the held-out set or cross-validation. The best feature subset
is the one with the highest classification accuracy for the given classification model. This strategy is
optimal since it finds the best feature subset with the highest classification accuracy. However, it is very
expensive in terms of computation, since it needs to search and evaluate all (2p − 1) possible subsets
of the p given features—an exponential number!

In practice, a wrapper method often relies on some heuristic search strategy to avoid the (2p − 1)

exponential search space. Section 2.6.2 introduced different attribute subset selection strategies, which
can be applied here. For example, in the stepwise forward selection method, it starts with an empty
feature subset. At each iteration of the feature selection process, it selects an additional feature, which,
when added into the current feature subset, will improve the classification model performance most
(e.g., classification accuracy measured by the held-out method or cross-validation). The process will
terminate when adding the extra features can no longer improve the classification model performance.
In contrast, in the stepwise backward elimination method, it starts with all the p initial features, and then
iteratively eliminates features from the current subset whose removal would increase the classification
accuracy most. We can also combine these two strategies together. That is, at each iteration, we try to
select one additional feature and meanwhile might eliminate one existing feature that will improve the
classification accuracy most. In addition to these three typical search strategies, some wrapper methods
leverage more sophisticated techniques, such as simulated annealing and genetic algorithm. Simulated
annealing is a probabilistic optimization technique, often designed for complex (e.g., nonconvex) opti-
mization problems. The latter will be introduced in Section 7.7.

By “wrapping” the feature selection and the classification model construction steps together, a
wrapper method tends to have better performance than filtering methods. However, since it needs to
iteratively search for the feature subset and (re-)train the classification model, the computational cost
of a wrapper method is usually much more intense than filter methods. How can we simultaneously
enjoy the advantages of both filter methods and wrapper methods? That is what embedded methods try
to answer.
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7.1.3 Embedded methods
Embedded methods aim to combine the advantages of both filter methods and wrapper methods. On
the one hand, an embedded method performs feature selection and classification model construction
simultaneously, so that the two can mutually benefit from each other. On the other hand, an embedded
method tries to avoid the expensive, iterative search process in wrapper methods.

We actually have already seen an embedded method in Chapter 6! For decision tree induction that
was introduced in Section 6.2, it is possible that only a fraction of all d initial attributes are present
in the built decision tree model. For the example in Fig. 6.2, only three attributes (i.e., age, student,
credit_rating) are present in the decision tree model, albeit there might be tens of or hundreds of initial
attributes. This could happen if the decision tree induction algorithm terminates before it exhausts all d

initial attributes, or some attributes of the initially built decision tree are removed during tree pruning
process. In either case, all the attributes that appear on the nonleaf tree nodes can be viewed as the
selected feature subset, and decision tree induction itself can be viewed as an embedded method for
feature selection. In other words, the feature selection process (i.e., to decide which attribute(s) are
used as the nonleaf tree nodes) is embedded in the decision tree induction process. We simultaneously
accomplish both the feature selection step and the classification model construction (i.e., decision tree
induction) step. This is the essence of an embedded method.

Other powerful embedded methods often rely on a technique called sparse learning. Let us first
introduce its high-level idea, and then we will explain the details using linear regression as an example.
A handful of data mining models can be solved from the optimization perspective, such as the linear
regression model and logistic regression. In a nutshell, we build these data mining models by mini-
mizing some objective (or loss) function that directly or indirectly measures the performance of the
corresponding data mining model. For example, in least square linear regression, we find the optimal
weight vector w by minimizing the sum of the squared difference between the predicted output and the
actual output; in logistic regression, we find the optimal weight vector w by minimizing the negative
log likelihood. Now, let us modify the objective function so that it also “penalizes” the number of the
features it uses. By minimizing the modified objective function, the trained data mining model might
only use a subset of all the d initial features and thus accomplish the task of feature selection. In this
way, we will be able to embed the feature selection process (by penalizing the number of features used
in the final model) in the model training process.

“So, how can we penalize the number of features used in a data mining model, and how can we solve
the modified optimization problem accordingly?” Let us explain the details using least square linear
regression (which was introduced in Section 6.5) as an example. Recall that a multilinear regression
model assumes ŷi = wT xi = w0 + w1xi,1 + ... + wdxi,d , where ŷi is the predicted output for the ith
tuple, xi = (1, xi,1, ...xi,d ) is the attribute (feature) vector of the ith tuple, and w = (w0,w1, ...,wd)

is the weight vector. We find the optimal weight vector w by minimizing the loss function L(w) =
1
2

∑n
i=1(yi − ŷi )

2 = 1
2

∑n
i=1(yi − wT xi)

2, which measures the sum of the squared difference between
the predicted output (ŷi) and the actual output (yi). “How can we ‘embed’ the feature selection in
the process of training such a linear regression model?” For the j th feature, if the corresponding
weight wj = 0, then it has no contribution on the linear regression model. In other words, this feature
is “unselected.” This naturally suggests that we can use the l0 norm1 of the weight vector w, which

1 l0 is a special case of the lp norm when p approaches 0. lp norm was introduced in Chapter 2.
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counts the number of nonzero elements in the weight vector w, to measure how many features are used
(i.e., selected) in the trained linear regression model. Therefore if we train a linear regression model by
minimizing the following modified loss function L̃(w) = 1

2

∑n
i=1(yi − ŷi )

2 + λ‖w‖0 = 1
2

∑n
i=1(yi −

wT xi)
2 + λ‖w‖0, the optimal weight vector w is likely to contain some zero elements. Those features

whose corresponding weights in vector w are nonzero are selected. The parameter λ > 0 balances two
terms in the modified loss function. Generally speaking, the larger the λ, the less number of the features
are likely to be selected (i.e., more elements in the weight vector w are likely to be zeros).

However, finding the optimal weight vector w that minimizes the modified loss function L̃(w) is
very hard. This is because the l0 norm of the weight vector w, which tells how many features are
selected, is nonconvex. To address this issue, we replace the l0 norm by another norm that is convex. It
turns out the l1 norm ‖w‖1 = ∑d

j=0 |wj | is the best convex approximation of the l0 norm, where |wj |
is the absolute value of wj . Thus we have a new loss function as follows.

L̂(w) = 1

2

n∑
i=1

(yi − ŷi )
2 + λ‖w‖1 = 1

2

n∑
i=1

(yi − wT xi)
2 + λ

d∑
j=0

|wj | (7.2)

The regression model that minimizes the new loss function L̂(w) in Eq. (7.2) is called LASSO, which
stands for Least Absolute Shrinkage and Selection Operator. The optimal weight vector w of L̂ is often
sparse, meaning that some of its elements might be zeros. The nonzero elements of the optimal vector
w tell that the corresponding features are selected by the linear regression model. Fig. 7.3(a) presents
an illustration of the loss function of LASSO (Eq. (7.2)).

FIGURE 7.3

An illustration of LASSO. (a) Illustration of the loss function of LASSO (Eq. (7.2)). The training set is represented
by an n × d feature matrix X whose rows are tuples and columns are features, and an n × 1 output vector y. By min-
imizing the sum of the squared difference between the actual and predicted output (i.e., the first term of Eq. (7.2)),
the trained linear regression models try to make the predicted output ŷ to be as close as possible to the actual out-
put ŷ. By minimizing the l1 norm of the weight vector w (i.e., the second term of Eq. (7.2)), some elements of the
weight vector w are zeros (indicated by the arrows), and the corresponding features (the columns of the feature
matrix X) are “unselected.” (b) Soft thresholding pushes the coefficients with small magnitudes (between −λ and λ)
to be zeros while shrinking the remaining coefficients by λ in magnitude.
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“So, how can we find the optimal weight vector w that minimizes L̂ in Eq. (7.2)?” The good news
is that unlike function L̃ that is nonconvex, the loss function L̂ in Eq. (7.2) is a convex function. There
exist many numerical optimization packages that can be used to solve it. Here, we introduce one of
them, called coordinate descent.

Unlike the least square regression that has a closed-form solution, the closed-form solution for
LASSO does not exist. Coordinate descent finds the optimal weight vector w in an iterative way, and
it works as follows. First, we initialize the weight vector w. (We can simply set each element in w as
zero.) Then, the algorithm iterates until it converges or some stopping criterion is met, for example,
a maximum iteration number has been reached. At each iteration, the algorithm tries to update each
element in the weight vector w one-by-one, while fixing all the remaining elements in w. Therefore
it boils down to the following question. “How can we update a single element (say wt (0 ≤ t ≤ d))
while fixing all other elements?” We take the following three steps. First, we compute the residual
for each training tuple ri = yi − ∑d

j=0,j �=t wjxi,j . The intuition of the residual ri is that it measures
the prediction error for the ith tuple if we use all but the t th features. Second, we train a least square
regression model for all the input tuples, where each tuple is represented by a single input feature xi,t

and its output is the residual ri . The weight (i.e., coefficient) for the t th feature from such a least square
regression model is represented as βt . (Recall that we can use the closed-form solution of least square
regression to find the coefficient βt , which was introduced in Section 6.5.) The intuition is that if we fix
all but the t th features, the coefficient βt is the best coefficient that minimizes the overall least square
prediction error. Third, we update the weight wt as follows.

wt =

⎧⎪⎨
⎪⎩

βt − λ if βt ≥ λ

βt + λ if βt ≤ −λ

0 otherwise

(7.3)

The third step is called soft thresholding, and its intuition is as follows. If |βt | is greater than the
regularization parameter λ, the soft thresholding step would reduce the magnitude of βt by λ, which is
used as the updated coefficient wt ; otherwise the coefficient wt is simply set as zeros. In other words, the
soft thresholding pushes the coefficients with small magnitude as zero while shrinking the remaining
coefficients. In this way, the final weight vector w is likely to be sparse with many zero elements, and
thus achieves the purpose of feature selection. Fig. 7.3(b) presents an illustration of soft thresholding.

An earlier method for solving LASSO is called LAR, which stands for least angle regression. Recall
that for linear regression introduced in Section 6.5, we could add the squared l2 norm of the weight
vector into the loss function to prevent overfitting (i.e., Ridge regression). We can add both l1 norm
and the squared l2 norm into the loss function L. Such a regression model is called Elastic net, and
the features selected by Elastic net tend to be less correlated with each other, compared with LASSO.
We can use a very similar idea as LASSO to embed the feature selection process in the classification
model. For example, we can introduce an l1 norm regularization term in the objective function of
logistic regression, so that the weight vector of the trained logistic regression classifier is likely to be
sparse. In other words, it only uses a few selected features.
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7.2 Bayesian belief networks
Chapter 6 introduced Bayes’ theorem and naïve Bayesian classification. In this chapter, we describe
Bayesian belief networks—probabilistic graphical models, which unlike naïve Bayesian classifiers al-
low the representation of dependencies among subsets of attributes. Bayesian belief networks can be
used for classification. Section 7.2.1 introduces the basic concepts of Bayesian belief networks. In
Section 7.2.2, you will learn how to train such models.

7.2.1 Concepts and mechanisms
The naïve Bayesian classifier makes the assumption of class conditional independence, that is, given
the class label of a tuple, the values of the attributes are assumed to be conditionally independent of
one another. The benefit of such an assumption is that it significantly simplifies computation. When the
assumption holds true, the naïve Bayesian classifier is the most accurate in comparison with all other
classifiers. In practice, however, dependencies can exist between variables (i.e., attributes). Bayesian
belief networks specify joint probability distributions. They allow class conditional independence to be
defined between subsets of variables. They provide a graphical model of causal relationships, on which
learning can be performed. Trained Bayesian belief networks can be used for classification. Bayesian
belief networks are also known as belief networks, Bayesian networks, and probabilistic networks.
For brevity, we will refer to them as belief networks.

A belief network is defined by two components—a directed acyclic graph and a set of conditional
probability tables (Fig. 7.4). Each node in the directed acyclic graph represents a random variable. The
variables may be discrete- or continuous-valued. They may correspond to actual attributes given in the
data or to “hidden variables” believed to form a relationship (e.g., in the case of medical data, a hidden
variable may indicate a syndrome, representing a number of symptoms that, together, characterize a
specific disease). Each arc represents a probabilistic dependence. If an arc is drawn from a node Y to a
node Z, then Y is a parent or immediate predecessor of Z, and Z is a descendant of Y . Each variable
is conditionally independent of its nondescendants in the graph, given its parents.

Fig. 7.4 is a simple belief network, adapted from Russell, Binder, Koller, and Kanazawa [RBKK95],
for six Boolean variables. The arcs in Fig. 7.4(a) allow a representation of causal knowledge. For exam-
ple, having lung cancer is influenced by a person’s family history of lung cancer, as well as whether or
not the person is a smoker. Note that the variable PositiveXRay is independent of whether the patient has
a family history of lung cancer or is a smoker, given that we know the patient has lung cancer. In other
words, once we know the outcome of the variable LungCancer, then the variables FamilyHistory and
Smoker do not provide any additional information regarding PositiveXRay. The arcs also show that the
variable LungCancer is conditionally independent of Emphysema, given its parents, FamilyHistory and
Smoker. On the other hand, we cannot say that LungCancer is conditionally independent of Dyspnea,
given its parents. Why? This is because Dyspnea is a child of LungCancer in the belief network.

A belief network has one conditional probability table (CPT) for each variable. The CPT for a
variable Y specifies the conditional distribution P(Y |Parents(Y )), where Parents(Y ) are the parents
of Y . Fig. 7.4(b) shows a CPT for the variable LungCancer. The conditional probability for each known
value of LungCancer is given for each possible combination of the values of its parents. For instance,
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FIGURE 7.4

Simple Bayesian belief network. (a) A proposed causal model, represented by a directed acyclic graph. (b) The
conditional probability table for the values of the variable LungCancer (LC) showing each possible combination of
the values of its parent nodes, FamilyHistory (FH) and Smoker (S). Source: Adapted from Russell, Binder, Koller,
and Kanazawa [RBKK95].

from the upper leftmost and bottom rightmost entries, respectively, we see that

P(LungCancer = yes |FamilyHistory = yes, Smoker = yes) = 0.8

P(LungCancer = no |FamilyHistory = no, Smoker = no) = 0.9.

Let X = (x1, . . . , xn) be a data tuple described by the variables or attributes Y1, . . . , Yn, respectively.
Recall that each variable is conditionally independent of its nondescendants, given its parents. This
allows the belief network to provide a complete representation of the joint probability distribution by
the following equation:

P(x1, . . . , xn) =
n∏

i=1

P(xi |Parents(Yi)), (7.4)

where P(x1, . . . , xn) is the probability of a particular combination of values of X, and the values for
P(xi |Parents(Yi)) correspond to the entries in the CPT for attribute Yi .

A node within the belief network can be selected as an “output” node, representing a class label
attribute. There may be more than one output node. Various algorithms for inference and learning can
be applied to the network. Rather than returning a single class label, the classification process can return
a probability distribution that gives the probability of each class. Belief networks can be used to answer
probability of evidence queries (e.g., what is the probability that an individual will have LungCancer,
given that they have both PositiveXRay and Dyspnea?) and most probable explanation queries (e.g.,
which group of the population is most likely to have both PositiveXRay and Dyspnea?).
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Belief networks have been used to model a number of well-known problems. One example is ge-
netic linkage analysis (e.g., the mapping of genes onto a chromosome). By casting the gene linkage
problem in terms of inference on Bayesian networks, and using efficient algorithms, the scalability of
such analysis has advanced considerably. Other applications that have benefited from the use of belief
networks include computer vision (e.g., image restoration and stereo vision), document and text anal-
ysis, decision-support systems, financial fraud detection, and sensitivity analysis. The ease with which
many applications can be reduced to Bayesian network inference is advantageous in that it curbs the
need to invent specialized algorithms for each such application.

7.2.2 Training Bayesian belief networks
“How does a Bayesian belief network learn?” In the learning or training of a belief network, a number
of scenarios are possible. The network topology (or “layout” of nodes and arcs) may be constructed
by human experts or inferred from the data. The network variables may be observable or hidden in all
or some of the training tuples. The hidden data case is also referred to as missing values or incomplete
data.

Several algorithms exist for learning the network topology from the training data given observable
variables. The problem is one of discrete optimization. For solutions, please see the bibliographic notes
at the end of this chapter. Human experts usually have a good grasp of the direct conditional depen-
dencies that hold in the domain under analysis, which helps in network design. Experts must specify
conditional probabilities for the nodes that participate in direct dependencies. These probabilities can
then be used to compute the remaining probability values.

If the network topology is known and the variables are observable, then training the network is
straightforward. It consists of computing the CPT entries, as is similarly done when computing the
probabilities involved in naïve Bayesian classification.

When the network topology is given and some of the variables are hidden, there are various methods
to choose from for training the belief network. We will describe an effective method based on gradient
descent, which was also used to train a logistic regression classifier in Chapter 6. For those without an
advanced math background, the description of a gradient descent method may look rather intimidating
with its calculus-packed formulae. However, packaged software exists to solve these equations. Let us
recap the general idea behind a gradient descent method.

Let D be a training set of data tuples, X1,X2, . . . ,X|D|. Training the belief network means that
we must learn the values of the CPT entries. Let wijk be a CPT entry for the variable Yi = yij having
the parents Ui = uik , where wijk ≡ P(Yi = yij |Ui = uik). For example, if wijk is the upper leftmost
CPT entry of Fig. 7.4(b), then Yi is LungCancer; yij is its value, “yes”; Ui lists the parent nodes of Yi ,
namely, {FamilyHistory, Smoker}; and uik lists the values of the parent nodes, namely, {“yes,” “yes”}.
The wijk are viewed as weights, analogous to the weights in logistic regression. The set of weights
is collectively referred to as W . The weights are initialized to random probability values. A gradient
descent strategy performs greedy hill-descending. At each iteration, the weights are updated and will
eventually converge to a local optimum solution.

A gradient descent strategy is used to search for the optimal values of certain variables that best
minimize an objective function, based on the assumption that each of the possible values is equally
likely. Such a strategy is iterative. It searches for a solution along the negative of the gradient (i.e.,
steepest descent) of an objective function. In our setting, we want to find the set of weights, W , that
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maximize an objective function.2 To start with, the weights are initialized to random probability val-
ues. The gradient ascent method performs greedy hill-climbing in that, at each iteration or step along
the way, the algorithm moves toward what appears to be the best solution at the moment, without
backtracking. The weights are updated at each iteration. Eventually, they converge to a local optimum
solution.

For our problem, we maximize the objective function Pw(D) = ∏|D|
d=1 Pw(Xd). This can be done

by following the gradient of lnPw(D), which makes the problem simpler. (Recall that we have used
the same trick to train a logistic regression classifier in Chapter 6.) Given the network topology and
initialized wijk , the algorithm proceeds as follows:

1. Compute the gradients: For each i, j, k, compute

∂lnPw(D)

∂wijk

=
|D|∑
d=1

∂ ln(P (Yi = yij ,Ui = uik|Xd))

∂wijk

. (7.5)

The probability on the right side of Eq. (7.5) is to be calculated for each training tuple, Xd , in D. For
brevity, let’s refer to this probability simply as p. When the variables represented by Yi and Ui are
hidden for some Xd , the corresponding probability p can be computed from the observed variables
of the tuple using standard algorithms for Bayesian network inference such as those available in the
commercial software package HUGIN (http://www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are updated by

wijk ← wijk + η
∂lnPw(D)

∂wijk

, (7.6)

where η is the learning rate representing the step size, and ∂lnPw(D)
∂wijk

is computed from Eq. (7.5).
The learning rate is set to a small constant and helps with convergence.

3. Renormalize the weights: Because the weights wijk are probability values, they must be between
0.0 and 1.0, and

∑
j wijk must equal 1 for all i, k. These criteria are achieved by renormalizing the

weights after they have been updated by Eq. (7.6).

Algorithms that follow this learning form are called adaptive probabilistic networks. Other methods
for training belief networks are referenced in the bibliographic notes at the end of this chapter. Belief
networks could be computationally intensive. Because belief networks provide explicit representations
of causal structure, a human expert can provide prior knowledge to the training process in the form of
network topology or conditional probability values. This can significantly improve the learning speed.

7.3 Support vector machines
In this section, we study support vector machines (SVMs), a method for the classification of both
linear and nonlinear data. In a nutshell, an SVM is an algorithm that works as follows. It uses a nonlinear

2 In order to apply gradient descent strategy to maximize, instead of minimize, an objective function, we actually do gradient
ascent where we update the current solution along the direction of the gradient (i.e., gradient ascent).

http://www.hugin.dk
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mapping to transform the original training data into a higher-dimensional space. Within this new space,
it searches for the linear optimal separating hyperplane (i.e., a “decision boundary” separating the tuples
of one class from another). With an appropriate nonlinear mapping to a sufficiently high-dimensional
space, data from two classes can always be separated by a hyperplane. The SVM finds this hyperplane
using support vectors (“essential” training tuples) and margins (defined by the support vectors). We
will delve more into these new concepts later.

“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first paper on sup-
port vector machines was presented in 1992 by Vladimir Vapnik and colleagues Bernhard Boser and
Isabelle Guyon, even though the groundwork for SVMs has been around since the 1960s (including
early work by Vapnik and Alexei Chervonenkis on statistical learning theory). Although the training of
even the fastest SVMs could be slow, they are highly accurate, owing to their ability to model complex
nonlinear decision boundaries. They are much less prone to overfitting than other methods. The sup-
port vectors also provide a compact description of the learned model. SVMs can be used for numeric
prediction and classification. They have been applied to a number of areas, including handwritten digit
recognition, object recognition, emotion recognition, and speaker identification, as well as benchmark
time-series prediction tasks.

7.3.1 Linear support vector machines
To explain the mystery of SVMs, let’s first look at the simplest case—a two-class problem where the
classes are linearly separable. Let the data set D be given as (X1, y1), (X2, y2), . . ., (X|D|, y|D|), where
Xi is the set of training tuples with associated class labels, yi . Each yi can take one of two values, either
+1 or −1 (i.e., yi ∈ {+1,−1}), corresponding to the classes buys_computer = yes and buys_computer
= no, respectively. To aid in visualization, let’s consider an example based on two input attributes, A1
and A2, as shown in Fig. 7.5. From the graph, we see that the 2-D data are linearly separable (or
“linear” for short), because a straight line can be drawn to separate all the tuples of class +1 from all
the tuples of class −1.

There are an infinite number of separating lines that could be drawn. We want to find the “best” one,
that is, one that (we hope) will have the minimum classification error on previously unseen tuples. How
can we find this best line? Note that if our data were 3-D (i.e., with three attributes), we would want to
find the best separating plane. Generalizing to n dimensions, we want to find the best hyperplane. We
will use “hyperplane” to refer to the decision boundary that we are seeking, regardless of the number
of input attributes.

An SVM approaches this problem by searching for the maximum margin hyperplane. Consider
Fig. 7.6, which shows two possible separating hyperplanes and their associated margins. Before we get
into the definition of margins, let’s take an intuitive look at this figure. Both hyperplanes can correctly
classify all the given data tuples. Intuitively, however, we expect the hyperplane with the larger margin
to be more accurate at classifying future data tuples than the hyperplane with the smaller margin. This
is why (during the learning or training phase) the SVM searches for the hyperplane with the largest
margin, that is, the maximum marginal hyperplane (MMH). The associated margin gives the largest
separation between classes.

Getting to an informal definition of margin, we can say that the shortest distance from a hyperplane
to one side of its margin is equal to the shortest distance from the hyperplane to the other side of its
margin, where the “sides” of the margin are parallel to the hyperplane. When dealing with the MMH,
this distance is, in fact, the shortest distance from the MMH to the closest training tuple of either class.
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FIGURE 7.5

The 2-D training data that are linearly separable. There are an infinite number of possible separating hyperplanes or
“decision boundaries,” some of which are shown here as dashed lines. Which one is best?

A separating hyperplane is essentially a linear classifier. Similar to other linear classifiers (such as
perceptron, logistic regression) that were introduced in Chapter 7, it can be written as

W · X + b = 0, (7.7)

where W is a weight vector, namely, W = {w1,w2, . . . ,wn}; n is the number of attributes; and b is a
scalar, often referred to as a bias. To aid in visualization, let’s consider two input attributes, A1 and
A2, as in Fig. 7.6(b). Training tuples are 2-D (e.g., X = (x1, x2)), where x1 and x2 are the values of
attributes A1 and A2, respectively, for X. Eq. (7.7) can be written as

b + w1x1 + w2x2 = 0. (7.8)

Thus any point that lies above the separating hyperplane satisfies

b + w1x1 + w2x2 > 0. (7.9)

Similarly, any point that lies below the separating hyperplane satisfies

b + w1x1 + w2x2 < 0. (7.10)
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FIGURE 7.6

Here we see just two possible separating hyperplanes and their associated margins. Which one is better? The one
with the larger margin (b) should have greater generalization accuracy.

The weights can be adjusted so that the hyperplanes defining the “sides” of the margin can be written
as

H1 : b + w1x1 + w2x2 ≥ 1 for yi = +1, (7.11)

H2 : b + w1x1 + w2x2 ≤ −1 for yi = −1. (7.12)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls on or below H2

belongs to class −1. Combining the two inequalities of Eqs. (7.11) and (7.12), we get

yi(b + w1x1 + w2x2) ≥ 1, ∀i. (7.13)

Any training tuples that fall on hyperplanes H1 or H2 (i.e., yi(b + w1x1 + w2x2) = 1) are called
support vectors. That is, they are equally close to the (separating) MMH. In Fig. 7.7, the support
vectors are shown encircled with a thicker border. Essentially, the support vectors are the most difficult
tuples to classify and give the most information regarding classification.

From this, we can obtain a formula for the size of the maximal margin. The distance from the
separating hyperplane to any point on H1 is 1

||W || , where ||W || is the Euclidean norm of W , that is,
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FIGURE 7.7

Support vectors. The SVM finds the maximum margin separating hyperplane, that is, the one with maximum dis-
tance between the nearest training tuples. The support vectors are shown with a thicker border.

√
W · W .3 By definition, this is equal to the distance from any point on H2 to the separating hyperplane.

Therefore the maximal margin is 2
||W || . This suggests that we should minimize ‖W‖2 in order to make

the margin as large as possible. Notice that if the tuples are in n dimensional space, Eq. (7.13) becomes
yi(W′Xi + b)) ≥ 1. Putting it together, we have the following mathematical formulation of SVM:

min ‖W‖2,

s.t. yi(W′Xi + b) ≥ 1, ∀i. (7.14)

The intuition of the above formulation is that we want to find a linear classifier (i.e., hyperplane),
such that (1) its margin is as large as possible (i.e., min‖W‖2), and (2) each training tuple is correctly
classified (i.e., yi(W′Xi + b)) ≥ 1, ∀i). The corresponding classifier is often called hard-margin linear
SVM.

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy math tricks,” we
can rewrite Eq. (7.14) so that it becomes what is known as a (convex) quadratic programming problem.
Such fancy math tricks are beyond the scope of this book. Advanced readers may be interested to
note that the tricks involve rewriting Eq. (7.14) as its dual form using Lagrangian formulation and
then solving for the solution using Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the
bibliographic notes at the end of this chapter (Section 7.10).

If the data are relatively small (say, with a few thousand training tuples), any optimization software
package for solving convex quadratic programming problems can then be used to find the support
vectors and MMH. For larger data, special and more efficient algorithms for training SVMs can be

3 If W = {w1,w2, . . . ,wn}, then
√

W · W =
√

w2
1 + w2

2 + · · · + w2
n.
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used instead, the details of which exceed the scope of this book. Once we’ve found the support vectors
and MMH (note that the support vectors define the MMH!), we have a trained support vector machine.
The MMH is a linear class boundary, and so the corresponding SVM can be used to classify linearly
separable data.

“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e., new) tuples?”
Based on the Lagrangian formulation mentioned before, the MMH can be rewritten as the decision
boundary

d(X) =
l∑

i=1

yiαiX
′Xi + b, (7.15)

where yi is the class label of support vector Xi ; X is a test tuple and ′ denotes the transpose of a
vector; αi and b are numeric parameters that were determined automatically by the optimization or
SVM algorithm noted before; and l is the number of support vectors, which is often much smaller than
the total number of training tuples. Interested readers may note that the αi are Lagrangian multipliers.
For linearly separable data, the support vectors are a subset of the actual training tuples. Slight twist
regarding this when dealing with nonlinearly separable data, as we shall see in the following.

Given a test tuple, X, we plug it into Eq. (7.15), and then check to see the sign of the result. This
tells us on which side of the hyperplane the test tuple falls. If the sign is positive, then X falls above the
MMH, and so the SVM predicts that X belongs to class +1 (representing buys_computer = yes, in our
case). If the sign is negative, then X falls below the MMH and the class prediction is −1 (representing
buys_computer = no).

Notice that the Lagrangian formulation of our problem Eq. (7.15) contains a dot product between
support vector Xi and test tuple X. This will prove very useful for finding the MMH and support
vectors of a nonlinear SVM when the given data are linearly inseparable, as described further in the
next section. However, before that, let’s briefly introduce how we can modify the formulation of hard-
margin linear SVM (Eq. (7.14)) for the nonlinear case. That is, we still wish to find a linear classifier
(i.e. a hyperplane) when the training tuples are linearly inseparable. Here, the trick is that we allow some
training tuples to be mis-classified. To be specific, we can introduce a nonnegative slack variable ξi ≥ 0
for each training tuple, Xi . If ξi = 0, it means that the corresponding tuple Xi is correctly classified
by the hyperplane (i.e., yi(W′Xi + b) ≥ 1). In other words, a training example with ξi = 0 is just like
the one in the hard-margin linear SVM. However, if ξi > 0, it means that the tuple Xi is incorrectly
classified by the hyperplane and its magnitude |ξ | indicates how far the training tuple is away from its
corresponding side (i.e., H1 for a positive training example, and H2 for a negative training example).
See Fig. 7.8(a) for an illustration.

Then we have the following alternative mathematical formulation of SVM. The corresponding clas-
sifier is often called soft-margin linear SVM. Different from hard-margin linear SVM, our new objective
function has two terms, including (1) ‖W‖2, which measures the size of margin (i.e., the smaller ‖W‖2,
the larger margin), and (2) the sum of all slack variables

∑N
i=1 ξi , which measures the (approximate)

number of incorrectly classified training tuples (i.e., the training error). In Eq. (7.16), N is the total
number of training tuples and C > 0 is a user-tuned parameter that balances the size of margin and the
training error. Note that we can use the same optimization technique (i.e., convex quadratic program-
ming) to solve Eq. (7.16) as for hard-margin linear SVM. Likewise, the resulting soft-margin linear
classifier uses the same equation (Eq. (7.15)) to classify a test tuple.



324 Chapter 7 Classification: advanced methods

FIGURE 7.8

A simple 2-D case showing linearly inseparable data, where each tuple is represented by two attributes (x1 and x2).
Unlike the linearly separable data of Fig. 7.5, here it is not possible to draw a straight line to perfectly separate the
two classes. We could use a soft-margin linear SVM, with the help of slack variables (ε1 and ε2), to produce a linear
decision boundary at the expense of two training tuples being mis-classified (a). Alternatively, we could seek for a
nonlinear decision boundary (b).

min ‖W‖2 + C

N∑
i=1

ξi,

s.t. yi(W′Xi + b) ≥ 1 − ξi, ∀i. (7.16)

We end this section with two important things to note. The complexity of the learned classifier is
characterized by the number of support vectors rather than the dimensionality of the data. Hence SVMs
tend to be less prone to overfitting than some other methods. The support vectors are the essential or
critical training tuples—they lie closest to the decision boundary (MMH). If all other training tuples
were removed and training were repeated, the same separating hyperplane would be found. Further-
more, the number of support vectors found can be used to compute an (upper) bound on the expected
error rate of the SVM classifier, which is independent of the data dimensionality. An SVM with a small
number of support vectors can have good generalization, even when the dimensionality of the data is
high.

7.3.2 Nonlinear support vector machines
In Section 7.3.1, we learned about hard-margin linear SVMs for classifying linearly separable data. We
also learned about soft-margin linear SVMs when the training data are linearly inseparable, by allowing
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a small fraction of training tuples to be mis-classified. However, what if we want a “better” classifier
to avoid such mis-classifications? For linearly inseparable cases (e.g., Fig. 7.8), no straight line can be
found that would perfectly separate the classes.

The good news is that the approaches described for linear SVMs with both hard-margin and soft
margin can be extended to create nonlinear SVMs for the classification of linearly inseparable data
(also called nonlinearly separable data, or nonlinear data for short). Such SVMs are capable of finding
nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear SVM by
extending the approach for linear SVMs as follows. There are two main steps. In the first step, we
transform the original input data into a higher dimensional space using a nonlinear mapping. Several
common nonlinear mappings can be used in this step, as we will further describe next. Once the data
have been transformed into the new higher dimensional space, the second step searches for a linear
separating hyperplane in the new space. We again end up with an optimization problem that can be
solved using the linear SVM formulation (i.e., convex quadratic programming). The maximal margin
hyperplane found in the new space corresponds to a nonlinear separating hypersurface in the original
space.

Example 7.2. Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into a 6-D space,
Z, using the mappings φ1(X) = x1, φ2(X) = x2, φ3(X) = x3, φ4(X) = (x1)

2, φ5(X) = x1x2, and
φ6(X) = x1x3. A decision hyperplane in the new space is d(Z) = W ′Z + b, where W and Z are vec-
tors. This is linear with respect to the new features Z. We solve for W and b and then substitute back
so that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear second-order
polynomial in the original 3-D input space:

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)
2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b.

However, there are some problems. First, how do we choose the nonlinear mapping to a higher
dimensional space? Second, the computation involved will be costly. Refer to Eq. (7.15) for the classi-
fication of a test tuple, X. Given the test tuple, we have to compute its dot product with every one of the
support vectors.4 In training, we have to compute a similar dot product for each pair of training tuples
in order to find the MMH. This is especially expensive. Hence, the dot product computation required is
very heavy and costly. We need another trick!

Luckily, we can use another math trick. It so happens that in solving the quadratic optimization
problem of the linear SVM (i.e., when searching for a linear SVM in the new higher dimensional
space), the training tuples appear only in the form of dot products, φ(Xi ) · φ(Xj ), where φ(X) is
simply the nonlinear mapping function applied to transform the training tuples. Instead of computing
the dot product on the transformed data tuples, it turns out that it is mathematically equivalent to instead

4 The dot product of two vectors, X = (x1, x2, . . . , xn) and Xi = (xi1, xi2, . . . , xin) is x1xi1 + x2xi2 + · · · + xnxin. Note that
this involves one multiplication and one addition for each of the n dimensions.
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applying a kernel function, K(Xi , Xj ), to the original input data. That is,

K(Xi ,Xj ) = φ(Xi ) · φ(Xj ). (7.17)

In other words, everywhere that φ(Xi ) · φ(Xj ) appears in the training algorithm, we can replace it with
K(Xi ,Xj ). In this way, all calculations are made in the original input space, which is of potentially
much lower dimensionality! We can safely avoid the mapping—it turns out that we don’t even have to
know what the mapping is! We will talk more later about what kinds of functions can be used as kernel
functions for this problem. After applying this trick, we can then proceed to find a maximal margin
separating hyperplane. The procedure is similar to that described in Section 7.3.1.

Example 7.3. Fig. 7.9(a) shows a training set with four positive tuples and four negative tuples. In
the original feature space, each tuple is represented by two features (x1 and x2), where the training
set is linearly inseparable (Fig. 7.9(b)). If we transform the original feature space into a 3-D space:
�1 = x2

1 , �2 = x2
2 and �3 = √

2x1x2. In the transformed feature space (Fig. 7.9(c)), the positive tuples
are linearly separable from the negative tuples. In other words, we can use a hyperplane �1 + �2 = 2.5
to perfectly separate all positive tuples from all negative tuples. The hyperplane in the transformed
feature space is equivalent to a nonlinear decision boundary in the original 2-D space x2

1 + x2
2 = 2.5.

Note that the dot product of two tuples (Xi and Xj ) in the transformed feature space can be computed
directly from the original feature space: �(Xi) · �(Xi) = (Xi · Xj)

2.

“What are some of the kernel functions that could be used?” Properties of the kinds of kernel func-
tions that could be used to replace the dot product have been studied. Three admissible kernel functions
are

Polynomial kernel of degree h: K(Xi ,Xj ) = (Xi · Xj + 1)h,

Gaussian radial basis function kernel: K(Xi ,Xj ) = e−‖Xi−Xj ‖2/2σ 2
,

Sigmoid kernel: K(Xi ,Xj ) = tanh(κXi · Xj − δ).

Each of these results in a different nonlinear classifier in (the original) input space. There are no
golden rules for determining which admissible kernel will result in the most accurate SVM. In practice,
the kernel chosen does not generally make a large difference in resulting accuracy.

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) classification. SVM
classifiers can be combined for the multiclass case. See Section 7.7.1 for some strategies, such as
training one classifier per class and the use of error-correcting codes.

A major research goal regarding SVMs is to improve the speed in training and testing so that
SVMs may become a more feasible option for very large data sets (e.g., millions of support vectors).
A very efficient strategy is to train SVMs in its prime form directly (e.g., Eqs. (7.14) and (7.16)) based
on stochastic subgradient descent. Recall that in Chapter 7, we have used a similar technique called
stochastic gradient descent to address the scalability issue of logistic regression classifier. Other issues
include (1) determining the best kernel for a given data set and finding more efficient methods for the
multiclass case, (2) making the SVMs more robust to the noise in the training data by using alternative
norms of the weight vector W (e.g., l1 norm SVM, l2,1 norm SVM, capped lp norm SVM). A key idea
behind nonlinear SVM is the kernel trick, where we find a nonlinear classifier without explicitly con-
structing the nonlinear mapping. The kernel trick has been broadly applied to other data mining tasks,
including regression, clustering, and so on.
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FIGURE 7.9

An example of kernel trick. (a) Training tuples in the original 2-D feature space and the transformed 3-D space
(shaded). Training tuples in the original feature space are linearly inseparable (b), but become linearly separable in
the transformed feature space (c). A linear decision boundary (i.e., a hyperplane) in the transformed feature space
is equivalent to a nonlinear decision boundary in the original feature space. The dot product of two tuples in the
transformed feature space can be computed directly from the original feature space.

7.4 Rule-based and pattern-based classification
In this section, we look at rule-based and pattern-based classifiers. For the former, the learned model
is represented as a set of IF-THEN rules. We first examine how such rules are used for classifica-
tion (Section 7.4.1). We then study ways in which they can be generated, either from a decision tree
(Section 7.4.2) or directly from the training data using a sequential covering algorithm (Section 7.4.3).
Based on that, we introduce pattern-based classifiers, where frequent patterns are used for classification.
Section 7.4.4 explores associative classification, where association rules are generated from frequent
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patterns and used for classification. The general idea is that we can search for strong associations
between frequent patterns (conjunctions of attribute–value pairs) and class labels. Associative classifi-
cation is a form of rule-based classifier, in that we often organize the mined association rule to form
a rule-based classifier. Section 7.4.5 explores discriminative frequent pattern–based classification,
where frequent patterns serve as combined features, which are considered in addition to single features
when building a classification model. Because frequent patterns explore highly confident associations
among multiple attributes, frequent pattern–based classification may overcome some constraints intro-
duced by decision tree induction, which often only considers one attribute at a time. Studies have shown
many frequent pattern–based classification methods to have greater accuracy and scalability than some
traditional classification methods such as C4.5.

7.4.1 Using IF-THEN rules for classification
Rules are a good way of representing information or bits of knowledge. A rule-based classifier uses a
set of IF-THEN rules for classification. An IF-THEN rule is an expression of the form

IF condition THEN conclusion.

An example is rule R1,

R1: IF age = youth AND student = yes THEN buys_computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition. The “THEN”
part (or right side) is the rule consequent. In the rule antecedent, the condition consists of one or more
attribute tests (e.g., age = youth and student = yes) that are logically ANDed. The rule’s consequent
contains a class prediction (in this case, we are predicting whether a customer will buy a computer). R1
can also be written as

R1: (age = youth) ∧ (student = yes) ⇒ (buys_computer = yes).

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given tuple, we say
that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that the rule covers the
tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-labeled data
set, D, let ncovers be the number of tuples covered by R; ncorrect be the number of tuples correctly
classified by R; and |D| be the number of tuples in D. We can define the coverage and accuracy of R

as

coverage(R) = ncovers

|D| (7.18)

accuracy(R) = ncorrect

ncovers
. (7.19)

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., their attribute
values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the tuples that it covers and
see what percentage of them the rule can correctly classify.
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Example 7.4. Rule accuracy and coverage. Let’s go back to our data in Section 6.2, Table 6.1. These
are class-labeled tuples from the AllElectronics customer database. Our task is to predict whether a
customer will buy a computer. Consider rule R1, which covers 2 of the 14 tuples. It can correctly
classify both tuples. Therefore coverage(R1) = 2/14 = 14.28% and accuracy(R1) = 2/2 = 100%.

Let’s see how we can use rule-based classification to predict the class label of a given tuple, X. If a
rule is satisfied by X, the rule is said to be triggered. For example, suppose we have

X = (age = youth, income = medium, student = yes, credit_rating = fair).

We would like to classify X according to buys_computer. X satisfies R1, which triggers the rule.
If R1 is the only rule satisfied, then the rule fires by returning the class prediction for X. Note that

triggering does not always mean firing because there may be more than one rule that is satisfied! If
more than one rule is triggered, we have a potential problem. What if each of them specifies a different
class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict resolution strat-
egy to figure out which rule gets to fire and assign its class prediction to X. There are many possible
strategies. We look at two, namely size ordering and rule ordering.

The size ordering scheme assigns the highest priority to the triggering rule that has the “toughest”
requirements, where toughness is measured by the rule antecedent size. That is, the triggering rule with
the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be class-based or
rule-based. With class-based ordering, the classes are sorted in order of decreasing “importance” such
as by decreasing order of prevalence. That is, all the rules for the most prevalent (or most frequent) class
come first, the rules for the next prevalent class come next, and so on. Alternatively, they may be sorted
based on the misclassification cost per class. Within each class, the rules are not ordered—they don’t
have to be because they all predict the same class (and so there can be no class conflict!).

With rule-based ordering, the rules are organized into one long priority list, according to some
measure of rule quality, such as accuracy, coverage, size (number of attribute tests in the rule an-
tecedent), or based on advice from domain experts. When rule ordering is used, the rule set is known
as a decision list. With rule ordering, the triggering rule that appears earliest in the list has the high-
est priority, and so it gets to fire its class prediction. Any other rule that satisfies X is ignored. Most
rule-based classification systems use a class-based rule-ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be applied in any order when
classifying a tuple. That is, a disjunction (logical OR) is implied between different rules. Each rule
represents a standalone nugget or piece of knowledge. This is in contrast to the rule ordering (decision
list) scheme for which rules must be applied in the prescribed order so as to avoid conflicts. Each rule in
a decision list implies the negation of the rules that come before it in the list. Hence rules in a decision
list are more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario where there is no
rule satisfied by X. How, then, can we determine the class label of X? In this case, a fallback or default
rule can be set up to specify a default class, based on a training set. This may be the class in majority
or the majority class of the tuples that were not covered by any rule. The default rule is evaluated at the
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end, if and only if no other rule covers X. The condition in the default rule is empty. In this way, the
rule fires when no other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

7.4.2 Rule extraction from a decision tree
In Section 6.2, we learned how to build a decision tree classifier from a set of training data. Decision
tree classifiers are a popular method of classification—it is easy to understand how decision trees work
and they are known for their accuracy. Decision trees can become large and difficult to interpret. In this
subsection, we look at how to build a rule-based classifier by extracting IF-THEN rules from a decision
tree. In comparison with a decision tree, the IF-THEN rules may be easier for humans to understand,
particularly if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root to a leaf node.
Each splitting criterion along a given path is logically ANDed to form the rule antecedent (“IF” part).
The leaf node holds the class prediction, forming the rule consequent (“THEN” part).

Example 7.5. Extracting classification rules from a decision tree. The decision tree of Fig. 6.2 can
be converted to classification IF-THEN rules by tracing the path from the root node to each leaf node
in the tree. The rules extracted from Fig. 6.2 are as follows:

R1 : IF age = youth AND student = no THEN buys_computer = no

R2 : IF age = youth AND student = yes THEN buys_computer = yes

R3 : IF age = middle_aged THEN buys_computer = yes

R4 : IF age = senior AND credit_rating = excellent THEN buys_computer = yes

R5 : IF age = senior AND credit_rating = fair THEN buys_computer = no.

A disjunction (logical OR) is implied between each of the extracted rules. Because the rules are
extracted directly from the tree, they are mutually exclusive and exhaustive. Mutually exclusive means
that we cannot have rule conflicts here because no two rules will be triggered for the same tuple. (We
have one rule per leaf, and any tuple can map to only one leaf.) Exhaustive means there is one rule
for each possible attribute–value combination, so that this set of rules does not require a default rule.
Therefore the order of the rules does not matter—they are unordered.

Since we end up with one rule per leaf, the set of extracted rules is not much simpler than the
corresponding decision tree! The extracted rules may be even more difficult to interpret than the original
trees in some cases. As an example, Fig. 6.7 shows decision trees that suffer from subtree repetition
and replication. The resulting set of rules extracted can be large and difficult to follow, because some
of the attribute tests may be irrelevant or redundant. So, the plot thickens. Although it is easy to extract
rules from a decision tree, we may need to do some more work by pruning the resulting rule set.

“How can we prune the rule set?” For a given rule antecedent, any condition that does not improve
the estimated accuracy of the rule can be pruned (i.e., removed), thereby generalizing the rule. C4.5
extracts rules from an unpruned tree, and then prunes the rules using a pessimistic approach similar to
its tree pruning method. The training tuples and their associated class labels are used to estimate rule
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accuracy. However, because this would result in an optimistic estimate, alternatively, the estimate is
adjusted to compensate for the bias, resulting in a pessimistic estimate. In addition, any rule that does
not contribute to the overall accuracy of the entire rule set can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer be mutually exclusive
and exhaustive. For conflict resolution, C4.5 adopts a class-based ordering scheme. It groups together
all rules for a single class, and then determines a ranking of these class rule sets. Within a rule set, the
rules are not ordered. C4.5 orders the class rule sets to minimize the number of false-positive errors
(i.e., where a rule predicts a class, C, but the actual class is not C). The class rule set with the least
number of false positives is examined first. Once pruning is complete, a final check is done to remove
any duplicates. When choosing a default class, C4.5 does not choose the majority class, because this
class will likely have many rules for its tuples. Instead, it selects the class that contains the most training
tuples that were not covered by any rule.

7.4.3 Rule induction using a sequential covering algorithm
IF-THEN rules can be extracted directly from the training data (i.e., without having to generate a
decision tree first) using a sequential covering algorithm. The name comes from the notion that the
rules are learned sequentially (one at a time), where each rule for a given class will ideally cover many
of the class’s tuples (and hopefully none of the tuples of other classes). Sequential covering algorithms
are the most widely used approach to mining disjunctive sets of classification rules and form the topic
of this subsection.

There are many sequential covering algorithms. Popular variations include AQ, CN2, and the more
recent RIPPER. The general strategy is as follows. Rules are learned one at a time. Each time a rule is
learned, the tuples covered by the rule are removed, and the process repeats on the remaining tuples.
This sequential learning of rules is in contrast to decision tree induction. Because the path to each leaf
in a decision tree corresponds to a rule, we can consider decision tree induction as learning a set of
rules simultaneously.

A basic sequential covering algorithm is shown in Fig. 7.10. Here, rules are learned for one class
at a time. Ideally, when learning a rule for a class, C, we would like the rule to cover all (or as many
as possible) of the training tuples of class C and none (or as few as possible) of the tuples from other
classes. In this way, the rules learned should be of high accuracy. The rules need not necessarily be of
high coverage. This is because we can have more than one rule for a class, so that different rules may
cover different tuples within the same class. The process continues until the terminating condition is
met, such as when there are no more training tuples or the quality of a rule returned is below a user-
specified threshold. The Learn_One_Rule procedure finds the “best” rule for the current class, given
the current set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner (Fig. 7.11).
We can think of this as a beam search, where we start off with an empty rule and then gradually keep
appending attribute tests to it. We append by adding the attribute test as a logical conjunction to the
existing condition of the rule antecedent. Suppose our training set, D, consists of loan application data.
Attributes regarding each applicant include their age, income, education level, residence, credit rating,
and the term of the loan. The classifying attribute is loan_decision, which indicates whether a loan is
accepted (considered safe) or rejected (considered risky). To learn a rule for the class “accept,” we start
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Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.

Input:

• D, a data set of class-labeled tuples;
• Att_vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.
Method:

(1) Rule_set = {}; // initial set of rules learned is empty
(2) for each class c do
(3) repeat
(4) Rule = Learn_One_Rule(D,Att_vals, c);
(5) remove tuples covered by Rule from D;
(6) Rule_set = Rule_set + Rule; // add new rule to rule set
(7) until terminating condition;
(8) endfor
(9) return Rule_Set ;

FIGURE 7.10

Basic sequential covering algorithm.

FIGURE 7.11

A general-to-specific search through rule space.

off with the most general rule possible, that is, the condition of the rule antecedent is empty. The rule is

IF THEN loan_decision = accept.
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We then consider each possible attribute test that may be added to the rule. These can be derived
from the parameter Att_vals, which contains a list of attributes with their associated values. For ex-
ample, for an attribute–value pair (att, val), we can consider attribute tests such as att = val, att ≤
val, att > val, and so on. Typically, the training data will contain many attributes, each of which may
have several possible values. Finding an optimal rule set becomes computationally explosive. Instead,
Learn_One_Rule adopts a greedy depth-first strategy. Each time it is faced with adding a new at-
tribute test (conjunction) to the current rule, it picks the one that improves the rule quality most, based
on the training samples. We will say more about rule quality measures in a minute. For now, let’s say
we use rule accuracy as our quality measure. Getting back to our example with Fig. 7.11, suppose
Learn_One_Rule finds that the attribute test income = high best improves the accuracy of our current
(empty) rule. We append it to the condition, so that the current rule becomes

IF income = high THEN loan_decision = accept.

Each time we add an attribute test to a rule, the resulting rule should cover relatively more of the
“accept” tuples. During the next iteration, we again consider the possible attribute tests and end up
selecting credit_rating = excellent. Our current rule grows to become

IF income = high AND credit_rating = excellent THEN loan_decision = accept.

The process repeats, where at each step we continue to greedily grow rules until the resulting rule meets
an acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically add what appears
to be the best choice at the moment. What if we unknowingly made a poor choice along the way? To
lessen the chance of this happening, instead of selecting the best attribute test to append to the current
rule, we can select the best k attribute tests. In this way, we perform a beam search of width k, wherein
we maintain the k best candidates overall at each step, rather than a single best candidate.

Rule quality measures
Learn_One_Rule needs a measure of rule quality. Every time it considers an attribute test, it must
check to see if appending such a test to the current rule’s condition will result in an improved rule.
Accuracy may seem like an obvious choice at first, but consider Example 7.6.

Example 7.6. Choosing between two rules based on accuracy. Consider the two rules as illustrated
in Fig. 7.12. Both are for the class loan_decision = accept. We use “a” to represent the tuples of class
“accept” and “r” for the tuples of class “reject.” Rule R1 correctly classifies 38 of the 40 tuples it
covers. Rule R2 covers only two tuples, which it correctly classifies. Their respective accuracies are
95% and 100%. Thus R2 has greater accuracy than R1, but it is not the better rule because of its small
coverage.

From this example, we see that accuracy on its own is not a reliable estimate of rule quality. Cover-
age on its own is not useful either—for a given class we could have a rule that covers many tuples, most
of which belong to other classes! Thus we seek other measures for evaluating rule quality, which may
integrate aspects of accuracy and coverage. Here we will look at some, namely entropy, another based
on information gain, and a statistical test that considers coverage. For our discussion, suppose we are
learning rules for the class c. Our current rule is R: IF condition THEN class = c. We want to see
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FIGURE 7.12

Rules for the class loan_decision = accept, showing accept (a) and reject (r) tuples.

if logically ANDing a given attribute test to condition would result in a better rule. We call the new
condition, condition′, where R′: IF condition′ THEN class = c is our potential new rule. In other
words, we want to see if R′ is any better than R.

We have already seen entropy in our discussion of the information gain measure used for attribute
selection in decision tree induction. It is also known as the expected information needed to classify a
tuple in data set, D. Here, D is the set of tuples covered by condition′ and pi is the probability of class
Ci in D. The lower the entropy, the better condition′ is. Entropy prefers conditions that cover a large
number of tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL (First-Order Inductive
Learner), a sequential covering algorithm that learns first-order logic rules. Learning first-order rules
is more complex because such rules contain variables, whereas the rules we are concerned with in this
section are propositional (i.e., variable-free).5 In machine learning, the tuples of the class for which we
are learning rules are called positive tuples, whereas the remaining tuples are negative. Let pos and
neg be the number of positive and negative tuples covered by R, respectively. Let pos′ and neg′ be the
number of positive (negative) tuples covered by R′, respectively. FOIL assesses the information gained
by extending condition′ as

FOIL_Gain = pos′ ×
(

log2
pos′

pos′ + neg′ − log2
pos

pos + neg

)
. (7.20)

It favors rules that have high accuracy and cover many positive tuples.
We can also use a statistical test of significance to determine if the apparent effect of a rule is

not attributed to chance but instead indicates a genuine correlation between attribute values and classes.
The test compares the observed distribution among classes of tuples covered by a rule with the expected
distribution that would result if the rule made predictions at random. We want to assess whether any

5 Incidentally, FOIL was also proposed by Quinlan, the father of ID3.
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observed differences between these two distributions may be attributed to chance. We can use the
likelihood ratio statistic,

Likelihood_Ratio = 2
m∑

i=1

fi log

(
fi

ei

)
, (7.21)

where m is the number of classes.
For tuples satisfying the rule, fi is the observed frequency of each class i among the tuples. ei is

what we would expect the frequency of each class i to be if the rule made random predictions. The
statistic has a χ2 distribution with m − 1 degrees of freedom. The higher the likelihood ratio, the more
likely that there is a significant difference in the number of correct predictions made by our rule in
comparison with a “random guesser.” That is, the performance of our rule is not due to chance. The
ratio helps identify rules with insignificant coverage.

CN2 uses entropy together with the likelihood ratio test, while FOIL’s information gain is used by
RIPPER.

Rule pruning
Learn_One_Rule does not employ a test set when evaluating rules. Assessments of rule quality as
described previously are made with tuples from the original training data. These assessments are opti-
mistic because the rules will likely overfit the data. That is, the rules may perform well on the training
data but less well on subsequent unseen data (i.e., test data). To compensate for this, we can prune the
rules. A rule is pruned by removing a conjunction (attribute test). We choose to prune a rule, R, if the
pruned version of R has greater quality, as assessed on an independent set of tuples. As in decision tree
pruning, we refer to this set as a pruning set.

FOIL uses a simple yet effective method. Given a rule, R,

FOIL_Prune(R) = pos − neg

pos + neg
, (7.22)

where pos and neg are the number of positive and negative tuples covered by R, respectively. This
value will increase with the accuracy of R on a pruning set. Therefore if the FOIL_Prune value is
higher for the pruned version of R, then we prune R.

By convention, RIPPER starts with the most recently added conjunction when considering pruning.
Conjunctions are pruned one at a time as long as this results in an improvement.

7.4.4 Associative classification
In this section, you will learn about associative classification. The methods discussed are CBA, CMAR,
and CPAR.

Before we begin, however, let’s look at association rule mining in general. Association rules are
mined in a two-step process consisting of frequent itemset mining followed by rule generation. The
first step searches for patterns of attribute–value pairs that occur repeatedly in a data set, where each
attribute–value pair is considered an item. The resulting attribute–value pairs form frequent itemsets
(also referred to as frequent patterns). The second step analyzes the frequent itemsets to generate associ-
ation rules. All association rules must satisfy certain criteria regarding their “accuracy” (or confidence)
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and the proportion of the data set that they actually represent (referred to as support). For example, the
following is an association rule mined from a data set, D, shown with its confidence and support:

age = youth ∧ credit = OK ⇒ buys_computer = yes

[support = 20%, confidence = 93%], (7.23)

where ∧ represents a logical “AND.” We will say more about confidence and support later.
More formally, let D be a data set of tuples. Each tuple in D is described by n attributes,

A1,A2, . . . ,An, and a class label attribute, Aclass . All continuous attributes are discretized and treated
as categorical (or nominal) attributes. An item, p, is an attribute–value pair of the form (Ai, v), where
Ai is an attribute taking a value, v. A data tuple X = (x1, x2, . . . , xn) satisfies an item, p = (Ai, v), if
and only if xi = v, where xi is the value of the ith attribute of X. Association rules can have any number
of items in the rule antecedent (left side) and any number of items in the rule consequent (right side).
However, when mining association rules for use in classification, we are only interested in association
rules of the form p1 ∧ p2 ∧ . . . pl ⇒ Aclass = C, where the rule antecedent is a conjunction of items,
p1,p2, . . . , pl (l ≤ n), associated with a class label, C. For a given rule, R, the percentage of tuples in
D satisfying the rule antecedent that also has the class label C is called the confidence of R.

From a classification point of view, this is akin to rule accuracy. For example, a confidence of 93%
for Rule in Eq. (7.23) means that 93% of the customers in D who are young and have an OK credit
rating belong to the class buys_computer = yes. The percentage of tuples in D satisfying the rule
antecedent and having class label C is called the support of R. A support of 20% for Rule in Eq. (7.23)
means that 20% of the customers in D are young, have an OK credit rating, and belong to the class
buys_computer = yes.

In general, associative classification consists of the following steps:

1. Mine the data for frequent itemsets, that is, find commonly occurring attribute–value pairs in the
data.

2. Analyze the frequent itemsets to generate association rules per class, which satisfy confidence and
support criteria.

3. Organize the rules to form a rule-based classifier.

Methods of associative classification differ primarily in the approach used for frequent itemset mining
and in how the derived rules are analyzed and used for classification. We now look at some of the
various methods for associative classification.

One of the earliest and simplest algorithms for associative classification is CBA (Classification
Based on Associations). CBA uses an iterative approach to frequent itemset mining, similar to that
described for Apriori in Section 4.2.1, where multiple passes are made over the data and the derived
frequent itemsets are used to generate and test longer itemsets. In general, the number of passes made is
equal to the length of the longest rule found. The complete set of rules satisfying minimum confidence
and minimum support thresholds are found and then analyzed for inclusion in the classifier. CBA uses a
heuristic method to construct the classifier, where the rules are ordered according to decreasing prece-
dence based on their confidence and support. If a set of rules has the same antecedent, then the rule
with the highest confidence is selected to represent the set. When classifying a new tuple, the first rule
satisfying the tuple is used to classify it. The classifier also contains a default rule, having the lowest
precedence, which specifies a default class for any new tuple that is not satisfied by any other rule in
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the classifier. In this way, the set of rules making up the classifier form a decision list. In general, CBA
was empirically found to be more accurate than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from CBA in its strategy for
frequent itemset mining and its construction of the classifier. It also employs several rule pruning strate-
gies with the help of a tree structure for efficient storage and retrieval of rules. CMAR adopts a variant
of the FP-growth algorithm to find the complete set of rules satisfying the minimum confidence and
minimum support thresholds. FP-growth was described in Section 4.2.4. FP-growth uses a tree struc-
ture, called an FP-tree, to register all the frequent itemset information contained in the given data set, D.
This requires only two scans of D. The frequent itemsets are then mined from the FP-tree. CMAR uses
an enhanced FP-tree that maintains the distribution of class labels among tuples satisfying each fre-
quent itemset. In this way, it is able to combine rule generation together with frequent itemset mining
in a single step.

CMAR employs another tree structure to store and retrieve rules efficiently and to prune rules based
on confidence, correlation, and database coverage. Rule pruning strategies are triggered whenever a
rule is inserted into the tree. For example, given two rules, R1 and R2, if the antecedent of R1 is more
general than that of R2 and conf (R1) ≥ conf (R2), then R2 is pruned. The rationale is that highly spe-
cialized rules with low confidence can be pruned if a more generalized version with higher confidence
exists. CMAR also prunes rules for which the rule antecedent and class are not positively correlated,
based on an χ2 test of statistical significance.

“If more than one rule applies, which one do we use?” As a classifier, CMAR operates differently
than CBA. Suppose that we are given a tuple X to classify and that only one rule satisfies or matches
X.6 This case is trivial—we simply assign the rule’s class label. Suppose, instead, that more than one
rule satisfies X. These rules form a set, S. Which rule would we use to determine the class label of
X? CBA would assign the class label of the most confident rule among the rule set, S. CMAR instead
considers multiple rules when making its class prediction. It divides the rules into groups according to
class labels. All rules within a group share the same class label and each group has a distinct class label.

CMAR uses a weighted χ2 measure to find the “strongest” group of rules, based on the statistical
correlation of rules within a group. It then assigns X the class label of the strongest group. In this way
it considers multiple rules, rather than a single rule with highest confidence, when predicting the class
label of a new tuple. In experiments, CMAR had slightly higher average accuracy in comparison with
CBA. Its runtime, scalability, and use of memory were found to be more efficient.

“Is there a way to cut down on the number of rules generated?” CBA and CMAR adopt methods
of frequent itemset mining to generate candidate association rules, which include all conjunctions of
attribute–value pairs (items) satisfying minimum support. These rules are then examined, and a subset is
chosen to represent the classifier. However, such methods generate quite a large number of rules. CPAR
(Classification based on Predictive Association Rules) takes a different approach to rule generation,
based on FOIL (a rule generation algorithm for classification). FOIL builds rules to distinguish positive
tuples (e.g., buys_computer = yes) from negative tuples (e.g., buys_computer = no). For multiclass
problems, FOIL is applied to each class. That is, for a class, C, all tuples of class C are considered
positive tuples, while the rest are considered negative tuples. Rules are generated to distinguish C

tuples from all others. Each time a rule is generated, the positive samples it satisfies (or covers) are

6 If a rule’s antecedent satisfies or matches X, then we say that the rule satisfies X.
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removed until all the positive tuples in the data set are covered. In this way, fewer rules are generated.
CPAR relaxes this step by allowing the covered tuples to remain under consideration, but reducing their
weight. The process is repeated for each class. The resulting rules are merged to form the classifier rule
set.

During classification, CPAR employs a somewhat different multirule strategy than CMAR. If more
than one rule satisfies a new tuple, X, the rules are divided into groups according to class, similar to
CMAR. However, CPAR uses the best k rules of each group to predict the class label of X, based
on expected accuracy. By considering the best k rules rather than all of a group’s rules, it avoids the
influence of lower-ranked rules. CPAR’s accuracy on numerous data sets was shown to be close to that
of CMAR. However, since CPAR generates far fewer rules than CMAR, it shows much better efficiency
with large sets of training data.

In summary, associative classification offers an alternative classification scheme by building rules
based on conjunctions of attribute–value pairs that occur frequently in data.

7.4.5 Discriminative frequent pattern–based classification
From work on associative classification, we see that frequent patterns reflect strong associations be-
tween attribute–value pairs (or items) in data and are useful for classification.

“But just how discriminative are frequent patterns for classification?” Frequent patterns represent
feature combinations. Let’s compare the discriminative power of frequent patterns and single features.
Fig. 7.13 plots the information gain of frequent patterns and single features (i.e., of pattern length 1) for
three UCI data sets.7 The discrimination power of some frequent patterns is higher than that of single
features. Frequent patterns map data to a higher-dimensional space. They capture more underlying
semantics of the data and thus can hold greater expressive power than single features.

“Why not consider frequent patterns as combined features, in addition to single features when build-
ing a classification model?” This notion is the basis of frequent pattern–based classification—the
learning of a classification model in the feature space of single attributes as well as frequent patterns.
In this way, we transfer the original feature space to a larger space. This will likely increase the chance
of including important features.

Let’s get back to our earlier question: How discriminative are frequent patterns? Many of the fre-
quent patterns generated in frequent itemset mining are indiscriminative because they are solely based
on support, without considering predictive power. That is, by definition, a pattern must satisfy a user-
specified minimum support threshold, min_sup, to be considered frequent. For example, if min_sup

is 5%, a pattern is frequent if it occurs in 5% of the data tuples. Consider Fig. 7.14, which plots in-
formation gain vs. pattern frequency (support) for three UCI data sets. A theoretical upper bound on
information gain, which was derived analytically, is also plotted. The figure shows that the discrimina-
tive power (assessed here as information gain) of low-frequency patterns is bounded by a small value.
This is due to the patterns’ limited coverage of the data set. Similarly, the discriminative power of very
high-frequency patterns is also bounded by a small value, which is due to their commonness in the
data. The upper bound of information gain is a function of pattern frequency. These observations can

7 The University of California at Irvine (UCI) archives several large data sets at http://kdd.ics.uci.edu/. These are commonly
used by researchers for the testing and comparison of machine learning and data mining algorithms.

http://kdd.ics.uci.edu/
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FIGURE 7.13

Single feature vs. frequent pattern: Information gain is plotted for single features (patterns of length 1, indicated by
arrows) and frequent patterns (combined features) for three UCI data sets. Source: Adapted from Cheng, Yan, Han,
and Hsu [CYHH07].

be confirmed analytically. Patterns with medium-large supports (e.g., support = 300 in Fig. 7.14(a))
may be discriminative or not. Thus not every frequent pattern is useful.

If we were to add all the frequent patterns to the feature space, the resulting feature space would be
huge. This slows down the model learning process and may also lead to decreased accuracy due to a
form of overfitting in which there are too many features. Many of the patterns may be also redundant.
Therefore, it’s a good idea to apply feature selection to eliminate the less discriminative and redun-
dant frequent patterns as features. The general framework for discriminative frequent pattern–based
classification is as follows.

1. Feature generation: The data, D, are partitioned according to class label. Use frequent itemset
mining to discover frequent patterns in each partition, satisfying minimum support. The collection
of frequent patterns, F , makes up the feature candidates.
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FIGURE 7.14

Information gain vs. pattern frequency (support) for three UCI data sets. A theoretical upper bound on information
gain (IGUpperBound ) is also shown. Source: Adapted from Cheng, Yan, Han, and Hsu [CYHH07].

2. Feature selection: Apply feature selection to F , resulting in FS , the set of selected (more discrim-
inating) frequent patterns. Information gain, Fisher score, or other evaluation measures can be used
for this step. Relevancy checking can also be incorporated into this step to weed out redundant pat-
terns. The data set D is transformed to D′, where the feature space now includes the single features
and the selected frequent patterns, FS . Commonly used feature selection methods were introduced
in Section 7.1.

3. Learning of classification model: A classifier is built on the data set D′. Any learning algorithm
can be used as the classification model.

The general framework is summarized in Fig. 7.15(a), where the discriminative patterns are rep-
resented by dark circles. Although the approach is straightforward, we can encounter a computational
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FIGURE 7.15

A framework for frequent pattern–based classification: (a) a two-step general approach vs. (b) the direct approach of
DDPMine.

bottleneck by having to first find all the frequent patterns and then analyze each one for selection. The
amount of frequent patterns found can be huge due to the explosive number of pattern combinations
between items.

To improve the efficiency of the general framework, consider condensing steps 1 and 2 into just
one step. That is, rather than generating the complete set of frequent patterns, it’s possible to mine only
the highly discriminative ones. This more direct approach is referred to as DDPMine (Direct Discrim-
inative Pattern Mining). The DDPMine algorithm follows this approach, as illustrated in Fig. 7.15(b).
It first transforms the training data into a compact tree structure known as a frequent pattern tree, or
FP-tree (Chapter 4), which holds all of the attribute–value (itemset) association information. It then
searches for discriminative patterns on the tree. The approach is direct in that it avoids generating a
large number of indiscriminative patterns. It incrementally reduces the problem by eliminating training
tuples, thereby progressively shrinking the FP-tree. This further speeds up the mining process.

By choosing to transform the original data to an FP-tree, DDPMine avoids generating redundant
patterns because an FP-tree stores only the closed frequent patterns. By definition, any subpattern, β,
of a closed pattern, α, is redundant with respect to α (Chapter 5). DDPMine directly mines the discrimi-
native patterns and integrates feature selection into the mining framework. The theoretical upper bound
on information gain is used to facilitate a branch-and-bound search, which prunes the search space
significantly. Experimental results show that DDPMine achieves orders of magnitude speedup over the
two-step approach without decline in classification accuracy. DDPMine also outperforms state-of-the-
art associative classification methods in terms of both accuracy and efficiency.

Compared with associative classifiers, DDPMine is able to prune a huge number of nondiscrimi-
native frequent patterns. However, DDPMine might still use hundreds or even thousands of frequent
patterns in the classification model. How can we further reduce the number of patterns to build a more
compact classifier? This will not only speed up the computation but also make the classifier more ex-
plainable to the end users. DPClass (Discriminative Pattern-based Classification) addresses this issue
by combining the strength of two methods, including tree-based classifiers (e.g., decision tree clas-
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sifier, random forest, etc., which were introduced in Section 6.2) and feature selection (e.g., forward
selection, LASSO, etc., which were introduced in Section 7.1). DPClass works as follows. First, it uses
random forest that contains multiple tree-based classifiers. Then, each prefix path from the root of a tree
in random forest to its nonleaf node is treated as a discriminative pattern. Finally, it leverages feature
selection, including forward feature selection and LASSO based method, to select a small subset of
highly discriminative patterns to construct a linear classifier, such as logistic regression classifier or lin-
ear SVMs. The empirical evaluations on a good number of UCI data sets show that DPClass performs
similarly as or better than DDPMine. On the other hand, DPClass uses a significantly less number of
discriminative patterns than DDPMine. Therefore the classifier generated by DPClass is more compact,
making itself faster in test and more explainable to end users.

7.5 Classification with weak supervision
The effectiveness of the classifiers we have introduced so far (e.g., SVMs, logistic regression, k-NN)
largely depends on “strong supervision.” It means that in order to train a highly accurate classifier, we
typically need a large number of high-quality training tuples, and the true class label for each training
tuple is accurately annotated, say by the domain experts. However, what if there is only a small number
of labeled training tuples? Document classification, speech recognition, computer vision, and informa-
tion extraction are just a few examples of applications in which unlabeled data are abundant. Consider
document classification, for example. Suppose we want to build a model to automatically classify text
documents like articles or web pages. In particular, we want the model to distinguish between hockey
and football documents. We have a vast amount of documents available, yet the documents are not
class-labeled. Recall that supervised learning requires a training set, that is, a set of class-labeled data.
To have a human examine and assign a class label to individual documents (to form a training set) is
time consuming and expensive. Speech recognition requires the accurate labeling of speech utterances
by trained linguists. It was reported that 1 minute of speech takes 10 minutes to label, and annotat-
ing phonemes (basic units of sound) can take 400 times as long. Information extraction systems are
trained using labeled documents with detailed annotations. These are obtained by having human ex-
perts highlight items or relations of interest in text such as the names of companies or individuals.
High-level expertise may be required for certain knowledge domains such as gene and disease men-
tions in biomedical information extraction. Clearly, the manual assignment of class labels to prepare a
training set can be extremely costly, time consuming, and tedious. In computer vision, a fundamental
task is to build a highly accurate classifier to automatically recognize various objects (i.e., class labels).
However, some objects (e.g., a new type of dog) might appear only after the classifier has been built. In
other words, there are no training tuples at all for the newly appeared class label. How can the classifier
still recognize the test image of such a new type of dog?

We study five approaches for classification that are suitable for situations where there is only a
limited number or no labeled training tuples. Section 7.5.1 introduces semisupervised classification,
which builds a classifier using both labeled and unlabeled data. Section 7.5.2 presents active learning,
where the learning algorithm carefully selects a few of the unlabeled data tuples and asks a human to
label only those tuples. Section 7.5.3 presents transfer learning, which aims to extract the knowledge
from one or more source classification tasks (e.g., classifying camera reviews) and apply the knowledge
to a target classification task (e.g., classifying TV reviews). Section 7.5.4 studies distant supervision
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whose key idea is to automatically obtain a large number of inexpensive, but potentially noisy labeled
training tuples. Finally, Section 7.5.5 introduces zero-shot learning, which deals with the case there are
no training tuples for certain class labels at all. Each of these strategies can reduce the need to annotate
large amounts of data, resulting in cost and time savings. In comparison to the traditional setting that
requires “strong supervision” (i.e., a large number of high-quality labeled tuples are available to train
the classifier), we collectively refer to these approaches as classification with weak supervision.

Other forms of weak supervision exist. To name a few, crowdsourcing learning aims to train a
classification model with a noisy training set. Here, the class labels are provided by workers on a
crowdsourcing platform (e.g., Amazon Mechanical Turk), where we can often obtain a large amount
of labeled training tuples with a relatively low cost. However, some (or many) labels provided by the
crowdsourcing workers might be wrong. How to infer the true label (i.e., the ground truth) from the
noisy labels is a major concern of crowdsourcing learning. Crowdsourcing learning can be viewed as
a form of weakly supervised learning in that the supervision (i.e., labels) is noisy or inaccurate. In
multi-instance learning, each training tuple (e.g., an image, a document) is called a bag, which consists
of a set of instances (e.g., different regions of an image, different sentences of a document). A bag is
labeled as a positive bag, as long as at least one of its instances is assigned with a positive class label.
A bag is labeled as a negative bag if none of its instances has a positive class label. For example, an
image is labeled as “beach” if at least one of its regions is about beach; and it is labeled as “nonbeach”
if none of its regions is about beach. Given a set of labeled bags, the goal of multi-instance learning
is to train a classifier to predict the label of a test (previously unseen) bag. Multi-instance learning can
be viewed as a form of weakly supervised learning, in that the label (i.e., supervision) is provided at
a coarse granularity (i.e., at the bag level instead of instance level). The label of a bag is also called
group-level label (e.g., a group of regions of an image, a group of sentences of a document).

7.5.1 Semisupervised classification
Semisupervised classification uses both labeled data and unlabeled data to build a classifier. Let Xl =
{(x1, y1), . . . , (xl, yl)} be the set of labeled data and Xu = {xl+1, . . . , xn} be the set of unlabeled data.
Here we describe a few examples of this approach for learning.

Self-training is the simplest form of semisupervised classification. It first builds a classifier using
the labeled data. The classifier then tries to label the unlabeled data. The tuple with the most confident
label prediction is added to the set of labeled data, and the process repeats (Fig. 7.16). Although the
method is easy to understand, a disadvantage is that it may reinforce errors.

Cotraining is another form of semisupervised classification, where two or more classifiers teach
each other. Each learner uses a different and ideally independent set of features for each tuple. Consider
web page data, for example, where attributes relating to the images on the page may be used as one
set of features, whereas attributes relating to the corresponding text constitute another set of features
for the same data. Each set of features (called “a view”) should be sufficient to train a good classifier.
Suppose we split the feature set into two sets and train two classifiers, f1 and f2, where each classifier
is trained on a different set. Then, f1 and f2 are used to predict the class labels for the unlabeled data,
Xu. Each classifier then teaches the other in that the tuple having the most confident prediction from f1

is added to the set of labeled data for f2 (along with its predicted label).
Similarly, the tuple having the most confident prediction from f2 is added to the set of labeled data

for f1. The method is summarized in Fig. 7.16. Cotraining is less sensitive to errors than self-training.
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Self-training

1. Select a learning method such as Bayesian classification. Build the classifier using the labeled data, Xl .
2. Use the classifier to label the unlabeled data, Xu.
3. Select the tuple x ∈ Xu having the highest confidence (most confident prediction). Add it and its predicted label to Xl .
4. Repeat (i.e., retrain the classifier using the augmented set of labeled data).

Cotraining

1. Define two separate nonoverlapping feature sets for the labeled data, Xl .
2. Train two classifiers, f1 and f2, on the labeled data, where f1 is trained using one of the feature sets and f2 is trained using

the other.
3. Classify Xu with f1 and f2 separately.
4. Add the most confident (x, f1(x)) to the set of labeled data used by f2, where x ∈ Xu. Similarly, add the most confident

(x, f2(x)) to the set of labeled data used by f1.
5. Repeat.

FIGURE 7.16

Self-training and cotraining methods of semisupervised classification.

A difficulty is that the assumptions for its usage may not hold true, that is, it may not be possible to
split the features into mutually exclusive and class-conditionally independent sets.

Alternate approaches to semisupervised learning exist. For example, we can model the joint prob-
ability distribution of the features and the labels. For the unlabeled data, the labels can then be treated
as missing data. The EM algorithm (Chapter 9) can be used to maximize the likelihood of the model.
Semisupervised classification methods using support vector machines have also been proposed.

“When does semisupervised classification work?” Generally speaking, there are two commonly
used assumptions behind semisupervised learning. The first assumption is clustering assumption, which
means that data tuples from the same cluster are likely to share the same class label. The clustering
algorithms will be introduced in Chapters 8 and 9. A representative example that utilizes the clustering
assumption is semisupervised support vector machines (S3VMs). Recall that in the standard SVMs
(Section 7.3), we seek a max-margin hyperplane that correctly separates the positive training tuples
from negative tuples with a large margin. In S3VMs, it considers two design objectives, including (1)
seeking a max-margin hyperplane to separate positive tuples from negative ones (which is the same as
standard SVMs) and (2) avoiding to disrupt the clustering structure of unlabeled tuples. For the latter,
this means that we favor a classifier (e.g., a hyperplane) that goes through the low-density region of the
unlabeled tuples. The second commonly used assumption behind semisupervised learning is manifold
assumption. We will not go into the technical details of manifold.8 Simply put, the manifold assumption
in the contexts of classification means that a pair of close tuples are likely to share the same class
label. A representative example that utilizes the manifold assumption is graph-based semisupervised
classification. It works as follows. First, we construct a graph whose nodes are input tuples, including
both labeled and unlabeled tuples, and the edges indicate the local proximity. For example, we can link
each data tuple to its k-nearest neighbors. In the constructed graph, only a small handful of nodes are

8 In mathematical terms, a manifold is a topological space that approximates the Euclidean space in the vicinity of each data
point.
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labeled and the vast majority are unlabeled. The classification method propagates the labels of these
labeled nodes (i.e., tuples) to the unlabeled nodes.

7.5.2 Active learning
Active learning is an iterative type of supervised learning that is suitable for situations where data are
abundant, yet the class labels are scarce or expensive to obtain. The learning algorithm is active in that
it can purposefully query a user (e.g., a human annotator) for labels. The number of tuples used to learn
a concept this way is often much smaller than the number required in typical supervised learning.

“How does active learning work to overcome the labeling bottleneck?” To keep costs down, the
active learner aims to achieve high accuracy using as few labeled instances as possible. Let D be all of
data under consideration. Various strategies exist for active learning on D. Fig. 7.17 illustrates a pool-
based approach to active learning. Suppose that a small subset of D is class-labeled. This set is denoted
L. U is the set of unlabeled data in D. It is also referred to as a pool of unlabeled data. An active learner
begins with L as the initial training set. It then uses a querying function to carefully select one or more
data samples from U and requests labels for them from an oracle (e.g., a human annotator). The newly
labeled samples are added to L, which the learner then uses in a standard supervised way. The process
repeats. The goal of active learning is to achieve high accuracy using as few labeled tuples as possible.
Active learning algorithms are typically evaluated with the use of learning curves, which plot accuracy
as a function of the number of instances queried.

Most of the active learning research focuses on how to choose the data tuples to be queried. Sev-
eral frameworks have been proposed. Uncertainty sampling is the most common strategy, where the
active learner chooses to query the tuples that it is the least certain how to label. Query-by-committee is

FIGURE 7.17

The pool-based active learning cycle. Source: From Settles [Set10], Burr Settles Computer Sciences Technical
Report 1648, University of Wisconsin–Madison; used with permission.
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another commonly used active learning strategy. In this method, it constructs multiple (say five) clas-
sification models and then selects the unlabeled tuple that constructed classification models have most
disagreement in terms of its predicted class labels (say three classifiers predict that it belongs to positive
class, whereas two classifiers predict it a negative tuple). Other strategies work to reduce the version
space, that is, the subset of all hypotheses (i.e., classifiers) that are consistent with the observed train-
ing tuples. Alternatively, we may follow a decision-theoretic approach that estimates expected error
reduction. This selects tuples that would result in the greatest reduction in the total number of incorrect
predictions such as by reducing the expected entropy over U . This latter approach tends to be more
computationally expensive.

7.5.3 Transfer learning
Suppose that an electronics store has collected a number of customer reviews on a product such as
a brand of camera. The classification task is to automatically label the reviews as either positive or
negative. This task is known as sentiment classification. We could examine each review and annotate
it by adding a positive or negative class label. The labeled reviews can then be used to train and test a
classifier to label future reviews of the product as either positive or negative. The manual effort involved
in annotating the review data can be expensive and time consuming.

Now, suppose that the same store has customer reviews for other products as well, such as TVs.
The distributions of review data for different types of products can vary greatly. We cannot assume that
the TV-review data will have the same distribution as the camera-review data; thus we must build a
separate classification model for the TV-review data. Examining and labeling the TV-review data to
form a training set will require a lot of effort. In fact, we would need to label a large amount of data to
train the review-classification models for each product. It would be nice if we could adapt an existing
classification model (e.g., the one we built for cameras) to help learn a classification model for TVs.
Such knowledge transfer would reduce the need to annotate a large amount of data, resulting in cost
and time savings. This is the essence behind transfer learning.

Transfer learning aims to extract the knowledge from one or more source tasks and apply the
knowledge to a target task. In our example, the source task is the classification of camera reviews, and
the target task is the classification of TV reviews. Fig. 7.18 illustrates a comparison between traditional
learning methods and transfer learning. Traditional learning methods build a new classifier for each new
classification task, based on available class-labeled training and test data. Transfer learning algorithms
apply knowledge about source tasks when building a classifier for a new (target) task. Construction
of the resulting classifier requires fewer training data and less training time. Traditional learning algo-
rithms assume that the training data and test data are drawn from the same distribution and the same
feature space. Thus if the distribution changes, such methods need to rebuild the models from scratch.

Transfer learning allows the distributions, tasks, and even the data domains used in training and
testing to be different. Transfer learning is analogous to the way humans may apply their knowledge of
a task to facilitate the learning of another task. For example, if we know how to play the recorder, we
may apply our knowledge of note reading and music to simplify the task of learning to play the piano.
Similarly, knowing Spanish may make it easier to learn Italian.

Transfer learning is useful for common applications where the data becomes outdated or the dis-
tribution changes. Here we give two more examples. Consider web-document classification, where we
may have trained a classifier to label, say, articles from various newsgroups according to predefined
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FIGURE 7.18

Transfer learning vs. traditional learning. (a) Traditional learning methods build a new classifier from scratch for
each classification task. (b) Transfer learning applies knowledge from a source classification task to simplify the
construction of a classifier for a new, target classification task. Source: From Pan and Yang [PY10]; used with
permission.

categories. The web data that were used to train the classifier can easily become outdated because the
topics on the Web change frequently. Another application area for transfer learning is email spam fil-
tering. We could train a classifier to label email as either “spam” or “not spam,” using email from a
group of users. If new users come along, the distribution of their email can be different from the original
group, hence the need to adapt the learned model to incorporate the new data.

There are various approaches to transfer learning, the most common of which is the instance-based
transfer learning approach. This approach reweights some of the data from the source task and uses
it to learn the target task. The TrAdaBoost (Transfer AdaBoost) algorithm exemplifies this approach.
Consider our previous example of web-document classification, where the distribution of the old data
on which the classifier was trained (the source data) is different from the newer data (the target data).
TrAdaBoost assumes that the source and target domain data are each described by the same set of
attributes (i.e., they have the same “feature space”) and the same set of class labels, but that the dis-
tributions of the data in the two domains are very different. It extends the AdaBoost ensemble method
described in Section 6.7.3. TrAdaBoost requires the labeling of only a small amount of the target data.
Rather than throwing out all the old source data, TrAdaBoost assumes that a large amount of it can be
useful in training the new classification model. The idea is to filter out the influence of any old data that
are very different from the new data by automatically adjusting weights assigned to the training tuples.

Recall that in boosting, an ensemble is created by learning a series of classifiers. To begin, each
tuple is assigned a weight. After a classifier Mi is learned, the weights are updated to allow the sub-
sequent classifier, Mi+1, to “pay more attention” to the training tuples that were misclassified by Mi .
TrAdaBoost follows this strategy for the target data. However, if a source data tuple is misclassified,
TrAdaBoost reasons that the tuple is probably very different from the target data. It therefore reduces
the weight of such tuples so that they will have less effect on the subsequent classifier. As a result,
TrAdaBoost can learn an accurate classification model using only a small amount of new data and a
large amount of old data, even when the new data alone are insufficient to train the model. Hence in
this way TrAdaBoost allows knowledge to be transferred from the old classifier to the new one.
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A major challenge with transfer learning is negative transfer, which occurs when the new classifier
performs worse than if there had been no transfer at all. Work on how to avoid negative transfer is an
area of active research, where the key is to quantify the difference between the source task and the target
task. Heterogeneous transfer learning, which involves transferring knowledge from different feature
spaces and multiple source domains, is another active research topic. Traditionally, transfer learning
has been used on small-scale applications. The use of transfer learning on larger applications, such as
social network analysis and video classification, is often built upon the deep learning models with a
“pretraining” plus “fine-tuning” strategy, which will be introduced in Chapter 10.

Transfer learning is closely related to another powerful weakly supervised learning method, namely
multitask learning.9 Let us use the sentiment classification example to illustrate the difference between
transfer learning and multitask learning. In the transfer learning setting, we assume that we have a
large number of manually labeled camera review data (i.e., the source task), but a very limited number
of manually labeled TV review data (i.e., the target task). The goal of transfer learning to transfer
the knowledge about the source task (camera review sentiment classification) to help build a better
classifier for TV review sentiment classification (i.e., the target task). Now, suppose for both TV review
and camera review, we only have a small amount of manually labeled data. How can we accurately build
both classifiers—one for TV review sentiment and the other for camera review sentiment? Multitask
learning addresses this challenge by training both classifiers simultaneously so that the knowledge from
one learning task (e.g., TV review sentiment) can be transferred to the other learning task (e.g., camera
review sentiment), and vice versa.

7.5.4 Distant supervision
Let us take another look at the sentiment classification example. Suppose that an electronics store
launches a new holiday sales campaign on social media platforms (e.g., Twitter), which goes viral with
hundreds of thousands tweets. The store manager wants to figure out the sentiment of these Tweets, so
that she can adjust the campaign strategy accordingly. We could manually label a large number of tweets
regarding their sentiment and then train a classifier to predict the sentiment (positive vs. negative) of
the remaining tweets. However, that would be time consuming. The manager wonders: “Can we train a
sentiment classifier about the tweets without any manual labels?” Distant supervision aims to answer
this question by automatically generate a large number of labeled tuples. In particular, the manager
notices that for a large subset of the tweets, its text content contains a “:)” sign or a “:(” sign, which are
often associated with positive and negative sentiments, respectively. Therefore we could treat all the
tweets with a “:)” sign as positive tuples and those with a ‘:(’ sign negative tuples and use them to train
a sentiment classifier. Once the classifier is trained, we can use it to predict the sentiment for any future
tweet even if it does not contain a “:)” or “:(” sign. Notice that in this case, we do not need to manually
label any tweet in terms of its sentiment, and such labels (regarding positive or negative sentiment) are
automatically generated.

In the tweet sentiment classification example above, we exploit the specific information (i.e., a “:)”
or “:(” sign) in the input data to automatically generate labeled training tuples. An alternative strategy
for classification with distant supervision often leverages the external knowledge base to automatically

9 In some machine learning literature, multitask learning is viewed as a special case of transfer learning, namely inductive
transfer learning where the source and target domains share the same feature (i.e., attribute) space.
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generate labels for the training tuples. For example, in order to classify tweets into different categories
(e.g., news, health, science, games, etc.), we could explore the Open Directory Project (ODP, http://
odp.org), which maintain a directory for web links by volunteers. Thus if a tweet contains a url (e.g.,
http://nytimes.com), we can automatically find its ODP category (e.g., news), which is treated as the
label of the corresponding tweet. In this way, we will be able to automatically generate a large labeled
training set. Once the classifier is trained, we can use it to predict the class label (i.e., the category) of
a test tweet, even if it does not contain a url. Another way to automatically generate labeled training
examples is to leverage YouTube video that is linked to the tweet. The method is based on the following
two observations. First, there are a large number of tweets, each of which contains a link to a YouTube
video. Second, for each YouTube video, it is always associated with one of 18 predefined class labels.
Therefore we can treat the label of YouTube video as the label of the associated tweet.

In addition to social media post classification tasks, distant supervision is also found useful for
relation extraction for natural language processing. An active research direction in distant supervision
is how to effectively ask users to write a labeling function, instead of manually label training tuples,
to automatically generate labels for a large number of unlabeled data. A major limitation of distant
supervision is that the automatically generated labels are often very noisy. For example, some tweets
with a “:)” sign could have neutral or even negative sentiment; the class labels of a tweet does not
always align with the label or category of the url (either a web page or a YouTube video) it contains.

7.5.5 Zero-shot learning
Suppose that we have a collection of animal images, each of which has a unique label, including “owl,”
“dog,” or “fish.” Using this training data set, we can build a classifier, say SVMs or logistic regression
classifier.10 Then, given a test image, we can use the trained classifier to predict its class label, that
is, which one of the three possible animals (owl, dog, or fish) this image is about. But, what if the
test image is actually about a cat? In other words, the class label of the test data never appears in the
training data. This is what zero-shot learning aims to address, where the classifier needs to predict a
test tuple whose class label was never observed during the training stage. In other words, there is zero
training tuples for the novel class label (e.g., cat in our example). The term “shot” here refers to data
tuple.

At the first glance, this seems to be an impossible mission. You might wonder: “If there is zero train-
ing tuples about the cat, how can I build a classifier to recognize an image about the cat?” However,
we might have some high-level description about the novel classes. For example, for “cat,” we can learn
from the Wikipedia that a cat has retractable claws and super night vision. Zero-shot learning tries to
leverage such external knowledge or side-information to build a classifier that can recognize such novel
class labels.

Let us use the animal classification example (Fig. 7.19) to explain how zero-shot learning works.
Formally, there are n training images each of which is represented by a d-D feature vector and a 3-D
label vector. The label vector indicates which of the three known classes the training image belongs to.
For example, for an image about a “dog,” its label vector is [1,0,0]. In addition, we have the external

10 Different from the classification tasks we have seen so far which typically involve two possible class labels (e.g., positive vs.
negative sentiment), in this setting, we have a multiclass classification problem since there are three possible class labels. The
techniques for multiclass classification will be introduced in Section 7.7.1.

http://odp.org
http://odp.org
http://nytimes.com
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FIGURE 7.19

Top left: input n training tuples in d-dimensional feature space, each of which is labeled by one of the three known
classes (i.e., “dog,” “owl,” and “fish”). Bottom left: external knowledge where each known and novel class is de-
scribed by four semantic attributes. Right: the trained semantic attribute classifier F .

knowledge about the class label, where each class label (animal) can be described by four semantic
attributes,11 including whether the animal “has four legs,” “has wings,” “has retractable claws,” and
“has super night vision.” For example, since a dog has four legs, but no wings or retractable claws or
super night vision, the class label “dog” can be described by a 4-D semantic attribute vector [1,0,0,0].
Likewise, the class label “cat” can be described by a 4-D semantic attribute vector [1,0,1,1], meaning
that a cat has four legs, retractable claws and super night vision but no wings. Notice that such external
knowledge is available for both known class labels (e.g., “owl,” “dog,” and “fish”) and novel class labels
(e.g., “cat” and “rooster”).

Then, using the input training tuples (i.e., the n × d feature matrix X and the n × 3 label matrix Y

in the upper left corner of Fig. 7.19) and the external knowledge about the three known class labels
(i.e., the information about four semantic attributes for the three known class labels in the bottom left
corner of Fig. 7.19), we train a semantic attribute classifier F , which predicts a 4-D semantic attribute
vector for an input image represented by a d-dimensional feature vector. In our example, the output of
the semantic attribute classifier F tells whether the given image has “four legs,” “wings,” “retractable
claws” and “super night vision,” respectively. We can use a two-layer neural network to train such a

11 In the literature, the semantic attribute is also referred to as semantic feature or semantic property or just attribute.
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semantic attribute classifier, which will be introduced in Chapter 10.12 Then, given a test image, we
predict which of the two novel classes (i.e., “cat” and “rooster”) it belongs to based on the following
two steps. First, given the d-D feature vector of the test image, we use the semantic attribute classifier
F to output a 4-D semantic attribute vector, whose elements indicate whether or not the test image has
the corresponding semantic attributes. For example, if the semantic attribute classifier output a vector
[1,0,0,1], it means that the classifier predicts that the test image (1) has four legs, (2) has no wings,
(3) has no retractable claws, and (4) has super night vision. Second, we compare the predicted semantic
attribute vector with the external knowledge about the two novel classes, respectively (i.e., the 4 × 2
green (dark gray in print version) table in the middle bottom of Fig. 7.19). We predict that the test image
belongs to the novel class whose semantic attribute vector is most similar to that of the test image. In
our example, since the predicted semantic attribute vector [1,0,0,1] is more similar to that of “cat”
([1,0,1,1]) than that of “rooster” ([0,1,1,0]), we predict that it is an image about “cat.”

The key of the method described above is that we leverage the semantic attributes as a bridge to
transfer the output of the semantic classifier that was trained on the known class labels to predict the
novel class labels. From this perspective, we can also view zero-shot learning as a special form of
transfer learning (i.e., to transfer the knowledge about the known class labels to novel classes). In
addition to the semantic attribute, there are other forms of external knowledge that can be harnessed for
zero-shot learning. An example is the class-class similarity between known and novel classes. In the
animal image classification application mentioned above, we can train a multiclass classifier to predict
which of the three known classes an image belongs to. Now, given a test image that comes from the
novel class (either “cat” or “rooster”), the trained classifier predicts it belongs to “dog,” and if we know
that “dog” is more similar to “cat” than “rooster,” it is safe to predict the test image is indeed a “cat,”
rather than a “rooster.” In the standard zero-shot learning setting, we always assume that the test image
must come from one of the novel classes. This assumption might be too strong in reality. For example,
the test image might come from either known classes (dog, owl, or fish) or novel classes (cat or rooster).
There have been research on generalized zero-shot learning to address such a more complicated setting.
Other applications of zero-shot learning include neural activity recognition, where the classifier needs
to recognize the word that a person is thinking about based her neural activity reflected on the fMRI
image. In this application, the class labels are words. It is impossible to construct a training data set that
covers all possible words that a human can think of. Zero-shot learning can effectively help extrapolate
the classifier trained on a limited number of words (known class labels) to the unseen words during the
training stage (i.e., the novel classes).

7.6 Classification with rich data type
The classification techniques we have seen so far assume the following setting. That is, given a training
set, where each training tuple is represented by a feature (or attribute) vector and a class label, we build

12 The input of this two-layer neural network is the d-D feature, the hidden layer corresponds to the four semantic attributes, and
output layer corresponds to the three known class labels. Unlike a typical neural network, the model parameter for the second
layer (from semantic attribute to the known class labels) can be directly obtained based on the external knowledge about four
semantic attributes for the three known class labels.
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a classifier that predicts the label of a test (unseen) tuple. Since each training tuple is represented as
a feature vector, it can be viewed as a data point in the feature space (i.e., spatial data). Beyond spa-
tial data, there are rich types of data from real-world applications, such as stream data, sequence (e.g.,
text), graph data, grid data (e.g., image), and spatial-temporal data (e.g., video). Many classification
techniques have been developed for various types of data. In this section, we will see three case studies,
including stream data classification (Section 7.6.1), sequence classification (Section 7.6.2), and graph
data classification (Section 7.6.3). Deep learning techniques that will be introduced in Chapter 10 pro-
vide another powerful way for classification with rich data types, by automatically learning a feature
representation of the input data (e.g., image, text, graph).

7.6.1 Stream data classification
Suppose a bank wants to develop a data mining tool to automatically detect fraudulent transactions.
To start with, we could collect a large set of historical transactions that contain both legitimate and
fraudulent transactions and use them as the training tuples to construct a classifier (e.g., SVMs, logistic
regression, etc.). If the performance of the trained classifier is acceptable, we integrate it into the bank’s
IT system to classify future transactions as fraudulent vs. legitimate. When the classifier flags a fraud-
ulent transaction, we will ask a bank expert to manually check if it is indeed a fraudulent transaction or
a false positive (i.e., the transaction is actually a legitimate one). Once we receive such manual annota-
tion from the bank expert, naturally, we might want to use it as the new training tuples to improve the
classification accuracy. This is a new classification setting, namely stream data classification, where
the transactions arrive sequentially at different times in a stream fashion,13 and the classifier needs to
(1) classify the new transactions upon their arrival and (2) be updated (i.e., re-trained) with the newly
available labeled tuples (e.g., the new fraudulent transactions confirmed by the bank expert).

There are a number of challenges facing stream data classification. First, the new data tuples of-
ten arrive at high speed. Therefore simply using the newly obtained labeled tuples (e.g., newly found
fraudulent transactions by the bank expert) together with the historical training tuples to re-train the un-
derlying classifier might not be affordable, since the speed to re-train the classifier from scratch might
be slower than the arrival rate of the new data tuples. Second, the length of the stream data (i.e., the
total number of the transactions) is often very large and in theory could be infinite. For example, a bank
could constantly receive new transactions over many years. Therefore it is impossible to store all the
data tuples, and as such in stream data classification, it is often assumed that each data tuple can only
be accessed once or a limited number of times. This is often referred to as one-pass constraint. Third,
the characteristic of the underlying classes might change over time. For example, some fraudulent users
might change their behaviors in order to bypass the current fraud detection tool. As such, some histori-
cal training tuples might become less relevant or even noisy for building an effective classifier to detect
new fraudulent transactions. This is often referred to as concept drifting, that is, the concept (i.e., the
class label that the classifier aims to learn) is evolving over time.

An effective method for stream data classification is based on ensemble, which works as follows (see
Fig. 7.20 for an illustration). We partition the data stream into equal-sized chunks. Each chunk contains
a training set (Xi, yi) (i = 0,1, ..., k), where Xi and yi are the feature matrix and the label vector for

13 Formally, a data stream is an ordered sequence of data tuples.
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FIGURE 7.20

Ensemble based method for stream data classification. Each chunk trains an individual classifier and uses the most
recent chunk (chunk 0) to estimate the classification error. The higher the classification error, the lower the weight in
the ensemble. In the figure, the height of the black arrow indicates the classification error. The individual classifier
on chunk k will be discarded since it has the highest error rate. The individual classifier on chunk 1 has a lower
weight in the ensemble, compared with chunk (k − 1) or chunk 0.

the ith chunk; and i = 0,1, ..., k is the index of the chunks, with i = 0 being the current (i.e., the most
recent) chunk and i = k being the oldest chunk. For each of the k historical chunks (i.e., i = 1, ..., k),
we train a classifier fi (e.g., Naive Bayes classifier), which outputs the posterior probability that the
given tuple x belongs to the target class c (e.g., fraudulent transaction) fi(x) = pi(c|x). Each classifier
fi is also associated with a weight wi . Therefore the ensemble output of a test tuple x (i.e., the overall
predicted probability that the given transaction x is fraudulent) is the weighted sum of the outputs
of these k classifiers, that is, p(c|x) = ∑k

i=1 fi(x)wi . When a new chunk (X0, y0) arrives, we train
a new classifier f0. In the meanwhile, we use the newly arrived chunk as the test set to estimate the
classification error of all (k + 1) classifiers fi(i = 0, ..., k).14 Among all (k + 1) classifiers, we select
k classifiers with the lowest classification errors as the members of the ensemble. In other words, the
classifier with the highest classification error rate will be discarded. In the meanwhile, for the k survived
classifiers, we update their weights. The lower the classification error rate, the higher the weight. We
can see that this method naturally addresses the three main challenges for stream data classification
mentioned before. First, we only use the most recent chunk to train the new classifier f0, which handles
the high arrival rate of the stream data. Second, each incoming data tuple is accessed once to train the
current classifier and to update the weights of individual classifiers. Third, by adjusting the weights
of the individual classifiers, the ensemble pays more attention to the most relevant chunks (i.e., those
individual classifiers with lower classification errors on the most recent chunk), so that it naturally
captures the drifted class concept over time.

14 For the newly constructed classifier f0, we cannot directly use the new chunk (X0, y0) as the test set, since it is also used to
train the classifier f0. Otherwise, it will lead to an overoptimistic error rate. Instead, we can use the cross-validation technique
on chunk (X0, y0) to estimate the error rate of the classifier f0.
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In addition to finance, stream data classification has also been applied to other application domains,
such as marketing, network monitoring, and sensor networks. Many alternative learning strategies for
stream data classification exist. For example, the very fast decision tree (VFDT) is built upon (a) the
so-called Hoeffding trees, which build the decision tree (e.g., splitting an attribute on tree nodes) by
using a sampled subset of training tuples and (b) a sliding window mechanism to obtain classifier that
focuses on the most recent stream data. Another characteristic of stream data lies in its semisupervised
nature. This means that the vast majority of the newly arrived data are unlabeled and only a handful of
them are labeled. For example, in the fraud transaction examples, the bank expert might only be able
to manually label a very small percentage (say 1%) of them. There has been research that develops
semisupervised stream data classification based on ensemble methods.

7.6.2 Sequence classification
A sequence (i.e. sequential data) is an ordered list of values (x1,x2, ...,xT ), where xt (t = 1, ..., T )

is the value at a particular position or time stamp t , and T is the length of the sequence. The value
xt could be a categorical value (i.e., a symbol), or a numerical value or even a vector, or an itemset.
Sequence naturally appears in many real applications. To name a few, in natural language processing,
the sequence could be a sentence, where xt is the t th word of the input sentence and T is the length
(number of words) of the sentence; in genomic analysis, a sequence could be a DNA segment, where
each value xt is one of the four animo acid A, C, G, and T; in time series, the sequence could be
a sequence of measurements at different time stamps, where xt is one or more measurements (e.g.,
temperature, humidity) at the t th time stamp, and T is the total time stamps; in frequent pattern mining
for market analysis, the sequence could be a list of transactions of a customer over time (i.e., each value
xt is the itemset the customer purchased at the corresponding time stamp t). The goal of sequence
classification is to build a classifier that predicts the label of a given sequence. The label could be the
positive vs. negative sentiment of the sentence in natural language processing, the gene coding area vs.
noncoding area in genomic analysis, or high-value vs. ordinary customer in market analysis.

One approach for sequence classification is through feature engineering. That is, we first convert the
input sequence to a vector of features, which is in turn fed into a conventional classifier (e.g., decision
tree, support vector machine). For symbolic sequence where each value xt is a categorical value, we
can use n-gram to construct the candidate features. Formally, an n-gram is a segment of sequence with
n consecutive symbols. In our genomic analysis example, each 1-gram (also called unigram) is just one
of the four animo acid (A, C, G, and T); and each 2-gram (also called bigram) is a sequence segment
of two consecutive animo acid (e.g., AC, AG, GT, etc.). In natural language processing, each unigram
could be a single word and a bigram is two consecutive words. For frequent sequence pattern mining,
we can use pattern-based approach where each candidate feature is a frequent sequence pattern. Given
a set of candidate features, a sequence can be converted to a feature vector, whose elements indicate
the presence or absence of the corresponding candidate features in the input sequence. Alternatively,
the elements of the feature vector could indicate the frequency of the corresponding features (i.e., how
many times the given candidate feature appears in the input sequence). See Fig. 7.21 for an example.
For a numerical sequence, we can first use discretization to convert it into a symbolic sequence, which
might cause information loss. One potential issue with the feature engineering based approach is that
the number of candidate features might be large, many of which are irrelevant to the classification task.
Hence, feature engineering often works hand-in-hand with feature selection for sequence classification.
Feature selection was introduced in Section 7.1.
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FIGURE 7.21

An example of using n-gram for sequence data feature engineering. Given a DNA segment “ACCCCCGT,” we want
to convert it to a feature vector, using n-grams. There are 20 candidate features in total, including 4 unigrams and
16 bigrams. For the binary feature vector (the third row), an element indicates whether the corresponding feature
appears (1) or not (0) in the input sequence. For the weighted feature vector (the fourth row), an element indicates
how many times (the frequency) that the corresponding feature appears in the input sequence.

Some classifiers we have introduced before rely on certain distance measures (e.g., k-nearest neigh-
bor classifier) or a kernel function (e.g., support vector machines) between different data tuples. There-
fore, an alternative way for sequence classification is to define appropriate distance measures or a kernel
function between different sequences. k-nearest neighbor classifier with commonly used distance mea-
sures (e.g., Euclidean distance) often leads to a competitive performance for sequence classification.
There also exist distance measures and kernel functions that are specially designed for sequence data.
For example, dynamic time warping distance (DTW) is a more robust distance measure than Euclidean
distance with respect to the distortion in time; a commonly used kernel function for sequence data is
called string kernel, which can be in turn fed into support vector machine for sequence classification.

In addition to predicting a class label for the entire sequence, some sequence classification task
seeks to predict a label for each time stamp. For example, in natural language processing, we might
want to predict whether each word of a given sentence is a specific type of named entity (e.g., location,
person); in part-of-speech tagging, we need to predict whether each word is a pronoun or verb or noun.
The key to sequence classification is to accurately model the sequential dependence among different
values xt (t = 1, ..., T ). A traditional method for modeling sequential dependence is called Hidden
Markov Model (or HMM for short), which has a fundamental limitation, in that it assumes the future
values (xt+1, xt+2, ...) are independent of the past values (x1, ..., xt−1) given the current value xt

(known as the Markov assumption). A more powerful method to handle the sequential dependence is a
specific type of deep learning technique called Recurrent Neural Networks which will be introduced in
Chapter 10.

7.6.3 Graph data classification
Graph data (also referred to as network data), which is essentially a collection of nodes (or vertices)
linked with each other by edges, is a ubiquitous data type arising in many applications, including so-
cial networks, power-grid, transaction network, biological networks, and more. The goal of graph data
classification is to build a classifier to predict the label of either nodes (i.e., node-level classification)
or the entire graphs (i.e., graph-level classification). An example of node-level classification is web-
page classification. Given a web graph whose nodes are webpages and edges are hyperlinks from one
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FIGURE 7.22

An example of a graph (a) and its adjacency matrix (b).

webpage to another, we want to determine the category (i.e., the label) of each webpage (i.e., a node
in the webgraph). An example of graph-level classification is toxicity prediction. Given a collection of
molecule graphs, we want to build a classifier to predict whether a given molecule graph is toxic (i.e.,
positive class label) or not (i.e., negative class label).

In a similar spirit of sequence classification, graph data classification can be done through fea-
ture engineering or proximity measures. For feature engineering based graph classification, we first
extract a set of features describing each node or each graph, which are in turn fed into a conven-
tional classifier (e.g., decision tree, logistic regression) to build a node-level or graph-level classifier.
For node-level classification, commonly used node features include the number of neighboring nodes
linked to the given node (i.e., node degree), the number of triangles the given node participates, the
total edge weights of neighboring nodes (i.e., the weighted node degree), the node importance mea-
sure (e.g., eigen-centrality score, the PageRank score), the local clustering coefficient that measures to
what extent the neighborhood of the given node looks like a full clique. For graph-level classification,
commonly used graph features include the size of the graph (e.g., the number of nodes, edges, the total
edge weights), the diameter of the graph, the total number of triangles in the graph, etc. More recent
approaches often rely on a specific deep learning technique called Graph Neural Networks (which will
be introduced in Chapter 10) to automatically extract node-level or graph-level features.

“How can we measure the proximity between two nodes or two graphs?” Let us first introduce the
notation of adjacency matrix, which is an n × n matrix for a graph with n nodes. The rows and columns
of the adjacency matrix A represent the nodes. Given two nodes i and j , if there is a connection be-
tween them, we set the corresponding entries of the adjacency matrix as 1 (i.e., A(i, j) = A(j, i) = 1);
otherwise, we set A(i, j) = A(j, i) = 0. We can also set entry A(i, j) as a numerical value to indicate
the weight of the corresponding edge. Fig. 7.22 presents an example. An effective way to measure the
node proximity is called random walk with restart. The algorithm is summarized in Fig. 7.23 and the
steps are described next.
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Algorithm: Random walk with restart for measuring node proximity.

Input:

• A, adjacency matrix of the input graph of size n × n;
• i, the query node;
• 0 < c < 1, a damping factor.

Output: The node proximity vector r of size n × 1.
Method:

//Preprocessing
(1) Set the query vector e as an n × 1 vector, where e(i) = 1 and e(j) = 1 (j �= i);
(2) Initialize proximity vector r = e;
(3) Calculate the degree matrix D of A,

where D(i, i) = ∑n
j=1 A(i, j),D(i, j) = 0 (i �= j, i, j = 1, .., n);

(4) Normalize Â = AD−1;
(5) while (termination condition is not satisfied){ // for each iteration
(6) Update r ← cÂr + (1 − c)e;
(7) }

FIGURE 7.23

Random walk with restart for measuring the proximity between nodes on a graph.

Given a query node i, Fig. 7.23 produces a node proximity vector r of length n, which contains
the proximity measures from node i to other nodes in the graph. First (Step 1), we introduce a query
vector e that is an n × 1 vector, whose ith entry is 1 (i.e., e(i) = 1) and all other entries are zeros. We
(Step 2) initialize the node proximity vector r as the query vector e. Then (Steps 3-4), we normalize
the adjacency matrix so that each column of Â sums up to 1.15 After that, we iteratively update the
node proximity vector r (Step 6) until a termination condition is met. At each iteration, we update
the node proximity score for each node as follows. For the query node itself, its proximity score is
updated as r(i) ← c

∑n
t=1 Â(t, i)r(t) + (1 − c). That is, the updated proximity score for node i is a

weighted sum of the proximity scores of its neighboring nodes, damped by the parameter c and then
increased by an amount of (1 − c). For each other node j (j �= i), its proximity score is updated as
r(j) ← c

∑n
t=1 Â(t, j)r(t). That is, the updated proximity score for node j is a weighted sum of the

proximity scores of its neighboring nodes, damped by the parameter c. We repeat this process until a
termination condition is met (e.g., a maximum iteration number is reached, or the difference between
the node proximity vectors in two consecutive iterations is small enough).

Example 7.7. Let us apply random walk with restart algorithm in Fig. 7.23 to the graph in Fig. 7.22,
and we aim to compute the proximity scores from the query node 4 to all other nodes. To this end, we
set the query node e as a vector of length 12, since there are 12 nodes in total, and the 4th entry of the
query vector is 1 and all others are 0s. We initialize the proximity vector the same as the query vector
r = e = (0,0,0,1,0,0,0,0,0,0,0,0)′ and normalize the adjacency matrix (Fig. 7.24(a)). In order to
update the node proximity vector, we iteratively apply Step 7 of Fig. 7.23. Fig. 7.24(a) demonstrates the
computation results of the first iteration. The final proximity scores and proximity vector are shown in

15 Alternative normalization approaches exist. For example, for a directed graph, we can set Â = (D−1A)′, where the prime
denotes matrix transpose. We can also use a symmetric normalization Â = D−1/2AD−1/2.
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FIGURE 7.24

An example of applying random walk with restart to compute the proximity vector of query node 4. (a) The first
iteration of the algorithm, where the damping factor c = 0.9. (b) The final proximity scores from node 4 to other
nodes (more red (gray in print version) mean higher proximity scores) and proximity vector.

Fig. 7.24(b). We can see that the results are more or less consistent with our intuition, in that, nodes that
are closer to the query node 4 (e.g., nodes 1, 2, 3, 5) receive higher proximity scores than others.

“Why is random walk with restart a good node proximity measure?” Algorithm described in
Fig. 7.23 is equivalent to the following random walk process. At the beginning, there is a random
particle at the query node (e.g., node 4 in our example). At each iteration, the random particle does one
of the following two things. First, it randomly surfs the graph. That is, it will randomly jump to one
of its neighbors with the probability that is proportional to the edge weights between them. Second,
it returns to the starting (i.e., query) node (hence the name “with restart”). It turns out the proximity
score computed from Fig. 7.23 is equivalent to the steady state probability that the random particle
will eventually stay at the corresponding node. Therefore if a node is closer to the query node, it will
have a higher chance to attract the random particle to eventually stay there and hence receive a higher
proximity score. Third, random walk with restart provides a good node proximity lies in its ability to
summarize multiple, weighted relationships between nodes on graph. For the example in Fig. 7.24, the
proximity between node 4 and node 8 by random walk with restart summarizes all the paths between
these two nodes, with higher weights to those shorter, heavily weighted paths. Therefore if there ex-
ist multiple paths between two nodes and each path is short and heavily weighted, random walk with
restart will assign a higher proximity score between.

Once we have a node proximity measure, we can apply it to semisupervised node classification.
Given a graph and some (often a very limited number) labeled nodes, we can predict the labels of the
remaining nodes as follows. If the average node proximity between a test node and all positively labeled
nodes is higher than the average node proximity between the test node and all negatively labeled nodes,
we predict it a positive node. Otherwise, we predict it a negative node.

Many variants of random walk with restart exist. For example, some methods measure the node
proximity based on commute time or hitting time16 from random walk perspective; some methods view

16 Hitting time is the expected time for a random particle to start from the source node and reach the target node. Commute time
is the expected time for a random particle to start from the source node, reach the target node, and then return to the source node.
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the graph as an electric network and measure the node proximity based on effective conductance. Most
of these methods share the similar idea as random walk with restart in that these methods all aim
to summarize multiple, weighted relationship between nodes as the proximity measure. There also
exist methods that generalize random walk with restart to attributed graphs, so that the node proximity
considers both the topology of the graph and the attributes of nodes and edges. Random walk based
approaches can also be generalized to measure the proximity between different graphs. For example,
one method uses a similar mathematical formulation as random walk with restart, but defined over the
Kronecker graph of the input graphs, to measure the similarity between two graphs. Such a similarity
measure turns out to be a valid kernel function (i.e., random walk based graph kernel). Therefore we
can feed such proximity measures into support vector machines for graph level classification.

7.7 Potpourri: other related techniques
Classification plays a very important role in data mining and has made tremendous progress in the
past decades. As such, many techniques have been developed to address various aspects of classifi-
cation. Classification is also closely related to other data mining tasks. In this section, we will learn
some of these techniques. Most classification algorithms we have studied handle multiple classes, but
some, such as support vector machines and logistic regression, are commonly used when only two
classes exist in the data. What adaptations can be made to allow more than two classes? This question
is addressed in Section 7.7.1 on multiclass classification. Some classifiers we have learned so far (e.g.,
k-NN) rely on a distance (or similarity) measure between different data tuples. Section 7.7.2 introduces
how to automatically learn a good distance metric for the classification task. In addition to classification
accuracy, an increasingly important aspect is the interpretability of classification. It is highly desirable
that the trained classifier not only predicts the class label of a test tuple but also helps the user under-
stand why the classifier “thinks” the test tuple should have the predicted label. Section 7.7.3 introduces
techniques to render interpretability to classification. As we have seen, many classification problems
can be formulated from the optimization perspective, some of which are not easy to solve due to their
combinatorial, nonconvex nature. Genetic algorithm is a powerful technique to handle combinatorial
optimization problem, which will be introduced in Section 7.7.4. Finally, classification belongs to a
specific type of supervised learning, where the classifier receives the instructive feedback (i.e., the true
labels for the training tuples) in order to construct the best classifier. Reinforcement learning represents
another type of supervised learning, where the learning agent receives evaluative feedback (e.g., the
reward of an action taken at a specific time step instead of the true value of that action). Reinforcement
learning is introduced in Section 7.7.5.

7.7.1 Multiclass classification
Some classification algorithms, such as support vector machines and logistic regression, are typically
designed for binary classification. How can we extend these algorithms to allow for multiclass classi-
fication (i.e., classification involving more than two classes)?

A simple approach is one-vs.-all (OVA). Given m classes, we train m binary classifiers, one for each
class. Classifier j is trained using tuples of class j as the positive class, and the remaining tuples as the
negative class. It learns to return a positive value for class j and a negative value for the rest. To classify
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an unknown tuple, X, the set of classifiers vote as an ensemble. For example, if classifier j predicts the
positive class for X, then class j gets one vote. If it predicts the negative class for X, then each of the
classes except j gets one vote. The class with the most votes is assigned to X.

All-vs.-all (AVA) is an alternative approach that learns a classifier for each pair of classes. Given m

classes, we construct m(m−1)
2 binary classifiers. A classifier is trained using tuples of the two classes it

should discriminate. To classify an unknown tuple, each classifier votes. The tuple is assigned the class
with the maximum number of votes. All-vs.-all tends to be superior to one-vs.-all.

A problem with the previous schemes is that binary classifiers are sensitive to errors. If any classifier
makes an error, it can affect the vote count.

Error-correcting codes can be used to improve the accuracy of multiclass classification, not just in
the previous situations, but for classification in general. Error-correcting codes were originally designed
to correct errors during data transmission for communication tasks. For such tasks, the codes are used
to add redundancy to the data being transmitted so that, even if some errors occur due to noise in the
channel, the data can be correctly received at the other end. For multiclass classification, even if some
of the individual binary classifiers make a prediction error for a given unknown tuple, we may still be
able to correctly label the tuple.

An error-correcting code is assigned to each class, where each code is a bit vector. Fig. 7.25 shows
an example of 7-bit codewords assigned to classes C1, C2, C3, and C4. We train one classifier for each
bit position.17 Therefore in our example we train seven classifiers. If a classifier makes an error, there
is a better chance that we may still be able to predict the right class for a given unknown tuple because
of the redundancy gained by having additional bits. The technique uses a distance measurement called
the Hamming distance to guess the “closest” class in case of errors, and is illustrated in Example 7.8.

Example 7.8. Multiclass classification with error-correcting codes. Consider the 7-bit codewords
associated with classes C1 to C4 in Fig. 7.25. Suppose that, given an unknown tuple to label, the seven
trained binary classifiers collectively output the codeword 0001010, which does not match a codeword
for any of the four classes. A classification error has obviously occurred, but can we figure out what the
classification most likely should be? We can try by using the Hamming distance, which is the number
of different bits between two codewords. The Hamming distance between the output codeword and
the codeword for C1 is 5 because five bits—namely, the first, second, third, fifth, and seventh—differ.
Similarly, the Hamming distance between the output code and the codewords for C2 through C4 are
3, 3, and 1, respectively. Note that the output codeword is closest to the codeword for C4. That is, the

Class Error-correcting codeword
C1 1 1 1 1 1 1 1
C2 0 0 0 0 1 1 1
C3 0 0 1 1 0 0 1
C4 0 1 0 1 0 1 0

FIGURE 7.25

Error-correcting codes for a multiclass classification problem involving four classes.

17 Conceptually, we can think of each bit as a semantic attribute in the zero-shot learning setting which was introduced in
Section 7.5.5.
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FIGURE 7.26

Comparison between binary vs. multiclass classification.

smallest Hamming distance between the output and a class codeword is for class C4. Therefore, we
assign C4 as the class label of the given tuple.

Error-correcting codes can correct up to h−1
2 1-bit errors, where h is the minimum Hamming dis-

tance between any two codewords. If we use one bit per class, such as for 4-bit codewords for classes C1
through C4, then this is equivalent to the one-vs.-all approach, and the codes are not sufficient to self-
correct. (Try it as an exercise.) When selecting error-correcting codes for multiclass classification, there
must be good row-wise and column-wise separation between the codewords. The greater the distance,
the more likely that errors will be corrected.

Binary vs. Multiclass classification. Let us use the example in Fig. 7.26 to explain the relation-
ship between binary classification and multiclass classification. For clarity, we use linear classifiers,
such as logistic regression or linear SVMs. Suppose that we are given an n × d feature matrix X that
represents n training images in d-D feature space. For the binary classification setting (Fig. 7.26(a)),
we want to predict if a given image is a “dog” or not. Therefore, the class label for each training im-
age can be represented as a binary scalar (e.g., 1 means the image is a dog, and −1 means it is not).
For the class labels for all n training tuples, we have an n × 1 label vector y. In order to train a lin-
ear classifier, we seek an optimal d-D weight vector w which minimizes the following loss function,
w = argminwL(Xw,y) + λ�(w), where L is a loss function that depends on the specific classifier,18

λ > 0 is a regularization parameter and �() is a regularization term of the weight vector w. A default
choice for �(w) could be the squared l2 norm of the weight vector w. Now, for the multiclass clas-
sification setting (Fig. 7.26(b)), we want to predict which of c classes (e.g., “dog,” “owl,” “fish,” etc.)
a given image belongs to. Therefore, the class label for each training image can be represented as a
c-dimensional label vector (e.g., [−1,1, ...,−1] means that the image is an owl). For the class labels
for all n training tuples, we have an n × c label matrix Y . In order to train a linear classifier, we seek
an optimal d × c weight matrix W (instead of a vector) which minimizes the following loss function,

18 For example, L is the hinge loss function for linear SVMs and it is negative log likelihood function for logistic regression
classifier.
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W = argminWL(XW,Y ) + λ�(W), where the loss function L, the regularization parameter λ and the
regularization term �() have similar meanings as in the binary setting. Notice that in the multiclass
setting, the classifier is expressed in the form of a d × c weight matrix W . The predicted class label ỹ

for a test tuple x̃ can be set as ỹ = argmaxi x̃ · Wi , where · is the dot product between two vectors, Wi is
the ith column of W and its elements measure the weights of the corresponding features for class label
i. A default choice for the regularization term �() could be the squared Frobenius norm of the weight
matrix W .

Multiclass classification is closely related to multilabel classification problem, where each data
tuple could belong to one or more classes. For example, in document classification, each document can
have multiple labels, each corresponding to a specific category or tag the document belongs to. Let L be
the total number of classes. A natural way to handle multilabel classification is to train L independent
binary classifiers, one for each class label. That is, the lth classifier predicts whether or not the given
data tuple has the class label l (l = 1, ...,L). Note that this method bears subtle difference from the
one-vs.-all or all-vs.-all methods for multiclass classification problem introduced before. For the former
(multilabel classification), a given data tuple can belong to more than one class since L classifiers are
independently trained and applied. For the latter (multiclass classification), we always assign a single
label (out of L possible labels) to a data tuple, by voting. Another method for multilabel classification
with L labels is to convert it to a multiclass classification problem with (2L − 1) labels. This process
is called label powerset transformation. For example, for a multilabel classification problem with three
possible labels, namely A, B and C, we can convert it to a multiclass classification problem with the
following seven possible labels, namely A, B, C, AB, AC, BC, and ABC. In other words, each of the
seven newly constructed labels corresponds to a subset of the original three labels that is assigned to a
data tuple.

In Chapter 10, we will introduce deep learning techniques, which can naturally handle multiclass
classification problem by introducing one node for each class label in the output layer.

7.7.2 Distance metric learning
Some classifiers (e.g., k-nearest-neighbor classifiers) rely on a distance measure. In Section 6.4, we have
learned that even with the same training tuples and the same choice of k, different distance metrics
(e.g., L1 vs. L2) might lead to quite different decision boundaries. So, is there a way that we can
automatically learn the best distance metrics for a given classification task? Distance metric learning
(or metric learning) aims to answer this question.

A commonly used distance metric is Euclidean distance (also referred to as L2 distance), which
is often the default choice for many classifiers. Given two data tuples in p-dimensional space X1 =
(X1,1,X1,2, ...,X1,p)′ and X2 = (X2,1,X2,2, ...,X2,p)′, the Euclidean distance between them is de-

fined as d(X1,X2) =
√∑p

i=1(X1,i − X2,i )2 = √
(X1 − X2)′(X1 − X2), where ′ denotes the transpose

of a vector. We compare the difference (X1,i − X2,i) between the two input data tuples along each of the
p dimensions, sum the squared difference over all the p dimensions, and take the square root of such a
summation as the Euclidean distance. In other words, the different dimensions have the equal weights
on the overall distance between two data tuples, and their effects are considered independently. There-
fore if certain dimension has a larger value range than others, or if different dimensions are correlated
with each other, Euclidean distance might lead to suboptimal classification performance. To overcome
the limitations of Euclidean distance, a more flexible and powerful distance is called Mahalanobis dis-
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tance, which is defined as follows:

dM(X1,X2) = √
(X1 − X2)′M(X1 − X2) =

√√√√ p∑
i,j=1

(X1,i − X2,i )M(i, j)(X1,j − X2,j ), (7.24)

where the prime symbol ′ denotes the matrix transpose and M is a p × p symmetric positive semidefi-
nite matrix.19 Compared with Euclidean distance, Mahalanobis distance naturally (1) assigns different
weights (through the diagonal elements of matrix M) to different dimensions and (2) incorporates the
interaction effect of different dimensions (through the off-diagonal elements of matrix M) in measuring
the distance between the two input tuples.

Depending on the specific choice of the M matrix, the Mahalanobis distance between two data
tuples will vary. Therefore the goal of distance metric learning becomes learning the optimal M matrix
for a given classification task. Suppose there are n labeled training tuples in p-D space. Let S contain
all the training tuple pairs which are similar with each other (e.g., each member in S is a pair of training
tuples which share the same class label). Let D contain all the training tuple pairs which are dissimilar
with each other (e.g., each member in D is a pair of training tuples with different class labels). The
basic idea of distance metric learning is that we want to find the optimal M matrix (hence the optimal
Mahalanobis distance) so that (1) the distance between any pair of similar tuples in S is small and
(2) the distance between any pair of dissimilar tuples in D is large (see Fig. 7.27 for an illustration).
Mathematically, we can formulate it as the following optimization problem.

max
M∈Rp×p

∑
(Xi ,Xj )∈D

d2
M(Xi,Xj ) (7.25)

s.t.
∑

(Xi ,Xj )∈S
d2
M(Xi,Xj ) ≤ 1, M � 0

M � 0 means that matrix M is positive semidefinite. The optimization problem defined in Eq. (7.25) is
convex. Therefore we can resort to the off-the-shelf optimization software to solve it. We will not go
into such details, which are out of the scope of this book.

The objective function as well as constraints in Eq. (7.25) are in the form of a pair of training tuples.
In fact, the above formulation can be viewed as a binary classification problem, where the input is a
pair of training tuples whose class label is +1 if the pair comes from S (i.e., they share the same class
label), and −1 if the pair comes from D (i.e., they have different class labels). Alternative formula-
tions for distance metric learning exist. For example, in the ranking task, the supervision might be in
the form that certain tuples should be ranked higher than other tuples for a given query. The distance
metric learning with such kind of supervision can be formulated with respect to the triples of train-
ing tuples (e.g., the query tuple, a high-ranked tuple, and a low-ranked tuple). In Eq. (7.25), we work

19 Mathematically, a p × p matrix M is positive semidefinite if X′MX ≥ 0 for any X ∈ Rp . This is to ensure that dM(X1,X2)

defined in Eq. (7.24) is a valid distance metric. Since M is symmetric and positive semidefinite, we can decompose
M as M = L′L, where L is a r × p matrix. In this way, we can re-write the Mahalanobis distance as dM(X1,X2) =√

(LX1 − LX2)′(LX1 − LX2). Therefore the Mahalanobis distance can be interpreted as the following process. That is, we
first perform a linear feature transformation of the input tuples through the r × p matrix L (i.e., Xj → LXj (j = 1,2)); and
then, we calculate the Euclidean distance between the two transformed data tuples in the r-D space.
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FIGURE 7.27

An illustrative example of distance metric learning. Given three positive training tuples (X1, X2, X3) and four
negative training tuples (X4, X5, X6, X7). Left: Euclidean distance. Right: Learnt Mahalanobis distance, where
the distance between tuple pairs of the same class label is smaller than that of different class labels. S = {(X1,X2),
(X1,X3), (X3,X2), (X4,X5), (X4,X6), (X4,X7), (X5,X6), (X5,X7), (X6,X7)}, and D = {(X1,X4), (X1,X5),
(X1,X6), (X1,X7), (X2,X4), (X2,X5), (X2,X6), (X2,X7), (X3,X4), (X3,X5), (X3,X6), (X3,X7)}.

with the squared Mahalanobis distance, which makes the objective function as well as its constraints
be linear with respect to matrix M . This type of methods is often referred to as linear distance met-
ric learning. Nonlinear distance metric learning methods exist. For example, we can kernelize a linear
distance metric learning method in the similar way as how we make a linear SVM classifier be a non-
linear in Section 7.3. Alternatively, some nonlinear distance metric methods learn multiple local linear
metrics (e.g., one linear Mahalanobis distance for tuples in a given cluster). In terms of computation
of Eq. (7.25), a major bottleneck lies in the constraint that the matrix M must be positive semidefinite
(i.e., M � 0). If we drop such a constraint, Eq. (7.25) becomes similarity learning problem, which can
often be solved faster than distance metric learning. Beyond the standard classification, distance metric
learning has also been applied to classification with weak supervision (e.g., semisupervised learning,
transfer learning) and other data mining tasks (e.g., ranking, clustering).

7.7.3 Interpretability of classification
So far, we have primarily focused on the accuracy of the classification models. Indeed, the field of data
mining, machine learning and AI has witnessed tremendous progress on improving classification accu-
racy. For some application domains (e.g., computer visions, natural language processing), sophisticated
classification models (such as deep learning techniques that will be introduced in Chapter 10) can now
achieve an accuracy that is comparable or even surpasses humans on a variety of classification tasks.
That said, the accuracy alone is often not sufficient for many application scenarios. For examples, how
can the end user (e.g., the manager of an electronics store) understand the classification results by an
SVM classifier? If a newly developed classification model improve the sentiment classification accu-
racy by 10% over the existing classifier, can we trust the results, that is, is the 10% improvement due
to the new model’s capability to capture the hidden feature in relation to the sentiment that was ignored
by the existing classifier, or it is just due to the random noise? The answers to such questions lie in the
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interpretability, which describes the models’ ability to explain the classification results or process in a
user understandable way.

Interpretability naturally comes with some of the classification models we have learned so far. To
name a few, for a decision tree classifier, the path from the root to the leaf node that the test tuple belongs
to provide interpretation in terms of why the classifier predicts certain class label for the given test tuple.
For the example in Section 6.1 (Table 6.1 and Fig. 6.5), such an interpretation could be that “since the
individual is young, with medium income and an excellent credit rating, the classifier predicts she will
purchase a computer.” Likewise, the rule antecedent in rule-based classification models could provide
similar interpretation on why the classifier predicts a certain class label for a tuple. However, when the
decision tree becomes deeper or the rule antecedent becomes longer, this type of interpretation becomes
less effective. For linear classifiers (e.g., perceptron, logistic regression), the decision boundary of the
classifier is in the form of

∑p

i=1 wixi = 0, where wi is the weight of the ith attribute. Therefore both
the magnitude and the sign of the weight wi provides an interpretation on the impact or contribution
of the corresponding attribute in making the class prediction. For high-dimensional data with a large
number of attributes, it often leads to more effective interpretation if the linear classifier is combined
with the feature selection (e.g., LASSO introduced in Section 7.1), so that we can focus on a few most
important attributes to interpret the classification results. However, we cannot directly use this strategy
to interpret nonlinear classification models, such as Bayesian belief networks, nonlinear SVMs, deep
neural networks.

The interpretation methods mentioned above (e.g., the path in a decision tree, the rule antecedent,
the weights in linear classifiers) are model-specific, in the sense that the interpretation is designed for
a specific classification model and we have the full access to the details of that model. But in some
cases, the end user might only have the access to a black-box classification model f , which predicts a
class label y for a given test tuple x. However, the details (e.g., what kind of classification model, or its
parameters) are unknown to the end user. How can we provide model-agnostic interpretation for such a
black-box model? An effective way is to use a proxy or surrogate model g, which itself is interpretable
(such as a shallow decision tree or a sparse linear classifier), to approximate the black-box classification
model classification f in the local vicinity of a given test tuple which we wish to interpret.20 LIME
(Local Interpretable Model-agnostic Explanation) is such a model-agnostic method. Let us introduce
its key idea using the example in Fig. 7.28. In Fig. 7.28(a), there is a black-box binary classification
model f with a complicated decision boundary, which classifies the shaded area as positive labels and
the remaining as the negative labels. We have a test tuple (the black dot) to interpret, that is, to help
the end-user understand why the black-box model f predicts its class label as positive. To this end,
LIME samples a few data tuples in the local vicinity of the test tuple (i.e., the purple (mid gray in print
version) circle in Fig. 7.28(b)). For each sampled data tuple, it is assigned a binary class label, which
is the prediction of the black-box model f . Each sampled tuple is also assigned a weight, which is in
reverse proportion to its distance to the test tuple, the closer to the test tuple, the higher the weight
(indicated by the size of sampled tuples in Fig. 7.28(b)). Then, LIME trains a surrogate model g using
the weighted sample tuples (e.g., a linear classifier in Fig. 7.28(c)). LIME uses the surrogate model
g to interpret the classification of the test tuple by the black-box model f . In this example, the test

20 There exist methods to use surrogate models to approximate f in the entire feature space (i.e., regardless of which test tuple
we wish to interpret). However, these methods are less common, since it is very hard to find an interpretable surrogate model
which can approximate the black-box classification model globally.
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FIGURE 7.28

An example of LIME: Local Interpretable Model-agnostic Explanation.

tuple is classified by the black-box model as a positive tuple and the decision boundary of the surrogate
model g is −2x1 − x2 + 10 = 0. Therefore we have the following interpretation: “the tuple is classified
as positive by the black-box model f . This is because in its local vicinity, (1) both attributes (x1 and
x2) have a negative impact on the positive class label (the larger x1 and x2, the less likely the test
tuple belongs to the positive class; and (2) the effect of the first attribute x1 is twice that of the second
attribute x1.”

When we train the local surrogate model g, we use the predicted label by the black-box model f

as the labels of the sampled tuples. This is because we want to ensure the local fidelity of the surrogate
model, which measures how well the surrogate model g approximates the black-box model in the local
vicinity of the test tuple x. Meanwhile, we want to keep the surrogate model g to be “simple” so that
it is interpretable to the end users. To this end, the surrogate model g often uses a set of interpretable
features (e.g., the actual words in text classification, the region or superpixel in image classification)
which are different from the features used by the black-box model. The key in LIME is to strike a good
trade-off between the local fidelity and the model complexity. The model complexity (e.g., the depth
of the decision tree model, the number of selected features in the sparse linear classifiers) is in reverse
proportion to the interpretability of the surrogate model g: a more complex model is less interpretable.

Alternative approaches to interpret the classification models exist. For example, counterfactual ex-
planation interprets the prediction on a test tuple by identifying the optimal changes to its attributes
(e.g., deleting certain words for text classification, changing the superpixel for image classification,
perturbing the continuous attribute values), which would alter the prediction results of the classification
model. Another powerful interpretation technique is to use influence function, which is originated from
the robust statistics. By influence function analysis, one could identify the most influential or important
training tuples, which, if perturbed, would significantly alter the classification model (e.g., the weight
vector in a linear classifier).

Beyond classification, interpretability also plays an important role in other data mining tasks, includ-
ing clustering, outlier detection, ranking, and recommendation. In addition to making the data mining
models transparent so as to gain the users’ trust of the model, interpretability is also intimately related
to other important aspects of data mining, such as fairness, robustness, causality, privacy.
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7.7.4 Genetic algorithms
Genetic algorithms attempt to incorporate ideas of natural evolution. In general, genetic learning starts
as follows. An initial population is created consisting of randomly generated rules. Each rule can be
represented by a string of bits. As a simple example, suppose that samples in a given training set are
described by two Boolean attributes, A1 and A2, and that there are two classes, C1 and C2. The rule
“IF A1 AND NOT A2 THEN C2” can be encoded as the bit string “100,” where the two leftmost bits
represent attributes A1 and A2, respectively, and the rightmost bit represents the class. Similarly, the
rule “IF NOT A1 AND NOT A2 THEN C1” can be encoded as “001.” If an attribute has k values, where
k > 2, then k bits may be used to encode the attribute’s values. Classes can be encoded in a similar
fashion.

Based on the notion of survival of the fittest, a new population is formed to consist of the fittest rules
in the current population, as well as offspring of these rules. Typically, the fitness of a rule is assessed
by its classification accuracy on a set of training samples. Offspring are created by applying genetic
operators such as crossover and mutation. In crossover, substrings from pairs of rules are swapped to
form new pairs of rules. In mutation, randomly selected bits in a rule’s string are inverted. The pro-
cess of generating new populations based on prior populations of rules continues until a population,
P , evolves where each rule in P satisfies a prespecified fitness threshold. Furthermore, genetic algo-
rithms are easily parallelizable and have been used for classification, feature selection as well as other
optimization problems. In data mining, they may be used to evaluate the fitness of other algorithms.

7.7.5 Reinforcement learning
Suppose that the advertisement department at an electronics store has a daily budget to do a single
advertisement each day for one of the three products: TV, camera, or printer. Which product shall you
choose to advertise on each day?

Let us first introduce some notation. Here, we have three possible actions a: a ∈ {T V, camera,

printer}, representing which product will be chosen for advertisement on a particular day. Let us
assume that each action has a fixed value q(a). The value q(a) measures the expected reward if the
action a is taken: q(a) = E(R|a), where R|a is the reward (such as the increased revenue) given that
an action (an advertisement on the corresponding product) is taken. Notice that the reward itself is a
random variable since the actual increased revenue on different days might vary, even with the same
advertisement. Therefore we use its expectation to measure the value of the corresponding action, that
is, the increased revenue on average that the corresponding action (advertisement) brings. If we know
the value q(a), we can just choose the action (advertisement) with the highest value, since it brings
the highest (expected) rewards. However, in reality, such values are unknown. Now, what shall we do?
It turns out we can resort to a powerful computational method called reinforcement learning, which
learns through interaction.

In this example, we might decide to try advertisements with different products on different days,
obverse the actual rewards on these days, and then adjust the advertisement strategy for the future days
accordingly. Suppose we try the camera advertisement for 4 days and TV advertisement for 1 day,
and we observe the rewards in these 5 days, which are summarized in Fig. 7.29(a). Based on these
observed rewards, we can calculate an estimate value Q(a) for each action (summarized Fig. 7.29(b)).
Therefore one possible strategy is that we just take the action with the highest estimated value Q(a)

for the next day (i.e., TV in this case). This strategy is greedy in the sense that it tries to make the best
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FIGURE 7.29

An example of reinforcement learning.

use (exploitation) of the information we have collected so far regarding the true value q(a). However,
what if there is a big gap between the estimated value Q(a) and the true value q(a)? In other words, it
is quite possible that q(camera) > q(T V ), even though Q(camera) < Q(T V ), especially given that
Q(camera) and Q(T V ) are based on very limited data in this example (4 days for camera and 1 day
for TV). Moreover, we have never tried printer advertisement at all and thus have zero knowledge about
q(printer). What if the printer advertisement actually has the highest value?

Another alternative strategy is the random strategy (exploration). Each day, we choose a random
product to advertise and observe the reward of that advertisement. If we keep running this for many
days, the estimated value Q(a) is likely to be very close to the true value q(a). After that, we choose
the advertisement with the highest (estimated) value. This strategy is optimal in the long run. However,
we might spend many days before we figure out the optimal action, during which the received rewards
might be low.

A better strategy is to combine the greedy strategy and the random strategy together. That is, at
each day, with the probability 1 − ε (0 < ε < 1), we choose the action (advertisement) with the highest
estimated value Q(a); with the probability ε, we choose a random action; and at the end of the day, we
use the observed reward to update the estimated value Q(a). This strategy (called ε-greedy) is likely to
obtain a better balance between the immediate (exploitation) and the long-term (exploration) return.

In reinforcement learning, the learning agent tries to figure out what to do (e.g., choose the best prod-
uct to advertise in order to maximize the overall increased revenue) by interacting with the environment
(e.g., trying a few different advertisements, observing their rewards, and adjusting the advertisement
for next day accordingly). This is related to, but bears subtle difference from, classification. In classifi-
cation, classifier receives the instructive feedback (i.e., the true labels for the training tuples) in order to
construct the best classifier. In reinforcement learning, the learning agent receives evaluative feedback
(e.g., the immediate reward of an action taken on a specific time step) in order to find the best action.

The above example is called multiarmed bandit problem, in that we can imagine a slot machine
with multiple arms, and each arm corresponds to an action (an advertisement on a product) with an
unknown value. Beyond the ε-greedy algorithm, many alternative methods exist. For example, upper-
confidence-bound method selects the action at each time step based on both the estimated value Q(a)

and the uncertainty (or confidence) of the estimation on Q(a). Multiarmed bandit problem is a classic
setting in reinforcement learning, where the learning agent tries to find out the best action to act in a
single situation (e.g., each advertisement has a fixed value). In more complicated setting, the learning
agent needs to choose different actions in different situations. In such settings, reinforcement learning
is often formulated as a (finite) Markov decision process. Reinforcement learning has been applied in
many application domains, including online advertisement, robotics, chess, and many more.
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7.8 Summary
• Feature selection aims to select a few most powerful features from a set of initial features. Typical

methods include filter methods, wrapper methods, and embedded methods. Feature engineering
aims to construct more powerful features based on the initial features.

• Unlike naïve Bayesian classification (which assumes class conditional independence), Bayesian
belief networks allow class conditional independencies to be defined between subsets of variables.
They provide a graphical model of causal relationships, on which learning can be performed. Trained
Bayesian belief networks can be used for classification.

• A support vector machine is an algorithm for the classification of both linear and nonlinear data.
It transforms the original data into a higher dimensional space, from which it can find a hyperplane
for data separation using essential training tuples called support vectors.

• A rule-based classifier uses a set of IF-THEN rules for classification. Rules can be extracted from
a decision tree. Rules may also be generated directly from training data using sequential covering
algorithms. Frequent patterns reflect strong associations between attribute–value pairs (or items) in
data and are used in classification based on frequent patterns. Approaches to this methodology
include associative classification and discriminant frequent pattern–based classification. In associa-
tive classification, a classifier is built from association rules generated from frequent patterns. In
discriminative frequent pattern–based classification, frequent patterns serve as combined fea-
tures, which are considered in addition to single features when building a classification model.

• Semisupervised classification is useful when large amounts of unlabeled data exist. It builds a
classifier using both labeled and unlabeled data. Examples of semisupervised classification include
self-training and cotraining.

• Active learning is a form of supervised learning that is suitable for situations where data are abun-
dant, yet the class labels are scarce or expensive to obtain. The learning algorithm can actively query
a user (e.g., a human annotator) for labels. To keep the cost down, the active learner aims to achieve
high accuracy using as few labeled instances as possible.

• Transfer learning aims to extract the knowledge from one or more source tasks and apply the
knowledge to a target task. TrAdaBoost is an example of the instance-based approach to transfer
learning, which reweights some of the data from the source task and uses it to learn the target task,
thereby requiring fewer labeled target-task tuples.

• Distant supervision automatically generates a large number of noisy labeled tuples based on exter-
nal knowledge or side information.

• Zero-shot learning builds a classifier that predicts a test tuple whose class label was never observed
during the training stage. An example of zero-shot learning is based on semantic attribute classifier.

• In many applications, data tuples arrive in a stream fashion. The key challenges of stream data
classification include scalability, one-pass constraint and concept drifting.

• A sequence is an ordered list of values. The goal of sequence classification is to build a classifier to
predict the label of the entire sequence or each time stamp of the sequence. Approaches to sequence
classification include feature engineering–based methods and distance measure–based methods.

• The goal of graph data classification is to build a classifier to predict the label of either nodes
or entire graphs. Similar to sequence classification, graph data classification can be done through
feature engineering or proximity measures.
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• Binary classification schemes, such as support vector machines, can be adapted to handle multiclass
classification. This involves constructing an ensemble of binary classifiers. Error-correcting codes
can be used to increase the accuracy of the ensemble.

• Distance metric learning aims to learn the best distance metrics for a given classification task. The
basic idea is to find the optimal distance metrics so that the distance between similar tuples is small,
whereas the distance between dissimilar tuples is large.

• In genetic algorithms, populations of rules “evolve” via operations of crossover and mutation until
all rules within a population satisfy a specified threshold.

• LIME (Local Interpretable Model-agnostic Explanation) is a model-agnostic interpretation method.
It finds a surrogate model in the local vicinity of the test tuple that balances the model fidelity and
the model complexity.

• In classification, the learning agent (i.e., classifier) receives the instructive feedback in order to con-
struct the best classifier. In reinforcement learning, the learning agent receives evaluative feedback
in order to find the best action. Effective reinforcement learning methods need to strike a balance
between exploitation and exploration.

7.9 Exercises
7.1. Feature selection aims to select a subset of features that will be used in training. In general, there

are three major types of feature selection strategy: filter method, wrapper method and embedded
method.
a. Which type of feature selection strategy does Fisher Score belong to? Please justify your

answer using 1–2 sentences.
b. Suppose we have six training examples shown below. Calculate Fisher scores for θ0 and θ1

and find out which one is more discriminative.

example θ0 θ1 label
1 96 33 -
2 86 30 +
3 78 29 +
4 92 36 -
5 80 35 +
6 90 32 +

c. Which type of feature selection strategy does LASSO belong to? Please justify your answer
using 1–2 sentences.

d. Denoting the vector of feature coefficients as w, suppose we have a tuning parameter λ for
LASSO (i.e. the LASSO penalty term is λ‖w‖1). If λ goes to infinity, what would happen
to w? Why?

7.2. The support vector machine is a highly accurate classification method. However, SVM classi-
fiers suffer from slow processing when training with a large set of data tuples. Discuss how to
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overcome this difficulty and develop a scalable SVM algorithm for efficient SVM classification
in large data sets.

7.3. Compare and contrast associative classification and discriminative frequent pattern–based clas-
sification. Why is classification based on frequent patterns able to achieve higher classification
accuracy in many cases than a classic decision tree method?

7.4. Example 7.8 showed the use of error-correcting codes for a multiclass classification problem
having four classes.
a. Suppose that, given an unknown tuple to label, the seven trained binary classifiers collec-

tively output the codeword 0101110, which does not match a codeword for any of the four
classes. Using error correction, what class label should be assigned to the tuple?

b. Explain why using a 4-bit vector for the codewords is insufficient for error correction.
7.5. Semisupervised classification, active learning, and transfer learning are useful for situations in

which unlabeled data are abundant.
a. Describe semisupervised classification, active learning, and transfer learning. Elaborate on

applications for which they are useful, as well as the challenges of these approaches to
classification.

b. Research and describe an approach to semisupervised classification other than self-training
and cotraining.

c. Research and describe an approach to active learning other than pool-based learning.
d. Research and describe an alternative approach to instance-based transfer learning.

7.6. Given n training examples (xi , yi) (i = 1,2, ..., n) where xi is the feature vector of ith training
example and yi is its label, we training an support vector machine (SVM) with Radial Basis
Function (RBF) kernel on the training data. Note that the RBF kernel is defined as KRBF(x,y) =
exp(−γ ‖x − y‖2

2).
a. Let G be the n × n kernel matrix of RBF kernel, i.e. G[i, j ] = KRBF(xi ,xj ). Prove that all

eigenvalues of G are nonnegative.
b. Prove that RBF kernel is the sum of infinite number of polynomial kernels.
c. Suppose the distribution of training examples is shown in Fig. 7.30, where “+” denotes

positive example and “−” denotes the negative sample. If we set γ large enough (say 1000
or larger), what could possibly be the decision boundary of the SVM after training? Please
draw it on Fig. 7.30.

d. If we set γ to be infinitely large, what could possibly happen when training this SVM?
7.7. Distance metric learning aims to learn a distance metric that best describe the distance between

two data points. One of the most commonly used distance metric is Mahalanobis distance. It is
of the form

d(x,y)2 = (x − y)T M(x − y),

where x and y are feature vectors for two different data points. Now, supposing we have n

training examples (xi , yi), (i = 1,2, ..., n), we aim to learn the matrix M from the data. Research
and describe one supervised method and one unsupervised method to learn the matrix M.

7.8. Machine learning and data mining techniques have great potential in automatic decision making.
Despite the success in deploying these techniques, many end-users do not understand how the
decisions are made. Thus it is important to study the explainability of machine learning models.
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FIGURE 7.30

Distribution of training examples.

Research and describe two different methods to explain the predictions of machine learning
models and justify why you think they are interpretable in your own words.

7.9. For graph mining using random walk with restart (RWR), the formula is ri = cW̃ri + (1 − c)ei ,
where the ranking vector ri will start the random walk from node i, c is the restart probability,
W̃ is the normalized weight matrix, and ei is the starting vector. Please explain:
a. Why RWR could capture multiple weighted relationship between nodes?
b. What is the similarity and the difference between random walk based graph kernel and

RWR?
7.10. The traditional machine learning approach usually needs human experts to label the data ex-

amples (e.g., document, images, signals, etc.) to train a model to perform classification or
regression. The human labeling process is normally expensive in terms of both time and money.
Especially for the case of deep models, where the size of the training data could be extremely
large.
One alternative approach is called distant supervision, where the training data are generated
by utilizing the existing database such as Freebase. For example, if our target is to extract the
relation of friends, the item in Freebase that includes Buzz Lightyear and Woody Pride would
be a positive example. By this mean, we can easily generate a large amount of labeled training
data. However, for the model training, having only the positive examples are not enough. A more
critical issue is how to generating the negative examples from the large-scale database. Please
elaborate at least two ways to generating the negative examples in distant supervision.

7.11. In zero-shot learning, the model observes test samples from classes that were not observed during
training, and needs to predict the category they belong to. Formally, the training data has a label
space Y and the testing data has a different label space Y ′, where Y ∩ Y ′ = ∅. Given training
data {(xi , yi)|xi ∈ R

n, i = 1, ..,N}, zero-shot learning aims to learn a function f : Rn → Y ∪ Y ′.
Suppose for each label y ∈ Y ∪ Y ′, a label representation vector yi ∈R

m is also given.
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a. Suppose we aim to learn a mapping function g :Rn → R
m (e.g., g(x) = Wx) from the train-

ing data so that yi is close to g(xi ) (i = 1, ...,N). Use this idea to design a zero-shot learning
algorithm.

b. Suppose we aim to learn a scoring function g : Rn+m → R (e.g., g(x,y) = xT Wy) from the
training data so that g(xi ,yi ) is large (i = 1, ...,N). Use this idea to design a zero-shot
learning algorithm.

7.12. In streaming data classification, there is an infinite sequence of the form (x, y). The goal is to
find a function y = f (x) that can predict the label y for an unseen instance x. Due to evolving
nature of streaming data, the data set size is not known. In this problem, we assume x ∈ [−1,1] ×
[−1,1] and y ∈ {−1,1}, and the first eight training samples are shown below.

training sample x1 x2 label
1 0.5 −0.5 1
2 −0.5 0.5 −1
3 0.5 0.25 1
4 0.8 0.25 1
5 0.25 0.5 −1
6 −0.5 −0.25 −1
7 −0.8 −0.25 −1
8 −0.25 −0.5 1

a. Suppose we have stored the first eight training samples. Now a test data point xtest =
(0.7,0.25)T comes. Use the k-nearest neighbors algorithm (k-NN) to predict the label of
xtest . You can set k=1.

b. Due to the unknown size of streaming data, it could be infeasible to store all the train-
ing samples. However, if we divide the feature space into several subareas (e.g., A1 =
[0,1] × [0,1], A2 = [−1,0) × [0,1], A3 = [−1,0) × [−1,0) and A4 = [0,1] × [−1,0)), it
is efficient to store and update the number of positive/negative training samples in a subarea.
Based on this intuition, devise an algorithm to classify stream data. What is the prediction of
your algorithm on the test point xtest = (0.7,0.25)T given the first eight training samples?

c. Give an example on which the k-NN algorithm and your algorithm give different predic-
tions. To let your algorithm mimic the idea of k-NN, how to improve it given a sufficient
number of training data?

7.13. Briefly describe the (a) classification and (b) feature selection steps in the genetic algorithm.
7.14. Suppose we are given M temporal sequences S = {x(1), . . . ,x(M)}, where each temporal se-

quence x(m), m = 1, . . . ,M consists n(m) temporal segments, that is, x(m) = {x(m)
1 , . . . , x

(m)

n(m)}.
Note that the length of temporal sequences could be different. There exist both normal sequence
(labeled as Y (m) = 0) and abnormal sequence (labeled as Y (m) = 1) in S.
a. In the unsupervised setting, we do not have any labels for either the abnormal sequences

and normal sequences. We observe that (1) the majority of temporal sequences are normal,
whereas only a small portion of temporal sequences in S correspond to abnormal sequences;
and (2) the abnormal sequences often deviate a lot from the normal sequences. Can you
propose your own solution to identify the abnormal sequences out of S?

b. In the supervised setting, we are given a training set with labeled abnormal sequences and
normal sequences. Could you name one popular supervised sequence classification model
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to identify the abnormal sequences? What are the pros and cons of the supervised method,
compared to your proposed unsupervised solution in (a)?

7.15. Both reinforcement learning (RL) and the multiarmed bandit (MAB) are well known for model-
ing the interactions between agents and outside environments in order to achieve the maximum
rewards. Interestingly, MAB is often referred to as the one-state RL problem. Could you explain
why and compare the differences between these two problems?
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8
CHAPTER

Cluster analysis: basic concepts and
methods

Imagine that you are the director of Customer Relationships at a retail company. Managing millions
of customers one by one is inefficient and ineffective. You would like to organize all customers of the
company into a small number of groups so that each group can be assigned to a different manager.
Strategically, you would like that the customers in each group are as similar as possible. Two customers
having very different business patterns should not be placed in the same group. Your intention behind
this business strategy is to develop customer relationship campaigns that specifically target each group,
based on common features shared by the customers in the group. What kind of data mining techniques
can help you accomplish this task?

Unlike in classification, the class label (i.e., the group-id in this context) of each customer is un-
known in this new task. You need to discover these groupings. Given a large number of customers and
many attributes describing customer profiles, it can be costly or even infeasible to manually study the
data and come up with a way to partition the customers into strategic groups. You need a clustering tool
to help.

Clustering is the process of grouping a set of data objects into multiple groups or clusters so that
objects within a cluster have high similarity, but are dissimilar to objects in other clusters. Dissimilari-
ties and similarities are assessed based on the attribute values describing the objects and often involve
distance measures.1 Clustering as a data mining tool has its roots in many application areas, such as
biology, security, business intelligence, and Web search.

This chapter presents the basic concepts and methods of cluster analysis. In Section 8.1, we in-
troduce the basic concept of clustering and study the requirements of clustering methods for massive
amounts of data and various applications. You will learn several basic clustering techniques, organized
into several categories, namely partitioning methods (Section 8.2), hierarchical methods (Section 8.3),
and density-based and grid-based methods (Section 8.4). In Section 8.5, we discuss how to evaluate
clustering methods. A discussion of advanced methods of clustering is reserved for Chapter 9.

8.1 Cluster analysis
This section sets up the groundwork for studying cluster analysis. Section 8.1.1 defines cluster analysis
and presents examples where clustering is useful. In Section 8.1.2, you will learn aspects for comparing

1 Data similarity and dissimilarity are discussed in detail in Chapter 2. You may want to refer to the corresponding section for a
quick review.

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00018-7
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clustering methods, as well as requirements for clustering. An overview of basic clustering techniques
is presented in Section 8.1.3.

8.1.1 What is cluster analysis?
Cluster analysis or simply clustering is the process of partitioning a set of data objects (or observa-
tions) into subsets. Each subset is a cluster, such that objects in a cluster are similar to one another,
yet dissimilar to objects in other clusters. The set of clusters resulting from a cluster analysis can be
referred to as a clustering. In this context, different clustering methods may generate different clus-
terings on the same data set. The same clustering method equipped with different parameters or even
different initializations may also produce different clusterings. Such partitioning is not performed by
humans, but by a clustering algorithm. Hence, clustering is useful in that it can lead to the discovery of
previously unknown groups within the data.

Cluster analysis has been widely used in many applications such as business intelligence, image
pattern recognition, Web search, biology, and security. For example, in business intelligence, clustering
can be used to organize a large number of customers into groups, where customers within a group
share strong similar characteristics. This facilitates the development of business strategies for enhanced
customer relationship management. Moreover, consider a consultant company with a large number
of projects. To improve project management, such as project delivery and outcome quality control,
clustering can be applied to partition projects into categories based on similarities in, for example,
business scenarios, customers, expertise required, period and size, so that project auditing and diagnosis
can be conducted effectively.

In image recognition, as another example, clustering can be used to discover clusters or “subclasses”
in photos. One application is to automatically group photos according to faces recognized in the images
so that the photos of the same person may likely come together into a group. Here, we do not have to
specify and label the persons in the photos beforehand, and thus a classification method cannot be
applied. A clustering method can use faces as features and partition photos into groups so that the
faces in the same group are similar and the faces in different groups are dissimilar. Moreover, typically
there are many different ways to organize photos. Clustering can help automatically identify significant
features and suggest meaningful ways to organize photos into groups accordingly. For example, a group
of scenic pictures may be formed using the features of blue sky and beach, whereas another group may
share the theme of snow, and a third group highlights group photos with many faces.

Clustering has also found many applications in Web search. For example, a keyword search may
often return a large number of hits (i.e., pages relevant to the search) due to the extremely large number
of web pages. Clustering can be used to organize the search results into groups and present the results
in a concise and easily accessible way. Moreover, clustering techniques have been developed to cluster
documents into topics, which are commonly used in information retrieval practice.

As a data mining function, cluster analysis can be used as a standalone tool to gain insight into the
distribution of data, to observe the characteristics of each cluster, and to focus on a particular set of
clusters for further analysis. Alternatively, it may serve as a preprocessing step for other algorithms,
such as characterization, attribute subset selection, and classification, which would then operate on the
detected clusters and the selected attributes or features.

Because a cluster is a collection of data objects that are similar to one another within the cluster
and dissimilar to objects in other clusters, a cluster of data objects can be treated as an implicit class.
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In this sense, clustering is sometimes called automatic classification or unsupervised classification.
Again, a critical difference here is that clustering can automatically find the groupings. This is a distinct
advantage of cluster analysis.

Clustering is also called data segmentation in some applications because clustering partitions large
data sets into groups according to their similarity. Clustering can also be used for outlier detection,
where outliers (values that are “far away” from any cluster) may be more interesting than common
cases. Applications of outlier detection include the detection of credit card frauds and the monitoring
of criminal activities in electronic commerce. For example, exceptional cases in credit card transactions,
such as very expensive and infrequent purchases at unusual locations, may be of interest as possible
fraudulent activities. Outlier detection is the subject of Chapter 11.

Data clustering is under vigorous development. Contributing areas of research include data min-
ing, statistics, machine learning and deep learning, spatial database technology, information retrieval,
Web search, biology, marketing, and many other application areas. Owing to the huge amounts of data
collected in databases, cluster analysis has become a highly active topic in data mining research.

As a branch of statistics, cluster analysis has been extensively studied, with the main focus on
distance-based cluster analysis. Cluster analysis tools based on k-means, k-medoids, and several other
methods also have been built into many statistical analysis software packages or systems, such as S-
Plus, SPSS, and SAS. In machine learning, recall that classification is known as supervised learning
because the class label information is given, that is, the learning algorithm is supervised in that it is told
the class membership of each training tuple. Clustering is known as unsupervised learning because the
class label information is not present. For this reason, clustering is a form of learning by observation,
rather than learning by examples. In data mining, efforts have focused on finding methods for efficient
and effective cluster analysis in large data sets. Active themes of research focus on the scalability of
clustering methods, the effectiveness of methods for clustering complex shapes (e.g., nonconvex) and
types of data (e.g., text, graphs, and images), high-dimensional clustering techniques (e.g., clustering
objects with thousands or even millions of features), and methods for clustering mixed numerical and
nominal data in large data sets.

8.1.2 Requirements for cluster analysis
Clustering is a challenging research field. In this section, you will learn about the requirements for
clustering as a data mining tool, as well as aspects that can be used for comparing clustering methods.

When we think about employing a clustering method, what requirements should we consider for the
method? The following are typical requirements of clustering in data mining.

• Ability to deal with various kinds of data objects: Many algorithms are designed to cluster nu-
meric (interval-based) data objects. However, applications may require clustering objects based on a
mixed data types, such as binary, nominal (categorical), ordinal, and numerical data, as well as data
objects of various kinds, such as text, graphs, sequences, images, and videos.

• Scalability: Many clustering algorithms work well on small data sets containing fewer than several
hundred data objects; however, a large database may contain millions or even billions of objects,
such as in Web search scenarios. Clustering on only a sample of a given large data set may lead to
biased results. Therefore highly scalable clustering algorithms are needed.

• Discovery of clusters with arbitrary shape: Many clustering algorithms determine clusters based
on Euclidean or Manhattan distance measures (Chapter 2). Algorithms based on such distance mea-
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sures tend to find spherical clusters with similar size and density. However, a cluster could be of any
shape. For example, we may want to use clustering to find the frontier of a running forest fire in
a satellite image, which is often not spherical. It is important to develop algorithms that can detect
clusters of arbitrary shape.

• Requirements for domain knowledge to determine input parameters: Many clustering algo-
rithms require users to provide domain knowledge in the form of input parameters such as the
desired number of clusters. Consequently, the clustering results may be sensitive to such parame-
ters. Parameters are often hard to determine, especially for data sets of high dimensionality where
users have yet to grasp a deep understanding of their data. Requiring the specification of domain
knowledge not only burdens users, but also makes the quality of clustering difficult to control. Clus-
tering algorithms that do not heavily rely on domain knowledge input or can help users explore
domain knowledge are highly preferable.

• Ability to deal with noisy data: Most real-world data sets contain outliers and/or missing, un-
known, or erroneous data. For example, data collected by physical sensors is often noisy. Clustering
algorithms can be sensitive to such noise and may produce poor-quality clusters. Therefore, we need
clustering methods that are robust to noise.

• Incremental clustering and insensitivity to input order: In many applications, incremental up-
dates (representing newer data) may arrive at any time. Some clustering algorithms cannot incorpo-
rate incremental updates into existing clustering structures and, instead, have to recompute a new
clustering from scratch. Clustering algorithms may also be sensitive to the input data order. That
is, given a set of data objects, clustering algorithms may return dramatically different clusterings
depending on the order in which the objects are presented. Incremental clustering algorithms and
algorithms that are insensitive to the input order are needed.

• Capability of clustering high-dimensionality data: A data set can contain numerous dimensions or
attributes. When clustering documents, for example, each keyword can be regarded as a dimension,
and there are often thousands of keywords. Most clustering algorithms are good at handling low-
dimensional data such as data sets involving only two or three dimensions. Finding clusters of data
objects in a high-dimensional space is challenging, especially considering that such data can be very
sparse and highly skewed.

• Constraint-based clustering: Real-world applications may need to perform clustering under vari-
ous kinds of constraints. Suppose that your task is to choose the locations for a given number of new
electric vehicle charging stations in a city. To decide upon this, you may cluster potential charging
needs while considering constraints such as available spaces, electricity networks, and the river and
highway networks in a city. A challenging task is to find data groups with good clustering behaviors
that satisfy specified constraints.

• Interpretability and usability: Users want clustering results to be interpretable, comprehensible,
and usable. That is, clustering may need to be tied with specific semantic interpretations and appli-
cations. It is important to study how an application goal may influence the selection of clustering
features and clustering methods.

Given one data set, using different clustering methods or using different parameters or initializa-
tions, we may be able to obtain different clusterings. How can we evaluate and compare the clusterings?
The following are the orthogonal aspects with which clustering methods can be compared.
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• Single vs. multilevel clustering: In many clustering methods, all the objects are partitioned so that
no hierarchy exists among the clusters. That is, all the clusters are at the same level conceptually.
Such a method is useful, for example, for partitioning customers into groups so that each group has
its own manager. Alternatively, other methods partition data objects hierarchically, where clusters
can be formed at different semantic levels. For example, in text mining, we may want to organize
a corpus of documents into multiple general topics, such as “politics” and “sports,” each of which
may have subtopics. For instance, “football,” “basketball,” “baseball,” and “hockey” can exist as
subtopics of “sports.” The latter four subtopics are at a lower level in the hierarchy than “sports.”

• Separation of clusters: Some methods partition data objects into mutually exclusive clusters. In
some other situations, the clusters may not be exclusive, that is, a data object may belong to more
than one cluster. For example, when clustering documents into topics, a document may be related to
multiple topics. Thus the topics as clusters may not be exclusive.

• Similarity measure: Some methods determine the similarity between two objects by the distance
between them. Such a distance can be defined on a Euclidean space, a road network, a vector space,
or some other space. For some applications, similarity may also be defined by other means such as
connectivity based on density or contiguity and thus may or may not rely on the absolute distance
between two objects. Similarity measures play a fundamental role in the design of clustering meth-
ods. While distance-based methods can often take advantage of some computation and optimization
techniques, density- and continuity-based methods can often find clusters of arbitrary shape.

• Clustering in full space vs. subspace: Many clustering methods search for clusters within the entire
given data space. These methods are useful for low-dimensionality data sets. With high-dimensional
data, however, there can be many irrelevant attributes, which can make similarity measurements
unreliable. Consequently, clusters found in the full space are often meaningless. It is often better
to instead search for clusters within different subspaces of the same data set. Subspace clustering
discovers both clusters and subspaces (often of low dimensionality) containing interesting clusters.

To conclude, clustering algorithms have a series of requirements. These factors include the ability
to deal with different kinds of data objects, scalability, robustness to noisy data, incremental updates,
clusters of arbitrary shape, and constraints. Interpretability and usability are also important. In addition,
clustering methods can differ with respect to single vs. multilevel clustering, whether or not clusters are
mutually exclusive, the similarity measures used, and whether or not subspace clustering is performed.

8.1.3 Overview of basic clustering methods
There are many clustering algorithms in the literature. It is difficult to provide a crisp categorization of
clustering methods because these categories may overlap so that a method may have features from sev-
eral categories. Nevertheless, it is useful to present a relatively organized picture of clustering methods.
In general, the major fundamental clustering methods can be classified into the following categories,
which are discussed in the rest of this chapter.

Partitioning methods: Given a set of n objects, a partitioning method constructs k (k ≤ n) partitions
of the data, where each partition represents a cluster. That is, it divides the data into k groups
such that each group must contain at least one object. Typically, k is set to a small number, that
is, k � n. In other words, a partitioning method conducts one-level partitioning on data sets. The
basic partitioning methods typically adopt exclusive cluster separation. That is, each object must
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belong to exactly one group. This requirement may be relaxed. For example, in fuzzy partitioning
techniques an object may take probabilities to belong to more than one cluster. References to such
techniques are given in the bibliographic notes (Section 8.8).
Most partitioning methods are distance-based. Given k, the number of partitions to construct, a
partitioning method creates an initial partitioning. It then uses an iterative relocation technique
that attempts to improve the partitioning by moving objects from one group to another. The general
criterion of a good partitioning is that objects in the same cluster are “close” or related to each other,
whereas objects in different clusters are “far apart” or very different. There are various kinds of
other criteria for judging the quality of partitions. Traditional partitioning methods can be extended
for subspace clustering rather than searching the full data space. This is useful when there are many
attributes and the data is sparse.
Achieving global optimality in partitioning-based clustering is often computationally prohibitive,
potentially requiring an exhaustive enumeration of all the possible partitions. Instead, most ap-
plications adopt popular heuristic methods, such as greedy approaches like the k-means and the
k-medoids algorithms, which progressively improve the clustering quality and approach a local
optimum. These heuristic clustering methods work well for finding spherical-shaped clusters in
small- to medium-sized data sets. To find clusters with complex shapes and for very large data sets,
partitioning-based methods need to be extended. Partitioning-based clustering methods are studied
in depth in Section 8.2.

Hierarchical methods: A hierarchical method creates a hierarchical decomposition of a given set
of data objects. A hierarchical method can be classified as being either agglomerative or divisive,
based on how the hierarchical decomposition is formed. The agglomerative approach, also called
the bottom-up approach, starts with each object forming a separate group. It successively merges
the objects or groups close to one another, until all the groups are merged into one (the topmost
level of the hierarchy), or a termination condition holds. The divisive approach, also called the top-
down approach, starts with all the objects in the same cluster. In each successive iteration, a cluster
is split into smaller clusters, until eventually each object is in one cluster, or a termination condition
holds.
Hierarchical clustering methods can be distance-, density-, or continuity-based. Various extensions
of hierarchical methods consider clustering in subspaces as well.
Hierarchical methods suffer from the fact that once a step (merge or split) is done, it can never be
reverted. This rigidity is useful in that it leads to smaller computation costs by not having to worry
about a combinatorial number of different choices. Such techniques cannot correct erroneous deci-
sions; however, methods for improving the quality of hierarchical clustering have been proposed.
Hierarchical clustering methods are studied in Section 8.3.

Density-based and grid-based methods: Most partitioning methods cluster objects based on the
distance between objects. Such methods can find only spherical-shaped clusters and encounter dif-
ficulty in discovering clusters of arbitrary shapes. Other clustering methods have been developed
based on the notion of density. Their general idea is to continue growing a given cluster as long
as the density (number of objects or data points) in the “neighborhood” exceeds some threshold.
For example, for each data point within a given cluster, the neighborhood of a given radius has
to contain at least a minimum number of points. Such a method can be used to filter out noise or
outliers and discover clusters of arbitrary shape.
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Density-based methods can divide a set of objects into multiple exclusive clusters, or a hierarchy
of clusters. Typically, density-based methods consider exclusive clusters only, and do not consider
fuzzy clusters. Moreover, density-based methods can be extended from full space to subspace clus-
tering.
One way to implement the idea of density-based clustering is grid-based methods, which quantize
the object space into a finite number of cells that form a grid structure. All the clustering operations
are performed on the grid structure (i.e., on the quantized space). For example, the dense cells,
that is, those cells each containing a sufficient number of data points, are considered components of
clusters, and are used to assemble clusters. The main advantage of the grid-based methods is the fast
processing time, which is typically independent of the number of data objects and dependent only
on the number of cells in each dimension in the quantized space. Using grids is often an efficient
approach to many spatial data mining problems, including clustering. In addition to density-based
clustering, grid-based methods can be integrated with other clustering methods, such as hierarchical
methods. Density-based and grid-based clustering methods are studied in Section 8.4.

Some clustering algorithms integrate the ideas of several clustering methods, so that it is sometimes
difficult to classify a given algorithm as uniquely belonging to only one clustering method category.
Furthermore, some applications may have clustering criteria that require an integration of several clus-
tering techniques.

In the following sections, we examine representative clustering methods in detail. Advanced clus-
tering methods and related issues are discussed in Chapter 9.

8.2 Partitioning methods
The simplest and most fundamental version of cluster analysis is partitioning. In partitioning cluster-
ing, we organize the objects in a given set into several exclusive groups or clusters. Each cluster can
be typified by a representative. In other words, each object o can be assigned to the cluster whose rep-
resentative that o is the closest or most similar to. To keep the problem specification concise, we can
assume that the number of expected clusters is given. This parameter is the starting point for partition-
ing methods. There are two foremost technical issues in partitioning methods. First, how can we decide
the representatives of clusters? Second, how can we measure the distance or similarity between objects
or between objects and representatives.

Formally, given a data set, D, of n objects, and k, the number of clusters to form, a partitioning
algorithm organizes the objects into k partitions (k ≤ n), where each partition represents a cluster.
The clusters are formed to optimize an objective partitioning criterion, such as a dissimilarity function
based on distance, so that the objects within a cluster are “similar” to one another and “dissimilar” to
the objects in other clusters in terms of the data set attributes.

In this section you will learn the partitioning methods. We will start with the most prominent par-
titioning method, k-means (Section 8.2.1). Then, in Section 8.2.2 we will look at a series of variations
of partitioning methods to address different types of data and different application scenarios. Last, we
will discuss kernel k-means, an advanced version of partitioning method that can explore nonlinear
separability between clusters in high dimensional data.
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8.2.1 k-Means: a centroid-based technique
Suppose a data set, D, contains n objects in Euclidean space. Partitioning methods distribute the objects
in D into k clusters, C1, . . . ,Ck , that is, Ci ⊂ D, |Ci | ≥ 1, and Ci ∩ Cj = ∅ for (1 ≤ i, j ≤ k, i �= j).
Each cluster is required to have at least one object. An objective function is used to assess the parti-
tioning quality so that objects within a cluster are similar to one another but dissimilar to objects in
other clusters. This is, the objective function aims for high intracluster similarity and low intercluster
similarity.

A centroid-based partitioning technique uses the centroid of a cluster, Ci , as the representative of
that cluster. Conceptually, the centroid of a cluster is its center point. The centroid can be defined in
various ways such as by the mean or medoid of the objects (or points) assigned to the cluster. The
difference between an object p ∈ Ci and ci , the representative of the cluster, is measured by dist(p, ci),
where dist(x,y) is the Euclidean distance between two points x and y. The quality of cluster Ci can be
measured by the within-cluster variation, which is the sum of squared error between all objects in Ci

and the centroid ci , defined as

E =
k∑

i=1

∑
p∈Ci

dist (p, ci)
2, (8.1)

where E is the sum of the squared error for all objects in the data set; p is the point in space representing
a given object; and ci is the centroid of cluster Ci (both p and ci are multidimensional). In other words,
for each object in each cluster, the distance from the object to its cluster center is squared, and the
distances are summed. This objective function tries to make the resulting k clusters as compact and
separate as possible. The task of partitioning clustering can be modeled as to minimize the within-
cluster variation (Eq. (8.1)) among all possible assignments of objects into clusters.

Minimizing the within-cluster variation is computationally challenging. In the worst case, we would
have to enumerate the number of all possible partitionings. It is easy to see that the number of all
possible partitionings is exponential to the number of objects. (This is left to be an exercise.) It has
been shown that the problem is NP-hard in the general Euclidean space even for two clusters (i.e.,
k = 2). To overcome the prohibitive computational cost for the exact solution, greedy approaches are
often used in practice. A prime example is the k-means algorithm, which is simple and commonly used.

“How does the k-means algorithm work?” The k-means algorithm defines the centroid of a cluster
as the mean value of the points within the cluster. It proceeds as follows. First, it randomly selects k

objects from D, each of which initially represents a cluster mean or center. For each of the remaining
objects, an object is assigned to the cluster to which it is the most similar, based on the Euclidean
distance between the object and the chosen means. The k-means algorithm then iteratively improves
the within-cluster variation. For each cluster, it computes the new mean using the objects assigned to
the cluster in the previous iteration. All the objects are then reassigned using the updated means as the
new cluster centers. The iterations continue until the assignment is stable, that is, the clusters formed
in the current round are the same as those formed in the previous round. The k-means procedure is
summarized in Fig. 8.1.

Example 8.1. Clustering by k-means partitioning. Consider a set of objects located in 2-D space, as
depicted in Fig. 8.2(a). Let k = 3, that is, the user would like to partition the objects into three clusters.

According to the algorithm in Fig. 8.1, we arbitrarily choose three objects as the three initial cluster
centers, where cluster centers are marked by a +. Each object is assigned to a cluster based on the cluster
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Algorithm: k-means. The k-means algorithm for partitioning, where each cluster’s center is represented by the mean value of
the objects in the cluster.

Input:

• k: the number of clusters,
• D: a data set containing n objects.

Output: A set of k clusters.
Method:

(1) arbitrarily choose k objects from D as the initial cluster centers;
(2) repeat
(3) (re)assign each object to the cluster to which the object is the most similar;
(4) update the cluster centers, that is, calculate the mean value of the objects for

each cluster;
(5) until no change;

FIGURE 8.1

The k-means partitioning algorithm.

FIGURE 8.2

Clustering of a set of objects using the k-means method; for (b) update cluster centers and reassign objects accord-
ingly (the mean of each cluster is marked by a +).

center to which it is the nearest. Such an assignment forms silhouettes encircled by dotted curves, as
shown in Fig. 8.2(a).

Next, the cluster centers are updated. That is, the mean value of each cluster is recalculated based on
the current objects in the cluster. Using the new cluster centers, the objects are reassigned to the clusters
based on which cluster center is the nearest. Such a reassignment forms new silhouettes encircled by
dashed curves, as shown in Fig. 8.2(b).

This process iterates, leading to Fig. 8.2(c). The process of iteratively reassigning objects to clusters
to improve the partitioning is referred to as iterative relocation. Eventually, no reassignment of the
objects in any cluster occurs and so the process terminates. The resulting clusters are returned by the
clustering process.

The k-means method is not guaranteed to converge to the global optimum and often terminates at a
local optimum. The results may depend on the initial random selection of cluster centers. (You will be
asked to give an example to show this as an exercise.) To obtain good results in practice, it is common
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to run the k-means algorithm multiple times with different initial cluster centers. The clustering with
the smallest within-cluster variation should be returned as the final result.

The time complexity of the k-means algorithm is O(nkt), where n is the total number of objects, k

is the number of clusters, and t is the number of iterations. Normally, k � n and t � n. Therefore the
method is relatively scalable and efficient in processing large data sets.

As the simplest version of partitioning methods, the k-means method has several advantages. First,
the k-means method is conceptually intuitive and relatively simple to implement. Indeed, the k-means
method is included in many software toolkits and open source suites in statistics, data mining, and
machine learning. Second, as analyzed, the k-means method is scalable to large data sets. The runtime
is linear with respect to the data set size (i.e., the number of data objects), the number of clusters, and
the number of iterations. Third, the k-means method is guaranteed to converge to some local optimum,
and thus likely does not produce very poor results. Fourth, if a user has some domain knowledge about
the possible locations of the clusters, the user can set the initial means and then run the iteration steps.
In other words, the k-means method can take a warm-start. Last, the k-means method can take new
observed data easily. That is, if some new data objects arrive after a certain number of iterations, the
k-means method still can easily take those data into the next iteration, and the updated clustering can
adapt to the new data.

The k-means method also has some limitations. First, a user has to manually specify the number of
clusters. When a user is not familiar with a data set, it is not easy to set this parameter properly. Sec-
ond, the effect of result clustering heavily depends on the choice of initial means. When the number of
clusters is small, to overcome this limitation, one may run the k-means method multiple times with dif-
ferent initial means. However, when the number of clusters is large, even running the k-means method
multiple times many not help to mitigate the issue, since it is unlikely all clusters produced in a run are
all good. Third, as to be illustrated later (see Fig. 8.16 as an example), the k-means method may meet
difficulty in finding clusters of substantially different sizes and density. Moreover, outliers may distract
the centers of clusters (see Example 8.2 for demonstration). Last, since the Euclidean distance is used
in the k-means method, when the dimensionality increases, the distance measure is mainly dominated
by noise. In expectation, the distance between any two data objects in a high dimensional space is the
same. Thus the k-means method cannot scale up to high dimensional data straightforwardly.

In the rest of the section, we will discuss some variations of the k-means method to address some
of the above limitations. Some other limitations are unfortunately shared by the partitioning methods,
and thus have to be tackled by introducing other types of clustering methods.

8.2.2 Variations of k-means
In order to tackle various limitations, there are multiple variants of the k-means method. In this subsec-
tion, we will study some of them that are popularly used in various applications.

k-Medoids: a representative object-based technique
The k-means algorithm is sensitive to outliers because such objects are far away from the majority
of the data, and thus, when assigned to a cluster, they can dramatically distort the mean value of the
cluster. This inadvertently affects the assignment of other objects to clusters. This effect is particularly
exacerbated due to the use of the squared-error function (Eq. (8.1)), as observed in Example 8.2.
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Example 8.2. A drawback of k-means. Consider six points in a 1-D space having values 1, 2, 3, 8,
9, 10, and 25, respectively. Intuitively, by visual inspection we may imagine the points partitioned into
the clusters {1,2,3} and {8,9,10}, where point 25 is excluded because it appears to be an outlier. How
would k-means partition the values? If we apply k-means using k = 2 and Eq. (8.1), the partitioning
{{1,2,3}, {8,9,10,25}} has the within-cluster variation

(1 − 2)2 + (2 − 2)2 + (3 − 2)2 + (8 − 13)2 + (9 − 13)2 + (10 − 13)2 + (25 − 13)2 = 196,

given that the mean of cluster {1,2,3} is 2 and the mean of {8,9,10,25} is 13. Compare this to the
partitioning {{1,2,3,8}, {9,10,25}}, for which k-means computes the within-cluster variation as

(1 − 3.5)2 + (2 − 3.5)2 + (3 − 3.5)2 + (8 − 3.5)2 + (9 − 14.67)2

+ (10 − 14.67)2 + (25 − 14.67)2 = 189.67,

given that 3.5 is the mean of cluster {1,2,3,8} and 14.67 is the mean of cluster {9,10,25}. The latter
partitioning has the lower within-cluster variation; therefore the k-means method assigns the value 8 to
a cluster different from that containing values 9 and 10 due to the outlier point 25. Moreover, the center
of the second cluster, 14.67, is substantially far from all the members in the cluster.

“How can we modify the k-means algorithm to diminish such sensitivity to outliers?” Instead of
taking the mean value of the objects in a cluster as a reference point, we can pick actual objects to
represent the clusters, using one representative object per cluster. Each remaining object is assigned
to the cluster of which the representative object is the most similar. The partitioning method is then
performed based on the principle of minimizing the sum of the dissimilarities between each object p

and its corresponding representative object. That is, an absolute-error criterion is used, defined as

E =
k∑

i=1

∑
p∈Ci

dist (p,oi ), (8.2)

where E is the sum of the absolute error for all objects p in the data set, and oi is the representative
object of Ci . This is the basis for the k-medoids method, which groups n objects into k clusters by
minimizing the absolute error (Eq. (8.2)).

When k = 1, we can find the exact median in O(n2) time. However, when k is a general positive
number, the k-medoid problem is NP-hard.

The Partitioning Around Medoids (PAM) algorithm (see Fig. 8.4 later) is a popular realization of
k-medoids clustering. It tackles the problem in an iterative, greedy way. Like the k-means algorithm,
the initial representative objects (called seeds) are chosen arbitrarily. We consider whether replacing
a representative object by a nonrepresentative object would improve the clustering quality. All the
possible replacements are tried out. The iterative process of replacing representative objects by other
objects continues until the quality of the resulting clustering cannot be improved by any replacement.
This quality is measured by a cost function of the average dissimilarity between an object and the
representative object of its cluster.

Specifically, let o1, . . . , ok be the current set of representative objects (i.e., medoids). To determine
whether a nonrepresentative object, denoted by orandom, is a good replacement for a current medoid
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FIGURE 8.3

Four cases of the cost function for k-medoids clustering.

oj (1 ≤ j ≤ k), we calculate the distance from every object p to the closest object in the set {o1, . . . ,
oj−1, orandom, oj+1, . . . , ok}, and use the distance to update the cost function. The reassignments of
objects to {o1, . . . , oj−1, orandom, oj+1, . . . , ok} are simple. Suppose object p is currently assigned
to a cluster represented by medoid oj (Fig. 8.3a or b). Do we need to reassign p to a different cluster
if oj is being replaced by orandom? Object p needs to be reassigned to either orandom or some other
cluster represented by oi (i �= j), whichever is the closest. For example, in Fig. 8.3(a), p is closest to oi

and therefore is reassigned to oi . In Fig. 8.3(b), however, p is closest to orandom and so is reassigned
to orandom. What if, instead, p is currently assigned to a cluster represented by some other object oi ,
i �= j? Object p remains assigned to the cluster represented by oi as long as p is still closer to oi than
to orandom (Fig. 8.3c). Otherwise, p is reassigned to orandom (Fig. 8.3d).

Each time a reassignment occurs, a difference in absolute error, E, is contributed to the cost function.
Therefore the cost function calculates the difference in absolute-error value if a current representative
object is replaced by a nonrepresentative object. The total cost of swapping is the sum of costs in-
curred by all nonrepresentative objects. If the total cost is negative, then oj is replaced or swapped
with orandom because the actual absolute-error E is reduced. If the total cost is positive, the current
representative object, oj , is considered acceptable, and nothing is changed in the iteration.

“Which method is more robust—k-means or k-medoids?” The k-medoids method is more robust
than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or
other extreme values than a mean. However, the complexity of each iteration in the k-medoids algorithm
is O(k(n − k)). For large values of n and k, such computation becomes very costly and much more
costly than the k-means method. Both methods require the user to specify k, the number of clusters.

k-Modes: clustering nominal data
One limitation of the k-means method is that it can be applied only when the mean of a set of objects
is defined. This may not be the case in some applications such as when data with nominal attributes is
involved. The k-modes method is a variant of k-means, which extends the k-means paradigm to cluster
nominal data by replacing the means of clusters with modes.

Recall that the mode for a set of data is the value that occurs most frequently in the set. In order to
use modes in clustering, we need a new way to compute the distance between two objects. Given two
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Algorithm: k-medoids. PAM, a k-medoids algorithm for partitioning based on medoid or central objects.

Input:

• k: the number of clusters,
• D: a data set containing n objects.

Output: A set of k clusters.
Method:

(1) arbitrarily choose k objects in D as the initial representative objects or seeds;
(2) repeat
(3) assign each remaining object to the cluster with the nearest representative object;
(4) randomly select a nonrepresentative object, orandom;
(5) compute the total cost, S, of swapping representative object, oj , with orandom;
(6) if S < 0 then swap oj with orandom to form the new set of k representative objects;
(7) until no change;

FIGURE 8.4

PAM, a k-medoids partitioning algorithm.

objects x = (x1, . . . , xl) and y = (y1, . . . , yl), we define the distance

dist (x,y) =
l∑

i=1

d(xi, yi), (8.3)

where d(x, y) = 1 if x �= y and otherwise 0. With this change, the sum of squared error (Eq. (8.1))
remains valid, where ci is the representative of cluster i.

The k-modes method works largely the same way as the k-means method. First, it selects k initial
modes, one for each cluster. Second, it allocates an object to the cluster whose mode is the closest
to the object using the distance function in Eq. (8.3). Third, it updates the mode of each cluster. For
a cluster i and dimension j , the mode is updated to the most frequent value on the dimension of all
objects assigned to this cluster. If there are more than one such a value, that is, if two or more values
of the same frequency happen most frequently in the cluster, we can randomly choose one. The k-
modes method iterates the object allocation and mode update steps until either the sum of squared error
(Eq. (8.1)) stabilizes or a given number of iterations are conducted.

The k-means and the k-modes methods can be integrated to cluster data with mixed numeric and
nominal values. This is known as the k-prototype method. On each dimension, according to whether
it is a numeric attribute or a nominal attribute, we can use either the absolute error dist (x − y) or the
mode difference d(x, y) = 1 if x �= y and otherwise 0. Since numeric attributes may have a much larger
range in absolute error than the mode difference on nominal attributes, we can associate with each
dimension a weight balancing the effect of each dimension. You will have an opportunity to explore the
details of the k-prototype method in the exercise.

Initialization in partitioning methods
It is interesting that by choosing the initial cluster centers carefully, we may be able to not only speed
up the convergence of the k-means algorithm, but also guarantee the quality of the final clustering
results. For example, the k-means++ algorithm chooses the initial centers in the following steps. First,
it chooses one center uniformly at random from the objects in the data set. Iteratively, for each object
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p other than the chosen centers, it chooses the object as the new center at random with probability
proportional to D(p)2, where D(p) is the distance from p to the closest center that has already been
chosen. The iteration continues until k centers are chosen.

Extensive experimental results have shown that the k-means++ algorithm can speed up the clus-
tering process by a factor from 2 in most cases. Moreover, the k-means++ algorithm guarantees an
approximation ratio of O(log k); that is, the within-cluster variation obtained by k-means++ is not
more than O(logk) times larger than the global optimum.

Estimating the number of clusters
The necessity for users to specify k, the number of clusters, in advance can be seen as a disadvantage.
The desired number of k is often dependent on the shape and scale of the distribution of points in a
data set and the desired clustering resolution of the user. There have been studies on how to estimate a
desired number of clusters. For example, given a data set of n objects, let B(k) and W(k) be the sum
of squares of the distances between and within clusters, respectively, when there are k clusters. The
Calinski-Harabasz index is defined by

CH(k) =
B(k)
k−1
W(k)
n−k

. (8.4)

The number of clusters k can be estimated by maximizing the Calinski-Harabasz index.
Gap statistic is another method to estimate the number of clusters. The sum of the pairwise distances

for all points in a cluster Ci is

SDCi
=

∑
p,q∈Ci

dist (p,q).

If the data set is divided into k clusters, define

Wk =
k∑

i=1

SDCi

2|Ci | ,

which is the pooled within-cluster sum of squares around the cluster means. The gap statistic is

Gapn(k) = E∗
n{log(Wk)} − log(Wk), (8.5)

where E∗
n is the expectation under a sample of size n from the reference distribution, that is, the distri-

bution producing the data set to be clustered. We can choose the value k that maximizes the gap statistic
as the estimation of number of clusters.

In Section 8.5.2, we will introduce additional methods to estimate the number of clusters.

Applying feature transformation
The k-means method employing the Euclidean distance or any metric measures in general can only
output convex clusters. Here, a cluster is convex if for any two points a and b belonging to the cluster,
every point between the two points on the line connecting a and b also belongs to the cluster. Moreover,
the k-means method employing any metric measure can only detect clusters that are linearly separable.
That is, two clusters can be separated by a linear hyperplane.
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FIGURE 8.5

Concave and not linearly separable clusters can be detected by kernel k-means.

In many applications, clusters may not be convex or linearly separable. In Fig. 8.5(a), one can easily
see that there are two clusters, the points at the center form a cluster, which is convex. The other points
form another cluster in a “ring” shape. If we apply k-means on the data set, specify the number of
clusters k = 2 and use the Euclidean distance, the output is in Fig. 8.5(b). As you can see, k-means cuts
the data set into two parts using a line. However, those two parts do not match the visual intuition.

Can we still use the k-means method to find clusters that are concave and not linearly separable?
Indeed, kernel k-means is such a method. The general idea of kernel k-means is to map the data points
in the original input space to a feature space of higher dimensionality where the points belonging
to the same cluster are close to each other in the feature space. Explicitly defining a space of high
dimensionality and mapping the points into that space is subtle and may be costly. Instead, a convenient
way is to apply a kernel function to measure the distance between points.

Recall that Section 7.3.2 introduces the concept of kernel functions. For example, using the Gaussian
radial basis function (RBF) kernel, we can calculate the distance between two points x and y by

K(x,y) = e
−‖x−y‖2

2σ2 ,

where ‖x − y‖2 is indeed the squared Euclidean distance between the two points, and σ is a free param-
eter. Clearly, the RBF kernel has the range between 0 and 1 and decreases with respect to the Euclidean
distance.

How does a kernel function, such as the RBF kernel, transform the similarity among data points?
Consider the five points in Fig. 8.6. The Euclidean distance matrix is⎡

⎢⎢⎢⎢⎣
0 5.66 5.66 5.66 5.66

5.66 0 8 11.31 8
5.66 8 0 8 11.31
5.66 11.31 8 0 8
5.66 8 11.31 8 0

⎤
⎥⎥⎥⎥⎦

where the value at the ith row and the j th column is the Euclidean distance between xi and xj . Let
σ = 4. We can apply the RBF kernel to the same five points. The corresponding RBF kernel similarity
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FIGURE 8.6

An example of five points.

matrix is ⎡
⎢⎢⎢⎢⎢⎢⎣

0 e−1 e−1 e−1 e−1

e−1 0 e−2 e−4 e−2

e−1 e−2 0 e−2 e−4

e−1 e−4 e−2 0 e−2

e−1 e−2 e−4 e−2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0.37 0.37 0.37 0.37
0.37 1 0.135 0.02 0.135
0.37 0.135 1 0.135 0.02
0.37 0.02 0.135 1 0.135
0.37 0.135 0.02 0.135 1

⎤
⎥⎥⎥⎥⎦ .

The magic here is that the RBF kernel indeed reduces the similarity between two points in a super-
linear manner as the Euclidean distance between them increases. This nonlinear allocation of similarity
enables k-means to assemble clusters using points that are not linearly separable and form clusters that
are not convex. For example, if we apply the RBF kernel and k-means on the data set in Fig. 8.5(a), the
output is Fig. 8.5(c), where the points in red (gray in print version) form a cluster and the points in blue
(dark gray in print version) form another cluster. The output matches the visual intuition nicely.

8.3 Hierarchical methods
While partitioning methods meet the basic clustering requirement of organizing a set of objects into
a number of exclusive groups, in some situations we may want to partition our data into groups at
different levels, or in general a hierarchy. A hierarchical clustering method works by grouping data
objects into a hierarchy or “tree” of clusters.

In this section, you will study hierarchical clustering methods. Section 8.3.1 begins with a discussion
about the basic concepts of hierarchical clustering. Then, Section 8.3.2 introduces the agglomera-
tive, bottom-up approaches for hierarchical clustering. Section 8.3.3 presents the divisive, top-down
approaches. Hierarchical clustering methods may be combined with other methods. Section 8.3.4 dis-
cusses BIRCH, a scalable hierarchical clustering method for large amounts of numeric data. Last,
Section 8.3.5 describes the probabilistic hierarchical clustering methods.

8.3.1 Basic concepts of hierarchical clustering
Representing data objects in the form of a hierarchy is useful for data summarization and visualiza-
tion. For example, as a manager of human resources in a company, you may organize your employees
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FIGURE 8.7

Two clusters of handwritten digit 7s.

into major groups such as executives, managers, and staff. You can further partition these groups into
smaller subgroups. For instance, the general group of staff can be further divided into subgroups of
senior officers, officers, and trainees. All these groups form a hierarchy. We can easily summarize or
characterize the data that is organized into a hierarchy, which can be used to find, say, the average salary
of managers and of officers.

Consider handwritten character recognition as another example. A set of handwriting samples may
be first partitioned into general groups where each group corresponds to a unique character. Some
groups can be further partitioned into subgroups since a character may be written in multiple substan-
tially different ways. For example, Fig. 8.7 shows a group of handwritten digit 7s. The group can be
further divided into two subgroups, the first row being a subgroup where a short horizontal line is used
in each writing, and the second row being another subgroup. If necessary, the hierarchical partitioning
can be continued recursively until a desired granularity is reached.

In the previous examples, although we partition the data hierarchically, we do not assume that the
data has a hierarchical structure. Our use of a hierarchy here is just to summarize and represent the
underlying data in a compressed way. Such a hierarchy is particularly useful for data visualization.

Alternatively, in some applications we may believe that the data bear an underlying hierarchical
structure that we want to discover. For example, hierarchical clustering may uncover a hierarchy for
the employees in a company structured on, say, salary. In the study of biological evolution, hierarchical
clustering may group living creatures according to their biological features to uncover evolutionary
paths, which are a hierarchy of species. As another example, grouping configurations of a strategic
game (e.g., chess or checkers) in a hierarchical way may help to develop game strategies that can be
used to train players.

A hierarchical clustering method can be either agglomerative or divisive, depending on whether the
hierarchical decomposition is formed in a bottom-up (merging) or top-down (splitting) fashion. Let us
have a closer look at these strategies.

An agglomerative hierarchical clustering method uses a bottom-up strategy. It typically starts by
letting each object form its own cluster and iteratively merges clusters into larger and larger clusters,
until all the objects are in a single cluster or certain termination conditions are satisfied. The single
cluster becomes the hierarchy’s root. For the merging step, it finds the two clusters that are closest to
each other (according to some similarity measure) and combines the two to form one cluster. Because
two clusters are merged per iteration, where each cluster contains at least one object, an agglomerative
method requires at most n iterations.

A divisive hierarchical clustering method employs a top-down strategy. It starts by placing all
objects in one cluster, which is the hierarchy’s root. It then divides the root cluster into several smaller
subclusters and recursively partitions those clusters into smaller ones. The partitioning process contin-
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FIGURE 8.8

Agglomerative and divisive hierarchical clustering on data objects {a,b, c,d, e}.

ues until each cluster at the lowest level is coherent enough—either containing only one object, or the
objects within a cluster are sufficiently similar to each other.

In either agglomerative or divisive hierarchical clustering, a user can specify the desired number of
clusters as a termination condition.

Example 8.3. Agglomerative vs. divisive hierarchical clustering. Fig. 8.8 shows the application of
an agglomerative hierarchical clustering method and a divisive hierarchical clustering method on a data
set of five objects, {a,b, c,d, e}. Initially, the agglomerative method places each object into a cluster of
its own. The clusters are then merged step-by-step according to some criterion. For example, clusters
C1 and C2 may be merged if an object in C1 and an object in C2 form the minimum Euclidean distance
between any two objects from different clusters. This is a single-linkage approach in that each cluster is
represented by all the objects in the cluster, and the similarity between two clusters is measured by the
similarity of the closest pair of data points belonging to different clusters. The cluster-merging process
repeats until all the objects are eventually merged to form one cluster.

The divisive method proceeds in the contrasting way. All the objects are used to form one ini-
tial cluster. The cluster is split according to some principle such as the maximum Euclidean distance
between the closest neighboring objects in the cluster. The cluster-splitting process repeats until, even-
tually, each new cluster contains only a single object.

The selection of merge or split points is critical for hierarchical clustering methods, because once
a group of objects is merged or split, the process at the next step will operate on the newly generated
clusters. It will neither undo what was done previously, nor perform object swapping between clusters.
Thus merge or split decisions, if not well chosen, may lead to low-quality clusters. Moreover, the
methods do not scale well because each decision of merge or split needs to examine and evaluate many
objects or clusters.

A promising direction for improving the clustering quality of hierarchical methods is to integrate
hierarchical clustering with other clustering techniques, resulting in multiple-phase clustering. We
introduce BIRCH as a representative method in Section 8.3.4. BIRCH begins by partitioning objects
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hierarchically using tree structures, where the leaf or low-level nonleaf nodes can be viewed as “mi-
croclusters” depending on the resolution scale. It then applies other clustering algorithms to perform
macroclustering on the microclusters.

There are several orthogonal ways to categorize hierarchical clustering methods. For instance, they
may be categorized into deterministic methods and probabilistic methods. Agglomerative, divisive, and
multiphase methods are deterministic, since they consider data objects as deterministic and compute
clusters according to the deterministic distances between objects. Probabilistic methods use probabilis-
tic models to capture clusters and measure the quality of clusters by the fitness of models. We discuss
probabilistic hierarchical clustering in Section 8.3.5.

8.3.2 Agglomerative hierarchical clustering
In this section, we discuss some important issues in agglomerative hierarchical clustering methods.

Similarity measures in hierarchical clustering
How can we choose which objects and clusters to merge in an agglomerative step? The core is to
measure the similarity between two clusters, where each cluster is generally a set of objects.

Four widely used measures for distance between clusters are as follows, where |p − p′| is the
distance between two objects or points, p and p′; mi is the mean for cluster Ci ; and ni is the number
of objects in Ci . They are also known as linkage measures.

Minimum distance: distmin(Ci,Cj ) = min
p∈Ci,p′∈Cj

{‖p − p′‖} (8.6)

Maximum distance: distmax(Ci,Cj ) = max
p∈Ci,p′∈Cj

{‖p − p′‖} (8.7)

Mean distance: distmean(Ci,Cj ) = ‖mi − mj‖ (8.8)

Average distance: distavg(Ci,Cj ) = 1

ninj

∑
p∈Ci,p′∈Cj

‖p − p′‖ (8.9)

When an algorithm uses the minimum distance, dmin(Ci,Cj ), to measure the distance between
clusters, it is sometimes called a nearest-neighbor clustering algorithm or single-linkage algorithm.
If we view the data points as nodes of a graph, with edges forming a path between the nodes in a cluster,
then the merging of two clusters, Ci and Cj , corresponds to adding an edge between the nearest pair of
nodes in Ci and Cj .

When an algorithm uses the maximum distance, dmax(Ci,Cj ), to measure the distance between
clusters, it is sometimes called a farthest-neighbor clustering algorithm or complete-linkage algo-
rithm. By viewing data points as nodes of a graph, with edges linking nodes, we can think of each
cluster as a complete subgraph, that is, with edges connecting all the nodes in the clusters. The distance
between two clusters is determined by the most distant nodes in the two clusters.

Similar to the situation in the k-means method, single-linkage and complete-linkage methods are
sensitive to outliers. The use of mean or average distance is a compromise between the minimum and
maximum distances and overcomes the outlier sensitivity problem. Whereas the mean distance is the
simplest to compute, the average distance is advantageous in that it can handle categoric data and
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FIGURE 8.9

Hierarchical clustering using single and complete linkages.

numeric data. The computation of the mean vector for categoric data can be difficult or impossible to
define.

Example 8.4. Single vs. complete linkages. Let us apply hierarchical clustering to the data set of
Fig. 8.9(a). Fig. 8.9(b) shows the hierarchy of clusters using single-linkage. Fig. 8.9(c) shows the case
using complete linkage, where the edges between clusters {A,B,J,H } and {C,D,G,F,E} are omitted
for ease of presentation. This example shows that by using single linkages we can find hierarchical
clusters defined by local proximity, whereas complete linkage tends to find clusters opting for global
closeness.

There are variations of the four essential linkage measures just discussed. For example, we can mea-
sure the distance between two clusters by the distance between the centroids (i.e., the central objects)
of the clusters.

Connecting agglomerative hierarchical clustering and partitioning methods
Are there any connections between (agglomerative) hierarchical clustering and partitioning methods
(Section 8.2)? Partitioning methods use the sum of squared errors (SSE) (Eq. (8.1)) to measure the com-
pactness and quality of a possible clustering, that is a partitioning of points into clusters. Heuristically,
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FIGURE 8.10

Ward’s criterion.

agglomerative hierarchical clustering methods may also use the sum of squared errors (SSE) to guide
the selection of clusters to merge.

For a data set of n points, if we set the number of clusters to n, a partitioning method naturally
assigns each point into a cluster. This corresponds to the starting point of agglomerative hierarchical
clustering. When we merge clusters in agglomerative clustering, we reduce the number of clusters.
Which two clusters should we choose to merge? Heuristically, we may want to merge two clusters so
that the resulting clustering also minimizes the sum of squared errors (SSE) (Eq. (8.1)), which is used
as the criterion in partitioning methods like k-means.

Consider the five clusters in Fig. 8.10 as an illustrative example. Suppose we want to merge two
of them into one so that we can have a hierarchy of clusters. Among all the possible pairs of clusters,
merging C1 and C2 minimizes the SSE, and thus C1 and C2 should be merged in the next step in
building the hierarchy.

The above intuition connecting agglomerative hierarchical clustering and partitioning methods gives
us an alternative way to measure the similarity between two clusters. We can look at the increase of the
SSE (Eq. (8.1)) if the two clusters are merged into one, the smaller the better. This is formulated by
J.H. Ward and thus is known as Ward’s criterion.

Suppose two disjoint clusters Ci and Cj are merged, and m(ij) is the mean of the new cluster. Then,
Ward’s criterion is defined as

W(Ci,Cj ) =
∑

x∈Ci∪Cj

‖x − m(ij)‖2 −
∑
x∈Ci

‖x − mi‖2 −
∑
x∈Cj

‖x − mj‖2

= ninj

ni + nj

‖mi − mj‖2.

The Lance-Williams algorithm
We discuss a few different proximity measures for clusters in agglomerative hierarchical clustering, is
there a way to generalize them? Indeed, the Lance-Williams formula generalizes different measures in
a uniform way. Suppose two exclusive clusters Ci and Cj are merged. We need to specify the distance
between the merged cluster, denoted by C(ij), and every other cluster Ck . The similarity between the
merged clusters C(ij) and cluster Ck is given by

d(C(ij),Ck) = αid(Ci,Ck) + αjd(Cj ,Ck) + βd(Ci,Cj ) + γ |d(Ci,Ck) − d(Cj ,Ck)|,
where αi , αj , β, and γ are parameters that together with the similarity function d(Ci,Cj ) determine
the hierarchical clustering algorithm. As shown in the formula, the similarity between C(ij) and Ck is
decided by four terms. The first two terms are the similarities between Ci and Cj to Ck , respectively.
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The third term relies on the similarity between Ci and Cj . The last term represents how the difference
of the original similarities between Ci and Cj to Ck may contribute to the new similarity.

For example, in the exercise, you are asked to verify that the single-linkage method is equivalent to
taking αi = αj = 0.5, β = 0, and γ = −0.5 in the Lance-Williams formula. Record that in the single
link method, the similarity between two clusters is determined by the similarity between of the closest
pair of data points belonging to different clusters. Thus the above parameters simply pick the smaller
one between d(Ci,Ck) and d(Cj ,Ck). You can also verify that the complete-linkage method is equiv-
alent to αi = αj = 0.5, β = 0, and γ = 0.5. Moreover, to implement the Ward’s criterion, we can take

αi = ni+nk

ni+nj +nk
, αj = nj +nk

ni+nj +nk
, β = − nk

ni+nj +nk
, and γ = 0 in the Lance-Williams formula.

Using the Lance-Williams formula, the Lance-Williams algorithm generalizes agglomerative hier-
archical clustering. It takes an agglomerative way and minimizes the sum of distance in each iteration
until all points are merged into one cluster.

8.3.3 Divisive hierarchical clustering
A divisive hierarchical clustering method partitions a set of objects step by step into clusters. To design
a divisive hierarchical clustering method, there are three important issues to consider.

First, a set of objects can be split in many different ways. A splitting criterion is needed to determine
which splitting is the best. Technically, given two splittings, the splitting criterion should be able to tell
which one is better. For example, the SSE (Eq. (8.1)) may be used on numeric data. If two splittings
have the same number of clusters, then the one with a less SSE value is preferred. On nominal data,
the Gini index (Chapter 6) may be used. The choice of splitting criteria is one of the most important
decisions in designing a divisive hierarchical clustering method, since it determines what clustering
results that the method may lead to.

Second, when we decide to split a cluster, we need to design a splitting method. While in general the
splitting method should optimize the splitting criterion, one major consideration is the computational
cost. For example, enumerating all possible splittings and finding the best one is likely computationally
prohibitive. Thus some heuristic or approximate methods, such as bisecting k-means, that is, setting
k = 2, may be used.

Third, in the middle of divisive hierarchical clustering, there are in general multiple clusters. Then,
which cluster should be split next? An intuitive idea is to choose the “loosest” cluster. More concretely,
we may compute the average SSE of each cluster, ECi

= 1
|Ci |

∑
x∈Ci

(x − mi)
2, and choose the one with

the largest average SSE to split.

The minimum spanning tree–based approach
Let us use the minimum spanning tree–based approach to illustrate the basic idea of divisive hierarchical
clustering. In a weighted graph G, a minimum spanning tree is an acyclic subgraph that contains all
nodes in G, and the sum of edge weights of the tree is minimized. For example, consider the weighted
graph in Fig. 8.11, where the edges of weights up to nine are shown in the figure, and the edges of
weights over nine are omitted. The minimum spanning tree consists of the edges in solid lines, whereas
the edges in dashed lines and those omitted are not included in the minimum spanning tree. Minimum
spanning tree can be computed using, for example, Prim’s algorithm and Kruskal’s algorithm.

Given a set of points, we can construct a weighted graph such that each point is represented by a
node in the graph, and the distance between two points is the weight of the edge connecting the two
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FIGURE 8.11

A weighted graph and a minimum spanning tree.

corresponding nodes in the graph. Then, we can compute the minimum spanning tree of the weighted
graph. Intuitively, the minimum spanning tree can be regarded as the most compact way that the points
are connected into one cluster. In general, in the process of divisive hierarchical clustering based on
minimum spanning tree, every cluster is a subset of nodes and is represented by the minimum spanning
tree, which is a subtree of the minimum spanning tree of the whole data set. The splitting criterion is
the total weights of all the edges in the spanning tree(s) of all the clusters, the smaller the better.

Based on this spanning tree, we can progressively divide the set of points in one cluster into smaller
clusters. Suppose we want to conduct bisecting splitting, that is, every time we split one cluster into two
smaller clusters. At each step, we consider all edges in the spanning trees of the current clusters and
delete the edge of the largest weight. Deleting an edge in a tree divides one cluster into two. Thus the
splitting method is to divide a cluster by deleting the edge in the minimum spanning tree of the largest
weight.

For example, consider a set of points {a, b, c, d, e, f } as shown in Fig. 8.11. A weighted edge and
the corresponding distance are plotted in the figure if the distance between two points is smaller than
10. Based on the minimum spanning tree method, the edge (a, e), which has the largest weight in the
minimum spanning tree, is first deleted, which divides the data set into two clusters, {a, b, c, d} and
{e, f }. Next, by deleting edge (a, d), which has the largest weight in the remaining minimum spanning
trees, the cluster {a, b, c, d} is split into two smaller clusters {a, b} and {c, d}. The process continues
until each cluster has only one point and all the edges in the minimum spanning tree are deleted.

Dendrogram
A tree structure called a dendrogram is commonly used to represent the process of hierarchical clus-
tering. It shows how objects are grouped together (in an agglomerative method) or partitioned (in a
divisive method) step-by-step. Fig. 8.12 shows a dendrogram for the five objects presented in Fig. 8.8,
where l = 0 shows the five objects as singleton clusters at level 0. At l = 1, objects a and b are grouped
together to form the first cluster, and they stay together at all subsequent levels. We can also use a ver-
tical axis to show the similarity scale between clusters. For example, when the similarity of two groups
of objects, {a,b} and {c,d, e}, is roughly 0.16, they are merged together to form a single cluster.

A complete dendrogram shows every data point as a node at the leaf level and the whole data set
as one cluster at the root. In practice, however, too small clusters may not be very meaningful and too
many such small clusters can be overwhelming. Thus a data analyst often shows and considers only
the portion close to the root of a dendrogram. Moreover, when the graph contains a sufficiently small
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FIGURE 8.12

Dendrogram representation for hierarchical clustering of data objects {a,b, c,d, e}.

number of clusters, further merging them into even bigger ones may counter the objective of clustering
analysis. Therefore the very root part of a dendrogram may also be ignored in analysis.

8.3.4 BIRCH: scalable hierarchical clustering using clustering feature trees
There are two major difficulties in the agglomerative and divisive hierarchical clustering methods dis-
cussed so far. First, all those methods cannot revisit any merge or split decisions made before. Thus
an improper decision based on limited information may lead to low quality final clustering results.
Moreover, scalability is a major bottleneck, since each merge or split needs to examine many possible
options. To overcome those difficulties, we may conduct hierarchical clustering in multiple phases, so
that clustering results can be improved over phases. Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH) is such a method and is designed for clustering a large amount of numeric data
by integrating hierarchical clustering (at the initial microclustering stage) and other clustering methods
such as iterative partitioning (at the later macroclustering stage).

BIRCH uses the notions of clustering feature to summarize a cluster, and clustering feature tree
(CF-tree) to represent a cluster hierarchy. These structures help the clustering method achieve good
speed and scalability in large or even streaming databases and also make it effective for incremental
and dynamic clustering of incoming objects.

Consider a cluster of n d-D data objects or points. The clustering feature (CF) of the cluster is a
3-D vector summarizing information about clusters of objects. It is defined as

CF = 〈n,LS, SS〉, (8.10)

where LS is the linear sum of the n points (i.e., LS = ∑n
i=1 xi) and SS is the square sum of the data

points (i.e., SS = ∑n
i=1 ‖xi‖2).

A clustering feature is essentially a summary of the statistics for the given cluster. Using a clustering
feature, we can easily derive many useful statistics of a cluster. For example, the cluster’s centroid, x0,
radius, R, and diameter, D, are

x0 =
∑n

i=1 xi

n
= LS

n
, (8.11)
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R =

√√√√√√
n∑

i=1

(xi − x0)
2

n
=

√
SS

n
− (

‖LS‖
n

)
2

, (8.12)

D =

√√√√√√
n∑

i=1

n∑
j=1

(xi − xj )2

n(n − 1)
=

√
2nSS − 2‖LS‖2

n(n − 1)
. (8.13)

Here, R is the average distance from member objects to the centroid, and D is the average pairwise
distance within a cluster. Both R and D reflect the tightness of the cluster around the centroid.

Summarizing a cluster using the clustering feature can avoid storing the detailed information about
individual objects or points. Instead, we only need a constant size of space to store the clustering
feature. This is the key to the efficiency of BIRCH in space. Moreover, clustering features are additive.
That is, for two disjoint clusters, C1 and C2, with the clustering features CF 1 = 〈n1,LS1, SS1〉 and
CF 2 = 〈n2,LS2, SS2〉, respectively, the clustering feature for the cluster that formed by merging C1
and C2 is simply

CF 1 + CF 2 = 〈n1 + n2,LS1 + LS2, SS1 + SS2〉. (8.14)

Example 8.5. Clustering feature. Suppose there are three points, (2,5), (3,2), and (4,3), in a cluster,
C1. The clustering feature of C1 is

CF 1 = 〈3, (2 + 3 + 4,5 + 2 + 3), (22 + 32 + 42) + (52 + 22 + 32)〉 = 〈3, (9,10),67〉.
Suppose that C1 is disjoint to a second cluster, C2, where CF 2 = 〈3, (35,36),857〉. The clustering
feature of a new cluster, C3, that is formed by merging C1 and C2, is derived by adding CF 1 and CF 2.
That is,

CF 3 = 〈3 + 3, (9 + 35,10 + 36),67 + 857〉 = 〈6, (44,46),924〉.

A CF-tree is a height-balanced tree that stores the clustering features for a hierarchical clustering.
An example is shown in Fig. 8.13. By definition, a nonleaf node in a tree has descendants or “children.”
The nonleaf nodes store sums of the CFs of their children and thus summarize clustering informa-
tion about their children. A CF-tree has two parameters: branching factor, B, and threshold, T . The
branching factor specifies the maximum number of children per nonleaf node. The threshold parameter
specifies the maximum diameter of subclusters stored at the leaf nodes of the tree. These two parameters
implicitly control the size of the resulting CF-tree.

Given a limited amount of main memory, an important consideration in BIRCH is to minimize the
time required for input/output (I/O). BIRCH applies a multiphase clustering technique: A single scan
of the data set yields a basic, good clustering, and one or more additional scans can optionally be used
to further improve the quality. The primary phases are as follows:

• Phase 1: BIRCH scans the database to build an initial in-memory CF-tree, which can be viewed as a
multilevel compression of the data that tries to preserve the inherent clustering structure of the data.
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FIGURE 8.13

CF-tree structure.

• Phase 2: BIRCH applies a (selected) clustering algorithm to cluster the leaf nodes of the CF-tree,
which removes sparse clusters as outliers and groups dense clusters into larger ones.

For Phase 1, the CF-tree is built dynamically as objects are inserted. Thus the method is incremental.
An object is inserted into the closest leaf entry (subcluster). If the diameter of the subcluster stored in
the leaf node after insertion is larger than the threshold value, then the leaf node and possibly other
nodes are split. After the insertion of the new object, information about the object is passed toward the
root of the tree. The size of the CF-tree can be changed by modifying the threshold. If the size of the
memory that is needed for storing the CF-tree is larger than the size of the main memory available, then
a larger threshold value can be specified and the CF-tree is rebuilt.

The rebuild process is performed by building a new tree from the leaf nodes of the old tree. Thus
the process of rebuilding the tree is done without the necessity of rereading all the objects or points.
This is similar to the insertion and node split in the construction of B+-trees. Therefore for building
the tree, data have to be read just once. Some heuristics and methods have been introduced to deal
with outliers and improve the quality of CF-trees by additional scans of the data. Once the CF-tree is
built, any clustering algorithm, such as a typical partitioning algorithm, can be used with the CF-tree in
Phase 2.

“How effective is BIRCH?” The time complexity of the algorithm is O(n), where n is the number
of objects to be clustered. Experiments have shown the linear scalability of the algorithm with respect
to the number of objects, and good quality of clustering of data. However, since each node in a CF-tree
can hold only a limited number of entries due to its size, a CF-tree node does not always correspond to
what a user may consider a natural cluster. Moreover, if the clusters are not spherical in shape, BIRCH
does not perform well because it uses the notion of radius or diameter to control the boundary of a
cluster.

The ideas of clustering features and CF-trees have been applied beyond BIRCH. The ideas have
been borrowed by many others to tackle problems of clustering streaming and dynamic data.

8.3.5 Probabilistic hierarchical clustering
Hierarchical clustering methods using linkage measures tend to be easy to understand and are often
efficient in clustering. They are commonly used in many clustering analysis applications. However,
hierarchical clustering methods can suffer from several drawbacks. First, choosing a good distance
measure for hierarchical clustering is often far from trivial. Second, to apply such a method, the data
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objects cannot have any missing attribute values. In the case where data is partially observed (i.e., some
attribute values of some objects are missing), it is not easy to apply a hierarchical clustering method
because the distance computation cannot be conducted. Third, most of the hierarchical clustering meth-
ods are heuristic and search locally at each step for a good merging/splitting decision. Consequently,
the optimization goal of the resulting cluster hierarchy can be unclear.

Probabilistic hierarchical clustering aims to overcome some of these disadvantages by using
probabilistic models to measure distances between clusters.

One way to look at the clustering problem is to regard the set of data objects to be clustered as a
sample of the underlying data generation mechanism to be analyzed or, formally, the generative model.
For example, when we conduct clustering analysis on a set of marketing surveys, we assume that
the surveys collected are a sample of the opinions of all possible customers. Here, the data generation
mechanism is a probability distribution of opinions with respect to different customers, which cannot be
obtained directly and completely. The task of clustering is to estimate the generative model as accurately
as possible using the observed data objects to be clustered.

In practice, we can assume that the data generative models adopt common distribution functions,
such as Gaussian distribution or Bernoulli distribution, which are governed by parameters. The task of
learning a generative model is then reduced to finding the parameter values for which the model best
fits the observed data set.

Example 8.6. Generative model. Suppose we are given a set of 1-D points X = {x1, . . . , xn} for clus-
tering analysis. Let us assume that the data points are generated by a Gaussian distribution,

N (μ,σ 2) = 1√
2πσ 2

e
− (x−μ)2

2σ2 , (8.15)

where the parameters are μ (the mean) and σ 2 (the variance).
The probability that a point xi ∈ X is then generated by the model is

P(xi |μ,σ 2) = 1√
2πσ 2

e
− (xi−μ)2

2σ2 . (8.16)

Consequently, the likelihood that the data set X observed is generated by the model is

L(N (μ,σ 2) : X) = P(X|μ,σ 2) =
n∏

i=1

1√
2πσ 2

e
− (xi−μ)2

2σ2 . (8.17)

The task of learning the generative model is to find the parameters μ and σ 2 such that the likelihood
L(N (μ,σ 2) : X) is maximized, that is, finding

N (μ0, σ
2
0 ) = arg max{L(N (μ,σ 2) : X)}, (8.18)

where max{L(N (μ,σ 2) : X)} is called the maximum likelihood.

Given a set of objects, the quality of a cluster formed by all the objects can be measured by the
maximum likelihood. For a set of objects partitioned into m clusters C1, . . . ,Cm. Then the quality can
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be measured by

Q({C1, . . . ,Cm}) =
m∏

i=1

P(Ci), (8.19)

where P() is the maximum likelihood. To calculate P(Ci), we can fit each cluster Ci (1 ≤ i ≤ m) by
a generative model Mi , and estimate the probability by P(Ci) = ∏

x∈Ci
P (x|Mi). If we merge two

clusters, Cj1 and Cj2 , into a cluster, Cj1 ∪ Cj2 , then, the change in quality of the overall clustering is

Q(({C1, . . . ,Cm} − {Cj1,Cj2}) ∪ {Cj1 ∪ Cj2}) − Q({C1, . . . ,Cm})

=
∏m

i=1 P(Ci) · P(Cj1 ∪ Cj2)

P (Cj1)P (Cj2)
−

m∏
i=1

P(Ci)

=
m∏

i=1

P(Ci)

(
P(Cj1 ∪ Cj2)

P (Cj1)P (Cj2)
− 1

)
. (8.20)

When choosing to merge two clusters in hierarchical clustering,
∏m

i=1 P(Ci) is constant for any pair of
clusters. Therefore given clusters C1 and C2, the dissimilarity between them can be measured by

dist (C1,C2) = − log
P(C1 ∪ C2)

P (C1)P (C2)
. (8.21)

A probabilistic hierarchical clustering method can adopt the agglomerative clustering framework, but
use probabilistic models (Eq. (8.21)) to measure the similarity between clusters.

Upon close observation of Eq. (8.20), we see that merging two clusters may not always lead to an

improvement in clustering quality, that is,
P(Cj1 ∪Cj2 )

P (Cj1 )P (Cj2 )
may be less than 1. For example, assume that

Gaussian distribution functions are used in the model of Fig. 8.14. Although merging clusters C1 and
C2 results in a cluster that better fits a Gaussian distribution, merging clusters C3 and C4 lowers the
clustering quality because no Gaussian functions can fit the merged cluster well.

Based on this observation, a probabilistic hierarchical clustering scheme can start with one cluster
per object and merge two clusters, Ci and Cj , if the distance between them is negative. In each iter-

ation, we try to find Ci and Cj so as to maximize log
P(Ci∪Cj )

P (Ci)P (Cj )
. The iteration continues as long as

log
P(Ci∪Cj )

P (Ci)P (Cj )
> 0, that is, as long as there is an improvement in clustering quality. The pseudocode is

given in Fig. 8.15.
Probabilistic hierarchical clustering methods are easy to understand and generally have the same

efficiency as agglomerative hierarchical clustering methods; in fact, they share the same framework.
Probabilistic models are more interpretable, but sometimes less flexible than distance metrics. Prob-
abilistic models can handle partially observed data. For example, given a multidimensional data set
where some objects have missing values on some dimensions, we can learn a Gaussian model on each
dimension independently using the observed values on the dimension. The resulting cluster hierarchy
accomplishes the optimization goal of fitting data to the selected probabilistic models.

A drawback of using probabilistic hierarchical clustering is that it outputs only one hierarchy with
respect to a chosen probabilistic model. It cannot handle the uncertainty of cluster hierarchies. Given a
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FIGURE 8.14

Merging clusters in probabilistic hierarchical clustering: (a) Merging clusters C1 and C2 leads to an increase in
overall cluster quality, but merging clusters (b) C3 and (c) C4 does not.

Algorithm: A probabilistic hierarchical clustering algorithm.

Input:

• D = {o1, . . . ,on}: a data set containing n objects;

Output: A hierarchy of clusters.
Method:

(1) create a cluster for each object Ci = {oi }, 1 ≤ i ≤ n;
(2) for i = 1 to n

(3) find pair of clusters Ci and Cj such that Ci,Cj = arg maxi �=j log
P(Ci∪Cj )

P (Ci )P (Cj )
;

(4) if log
P(Ci∪Cj )

P (Ci )P (Cj )
> 0 then merge Ci and Cj ;

(5) else stop;

FIGURE 8.15

A probabilistic hierarchical clustering algorithm.

data set, there may exist multiple hierarchies that fit the observed data. Neither algorithmic approaches
nor probabilistic approaches can find the distribution of such hierarchies. Recently, Bayesian tree-
structured models have been developed to handle such problems. Bayesian and other sophisticated
probabilistic clustering methods are considered advanced topics and are not covered in this book.

8.4 Density-based and grid-based methods
Most of the partitioning and hierarchical methods are designed to find spherical-shaped clusters. They
have difficulty finding clusters of arbitrary shape such as the “S” shape and oval clusters in Fig. 8.16.
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FIGURE 8.16

Clusters of arbitrary shape.

Although some feature transformation methods, such as kernel k-means, may help, it is often tricky to
choose appropriate kernel functions. Given such data, they would likely inaccurately identify convex
regions, where noises or outliers are included in the clusters.

To find clusters of arbitrary shape, alternatively, we can model clusters as dense regions in the
data space, separated by sparse regions. This is the main strategy behind density-based clustering
methods, which can discover clusters of nonspherical shape. In this section, you will learn the ba-
sic techniques of density-based clustering by studying two representative methods, namely, DBSCAN
(Section 8.4.1) and DENCLUE (Section 8.4.2). To tackle the computational cost in density-based clus-
tering, the data space may be partitioned into a grid. This idea motivates the grid-based clustering
methods (Section 8.4.3).

8.4.1 DBSCAN: density-based clustering based on connected regions with high
density

“How can we find dense regions in density-based clustering?” The density of an object o can be mea-
sured by the number of objects close to o. DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) finds core objects, that is, objects that have dense neighborhoods. It connects core objects
and their neighborhoods to form dense regions as clusters. In this section, let us explain DBSCAN∗, an
improved version of the original DBSCAN.

“How does DBSCAN∗ quantify the neighborhood of an object?” DBSCAN∗ employs a user-
specified parameter ε > 0 to specify the radius of a neighborhood that is considered for every object.
The ε-neighborhood of an object o is the space within a radius ε centered at o.

Due to the fixed neighborhood size parameterized by ε, the density of a neighborhood can be
measured simply by the number of objects in the neighborhood. To determine whether a neighborhood
is dense or not, DBSCAN∗ uses another user-specified parameter, MinP ts, which specifies the density
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FIGURE 8.17

Density-reachability and density-connectivity in DBSCAN.

threshold of dense regions. An object is a core object if the ε-neighborhood of the object contains at
least MinP ts objects, otherwise, it is noise. Core objects are the pillars of dense regions.

Given a set, D, of objects, we can identify all core objects with respect to the given parameters, ε

and MinP ts. The clustering task is therein reduced to using core objects and their neighborhoods to
form dense regions, where the dense regions are clusters.

Two core objects p and q are ε-reachable if d(p,q) ≤ ε, that is, p is in the ε-neighbor of q and
vice versa. Two core objects p and q are density-connected if p and q are ε-reachable or transitively ε-
reachable, where p and q are transitive ε-reachable if there exist one or multiple core objects r1, . . . , r l

such that p and r1 are ε-reachable, r i and r i+1 (1 ≤ i < l) are ε-reachable, and r l and q are ε-reachable.
Then, a cluster C with respect to parameters ε and MinP ts is simply a nonempty maximal subset of
core objects that every pair of objects in C is density connected.

In DBSCAN∗, a cluster contains only core objects. However, it is easy to assign a noncore object that
is in the ε-neighborhood of a core object to the cluster containing that core object. DBSCAN explicitly
identifies such noncore objects as border objects, and DBSCAN∗ can use a postprocessing step to pick
up those border objects. Those objects that do not belong to any ε-neighborhood are outliers.

Example 8.7. Density-reachability and density-connectivity. Consider Fig. 8.17 for a given ε repre-
sented by the radius of the circles, and, say, let MinP ts = 3.

Of the labeled objects, p, m, o, q, and t are core objects, since each of the ε-neighborhoods (dashed
circles in the figure) of them contains at least three objects. Objects p and o are ε-reachable, so are o

and q. Thus p and q are density-connected.
It can be verified that the core objects p, m, o, q, and t form a cluster, since each two among

them are density-connected and no other core objects can be added into this group so that the pairwise
density-connectivity is maintained.

Object s is not a core object, since the ε-neighborhood of s contains only two objects. However, s

is in the ε-neighborhood of core object p, thus s is a border object.
Objects u and v are not core objects, and they do not belong to the ε-neighborhood of any core

objects. Thus they are outliers.
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Algorithm: DBSCAN∗: a density-based clustering algorithm.

Input:

• D: a data set containing n objects,
• ε: the radius parameter, and
• MinP ts: the neighborhood density threshold.

Output: A set of density-based clusters.
Method:

(1) mark all objects as unvisited;
(2) do
(3) randomly select an unvisited object p;
(4) mark p as visited;
(5) if the ε-neighborhood of p has at least MinP ts objects
(6) create a new cluster C, and add p to C;
(7) let N be the set of objects in the ε-neighborhood of p;
(8) for each point p′ in N

(9) if p′ is unvisited
(10) mark p′ as visited;
(11) if the ε-neighborhood of p′ has at least MinP ts points,

add those points to N and add p′ to C;
(12) end for
(13) output C;
(14) else mark p as noise;
(15) until no object is unvisited;

FIGURE 8.18

DBSCAN∗ algorithm.

“How does DBSCAN∗ find clusters?” Initially, all objects in a given data set D are marked as
“unvisited.” DBSCAN∗ randomly selects an unvisited object p, marks p as “visited,” and checks
whether the ε-neighborhood of p contains at least MinP ts objects. If not, p is marked as a noise
point. Otherwise, a new cluster C is created for p, and all the objects in the ε-neighborhood of p are
added to a candidate set, N .

DBSCAN∗ iteratively adds to C those core objects in N that do not belong to any cluster. In this
process, for an object p′ in N that carries the label “unvisited,” DBSCAN∗ marks it as “visited” and
checks its ε-neighborhood. If the ε-neighborhood of p′ has at least MinP ts objects, p′ is labeled as
a core object and added into C, those objects in the ε-neighborhood of p′ are added to N . DBSCAN∗
continues adding objects to C until C can no longer be expanded, that is, N is empty. At this time,
cluster C is completed, and thus is output.

To find the next cluster, DBSCAN∗ randomly selects an unvisited object from the remaining ones.
The clustering process continues until all objects are visited. The pseudocode of the DBSCAN∗ algo-
rithm is given in Fig. 8.18.

If a spatial index is used, the computational complexity of DBSCAN∗ is O(n logn), where n is
the number of database objects. Otherwise, the complexity is O(n2). With appropriate settings of the
user-defined parameters, ε and MinP ts, the algorithm is effective in finding arbitrary-shaped clusters.

It is not easy to specify two parameters, ε and MinP ts, in DBSCAN∗. Moreover, density-based
clusters may also have hierarchies. For example, within a dense area there may be a sub-area is sub-
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stantially denser. Can we find hierarchical density-based clusters? Indeed, DBSCAN∗ can be extended
to HDBSCAN∗, which achieves density-based hierarchical clustering.

HDBSCAN∗ only takes one parameter, MinP ts. For an object p, the core distance of p, de-
noted by dcore(p) is the distance from p to its MinP tsth nearest neighbor (including p itself). In
other words, dcore(p) is the minimum radius with respect to which p is a core object in DBSCAN∗.
For two objects p and q, the mutual reachability distance between them is dmreach(p,q) =
max{dcore(p), dcore(q), d(p,q)}. In other words, dmreach(p,q) is the minimum radius ε such that p
and q are ε-reachable in DBSCAN∗.

Given a set of objects as the input to HDBSCAN∗, we can construct a mutual reachability graph
GMinP ts , which is a complete graph. Every object in the input is a node in the mutual reachability
graph. The weight of the edge between p and q is the mutual reachability distance dmreach(p,q). We
can apply the minimum spanning tree approach (Section 8.3.3) on the mutual reachability graph to find
density-based hierarchical clusters.

To further reduce the demand of setting parameters, a cluster analysis method called OPTICS
was proposed. OPTICS does not explicitly produce a data set clustering. Instead, it outputs a cluster
ordering, a linear list of all objects under analysis, representing the density-based clustering structure
of the data. Objects in a denser cluster are listed closer to each other in the cluster ordering. This
ordering is equivalent to density-based clustering obtained from a wide range of parameter settings.
Thus, OPTICS does not require the user to provide a specific density threshold. The cluster ordering
can be used to extract basic clustering information (e.g., cluster centers, or arbitrary-shaped clusters),
derive the intrinsic clustering structure, and provide a visualization of the clustering.

To construct the different clusterings simultaneously, the objects are processed in a specific order.
This order selects an object that is density-reachable with respect to the lowest ε value so that clusters
with higher density (i.e., lower ε) will be finished first. For example, Fig. 8.19 shows the reachabil-
ity plot for a simple 2-D data set, which presents a general overview of how the data are structured
and clustered. The data objects are plotted in the clustering order (horizontal axis) together with their
respective reachability-distances (vertical axis). The three Gaussian “bumps” in the plot reflect three
clusters in the data set.

OPTICS can be seen as a generalization of DBSCAN that replaces the ε parameter with a maxi-
mum value that mostly affects performance. MinP ts then essentially becomes the minimum cluster
size to find. While the algorithm is much easier to parameterize than DBSCAN, it usually produces a
hierarchical clustering instead of the simple data partitioning that DBSCAN produces.

8.4.2 DENCLUE: clustering based on density distribution functions
Density estimation is a core issue in density-based clustering. DENCLUE (DENsity-based CLUs-
tEring) is a clustering method based on a set of density distribution functions. We first give some
background on density estimation and then describe the DENCLUE algorithm.

In probability and statistics, density estimation is the estimation of an unobservable underlying
probability density function based on a set of observed data. In the context of density-based clustering,
the unobservable underlying probability density function is the true distribution of the population of
all possible objects to be analyzed. The observed data set is regarded as a random sample from that
population.

In DENCLUE, kernel density estimation is used, which is a nonparametric density estimation ap-
proach from statistics. The general idea behind kernel density estimation is simple. We treat an observed
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FIGURE 8.19

Cluster ordering in OPTICS. Source: Adapted from Ankerst, Breunig, Kriegel, and Sander [ABKS99].

object as an indicator of high-probability density in the surrounding region. The probability density at
a point depends on the distances from this point to the observed objects.

Formally, let x1, . . . ,xn be an independent and identically distributed sample of a random variable
f . The kernel density approximation of the probability density function is

f̂h(x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
, (8.22)

where K() is a kernel function and h is the bandwidth serving as a smoothing parameter. A kernel can
be regarded as a function modeling the influence of a sample point within its neighborhood. Techni-
cally, a kernel K() is a nonnegative real-valued integrable function that should satisfy two requirements:∫ +∞
−∞ K(u)du = 1 and K(−u) = K(u) for all values of u. A frequently used kernel is a standard Gaus-

sian function with a mean of 0 and a variance of 1:

K

(
x − xi

h

)
= 1√

2π
e
− (x − xi )

2

2h2 . (8.23)

DENCLUE uses a Gaussian kernel to estimate density based on the given set of objects to be clus-
tered. A point x∗ is called a density attractor if it is a local maximum of the estimated density function.
To avoid trivial local maximum points, DENCLUE uses a noise threshold, ξ , and only considers those
density attractors x∗ such that f̂ (x∗) ≥ ξ . These nontrivial density attractors are the centers of clusters.
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FIGURE 8.20

Hill-climbing in DENCLUE.

The objects under analysis are assigned to clusters through density attractors using a stepwise hill-
climbing procedure. For an object, x, the hill-climbing procedure starts from x and is guided by the
gradient of the estimated density function. That is, the density attractor for x is computed as

x0 = x

xj+1 = xj + δ
∇f̂ (xj )

|∇f̂ (xj )| , (8.24)

where δ is a parameter to control the speed of convergence, and

∇f̂ (x) = 1

hd+2n
∑n

i=1 K
(

x − xi
h

)
(xi − x)

. (8.25)

The hill-climbing procedure stops at step k > 0 if f̂ (xk+1) < f̂ (xk), and assigns x to the density attrac-
tor x∗ = xk . An object x is an outlier or noise if it converges in the hill-climbing procedure to a local
maximum x∗ with f̂ (x∗) < ξ .

Fig. 8.20 illustrates the hill-climbing idea. For a point x, the density attractor for x is initialized to
x0 = x. In the next iteration, the density attractor moves a small step towards the direction indicated by
the gradient of the density function, shown by the arrow in the figure, until the point x∗ where density
is stable (the white circle point in the figure), which is a local optimal.

A cluster in DENCLUE is a set of density attractors X and a set of input objects C such that
each object in C is assigned to a density attractor in X, and there exists a path between every pair of
density attractors where the density is above ξ . By using multiple density attractors connected by paths,
DENCLUE can find clusters of arbitrary shape.

DENCLUE has several advantages. It can be regarded as a generalization of several well-known
clustering methods such as single-linkage approaches and DBSCAN. Moreover, DENCLUE is invariant
against noise. The kernel density estimation can effectively reduce the influence of noise by uniformly
distributing noise into the input data.
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8.4.3 Grid-based methods
As analyzed in the previous subsections, computing density for density-based clustering may be costly,
particularly on large data sets and data sets of high dimensionality. To tackle the efficiency and scal-
ability challenges, one idea is to partition the data space into cells using a grid. This motivates the
grid-based clustering methods.

The grid-based clustering approach uses a multiresolution grid data structure. It quantizes the object
space into a finite number of cells that form a grid structure on which all of the operations for clustering
are performed. The main advantage of the approach is its fast processing time, which is typically inde-
pendent of the number of data objects, yet dependent on only the number of cells in each dimension in
the quantized space.

Typically, grid-based clustering takes three steps.

1. We create a grid structure so that the data space is partitioned into a finite number of cells.
2. For each cell, we calculate the cell density. By a carefully designed method, we may be able to scan

the data once and derive the densities for all cells. This step is a key to gain efficiency and scalability.
3. We use the dense cells to assemble clusters and optionally summarize dense cells and the corre-

sponding clusters.

Let us illustrate this using an example. CLIQUE (CLustering In QUEst) is a simple grid-based
method for finding density-based clusters in subspaces. CLIQUE partitions each dimension into
nonoverlapping intervals, thereby partitioning the entire data space into cells. It uses a density threshold
to identify dense cells and sparse ones. A cell is dense if the number of objects mapped to it exceeds
the density threshold.

The main strategy behind CLIQUE for identifying a candidate search space uses the monotonicity
of dense cells with respect to dimensionality. This is based on the Apriori property used in frequent
pattern and association rule mining (Chapter 4). In the context of clusters in subspaces, the monotonicity
says the following. A k-dimensional cell c (k > 1) can have at least l points only if every (k − 1)-
dimensional projection of c, which is a cell in a (k − 1)-dimensional subspace, has at least l points.
Consider Fig. 8.21, where the data space contains three dimensions: age, salary, and vacation. A 2-D

FIGURE 8.21

Dense units found with respect to age for the dimensions salary and vacation are intersected to provide a candidate
search space for dense units of higher dimensionality.
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cell, say in the subspace formed by age and salary, contains l points only if the projection of this cell
in every dimension, that is, age and salary, respectively, contains at least l points.

CLIQUE performs clustering in three steps. In the first step, CLIQUE partitions the d-dimensional
data space into nonoverlapping rectangular units.

In the second step, CLIQUE identifies the dense units among these. CLIQUE finds dense cells
in all of the subspaces. To do so, CLIQUE partitions every dimension into intervals, and identifies
intervals containing at least l points, where l is the density threshold. CLIQUE then iteratively joins
two k-dimensional dense cells, c1 and c2, in subspaces (Di1 , . . . ,Dik ) and (Dj1, . . . ,Djk

), respectively,
if Di1 = Dj1 , . . . , Dik−1 = Djk−1 , and c1 and c2 share the same intervals in those dimensions. The join
operation generates a new (k + 1)-dimensional candidate cell c in space (Di1, . . . ,Dik−1,Dik ,Djk

).
CLIQUE checks whether the number of points in c passes the density threshold. The iteration terminates
when no candidates can be generated or no candidate cells are dense.

In the last step, CLIQUE uses the dense cells in each subspace to assemble clusters, which can be
of arbitrary shape. The idea is to apply the Minimum Description Length (MDL) principle (Chapter 7)
to use the maximal regions to cover connected dense cells, where a maximal region is a hyperrectangle
where every cell falling into this region is dense, and the region cannot be extended further in any di-
mension in the subspace. Finding the best description of a cluster in general is NP-hard. Thus CLIQUE
adopts a simple greedy approach. It starts with an arbitrary dense cell, finds a maximal region cover-
ing the cell, and then works on the remaining dense cells that have not yet been covered. The greedy
method terminates when all dense cells are covered.

“How effective is CLIQUE?” CLIQUE automatically finds subspaces of the highest dimensionality
such that high-density clusters exist in those subspaces. It is insensitive to the order of input objects and
does not presume any canonical data distribution. It scales linearly with the size of the input and has
good scalability as the number of dimensions in the data increases. However, obtaining a meaningful
clustering is dependent on proper tuning of the grid size (which is a stable structure here) and the
density threshold. This can be difficult in practice because the grid size and density threshold are used
across all combinations of dimensions in the data set. Thus the accuracy of the clustering results may be
degraded at the expense of the method’s simplicity. Moreover, for a given dense region, all projections
of the region onto lower-dimensionality subspaces will also be dense. This can result in a large overlap
among the reported dense regions. Furthermore, it is difficult to find clusters of rather different densities
within different dimensional subspaces.

STING is another representative grid-based multiresolution clustering technique. In STING, the
spatial area of the input objects is divided into rectangular cells. The space can be divided in a hier-
archical and recursive way. Several levels of such rectangular cells correspond to different levels of
resolution and form a hierarchical structure: Each cell at a high level is partitioned to form a number
of cells at the next lower level. Statistical information regarding the attributes in each grid cell, such as
the mean, maximum, and minimum values, is precomputed and stored as statistical parameters. These
statistical parameters are useful for query processing and for other data analysis tasks.

Fig. 8.22 shows a hierarchical structure for STING clustering. The statistical parameters of higher-
level cells can easily be computed from the parameters of the lower-level cells. These parameters
include the following: the attribute-independent parameter, count; and the attribute-dependent parame-
ters, mean, stdev (standard deviation), min (minimum), max (maximum), and the type of distribution
that the attribute value in the cell follows such as normal, uniform, exponential, or none (if the distribu-
tion is unknown). Here, the attribute is a selected measure for analysis such as price for house objects.
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FIGURE 8.22

Hierarchical structure for STING clustering.

When the data are loaded into the database, the parameters count, mean, stdev, min, and max of the
bottom-level cells are calculated directly from the data. The value of distribution may either be assigned
by the user if the distribution type is known beforehand or obtained by hypothesis tests such as the χ2

test. The type of distribution of a higher-level cell can be computed based on the majority of distribu-
tion types of its corresponding lower-level cells in conjunction with a threshold filtering process. If the
distributions of the lower-level cells disagree with each other and fail the threshold test, the distribution
type of the high-level cell is set to none.

“How is this statistical information useful for query answering?” The statistical parameters can
be used in a top-down, grid-based manner as follows. First, a layer within the hierarchical structure is
determined from which the query-answering process is to start. This layer typically contains a small
number of cells. For each cell in the current layer, we compute the confidence interval (or estimated
probability range) reflecting the relevancy of the cell to the given query. The irrelevant cells are removed
from further consideration. Processing of the next lower level examines only the remaining relevant
cells. This process repeats until the bottom layer is reached. At this time, if the query specification is
met, the regions of relevant cells that satisfy the query are returned. Otherwise, the data points that fall
into the relevant cells are retrieved and further processed until they meet the query’s requirements.

An interesting property of STING is that it approaches the clustering result of DBSCAN if the
granularity approaches 0 (i.e., toward very low-level data). In other words, using the count and cell size
information, dense clusters can be identified approximately using STING. Therefore STING can also
be regarded as a density-based clustering method.

“What advantages does STING offer over other clustering methods?” STING offers several ad-
vantages. First, the grid-based computation is query-independent because the statistical information
stored in each cell represents the summary information of the data in the grid cell, independent of the
query. Moreover, the grid structure facilitates parallel processing and incremental updating. Last, the
efficiency of STING is a major advantage: STING goes through the database once to compute the sta-
tistical parameters of the cells and hence the time complexity of generating clusters is O(n), where n

is the total number of objects. After generating the hierarchical structure, the query processing time
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is O(g), where g is the total number of grid cells at the lowest level, which is usually much smaller
than n.

Because STING uses a multiresolution approach to cluster analysis, the quality of STING clustering
depends on the granularity of the lowest level of the grid structure. If the granularity is very fine, the cost
of processing increases substantially; however, if the bottom level of the grid structure is too coarse, it
may reduce the quality of cluster analysis. Moreover, STING does not consider the spatial relationship
between the children and their neighboring cells for construction of a parent cell. As a result, the shapes
of the resulting clusters are isothetic, that is, all the cluster boundaries are either horizontal or vertical,
and no diagonal boundary is detected. This may lower the quality and accuracy of the clusters despite
the fast processing time of the technique.

8.5 Evaluation of clustering
By now you have learned what clustering is and know several popular clustering methods. You may
ask, “When I try out a clustering method on a data set, how can I evaluate whether the clustering results
are good?” In general, cluster evaluation assesses the feasibility of clustering analysis on a data set and
the quality of the results generated by a clustering method. The major tasks of clustering evaluation
include the following:

• Assessing clustering tendency. In this task, for a given data set, we assess whether a nonrandom
structure exists in the data. Blindly applying a clustering method on a data set will return clusters;
however, the clusters mined may be misleading. Clustering analysis on a data set is meaningful only
when there is a nonrandom structure in the data.

• Determining the number of clusters in a data set. A few algorithms, such as k-means, require the
number of clusters in a data set as the parameter. Moreover, the number of clusters can be regarded
as an interesting and important summary statistic of a data set. Therefore it is desirable to estimate
this number even before a clustering algorithm is used to derive detailed clusters.

• Measuring clustering quality. After applying a clustering method on a data set, we want to assess
how good the resulting clusters are. A number of measures can be used. Some methods measure
how well the clusters fit the data set, while others measure how well the clusters match the ground
truth, if such truth is available. There are also measures that score clusterings and thus can compare
two sets of clustering results on the same data set.

In this section, we discuss these three topics one by one.

8.5.1 Assessing clustering tendency
Clustering tendency assessment determines whether a given data set has a nonrandom structure, which
may lead to meaningful clusters. Consider a data set that does not have any nonrandom structure, such
as a set of uniformly distributed points in a data space. Even though a clustering algorithm may return
clusters for the data, those clusters are random and thus are not meaningful.

Example 8.8. Clustering requires nonuniform distribution of data. Fig. 8.23 shows a data set that is
uniformly distributed in 2-D data space. Although a clustering algorithm may still artificially partition
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FIGURE 8.23

A data set that is uniformly distributed in the data space.

the points into groups, the groups will unlikely mean anything significant to the application due to the
uniform distribution of the data.

“How can we assess the clustering tendency of a data set?” Intuitively, we can try to measure
the probability that the data set is generated by a uniform data distribution. This can be achieved using
statistical tests for spatial randomness. To illustrate this idea, let us look at a simple yet effective statistic
called the Hopkins statistic.

The Hopkins Statistic is a spatial statistic that tests the spatial randomness of a variable as dis-
tributed in a space. Given a data set, D, which is regarded as a sample of a random variable, o, we want
to determine how far away o is from being uniformly distributed in the data space. We calculate the
Hopkins Statistic as follows:

1. Sample n points, p1, . . . , pn from the data space. For each point, pi (1 ≤ i ≤ n), we find the nearest
neighbor in D, and let xi be the distance between pi and its nearest neighbor in D. That is,

xi = min
v∈D

{dist (pi,v)}. (8.26)

2. Sample n points, q1, . . . , qn uniformly from D without replacement. That is, each point in D has the
same probability of being included in this sample, and one point can only be included in the sample
at most once. For each qi (1 ≤ i ≤ n), we find the nearest neighbor of qi in D − {qi}, and let yi be
the distance between qi and its nearest neighbor in D − {qi}. That is,

yi = min
v∈D,v �=qi

{dist (qi,v)}. (8.27)

3. Calculate the Hopkins statistic, H , as

H =
∑n

i=1 xd
i∑n

i=1 xd
i + ∑n

i=1 yd
i

, (8.28)

where d is the dimensionality of the data set D.

“What does the Hopkins statistic tell us about how likely data set D follows a uniform distribution
in the data space?” If D is uniformly distributed, then

∑n
i=1 yd

i and
∑n

i=1 xd
i are close to each other,
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and thus H tends to be about 0.5. However, if D is highly skewed, then the points in D are closer to
their nearest neighbors than the random points p1, . . . , pn are, and thus

∑n
i=1 xd

i shall be substantially
larger than

∑n
i=1 yd

i in expectation, and H tends to be close to 1.

Example 8.9. Hopkins statistic. Consider a 1-D data set D = {0.9,1,1.3,1.4,1.5,1.8,2,2.1,4.1,7,

7.4,7.5,7.7,7.8,7.9,8.1} in the data space [0,10]. We draw a sample of four points from D without
replacement, say, 1.3, 1.8, 7.5, and 7.9. We also draw a sample of four points uniformly from the data
space [0,10], say, 1.9, 4, 6, 8. Then, the Hopkins statistic can be calculated as

H = |1.9 − 2| + |4 − 4.1| + |6 − 7| + |8 − 8.1|
(|1.9 − 2| + |4 − 4.1| + |6 − 7| + |8 − 8.1|) + (|1.3 − 1.4| + |1.8 − 2| + |7.5 − 7.4| + |7.9 − 7.8|)

= 1.3

1.3 + 0.5
= 1.3

1.8
= 0.72.

Since the Hopkins statistic is substantially larger than 0.5 and is close to 1, the data set D has a
strong clustering tendency. Indeed, there are two clusters, one around 1.5 and the other one around
7.8.

In addition to Hopkins statistic, there are some other methods, such as spatial histogram and distance
distribution, comparing statistics between a data set under clustering tendency analysis and the corre-
sponding uniform distribution. For example, distance distribution compares the distribution of pairwise
distance in the target data set and that in a random uniform sample from the data space.

8.5.2 Determining the number of clusters
Determining the “right” number of clusters in a data set is important, not only because some clustering
algorithms like k-means require such a parameter, but also because the appropriate number of clusters
controls the proper granularity of cluster analysis. It can be regarded as finding a good balance between
compressibility and accuracy in cluster analysis. Consider two extreme cases. What if you were to treat
the entire data set as a cluster? This would maximize the compression of the data, but such a cluster
analysis has no value. In contrast, treating each object in a data set as a cluster gives the finest clustering
resolution (i.e., most accurate due to the zero distance between an object and the corresponding cluster
center). In some methods like k-means, this even achieves the minimum cost. However, having one
object per cluster does not enable any data summarization.

Determining the number of clusters is far from easy, often because the “right” number is ambiguous.
Figuring out the right number of clusters often depends on the distribution’s shape and scale in the data
set, as well as the clustering resolution required by the user. There are many possible ways to estimate
the number of clusters.

For example, a simple method is to set the number of clusters to about
√

n
2 for a data set of n points.

In expectation, each cluster has
√

2n points. Section 8.2.2 introduces the Calinski-Harabasz index,
which estimates the number of clusters for k-means.

Let us look at two more alternative methods.
The elbow method is based on the observation that increasing the number of clusters can help to

reduce the sum of within-cluster variance of each cluster. This is because having more clusters allows
one to capture finer groups of data objects that are more similar to each other. However, the marginal
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effect of reducing the sum of within-cluster variances may drop if too many clusters are formed, because
splitting a cohesive cluster into two gives only a small reduction. Consequently, a heuristic for selecting
the right number of clusters is to use the turning point in the curve of the sum of within-cluster variances
with respect to the number of clusters.

Technically, given a number, k > 0, we can form k clusters on the data set in question using a
clustering algorithm like k-means, and calculate the sum of within-cluster variances, var(k). We can
then plot the curve of var with respect to k. The first (or most significant) turning point of the curve
suggests the “right” number.

More advanced methods can determine the number of clusters using information criteria or informa-
tion theoretic approaches. Please refer to the bibliographic notes for further information (Section 8.8).

The “right” number of clusters in a data set can also be determined by cross-validation, a technique
often used in classification (Chapter 6). First, we divide the given data set, D, into m parts. Next, we use
m − 1 parts to build a clustering model, and use the remaining part to test the quality of the clustering.
For example, for each point in the test set, we can find the closest centroid. Consequently, we can use
the sum of the squared distances between all points in the test set and the closest centroids to measure
how well the clustering model fits the test set. For any integer k > 0, we repeat this process m times
to derive clusterings of k clusters, using each part in turn as the test set. The average of the quality
measure is taken as the overall quality measure. We can then compare the overall quality measure with
respect to different values of k and find the number of clusters that best fits the data.

8.5.3 Measuring clustering quality: extrinsic methods
Suppose you have assessed the clustering tendency of a given data set. You may have also tried to
predetermine the number of clusters in the set. You can now apply one or multiple clustering methods
to obtain clusterings of the data set. “How good is the clustering generated by a method, and how can
we compare the clusterings generated by different methods?”

Extrinsic vs. intrinsic methods
We have a few methods to choose from for measuring the quality of a clustering. In general, these
methods can be categorized into two groups according to whether ground truth is available. Here,
ground truth is the ideal clustering that is often built using human experts.

If ground truth is available, it can be used by the extrinsic methods, which compare the clustering
against the ground truth and measure. If the ground truth is unavailable, we can use the intrinsic meth-
ods, which evaluate the goodness of a clustering by considering how well the clusters are separated.
Ground truth can be considered as supervision in the form of “cluster labels.” Hence, extrinsic methods
are also known as supervised methods, whereas intrinsic methods are unsupervised methods.

In this section, we focus on extrinsic methods. We will discuss intrinsic methods in the next section.

Desiderata of extrinsic methods
When the ground truth is available, we can compare it with a clustering to assess the quality of the
clustering. Thus the core task in extrinsic methods is to assign a score, Q(C,Cg), to a clustering, C,
given the ground truth, Cg . Whether an extrinsic method is effective largely depends on the measure,
Q, it uses.



8.5 Evaluation of clustering 421

In general, a measure Q on clustering quality is effective if it satisfies the following four essential
criteria:

• Cluster homogeneity. This requires that the purer the clusters in a clustering are, the better the clus-
tering. Suppose that the ground truth says that the objects in a data set, D = {a, b, c, d, e, f, g,h},
can belong to three categories. Objects a and b are in category L1, objects c and d belong to category
L2, and the others are in category L3. Consider clustering, C1 = {{a, b, c, d}, {e, f, g,h}}, wherein
a cluster {a, b, c, d} ∈ C1 contains objects from two categories, L1 and L2. Also consider clustering
C2 = {{a, b}, {c, d}, {e, f, g,h}}, which is identical to C1 except that C2 is split into two clusters con-
taining the objects in L1 and L2, respectively. A clustering quality measure, Q, respecting cluster
homogeneity should give a higher score to C2 than C1, that is, Q(C2,Cg) > Q(C1,Cg).

• Cluster completeness. This is the counterpart of cluster homogeneity. Cluster completeness re-
quires that for a clustering, if any two objects belong to the same category according to the ground
truth, then they should be assigned to the same cluster. Cluster completeness requires that a cluster-
ing should assign objects belonging to the same category (according to the ground truth) to the same
cluster. Continue our previous example. Suppose clustering C3 = {{a, b}, {c, d}, {e, f }, {g,h}}. C3

and C2 are identical except that C3 split the objects in category L3 into two clusters. Then, a clus-
tering quality measure, Q, respecting cluster completeness should give a higher score to C2, that is,
Q(C2,Cg) > Q(C1,Cg).

• Rag bag. In many practical scenarios, there is often a “rag bag” category containing objects that
cannot be merged with other objects. Such a category is often called “miscellaneous,” “other,” and
so on. The rag bag criterion states that putting a heterogeneous object into a pure cluster should be
penalized more than putting it into a rag bag. Consider a clustering C1 and a cluster C ∈ C1 such that
all objects in C except for one, denoted by o, belong to the same category according to the ground
truth. Consider a clustering C2 identical to C1 except that o is assigned to a cluster C′ �= C in C2 such
that C′ contains objects from various categories according to ground truth, and thus is noisy. In other
words, C′ in C2 is a rag bag. Then, a clustering quality measure Q respecting the rag bag criterion
should give a higher score to C2, that is, Q(C2,Cg) > Q(C1,Cg).

• Small cluster preservation. If a small category is split into small pieces in a clustering, those
small pieces may likely become noise and thus the small category cannot be discovered from the
clustering. The small cluster preservation criterion states that splitting a small category into pieces is
more harmful than splitting a large category into pieces. Consider an extreme case. Let D be a data
set of n + 2 objects such that, according to ground truth, n objects, denoted by o1, . . . , on, belong to
one category and the other two objects, denoted by on+1,on+2, belong to another category. Suppose
clustering C1 has three clusters, C1

1 = {o1, . . . , on}, C1
2 = {on+1}, and C1

3 = {on+2}. Let clustering
C2 have three clusters, too, namely C2

1 = {o1, . . . , on−1}, C2
2 = {on}, and C2

3 = {on+1,on+2}. In
other words, C1 splits the small category and C2 splits the big category. A clustering quality measure
Q preserving small clusters should give a higher score to C2, that is, Q(C2,Cg) > Q(C1,Cg).

Categories of extrinsic methods
The ground truth may be used in different ways to evaluate clustering quality, which lead to different
extrinsic methods. In general, the extrinsic methods can be categorized according to how the ground
truth is used as follows.
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• The matching-based methods examine how well the clustering results match the ground truth in
partitioning the objects in the data set. For example, the purity methods assess how a cluster matches
only those objects in one group in the ground truth.

• The information theory–based methods compare the distribution of the clustering results and that
of the ground truth. Entropy or other measures in information theory are often employed to quantify
the comparison. For example, we can measure the conditional entropy between the clustering results
and the ground truth to measure whether there exists dependency between the information of the
clustering results and the ground truth. The higher the dependency, the better the clustering results.

• The pairwise comparison–based methods treat each group in the ground truth as a class and then
check the pairwise consistency of the objects in the clustering results. The clustering results are
good if more pairs of objects of the same class are put into the same cluster, less pairs of objects of
different classes are put into the same cluster, and less pairs of objects of the same class are put into
different clusters.

Next, let us use some examples to illustrate the above categories of extrinsic methods.

Matching-based methods
The matching-based methods compare clusters in the clustering results and the groups in the ground
truth. Let us use an example to explain the ideas.

Suppose a clustering method partitions a set of objects D = {o1, . . . , on} into clusters C =
{C1, . . . ,Cm}. The ground truth G also partitions the same set of objects into groups G = {G1, . . . ,Gl}.
Let C(ox) and G(ox) (1 ≤ x ≤ n) be the cluster-id and the group-id of object ox in the clustering results
and the ground truth, respectively.

For a cluster Ci (1 ≤ i ≤ m), how well Ci matches group Gj in the ground truth can be measured by

|Ci ∩ Gj |, the larger the better.
|Ci∩Gj |

|Ci | can be regarded as the purity of cluster Ci , where Gj matching
Ci maximizes |Ci ∩ Gj |. The purity of the whole clustering results can be calculated as the weighted
sum of the purity of the clusters. That is,

purity =
m∑

i=1

|Ci |
n

l
max
j=1

{ |Ci ∩ Gj |
|Ci | } = 1

n

m∑
i=1

l
max
j=1

{|Ci ∩ Gj |}. (8.29)

The higher the purity, the purer are the clusters, that is, the more objects in each cluster belong to
the same group in the ground truth. When the purity is 1, each cluster either matches a group perfectly
or is a subset of a group. In other words, no two objects belong to two groups are mixed in one cluster.
However, it is possible that multiple clusters partition a group in the ground truth.

Example 8.10. Purity. Consider the set of objects D = {a, b, c, d, e, f, g,h, i, j, k}. The clustering
ground truth and two clusterings C1 and C2 output by two methods are shown in Table 8.1.

The purity of clustering C1 is calculated by 1
11 × (4 + 2 + 4 + 1) = 11

11 = 1 and that of clustering C2

is 1
11 (2 + 3 + 1) = 6

11 . In terms of purity, C1 is better than C2. Please note that, although C1 has purity
1, it splits G1 in the ground truth into two clusters, C1 and C2.

There are some other matching based methods further refine the measurement of matching quality,
such as maximum matching and using F-measure.
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Table 8.1 A set of objects, the clustering ground truth, and two
clusterings.

Object a b c d e f g h i j k

Ground truth G G1 G1 G1 G1 G1 G1 G2 G2 G2 G2 G3

Clustering C1 C1 C1 C1 C1 C2 C2 C3 C3 C3 C3 C4

Clustering C2 C1 C1 C2 C2 C2 C3 C1 C2 C2 C1 C3

Information theory–based methods
A clustering assigns objects to clusters and thus can be regarded as a compression of the information
carried by the objects. In other words, a clustering can be regarded as a compressed representation of a
given set of objects. Therefore we can use information theory to compare a clustering and the ground
truth as representations. This is the general idea behind the information theory–based methods.

For example, we can measure the amount of information needed to describe the ground truth given
the distribution of a clustering output by a method. Better the clustering results approach the ground
truth, less amount information is needed. This leads to a natural approach using conditional entropy.

Concretely, according to information theory, the entropy of a clustering C is

H(C) = −
m∑

i=1

|Ci |
n

log
|Ci |
n

,

and the entropy of the ground truth is

H(G) = −
l∑

i=1

|Gi |
n

log
|Gi |
n

.

The conditional entropy of G given cluster Ci is

H(G|Ci) = −
l∑

j=1

|Ci ∩ Gj |
|Ci | log

|Ci ∩ Gj |
|Ci | .

The conditional entropy of G given clustering C is

H(G|C) =
m∑

i=1

|Ci |
n

H(G|Ci) = −
m∑

i=1

l∑
j=1

|Ci ∩ Gj |
n

log
|Ci ∩ Gj |

|Ci | .

In addition to the simple conditional entropy, more sophisticated information theory–based mea-
sures may be used, such as normalized mutual information and variation of information.

Taking the case in Table 8.1 as an example, we can calculate

H(G|C1) = −(
4

11
log

4

4
+ 2

11
log

2

2
+ 4

11
log

4

4
+ 1

11
log

1

1
) = 0
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and

H(G|C2) = −(
2

11
log

2

4
+ 2

11
log

2

4
+ 3

11
log

3

5
+ 2

11
log

2

5
+ 1

11
log

1

2
+ 1

11
log

1

2
)

= 0.297.

Clustering C1 has better quality than C2 in terms of conditional entropy. Again, although H(G|C1) = 0,
conditional entropy cannot detect the issue that C1 splits the objects in G1 into two clusters.

Pairwise comparison–based methods
The pairwise comparison–based methods treat each group in the ground truth as a class. For each pair of
objects oi, oj ∈ D (1 ≤ i, j ≤ n, i �= j), if they are assigned to the same cluster/group, the assignment
is regarded as positive, and otherwise, negative. Then, depending on assignments of oi and oj into
clusters C(oi), C(oj ), G(oi), and G(oj ), we have four possible cases.

C(oi) = C(oj ) C(oi) �= C(oj )

G(oi) = G(oj ) true positive false negative
G(oi) �= G(oj ) false positive true negative

Using the statistics on pairwise comparison, we can assess the quality of the clustering results approach-
ing the ground truth. For example, we can use the Jaccard coefficient, which is defined as

J = true positive

true positive + false negative + false positive
.

Many other measures can be built based on the pairwise comparison statistics, such as Rand statis-
tic, fowlkes-Mallows measure, BCubed precision, and recall. The pairwise comparison results can be
further used to conduct correlation analysis. For example, we can form a binary matrix G according
to the ground truth, where element vij = 1 if G(oi) = G(oj ), and otherwise 0. A binary matrix C can
also be constructed in a similar way based on a clustering C. We can analyze the element-wise correla-
tion between the two matrixes and use the correlation to measure the quality of the clustering results.
Clearly, the more correlated the two matrixes, the better the clustering results.

8.5.4 Intrinsic methods
When the ground truth of a data set is not available, we have to use an intrinsic method to assess the
clustering quality. Unable to reference any external supervision information, the intrinsic methods have
to come back to the fundamental intuition in clustering analysis, that is, examining how compact clus-
ters are and how well clusters are separated. Many intrinsic methods take the advantage of a similarity
or distance measure between objects in the data set.

For example, the Dunn index measures the compactness of clusters by the maximum distance be-
tween two points that belong to the same cluster, that is, � = maxC(oi )=C(oj ){d(oi, oj )}}. It measures
the degree of separation among different clusters by the minimum distance between two points that
belong to different clusters, that is δ = minC(oi )�=C(oj ){d(oi, oj )}. Then, the Dunn index is simply the

ration DI = δ
�

. The larger the ratio, the farther away the clusters are separated comparing to the com-
pactness of the clusters.
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The Dunn index uses the extreme distances to measure the cluster compactness and intercluster
separation. The measures δ and � may be affected by the outliers. Many methods consider the average
situations. The silhouette coefficient is such a measure. For a data set, D, of n objects, suppose D is
partitioned into k clusters, C1, . . . ,Ck . For each object o ∈ D, we calculate a(o) as the average distance
between o and all other objects in the cluster to which o belongs. Similarly, b(o) is the minimum average
distance from o to all clusters to which o does not belong. Formally, suppose o ∈ Ci (1 ≤ i ≤ k). Then,

a(o) =
∑

o′∈Ci,o �=o′ dist (o,o′)
|Ci | − 1

(8.30)

and

b(o) = min
Cj :1≤j≤k,j �=i

{∑
o′∈Cj

dist (o,o′)
|Cj |

}
. (8.31)

The silhouette coefficient of o is then defined as

s(o) = b(o) − a(o)

max{a(o), b(o)} . (8.32)

The value of the silhouette coefficient is between −1 and 1. The value of a(o) reflects the compact-
ness of the cluster to which o belongs. The smaller the value, the more compact the cluster. The value
of b(o) captures the degree to which o is separated from other clusters. The larger b(o) is, the more
separated o is from other clusters. Therefore when the silhouette coefficient value of o approaches 1,
the cluster containing o is compact and o is far away from other clusters, which is the preferable case.
However, when the silhouette coefficient value is negative (i.e., b(o) < a(o), this means that, in expec-
tation, o is closer to the objects in another cluster than to the objects in the same cluster as o. In many
cases, this is a bad situation and should be avoided.

To measure a cluster’s fitness within a clustering, we can compute the average silhouette coeffi-
cient value of all objects in the cluster. To measure the quality of a clustering, we can use the average
silhouette coefficient value of all objects in the data set. The silhouette coefficient and other intrinsic
measures can also be used in the elbow method to heuristically derive the number of clusters in a data
set by replacing the sum of within-cluster variances.

8.6 Summary
• A cluster is a collection of data objects that are similar to one another within the same cluster and

are dissimilar to the objects in other clusters. The process of grouping a set of physical or abstract
objects into classes of similar objects is called clustering.

• Cluster analysis has extensive applications, including business intelligence, image pattern recogni-
tion, Web search, biology, and security. Cluster analysis can be used as a standalone data mining tool
to gain insight into the data distribution or as a preprocessing step for other data mining algorithms
operating on the detected clusters.

• Clustering is a dynamic field of research in data mining. It is related to unsupervised learning in
machine learning.
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• Clustering is a challenging field. Typical requirements of it include scalability, the ability to
deal with different types of data and attributes, the discovery of clusters in arbitrary shape, min-
imal requirements for domain knowledge to determine input parameters, the ability to deal with
noisy data, incremental clustering and insensitivity to input order, the capability of clustering high-
dimensionality data, constraint-based clustering, and interpretability and usability.

• Many clustering algorithms have been developed. These can be categorized from several orthogonal
aspects such as those regarding partitioning criteria, separation of clusters, similarity measures used,
and clustering space. This chapter discusses major fundamental clustering methods of the following
categories: partitioning methods, hierarchical methods, and density-based and grid-based methods.
Some algorithms may belong to more than one category.

• A partitioning method first creates an initial set of k partitions, where parameter k is the number
of partitions to construct. It then uses an iterative relocation technique that attempts to improve
the partitioning by moving objects from one group to another. Typical partitioning methods include
k-means, k-medoids, and k-modes.

• The centroid-based partitioning technique uses the within-cluster variation to measure the qual-
ity of clusters, which is the sum of squared error between all objects in a cluster and the centroid of
the cluster. Minimizing the within-cluster variation is computationally challenging and thus some
greedy approaches are often used. The k-means method uses the mean value of the points within a
cluster as the centroid. It randomly selects k objects as the initial centroids of the clusters and then
iteratively conducts object assignment and mean update steps until the assignment becomes stable
or a certain number of iterations are reached.

• As a variation of k-means to overcome the effect of outliers, the k-medoids method uses actual
objects to represent clusters. While k-medoids is more robust against noise and outliers, it incurs
higher computational cost in each iteration. As another variation of k-means, the k-modes method
uses modes to measure the similarity on nominal data. We can also use kernel functions, such as
the Gaussian radial basis function, in k-means to find clusters that are concave and not linearly
separable.

• A hierarchical method creates a hierarchical decomposition of the given set of data objects. The
method can be classified as being either agglomerative (bottom-up) or divisive (top-down), based on
how the hierarchical decomposition is formed. Linkage measures can be used to assess the distance
between clusters in hierarchical clustering. Some widely used measures include minimum distance
(single-linkage), maximum distance (complete-linkage), mean distance, and average distance. The
Lance-Williams algorithm generalizes different measures and the agglomerative hierarchical clus-
tering framework. The minimum spanning tree based approach is a representative method for
divisive hierarchical clustering. Hierarchical clustering results can be represented using a dendro-
gram.

• BIRCH is a method combining hierarchical clustering and other clustering methods. In BIRCH,
clusters are represented using clustering features (CF for short) and a hierarchical clustering is
represented by a CF-tree.

• To overcome some of the drawbacks of hierarchical clustering methods, probabilistic hierarchi-
cal clustering uses probabilistic models to measure distances between clusters. It shares the same
framework and thus has the same efficiency as agglomerative hierarchical clustering methods.

• A density-based method clusters objects based on the notion of density. It grows clusters either
according to the density of neighborhood objects (e.g., in DBSCAN) or according to a density
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function (e.g., in DENCLUE). OPTICS is a density-based method that generates an augmented
ordering of the data’s clustering structure.

• A grid-based method first quantizes the object space into a finite number of cells that form a grid
structure, and then performs clustering on the grid structure. STING is a typical example of a grid-
based method based on statistical information stored in grid cells. CLIQUE is a grid-based and
subspace clustering algorithm.

• Clustering evaluation assesses the feasibility of clustering analysis on a data set and the quality of
the results generated by a clustering method. The major tasks include assessing clustering tendency,
determining the number of clusters, and measuring clustering quality.

• Some statistics, such as Hopkins statistic, can be used to assess clustering tendency. In addition to
the Calinski-Harabasz index, the elbow method, and the cross-validation technique can be used to
decide the number of clusters in a data set. Depending on whether the ground truth is available, the
methods measuring clustering quality can be divided into extrinsic methods and intrinsic methods.
The extrinsic methods try to address the desiderata of cluster homogeneity, cluster completeness, rag
bag, and small cluster preservation. The extrinsic methods can be divided into the matching-based
methods (e.g., purity), the information theory–based methods (e.g., entropy), and the pairwise
comparison–based methods (e.g., using Jaccard coefficient). Examples of the intrinsic methods are
the Dunn index and the silhouette coefficient.

8.7 Exercises
8.1. Briefly describe and give examples of each of the following approaches to clustering: partition-

ing methods, hierarchical methods, density-based and grid-based methods, and bi-clustering
methods.

8.2. Suppose that the data mining task is to cluster points (with (x, y) representing location) into
three clusters, where the points are

A1(2,10),A2(2,5),A3(8,4),B1(5,8),B2(7,5),B3(6,4),C1(1,2),C2(4,9).

The distance function is Euclidean distance. Suppose initially we assign A1, B1, and C1 as the
center of each cluster, respectively. Use the k-means algorithm to show only
a. The three cluster centers after the first round of execution.
b. The final three clusters.

8.3. Use an example to show why the k-means algorithm may not find the global optimum, that is,
optimizing the within-cluster variation.

8.4. For the k-means algorithm, it is interesting to note that by choosing the initial cluster centers
carefully, we may be able to not only speed up the algorithm’s convergence, but also guarantee
the quality of the final clustering. The k-means++ algorithm is a variant of k-means, which
chooses the initial centers as follows. First, it selects one center uniformly at random from the
objects in the data set. Iteratively, for each object p other than the chosen center, it chooses
an object as the new center. This object is chosen at random with probability proportional to
dist (p)2, where dist (p) is the distance from p to the closest center that has already been chosen.
The iteration continues until k centers are selected.
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Explain why this method will not only speed up the convergence of the k-means algorithm, but
also guarantee the quality of the final clustering results.

8.5. Provide the pseudocode of the object reassignment step of the PAM algorithm.
8.6. Both k-means and k-medoids algorithms can perform effective clustering.

a. Illustrate the strength and weakness of k-means in comparison with k-medoids.
b. Illustrate the strength and weakness of these schemes in comparison with a hierarchical

clustering scheme.
8.7. Show that the single-linkage method is equivalent to taking αi = αj = 0.5, β = 0, and γ = −0.5

in the Lance-Williams formula; the complete-linkage method is equivalent to αi = αj = 0.5,

β = 0, and γ = 0.5; and the Ward’s criterion is equivalent to αi = ni+nk

ni+nj +nk
, αj = nj +nk

ni+nj +nk
,

β = − nk

ni+nj +nk
, and γ = 0.

8.8. Prove that in DBSCAN∗, the density-connectedness is an equivalence relation.
8.9. Prove that in DBSCAN∗, for a fixed MinP ts value and two neighborhood thresholds, ε1 < ε2, a

cluster C with respect to ε1 and MinP ts must be a subset of a cluster C′ with respect to ε2 and
MinP ts.

8.10. Provide the pseudocode of the OPTICS algorithm.
8.11. Why is it that BIRCH encounters difficulties in finding clusters of arbitrary shape but OPTICS

does not? Propose modifications to BIRCH to help it find clusters of arbitrary shape.
8.12. Provide the pseudocode of the step in CLIQUE that finds dense cells in all subspaces.
8.13. Present conditions under which density-based clustering is more suitable than partitioning-based

clustering and hierarchical clustering. Give application examples to support your argument.
8.14. Give an example of how specific clustering methods can be integrated, for example, where one

clustering algorithm is used as a preprocessing step for another. In addition, provide reasoning
as to why the integration of two methods may sometimes lead to improved clustering quality and
efficiency.

8.15. Clustering is recognized as an important data mining task with broad applications. Give one
application example for each of the following cases:
a. An application that uses clustering as a major data mining function.
b. An application that uses clustering as a preprocessing tool for data preparation for other

data mining tasks.
8.16. Data cubes and multidimensional databases contain nominal, ordinal, and numeric data in hi-

erarchical or aggregate forms. Based on what you have learned about the clustering methods,
design a clustering method that finds clusters in large data cubes effectively and efficiently.

8.17. Describe each of the following clustering algorithms in terms of the following criteria: (1) shapes
of clusters that can be determined; (2) input parameters that must be specified; and (3) limita-
tions.
a. k-means
b. k-medoids
c. BIRCH
d. DBSCAN∗

8.18. Human eyes are fast and effective at judging the quality of clustering methods for 2-D data. Can
you design a data visualization method that may help humans visualize data clusters and judge
the clustering quality for 3-D data? What about for even higher-dimensional data?
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8.19. Discuss how well purity, entropy, and the method using Jacaard coefficient satisfy the four es-
sential requirements for extrinsic clustering evaluation methods.

8.8 Bibliographic notes
Clustering has been extensively studied for over 40 years and across many disciplines due to its broad
applications. Most books on pattern classification and machine learning contain chapters on cluster
analysis or unsupervised learning. Several textbooks are dedicated to the methods of cluster analysis,
including Hartigan [Har75]; Jain and Dubes [JD88]; Kaufman and Rousseeuw [KR90]; and Arabie,
Hubert, and De Sorte [AHS96]. There are also many survey articles on different aspects of clustering
methods. Recent ones include Jain, Murty, and Flynn [JMF99]; Parsons, Haque, and Liu [PHL04];
Xu and Wunsch [XW05]; Jain [Jai10]; Greenlaw and Kantabutra [GK13]; Xu and Tian [XT15]; and
Berkhin [Ber06].

For partitioning methods, the k-means algorithm was first introduced by Lloyd [Llo57], and then by
MacQueen [Mac67]. Arthur and Vassilvitskii [AV07] presented the k-means++ algorithm. A filtering
algorithm, which uses a spatial hierarchical data index to speed up the computation of cluster means, is
given in Kanungo et al. [KMN+02].

The k-medoids algorithms of PAM and CLARA were proposed by Kaufman and Rousseeuw
[KR90]. The k-modes (for clustering nominal data) and k-prototypes (for clustering hybrid data) al-
gorithms were proposed by Huang [Hua98]. The k-modes clustering algorithm was also proposed
independently by Chaturvedi, Green, and Carroll [CGC94,CGC01]. The CLARANS algorithm was
proposed by Ng and Han [NH94]. Ester, Kriegel, and Xu [EKX95] proposed techniques for further im-
provement of the performance of CLARANS using efficient spatial access methods such as R∗-tree and
focusing techniques. A k-means–based scalable clustering algorithm was proposed by Bradley, Fayyad,
and Reina [BFR98]. The kernel k-means method was developed by Dhillon, Guan, and Kulis [DGK04].

An early survey of agglomerative hierarchical clustering algorithms was conducted by Day and
Edelsbrunner [DE84]. Murtagh and Contreras [MC12] provided a more recent survey on hierarchi-
cal clustering. Zhao, Karypis, and Fayyad [ZKF05] surveyed the hierarchical clustering algorithms for
document databases. Agglomerative hierarchical clustering, such as AGNES, and divisive hierarchical
clustering, such as DIANA, were introduced by Kaufman and Rousseeuw [KR90]. Rohlf [Roh73] de-
veloped the essential idea of hierarchical clustering using the minimum spanning tree. An interesting
direction for improving the clustering quality of hierarchical clustering methods is to integrate hierar-
chical clustering with distance-based iterative relocation or other nonhierarchical clustering methods.
For example, BIRCH, by Zhang, Ramakrishnan, and Livny [ZRL96], first performs hierarchical cluster-
ing with a CF-tree before applying other techniques. Hierarchical clustering can also be performed by
sophisticated linkage analysis, transformation, or nearest-neighbor analysis, such as CURE by Guha,
Rastogi, and Shim [GRS98]; ROCK (for clustering nominal attributes) by Guha, Rastogi, and Shim
[GRS99]; and Chameleon by Karypis, Han, and Kumar [KHK99].

Ward [War63] proposed the Ward’s criterion. Murtagh and Legendre [ML14] surveyed how the
Ward’s criterion is implemented. Lance and Williams [LW67] proposed the Lance-Williams algo-
rithm. A probabilistic hierarchical clustering framework following normal linkage algorithms and using
probabilistic models to define cluster similarity was developed by Friedman [Fri03] and Heller and
Ghahramani [HG05].
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For density-based clustering methods, DBSCAN was proposed by Ester, Kriegel, Sander, and
Xu [EKSX96]. Campello, Moulavi, Zimek, and Sander [CMZS15] developed both DBSCAN∗ and
HDBSCAN. Ankerst, Breunig, Kriegel, and Sander [ABKS99] developed OPTICS, a cluster-ordering
method that facilitates density-based clustering without worrying about parameter specification. The
DENCLUE algorithm, based on a set of density distribution functions, was proposed by Hinneburg
and Keim [HK98]. Hinneburg and Gabriel [HG07] developed DENCLUE 2.0, which includes a new
hill-climbing procedure for Gaussian kernels that adjusts the step size automatically.

STING, a grid-based multiresolution approach that collects statistical information in grid cells, was
proposed by Wang, Yang, and Muntz [WYM97]. WaveCluster, developed by Sheikholeslami, Chatter-
jee, and Zhang [SCZ98], is a multiresolution clustering approach that transforms the original feature
space by wavelet transform.

Scalable methods for clustering nominal data were studied by Gibson, Kleinberg, and Raghavan
[GKR98]; Guha, Rastogi, and Shim [GRS99]; and Ganti, Gehrke, and Ramakrishnan [GGR99]. There
are also many other clustering paradigms. For example, fuzzy clustering methods are discussed in
Kaufman and Rousseeuw [KR90], Bezdek [Bez81], and Bezdek and Pal [BP92].

For high-dimensional clustering, an Apriori-based dimension-growth subspace clustering algorithm
called CLIQUE was proposed by Agrawal, Gehrke, Gunopulos, and Raghavan [AGGR98]. It integrates
density-based and grid-based clustering methods.

Recent studies have proceeded to clustering stream data (Babcock et al. [BBD+02]). A k-
median–based data stream clustering algorithm was proposed by Guha, Mishra, Motwani, and
O’Callaghan [GMMO00] and by O’Callaghan et al. [OMM+02]. A method for clustering evolving
data streams was proposed by Aggarwal, Han, Wang, and Yu [AHWY03]. A framework for pro-
jected clustering of high-dimensional data streams was proposed by Aggarwal, Han, Wang, and Yu
[AHWY04].

Clustering evaluation is discussed in a few monographs and survey articles such as Jain and Dubes
[JD88] and Halkidi, Batistakis, and Vazirgiannis [HBV01]. The Hopkins statistic was proposed by
Hopkins and Skellam [HS54]. The problem of determining the number of clusters in a data set was
discussed by Sugar and James [SJ03] and Cordeiro De Amorim and Hennig [CH15b], for example.

The extrinsic methods for clustering quality evaluation are extensively explored. Some recent stud-
ies include Meilǎ [Mei03,Mei05] and Amigó, Gonzalo, Artiles, and Verdejo [AGAV09]. The four
essential criteria introduced in this chapter are formulated in Amigó, Gonzalo, Artiles, and Verdejo
[AGAV09], whereas some individual criteria were also mentioned earlier, for example, in Meilǎ
[Mei03] and Rosenberg and Hirschberg [RH07]. Bagga and Baldwin [BB98] introduced the BCubed
metrics. The silhouette coefficient is described in Kaufman and Rousseeuw [KR90].
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CHAPTER

Cluster analysis: advanced methods

You learned the fundamentals of cluster analysis in Chapter 8. In this chapter, we discuss advanced
topics of cluster analysis. Specifically, we investigate four major perspectives:

• Probabilistic model-based clustering: Section 9.1 introduces a general framework and a method
for deriving clusters where each object is assigned a probability of belonging to a cluster. Proba-
bilistic model-based clustering is widely used in many data mining applications, such as text mining
and natural language processing.

• Clustering high-dimensional data: When the dimensionality is high, conventional distance mea-
sures can be dominated by noise. Cluster analysis on high-dimensional data is an important area.
This chapter introduces the general principles and some fundamental methods. Section 9.2 intro-
duces the basic framework for cluster analysis on high-dimensional data. Section 9.3 discusses
biclustering, which clusters objects and attributes simultaneously and enjoys many applications,
such as bioinformatics and recommender systems. Section 9.4 discusses dimensionality reduction
methods for clustering.

• Clustering graph and network data: Graph and network data is increasingly popular in applica-
tions such as online social networks, the World Wide Web, and digital libraries. In Section 9.5, you
will study the key issues in clustering graph and network data, including similarity measurement
and clustering methods.

• Semisupervised clustering: In our discussion so far, we do not assume any user knowledge in
clustering. In some applications, however, various user knowledge may be available, which can
be used to strengthen cluster analysis. For example, a user may provide useful constraints risen
from background knowledge or spatial distribution of the objects to be clustered. Semisupervised
clustering provides a general framework to accommodate such background knowledge. You will
learn how to conduct semisupervised clustering in Section 9.6.

By the end of this chapter, you will have a good grasp of the issues and techniques regarding ad-
vanced cluster analysis.

In this chapter, we write a variable of an object in italic if we do not involve the vector representation
of the object. If vector representations and matrix operations are involved, then variables in boldface
are used.

9.1 Probabilistic model-based clustering
In most of the cluster analysis methods we have discussed so far, each data object can be assigned to
only one of a number of clusters. This kind of strict cluster assignments are required in some applica-
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tions, such as assigning customers to marketing managers. However, in some other applications, this
rigid requirement may not be desirable. In this section, we demonstrate the need for fuzzy or flexi-
ble cluster assignment in some applications and introduce a general method to compute probabilistic
clusters and assignments.

“In what situations may a data object belong to more than one cluster?” Consider Example 9.1.

Example 9.1. Clustering product reviews. Imagine that an e-commerce company has an online store,
where customers not only purchase online, but also create reviews of products. Not every product
receives reviews; instead, some products may have many reviews, whereas many others have none
or only a few. Moreover, a review may involve multiple products. Thus as the review editor of the
company, your task is to cluster the reviews.

Ideally, a cluster is about a topic, for example, a group of products, services, or issues that are highly
related. Assigning a review to one cluster exclusively would not work well for your task. Suppose there
is a cluster for “cameras and camcorders” and another for “computers.” What if a review talks about the
compatibility between a camcorder and a computer? The review is related to both clusters; however, it
does not exclusively belong to either cluster.

You would like to use a clustering method that allows a review to belong to more than one cluster
if the review indeed involves more than one topic. To reflect the strength that a review belongs to a
cluster, you want the assignment of a review to a cluster to carry a weight representing the partial
membership.

The scenario where an object may belong to multiple clusters occurs often in many applications.
Let us consider another example.

Example 9.2. Clustering to study user search intent. The online store of the e-commerce company
discussed in Example 9.1 records all customer browsing and purchasing behavior in a log. An im-
portant data mining task is to use the log data to categorize and understand user search intent. For
example, consider a user session (a short period in which a user interacts with the online store). Is the
user searching for a product, making comparisons among different products, or looking for customer
support information? Cluster analysis helps here because it is difficult to predefine user behavior pat-
terns thoroughly. A cluster that contains similar user browsing trajectories may represent similar user
behavior.

However, not every session belongs to only one cluster. For example, suppose the user sessions
involving the purchase of digital cameras form one cluster, and the user sessions that compare laptop
computers form another cluster. What if a user in one session makes an order for a digital camera and
at the same time compares several laptop computers? Such a session should belong to both clusters to
some extent.

In this section, we systematically study the theme of clustering that allows an object to belong to
more than one cluster. We start with the notion of fuzzy clusters in Section 9.1.1. We then generalize
the concept to probabilistic model-based clusters in Section 9.1.2. In Section 9.1.3, we introduce the
expectation-maximization algorithm, a general framework for mining such clusters.
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Table 9.1 A set of digital
cameras and their sales at
an e-commerce company.

Camera Sales (units)
A 50

B 1320

C 860

D 270

9.1.1 Fuzzy clusters
Given a set of objects, X = {x1, . . . , xn}, a fuzzy set S is a subset of X that allows each object in X to
have a membership degree between 0 and 1. Formally, a fuzzy set, S, can be modeled as a function,
FS :X → [0,1].
Example 9.3. Fuzzy set. The more digital camera units that are sold, the more popular the camera is.
In an e-commerce company, we can use the following formula to compute the degree of popularity of
a digital camera, o, given the sales of o:

pop(o) =
{

1 if 1000 or more units of o are sold
i

1000 if i (i < 1000) units of o are sold.
(9.1)

Function pop() defines a fuzzy set of popular digital cameras. For example, suppose the sales of digital
cameras at the e-commerce company are as shown in Table 9.1. The fuzzy set of popular digital cameras
is {A(0.05),B(1),C(0.86),D(0.27)}, where the degrees of membership are written in parentheses.

We can apply the fuzzy set idea on clusters. That is, given a set of objects, a cluster is a fuzzy set
of objects. Such a cluster is called a fuzzy cluster. Consequently, a clustering contains multiple fuzzy
clusters.

Formally, given a set of objects, o1, . . . , on, a fuzzy clustering of k fuzzy clusters, C1, . . . ,Ck , can
be represented using a partition matrix, M = [wij ] (1 ≤ i ≤ n,1 ≤ j ≤ k), where wij is the mem-
bership degree of object oi in fuzzy cluster Cj . The partition matrix should satisfy the following three
requirements:

• For each object, oi , and cluster, Cj , 0 ≤ wij ≤ 1. This requirement enforces that a fuzzy cluster is a
fuzzy set.

• For each object, oi ,
k∑

j=1

wij = 1. This requirement ensures that every object participates in the clus-

tering with the equivalent total weight.

• For each cluster, Cj , 0 <

n∑
i=1

wij < n. This requirement ensures that for every cluster, there is at

least one object for which the membership value is nonzero.

Example 9.4. Fuzzy clusters. Suppose the online store of the e-commerce company has six reviews.
The keywords contained in these reviews are listed in Table 9.2.
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Table 9.2 Set of reviews and the key-
words used.

Review_ID Keywords
R1 digital camera, lens

R2 digital camera

R3 lens

R4 digital camera, lens, computer

R5 computer, CPU

R6 computer, computer game

We can group the reviews into two fuzzy clusters, C1 and C2. C1 is for “digital camera” and “lens,”
and C2 is for “computer.” The partition matrix is

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
2
3

1
3

0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Here, we use the keywords “digital camera” and “lens” as the features of cluster C1 and “computer” as
the feature of cluster C2. For review Ri and cluster Cj (1 ≤ i ≤ 6,1 ≤ j ≤ 2), wij is defined as

wij = |Ri ∩ Cj |
|Ri ∩ (C1 ∪ C2)| = |Ri ∩ Cj |

|Ri ∩ {digital camera, lens, computer}| .

In this fuzzy clustering, review R4 belongs to clusters C1 and C2 with membership degrees 2
3 and 1

3 ,
respectively.

“How can we evaluate how well a fuzzy clustering describes a data set?” Consider a set of objects,
o1, . . . , on, and a fuzzy clustering C of k clusters, C1, . . . ,Ck . Let M = [wij ] (1 ≤ i ≤ n,1 ≤ j ≤ k) be
the partition matrix. Let c1, . . . , ck be the centers of clusters C1, . . . ,Ck , respectively. Here, a center
can be defined either as the mean or the medoid or in other ways specific to the application.

As discussed in Chapter 8, the distance or similarity between an object and the center of the cluster
to which the object is assigned can be used to measure how well the object belongs to the cluster. This
idea can be extended to fuzzy clustering. For any object oi and cluster Cj , if wij > 0, then dist (oi, cj )

measures how well oi is represented by cj , and thus belongs to cluster Cj . Because an object can
participate in more than one cluster, the sum of distances to the corresponding cluster centers weighted
by the degrees of membership captures how well the object fits the clustering.

Formally, for an object oi , the sum of the squared error (SSE) is given by

SSE(oi) =
k∑

j=1

w
p
ij dist (oi, cj )

2, (9.2)
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where the parameter p (p ≥ 1) controls how fuzzy the clusters would be. The larger the value of p, the
fuzzier the clusters. Orthogonally, the SSE for a cluster, Cj , is

SSE(Cj ) =
n∑

i=1

w
p
ij dist (oi, cj )

2. (9.3)

Finally, the SSE of the clustering is defined as

SSE(C) =
n∑

i=1

k∑
j=1

w
p
ij dist (oi, cj )

2. (9.4)

The SSE can be used to measure how well a fuzzy clustering fits a data set.
Fuzzy clustering is also called soft clustering because it allows an object to belong to more than one

cluster. It is easy to see that traditional (rigid) clustering, which enforces each object to belong to only
one cluster exclusively, is a special case of fuzzy clustering. We defer the discussion of how to compute
fuzzy clustering to Section 9.1.3.

9.1.2 Probabilistic model-based clusters
“Fuzzy clusters (Section 9.1.1) provide the flexibility of allowing an object to participate in multiple
clusters. Is there a general framework to specify clusterings where objects may participate in multiple
clusters in a probabilistic way?” In this section, we introduce the general notion of probabilistic model-
based clusters to answer this question.

As discussed in Chapter 8, we conduct cluster analysis on a data set because we assume that the
objects in the data set in fact belong to different inherent categories. Recall that clustering tendency
analysis (Section 8.5.1) can be used to examine whether a data set contains objects that may lead to
meaningful clusters. Here, the inherent categories hidden in the data are latent, which means that they
cannot be directly observed. Instead, we have to infer them using the data observed. For example, the
topics hidden in a set of reviews in the online store of an e-commerce company are latent because
one cannot read the topics directly. However, the topics can be inferred from the reviews because each
review is about one or multiple topics.

Therefore the goal of cluster analysis is to find hidden categories. A data set that is the subject of
cluster analysis can be regarded as a sample of the possible instances of the hidden categories, but
without any category labels. The clusters derived from cluster analysis are inferred using the data set,
and are designed to approach the hidden categories.

Statistically, we can assume that a hidden category is a distribution over the data space, which can be
mathematically represented using a probability density function (or distribution function). We call such
a hidden category a probabilistic cluster. For a probabilistic cluster, C, its probability density function,
f , and a point, o, in the data space, f (o) is the relative likelihood that an instance of C appears at o.

Example 9.5. Probabilistic clusters. Suppose the digital cameras sold by an e-commerce company
can be divided into two categories: C1, a consumer line (e.g., point-and-shoot cameras), and C2, a pro-
fessional line (e.g., single-lens reflex cameras). Their respective probability density functions, fconsumer
and fprofessional, are shown in Fig. 9.1 with respect to the attribute price.
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FIGURE 9.1

The probability density functions of two probabilistic clusters.

For a price value of, say, $1000, fconsumer(1000) is the relative likelihood that the price of a
consumer-line camera is $1000. Similarly, fprofessional(1000) is the relative likelihood that the price
of a professional-line camera is $1000.

The probability density functions, fconsumer and fprofessional, cannot be observed directly. Instead,
the company can only infer these distributions by analyzing the prices of the digital cameras it sells.
Moreover, a camera often does not come with a well-determined category (e.g., “consumer line” or
“professional line”). Instead, such categories are typically based on user background knowledge and
can vary. For example, a camera in the prosumer segment may be regarded at the high end of the
consumer line by some customers and the low end of the professional line by others.

As an analyst, you can consider each category as a probabilistic cluster and conduct cluster analysis
on the price of cameras to approach these categories.

Suppose we want to find k probabilistic clusters, C1, . . . ,Ck , through cluster analysis. For a data
set, D, of n objects, we can regard D as a finite sample of the possible instances of the clusters.
Conceptually, we can assume that D is formed as follows. Each cluster, Cj (1 ≤ j ≤ k), is associated
with a probability, ωj , that some instance is sampled from the cluster. It is often assumed that ω1, . . . ,ωk

are given as part of the problem setting, and that
∑k

j=1 ωj = 1, which ensures that all objects are
generated by the k clusters. Here, parameter ωj captures the background knowledge about the relative
population of cluster Cj .

We then run the following two steps to generate an object in D. The steps are executed n times in
total to generate n objects, o1, . . . , on, in D.

1. Choose a cluster, Cj , according to probabilities ω1, . . . ,ωk .
2. Choose an instance of Cj according to its probability density function, fj .

The data generation process here is the basic assumption in mixture models. Formally, a mixture
model assumes that a set of observed objects is a mixture of instances from multiple probabilistic
clusters. Conceptually, each observed object is generated independently by two steps: first choosing a
probabilistic cluster according to the probabilities of the clusters, and then choosing a sample according
to the probability density function of the chosen cluster.
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Given a data set D and k, the number of clusters required, the task of probabilistic model-based
cluster analysis is to infer a set of k probabilistic clusters that is most likely to generate D using this
data generation process. An important question remaining is how we can measure the likelihood that a
set of k probabilistic clusters and their probabilities will generate an observed data set.

Consider a set, C, of k probabilistic clusters, C1, . . . ,Ck , with probability density functions
f1, . . . , fk , respectively, and their probabilities, ω1, . . . ,ωk . For an object, o, the probability that o

is generated by cluster Cj (1 ≤ j ≤ k) is given by P(o|Cj ) = ωjfj (o). Therefore the probability that o

is generated by the set C of clusters is

P(o|C) =
k∑

j=1

ωjfj (o). (9.5)

Since the objects are assumed to have been generated independently, for a data set, D = {o1, . . . , on},
of n objects, we have

P(D|C) =
n∏

i=1

P(oi |C) =
n∏

i=1

k∑
j=1

ωjfj (oi). (9.6)

Now, it is clear that the task of probabilistic model-based cluster analysis on a data set, D, is to
find a set C of k probabilistic clusters such that P(D|C) is maximized. Maximizing P(D|C) is of-
ten intractable because, in general, the probability density function of a cluster can take an arbitrarily
complicated form. To make probabilistic model-based clusters computationally feasible, we often com-
promise by assuming that the probability density functions are parameterized distributions.

Formally, let o1, . . . , on be the n observed objects, and �1, . . . ,�k be the parameters of the k distri-
butions, denoted by O = {o1, . . . , on} and � = {�1, . . . ,�k}, respectively. Then, for any object oi ∈ O
(1 ≤ i ≤ n), Eq. (9.5) can be rewritten as

P(oi |�) =
k∑

j=1

ωjPj (oi |�j), (9.7)

where Pj (oi |�j) is the probability that oi is generated from the j th distribution using parameter �j .
Consequently, Eq. (9.6) can be rewritten as

P(O|�) =
n∏

i=1

k∑
j=1

ωjPj (oi |�j). (9.8)

Using the parameterized probability distribution models, the task of probabilistic model-based cluster
analysis is to infer a set of parameters, �, that maximizes Eq. (9.8).

Example 9.6. Univariate Gaussian mixture model. Let us use univariate Gaussian distributions as
an example to illustrate probabilistic model-based clustering. That is, we assume that the probability
density function of each cluster follows a 1-D Gaussian distribution. Suppose there are k clusters.
The two parameters for the probability density function of each cluster are center, μj , and standard
deviation, σj (1 ≤ j ≤ k). We denote the parameters as �j = (μj , σj ) and � = {�1, . . . ,�k}. Let the
data set be O = {o1, . . . , on}, where oi (1 ≤ i ≤ n) is a real number. For any point, oi ∈ O, we have
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P(oi |�j) = 1√
2πσj

e
− (oi−μj )2

2σ2 . (9.9)

Assuming that each cluster has the same probability, that is ω1 = ω2 = · · · = ωk = 1
k

, and plugging
Eq. (9.9) into Eq. (9.7), we have

P(oi |�) = 1

k

k∑
j=1

1√
2πσj

e
− (oi−μj )2

2σ2 . (9.10)

Applying Eq. (9.8), we have

P(O|�) = 1

k

n∏
i=1

k∑
j=1

1√
2πσj

e
− (oi−μj )2

2σ2 . (9.11)

The task of probabilistic model-based cluster analysis using a univariate Gaussian mixture model is to
infer � such that Eq. (9.11) is maximized.

9.1.3 Expectation-maximization algorithm
“How can we compute fuzzy clusterings and probabilistic model-based clusterings?” In this section,
we introduce a principled approach. Let us start with a review of the k-means clustering problem and
the k-means algorithm studied in Section 8.2.

It can easily be shown that k-means clustering is a special case of fuzzy clustering (Exercise 9.1).
The k-means algorithm iterates until the clustering cannot be improved. Each iteration consists of two
steps:

The expectation step (E-step): Given the current cluster centers, each object is assigned to the clus-
ter with a center that is closest to the object. Here, an object is expected to belong to the closest
cluster.

The maximization step (M-step): Given the cluster assignment, for each cluster, the algorithm ad-
justs the center so that the sum of the distances from the objects assigned to this cluster and the new
center is minimized. That is, the similarity of objects assigned to a cluster is maximized.

We can generalize this two-step method to tackle fuzzy clustering and probabilistic model-based
clustering. In general, an expectation-maximization (EM) algorithm is a framework that approaches
maximum likelihood or maximum a posteriori estimates of parameters in statistical models. In the
context of fuzzy or probabilistic model-based clustering, an EM algorithm starts with an initial set of
parameters and iterates until the clustering cannot be improved, that is, until the clustering converges or
the change is sufficiently small (less than a preset threshold). Each iteration also consists of two steps:

• The expectation step assigns objects to clusters according to the current fuzzy clustering or param-
eters of probabilistic clusters.

• The maximization step finds the new clustering or parameters that minimize the SSE in fuzzy
clustering (Eq. (9.4)) or the expected likelihood in probabilistic model-based clustering.
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FIGURE 9.2

Data set for fuzzy clustering.

Example 9.7. Fuzzy clustering using the EM algorithm. Consider the six points in Fig. 9.2, where
the coordinates of the points are also shown. Let us compute two fuzzy clusters using the EM algorithm.

We randomly select two points, say c1 = a and c2 = b, as the initial centers of the two clusters. The
first iteration conducts the expectation step and the maximization step as follows.

In the E-step, for each point we calculate its membership degree in each cluster. For any point, o,
we assign o to c1 with membership weight

1

dist (o, c1)2

1

dist (o, c1)2
+ 1

dist (o, c2)2

= dist (o, c2)
2

dist (o, c1)2 + dist (o, c2)2

and to c2 with membership weight dist (o,c1)
2

dist (o,c1)
2+dist (o,c2)

2 , where dist (, ) is the Euclidean distance. The
rationale is that, if o is close to c1 and dist (o, c1) is small, the membership degree of o with respect to
c1 should be high. We also normalize the membership degrees so that the sum of degrees for an object
is equal to 1.

For point a, we have wa,c1 = 1 and wa,c2 = 0. That is, a exclusively belongs to c1. For point b, we
have wb,c1 = 0 and wb,c2 = 1. For point c, we have wc,c1 = 41

45+41 = 0.48 and wc,c2 = 45
45+41 = 0.52.

The degrees of membership of the other points are shown in the partition matrix in Table 9.3.

In the M-step, we recalculate the centroids according to the partition matrix, minimizing the SSE
given in Eq. (9.4) where we assume the parameter p = 2 in this example. The new centroid should be
adjusted to

cj =

∑
each point o

w2
o,cj

o

∑
each point o

w2
o,cj

, (9.12)

where j = 1,2.
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Table 9.3 Intermediate results from the first three iterations of the
EM algorithm in Example 9.7.

Iteration E-Step M-Step

1 MT =
[

1 0 0.48 0.42 0.41 0.47
0 1 0.52 0.58 0.59 0.53

]
c1 = (8.47, 5.12)

c2 = (10.42, 8.99)

2 MT =
[

0.73 0.49 0.91 0.26 0.33 0.42
0.27 0.51 0.09 0.74 0.67 0.58

]
c1 = (8.51, 6.11)

c2 = (14.42, 8.69)

3 MT =
[

0.80 0.76 0.99 0.02 0.14 0.23
0.20 0.24 0.01 0.98 0.86 0.77

]
c1 = (6.40, 6.24)

c2 = (16.55, 8.64)

In this example,

c1 =
(

12 × 3 + 02 × 4 + 0.482 × 9 + 0.422 × 14 + 0.412 × 18 + 0.472 × 21

12 + 02 + 0.482 + 0.422 + 0.412 + 0.472 ,

12 × 3 + 02 × 10 + 0.482 × 6 + 0.422 × 8 + 0.412 × 11 + 0.472 × 7

12 + 02 + 0.482 + 0.422 + 0.412 + 0.472

)
= (8.47,5.12)

and

c2 =
(

02 × 3 + 12 × 4 + 0.522 × 9 + 0.582 × 14 + 0.592 × 18 + 0.532 × 21

02 + 12 + 0.522 + 0.582 + 0.592 + 0.532 ,

02 × 3 + 12 × 10 + 0.522 × 6 + 0.582 × 8 + 0.592 × 11 + 0.532 × 7

02 + 12 + 0.522 + 0.582 + 0.592 + 0.532

)
= (10.42,8.99).

We repeat the iterations, where each iteration contains an E-step and an M-step. Table 9.3 shows
the results from the first three iterations. The algorithm stops when the cluster centers converge or the
change is small enough.

“How can we apply the EM algorithm to compute probabilistic model-based clustering?” Let us
use a univariate Gaussian mixture model (Example 9.6) to illustrate.

Example 9.8. Using the EM algorithm for mixture models. Given a set of objects, O = {o1, . . . , on},
we want to mine a set of parameters, � = {�1, . . . ,�k}, such that P(O|�) in Eq. (9.11) is maximized,
where �j = (μj , σj ) are the mean and standard deviation, respectively, of the j th univariate Gaussian
distribution, (1 ≤ j ≤ k).

We can apply the EM algorithm. We assign random values to parameters � as the initial values.
We then iteratively conduct the E-step and the M-step as follows until the parameters converge or the
change is sufficiently small.

In the E-step, for each object, oi ∈ O (1 ≤ i ≤ n), we calculate the probability that oi belongs to
each distribution, that is,

P(�j |oi,�) = P(oi |�j)∑k
l=1 P(oi |�l)

. (9.13)



9.2 Clustering high-dimensional data 441

In the M-step, we adjust the parameters � so that the expected likelihood P(O|�) in Eq. (9.11) is
maximized. This can be achieved by setting

μj = 1

k

n∑
i=1

oi

P (�j |oi,�)∑n
l=1 P(�j |ol,�)

= 1

k

∑n
i=1 oiP (�j |oi,�)∑n
i=1 P(�j |oi,�)

(9.14)

and

σj =
√∑n

i=1 P(�j |oi,�)(oi − uj )2∑n
i=1 P(�j |oi,�)

. (9.15)

In many applications, probabilistic model-based clustering has been shown to be effective because
it is more general than partitioning methods and fuzzy clustering methods. A distinct advantage is that
appropriate statistical models can be used to capture latent clusters. The EM algorithm is commonly
used to handle many learning problems in data mining and statistics due to its simplicity. Note that,
in general, the EM algorithm may not converge to the optimal solution. It may instead converge to a
local maximum. Many heuristics have been explored to avoid this. For example, we could run the EM
process multiple times using different random initial values. Furthermore, the EM algorithm can be
very costly if the number of distributions is large or the data set contains many observed data points.

9.2 Clustering high-dimensional data
The clustering methods we have studied so far work well when the dimensionality of a data set is not
high, that is, having, say, less than 10 attributes. There are, however, important applications of high
dimensionality. “How can we conduct cluster analysis on high-dimensional data?”

In this section, we study approaches to clustering high-dimensional data. We first discuss why
clustering high-dimensional data is challenging and categorize the existing methods in clustering high-
dimensional data. Then we explain several representative methods, including some methods clustering
in axis-parallel subspaces and those in arbitrarily oriented subspaces. Section 9.3 explores biclustering
methods, which are popularly used in biological data analysis where there are many high-dimensional
data sets.

9.2.1 Why is clustering high-dimensional data challenging?
Before we present any specific methods for clustering high-dimensional data, let us first demon-
strate the needs of cluster analysis on high-dimensional data using some examples. We examine the
challenges that call for new methods. We then categorize the major ideas and methods in clustering
high-dimensional data.

Motivations of clustering analysis on high-dimensional data
In some applications, a data object may be described by many attributes. Such objects are referred to
as in a high-dimensional data space.
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Table 9.4 Customer purchase data.

Customer P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Ada 1 0 0 0 0 0 0 0 0 0

Bob 0 0 0 0 0 0 0 0 0 1

Cathy 1 0 0 0 1 0 0 0 0 1

Example 9.9. High-dimensional data and clustering. Consider an e-commerce company that keeps
track of the products purchased by every customer. As a customer-relationship manager, you want to
cluster customers into groups according to what they purchased from the company.

The customer purchase data are of very high dimensionality. The company carries tens of thousands
of products. Therefore a customer’s purchase profile, which is a vector of the products carried by the
company, has tens of thousands of dimensions.

“Are the traditional distance measures, which are frequently used in low-dimensional cluster analy-
sis, also effective on high-dimensional data?” Consider the customers in Table 9.4, where 10 products,
P1, . . . , P10, are used in demonstration. If a customer purchases a product, a 1 is set at the correspond-
ing bit; otherwise, a 0 appears. Let us calculate the Euclidean distances among Ada, Bob, and Cathy. It
is easy to see that

dist (Ada,Bob) = dist (Bob,Cathy) = dist (Ada,Cathy) = √
2.

According to Euclidean distance, the three customers are equivalently similar (or dissimilar) to each
other. However, a close look tells us that Ada should be more similar to Cathy than to Bob because Ada
and Cathy share one common purchased item, P1.

As shown in Example 9.9, the traditional distance measures can be ineffective on high-dimensional
data. Such distance measures may be dominated by the noise in many dimensions. Therefore clusters
in the full, high-dimensional original data space may be unreliable, and finding such clusters may not
be meaningful.

In general, when the dimensionality increases, the data space allows more and more complicated
relations among objects. Such relations are harder and harder to detect using the traditional pairwise
distance measurements. Moreover, high-dimensional spaces naturally allow more noise. This is known
as the “curse of dimensionality.” More concretely, the curse of dimensionality is caused by the following
four reasons.

• Many irrelevant or correlated attributes. Many attributes in a high-dimensional data set may not
be relevant to an analytic task. For example, customer profiles may contain tens or even hundreds of
attributes. Many attributes are or should be irrelevant to the task of credit card preapproval, such as
gender, preferred language in communication, ethnic, purchases of dairy products, and distance to
the store. Moreover, ideally the attributes in a data set are independent from each other, so that each
attribute provides some independent and nonredundant information. However, in a high-dimensional
data set, more often than not some attributes are correlated. Those correlated attributes provide re-
dundant information in analysis and thus may lead to biases. For example, suppose microphones
and webcams are often purchased together and thus have strong correlation. Then, when we include
those two as independent attributes in clustering analysis, such as calculating the similarity between



9.2 Clustering high-dimensional data 443

two customers, the correlated information on those two attributes may lead to bias against other in-
dependent attributes, such as purchases of sport watches. In other words, the intrinsic dimensionality
of a high-dimensional data set may be substantially lower than the embedding dimensionality, that
is, the dimensionality of the data space. The existence of many irrelevant or correlated attributes in
high-dimensional data sets leaves a large space for random noise as false positive signals and biases
and thus raises a lot of challenges to clustering analysis.

• Data sparsity. Although a high-dimensional data set has many attributes, an object, however, often
has nontrivial values on only a small number of attributes. For example, consider the scenario in
Example 9.9, although the company carries tens of thousands of products and thus the customer
purchase data set has tens of thousands of attributes correspondingly, one customer may only pur-
chase tens or several hundreds of different products. In other words, a customer in the data set may
not have nontrivial values on most of the attributes. The sparsity posts a great challenge to clustering
high-dimensional data. When two objects are compared in the full space, they look like similar to
each other on the majority of the attributes where they both take trivial values. The inherent simi-
larity and the clusters are manifested by a very small number of attributes. Search for those critical
attributes becomes a key to finding meaningful clusters in high-dimensional data.

• Distance concentration effect of similarity measures. Euclidean distance and Lp-norms are fre-
quently used in clustering low-dimensional data. Recall the general formula of Lp-norm distance

|x − y|p = p

√√√√ d∑
i=1

|x[i] − y[i]|p, (9.16)

where d is the dimensionality, and x and y are d-dimensional vectors. In high-dimensional data,
the distance concentration effect takes control. That is, as dimensionality increases, the distances
between far and close neighbors become very similar.1 Due to the distance concentration effect, in
high-dimensional data sets, the Lp-norm based distance measures lose the capability of distinguish-
ing close neighbors from far away neighbors, and thus finding the groups of objects inherently close
to each other using Lp-norm based distance measures becomes very difficult.

• Difficulty in optimization. Most of the formulations of clustering analysis tasks try to optimize
an objective function. For example, the k-means clustering problem tries to minimize the sum of
squared errors of all objects. In general, the difficulty of optimizing an objective function increases
exponentially when the number of attributes, which are the number of variables involved in the
function, increases. In other words, the optimization process in clustering high-dimensional data is
more demanding.

High-dimensional clustering models
A major challenge is how to create appropriate models for clusters in high-dimensional data. Unlike
conventional clusters in low-dimensional spaces, clusters hidden in high-dimensional data are often
significantly smaller, and are manifested by a dramatically smaller subset of attributes. For example,
when clustering customer-purchase data, we would not expect many users to have similar purchase

1 Mathematically, if limd→∞ var(
|x|

E[|x|] ) = 0, limd→∞ Dmax−Dmin
Dmin

= 0, where E[|x|] is the length of the mean point vector
in a data set, and Dmax and Dmin are the farthest point and closest point distances, respectively.



444 Chapter 9 Cluster analysis: advanced methods

FIGURE 9.3

Illustration of clusters in axis-parallel and arbitrarily-oriented subspaces.

patterns. Those purchase patterns are manifested by only tens of products against tens of thousands of
products carried by the store. Searching for such small but meaningful clusters is like finding needles
in a haystack.

One essential principle in clustering high-dimensional data is to find clusters in subspaces. There
are two different kinds of subspaces that clustering methods may target at.

First, a method may find clusters in axis-parallel subspaces. An axis-parallel subspace for a cluster
is a subset of attributes that are relevant, and the cluster is full-dimensional in the subspace. All objects
of the cluster can be projected into the subspace and form a hyperplane parallel to the irrelevant axes.
Fig. 9.3(a) illustrates the idea. A cluster consists of several objects having values around 50,000 on
attributes z. Attributes x and y are irrelevant to the cluster. Indeed, those objects spread widely on
attributes x and y. Thus the subspace z = 5 is a hyperplane parallel to both x and y.

Second, a method may find clusters in arbitrarily oriented subspaces. When two or more attributes
are linearly correlated for a set of objects in a cluster, those objects are scattered along a hyperplane
defined by the linear dependencies among those correlated attributes. Consequently, the subspace of the
cluster is orthogonal to the hyperplane and is not parallel to those correlated attributes. For example, in
Fig. 9.3(b), due to the correlation between attributes x and y, that is, x = y, the objects in the cluster
are spread in the hyperplane x = y. The objects in the cluster have values around 50,000 on attribute z.
The subspace is orthogonal to the hyperplane x = y.

Categorization of high-dimensional clustering methods
The clustering analysis methods on high-dimensional data can be divided into two categories.

The first category is the clustering approaches, which try to identify clusters in subspaces. These
methods build on the basis of the traditional clustering methods we discussed in the last chapter, such
as k-means, and incorporate with new techniques to contend high-dimensional data. Those techniques
specific for tackling high-dimensional data can be further divided into three groups.
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• The subspace clustering methods find all clusters in all subspaces of the entire data space. A data
object may belong to zero, one, or multiple clusters simultaneously. Clusters may also substantially
overlap in different subspaces. A representative method in this group is CLIQUE, which is briefly
introduced in Section 8.4.3 as a grid-based method.

• The projected clustering methods partition a given data set into nonoverlapping subsets. In other
words, a data object belongs to exactly one cluster. For each cluster, the methods search for the
corresponding subspace. PROCLUS is a pioneering and representative projected clustering method.

• The bi-clustering methods cluster attributes and objects simultaneously. In other works, attributes
and objects are treated in a symmetric manner in bi-clustering methods. This group of methods
have been extensively used in biological data analysis and recommender systems. We will introduce
bi-clustering in Section 9.3.

The second category is the dimensionality-reduction methods. As we discussed, in a high-
dimensional data set, the intrinsic dimensionality may be much lower than the embedding dimensional-
ity. Thus the dimension-reduction methods construct new attributes to approach the intrinsic dimensions
and transform the objects from the original embedding data space to a constructed space of much
lower dimensionality. Clustering analysis is then conducted in the constructed space. Dimensionality-
reduction methods for clustering analysis will be discussed in Section 9.4.

9.2.2 Axis-parallel subspace approaches
Now, let us look at some representative subspace clustering methods and projected clustering methods.
We use three methods, CLIQUE, PROCLUS, and LAC, to illustrate the essential ideas.

CLIQUE: a subspace clustering method
Subspace clustering methods find all clusters in all subspaces of the entire data space. CLIQUE is a
representative. Recall that we introduce CLIQUE in Section 8.4.3 as a grid-based method. Let us recap
the two major ideas in CLIQUE tackling high-dimensional data.

First, CLIQUE adopts a bottom-up strategy. It starts from low-dimensional subspaces and searches
higher-dimensional subspaces only when there may be clusters in those higher-dimensional subspaces.
Various pruning techniques are explored to reduce the number of higher-dimensional subspaces that
need to be searched.

Second, CLIQUE allows overlaps among clusters in different subspaces. For example, in Fig. 8.22,
the dense cell of salary $30,000–40,000, age 35–40, and vacation 2–3 weeks in the 3-D subspace (salary,
age, vacation) also belongs to the dense cell of salary $30,000–40,000 and age 35–40, and the one of
age 35–40 and vacation 2–3 weeks in the corresponding subspaces, and thus in turn belongs to the two
clusters in the two subspaces. Every object in the 3-D dense cell also belongs to the two clusters.

PROCLUS: a projected clustering method
PROCLUS is a k-medoid–like method for projected clustering on high-dimensional data. PROCLUS
works in three phases.

• In the initialization phase, PROCLUS generates k potential cluster centers, that is, medoids, using a
greedy sample of the data set.
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• In the iterative phase, PROCLUS progressively improves the quality of the medoids. To evaluate
the quality of the clustering defined by the current set of k medoids, PROCLUS conducts two steps.
• In the first step, PROCLUS finds the attributes for each medoid. For each medoid mi , let δi be

the minimum distance from any other medoid to mi . Then, the locality Li is the set of objects
in the data set that are within distance δi from mi . PROCLUS examines, on each attribute Aj ,

the average distance Xmi,Aj
from those objects in Li to mi . Let Yi =

∑d
j=1 Xmi ,Aj

d
be the average

of the Manhattan segmental distances between the objects in Li and mi relative to the whole

space, and σi =
√∑d

j=1(Xmi ,Aj
−Yi)

2

d−1 be the standard deviation, where d is the dimensionality.

Then, Zmi,Aj
= Xmi ,Aj

−Yi

σi
indicates how the objects in Li are correlated to the medoid mi on

attribute Aj , the smaller the better. PROCLUS picks k · l attributes that have the smallest Zmi,Aj

values associated with the current set of k medoids, so that each medoid is associated with at
least two attributes. The attributes associated with a medoid are the subspace of the medoid.

• In the second step, PROCLUS forms clusters. It assigns every data object to the medoid that has
the smallest Manhattan segmental distance relative to the subspace of the medoid.

The quality of a set of medoids can be assessed using the average Manhattan segmental distance
from the data objects to the corresponding centroids of the clusters. Iteratively PROCLUS improves
the quality until the best set of medoids is found.

• In the refinement phase, PROCLUS adjusts the subspaces of the clusters using only the data objects
assigned to a cluster instead of the objects in Li . In this way, the attributes after refinement approach
the cluster subspaces better.

Comparing PROCLUS and CLIQUE, we can see two major differences between projected cluster-
ing (represented by PROCLUS) and subspace clustering (represented by CLIQUE). First, PROCLUS
assigns one object to only one cluster. Thus clusters are exclusive from each other. Instead, CLIQUE
allows overlap among clusters in different subspaces. One object may belong to multiple clusters. Sec-
ond, PROCLUS searches subspaces for clusters in a top-down manner. It starts from the full space and
ranks attributes according to their locality with respect to clusters. CLIQUE proceeds in a bottom-up
manner.

Soft projected clustering methods
PROCLUS and some projected clustering methods assign a “hard” subspace to each cluster. That is,
an attribute either belongs to the subspace of the cluster or is excluded. Moreover, for all attributes
included, their weights are the identical in distance calculation. However, in many applications, differ-
ent attributes may carry different scale in units and different importance in similarity measurement. To
reflect this intuition and provide the flexibility of normalization of attributes per cluster, soft projected
clustering can be used.

The LAC (for locally adaptive clustering) method is a soft projected clustering approach. In LAC,
for each attribute Ai , a weight wi is introduced in the distance calculation. That is, Eq. (9.16) is revised
to

|x − y|wp = p

√√√√ d∑
i=1

wi · |x[i] − y[i]|p, (9.17)
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FIGURE 9.4

Clustering in arbitrarily oriented subspaces.

where w = 〈w1, . . . ,wd〉 is the weight vector. Soft projected clustering can be computed using the EM
framework similar in spirit as introduced in Section 9.1.3.

9.2.3 Arbitrarily oriented subspace approaches
As mentioned, when clusters do not align well with attributes in an embedding data space, the arbitrarily
oriented subspace approaches are needed. Let us demonstrate the intuition using two clusters in Fig. 9.4.
The figure shows the projections of a 3-D data set on two 2-D subspaces, X-Y and X-Z. We can see that
the objects form two clusters, P and Q. However, those two clusters do not align with the attributes
X, Y , or Z. In order to find such clusters that are in subspaces arbitrarily oriented, a method has to
construct subspaces according to the data on the fly.

ORCLUS is such a method. The general idea of ORCLUS is indeed quite similar to that in PRO-
CLUS. In other words, ORCLUS also partitions the data objects into k clusters in a way similar to
k-means and finds for each cluster the subspace. The critical difference is that instead of using a sub-
set of attributes as the subspace for a cluster, ORCLUS constructs the subspace of a cluster based
on the eigensystem of the objects assigned to the cluster and uses the weak eigenvectors to construct
new attributes. Here, weak eigenvectors are used because on those dimensions, the objects assigned to
the cluster are dense and thus indistinguishable, which meet the requirement of being clustered. The
eigensystem is iteratively improved until clustering of good quality is achieved.

9.3 Biclustering
In the cluster analysis discussed so far, we cluster objects according to their attribute values. Objects
and attributes are not treated in the same way. However, in some applications, objects and attributes
are defined in a symmetric way, where data analysis involves searching data matrices for submatrices
that show unique patterns as clusters. This kind of clustering technique belongs to the category of
biclustering.
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This section first introduces two motivating application examples of biclustering–gene expression
and recommender systems (Section 9.3.1). You will then learn about the different types of biclusters
(Section 9.3.2). Last, we present biclustering methods (Sections 9.3.3 and 9.3.4).

9.3.1 Why and where is biclustering useful?
Biclustering techniques were first proposed to address the needs for analyzing gene expression data.
A gene is a unit of the passing-on of traits from a living organism to its offspring. Typically, a gene
resides on a segment of DNA. Genes are critical for all living things because they specify all proteins
and functional RNA chains. They hold the information to build and maintain a living organism’s cells
and pass genetic traits to offspring. Synthesis of a functional gene product, either RNA or protein,
relies on the process of gene expression. A genotype is the genetic makeup of a cell, an organism, or
an individual. Phenotypes are observable characteristics of an organism. Gene expression is the most
fundamental level in genetics in that genotypes cause phenotypes.

Using DNA chips (also known as DNA microarrays) and other biological engineering techniques,
we can measure the expression level of a large number (possibly all) of an organism’s genes, in a
number of different experimental conditions. Such conditions may correspond to different time points
in an experiment or samples from different organs. Roughly speaking, the gene expression data or
DNA microarray data are conceptually a gene-sample/condition matrix, where each row corresponds
to one gene, and each column corresponds to one sample or condition. Each element in the matrix is
a real number and records the expression level of a gene under a specific condition. Fig. 9.5 shows an
illustration.

From the clustering viewpoint, an interesting issue is that a gene expression data matrix can be
analyzed in two dimensions—the gene dimension and the sample/condition dimension.

FIGURE 9.5

Microarrary data matrix.
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• When analyzing in the gene dimension, we treat each gene as an object and treat the samples/condi-
tions as attributes. By mining in the gene dimension, we may find patterns shared by multiple genes,
or cluster genes into groups. For example, we may find a group of genes that express themselves
similarly, which is highly interesting in bioinformatics, such as in finding pathways.

• When analyzing in the sample/condition dimension, we treat each sample/condition as an object
and treat the genes as attributes. In this way, we may find patterns of samples/conditions, or cluster
samples/conditions into groups. For example, we may find the differences in gene expression by
comparing a group of tumor samples and nontumor samples.

Example 9.10. Gene expression. Gene expression matrices are popular in bioinformatics research and
development. For example, an important task is to classify a new gene using the expression data of the
gene and that of other genes in known classes. Symmetrically, we may classify a new sample (e.g., a
new patient) using the expression data of the sample and that of samples in known classes (e.g., tumor
and nontumor). Such tasks are invaluable in understanding the mechanisms of diseases and in clinical
treatment.

As can be seen, many gene expression data mining problems are highly related to cluster analysis.
However, a challenge here is that, instead of clustering in one dimension (e.g., gene or sample/con-
dition), in many cases we need to cluster in two dimensions simultaneously (e.g., both gene and
sample/condition). Moreover, unlike the clustering models we have discussed so far, a cluster in a
gene expression data matrix is a submatrix and usually has the following characteristics:

• Only a small set of genes participate in the cluster.
• The cluster involves only a small subset of samples/conditions.
• A gene may participate in multiple clusters, or may not participate in any cluster. This is especially

helpful to handle noise, since we do not have to “force” noise points into a cluster.
• A sample/condition may be involved in multiple clusters, or may not be involved in any cluster.

To find clusters in gene-sample/condition matrices, we need new clustering techniques that meet the
following requirements for biclustering:

• A cluster of genes is defined using only a subset of samples/conditions.
• A cluster of samples/conditions is defined using only a subset of genes.
• The clusters are neither exclusive (e.g., where one gene can participate in multiple clusters) nor

exhaustive (e.g., where a gene may not participate in any cluster).

Biclustering is useful not only in bioinformatics, but also in other applications as well. Consider rec-
ommender systems as an example.

Example 9.11. Using biclustering for a recommender system. Imagine that an e-commerce com-
pany collects data from customers’ evaluations of products and uses the data to recommend products
to customers. The data can be modeled as a customer-product matrix, where each row represents a
customer, and each column represents a product. Each element in the matrix represents a customer’s
evaluation of a product, which may be a score (e.g., like, like somewhat, not like) or purchase behavior
(e.g., buy or not). Fig. 9.6 illustrates the structure.

The customer-product matrix can be analyzed in two dimensions: the customer dimension and the
product dimension. Treating each customer as an object and products as attributes, the company can



450 Chapter 9 Cluster analysis: advanced methods

Products
w11 w12 · · · w1m

Customers w21 w22 · · · w2m

· · · · · · · · · · · ·
wn1 wn2 · · · wnm

FIGURE 9.6

Customer-product matrix.

find customer groups that have similar preferences or purchase patterns. Using products as objects and
customers as attributes, the company can mine product groups that are similar in customer interest.

Moreover, the company can mine clusters in both customers and products simultaneously. Such a
cluster contains a subset of customers and involves a subset of products. For example, the company
may be highly interested in finding a group of customers who all like the same group of products.
Such a cluster is a submatrix in the customer-product matrix, where all elements have a high value.
Using such a cluster, the company can make recommendations in two directions. First, the company
can recommend products to new customers who are similar to the customers in the cluster. Second, the
company can recommend to customers new products that are similar to those involved in the cluster.

As with biclusters in a gene expression data matrix, the biclusters in a customer-product matrix
usually have the following characteristics:

• Only a small set of customers participate in a cluster.
• A cluster involves only a small subset of products.
• A customer can participate in multiple clusters, or may not participate in any cluster.
• A product may be involved in multiple clusters, or may not be involved in any cluster.

Biclustering can be applied to customer-product matrices to mine clusters satisfying these requirements.

9.3.2 Types of biclusters
“How can we model biclusters and mine them?” Let us start with some basic notations. For the sake of
simplicity, we will use “genes” and “conditions” to refer to the two dimensions in our discussion. Our
discussion can easily be extended to other applications. For example, we can simply replace “genes”
and “conditions” by “customers” and “products” to tackle the customer-product biclustering problem.

Let A = {a1, . . . , an} be a set of genes and B = {b1, . . . , bm} be a set of conditions. Let E = [eij ]
be a gene expression data matrix, that is, a gene-condition matrix, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. A
submatrix I × J is defined by a subset I ⊆ A of genes and a subset J ⊆ B of conditions. For example,
in the matrix shown in Fig. 9.7, {a1, a33, a86} × {b6, b12, b36, b99} is a submatrix.

A bicluster is a submatrix where genes and conditions follow consistent patterns. We can define
different types of biclusters based on such patterns.

• As the simplest case, a submatrix I × J (I ⊆ A,J ⊆ B) is a bicluster with constant values if
for any i ∈ I and j ∈ J , eij = c, where c is a constant. For example, the submatrix {a1, a33, a86} ×
{b6, b12, b36, b99} in Fig. 9.7 is a bicluster with constant values.
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· · · b6 · · · b12 · · · b36 · · · b99 · · ·
a1 · · · 60 · · · 60 · · · 60 · · · 60 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a33 · · · 60 · · · 60 · · · 60 · · · 60 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a86 · · · 60 · · · 60 · · · 60 · · · 60 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

FIGURE 9.7

Gene-condition matrix, a submatrix, and a bicluster.

10 10 10 10 10
20 20 20 20 20
50 50 50 50 50

0 0 0 0 0

FIGURE 9.8

Bicluster with constant values on rows.

10 50 30 70 20
20 60 40 80 30
50 90 70 110 60
0 40 20 60 10

FIGURE 9.9

Bicluster with coherent values.

• A bicluster is interesting if each row has a constant value, though different rows may have different
values. A bicluster with constant values on rows is a submatrix I × J such that for any i ∈ I and
j ∈ J , eij = c + αi , where αi is the adjustment for row i. For example, Fig. 9.8 shows a bicluster
with constant values on rows.
Symmetrically, a bicluster with constant values on columns is a submatrix I × J such that for any
i ∈ I and j ∈ J , eij = c + βj , where βj is the adjustment for column j .

• More generally, a bicluster is interesting if the rows change in a synchronized way with respect to
the columns and vice versa. Mathematically, a bicluster with coherent values (also known as a
pattern-based cluster) is a submatrix I × J such that for any i ∈ I and j ∈ J , eij = c + αi + βj ,
where αi and βj are the adjustment for row i and column j , respectively. For example, Fig. 9.9
shows a bicluster with coherent values.
It can be shown that I × J is a bicluster with coherent values if and only if for any i1, i2 ∈ I and
j1, j2 ∈ J , then ei1j1 − ei2j1 = ei1j2 − ei2j2 . Moreover, instead of using addition, we can define a
bicluster with coherent values using multiplication, that is, eij = c · (αi · βj

)
. Clearly, biclusters with

constant values on rows or columns are special cases of biclusters with coherent values.
• In some applications, we may only be interested in the up- or down-regulated changes across genes

or conditions without constraining the exact values. A bicluster with coherent evolutions on rows
is a submatrix I × J such that for any i1, i2 ∈ I and j1, j2 ∈ J , (ei1j1 − ei1j2)(ei2j1 − ei2j2) ≥ 0. For
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10 50 30 70 20
20 100 50 1000 30
50 100 90 120 80
0 80 20 100 10

FIGURE 9.10

Bicluster with coherent evolutions on rows.

example, Fig. 9.10 shows a bicluster with coherent evolutions on rows. Symmetrically, we can define
biclusters with coherent evolutions on columns.

Next, we study how to mine biclusters.

9.3.3 Biclustering methods
The previous specification of the types of biclusters only considers ideal cases. In real data sets, such
perfect biclusters rarely exist. When they do exist, they are usually very small. Instead, random noise
can affect the readings of eij and thus prevent a bicluster in nature from appearing in a perfect shape.

There are two major types of methods for discovering biclusters in data that may come with noise.
Optimization-based methods conduct an iterative search. At each iteration, the submatrix with the
highest significance score is identified as a bicluster. The process terminates when a user-specified
condition is met. Due to cost concerns in computation, greedy search is often employed to find local
optimal biclusters. Enumeration methods use a tolerance threshold to specify the degree of noise
allowed in the biclusters to be mined and then try to enumerate all submatrices of biclusters that satisfy
the requirements. We use the δ-Cluster and MaPle algorithms as examples to illustrate these ideas.

Optimization using the δ-cluster algorithm
For a submatrix, I × J , the mean of the ith row is

eiJ = 1

|J |
∑
j∈J

eij . (9.18)

Symmetrically, the mean of the j th column is

eIj = 1

|I |
∑
i∈I

eij . (9.19)

The mean of all elements in the submatrix is

eIJ = 1

|I ||J |
∑

i∈I,j∈J

eij = 1

|I |
∑
i∈I

eiJ = 1

|J |
∑
j∈J

eIj . (9.20)

The quality of the submatrix as a bicluster can be measured by the mean-squared residue value as

H(I × J ) = 1

|I ||J |
∑

i∈I,j∈J

(eij − eiJ − eIj + eIJ )2. (9.21)
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Submatrix I × J is a δ-bicluster if H(I × J ) ≤ δ, where δ ≥ 0 is a threshold. When δ = 0, I × J

is a perfect bicluster with coherent values. By setting δ > 0, a user can specify the tolerance of average
noise per element against a perfect bicluster, because in Eq. (9.21) the residue on each element is

residue(eij ) = eij − eiJ − eIj + eIJ . (9.22)

A maximal δ-bicluster is a δ-bicluster I × J such that there does not exist another δ-bicluster I ′ ×
J ′, and I ⊆ I ′, J ⊆ J ′, and I = I ′ and J = J ′ do not hold simultaneously. Finding the maximal δ-
bicluster of the largest size is computationally costly. Therefore we can use a heuristic greedy search
method to obtain a local optimal cluster. The algorithm works in two phases.

• In the deletion phase, we start from the whole matrix. While the mean-squared residue of the matrix
is over δ, we iteratively remove rows and columns. At each iteration, for each row i, we compute
the mean-squared residue as

d(i ) = 1

|J |
∑
j∈J

(eij − eiJ − eIj + eIJ )2. (9.23)

Moreover, for each column j , we compute the mean-squared residue as

d( j) = 1

|I |
∑
i∈I

(eij − eiJ − eIj + eIJ )2. (9.24)

We remove the row or column of the largest mean-squared residue. At the end of this phase, we
obtain a submatrix I × J that is a δ-bicluster. However, the submatrix may not be maximal.

• In the addition phase, we iteratively expand the δ-bicluster I × J obtained in the deletion phase as
long as the δ-bicluster requirement is maintained. At each iteration, we consider rows and columns
that are not involved in the current bicluster I × J by calculating their mean-squared residues. A
row or column of the smallest mean-squared residue is added into the current δ-bicluster.

This greedy algorithm can find one δ-bicluster only. To find multiple biclusters that do not have
heavy overlaps, we can run the algorithm multiple times. After each execution where a δ-bicluster is
output, we can replace the elements in the output bicluster by random numbers. Although the greedy
algorithm may find neither the optimal biclusters nor all biclusters, it is very fast even on large matrices.

9.3.4 Enumerating all biclusters using MaPle
As mentioned, a submatrix I × J is a bicluster with coherent values if and only if for any i1, i2 ∈ I and
j1, j2 ∈ J , ei1j1 − ei2j1 = ei1j2 − ei2j2 . For any 2 × 2 submatrix of I × J , we can define a p-score as

p-score

(
ei1j1 ei1j2

ei2j1 ei2j2

)
= |(ei1j1 − ei2j1) − (ei1j2 − ei2j2)|. (9.25)

A submatrix I × J is a δ-pCluster (for pattern-based cluster) if the p-score of every 2 × 2 sub-
matrix of I × J is at most δ, where δ ≥ 0 is a threshold specifying a user’s tolerance of noise against
a perfect bicluster. Here, the p-score controls the noise on every element in a bicluster, whereas the
mean-squared residue captures the average noise.
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An interesting property of δ-pCluster is that if I × J is a δ-pCluster, then every x × y (x, y ≥ 2)

submatrix of I × J is also a δ-pCluster. This monotonicity enables us to obtain a succinct representation
of nonredundant δ-pClusters. A δ-pCluster is maximal if no more rows or columns can be added into
the cluster while maintaining the δ-pCluster property. To avoid redundancy, instead of finding all δ-
pClusters, we only need to compute all maximal δ-pClusters.

MaPle is an algorithm that enumerates all maximal δ-pClusters. It systematically enumerates every
combination of conditions using a set enumeration tree and a depth-first search. This enumeration
framework is the same as the pattern-growth methods for frequent pattern mining (Chapter 4). Consider
gene expression data. For each condition combination, J , MaPle finds the maximal subsets of genes,
I , such that I × J is a δ-pCluster. If I × J is not a submatrix of another δ-pCluster, then I × J is a
maximal δ-pCluster.

There may be a huge number of condition combinations. MaPle prunes many unfruitful combina-
tions using the monotonicity of δ-pClusters. For a condition combination, J , if there does not exist a
set of genes, I , such that I × J is a δ-pCluster, then we do not need to consider any superset of J .
Moreover, we should consider I × J as a candidate of a δ-pCluster only if for every (|J | − 1)-subset
J ′ of J , I × J ′ is a δ-pCluster. MaPle also employs several pruning techniques to speed up the search
while retaining the completeness of returning all maximal δ-pClusters. For example, when examining a
current δ-pCluster, I × J , MaPle collects all the genes and conditions that may be added to expand the
cluster. If these candidate genes and conditions together with I and J form a submatrix of a δ-pCluster
that has already been found, then the search of I × J and any superset of J can be pruned. Interested
readers may refer to the bibliographic notes for additional information on the MaPle algorithm.

An interesting observation here is that the search for maximal δ-pClusters in MaPle is somewhat
similar to mining frequent closed itemsets. Consequently, MaPle borrows the depth-first search frame-
work and ideas from the pruning techniques of pattern-growth methods for frequent pattern mining.
This is an example where frequent pattern mining and cluster analysis may share similar techniques
and ideas.

An advantage of MaPle and the other algorithms that enumerate all biclusters is that they guaran-
tee the completeness of the results and do not miss any overlapping biclusters. However, a challenge
for such enumeration algorithms is that they may become very time consuming if a matrix becomes
very large, such as a customer-purchase matrix of hundreds of thousands of customers and millions of
products.

9.4 Dimensionality reduction for clustering
Subspace clustering methods try to find clusters in subspaces of the original data space. In some situa-
tions, it is more effective to construct a new space instead of using subspaces of the original data. This
is the motivation behind dimensionality reduction methods for clustering high-dimensional data. This
section explores dimensionality reduction for clustering.

We start from the traditional linear dimensionality reduction methods and use principal component
analysis (PCA) as an example. Then, we look at the general dimensionality and matrix decomposi-
tion methods. We use nonnegative matrix factorization (NMF) methods as an example and the general
framework, and explain the relation between NMF and the traditional k-means clustering. Last, we
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change the angle and discuss spectral clustering, which rebuilds a new feature space based on the sim-
ilarity graph and conduct clustering.

9.4.1 Linear dimensionality reduction methods for clustering
In many applications, the challenges in clustering analysis on high dimensional data come from two
obstacles in data sets.

First, when a high-dimensional data set is collected, attributes may be correlated. For example, if we
use three cameras to detect the spatial positions of objects, that is, the locations of objects are projected
into three 2-D spaces. If each camera captures the 2-D coordinates of an object, then each object is
recorded in a 6-D space. As the objects are in a 3-D space, the underlying location information should be
described sufficiently using three intrinsic dimensions. Some correlation and thus redundancy may exist
among the data collected using the three cameras. In other words, although a data set may have many
dimensions, the underlying structures and relations may have a substantially lower dimensionality,
which are often deeply hidden.

Second, observations on different attributes may be recorded using different scales and are not
normalized properly. For example, different cameras may record the coordinates using different units,
some may measure in metric and the others may measure in imperial. Moreover, those three cameras
may not be set up orthogonally, two may be close to each other and one may be far away. In other
words, the data recorded may be stretched.

Dimensionality reduction, or dimension reduction, transforms a high-dimensional data set into a
low-dimensional space so that the low-dimensional representation retains meaningful properties of the
original data, ideally approaching the intrinsic dimensions of the underlying structures. To understand
the intuition, let us consider the following example.

Example 9.12. Clustering in a derived space. Consider the two clusters of points in Fig. 9.11. It is
not possible to cluster these points in any subspace of the original space, X × Y , because both clusters
would end up being projected onto overlapping areas in the x and y axes.

What if, instead, we construct a new dimension, −
√

2
2 x +

√
2

2 y (shown as a dashed line in the fig-
ure)? By projecting the points onto this new dimension, the two clusters become apparent.

FIGURE 9.11

Clustering in a derived space may be more effective.
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Although Example 9.12 involves only two dimensions, the idea of constructing a new space (so
that any clustering structure hidden in the data becomes well manifested) can be extended to high-
dimensional data. Preferably, the newly constructed space should have low dimensionality.

There are many dimensionality reduction methods. Principal component analysis (PCA) is fre-
quently used to identify the most meaningful basis to re-express a data set. Before conducting clustering
analysis, one may first apply PCA to reduce the dimensionality of a data set. Applying PCA can help
to remove or reduce the correlation among attributes and normalize the attributes.

Let us take a look at the intuition behind PCA. Suppose we have n data objects, each of m dimen-
sions. To represent the original data set, we can write an n × m matrix X, where each row represents
an object, and each column represents a dimension. In general, a linear transformation tries to find an
m × m matrix P such XP = Y, where Y is another m × n matrix. Intuitively, matrix P is a rotation and
a stretch that transforms X to Y, and the columns of P are the set of new basis vectors re-expressing the
rows of X. To further illustrate the intuition, let x1, . . . ,xn be the rows of X, that is, the row vectors of
the objects, and p1, . . . ,pm be the columns of P. Then, we have

XP =
⎡
⎢⎣

x1

...

xn

⎤
⎥⎦[

p1 · · · pm

] =
⎡
⎢⎣

x1p1 · · · x1pm

...
. . .

...

xnp1 · · · xnpm

⎤
⎥⎦ = Y =

⎡
⎢⎣

y1

...

yn

⎤
⎥⎦ ,

where y1, . . . ,yn are the rows of Y. Then, we have

yi = [
xip1 · · · xipm

]
.

As can be seen, each data object xi is transformed to yi by a dot-product with the corresponding
column of P . In other words, yi is the projection of xi on to the basis of p1, . . . ,pm. Through this
transformation, the data set X is re-expressed as Y using the new basis of p1, . . . ,pm.

In a nutshell, PCA is a method to choose a good base P that best re-express X into Y so that sig-
nals are maximized and noise is minimized. Let us measure the noise and redundancy in the original
representation X. Recall that the correlation between two attributes A and B can be measured by the co-
variance σ 2

AB = 1
n

∑n
i=1 aibi , the larger the more correlation. To measure the correlation between every

two dimensions in X, PCA computes the covariance between very pair of dimensions by constructing
the covariance matrix CX = 1

n
XT X. The covariance matrix CX reflects the noise and redundancy in the

original representation X.
By transforming X to Y, PCA tries to remove or reduce redundancy caused by correlation among

dimensions in the original data space. Thus the covariance matrix CY of Y should have two properties.
First, all off-diagonal terms in CY should be zero, that is, the dimensions in the new basis are not
correlated with each other. Second, the dimensions in Y should be ordered by variance, the larger the
variance, the more signals the dimension carries, and thus the more important the dimension.

We can build the connection between the covariance matrices CX and CY as follows.

CY = 1

n
YT Y = 1

n
(XP)T (XP) = 1

n
PT XT XP = PT (

1

n
XT X)P

= PT CXP.

(9.26)

From linear algebra, we know that every symmetric matrix is diagonalized by an orthogonal matrix
of its eigenvectors. The covariance matrix CX is obviously symmetric. The matrix P where each column



9.4 Dimensionality reduction for clustering 457

pi is an eigenvector of CX = 1
n

XT X is exactly the transformation matrix serving our purpose. The
eigenvectors are ranked in the eigenvalue descending order.

To summarize the above rationale, computing PCA in practice of a data set X can be conducted in
three steps.

1. Normalize X. For each dimension in X, we calculate the mean of each column, subtract off the
mean of every observation on the dimension and normalize by the standard deviation. That is, entry
xij is normalized to

xij −μj

σj
, where μj and σj are the mean and the standard deviation of the j th

column, respectively. For the sake of simplicity, let us still denote by X the normalized matrix.
2. Compute the eigenvectors of the covariance matrix CX. The eigenvectors form the new basis.
3. Choose the top-k eigenvectors and transform the original data in the new space of reduced

dimensionality. The eigenvalues reflect the variances on the corresponding eigenvectors. We can
choose the top-k eigenvectors as the new basis and reduce the dimensionality so that the cumulated
eigenvalue dominates the sum of eigenvalues.

Example 9.13. Consider a 3-D data set that has four objects:

X =

⎡
⎢⎢⎣

5 9 3
4 10 6
3 8 11
6 3 7

⎤
⎥⎥⎦ .

After normalization, the matrix is

X =

⎡
⎢⎢⎣

0.387 0.482 −1.135
−0.387 0.804 −0.227
−1.162 0.161 1.286
1.162 −1.447 0.076

⎤
⎥⎥⎦ .

The covariance matrix is

CX =
⎡
⎣ 0.750 −0.411 −0.439

−0.411 0.549 −0.152
−0.439 −0.152 0.750

⎤
⎦ .

The three eigenvectors are [−1.339,0.567,1]T with eigenvalue 1.252, [0.282,−1.098,1]T with
eigenvalue 0.793, and [1.270,1.237,1]T with eigenvalue 0.004. In other words, the transformation
matrix is

P =
⎡
⎣−1.339 0.282 1.270

−0.567 −1.098 1.237
1 1 1

⎤
⎦ .

Correspondingly, X is transformed to

Y = XP =

⎡
⎢⎢⎣

−8.798 −5.472 20.483
−5.026 −3.852 23.45
2.447 3.062 24.706

−2.735 5.398 18.331

⎤
⎥⎥⎦ .
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Since the last eigenvalue 0.004 is very small comparing to the first two eigenvalues, we can re-
duce the dimensionality from 3 to 2 by dropping the last dimension in Y. That is, the data set can be
represented in the 2-D space using the first two eigenvectors as the basis. The representation is⎡

⎢⎢⎣
−8.798 −5.472
−5.026 −3.852
2.447 3.062

−2.735 5.398

⎤
⎥⎥⎦ .

To recap, the core idea of PCA is to assume that the variance along a small number of principal
components can provide a good characterization of a high-dimensional data set. PCA is parameter-
free. One can apply PCA on any numeric data sets. On the one hand, this is an advantage since it is
easy to use and thus is employed in many applications. On the other hand, the agnostic nature of PCA
to data sources also comes as a weakness, since it cannot take advantage of any background knowledge
to conduct dimensionality reduction.

9.4.2 Nonnegative matrix factorization (NMF)
What is the intuitive idea behind the popularly used nonnegative matrix factorization methods? We
know that a data set X of n objects in an m-dimensional space can be represented using an n × m

matrix, where each row represents an object and each column represents a dimension. Intuitively, the
problem of clustering the objects in X into k clusters can be modeled as factorizing X into two matrices
W and H such that X ≈ HW, where H is an n × k matrix representing how the n objects are assigned
to the k clusters, and W is a k × m matrix and each row in W represents the “center” of a cluster. An
object may be similar to more than one cluster. Therefore the entries in H are nonnegative. Here, we do
not want to have a negative entry in H, since a negative weight between an object and a cluster is hard
to explain.

For example, consider a database of 2429 facial images, each consisting of 19 × 19 pixels. A 2429 ×
361 matrix is constructed. Fig. 9.12 shows the 7 × 7 montages. The example face shown at top right

FIGURE 9.12

An example of using NMF in clustering images. Extracted from D. D. Lee and H. S. Seung, Nature Vol. 401, Octo-
ber 21, 1999.
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is approximately represented by a linear superposition of some basic images in an additive manner
learned by NMF. The weights are shown in the 7 × 7 grid, where the positive values are shown with
black pixels. The resulting superpositions are shown on the other side of the equality sign.

Formally, assume an n × m nonnegative matrix X containing a set of n data row vectors. We factor-
ize X into two matrices

X ≈ HW (9.27)

where X ∈Rn×m, H ∈Rn×k , W ∈ Rk×m, and matrices X ≥ 0, H ≥ 0, and W ≥ 0 are all nonnegative.
Generally, the rank of matrices H and W is much lower than the rank of X, that is, k � min{m,n}.

There may exist many different matrices satisfying Eq. (9.27) given X. Nonnegative matrix fac-
torization (NMF) minimizes an objective cost function that measures the quality of factorization, that
is, how well the factorization represents the original data. The most common cost function is the sum
of squared errors, that is,

JSSE = |X − HW|2 =
∑

1≤i≤n,1≤j≤m

|xij −
k∑

l=1

hikwkj |2,

where xij , hij , and wij are the entry at the i row and the j th column of matrices X, H, and W, respec-
tively. The smaller Jsse, the better HW approximates X.

Another cost function often used is the information divergence or Kullback-Leibler information
number2

JID =
∑

1≤i≤n,1≤j≤m

[xij log
xij

(HW)ij
− xij + (HW)ij ].

NMF has close connections with many clustering problems we discussed before. For example, if we
constrain that HT H = I, that is, the assignments to clusters are orthogonal, then NMF is mathematically
equivalent to k-means clustering. To understand the rationale, let c1, . . . , ck be the centers of the k

clusters. Since H is the indicators of how data objects are assigned to clusters, hil = 1 if data object xi

belongs to cluster cl ; hil = 0 otherwise. The k-means clustering objective function is

J =
n∑

i=1

k∑
l=1

hil |xi − cl |2 = |X − HW|2.

By composing different constraints and objective cost functions, NMF can be shown equivalent
to some other kinds of clustering problems, such as probabilistic latent semantic indexing and kernel
k-means.

How can we compute the factorization in NMF? Unfortunately, unlike PCA, NMF does not al-
low exact solution in efficient time. Here, we introduce Lee and Seung’s multiplicative update rule
approach, which is simple in implementation. The algorithm works as follows.

1. We randomly initialize W and H as k × m and n × k nonnegative matrices, respectively.

2 In calculating I -divergence, we adopt the conventions 0
0 = 0, 0 log 0 = 0, and v

0 = ∞ for v > 0.
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2. At the lth iteration, we update the elements in W and H by

hl+1
ij = hl

ij

(X(Wl )T )ij

(Hl (Wl )T Wl )ij

and

wl+1
ij = wij

(X(Hl+1)T )ij

((Hl+1)T Hl+1Wl )ij
.

3. Repeat Step 2 until W and H are stable.

In a nutshell, this is an EM method (Section 9.1.3). In each iteration, we first use the current clusters
W to update the membership assignment matrix H, which is the E-step. Then, we update the cluster
centers in matrix M, which is the M-step.

NMF provides a flexible and powerful tool to express a wide spectrum of clustering problems by
using different objective functions and composing different constraints. At the same time, the flexibility
and expression power come with a cost. There are a series of challenges in using NMF in practice.
First, NMF results may often be sensitive to initialization. Many methods have been proposed for
initialization in NMF. For example, we may use the clustering results of some simple methods as the
initialization of NMF. We can also use different random initializations and select the best estimates
from multiple runs. Second, setting an appropriate stopping criterion for NMF is far from trivial. In
practice we can set a maximum number of iterations or a maximum amount of runtime. We can also
use some heuristics, such as setting a threshold on the objective cost function or the improvements.
Third, scalability is often a concern when NMF is applied on a large and high-dimensional data set.

9.4.3 Spectral clustering
You may hear that spectral clustering methods have been used in many applications. What is the major
idea behind spectral clustering? As discussed in Section 9.2.1, due to the curse of dimensionality,
measuring pairwise distance in the original data space of a high-dimensional data set may not be reliable
for clustering analysis. Fig. 9.13 illustrates the intuition. The figure shows two clusters of points, one
in white and the other in black. Points a and b belong to two different clusters. However, in the original
data space, the distance between a and b is shorter than that between a and some other points within
the white cluster, such as c. Therefore if we rely on the pairwise distances in the original data space to
construct clusters directly, the results may not be meaningful.

FIGURE 9.13

Pairwise distances in the original data space may not be reliable in clustering.
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FIGURE 9.14

The framework of spectral clustering approaches. Source: Adapted from Slide 8 at http://videolectures.net/micued08
_azran_mcl/ .

To tackle the curse of dimensionality, spectral clustering relies on the intuition that, when the curse
of dimensionality is present, the close neighborhood relation is more reliable than pairwise distances
among all possible pairs of data objects. Spectral clustering conducts in three steps. First, spectral
clustering transforms the original data set of objects into a similarity graph, where each object is a node
and the edges connect close neighbors. Then, spectral clustering tries to embed the data points in a
space where the clusters stand out. Last, a classical clustering algorithm, such as k-means, can be used
to extract the clusters. Fig. 9.14 shows the general framework for spectral clustering approaches.

Let us explain the ideas of spectral clustering step by step and use the Ng-Jordan-Weiss algorithm
as an example.

Similarity graph
Spectral clustering connects objects and builds clusters by identifying objects that are close neighbors
with each other. In other words, only when two objects are close to each other, they are regarded similar.
This is implemented by constructing a similarity graph. Mathematically, let X = {x1, . . . ,xn} be a set
of objects in an m-dimensional space, that is, each data object xi (1 ≤ i ≤ n) is an m-dimensional row
vector. We assume a distance measure d(xi ,xj ) ≥ 0 between all pairs of objects xi and xj (1 ≤ i, j ≤ n).
As the first step, spectral clustering forms a similarity graph G = (V ,E), where each object xi becomes
a vertex. There are three typical ways to form edges in the similarity graph.

• The ε-neighborhood graph connects all points whose pairwise distances are smaller than or equal to
ε, where ε is a parameter. Since ε is often a small number, all the edges are treated as unweighted.

• The nearest neighbor graphs connect every vertex with its k nearest neighbors. Please note that
the k-nearest neighbor relationship is not symmetric; that is, it is possible that xi is one of the k

nearest neighbors of xj , but xj is not one of the k nearest neighbors of xi . To make the nearest
neighbor graphs undirected and unweighted, there are several ways. For example, the k-nearest
neighbor graph simply connects xi and xj with an unweighted edge if either xi is one of the k

nearest neighbors of xj or the other way. As an alternation, the mutual k-nearest neighbor graph
connects xi and xj with an unweighted edge if xi is one of the k nearest neighbors of xj and vice
versa.

• The fully connected graph derives a new similarity function such that only pairs of nodes in close
neighborhoods have positive similarity values. For example, the Gaussian similarity function

http://videolectures.net/micued08_azran_mcl/
http://videolectures.net/micued08_azran_mcl/
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sim(xi ,xj ) = e
− d(xi ,xj )2

2σ2

serves the purpose, where σ is a parameter controlling the width of the neighborhoods, playing a
role similar to the parameter ε in the ε-neighborhood graph approach.

Denote by W the similarity graph. For vertices xi and xj , set wij > 0 if they are connected in the
similarity graph; 0 otherwise. Moreover, di = ∑n

j=1 wij is the degree of vertex xi . The degree matrix
D is the diagonal matrix with the degrees d1, . . . , dn on the diagonal.

The Ng-Jordan-Weiss algorithm uses the distance measure and constructs a fully connected graph.
Particularly, it calculates a similarity matrix W such that

wij = e
− dist (oi ,oj )2

2σ2 ,

where σ is a scaling parameter. In the Ng-Jordan-Weiss algorithm, Wii is set to 0.

Finding a new space
After we transform a set of objects into a similarity graph, where objects are connected by neighbor
relationship, intuitively, we can explore how flow may be propagated among vertices in the similarity
graph. The sources are the centers of the clusters. Following this intuition, the gradient describes the
direction of flow, and the divergence of the gradient provides a quantity of the vector field’s source
at each point. Mathematically, the Laplace operator3 is what we need, which is a differential operator
computing the divergence of the gradient of a function on Euclidean space.

There are two common ways to apply the Laplace operator on the similarity graph. The most
commonly used approach is the unnormalized graph Laplacian, which is defined by L = D − W . Al-

ternatively, some methods use the normalized graph Laplacian, which is defined by L = D− 1
2 WD− 1

2 .
In order to embed the nodes in the similarity graph in a space where the clusters stand out, we can

extract the first k eigenvectors of the Laplacian matrix, that is, the k eigenvectors of the smallest eigen-
values for unnormalized graph Laplacian or the k eigenvectors of the largest eigenvalues for normalized
graph Laplacian. The nodes collapse into clusters in the space represented using those k eigenvectors
as the base.

The Ng-Jordan-Weiss algorithm employs the normalized graph Laplacian, and uses the first k

eigenvectors. It stacks the first k eigenvectors u1, . . . ,uk in columns to form a matrix U ∈ R
n×k and

normalizes the rows of U to norm 1 and form matrix T, that is, tij = uij√∑k
l=1 u2

il

. Let yi be the ith row of

T, which is the embedding of object xi in the new space.

Extracting clusters
We can employ a classical clustering algorithm, such as k-means, to extract the clusters in the new
space formed by the first k eigenvectors in the previous step.

The Ng-Jordan-Weiss algorithm applies k-means on y1, . . . ,yn, the row vectors in matrix Y, to
form clusters C1, . . . ,Ck . Then, it assigns the original data points to clusters according to how the

3 If f is a twice-differentiable real-valued function, then the Laplacian of f is 
f = �2f = � · �f , where �f =
( ∂
∂xi

, . . . , ∂
∂xn

). Equivalently, 
f = ∑n
i=1

∂2f

∂x2
i

.
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transformed points are assigned in the clusters obtained in clustering Y. In other words, the original
object oi is assigned to the j th cluster if and only if the row i of matrix Y is assigned to the j th
cluster Cj .

In spectral clustering methods, the dimensionality of the new space is often set to the desired number
of clusters. This setting expects that each new dimension should be able to manifest a cluster.

Spectral clustering is effective in high-dimensional applications such as image processing. Theo-
retically, it works well when certain conditions apply. Scalability, however, is a challenge. Computing
eigenvectors on a large matrix is costly. Spectral clustering can be combined with other clustering
methods, such as biclustering.

9.5 Clustering graph and network data
Cluster analysis on graph and network data extracts valuable knowledge and information. Such data
are increasingly popular in many applications. We discuss applications and challenges of clustering
graph and network data in Section 9.5.1. Similarity measures for this form of clustering are given in
Section 9.5.2. You will learn about graph clustering methods in Section 9.5.3.

In general, the terms graph and network can be used interchangeably. In the rest of this section, we
mainly use the term graph.

9.5.1 Applications and challenges
As a customer relationship manager at a big company, you notice that a lot of data relating to customers
and their purchase behavior can be preferably modeled using graphs.

Example 9.14. Bipartite graph. The customer purchase behavior at a company can be represented in
a bipartite graph. In a bipartite graph, vertices can be divided into two disjoint sets so that each edge
connects a vertex in one set to a vertex in the other set. For the customer purchase data, one set of
vertices represents customers, with one customer per vertex. The other set represents products, with
one product per vertex. An edge connects a customer to a product, representing the purchase of the
product by the customer. Fig. 9.15 shows an illustration.

FIGURE 9.15

Bipartite graph representing customer-purchase data.
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“What kind of knowledge can we obtain by a cluster analysis of the customer-product bipartite
graph?” By clustering the customers such that those customers buying similar sets of products are
placed into one group, a customer relationship manager can make product recommendations. For ex-
ample, suppose Ada belongs to a customer cluster in which most of the customers purchased a popular
game in the last 6 months, but Ada has yet to purchase one. As the manager, you can recommend the
game to her.

Alternatively, we can cluster products such that those products purchased by similar sets of cus-
tomers are grouped together. This clustering information can also be used for product recommendations.
For example, if a robot vacuum and an electric smart cooker belong to the same product cluster, then
when a customer purchases a robot vacuum, we can recommend the smart cooker.

Bipartite graphs are widely used in many applications. Consider another example.

Example 9.15. Web search engines. In web search engines, search logs are archived to record user
queries and the corresponding click-through information. (The click-through information tells us on
which pages, given as a result of a search, the user clicked.) The query and click-through information
can be represented using a bipartite graph, where the two sets of vertices correspond to queries and
web pages, respectively. An edge links a query to a web page if a user clicks the web page when asking
the query. Valuable information can be obtained by the cluster analysis on the query-web page bipartite
graph. For instance, we may identify queries posed in different languages, but mean the same thing, if
the click-through information for each query is similar.

As another example, all the web pages on the Web form a directed graph, also known as the web
graph, where each web page is a vertex, and each hyperlink is an edge pointing from a source page to
a destination page. Cluster analysis on the web graph can disclose communities, find hubs and authori-
tative web pages, and detect web spams.

In addition to bipartite graphs, cluster analysis can also be applied to other types of graphs, including
general graphs, as elaborated in Example 9.16.

Example 9.16. Social network. A social network is a social structure and can be represented as a
graph, where the vertices are individuals or organizations, and the links are interdependencies between
the vertices, representing, for example, friendship, common interests, or collaborative activities. For a
company, the customers may form a social network, where each customer is a vertex, and an edge links
two customers if they know each other.

As a customer relationship manager, you are interested in finding useful information and knowledge
that can be derived from the customer social network through clustering analysis. You obtain clusters
from the network, where customers in a cluster know each other or have friends in common. Customers
within a cluster may influence one another regarding purchase decision making. Moreover, communi-
cation channels can be designed to inform the “heads” of clusters (i.e., the “best” connected people in
the clusters), so that promotional information can be spread out quickly. Thus you may use customer
clustering to promote sales for the company.

As another example, the authors of scientific publications form a social network, where the authors
are vertices and two authors are connected by an edge if they coauthored a publication. The network
is, in general, a weighted graph because an edge between two authors can carry a weight representing
the strength of the collaboration, such as how many publications the two authors (as the end vertices)
coauthored. Clustering the coauthor network provides insight as to communities of authors and patterns
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of collaboration. Indeed, in the context of (social) network analysis, clustering as finding well connected
subgraphs is also known as community detection.

“Are there any challenges specific to clustering analysis on graph and network data?” In most
of the clustering methods discussed so far, objects are represented using a set of attributes. A unique
feature of graph and network data is that only objects (as vertices) and relationships between them
(as edges) are given. No dimensions or attributes are explicitly defined. To conduct cluster analysis on
graph and network data, there are two major new challenges.

• “How can we measure the similarity between two objects on a graph accordingly?” Typically,
we cannot use conventional distance measures, such as Euclidean distance. Instead, we need to
develop new measures to quantify the similarity. Such measures often are not metric and thus raise
new challenges regarding the development of efficient clustering methods. Similarity measures for
graphs are discussed in Section 9.5.2.

• “How can we design clustering models and methods that are effective on graph and network data?”
Graph and network data are often complicated, carrying topological structures that are more sophis-
ticated than traditional cluster analysis applications. Many graph data sets are large, such as the web
graph containing at least tens of billions of web pages in the publicly indexable Web. Graphs can
also be sparse where, on average, a vertex is connected to only a small number of other vertices
in the graph. To discover accurate and useful knowledge hidden deep in the data, a good cluster-
ing method has to accommodate these factors. Clustering methods for graph and network data are
introduced in Section 9.5.3.

9.5.2 Similarity measures
“How can we measure the similarity or distance between two vertices in a graph?” In our discussion,
we examine two types of measures: geodesic distance and distance based on random walk.

Geodesic distance
A simple measure of the distance between two vertices in a graph is the shortest path between the
vertices. Formally, the geodesic distance d(u, v) between two vertices u and v is the length in terms of
the number of edges of the shortest path between the vertices. For two vertices that are not connected in
a graph, the geodesic distance is defined as infinite, that is, d(u, v) = +∞ if u and v are not connected.

Using geodesic distance, we can define several other useful measurements for graph analysis and
clustering. Given an undirected graph G = (V ,E), where V is the set of vertices and E is the set of
edges, we define the following:

• For a vertex v ∈ V , the eccentricity of v, denoted eccen(v), is the largest geodesic distance between
v and any other vertex u ∈ V − {v}. That is,

eccen(v) = max
u∈V −{v}{d(u, v)}.

The eccentricity of v captures how far away v is from its remotest vertex in the graph.
• The radius of graph G is the minimum eccentricity of all vertices. That is,

r = min
v∈V

{eccen(v)}. (9.28)
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FIGURE 9.16

A graph, G, where vertices c, d, and e are peripheral.

The radius captures the distance between the “most central point” and the “farthest border” of the
graph.

• The diameter of graph G is the maximum eccentricity of all vertices. That is,

l = max
v∈V

{eccen(v)} = max
u,v∈V

{dist (u, v)}. (9.29)

The diameter represents the largest distance between any pair of vertices. A peripheral vertex is a
vertex v that achieves the diameter.

Example 9.17. Measurements based on geodesic distance. Consider graph G in Fig. 9.16. The ec-
centricity of a is 2. It is easy to verify that eccen(a) = 2, eccen(b) = 2, and eccen(c) = eccen(d) =
eccen(e) = 3. Thus the radius of G is 2, and the diameter is 3. Note that it is not necessary that diameter
= 2× radius. Vertices c, d , and e are peripheral vertices.

SimRank: similarity based on random walk and structural context
For some applications, geodesic distance may be inappropriate in measuring the similarity between
vertices in a graph. Here we introduce SimRank, a similarity measure based on random walk and on
the structural context of the graph. In mathematics, a random walk is a trajectory that consists of taking
successive random steps.

Example 9.18. Similarity between people in a social network. Let us consider measuring the simi-
larity between two vertices in the customer social network of a company, as discussed in Example 9.16.
Here, similarity can be explained as the closeness between two participants in the network, that is, how
close two people are in terms of the relationship represented by the social network.

“How well can the geodesic distance measure similarity and closeness in such a network?” Suppose
Ada and Bob are two customers in the network, and the network is undirected. The geodesic distance
(i.e., the length of the shortest path between Ada and Bob) is the shortest path that a message can be
passed from Ada to Bob and vice versa. However, this information is not useful for the customer rela-
tionship management of the company, because the company typically does not want to send a specific
message from one customer to another. Therefore geodesic distance does not suit the application.

“What does similarity mean in a social network?” We consider two ways to define similarity:

• Two customers are considered similar to each other if they have similar neighbors in the social
network. This heuristic is intuitive because, in practice, two people receiving recommendations from
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a good number of common friends often make similar decisions. This kind of similarity is based on
the local structure (i.e., the neighborhoods) of the vertices, and thus is called structural context–
based similarity.

• Suppose the company sends promotional information to both Ada and Bob in the social network.
Ada and Bob may randomly forward such information to their friends (or neighbors) in the network.
The closeness between Ada and Bob can then be measured by the likelihood that other customers
simultaneously receive the promotional information that was originally sent to Ada and Bob. This
kind of similarity is based on the random walk reachability over the network, and thus is referred to
as similarity based on random walk.

Let us have a closer look at what is meant by similarity based on structural context and that based
on random walk.

The intuition behind similarity based on structural context is that two vertices in a graph are similar
if they are connected to similar vertices. To measure such similarity, we need to define the notion of
individual neighborhood. In a directed graph G = (V ,E), where V is the set of vertices and E ⊆ V × V

is the set of edges, for a vertex v ∈ V , the individual in-neighborhood of v is defined as

I (v) = {u|(u, v) ∈ E}. (9.30)

Symmetrically, we define the individual out-neighborhood of v as

O(v) = {w|(v,w) ∈ E}. (9.31)

Following the intuition illustrated in Example 9.18, we define SimRank, a structural-context simi-
larity, with a value that is between 0 and 1 for any pair of vertices. For any vertex, v ∈ V , the similarity
between the vertex and itself is s(v, v) = 1 because the neighborhoods are identical. For vertices
u,v ∈ V such that u �= v, we can define

s(u, v) = C

|I (u)||I (v)|
∑

x∈I (u)

∑
y∈I (v)

s(x, y), (9.32)

where C is a constant between 0 and 1. A vertex may not have any in-neighbors. Thus we define
Eq. (9.32) to be 0 when either I (u) or I (v) is ∅. Parameter C specifies the rate of decay as similarity is
propagated across edges.

SimRank can also be represented using matrices. Let A be the column normalized adjacency matrix,
where Aij = 1

|I (vj )| if there is an edge from vi to vj , and 0 otherwise. Let S be the SimRank matrix,
where Sij is the SimRank between vertices vi and vj . Then,

S = max{C(AT SA), I},
where I is an identity matrix.

“How can we compute SimRank?” A straightforward method iteratively evaluates Eq. (9.32) until
a fixed point is reached. Let si(u, v) be the SimRank score calculated at the ith round. To begin, we set

s0(u, v) =
{

0 if u �= v

1 if u = v.
(9.33)
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We use Eq. (9.32) to compute si+1 from si as

si+1(u, v) = C

|I (u)||I (v)|
∑

x∈I (u)

∑
y∈I (v)

si(x, y). (9.34)

It can be shown that lim
i→∞ si(u, v) = s(u, v). Additional methods for approximating SimRank are given

in the bibliographic notes (Section 9.9).
Now, let us consider similarity based on random walk. A directed graph is strongly connected if, for

any two nodes u and v, there is a path from u to v and another path from v to u. In a strongly connected
graph, G = (V ,E), for any two vertices, u,v ∈ V , we can define the expected distance from u to v as

d(u, v) =
∑

t :u�v

P [t]l(t), (9.35)

where u� v is a path starting from u and ending at v that may contain cycles but does not reach v until
the end. For a path, t = w1 → w2 → ·· · → wk , its length is l(t) = k − 1. The probability of the path is
defined as

P [t] =
{∏k−1

i=1
1

|O(wi)| if l(t) > 0
0 if l(t) = 0.

(9.36)

To measure the probability that a vertex w receives a message that is originated simultaneously from
u and v, we extend the expected distance to the notion of expected meeting distance, that is,

m(u,v) =
∑

t :(u,v)�(x,x)

P [t]l(t), (9.37)

where (u, v) � (x, x) is a pair of paths u� x and v � x of the same length. Using a constant C

between 0 and 1, we define the expected meeting probability as

p(u, v) =
∑

t :(u,v)�(x,x)

P [t]Cl(t), (9.38)

which is a similarity measure based on random walk. Here, the parameter C specifies the probability of
continuing the walk at each step of the trajectory.

It has been shown that s(u, v) = p(u, v) for any two vertices, u and v. That is, SimRank is based on
both structural context and random walk.

Personalized PageRank and topical PageRank
In a large network like the web, message passing and user accessing can be modeled by random walks.
A user starts from one node u, and randomly chooses one of the outgoing edges of u to proceed and
reach the next hop. It is also assumed that a user takes a probability α (0 ≤ α ≤ 1) to terminate a random
walk. Random walks can be used to model the distance or similarity from one node to another.4 Let us
look at two similarity measures based on random walks.

4 In Section 7.6.3, we discuss how to use random walks to model proximity between nodes in graphs.
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Given a source node u and a target node v, the personalized PageRank (PPR) models the similarity
of v to u by the probability that a random walk starting from u ends at v. Formally, the personalized
PageRank of v with respect to u is

PPR(u, v) = P [t ends at v|random walk t starting from u]. (9.39)

It is easy to see that personalized PageRank is not symmetric. That is, in general, PPR(u, v) �=
PPR(v,u). It can be shown that

∑
u∈V

PPR(u, v) = |V | · PR(v),

where PR(v) is the PageRank of v.
Now let us consider a more sophisticated scenario, where some nodes may carry some topics. For

example, in the web graph, a page may have some predefined topics, such as “politics,” “sports,” “arts,”
and so on. Imagine a user interested in a selected topic, say “politics,” conducts biased random walks.
The reason we call it a biased random walk because the user chooses the starting node and the out-
links following a distribution proportional to the probabilities that the nodes are relevant to the selected
topic. In this way, each node in the graph has a probability that a biased random walk with respect to a
selected topic may reach the node, which is the topical PageRank of the selected topic.

Let T1, . . . , Tl be the topics that are under consideration. For a node u, let T PR(u,Ti) (1 ≤ i ≤ l)
be the probability that u is the end of a biased random walk with respect to topic Ti . Then, vector
Tu = 〈T PR(u,T1), . . . , T PR(u,Tl)〉 is called the topical PageRank (TPR) of u and captures the im-
portance of u with respect to various topics. For two nodes u and v, we can measure the similarity
between u and v by calculating the similarity between their topical PageRank vectors. For example, we
can measure the similarity between u and v by the cosine similarity between Tu and Tv .

Please note that personalized PageRank can be regarded as a special case of topical PageRank,
where only the source node u belongs to the selected topic, and every restart jumps back to u exclu-
sively. The selection of the outgoing edge follows the uniform distribution.

Mathematically, for a topic Ti , let TPR = [
T PR(u1, Ti) · · · T PR(un,Ti)

]T
be the topical

PageRank vector recording the topical PageRank of all nodes in the graph. Let P be the transition
matrix such that

PT
ij =

{
1

|o(ui )| if (ui, uj ) ∈ E

0 otherwise.

Let α be the damping factor, such that at each step it takes a probability of α to terminate the current
random walk and restart. Then we have

TPR = (1 − α) · P · TPR + α · S, (9.40)

where S is the distribution of topic Ti on all nodes in the graph.
A straightforward approach to compute topical PageRank with respect to a topic is to randomly

initialize TPR in Eq. (9.40) and iteratively update the equation.
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9.5.3 Graph clustering methods
Let us consider how to conduct clustering on a graph. We first describe the intuition behind graph
clustering. We then discuss two general categories of graph clustering methods.

The intuition of finding clusters in a graph is to cut the graph into pieces, each piece being a cluster,
such that the vertices within a cluster are well connected, and the vertices in different clusters are
connected in a much weaker way. Formally, for a graph, G = (V ,E), a cut, C = (S,T ), is a partitioning
of the set of vertices V in G, that is, V = S ∪ T and S ∩ T = ∅. The cut set of a cut is the set of edges,
{(u, v) ∈ E|u ∈ S, v ∈ T }. The size of the cut is the number of edges in the cut set. For weighted graphs,
the size of a cut is the sum of the weights of the edges in the cut set.

“What kinds of cuts are good for deriving clusters in graphs?” In graph theory and some network
applications, a minimum cut is of importance. A cut is minimum if the size of the cut is not greater than
the size of any other cut. There are polynomial time algorithms to compute minimum cuts of graphs.
Can we use those algorithms in graph clustering?

Example 9.19. Cuts and clusters. Consider graph G in Fig. 9.17. The graph has two clusters:
{a, b, c, d, e, f } and {g,h, i, j, k}, and one outlier vertex, l.

Consider cut C1 = ({a, b, c, d, e, f, g,h, i, j, k}, {l}). Only one edge, namely, (e, l), crosses the two
partitions created by C1. Therefore the cut set of C1 is {(e, l)}, and the size of C1 is 1. (Note that the
size of any cut in a connected graph cannot be smaller than 1.) As a minimum cut, C1 does not lead to
a good clustering because it only separates the outlier vertex, l, from the rest of the graph.

Cut C2 = ({a, b, c, d, e, f, l}, {g,h, i, j, k}) leads to a much better clustering than C1. The edges in
the cut set of C2 are those connecting the two “natural clusters” in the graph. Specifically, for edges
(d,h) and (e, k) that are in the cut set, most of the edges connecting d , h, e, and k belong to one
cluster.

Example 9.19 indicates that using a minimum cut is unlikely to lead to a good clustering. We are
better off choosing a cut where, for each vertex u that is involved in an edge in the cut set, most of the
edges connecting to u belong to one cluster. Formally, let deg(u) be the degree of u, that is, the number

FIGURE 9.17

A graph G and two cuts.
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of edges connecting to u. The sparsity of a cut C = (S,T ) is defined as

� = cut size

min{|S|, |T |} . (9.41)

A cut is sparsest if its sparsity is not greater than the sparsity of any other cut. There may be more than
one sparsest cut.

In Example 9.19 and Fig. 9.17, C2 is a sparsest cut. Using sparsity as the objective function, a
sparsest cut tries to minimize the number of edges crossing the partitions and balance the partitions in
size.

Consider a clustering on a graph G = (V ,E) that partitions the graph into k clusters. The modular-
ity of a clustering assesses the quality of the clustering and is defined as

Q =
k∑

i=1

(
li

|E| −
(

di

2|E|
)2

)
, (9.42)

where li is the number of edges between vertices in the ith cluster, and di is the sum of the degrees
of the vertices in the ith cluster. The modularity of a clustering of a graph is the difference between
the fraction of all edges that fall into individual clusters and the fraction that would do so if the graph
vertices were randomly connected. The optimal clustering of graphs maximizes the modularity.

Theoretically, many graph clustering problems can be regarded as finding good cuts, such as the
sparsest cuts, on the graph. In practice, however, a number of challenges exist:

• High computational cost: Many graph cut problems are computationally expensive. The sparsest
cut problem, for example, is NP-hard. Therefore finding the optimal solutions on large graphs is
often impossible. A good trade-off between efficiency/scalability and quality has to be achieved.

• Sophisticated graphs: Graphs can be more sophisticated than the ones described here, involving
weights and/or cycles.

• High dimensionality: A graph can have many vertices. In a similarity matrix, a vertex is repre-
sented as a vector (a row in the matrix) with a dimensionality that is the number of vertices in the
graph. Vertices and edges may carry various attributes, too. Therefore graph clustering methods
must handle high dimensionality.

• Sparsity: A large graph is often sparse, meaning each vertex on average connects to only a small
number of other vertices. A similarity matrix from a large sparse graph can also be sparse.

There are different kinds of methods for clustering graph data, which address these challenges. We
introduce some representative ones here.

Generic high-dimensional clustering methods on graphs
The first group of methods are based on generic clustering methods for high-dimensional data. They
extract a similarity matrix from a graph using a similarity measure such as those discussed in Sec-
tion 9.5.2. A generic clustering method can then be applied on the similarity matrix to discover clusters.
Clustering methods for high-dimensional data are typically employed. For example, in many scenarios,
once a similarity matrix is obtained, spectral clustering methods (Section 9.4) can be applied. Spectral
clustering can approximate optimal graph cut solutions. For additional information, please refer to the
bibliographic notes (Section 9.9).
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Specific clustering methods by searching graph structures
The second group of methods are specific to graphs. They search the graph to find well-connected
components as clusters. Let us look at a method called SCAN (Structural Clustering Algorithm for
Networks) as an example.

Given an undirected graph, G = (V ,E), for a vertex, u ∈ V , the neighborhood of u is (u) =
{v|(u, v) ∈ E} ∪ {u}. Using the idea of structural-context similarity, SCAN measures the similarity be-
tween two vertices, u,v ∈ V , by the normalized common neighborhood size, that is,

σ (u, v) = |(u) ∩ (v)|√|(u)||(v)| . (9.43)

The larger the value computed, the more similar the two vertices. SCAN uses a similarity threshold ε

to define the cluster membership. For a vertex, u ∈ V , the ε-neighborhood of u is defined as Nε(u) =
{v ∈ (u)|σ(u, v) ≥ ε}. The ε-neighborhood of u contains all neighbors of u with a structural-context
similarity to u that is at least ε.

In SCAN, a core vertex is a vertex inside of a cluster. That is, u ∈ V is a core vertex if |Nε(u)| ≥ μ,
where μ is a popularity threshold. SCAN grows clusters from core vertices. If a vertex v is in the ε-
neighborhood of a core u, then v is assigned to the same cluster as u. This process of growing clusters
continues until no cluster can be further grown. The process is similar to the density-based clustering
method, DBSCAN (Section 8.4.1).

Formally, a vertex v can be directly reached from a core u if v ∈ Nε(u). Transitively, a vertex v can
be reached from a core u if there exist vertices w1, . . . ,wn such that w1 can be reached from u, wi can
be reached from wi−1 for 1 < i ≤ n, and v can be reached from wn. Moreover, two vertices, u,v ∈ V ,
which may or may not be cores, are said to be connected if there exists a core w such that both u and v

can be reached from w. All vertices in a cluster are connected. A cluster is a maximum set of vertices
such that every pair in the set is connected.

Some vertices may not belong to any cluster. Such a vertex u is a hub if the neighborhood (u) of
u contains vertices from more than one cluster. If a vertex does not belong to any cluster, and is not a
hub, it is an outlier.

The search framework in SCAN closely resembles the cluster-finding process in DBSCAN. SCAN
finds a cut of the graph, where each cluster is a set of vertices that are connected based on the transitive
similarity in a structural context. An advantage of SCAN is that its time complexity is linear with
respect to the number of edges. In very large and sparse graphs, the number of edges is in the same
scale of the number of vertices. Therefore SCAN is expected to have good scalability on clustering
large graphs.

Probabilistic graphical model-based methods
Probabilistic graphical model-based methods regard a graph as a set of observations generated by a
probabilistic model. Consequently, probabilistic graphical model-based methods use some heuristics
on community generation to find clusters as communities in a graph. They often use some probabilistic
models of graph structures to describe the dependencies among vertices via the edges.

Three major types of probabilistic graphical models are often used, directed graphical models, undi-
rected graphical models and hybrid graphical models. First, directed graphical models are mainly based
on latent variables and leverage similarity of vertices and cluster structures to generate edges that are
observable in a graph. Second, undirected graphical models are often based on field structures and use
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FIGURE 9.18

A graph and the similarity matrix showing the block/cluster structure. Source: adapted from Lee and Wilkinson
Applied Network Science (2019) 4:122.

the cluster label agreement between neighbor vertices to identify clusters. Last, hybrid graphical mod-
els transform directed graphical models and undirected graphical models into a unified factor graph and
detect clusters.

Let us use the well-known stochastic block model (SBM)-based methods as an example to illustrate
the essential ideas. To understand the intuition, consider the graph G in Fig. 9.18(a), where there are
three clusters. Fig. 9.18(b) shows the adjacency matrix, where the nodes are sorted according to the
clusters to which they belong. A black dot in the adjacency matrix represents an edge connecting two
vertices. As it shows, if we assign the nodes into clusters properly, then each cluster is a dense block
in the adjacency matrix, since the nodes in a cluster are densely connected, whereas the edges crossing
different clusters (i.e., blocks) are sparse. SBM tries to learn a generative model describing graph block
structures from an observed graph, where a block corresponds to a cluster.

Let us describe the generation process of a graph G = (V ,E), where V = {u1, . . . , un} is the set
of vertices, and E ⊆ V × V is the set of edges. Denote by A the adjacency matrix. Suppose we want
to form K clusters in the graph. To model the assignments of vertices to clusters, for a vertex ui

(1 ≤ i ≤ n), define a K-vector Zi , where all elements are 0 except the one that takes value 1 and

represents the cluster to which ui belongs. For example, in Fig. 9.18(a), Z1 = [
1 0 0

]T
. Putting

all Zi together, we have an n × K cluster membership matrix Z = [
Z1 · · · Zn

]T
. To model the

generation of edges, we define a K × K block matrix C, where Cij (1 ≤ i, j ≤ K) is the probability
of occurrence of an edge between a vertex in cluster i and a vertex in cluster j . Clearly, Cii is the
probability of occurrence of an edge within cluster i. Matrix C does not have to be symmetric. Indeed,
an asymmetric block matrix can model directed edges between blocks.
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SBM assumes that an edge that happens to two vertices ui and uj is conditionally independent given
the cluster memberships Z. That is, Aij follows the Bernoulli distribution with success probability
ZT

i CZj and is independent from Ai′j ′ for (i, j) �= (i′, j ′). This assumption is based on the concept of
stochastic equivalence. Therefore the total number of edges between two blocks i and j is a random
variable following the Binomial distribution with mean Cij · bi · bj , where bi and bj are the number of
vertices assigned to clusters i and j , respectively.

Based on the above assumption, given a cluster memberships matrix Z and a block matrix C, the
likelihood of a graph adjacency matrix A is given by

π(A|Z,C) =
∏

1≤i<j≤n

π(Aij |Z,C) =
∏

1≤i<j≤n

[(ZT
i CZj )

Aij (1 − ZT
i CZj )

1−Aij ]. (9.44)

If the graph is directed, we can simply replace the index in Eq. (9.44) from 1 ≤ i < j ≤ n to 1 ≤ i,
j ≤ n, i �= j . Eq. (9.44) is also known as the Bernoulli stochastic block model.

To apply Eq. (9.44) to find clusters in a graph, we need to initialize Z and C. Often, we assume that
the assignments of different vertices into clusters are independent; that is, Zi and Zj are independent a

priori. Moreover, by assuming a prior distribution of clusters θ = [
θ1 · · · θK

]T
such that

∑K
i=1 θi =

1, we have Pr(Zij ) = θj , that is, a vertex ui is assigned to cluster j with probability θj . In other words,
the cluster to which ui is assigned follows the multinomial distribution with probabilities θ and thus

π(Z|θ) =
n∏

i=1

ZT
i θ =

n∏
i=1

θT Zi =
K∏

i=1

θ
bi

i . (9.45)

In the above SBM model, the adjacency matrix A is the input, the block matrix C and the cluster
prior distribution θ are parameters, and the cluster memberships matrix Z is the result. To inference Z,
we need to assign priors to C and θ before we can conduct inference. We can assume that C has an
independent Beta prior, that is, Cij ∼ Beta(Pij ,Qij ), where P and Q are K × K matrices of all positive
hyperparameters. We also assume that θ is from the Dirichlet(α1K) distribution, where parameter α is
from a Gamma(a, b) prior. Then, the joint posterior of Z, θ , C, and α satisfy the following.

π(Z, θ ,C, α|A) ∝ π(A,Z, θ ,C, α)

= π(A|Z, θ ,C, α) · π(Z|θ ,C, α) · π(θ |C, α) · π(C|α)

= π(A|Z,C) · π(Z|θ) · π(θ |α) · π(α)

∝
∏

1≤i<j≤n

[(ZT
i CZj )

Aij (1 − ZT
i CZj )

1−Aij ] ·
n∏

i=1

ZT
i θ

· [(Kα)1{
K∑

i=1

θi = 1}
K∏

i=1

θα−1
i

(α)
]

·
∏

1≤i≤j≤K

[CPij −1
ij (1 − C

Qij −1
ij )] · αa−1e−bα

(9.46)

We can use a Markov chain Mote Carlo method to conduct inference according to Eq. (9.46).
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There are many variances of stochastic block models that incorporate different constraints and back-
ground knowledge. Please refer to the bibliography section for the related references.

9.6 Semisupervised clustering
In the conventional setting of clustering analysis, the data objects to be clustered are not labeled.
However, in some application scenarios, we may have some domain knowledge that may help us in
clustering analysis. Let us consider an example.

Example 9.20. Clustering with partially labeled data. Imagine that you want to build a malware
detector. You collect a large number of images of host systems. You and some of your colleagues label
a small number of such images into two categories: malware and benign. However, there is no hope
that all or even a fair portion of such images are labeled properly and timely. What should you make
good use of the data?

An immediate idea is to use the labeled data to build a classifier. However, the proportion of labeled
data is very small. A classifier built on such a small amount of data may not be effective and cannot use
a large amount of unlabeled data. In other words, the vast majority of the data available cannot be used
by a classification method.

The semisupervised clustering approaches address the clustering analysis scenarios where some
domain knowledge is available. Those methods build on the clustering methods and incorporate differ-
ent types of domain knowledge to strengthen the clustering results. In this section, we discuss different
types of semisupervised clustering methods according to different types of domain knowledge available
in addition to the unlabeled data.

9.6.1 Semisupervised clustering on partially labeled data
Example 9.20 illustrates the situation where a small portion of data to be clustered comes with labels.
How can we make good use of the small amount of labeled data to strengthen an existing clustering
method, such as k-means?

Let D = {x1, . . . , xn} be a set of objects to be clustered and K be the target number of clusters. In
addition, let S1, . . . , SK ⊂ D be K exclusive subsets of labeled objects such that xi ∈ Sj (1 ≤ i ≤ n,1 ≤
j ≤ K) implies that object xi is known to belong to cluster Cj , and Sj ∩ Sj ′ = ∅ (1 ≤ j < j ′ ≤ K). Let
S = ∪K

j=1Si .
The constrained k-means method extends the classical k-means algorithm to make good use of the

labeled data. The central idea is to use the labeled data to produce the initial means of the clusters. The
constrained k-means algorithm works in the following steps.

1. For each cluster j (1 ≤ j ≤ K), compute the mean cj of the labeled subset Sj . That is, cj =∑
xi∈Sj

xi

|Sj | .

2. Assign all objects in D to clusters. For each object xi ∈ D, there are two cases. If xi ∈ S, then there
exists a labeled subset Sj (1 ≤ j ≤ K) such that xi ∈ Sj . We assign xi to cluster Cj . If xi /∈ S, then
we assign xi to the cluster Cj whose mean is closest to xi , that is, j = arg mink{dist (xi, ck)}.
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3. Update the means of the clusters C1, . . . ,CK . That is, for 1 ≤ j ≤ K , we update the mean cj =∑
xi∈Cj

xi

|Cj | .

4. Repeat Steps 2 and 3 until the algorithm converges (similar to the convergence condition for the
k-means algorithm).

The constrained k-means algorithm fully trusts the labels. As shown in Step 2, it always assigns a
labeled object to the cluster of the label. However, what if the labeled data could contain some errors?
The possible errors in the labels can be tackled by another semisupervised clustering method, seeded k-
means, which is the same as constrained k-means except for Step 2. In Step 2, seeded k-means always
assigns an object to the cluster whose mean is the closest, no matter whether or what the object is
labeled.

9.6.2 Semisupervised clustering on pairwise constraints
Domain knowledge that can be useful for clustering analysis can come not only from labeling individual
objects but also the knowledge about the pairwise relations between some objects.

Example 9.21. Clustering with pairwise constraints. Suppose as a customer relationship manager
of a wholesale company, you want to use a clustering method to divide the representatives of your
customer companies into several groups so that a marketing campaign event is run for a group. You
may have multiple representatives from the same customer company. They should be invited to the
same event. In order to express such domain knowledge, you want to specify must-link constraints
between every pair of representatives who should be invited together.

Moreover, you may have two customer companies that are head-to-head competitors. You may want
to make sure that representatives from two head-to-head competitors are not invited to the same event.
Accordingly, you want to specify cannot-link constraints between every pair of representatives who
should not be invited to the same event.

A pairwise constraint specifies how a pair or a set of instances should be grouped in the clustering
analysis. Two common types of pairwise constraints are as follows:

• Must-link constraints. If a must-link constraint is specified on two objects x and y, then x and y

should be grouped into one cluster in the output of the cluster analysis. These must-link constraints
are transitive. That is, if must-link(x, y) and must-link(y, z), then must-link(x, z).

• Cannot-link constraints. Cannot-link constraints are the opposite of must-link constraints. If a
cannot-link constraint is specified on two objects, x and y, then in the output of the cluster analy-
sis, x and y should belong to different clusters. Cannot-link constraints can be entailed. That is, if
cannot-link(x, y), must-link(x, x′), and must-link(y, y′), then cannot-link(x′, y′).

How can we incorporate pairwise constraints in clustering methods? COP-k-means is a revision
of the classical k-means algorithm to accommodate pairwise constraints. Essentially, COP-k-means
assigns objects to clusters in a way fully respecting the constraints. Let D = {x1, . . . , xn} be the set of
objects to be clustered.

The algorithm works as follows.

1. Arbitrarily choose k objects in D as the initial cluster centers c1, . . . , cK , such that there is no must-
link between any two of those k objects.
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2. Assign each object xi (1 ≤ i ≤ n) to cluster Cj (1 ≤ j ≤ K) whose mean is the closest, and there is
no violation of the pairwise constraints. That is, let

H(xi) ={Cj |1 ≤ k ≤ K,no constraints are violated

when xi is assigned to cluster Ci}
be the set of clusters that may host xi without violating any constraints. Then,

j = arg min
k∈H(xi)

{dist (xi, ck)}.

3. Update the means of the clusters C1, . . . ,CK . That is, for 1 ≤ j ≤ K , we update the mean cj =∑
xi∈Cj

xi

|Cj | .

4. Repeat Steps 2 and 3 until the algorithm converges (similar to the convergence condition for the
k-means algorithm).

Because COP-k-means ensures that no constraints are violated at every step, it does not require any
backtracking. It is a greedy algorithm for generating a clustering that satisfies all constraints, provided
that no conflicts exist among the constraints.

While COP-k-means strictly respects the specified must-link and cannot-link constraints as hard
constraints, in some application scenarios, one may want to treat those as soft constraints. When a
clustering violates a soft constraint, a penalty is imposed on the clustering. Therefore the optimization
goal of the clustering contains two parts: optimizing the clustering quality and minimizing the constraint
violation penalty. The overall objective function is a combination of the clustering quality score and the
penalty score.

For example, the PCKmeans algorithm extends the k-means algorithm and handles soft constraints
by revising the objective function. Let ML be the set of must-link constraints. That is, for any (xi, xj ) ∈
ML, there is a must-link constraint between xi and xj . Let CL be the set of cannot-link constraints. That
is, for any (xi, xj ) ∈ CL, there is a cannot-link constraint between xi and xj . PCKmeans minimizes the
following objective function:

K∑
k=1

∑
xi ,xj ∈Ck

dist (xi, xj )
2 +

∑
xi ,xj ∈ML

pML
xi ,xj

I (C(xi) �= C(xj )) +
∑

xi ,xj ∈CL

pCL
xi ,xj

I (C(xi) = C(xj )),

where I (·) returns 1 if the parameter is true and 0 otherwise, C(xi) identifies the cluster-id that xi is
assigned to, and pML

xi,xj
and pCL

xi,xj
are the penalties for violating the must-link and cannot-link constraints

between xi and xj , respectively.
The first term in this objective function is the sum of squared error for all objects that is also the

objective in k-means. The second and third terms, respectively, are the penalties on the violations of
must-link and cannot-link constraints.

9.6.3 Other types of background knowledge for semisupervised clustering
We use partially labeled data and pairwise constraints as examples to illustrate how background knowl-
edge may be present and help clustering analysis, and how the traditional clustering methods can be
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extended to make good use of the available background knowledge. In practice, the background knowl-
edge that can be used in clustering analysis is not limited by the two types we discussed above. Here, we
use some examples to demonstrate more types of background knowledge. We will not go deep into the
corresponding clustering algorithms. Instead, interested readers are encouraged to explore the related
literature. Our bibliographic notes provide a series of pointers.

Semisupervised hierarchical clustering
Hierarchical clustering returns a dendrogram instead of just one partitioning of objects. Thus hierarchi-
cal clustering can entertain richer background knowledge. At the same time, some constraints used in
the partitioning clustering approaches may need to be extended or revised.

For example, since a full dendrogram has all objects in the data set at the root, that is, the most
general level, and each object in a separate cluster at the finest level, every must-link constraint is
satisfied at the root and every cannot-link constraint is satisfied at the finest level. Must-link and cannot-
link constraints for hierarchical clustering have to come with more context information. As a concrete
example, when conducting hierarchical clustering on animal species, a taxonomist may specify a must-
link before constraint between platypus and echidna, meaning these two species should be clustered
together before they are clustered with other species. The taxonomist may also provide more domain
knowledge by specifying an ordering constraint (platypus, echidna, beaver). The constraint means that,
in the resulting hierarchical clustering dendrogram, platypus and echidna should be clustered together
before they join beaver in a cluster at a higher level.

Clusters associated with outcome variables
In some applications, we may wish to find clusters that are associated with one or multiple given
variables. The outcome variables are often a “noisy surrogate” for some unobserved clusters that are
interesting to users.

For example, a marketing manager may conduct clustering analysis to partition customers into
groups. The clustering method may use the observed features from the customer profiles, such as ad-
dress, household income, gender, and age. The manager may wish to find clusters that are associated
with an outcome variable of annual spending amount on products sold by the company. Fig. 9.19 illus-
trates the idea. The color of a data point reflects the annual spending amount, the warmer the higher.
Without considering this output variable, we may form four clusters: A, B, C, and D. If hierarchical
clustering is applied, we may combine A and B into one second-level cluster and C and D into another
second-level cluster. However, when the output variable is considered, since the points in B and C have
more similar spending amounts, we may want to combine B and C into a second-level cluster. The
background knowledge by the output variable provides us with some useful guidance to form clusters.

FIGURE 9.19

Clusters associated with an outcome variable.
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Active and interactive learning for semisupervised clustering
Background knowledge like must-link and cannot-link constraints is helpful for semisupervised cluster-
ing. However, a user may have difficulty in specifying must-link and cannot-link constraints on a large
set of objects to be clustered. To tackle this challenge, active and interactive learning for semisupervised
clustering is explored.

Active learning can be conducted to obtain important must-link and cannot-link constraints. For
example, one idea is to get at least one object from each cluster with a small number of requests to
users for providing pairwise relationship information. One possible approach is to pick an object that is
farthest from all the other points and another object in an existing cluster and ask a user to judge whether
a must-link constraint should be put on those two objects. If so, then the farthest point is assigned to
the cluster. If not, a new cluster is created for the farthest point. This process continues until we have
enough initial clusters.

User feedback can be accommodated not only at the beginning of the clustering, but can be taken
interactively during the whole iterative clustering process. For example, a user can interactively provide
feedback about the quality of clusters in the intermediate results. The types of feedback may include
(1) an object is put in a wrong cluster; (2) an object should be moved to a more appropriate cluster; (3)
two objects should be put in the same cluster (similar to a must-link constraint); and (4) two objects
should be put in different clusters (similar to a cannot-link constraint). A clustering algorithm can take
the feedback and update the clusters by either directly adjusting the cluster assignment or adjusting the
similarity measure and rerunning the clustering process.

9.7 Summary
• In conventional cluster analysis, an object is assigned to one cluster exclusively. However, in some

applications, there is a need to assign an object to one or more clusters in a fuzzy or probabilistic way.
Fuzzy clustering and probabilistic model-based clustering allow an object to belong to one or
more clusters. A partition matrix records the membership degree of objects belonging to clusters.

• Probabilistic model-based clustering assumes that a cluster is a parameterized distribution. Using
the data to be clustered as the observed samples, we can estimate the parameters of the clusters.

• A mixture model assumes that a set of observed objects is a mixture of instances from multiple
probabilistic clusters. Conceptually, each observed object is generated independently by first choos-
ing a probabilistic cluster according to the probabilities of the clusters, and then choosing a sample
according to the probability density function of the chosen cluster.

• An expectation-maximization algorithm is a framework for approaching maximum likelihood
or maximum a posteriori estimates of parameters in statistical models. Expectation-maximization
algorithms can be used to compute fuzzy clustering and probabilistic model-based clustering.

• High-dimensional data poses grand challenges for cluster analysis, including how to model high-
dimensional clusters and how to search for such clusters. The curse of dimensionality is mainly
caused by many irrelevant or correlated attributes, data sparsity, distance concentration effect of
similarity measures, and difficulty in optimization.

• There are two different kinds of subspaces that clustering methods may target at, namely axis-
parallel subspaces and arbitrarily-oriented subspaces. There are two major categories of cluster-
ing methods for high-dimensional data: clustering methods and dimensionality reduction meth-
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ods. Clustering methods search for clusters in subspaces of the original space and can be further
categorized into subspace clustering methods, projected clustering methods, and biclustering
methods. Dimensionality reduction methods create a new space of lower dimensionality and
search for clusters there.

• Biclustering methods cluster objects and attributes simultaneously. Types of biclusters include bi-
clusters with constant values, constant values on rows/columns, coherent values, and coherent
evolutions on rows/columns. Two major types of biclustering methods are optimization-based
methods and enumeration methods.

• Dimensionality reduction transforms a high-dimensional data set into a low-dimensional space so
that the low-dimensional representation retains meaningful properties of the original data, ideally
approaching the intrinsic dimensions of the underlying structures.

• There are many dimensionality reduction methods. Principal component analysis (PCA) is fre-
quently used to identify the most meaningful basis to re-express a data set. Nonnegative matrix
factorization (NMF) decomposes a data set X ≈ HW, where the entries in H and W are non-
negative. H and W represent how objects are assigned to clusters and the “centers” of clusters,
respectively. Spectral clustering constructs new dimensions using an affinity matrix.

• Clustering graph and network data have many applications, such as social network analysis and
web search. The major challenges include how to measure the similarity between objects in a graph
and how to design clustering models and methods for graph and network data.

• Geodesic distance is the number of edges between two vertices on a graph. It can be used to mea-
sure similarity. Alternatively, similarity in graphs, such as social networks, can be measured using
structural context and random walk. SimRank is a similarity measure that is based on both struc-
tural context and random walk. Some other similarity measures for graphs include personalized
PageRank and topical PageRank.

• Graph clustering can be modeled as computing graph cuts. A sparsest cut may lead to a good
clustering, whereas modularity can be used to measure the clustering quality. Computing graph cuts
on large graphs faces several challenges, including high computational cost, sophisticated graphs,
high dimensionality, and sparsity.

• The generic graph clustering methods extract a similarity matrix from a graph using a similarity
measure and then apply a generic clustering method on the similarity matrix to discover clusters.
SCAN is a graph clustering algorithm that searches graph structures to identify well-connected
components as clusters. Probabilistic graphical model-based methods regard a graph as a set of
observations generated by a probabilistic model and use some heuristics on community generation
to find clusters as communities in a graph. The stochastic block model (SBM) is an example.

• Semisupervised clustering uses domain knowledge to improve clustering results. The domain
knowledge may take the form of partially labeled data, pairwise constraints on objects, and some
other types. Some classical clustering algorithms can be extended to accommodate those constraints.

9.8 Exercises
9.1. Traditional clustering methods are rigid in that they require each object to belong exclusively to

only one cluster. Explain why this is a special case of fuzzy clustering. You may use k-means as
an example.
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9.2. An e-commerce company carries 1000 products, P1, . . . , P1000. Consider customers Ada, Bob,
and Cathy such that Ada and Bob purchase three products in common, P1, P2, and P3. For
the other 997 products, Ada and Bob independently purchase seven of them randomly. Cathy
purchases 10 products, randomly selected from the 1000 products. In Euclidean distance, what is
the probability that dist (Ada,Bob) > dist (Ada,Cathy)? What if Jaccard similarity (Chapter 2)
is used? What can you learn from this example?

9.3. Can you show that the k-medoids method can also be implemented in the EM algorithm frame-
work?

9.4. In the EM algorithm for mixture models, if for all univariate Gaussian distributions �j (1 ≤ j ≤
k), σj = σ , that is, all have the standard deviation. Can you simplify the calculation in the E-step
and the M-step accordingly?

9.5. Show that I × J is a bicluster with coherent values if and only if, for any i1, i2 ∈ I and j1, j2 ∈ J ,
ei1j1 − ei2j1 = ei1j2 − ei2j2 .

9.6. In soft projected clustering method LAC, explain how the weights and the clusters can be com-
puted using the EM algorithm.

9.7. Compare the MaPle algorithm (Section 9.3) with the frequent closed itemset mining algorithm,
CLOSET (Pei, Han, and Mao [PHM00]). What are the major similarities and differences?

9.8. Given 20 data points in 2-D space whose first principal component is u = ( 1√
2
, 1√

2
)′.

a. Suppose we add one more data point at (2,2)′; how would that affect the first principal
component?

b. Suppose we add one more data point at (3,0)′; how would that affect the first principal
component?

c. Suppose we add an infinite number of data points at (5,0)′; how would that affect the first
principal component?

9.9. Given n data tuples in d-dimensional space, we can represent them as an n × d matrix X, where
the rows of X are for different data tuples and columns are for different features. NMF introduced
in Section 9.4.2 performs matrix low-rank approximation with the constraint that both low-rank
matrices must be nonnegative. In this exercise, we will learn that k-Means clustering can also be
viewed as a special form of matrix low-rank approximation. Based on that, we will compare the
similarity and difference between these two clustering methods.
a. Prove that K-Means clustering can be viewed as a special form of matrix low-rank approx-

imation. That is, the optimization objective of K-Means is equivalent to

{W ∗,H ∗} = argminW,H ‖X − HW‖2
f ro, (9.47)

where ‖.‖f ro is the matrix Frobenius norm, H and W are two low-rank matrices with
appropriate constraints. In particular, what is the size constraint on H and W , respectively?
What are additional constraints we need to impose on H and/or W , so that Eq. (9.47) is
equivalent to the optimization objective of K-Means?

b. Based on the above analysis, what are the commonalities between NMF and K-Means?
What are the difference between them?

9.10. In this exercise, we will learn about the mathematical details underlying many spectral clustering
methods (Section 9.4.3). Given an n × n similarity matrix W whose elements are the similarities
between the corresponding data tuples (i.e., W(i, j) measures the similarity between tuples i and
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j ). We wish to partition the data tuples into two clusters. Let q be a cluster membership vector of
length n: q(i) = 1 if data tuple i belongs to Cluster A; and q(i) = −1 if it belongs to Cluster B.
One way to find these two clusters is to minimize the so-called cut-size, which measures the total
similarities across different clusters:

q∗ = arg min
q∈{−1,1}n J = 1

4

n∑
i,j=1

(q(i) − q(j))2W(i, j). (9.48)

a. Prove that the cut-size J = 1
2qT (D − W)q, where D is the degree matrix of W : D(i, i) =∑n

j=1 W(i, j) and D(i, j) = 0 for j �= i; and T is the vector transpose.
b. It is very difficult to directly optimize Eq. (9.48) since the cluster membership vector q is

a binary vector. In practice, we relax q and allow it to take real numbers, and aim to solve
the following optimization problem instead. Prove that the optimal solution of Eq. (9.49) is
given by the eigenvector of D − W that corresponds to the second smallest eigenvalue.

q∗ = arg min
q∈Rn

qT (D − W)q

s.t.
n∑

i=1

q(i)2 = n (9.49)

9.11. SimRank is a similarity measure for clustering graph and network data.
a. Prove lim

i→∞ si(u, v) = s(u, v) for SimRank computation.

b. Show s(u, v) = p(u, v) for SimRank.
9.12. In a large sparse graph where on average each node has a low degree, is the similarity matrix

using SimRank still sparse? If so, in what sense? If not, why? Deliberate on your answer.
9.13. Compare the SCAN algorithm (Section 9.5.3) with DBSCAN (Section 8.4.1). What are their

similarities and differences?
9.14. Consider partitioning clustering and the following constraint on clusters: The number of objects

in each cluster must be between n
k
(1 − δ) and n

k
(1 + δ), where n is the total number of objects

in the data set, k is the number of clusters desired, and δ in [0,1) is a parameter. Can you extend
the k-means method to handle this constraint? Discuss situations where the constraint is hard
and soft.

9.9 Bibliographic notes
Höppner Klawonn, Kruse, and Runkler [HKKR99] provide a thorough discussion of fuzzy clustering.
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alized PageRank. Xu et al. [XYFS07] propose the SCAN algorithm. Arora, Rao, and Vazirani [ARV09]
discuss the sparsest cuts and approximation algorithms. Stochastic block models are first proposed by
Holland, Laskey, and Leinhardt [HLL83]. Rohe, Chatterjee, and Yu [RCY11] discuss spectral cluster-
ing and high-dimensional stochastic block models.

Semisupervised clustering has been extensively studied [BBM02,BBM04,GCB04,Bai13]. Con-
strained kmeans is developed by Wagstaff, Cardie, Rogers, and Schrödl [WCRS01]. Basu, Banerjee,
and Mooney [BBM02] develop seeded kmeans. The COP-k-means algorithm is given by Wagstaff
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10
CHAPTER

Deep learning

In this chapter, you will learn deep learning, a powerful family of techniques based on artificial neural
networks with broad applications in computer vision, natural language processing, machine translation,
social network analysis, and so on. It has been used in a variety of data mining tasks, including clas-
sification, clustering, outlier detection, and reinforcement learning. We start with the basic concepts
(Section 10.1). Then, we introduce key algorithmic techniques for training an effective deep learning
model (Section 10.2), and commonly used deep learning model architectures, including convolutional
neural networks (Section 10.3), recurrent neural networks (Section 10.4), and graph neural networks
(Section 10.5).

10.1 Basic concepts
10.1.1 What is deep learning?
Deep learning is based on artificial neural networks (ANNs) (or neural networks for short). Fig. 10.1
shows an illustrative example of neural network, and we will dive into details in a minute. Roughly
speaking, a neural network is a set of connected input-output units in which each connection has a
weight associated with it. During the learning phase, the network learns by adjusting the weights in
order to predict the correct target values (e.g., class labels) of the input tuples.

A neural network is made up of interconnected units. So, what is a unit? Actually, we have already
seen it! Recall that in Chapter 6, we introduced some basic classifiers, such as perceptron and logistic re-
gression. Consider a data tuple X with n attributes: X = (X1,X2, ...,Xn). Both perceptron and logistic
regression classifier first take a linear weighted sum of different attributes or features

∑n
i=1 Xiwi + b,

where wi (i = 1, ..., n) are the weights and b is the bias scalar. Then, perceptron predicts the class label
based on the sign of the linear weighted sum ŷ = sign(

∑n
i=1 Xiwi + b), where sign(z) = 1 if z ≥ 0 and

sign(z) = 0 otherwise; logistic regression predicts the class posterior probability based on the sigmoid
function of the linear weighted sum P(y = 1|X) = σ(

∑n
i=1 Xiwi + b), where σ(z) = 1

1+exp(−z)
is the

sigmoid function. In the neural network terminology, both perceptron and logistic regression can be
viewed as a unit.

Formally, a unit is a mathematical function that (1) takes a linear weighted sum of the input, and
then (2) passes the sum through an activation function f (·). The activation function f (·) is typically
a nonlinear function, such as the sign function in perceptron and the sigmoid function σ(·) in logistic
regression. Many other choices for the activation function exist, and we will introduce some of them in
Section 10.2. For the deep learning algorithms, it is convenient to introduce two additional notations.
The first one is the net input I = ∑n

i=1 Xiwi + b of the activation function. The second is the output of
the unit O = f (I). A pictorial illustration of a unit is presented in Fig. 10.2.

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00020-5
Copyright © 2023 Elsevier Inc. All rights reserved.
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FIGURE 10.1

Multilayer feed-forward neural network.

FIGURE 10.2

An illustrative example of unit. Given the inputs X1, ...,Xn, a unit takes a linear weighted sum and then passes
the sum through an activation function f (·). I = ∑n

i=1 Xiwi + b is the net input of the activation function and
O = f (I) is the output of the unit. wi (i = 1, ..., n) are weights and b is the bias scalar.

A neural network is essentially a collection of interconnected units. Depending on how different
units are organized with each other, there are many different kinds of neural networks. Among them,
a very important and powerful type of neural network is called multilayer feed-forward neural net-
work. Formally, a multilayer feed-forward neural network consists of an input layer, one or more
hidden layers, and an output layer. An example of a multilayer feed-forward network is shown in
Fig. 10.1.

Each layer is made up of units. The inputs to the network correspond to the attributes measured for
each training tuple. The inputs are fed simultaneously into the units making up the input layer. These
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inputs pass through the input layer and are then weighted and fed simultaneously to a second layer of
“neuronlike” units, known as a hidden layer. The outputs of the hidden layer units can be input to
another hidden layer, and so on. The number of hidden layers could be arbitrary (1 hidden layer in this
example), outputs of the last hidden layer are input to units making up the output layer, which emits
the network’s predictions for given tuples.

The units in the input layer are called input units. The units in the hidden layers and output layer
are sometimes referred to as neurodes or neurons, due to their symbolic biological basis, or as output
units. The multilayer feed-forward neural network shown in Fig. 10.1 has two layers of output units.
Therefore we say that it is a two-layer neural network. Notice that the input layer is not counted because
it serves only to pass the input values to the next layer. In other words, the activation function for an
input unit is always an identity function: O = f (I) = I . Similarly, a network containing two hidden
layers is called a three-layer neural network, and so on. It is a feed-forward network since none of the
weights cycles back to an input unit or to a previous layer’s output unit. It is fully connected in the
sense that each unit provides input to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in the previous layer (see
Fig. 10.1). It applies a nonlinear activation function to the weighted sum of the inputs. If we know the
weights connecting to each layer and the activation function of each unit, we can feed any data tuple
into the input layer of the neural network and calculate its output from the output layer, which can
be used for classification, clustering, and so on. Multilayer feed-forward neural networks are able to
model the class prediction as a nonlinear combination of the inputs. From a statistical point of view,
they perform nonlinear regression. Multilayer feed-forward networks with sufficient depth and width,
given enough hidden units and enough training samples, can closely approximate any function. In a
multilayer feed-forward network, the output of a hidden unit is used as the input to units in the next
layer. This gives neural network an incredible ability to learn more complicated, often semantically
more meaningful features from the simpler ones. Put it in another way, from left to right of Fig. 10.1,
the outputs of units at each layer of a multilayer feed-forward neural networks form a hierarchy of
learned features at increasingly more complex levels.

Compared with other data mining methods we have seen before, such as logistic regression and Sup-
port Vector Machines (SVMs), being able to learn any nonlinear function that maps the input data tuple
to the output (e.g., the class label) and the automatic feature learning are two major advantages of neu-
ral networks. Let us use the classic XOR problem in Fig. 10.3 to further illustrate this. In Fig. 10.3(a),
there are four training tuples, each of which is represented by two attributes X1 and X2. Two positive
training tuples are at (0,1) and (1,0), respectively, and two negative training tuples are at (0,0) and
(1,1), respectively. This training set is linearly inseparable, meaning that there is no linear classifier
(e.g., perceptron) that is able to separate the two positive tuples from the two negative ones. However,
we can use two perceptrons (the two dashed lines in Fig. 10.3(a)) to separate the positive tuples from the
negative tuples. The first perceptron is in the form of O1 = sign(X2 − X1 − 0.5). The second percep-
tron is in the form of O2 = sign(X2 − X1 + 0.5). By combining these two perceptrons (each of which
is a linear classifier) together, we have a nonlinear classifier that perfectly separates the two positive
tuples from the two negative tuples; that is, if X2 − X1 − 0.5 ≥ 0 or X2 − X1 + 0.5 < 0, predict it as a
positive tuple; otherwise, predict it as a negative tuple.

This nonlinear classifier can be implemented as a two-layer feed-forward neural network in
Fig. 10.3(b) marked by the weights and scalars of each unit. There are two units (U3 and U4) in
the hidden layer, each of which takes the output of U1 and U2 (i.e., X1 and X2) to build a per-
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FIGURE 10.3

Solving XOR problem with a two-layer feed-forward neural network with sign as the activation function, which
is also called multilayer perception (MLP). Note that in (c), both negative tuples share the same representation
(O1,O2), both being at (0,1).

ceptron. In particular, the unit U3 corresponds to the first perceptron shown in Fig. 10.3(a): O1 =
sign(X2 − X1 − 0.5); and the unit U4 corresponds to the second perceptron shown in Fig. 10.3(a):
O2 = sign(X2 − X1 + 0.5). In the output layer, there is only one unit U5, which takes the outputs of
the two hidden units (O1 and O2) to build another perceptron, that is, y = sign(O2 − O1 − 0.5) (shown
as the dashed line in Fig. 10.3(c)). In this way, we are able to separate the two positive tuples from the
two negative ones. This neural network has three layers. The input layer has two units (U1 and U2),
each of which just passes through the corresponding input attributes (X1 and X2) to the hidden layer.
In this example, we use the sign function as the activation function for all neurons (U3, U4, and U5),
and this kind of neural network is also called multilayer perceptron (MLP).

In this example, the third perceptron at unit U5 takes O1 and O2 (i.e., the outputs of unit U3 and
U4), as its input features. In other words, both O1 and O2 can be viewed as the learned features by
the two hidden units. O1 represents whether or not the input tuple is above (O1 = 1) or below (O1 =
0) of the decision boundary of the first perceptron (the upper dashed line in Fig. 10.3(a)). Likewise,
O2 represents whether or not the input tuple is above (O2 = 1) or below (O2 = 0) of the decision
boundary of the second perceptron (the lower dashed line in Fig. 10.3(a)). Compared with the original
input attributes (X1 and X2), these two learned features are semantically more meaningful. As we can
see from Fig. 10.3(c), the tuples with these two newly learned features are now linearly separable. In
contrast, in the original feature space (Fig. 10.3(a)), these training tuples cannot be separated from each
other by any linear classifier.

The ability of neural networks to automatically learn features naturally motivates to use neural
networks with many hidden layers, namely, deep neural networks. Deep neural networks have an
incredible capability to learn and represent features at different abstraction levels (e.g., one level at each
hidden layer), where the more complicated features are learned based on the simpler ones. Let us look at
two examples to elaborate on this. In computer vision, we can build a type of deep neural network called
convolutional neural networks (it will be introduced in Section 10.3) to recognize different objects (e.g.,
car, person, animal) from the input image. The input layer of the neural network contains the raw pixels
(e.g., one pixel for each input unit), which represent the feature at the lowest semantic level. The output
(i.e., the learned feature from the raw pixels at the input layer) of the first hidden layer might correspond
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to edges of the input image.1 The output (i.e., the learned feature from the edges of the first hidden layer)
of the second hidden layer might correspond to contours or corners of the input image. The output (i.e.,
the learned feature from the edges and contours of the second hidden layer) of the third hidden layer
might correspond to parts of the objects (e.g., nose, car wheel) of the input image. Finally, the output
layer can easily learn a classifier to recognize different objects based on the object parts at the output
layer. For text mining, we can build a type of deep neural network called recurrent neural networks (it
will be introduced in Section 10.4) to classify text documents into different categories. The first layer
might take the raw characters as input and output the tokens (e.g., words, punctuation); the second layer
might take the tokens as input and output phrases; and the final output layer might take the phrases as
input and output category that the input document belongs to. While it is very difficult to directly train a
classifier (e.g., logistic regression for object recognition or document categorization) based on the raw
features of the input data (e.g., the raw pixels of images, the characters of documents), a deep neural
network decomposes this task into a sequence of interdependent subtasks (one at each hidden or output
layer), each of which learns a semantically more meaningful feature from the feature at the previous
layer.

On the one hand, the core algorithmic framework to train a deep neural network, namely backprop-
agation algorithm, has largely remained the same as for the traditional feed-forward neural networks
with only a few hidden layers. Therefore we will first introduce this algorithm in Section 10.1.2. On the
other hand, it becomes significantly more challenging to train a deep neural network due to its increased
number of layers. We will introduce such challenges in Section 10.1.3 and the solutions to handle these
challenges in Section 10.2.

Deep learning is closely related to representation learning, which aims to automatically learn
effective representation (i.e., features, attributes) from the input data to facilitate data mining tasks
(e.g., classification, clustering). Notice that the scope of representation learning is broader than deep
learning, in that there exist nonneural network methods to automatically learn representation from the
input data. An example is principal component analysis (introduced in Chapter 2), where each principal
component, a linear combination of the input attributes, can be viewed as a learned new feature.

10.1.2 Backpropagation algorithm
For the example in Fig. 10.3, the weights and bias values are given. However, how can we automati-
cally learn such parameters, including the weight vectors and the bias scalars, from the training tuples?
A foundational technique is called backpropagation algorithm. Backpropagation learns by iteratively
processing a data set of training tuples, comparing the network’s prediction for each tuple with the
actual known target value. The target value may be the known class label of the training tuple (for clas-
sification problems) or a continuous value (for numeric prediction). For each training tuple, the weights
as well as the bias values are modified so as to minimize the difference or the disagreement (e.g.,
mean-squared loss) between the network’s prediction and the actual target value. These modifications
are made in the “backward” direction (i.e., from the output layer) through each hidden layer down to
the first hidden layer (hence the name backpropagation). Although it is not guaranteed, in general, the
weights will often eventually converge, when the learning process stops. The algorithm is summarized

1 In computer vision, an edge is where the color or the gray intensity of a group of adjacent pixels suddenly change.
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Algorithm: Backpropagation. Neural network learning for classification or numeric prediction, using the backpropagation
algorithm.

Input:

• D, a data set consisting of the training tuples and their associated target values;
• η, the learning rate;
• network, a multilayer feed-forward network.

Output: A trained neural network (i.e., the weights wij and bias bj for each hidden or output unit).
Method:

(1) Initialize all weights and biases in network;
(2) while terminating condition is not satisfied {
(3) for each training tuple X with target output T in D {
(4) // Propagate the inputs forward:
(5) for each input layer unit j {
(6) Oj = Ij ; // output of an input unit is its actual input value
(7) for each hidden or output layer unit j {
(8) Ij = ∑

i wij Oi + bj ; // compute the net input of unit j with respect to
the units of the previous layer, i

(9) Oj = 1

1+e
−Ij

; } // compute the output of each unit j (sigmoid activation)

(10) // Backpropagate the errors:
(11) for each unit j in the output layer
(12) δj = Oj (1 − Oj )(Tj − Oj ); // compute the error (mean-squared loss)
(13) for each unit j in the hidden layers, from the last to the first hidden layer
(14) δj = Oj (1 − Oj )(

∑
l δlwjl); // compute the error with respect to

the next higher layer, l

(15) for each weight wij in network {
(16) �wij = ηδj Oi ; // weight increment
(17) wij = wij − �wij ; } // weight update
(18) for each bias bj in network {
(19) �bj = ηδj ; // bias increment
(20) bj = bj − �bj ; } // bias update
(21) } }

FIGURE 10.4

Backpropagation algorithm.

in Fig. 10.4. The steps involved are expressed in terms of inputs Ii , outputs Oi , and errors δi and may
seem awkward if this is your first look at neural network learning. However, once you become familiar
with the process, you will see that each step is inherently simple. The steps are described next. Note
that the algorithm described in Fig. 10.4 uses the mean-squared loss and sigmoid activation function.
We can generalize the algorithm in Fig. 10.4 with other types of loss functions or activation functions.

Initialize the weights: The weights in the network are initialized to small random numbers (e.g., rang-
ing from −1.0 to 1.0 or −0.5 to 0.5). Each unit has a bias associated with it, which are similarly
initialized to small random numbers. An important aspect for initializing the model parameters is to
break symmetry. For the example in Fig. 10.5, both U3 and U4 are connected to the same input units
(U1 and U2). Therefore it is critical to make sure that the initial weights for U3 are different from
those for U4, i.e., w13 �= w14 and w23 �= w24. Otherwise, U3 and U4 become unidentifiable; that is, their
weights will be updated in the same way and thus will always be the same. Other than random initial-
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ization, in the next section, we will introduce an effective strategy, called “pretraining,” which presets
the weights and scalars in a certain way.

Each training tuple, X, has a target output T , which could be the actual class label for the classi-
fication task or the numerical value for the regression task. It is processed by the following steps. See
Fig. 10.5 for a pictorial illustration.

Propagate the inputs forward: First, the training tuples are fed to the network’s input layer. The inputs
pass through the input units, unchanged. That is, for an input unit, j , its output, Oj , is equal to its input
value, Ij . Next, the net input and output of each unit in the hidden and output layers are computed. The
net input to a unit in the hidden or output layers is computed as a linear weighted sum of its inputs. To
help illustrate this point, a hidden layer or output layer unit is shown in Fig. 10.2. Each such unit has
a number of inputs to it that are, in fact, the outputs of the units connected to it in the previous layer.
Each connection has a weight. To compute the net input to the unit, each input connected to the unit is
multiplied by its corresponding weight, and this is summed. Given a unit, j in a hidden or output layer,
the net input, Ij , to unit j is

Ij =
∑

i

wijOi + bj , (10.1)

where wij is the weight of the connection from unit i in the previous layer to unit j ; Oi is the output of
unit i from the previous layer; and bj is the bias of the unit. The bias acts as a threshold to adjust the
net input of the unit.2

Each unit in the hidden and output layers takes its net input and then applies an activation function
to it, as illustrated in Fig. 10.2. The function symbolizes the activation of the neuron represented by the
unit. Here, the sigmoid function is used. (Recall that in Chapter 6, we have used the sigmoid function
to train the logistic regression classifier.) Given the net input Ij to unit j , then Oj , the output of unit j ,
is computed as

Oj = 1

1 + e−Ij
. (10.2)

This function is also referred to as a squashing function, because it maps a large input domain onto the
smaller range of 0 to 1. The sigmoid function is nonlinear and differentiable, allowing the backpropa-
gation algorithm to model classification problems that are linearly inseparable.

We compute the output values, Oj , for each hidden layer, up to and including the output layer,
which gives the network’s prediction. In practice, it is a good idea to cache (i.e., save) the intermediate
output values at each unit as they are required again later when backpropagating the error. This trick
can substantially reduce the amount of computation required.

Backpropagate the error: The error is propagated backward to reflect the accuracy of the current
network’s prediction, which is in turn used to update the weights and biases. For a unit j in the output
layer, the error δj is computed by

δj = Oj(1 − Oj)(Oj − Tj ), (10.3)

2 To see this, we can conceptually think of the bias bj as the bias scalar in a linear regression model. In other words, it tells the
default (i.e., biased) value of the net input Ij , without any output from the previous layer (i.e., Oi = 0).
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where Oj is the actual output of unit j , and Tj is the known target value of the given training tuple.
Note that for some data mining tasks, such as multiclass classification, there are multiple output units
(one unit for each class label), and the index j is used for different output units. For simpler tasks (e.g.,
binary classification, regression), there is only one unit in the output layer. In that case, the index j can
be omitted. In Eq. (10.3), Oj(1 − Oj) is the derivative of the sigmoid function with respect to the net

input, i.e.
∂Oj

∂Ij
= Oj(1 − Oj).

To compute the error of a hidden layer unit j , the weighted sum of the errors of the units connected
to unit j in the next higher layer is considered. The error of a hidden layer unit j is

δj = Oj(1 − Oj)(
∑

l

δlwjl), (10.4)

where wjl is the weight of the connection from unit j to unit l in the next higher layer, δl is the error
of unit l, and Oj(1 − Oj) is the derivative of the sigmoid function with respect to the net input, i.e.
∂Oj

∂Ij
= Oj(1 − Oj).

The weights and biases are updated to reflect the propagated errors. Weights are updated by the
following equations, where �wij is the change in weight wij .

�wij = ηδjOi. (10.5)

wij = wij − �wij . (10.6)

“What is η in Eq. (10.5)?” η is the learning rate, a constant typically having a value between 0.0
and 1.0. Backpropagation uses using a gradient descent method to search for a set of weights that fits the
training data with the goal of minimizing the mean-squared loss between the network’s prediction and
the known target value of the tuples.3 The learning rate helps avoid getting stuck at a local minimum
in the decision space (i.e., where the weights appear to converge but are not the optimum solution) and
encourages finding a high-quality solution. If the learning rate is too small, then learning will occur at
a very slow pace. If the learning rate is too large, then oscillation between inadequate solutions may
occur. A rule of thumb is to set the learning rate to 1/t , where t is the number of iterations through the
training set so far. We will talk more about the learning rate η in Section 10.2.2.

Biases are updated by the following equations, where �bj is the change in bias bj :

�bj = ηδj . (10.7)

bj = bj − �bj . (10.8)

For a given tuple X with the target value T , let T̂ be the predicted output of X. The predicted value
T̂ is the output of the output unit, which is a (complicated) function of the weights and bias scalars.
For the algorithm in Fig. 10.4, we use the mean-squared loss L to measure the disagreement between
the predicted and actual target values of training tuple X: L = 1

2 (T − T̂ )2. In some applications (e.g.,

multiclass classification), the training tuple X has multiple target values. In this case, both T and T̂

are vectors: T = (T1, T2, ..., TC) and T̂ = (T̂1, T̂2, ..., T̂C). The mean-squared loss can be defined in
a similar way, that is, L = 1

2

∑C
j=1(Tj − T̂j )

2. Mathematically, the error term δi in Eq. (10.3) and

3 The gradient descent method was used for training logistic regression classifier in Chapter 7.
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FIGURE 10.5

An illustration of the backpropagation algorithm. Given a training tuple, the algorithm first forward propagates the
net input and output of each unit (the upper part of the figure). Then, it backward propagates the error of each unit
(the bottom part of the figure). The output O10 of unit 10 gives the predicted target value T̂ = O10, which is a func-
tion of the weights and bias scalars. The goal of backpropagation is to adjust the weights and bias scalars so that the
predicted output matches the actual target output T as well as possible. That is, to minimize the loss L = 1

2 (T̂ − T )2.
The error of a given unit can be recursively computed based on the errors of the units it connects to in the next
higher layer. For example, the error of unit 6 can be computed based on the errors of unit 8 and unit 9 (shaded in the
figure). That is, δ6 = O6(1 − O6)(w68δ8 + w69δ9). For clarity, the bias scalar or the weights between other units are
not shown in the figure. Note that we actually do not need to calculate δ1 = δ2 = 0, since the input units (U1 and U2)
just pass through the input attributes: O1 = I1 = X1 and O2 = I2 = X2.

Eq. (10.4) is the derivative of the loss L with respect to the net input of unit i: δi = ∂L
∂Ii

. Accordingly,
in Eq. (10.6) and Eq. (10.8), we update the weights and bias based on gradient descent. The intuition is
that we want to update the weights and bias so that the loss L will decrease most. In some literature, the
error term δi is defined as the derivative of the loss L with respect to the output of unit i: δi = ∂L

∂Oi
. One

can develop a similar algorithm as in Fig. 10.4 with this definition, although some mathematical details
(e.g., the equations for updating the error terms) will be different. Fig. 10.5 presents an illustration of
backpropagation algorithm.

Each iteration in the while loop of Fig. 10.4 is called an epoch. Note that in Fig. 10.4, we update
the weights and bias values after the presentation of each tuple. Alternatively, the weight and bias
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FIGURE 10.6

Comparison of gradient descent and stochastic gradient descent. Each ellipse is a contour of the function (e.g., the
loss function in a neural network) to minimize. Gradient descent (the purple (mid gray in print version) arrows in
(a)) finds the best direction to decrease the objective function value. It needs less epochs to find the optimal solution.
However, in each epoch, it needs to use all the training tuples to find the best direction (i.e., the gradient). Stochastic
gradient descent (the purple (mid gray in print version) arrows in (b)) finds a direction that approximates best direc-
tion to decrease the loss function value. It needs more epochs to find the optimal solution. However, in each epoch, it
only needs a mini-batch of training tuples. Overall, stochastic gradient descent is often much more computationally
efficient than gradient descent.

increments (�wij and �bj ) could be accumulated in variables, so that the weights and biases are
updated after all the tuples (called full batch) in the training set have been presented. In theory, the
mathematical derivation of backpropagation employs the latter strategy, since the gradients computed
in this way give the best direction to reduce the disagreement (or loss) between the actual target values
and predicted values of training tuples. In practice, we often use another strategy called stochastic
gradient descent, which works as follows. In each epoch, we randomly and independently sample a
small number of training tuples (called mini-batch). The weight and bias increments of each sampled
training tuple are accumulated, that is, �bj = η

∑
k δk

j and �wij = η
∑

k δk
j O

k
j , where k is the index of

sampled mini-batch. Compared with the standard gradient descent, which needs all training tuples to
compute the exact gradient in one epoch, stochastic gradient descent needs more epochs to terminate,
but it only needs a small number of sampled tuples to calculate an estimated gradient in each epoch.
The benefit of being able to quickly estimate the gradient at each epoch often outweighs the fact that
stochastic gradient descent needs more epochs. Therefore the overall running time of stochastic gradient
descent is often much smaller than the standard gradient descent. See Fig. 10.6 for an illustration and
comparison.

Terminating condition: Training stops when

• All �wij in the previous epoch are so small as to be below some specified threshold, or
• The percentage of tuples misclassified in the previous epoch is below some threshold, or
• A prespecified number of epochs has expired.
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FIGURE 10.7

Example of a multilayer feed-forward neural network.

Table 10.1 Initial inputs, weights, and bias values.

x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56 b4 b5 b6

1 0 1 0.2 −0.3 0.4 0.1 −0.5 0.2 −0.3 −0.2 −0.4 0.2 0.1

In practice, several hundreds of thousands of epochs may be required before the weights will converge.
“How efficient is backpropagation?” The computational efficiency depends on the time spent train-

ing the network. Given |D| tuples and w weights, each epoch requires O(|D| × w) time. However, in
the worst-case scenario, the number of epochs can be exponential in n, the number of inputs. In prac-
tice, the time required for the networks to converge is highly variable. A number of techniques exist
that help speed up the training time. We will introduce some key algorithmic techniques to accelerate
the computation in Section 10.2.

Example 10.1. Sample calculations for learning by the backpropagation algorithm. Fig. 10.7
shows a multilayer feed-forward neural network. Let the learning rate η = 0.9. The initial weight and
bias values of the network are given in Table 10.1, along with the first training tuple, X = (1,0,1), with
a class label of 1.

This example shows the calculations for backpropagation, given the first training tuple, X. The tuple
is fed into the network, and the net input and output of each unit are computed. These values are shown
in Table 10.2. The error of each unit is computed and propagated backward. The error values are shown
in Table 10.3. The weight and bias updates are shown in Table 10.4.

“How can we classify an unknown tuple using a trained network?” To classify an unknown tuple,
X, the tuple is input to the trained network, and the net input and output of each unit are computed.
There is no need for computation or backpropagation of the error. If there is one output node per class,
then the output node with the highest value determines the predicted class label for X. This is called
Maxout in the sense that the maximum output value of all output units Oi(i = 1, ...,C) is used as the
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Table 10.2 Net input and output calculations.

Unit, j Net Input, Ij Output, Oj

4 0.2 + 0 − 0.5 − 0.4 = −0.7 1/(1 + e0.7) = 0.332

5 −0.3 + 0 + 0.2 + 0.2 = 0.1 1/(1 + e−0.1) = 0.525

6 (−0.3)(0.332) − (0.2)(0.525) + 0.1 = −0.105 1/(1 + e0.105) = 0.474

Table 10.3 Calculation of the error at each
node.

Unit, j Error, δj

6 (0.474)(1 − 0.474)(1 − 0.474) = 0.1311

5 (0.525)(1 − 0.525)(0.1311)(−0.2) = −0.0065

4 (0.332)(1 − 0.332)(0.1311)(−0.3) = −0.0087

Table 10.4 Calculations for weight and bias up-
dating.

Weight or Bias New Value
w46 −0.3 − (0.9)(0.1311)(0.332) = −0.339

w56 −0.2 − (0.9)(0.1311)(0.525) = −0.262

w14 0.2 − (0.9)(−0.0087)(1) = 0.208

w15 −0.3 − (0.9)(−0.0065)(1) = −0.294

w24 0.4 − (0.9)(−0.0087)(0) = 0.4

w25 0.1 − (0.9)(−0.0065)(0) = 0.1

w34 −0.5 − (0.9)(−0.0087)(1) = −0.492

w35 0.2 − (0.9)(−0.0065)(1) = 0.206

b6 0.1 − (0.9)(0.1311) = −0.180

b5 0.2 − (0.9)(−0.0065) = 0.206

b4 −0.4 − (0.9)(−0.0087) = −0.392

network’s prediction. Alternatively, we can use SoftMax to convert the outputs Oi(i = 1, ...,C) to the

probabilities that the input tuple belongs to different class: eOi∑C
i=1 eOi

. Here, Oi is the output of the ith

output unit, and C is the total number of output units (e.g., the number of classes). If there is only one
output node, then an output value greater than or equal to 0.5 may be considered as belonging to the
positive class, while a value less than 0.5 may be considered negative.

Matrix form representation of feed-forward neural networks
For an L-layer feed-forward neural network, we can alternatively represent it in a more concise form
using matrix representation. To be specific, each data tuple is represented as an n0-dimensional vector
of attributes X = (x1, ..., xn0) where n0 is the number of attributes. Suppose each hidden or output layer
has ni units. We denote the output of units at each layer as a vector hi of length ni (i = 0, ....,L), h0 =
X, and hL contains the output of all output units. We denote all the weights connecting layer (i − 1) to
layer i as an ni−1 × ni weight matrix W i and all the bias values at a hidden or output layer as an ni-
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FIGURE 10.8

The matrix form representation of feed-forward neural network in Fig. 10.5. h0 represents the input units (i.e.,
h0 = x) and h4 represents the output units (i.e., h4 = o). For h1, h2, h3, each of them represents the hidden units at
the corresponding layer.

dimensional vector bi (i = 1, ...,L). Then, each hidden or output layer essentially transforms the vector
at the previous layer hi−1 to another vector hi , that is, hi = f (W ihi−1 + bi ), where the activation
function f (·) operates element-wisely on a vector. What is inside the f () function (W ihi−1 + bi)
is called an affine transformation.4 In a feed-forward neural network, each hidden or output unit is
connected to all units in the previous layer. We call such (hidden or output) layers as fully connected.
With such a matrix form representation, we represent an L-layer feed-forward neural network by a
chain graph with length of L.

Example 10.2. For the four-layer neural network in Fig. 10.5, its equivalent matrix form representation
is shown in Fig. 10.8, which is a chain graph of length 4. Since there are two input units in Fig. 10.5,
h0 is a vector of length 2. Likewise, h1 is a vector of length 2 (two hidden units in the first hidden
layer), h2 is a vector of length 3 (three hidden units in the second hidden layer), h3 is a vector of length
2 (two hidden units in the third hidden layer), and h4 is a vector of length 1 (i.e., it is a scalar, since
there is only one output unit in Fig. 10.5). The bias vector bi has the same length as the corresponding
hi (i = 1,2,3,4). The size of the weight matrix W i is determined by the length of hi−1 (number of
rows) and the length of hi (i = 1,2,3,4) (number of columns). For instance, since both h0 and h1

have length 2, the weight matrix W 1 is of size 2 × 2; since h2 has length 3 but h3 has length 2, the
weight matrix W 2 is of size 3 × 2. hi is obtained by a nonlinear activation function f () on the affine
transformation of hi−1 with the weight matrix W i and the bias vector bi (i = 1,2,3,4).

Most deep learning models are trained in the matrix form, where a major computational bottleneck
lies in matrix multiplication5 in both forward and backward propagation stages. In order to accelerate
this process, deep learning models are often trained with GPUs (graphics processing units) instead of
CPUs (central processing unit). Compared with CPUs, GPUs offer two major advantages, which are
critical in training deep learning models. First, GPUs are bandwidth optimized, which means that GPUs
are good at fetching a large amount of memory needed for matrix multiplication. Second, optimizing
the bandwidth comes at the potential cost of a high memory access latency. GPUs bypass this issue
(memory access latency) using a technique called thread parallelism.

4 Mathematically, an affine transformation is a linear method that changes one vector to another vector via translation, scale,
shear, or rotation.
5 Other computationally intensive components in training deep learning models include convolution, the key operation in a type
of deep learning model called convolutional neural networks, which will be introduced in Section 10.3.
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10.1.3 Key challenges for training deep learning models
As mentioned before, the key algorithmic framework to train a deep neural network, namely the back-
propagation algorithm in Fig. 10.4, has largely remained the same since the 1980s. Let us first take a
closer look at the backpropagation from the optimization perspective to identify the main algorithmic
challenges.

Given a set of m training tuples {(X1, T 1), ..., (Xm,T m)}, where Xl and T l are the input attribute
vector and target value of the lth tuple (l = 1, ...,m), respectively. We are given a feed-forward neural
network with fixed architecture, including the number of layers, the number of units at each layer, and
the activation function of each unit. However, we do not know the weights (wij ) and bias values (bj ) of
the network. Backpropagation learns such model parameters by adaptively adjusting them to minimize
the (approximate) training error E

E(θ) = 1

m

m∑
l=1

Loss(T̂ (Xl , θ), T l), (10.9)

where Loss() is the loss function for an individual tuple, such as mean-squared loss in Fig. 10.4; θ
represents all the model parameters the algorithm aims to learn, including all the weights wi,j and
bias values bj ; T̂ (Xl , θ) is the predicted target value for the lth tuple that is a (complicated) function
of the model parameter θ . The overall training error E(θ) is the average loss among all m training
tuples. Backpropagation starts with some initial guess of the model parameters θ0 and then iteratively
updates them as the following equation in order to minimize the training error E(θ), until the algorithm
terminates,

θ t+1 = θ t − ηgt , (10.10)

where t is the epoch number, η is the learning rate, and gt is the gradient of the training error E(θ) w.r.t.
the model parameters θ . In the full-batch gradient descent approach, gt is calculated by all m training
tuples; in the stochastic gradient descent approach, gt is estimated by a mini-batch of training tuples.
When the algorithm terminates, we use the θ∗ from the final epoch as the learned model parameters,
including all the weights (wij ) and the bias values bj .

The first challenge (optimization) we face is how to make sure that θ∗ is indeed a high-quality
solution to minimize E(θ) in Eq. (10.9). If the objective function we wish to minimize is convex (e.g.,
the one in Fig. 10.6), then the gradient descent in Eq. (10.10) guarantees that θ∗ is indeed the optimal
solution regardless the initial solution θ0. With stochastic gradient descent, θ t will converge to the
optimal solution in the probabilistic sense. However, the training error E(θ) in a deep neural network
is almost always nonconvex. As illustrated in Fig. 10.9, the (stochastic) gradient descent in Eq. (10.10)
becomes much more challenging for a nonconvex function, even if there is only a single variable to
optimize. Depending on where we start the search (i.e., the initial choice of θ0), the algorithm might
end up in a high-cost local minimal; it might be stuck in a plateau where the gradient gt is almost 0;
on the contrast the algorithm might jump over a desirable search area near a “cliff” where the gradient
gt is very large; or the algorithm might be deceived to stop at a saddle point where the gradient is zero
but it neither a local minimum nor maximum. Note that in practice, due to the high complexity of the
training error E(θ) of a deep neural network, it is neither realistic nor necessary to search for its global
minimal. Instead, most algorithms aim to find a high-quality local minimum, that is, a local minimal
with a low training error E(θ) in a computationally efficient way.
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FIGURE 10.9

An illustration of the optimization challenge for training deep neural networks due to nonconvexity.

The second challenge (generalization) we face is overfitting. E(θ) in Eq. (10.9) is the (approxi-
mated) training error. However, what we really want is to minimize the generalization error, that is,
the classification error on future, unseen test tuples. From what we have learned from Chapter 6, we
could end up with a deep neural network model whose parameters indeed minimize the training error
E(θ), but the learned network performs poorly on test tuples. Such overfitting is likely to happen, espe-
cially given the high complexity of deep neural networks with many layers and model parameters and
a limited amount of labeled training tuples.

In Section 10.2, we will learn some key algorithmic techniques to address these two challenges.

10.1.4 Overview of deep learning architecture
For an L-layer feed-forward neural network, it is primarily designed for multidimensional data. That
is, each data tuple is represented as an n0-dimensional vector of attributes X = (x1, ..., xn0) where
n0 is the number of attributes. In addition to feed-forward neural networks, there are many kinds of
deep neural networks, which are often designed for other types of input data, including convolutional
neural networks (CNNs) for grid-like data, recurrent neural networks (RNNs) for sequence data, and
graph neural networks (GNNs) for relational (i.e., graph) data. Table 10.5 gives an overview of these

Table 10.5 An overview of typical deep learning architectures.

Data Type Multidimensional Grid Sequence Graph

DL Architecture Feed-forward Network CNN RNN GNN
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typical deep learning architectures. Details of these deep learning architectures will be introduced in
Sections 10.3 (CNNs), 10.4 (RNNs), and 10.5 (GNNs), respectively.

10.2 Improve training of deep learning models
In this section, we introduce some key algorithmic techniques to address the two challenges (i.e., opti-
mization and generalization) outlined in Section 10.1.3.

10.2.1 Responsive activation functions
For the backpropagation algorithm in Fig. 10.4, we have used the sigmoid function σ(I) as the acti-
vation function, where O = σ(I) = 1

1+e−I ∈ (0,1) and its derivative is ∂O
∂I

= O(1 − O). The error δj

for an output unit j is calculated as δj = Oj(1 − Oj)(Tj − Oj), where Tj and Oj are the actual and
predicted target values for a training tuple, respectively. We can see that if Oj is close to either 1 or
0, Oj(1 − Oj) will be close to 0, which will in turn make the error δj ≈ 0. From Line 16 and Line 18
of Fig. 10.4, we can see that the weights increment �wij and the bias increment �bj will be close to
0, and thus the weights and bias values will almost remain same in this epoch. Since σ(O) ∈ (0,1), in
either case (Oj ≈ 1 or Oj ≈ 0), the unit is “saturated” in that its output is approaching one of its limited
values. Put it in another way, when the output unit is saturated, the gradient gt in Eq. (10.10) is close to
zero, and thus (stochastic) gradient descent procedure makes very small progress in updating the model
parameters θ or is even stuck (i.e., θ t+1 ≈ θ t ). See the plateau in Fig. 10.9 for an illustration.

This issue could be further exacerbated due to the backpropagation of the error from the output layer
to the hidden layers. From Line 14 of Fig. 10.4, we can see that the error δj of a hidden unit j might
quickly approach zero due to the recursive multiplication of a set of small numbers. That is, in order to
calculate the error for a hidden unit j , we first aggregate errors of units in the next higher layer that unit
j connects to (i.e.,

∑
l δlwjl), and then decay the aggregation result by the derivative of the sigmoid

function of the unit j (i.e., Oj(1 − Oj)), which is always between 0 and 1. By recursively propagating
the error terms backward, the error of a hidden unit, especially those from the lower layers, are likely
to approach zero, even if the output unit itself is not saturated. In other words, their gradients vanish
during the backpropagation process. Consequently, the corresponding model parameters θ (the weights
and the bias values) will remain almost the same.

An effective way to address the gradient vanishing problem is to replace the sigmoid function with
alternative, more responsive activation functions that are less likely to be saturated. Rectified linear
unit (ReLU) is one such example. A ReLU activation function is defined as O = f (I) = I if I > 0
and O = f (I) = 0 otherwise. In other words, if the net input is negative, a ReLU unit simply outputs
0 (i.e., the unit is inactive); otherwise, it just passes through the same positive net input as its output.
Compared with the sigmoid function, the output of the ReLU function will be saturated only on one
side when the net input is negative. The derivative of a ReLU function with respect to its net input can
be calculated as ∂O

∂I
= 1 if I > 0 and ∂O

∂I
= 0 otherwise.6

6 If the net input I = 0, the derivative does not exist for the ReLU function. We can simply set it as 0. Mathematically, we can
set any number between 0 and 1, known as the subgradient of the unit output w.r.t. the net input when I = 0.
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FIGURE 10.10

An illustration of gradient vanishing problem caused by sigmoid activation and how ReLU can avoid it. Weights and
biases are initialized as in the figure. For two different hidden unit activation functions (i.e., ReLU and sigmoid),
errors δ(i) for each unit are summarized in the bar charts. The outputs of units 12 and 13 (i.e., O(12), O(13)),
approximate 1 and therefore are saturated. We observe that with sigmoid as the activation, the error decreases dra-
matically as it backpropagates, whereas the ReLU activation bears comparable errors for different units at different
layers.

So, what would happen if we use ReLU, instead of the sigmoid function, as the activation function?
In a given epoch, if a unit j is inactive (i.e., its net input is negative and the output is zero), its error
term δj = 0 and its parameters (weights and the bias value) will remain the same in this epoch. On the

other hand, if the unit j is active (i.e., its output Oj = Ii > 0), since the derivative
∂Oj

∂Ij
= 1, we simply

aggregate all the error terms from the units in the next higher layer that unit j connects to, without
decaying it by a small number (e.g., Oj(1 − Oj) with the sigmoid function). In this way, we effectively
avoid the gradient vanishing problem, even if we propagate the error terms through many layers in a
deep neural network. See Fig. 10.10 for an illustration.

Other than ReLU, several alternative activation functions exist, which are more responsive than the
sigmoid function and thus are less likely to encounter gradient vanishing problem. Table 10.6 provides
a summary.

10.2.2 Adaptive learning rate
For the learning rate η in backpropagation algorithm in Fig. 10.4 (or equivalently η in Eq. (10.10)), if
it is too small, the model parameters θ might change very slowly, and thus it might take many epochs
for the algorithm to terminate. On the other hand, if the learning rate η is too big, the algorithm might
“jump” over the desired search region during certain epochs. For example, if the current model param-
eter θ t is at the edge of the “gradient cliff” in Fig. 10.11, with a large learning rate η, the updated model
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Table 10.6 Summary of common activation functions.

Name Definition (f (I)) Plot Derivative of f (I) Plot

Sigmoid 1
1+e−I f (I )(1 − f (I))

Tanh eI −e−I

eI +e−I 1 − f (I)2

ReLU

{
0, I ≤ 0

I, I > 0

{
0, I ≤ 0

1, I ≥ 0

Leaky ReLU

{
0.01 × I, I < 0

I, I ≥ 0

{
0.01, I < 0

1, I ≥ 0

ELU

{
α(eI − 1), I ≤ 0

I, I > 0

{
αeI , I ≤ 0

1, I > 0

FIGURE 10.11

An illustration of a large learning rate leading to jump over or oscillate around the desired solution.

parameter θ t+1 might leap over the desired search region (where a low-cost local minimal or even a
global minimal locates) and instead makes the algorithm eventually terminate at a high-cost local mini-
mal. In other cases, a large learning rate might cause the backpropagation algorithm to oscillate around
the local minimal and thus take a long time to terminate. Therefore instead of fixing the learning rate
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FIGURE 10.12

An illustration of adaptive learning rate. The learning rate decreases as the epoch number increases.

during the entire backpropagation algorithm, a more reasonable choice is to use an adaptive learning
rate ηt whose value changes with respect to the epoch number t .

A generic strategy is to shrink the learning rate as the algorithm progresses. That is, the larger the
epoch/iteration number, the smaller the learning rate. The intuition of such a strategy is as follows.
At the beginning of the algorithm, it is likely that the model parameters are far away from the desired
solution (i.e., a low-cost local minimal). Therefore we use a larger learning rate so that the algorithm can
make bigger progress to update the model parameters. On the other hand, as the algorithm progresses, it
is likely that the current model parameters are in the vicinity of the final desired solution. Therefore we
use a smaller learning rate to avoid oscillating or even jumping over the desired solution. See Fig. 10.12
for an illustration.

A simple strategy is to set the learning rate ηt to be in the reverse proportion of the epoch number t .
That is, we choose the learning rate as ηt = 1

t
η0, where η0 is the manually set initial learning rate (e.g.,

η0 = 0.9 as in Example 10.1). In practice, it is common to set the learning rate to be a small constant η∞
(e.g., η∞ = 10−9) after certain number of epochs T (e.g., T = 10,000), to prevent the learning rate from
approaching zero. In this case, the adaptive learning rate ηt can be set as linear interpolation between
the initial learning rate η0 and the minimum learning rate η∞, that is, ηt = (1 − t

T
)η0 + t

T
η∞ if t ≤ T

and ηt = η∞ otherwise. We can see that as the algorithm progresses (i.e., t increases), the learning rate
will put more weight ( t

T
) on the minimum learning rate η∞ and thus become smaller, until it reaches

certain epoch number T .
In many cases, the magnitude of the gradient gt in Eq. (10.10) provides an important indicator on

the overall progress of the backpropagation algorithm. For a given model parameter θ i (e.g., the weight
of the connection between two units), we use the square root of the sum of squared historical gradi-

ent values to measure its magnitude: ri =
√∑t−1

k=1 g2
i,k . The intuition of the magnitude measure ri is

as follows. The larger the ri , the more likely the algorithm has made greater progress about the corre-
sponding model parameter θ i in the previous epochs (i.e., from epoch 1 to epoch (t − 1)). Therefore we
should use a smaller learning rate. AdaGrad (which stands for Adaptive Gradient Algorithm) follows
this intuition and sets the adaptive learning rate ηt in the reverse proportion of the gradient magnitude
as ηt = 1

ρ+ri
η0, where ρ is some small constant (e.g., ρ = 10−8) to prevent the numerical instability in

case ri = 0. Note that the gradient magnitude ri changes with respect to the epoch number, and at the
beginning of the algorithm, we can simply set it as zero. See Table 10.7 for an example.



504 Chapter 10 Deep learning

Table 10.7 Comparison of adaptive learning rate strategies, linear vs.
AdaGrad (η0 = 0.9, η∞ = 10−9, T = 1000, ρ = 10−8). We observe that,
for AdaGrad, larger historical gradient values lead to larger changes in
the learning rate, whereas the learning rate for the linear strategy does
not depend on the historical gradient.

Epoch number (t) Gradient value Linear learning rate AdaGrad learning rate
1 0.923 0.8991 0.9751

2 0.831 0.8982 0.7247

3 0.756 0.8973 0.6190

4 0.324 0.8964 0.6042

5 0.517 0.8955 0.5708

6 0.453 0.8946 0.5486

7 0.967 0.8937 0.4726

8 1.153 0.8928 0.4043

9 1.072 0.8919 0.3642

10 0.879 0.8910 0.3432

In AdaGrad, the gradient values from historical epochs (g2
i,k k = 1, ..., (t − 1)) are treated equally

when computing the gradient magnitude ri . An alternative choice is to put more weight on more recent
gradient values. That is, if the gradient values in the more recent epochs are larger, we want to shrink
the learning rate ηt more. RMSProp (which stands for Root Mean Square Propagation) follows this
intuition and uses an exponentially decaying weighted sum of squared historical gradient values to
measure the gradient magnitude ri . Compared with AdaGrad, RMSProp was found to converge faster
for training deep neural networks.

10.2.3 Dropout
A major advantage of deep neural networks lies in the ability to learn a hierarchy of features. This,
however, could be a double-bladed sword. This is because the high complexity of deep neural network
models also gives rise to overfitting. This means that the algorithm could have learned some fictitious
features, which leads to a small training error but bears a high test error.

A simple yet very effective strategy to prevent the deep neural networks from learning such fictitious
features is dropout. It works as follows. In a given epoch of the backpropagation algorithm, we first
randomly dropout or de-activate some nonoutput units by deleting all incoming and outgoing links of
the corresponding units. Then, we perform standard forward and backward propagation operations (e.g.,
those in Fig. 10.4) on the dropout network, the network without the de-activated units, to update the
model parameters, including the weights and bias values. A de-activated unit has no impact on updating
the model parameters in the current epoch. We can think of a de-activated unit as being “frozen.” In
other words, the model parameters of a de-activated unit, including its weights and bias scalar, are kept
unchanged, until the next epoch that it is not dropped out (i.e., activated). It then updates the “frozen”
model parameters in that epoch.

Example 10.3. Suppose we want to train a two-layer feed-forward neural network in Fig. 10.13(a). In
a given epoch of backpropagation algorithm, we randomly drop a hidden unit U3 by removing all of
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FIGURE 10.13

An illustration of creating a dropout network.

its incoming and outgoing links (dashed lines in Fig. 10.13(b)). By removing the de-activated unit U3
from the original network, we have a dropout network in Fig. 10.13(c). We update the model parameters
on the dropout network by performing forward and backward propagation. In the next epoch, we will
create another dropout network to further update the model parameters, and so on.

Given a deep neural network with n nonoutput units, there could be an exponential number of
dropout networks. For the two-layer feed-forward neural networks, there are nine dropout networks
(shown in Fig. 10.14) that the backpropagation algorithm can use to update the model parameters. Note

FIGURE 10.14

Dropout networks for the feed-forward neural network in Fig. 10.13.
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FIGURE 10.15

Dropout networks implementation with binary mask gates rj (j = 1,2,3,4) for the feed-forward neural network in
Fig. 10.13.

that we never drop an output unit. Mathematically, there could be as many as 2n dropout networks.
However, if there is no path from any input unit to an output unit, the backpropagation algorithm will
not be able to use it for updating the model parameters, and therefore we just ignore it. For the example
in 10.13(a), if we dropout both U3 and U4, the two input units will be disconnected with the output unit
U5. We simply ignore this dropout network (which consists of U1, U2 and U5).

Even if we ignore all disconnected dropout networks, there are still a large number of possible
dropout networks that the backpropagation algorithm could use to update the model parameters. In
practice, however, we do not need to actually create such dropout networks, as it would be very time-
consuming. Instead, we can introduce a binary mask gate for each nonoutput unit (the rectangle nodes
in Fig. 10.15). At each epoch, each mask gate rj (j = 1,2,3,4) outputs a Bernoulli random variable.
That is, rj outputs 1 with a probability of ρ and it outputs 0 with a probability 1 − ρ, where 0 < ρ < 1,
ρ is the keep rate, and (1 − ρ) is the dropout rate. If we set ρ = 0.5, on average, half of the nonoutput
units are dropped at each epoch. The output of each mask gate is multiplied with the net input of
each unit. Therefore if the output of a mask gate is 0, it will make the net input of the corresponding
unit to be zero and thus make it de-activated (i.e., be dropped from the original network). After the
backpropagation algorithm terminates, it is common to scale the final model parameters θ∗ by ρ in the
test stage θ∗ ← ρ · θ∗, in order to ensure that the model output in the test stage will roughly match the
expected output of the final dropout network. For example, if the dropout rate ρ = 0.5, on average, there
are twice as many units in the original network as in each dropout network. By shrinking the model
parameters by 0.5 in the test stage, its output is likely to be comparable to the expected output of the
final dropout network. An alternative method, called inverted dropout, exists that scales the output of a
nondropout unit by 1

ρ
at each epoch during the training. The intuition is that the lower the keep rate ρ,

the fewer units will be kept active, and the more scaling that is needed.
Why does dropout work well in practice? From the optimization perspective, dropout can be viewed

as a regularization technique. By randomly dropping some input or hidden units, we force the model to
be robust to the random noise, so that the learned features are more likely to generalize well to future
test tuples and thus lead to a small test error. We can also make an analogy between dropout and the
ensemble methods that were introduced in Section 6.7. For example, in the bagging method, we create
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a large number of base models in the following way. Each base model is trained on a bootstrap sample,
that is, independently sampled with replacement from the input training tuples. By aggregating (e.g.,
averaging) the prediction of multiple base models, we can often improve the generalization performance
of the ensembled model. Conceptually, we can view each dropout network as a base model, which
is obtained by randomly sampling the input and hidden units of the original neural network that we
target to learn. By training (e.g., running an epoch of backpropagation algorithm on) each dropout
network and aggregating the results over different dropout networks (i.e., base models), we are likely
to obtain a better model. That is, using the aggregated weights and bias values as the model parameters
of the original neural network, it is likely to generalize well. It is worth pointing out there is a subtle
and important difference between the two. In bagging, each base model is trained independently on a
separate bootstrap sample; whereas in dropout, the model parameters of the current dropout network
are updated based on that of the previous dropout network(s).

10.2.4 Pretraining
Due to the nonconvexity of the objective function that a deep learning model aims to minimize
(Eq. (10.9)), the initial model parameter θ0 could have a significant impact on the quality of its so-
lution. As we can see from Fig. 10.9, if the initial model parameters are located in the suitable region
(e.g., area between the cliff and saddle point in Fig. 10.9), using backpropagation algorithm, we will
eventually end up with either a low-cost local minimal or even a global minimal. However, if the initial
model parameters are not in such a suitable region, we could either end up with a high-cost local min-
imum, or the algorithm could be stuck at a plateau or a saddle point. Pretraining refers to the process
of initializing the model parameters (the weights and bias values of a feed-forward neural network) in
a suitable region.

An effective pretraining approach is called greedy supervised pretraining, which aims to preset the
model parameters layer-by-layer in a greedy way. Its general strategy is as follows. Instead of training
a complex deep learning model with many layers directly, we train some simpler models first (e.g., the
neural network with much fewer layers). We can then use the learned parameters of the simpler models
as a hint to help train the original complex model.

Example 10.4. Let us use a four-layer feed-forward neural network in Fig. 10.16(a) as an example
to explain how greedy supervised pretraining works. Note that in Fig. 10.16, the bias values are not
shown for clarity. Instead of directly finding the model parameters (weights and bias values) of all units
from all noninput layers, we aim to pretrain the network in an iterative way, with the goal of pretraining
the model parameters for one hidden layer at each iteration. In the first iteration, we focus on a simple
model, with the two input units (U1 and U2) and one output unit (U10), but only the hidden units from
the first hidden layer (U3 and U4). For this simple model (Fig. 10.16(b)), we run the backpropagation
algorithm to find its parameters, including the weights and bias values for the hidden units (U3 and
U4) and those for the output unit (U10). For the learned model parameters for the output unit U10, we
ignore them (denoted as the dashed lines in Fig. 10.16(b)). Then, in the second iteration, we increase
the model complexity by adding another hidden layer, including the three hidden units (U5, U6, and U7)
from the second hidden layer of the original network in Fig. 10.16(a). In this way, we have a three-layer
feed-forward neural network (Fig. 10.16(c)). Here, the key point is that for the two hidden units (U1
and U2) at the first hidden layer, we fix their model parameters as those were learned in the first iteration
(shown as the red (gray in print version), bold lines in Fig. 10.16(c)). We again run the backpropagation
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FIGURE 10.16

An illustration of greedy supervised pretraining. The bias values are not shown in the figure. The learned weights
to the output unit (except the last iteration) are ignored, shown as dashed lines. The learned weights for the hidden
layer from the previous iterations are fixed (shown as red (gray in print version), bold lines) to pretrain the weights
and bias values of the newly added hidden layer at each iteration. At each iteration, we simply run backpropagation
on a two-layer feed-forward network (shown as a shadow box in (b)–(d)) to pretrain the parameters of the newly
added hidden layer, with the output of the last hidden layer from the previous iteration as the input units.

algorithm to train this model, to find the model parameters for the three hidden units (U5, U6, and U7)
in the second hidden layer and those for the output unit U10. Like before, we ignore the weights and
bias values for the output unit U10 (shown as the dashed line in Fig. 10.16(c)). Then, in the third (final)
iteration, we add another hidden layer, including units U8 and U9 from the third hidden layer of the
original model. Again, we fix the model parameters for the hidden units we have pretrained so far (U3,
U4, U5, U6, and U7) from the previous iterations (shown as red (gray in print version) bold lines in
Fig. 10.16(d)), and we perform backpropagation algorithm to learn the weights for the two hidden units
of the newly added layer (U8 and U9) and the output unit U10.

To summarize, greedy supervised training starts with a simple model with only one hidden layer. At
each iteration, it incrementally adds one additional hidden layer, while keeping the model parameters of
the hidden units learned from the previous iterations unchanged. It runs the backpropagation algorithm
to find the model parameters of the newly added hidden units. It keeps doing this until all the hidden
layers from the original model have been added. The model parameters from the last iteration are used
as the initial model parameters of the original deep learning model. We call it a pretrained model. The
method is greedy, since at each iteration, we always fix the model parameters of hidden units from the
previous iterations unchanged. Since we always fix the model parameters of the hidden units from the
previous iteration(s) unchanged, pretraining at each iteration is equivalent to training a two-layer neural
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network with the outputs of the last hidden layer from the previous iteration as the input units. See the
shaded boxes of Fig. 10.16(b)–(d) for an illustration.

The pretraining is often followed by a fine-tuning process. That is, using the model parameters found
by pretraining as the initial solution, we perform the backpropagation algorithm to further find better
model parameters. In other words, we fine-tune the initial parameters found by pretraining.

The pretraining method described above is supervised, since at each iteration, the backpropagation
algorithm needs the actual target values of the training tuples to learn (or preset) the model parameters
of the newly added hidden layer. We can also use pretraining in the unsupervised learning setting. For
example, we can use a special type of neural network, called autoencoder (which will be introduced
in Section 10.2.6), to pretrain a deep neural network. We can also use a hybrid strategy that combines
both supervised and unsupervised pretraining.

Another scenario for using pretraining is transfer learning. As introduced in Chapter 7, in a typical
transfer learning setting, there are a source mining task (e.g., classification of the tweets sentiment for
movies) with a large amount of labeled training tuples; and a target mining task (e.g., classification
of the tweets sentiment for electronics) with a very limited number of labeled training tuples. We first
train a deep neural network on the source task (referred to as the source network). Then, we create
another deep neural network for the target task (referred to as the target network). This target network
is almost the same as the source network. That is, they share the same number of hidden layers and
the same number of hidden units at each layer. Most importantly, the model parameters for the hidden
units of the target network are the same as those for the source network. In other words, we use the
source network to pretrain the hidden units of the target network. Finally, we run the backpropagation
algorithm, with the limited amount of the labeled training tuples to train (i.e., fine-tune) the parameters
for the output units of the target network. In this way, pretraining helps improve the generalization
performance of the target mining task by “borrowing” parameters from the source task.

10.2.5 Cross-entropy
For the backpropagation algorithm (Fig. 10.4) introduced in Section 10.1.2, we have used the mean-
squared loss to measure the disagreement between the actual (T ) and predicted (O) target values. For
the classification task, it is more common to use cross-entropy as the loss function. Let us illustrate
and compare cross-entropy and mean-squared loss for the binary classification task.

For a binary classification task, each training tuple X has an actual target value, that is, T = 1 if X
belongs to the positive class and T = 0 if X belongs to the negative class. In this case, we only need
one output unit in the neural network. Using the sigmoid activation function, the output unit outputs a
real value between 0 and 1, indicating the posterior probability that the given training tuple belongs to
the positive class (i.e., O = P(T = 1|X)). Cross-entropy measures the disagreement between the actual
and predicted target values as follows:

Loss(T ,O) = −T logO − (1 − T ) log (1 − O), (10.11)

where we set 0 log 0 = 0 per convention. The cross-entropy loss is small when the predicted output
O agrees with the actual class label T . For example, if T = 1, Loss(T ,O) = − logO monotonically
decreases as the predicted output O increases. In contrast, if T = 0, Loss(T ,O) = − log (1 − O) mono-
tonically increases as the predicted output O increases. Note that the cross-entropy loss is the same as
the negative log likelihood loss for logistic regression classifier introduced in Chapter 6.
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Mean-squared error Cross-entropy

Loss 1
2 (T − O)2 −T logO − (1 − T ) log (1 − O)

Error δ O(1 − O)(O − T ) O − T

FIGURE 10.17

A comparison between cross-entropy and mean-squared error for binary classification. For the binary classification
task, we only need one output unit, and O is the output of the output unit. The last row is the error δ of the output
unit during the backpropagation process with the sigmoid activation function.

FIGURE 10.18

An illustration of cross-entropy and mean-squared error. Assume the training tuple is a positive tuple (i.e., T = 1).

Fig. 10.17 compares mean-squared loss and cross-entropy loss for a neural network with a single
output unit with the sigmoid activation function for the binary classification task. As we have analyzed
in Section 10.1.2, with the mean-squared error, when the output unit is saturated (e.g., O ≈ 0 or O ≈ 1),
the error of the output unit δ ≈ 0, even if the predicted output does not match the actual output (i.e., large
|T − O|). Such a gradient vanishing problem can be naturally avoided by the cross-entropy loss. As we
can see Fig. 10.17, the error of the output unit δ = O − T with the cross-entropy loss. Therefore as long
as the predicted output deviates from the actual output (i.e., large |T − O|), the error will not vanish
even if the output unit itself is saturated (O ≈ 0 or O ≈ 1). Fig. 10.18 provides a further illustration on
how cross-entropy loss avoids the gradient vanishing problem when the output unit is saturated.

For a multiclass classification task, suppose there are C class labels in total. The actual target value
T is a binary vector of length C: T = (T1, T2, ..., TC), where Tj = 1 (j = 1, ...,C) if the training tuple
belongs to the j th class and Tj = 0 otherwise. There are C output units, and therefore the predicted
target value O is also a vector of length C: O = (O1,O2, ...,OC), where Oj = P(T = j |X) (j =
1, ...,C). The cross-entropy in this case is defined as follows.

Loss(T ,O) = −
C∑

j=1

Tj logOj (10.12)
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10.2.6 Autoencoder: unsupervised deep learning
Introducing autoencoder. For the backpropagation algorithm in Fig. 10.4, it requires the actual target
value T , which could be the real-valued output for regression problem or the discrete-valued output for
classification problem. In other words, the training process is supervised. But, what if there is no such
supervision? Can we still use the backpropagation algorithm to train a feed-forward neural network?
The answer is yes. Simply put, we set the output layer to share the same number of the input units,
and just use the input data x as the target output T = x. Then, we use the backpropagation algorithm
to minimize the loss between the predicted output T̂ and the target output T = x. In other words, we
aim to use the neural network to reconstruct the input data x. This type of neural network is called
autoencoder.

The simplest autoencoder has one hidden layer (see Fig. 10.19(a)), which consists of two parts, in-
cluding the encoder f and the decoder g. The encoder f corresponds to the hidden layer that maps (i.e.,
encodes) the input x to its latent representation (or the code of the input) h. The decoder g corresponds
to the output layer that maps (i.e., decodes) the latent presentation h to the predicted output T̂ . The
output layer has the same number of units as the input layer. The goal is to use the predicted output
T̂ to reconstruct the input x. This can be done by running the backpropagation algorithm to minimize
the disagreement between the predicted output T̂ and the original input x: Loss(x, T̂ ), where the loss
function could be a mean-squared error or a cross-entropy loss. For both the encoder f and the decoder
g, we could have multiple layers (Fig. 10.19(b)), and this is called stacked autoencoder.

A major difficulty with autoencoder is that it might simply copy the input to the output. This could
happen, for example, if we use the same number of hidden units as the input layer in Fig. 10.19(a) and
linear activation function for the hidden layer, which would make the autoencoder useless. To address
this issue, we could either constrain the architecture of the autoencoder to require that the hidden layer
has less units than the input layer or impose regularization terms on the model parameters (e.g., to

FIGURE 10.19

Autoencoder (a) and stacked autoencoder (b). In both cases, x, h, and T̂ are vectors, and the output layer has the
same number of units as the input layer. By minimizing Loss(x, T̂ ), we aim to reconstruct the input x by the output
T̂ , where Loss() is the loss function (e.g., mean-squared error, cross-entropy, etc.)
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FIGURE 10.20

An illustration of two strategies of applying autoencoder as a dimensionality reduction technique for clustering high
dimensional data. For clarity, we assume there is only one encoder layer and one decoder layer.

require the latent representation h to be sparse), or adopt denoising training, where we aim to minimize
the loss between the output of the autoencoder and a perturbed version of the input.

Autoencoder can be naturally used for unsupervised learning. Next, we give three examples of
applying autoencoder for unsupervised learning, including dimensionality reduction, deep clustering
and unsupervised pretraining.

Autoencoder for dimensionality reduction. The vector h at the encoder layer can be naturally viewed
as a latent representation of the input data x. If the number of hidden units of the encoder layer is less
than the input units, the autoencoder (Fig. 10.19(a)) or stacked autoencoder (Fig. 10.19(b)) effectively
performs dimensionality reduction. This is conceptually similar to principle component analysis (PCA,
introduced in Chapter 2). Indeed, if the decoder uses a linear activation function and mean-squared
error as the loss function, the autoencoder in (Fig. 10.19(a)) is equivalent to PCA. By using a nonlinear
activation function in the decoder or stacking multiple autoencoders together (Fig. 10.19(b)), (stacked)
autoencoder is capable of learning a more powerful low-dimensional representation of the input data
than PCA.

Autoencoder for deep clustering. In order to cluster high-dimensional data, a natural solution is to
find clusters in a low-dimensional space where the clustering structure is more evident than the original
space. Generally speaking, there are two strategies, to both of which autoencoder can be applied. See
Fig. 10.20 for an illustration.

In the first strategy, we conduct dimensionality reduction, and then perform clustering in the low di-
mensional space. For example, we can first apply autoencoder to the input data (e.g., x in Fig. 10.19(a))
and the output of its encoder (e.g., h in Fig. 10.19(a)) provides the representation of the input data in a
low-dimensional space. Then, we perform clustering (e.g., by K-means) on the low-dimensional space
h. The advantage of this strategy lies in that the dimensionality reduction is performed as a preprocess-
ing step of the clustering task. Once the low-dimensional space h is found, we can readily plug in any
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off-the-shelf clustering algorithm on it. However, since the dimensionality reduction step is conducted
before the clustering step, the clustering structure of the input data set might become obscured in the
low-dimensional space. For example, the two well-separated clusters in the original high-dimensional
space might be overlapped with each other in the low-dimensional space, which would in turn impair
the quality of the clustering results.

The second strategy aims to integrate the dimensionality reduction and the clustering steps together.
In other words, we want to embed the dimensionality reduction step into the clustering step, so that
the clustering structure of the input data is well preserved in the low-dimensional space. A variety
of different dimensionality reduction approaches (e.g., PCA, autoencoder, matrix factorization) and
various clustering methods (e.g., K-means, NMF, probabilistic clustering methods) can be adopted in
this strategy. When we use a deep learning model (e.g., autoencoder) for the dimensionality reduction
step, this strategy is referred to as deep learning. Compared with the first strategy, deep clustering often
leads to a better clustering quality, at the cost of increased computational cost, owing to the coupling of
the dimensionality reduction and clustering steps.

So, how can we integrate dimensionality reduction and clustering together? Let us take autoencoder
(for the dimensionality reduction step) and K-means (for the clustering step) as an example to explain
its key ideas from the optimization perspective.

In autoencoder, we aim to find the best encoder f and decoder g to re-construct the input data. In
other words, we wish to minimize the following reconstruction loss

min
N∑

i=1

‖T̂i − xi‖2
2 where T̂i = g(f (xi )). (10.13)

Recall that in k-means (introduced in Chapter 8), we aim to find the best cluster centers cj (j =
1, ...,C) and cluster membership for each input data tuple xi (i = 1, ...,N) by minimizing another type
of loss, namely the sum of squared errors (SSE):

min
N∑

i=1

∑
xi∈cj

‖xi − cj‖2
2. (10.14)

Now, in order to integrate the dimensionality reduction (Eq. (10.14)) and clustering (Eq. (10.13))
together, we instead aim to simultaneously find the best the encoder f , the decoder g, the cluster centers
cj (j = 1, ...,C), and the cluster membership by minimizing a linear weighted sum of the above two
types of loss (i.e., the reconstruction loss in Eq. (10.13) and the SSE in Eq. (10.14)):

min
N∑

i=1

‖T̂i − xi‖2
2︸ ︷︷ ︸

reconstruction loss

+α

N∑
i=1

∑
f (xi )∈cj

‖f (xi ) − cj‖2
2

︸ ︷︷ ︸
SSE

, (10.15)

where T̂i = g(f (xi )), and α > 0 is a regularization parameter to balance the relative weight of the two
types of loss. Notice that the SSE in Eq. (10.15), we use f (xi ), that is, the output of the encoder f,
instead of the original input data xi . This is the key that differentiates itself from the first strategy
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(i.e., dimensionality reduction then clustering). In this way, we integrate the two steps (dimensionality
reduction and clustering) together.

In order to solve the optimization problem in Eq. (10.15), we can use an iterative algorithm. In
each iteration, we do the following two steps in an alternating way. First, we fix the encoder f and the
decoder g, and run k-means algorithms on f (xi ) (i.e., the output of the encoder f ) to find the current
cluster centers cj (j = 1, ...,C) and the cluster membership for each input data tuple. Then, we fix
the cluster centers cj (j = 1, ...,C) and the cluster membership to train an autoencoder to update the
encoder f and the decoder g. This step can be viewed as training a regularized autoencoder, where
the cluster centers and membership jointly provide regularization for both the encoder and the decoder.
By iteratively updating the autoencoder that respects the current cluster centers and membership, the
produced low-dimensional space (i.e., f (xi )) is tailored for the clustering task where the clustering
structure is likely to be well preserved.

Deep clustering provides a powerful and flexible framework to integrate the dimensionality re-
duction and clustering together. For example, in addition to autoencoder, we can use alternative deep
learning architectures in Eq. (10.15) depending on the specific input data type (e.g. CNNs for images,
RNNs for sequence, GNNs for graph data). In addition to the SSE loss in Eq. (10.15), we can also
use, for instance, nonnegative matrix factorization (NMF) or Kullback–Leibler (KL)-divergence as the
loss for the clustering step. NMF was introduced in Chapter 9. KL-divergence loss is another popular
choice for clustering. In a nutshell, it minimizes the KL divergence between a cluster centroid-based
distribution and an auxiliary target distribution, which was found to be quite effective in deep clustering.

Autoencoder for unsupervised pretraining. We can also use autoencoder to pretrain a feed-forward
neural network, which is referred to as unsupervised pretraining. Similar to greedy supervised pretrain-
ing introduced in Section 10.2.4, we can use autoencoder to preset the model parameters layer-by-layer
in a greedy layer way. In order to pretrain the model parameters (the weight matrix and bias vector) of a
given layer k, we keep the input layer and all the hidden layers up to and including layer k, and we treat
them as the encoder f . In the meaning, we remove all the remaining hidden layers after layer k (layer
(k + 1), ..., layer L) and the output layer, and we replace them by a new output layer with the same
number of units as the input layer, which is treated as the decoder g. By running the backpropagation
algorithm on this autoencoder, we obtain the preset (or pretrained) model parameters for layer k.

10.2.7 Other techniques
Responsive activation functions (e.g., ReLU, Section 10.2.1), adaptive learning rate (Section 10.2.2),
dropout (Section 10.2.3), pretraining (Section 10.2.4), cross-entropy loss function (Section 10.2.5), and
autoencoder (Section 10.2.6) have significantly improved the training of deep learning models. In this
section, we briefly introduce some additional techniques to further improve the training of deep learning
models.

Gradient exploding problem
As we can see from Fig. 10.9, when we are close to the “gradient cliff” where the magnitude of the
gradient gt is high, the updated model parameters by stochastic gradient descent might jump over the
desirable region. One common cause of a gradient cliff is due to the backpropagation algorithm. To see
this, suppose we use the ReLU activation function for the hidden units, as introduced in Section 10.2.1,
to avoid gradient vanishing problem. Then, during the backpropagation process, the error δj for a given



10.2 Improve training of deep learning models 515

hidden unit j is the aggregated errors of hidden units from the next higher layer (i.e., δj = ∑
l δlwjl),

if this unit j is active (i.e., Ij > 0). Therefore if the current weights wjl are large, the backpropagation
could amplify the error. That is, the magnitude of error δj could be significantly larger than those from
the next higher layer. When we propagate the errors through the deep neural networks, the errors of the
hidden units at the lower layers could be even higher, leading to a gradient cliff. This phenomenon is
known as gradient exploding.

The adaptive learning rate introduced in Section 10.2.2, such as AdaGrad or RMSProp, can help
alleviate the gradient exploding problem. This is because, when the magnitude of the gradient at the
current iteration is high, AdaGrad or RMSProp will automatically shrink the adaptive learning rate
more, and thus the model parameters will be updated less (i.e., θ t+1 = θ t − ηtgt ). Another simple yet
effective way to handle gradient exploding is through gradient clipping. That is, we set a threshold c,
as the ceiling for the maximum magnitude of the gradient. At a given epoch, if the magnitude of the
gradient gt exceeds this threshold, we normalize the gradient to reduce its magnitude. To be specific, if
the Euclidean norm ‖gt‖ > c, we set g̃t = gt · c

‖gt‖ . Then, we use the normalized gradient g̃t to update
the model parameters: θ t+1 = θ t − ηt g̃t .

Early stopping
As mentioned in Section 10.1.3, backpropagation algorithm aims to minimize the (approximated) train-
ing error in Eq. (10.9). Therefore it is possible that after a certain number of epochs, the algorithm
continues to decrease the objective function value E(θ), but the trained model might perform poorly
on the future test tuples. An effective way to avoid such overfitting is early stopping. To be specific,
we maintain a separate validation set. At each epoch of the backpropagation algorithm, we measure
the validation error on this validation set using the learned model parameters at the current epoch. If
the validation error does not decrease in a certain number of consecutive epochs (e.g., 10 or 100), we
terminate the algorithm, even though the training error might continue to decrease.

Batch normalization
From the optimization perspective, the gradient gt from Eq. (10.10) provides a guidance in terms of how
one should update the model parameters in order to reduce the training error in Eq. (10.9). There is an
implicit assumption for (stochastic) gradient descent in Eq. (10.10). That is, the model parameters from
the other units are fixed. However, backpropagation algorithm (Fig. 10.4) updates all model parameters
in one epoch.

A simple yet effective strategy to address this discrepancy is batch normalization. It works as
follows by making one simple change to the standard backpropagation algorithm, that is, z-score
normalization of the outputs of input or hidden units. To be specific, at a given epoch of backprop-
agation, we draw a mini-batch of m tuples. For each input or hidden unit j , we use the current model
parameters to calculate the output of each tuple from the given unit j : O1

j , ...,Om
j , where the su-

perscript is used to index different training tuples. We calculate the sample mean μj and sample
standard deviation σj for O1

j , ...,Om
j . Then, we perform z-score normalization on the output of unit

j as Õl
j = Ol

j −μj

σj
(l = 1, ...,m). We will use the normalized output Õl

j (l = 1, ...,m) in the remaining
computation of the backpropagation algorithm. Z-score normalization was introduced in Chapter 2.
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FIGURE 10.21

An illustration of shortcut connections. The black is the standard feed-forward neural network with L layers. The
bold, green (dark gray in print version) arrows are the shortcut connections, which link the units in a lower layer to
the units in a nonadjacent upper layer, skipping one or more layers in between. In this example, the shortcut con-
nections add links from layer k to layer k + 2, skipping one layer in between (layer k + 1). The added connections
provide extra “shortcuts” to forward propagate the input to the output, as well as backward propagate the errors and
gradients.

Moment-based approaches
In Eq. (10.10), we have used the current gradient gt to update the model parameters. That is, at each
epoch, we move or update model parameters in the negative direction of the current gradient: θ t+1 =
θ t + �θ , where �θ = −ηgt and η is the learning rate. Alternatively, we can use moment r t to update
the model parameters: θ t+1 = θ t + r t . Unlike the gradient descent method that only uses the current
gradient gt to update the model parameters, the moment r t considers all historical gradients.

Formally, the moment is calculated as follows. At the beginning of the algorithm, we initialize the
moment as a zero vector (i.e., r0 = 0). At each epoch, we update the moment r t as r t = αr t−1 − ηgt ,
where 0 < α < 1 is the decaying factor, η is the learning rate and gt is the current gradient. We can see
that the moment is the exponentially decaying average of all historical gradients, with higher weights
for more recent gradients. Compared with the standard stochastic gradient descent, moment-based ap-
proaches tend to reduce the variance of the gradient estimated from the mini-batch. We can develop
similar strategies as AdaGrad or RMSProp to adaptively choose the learning rate for moment-based
approaches. A commonly used moment-based approach with adaptive learning rate in deep learning is
called Adam (which stands for Adaptive Moment Estimation).

Shortcut connections
In a standard feed-forward neural network, we forward propagate the input to the output and then back-
ward propagate the error and gradients. When the network becomes deeper, with an increased number
of hidden layers, it becomes more difficult to forward and backward propagate such information, which
in turn leads to the gradient vanishing or exploding problems. In addition to the techniques we have
already introduced (e.g., responsive activation function, pretraining, cross-entropy loss function, etc.),
another simple yet effective method is to use shortcut connections (also referred to as skip connections).
Fig. 10.21 provides an illustration of shortcut connection, where we have added extra connections from
lower layers to nonadjacent higher layers, skipping one or more layers in between. If a lower layer (layer
k in this example) has the same number of units as the higher layer (layer (k + 2) in this example) that
shortcut connections link to, we can simply copy the outputs of the lower layer as the additional net
input of the higher layer. The corresponding network is referred to as resNets, which stands for residual
networks. If layer k and layer (k + 2) have different units, we can introduce additional parameters as
the weights that connecting different units in layer k to different units in layer (k + 2). The correspond-
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ing network is referred to as HighwayNets, in that the added shortcut connections can be viewed as
the highway (relative to the normal connection, i.e., the black arrows in the figure) to fast forward and
backward propagate the information (e.g., input, output, errors, gradients). The shortcut connections
have been found to be able to greatly mitigate the gradient vanishing problem.

10.3 Convolutional neural networks
One of the most successful deep learning models is convolutional neural networks (CNNs), which
have achieved tremendous success in numerous applications. To name a few, CNNs often play a cen-
tral role in the state-of-the-art methods for various image object recognition tasks; CNNs have been
successfully applied for face recognition in the challenging scenario where the faces could be partially
occluded with various rotations (e.g., upside down). In healthcare, CNNs have been applied to detect
biomarkers, assess patient’s health risks, and re-purpose drugs (i.e., drug discovery). CNNs have been
applied to time series data to forecast the future measurements and detect anomalies. CNNs were used
in AlphaGo, a computer program developed by DeepMind Technologies, which defeated the world
champion in a highly complex game called Go in 2016.

CNNs are designed for grid-like data, such as images. Mathematically, the input grid data for CNNs
are represented as a multidimensional array (i.e., a tensor). For example, the time-series data (1-D
grid) can be represented as a 1-D tensor (i.e., a single-dimensional array) whose elements provide the
measures at the corresponding time stamps; the gray image can be represented as a 2-D tensor (i.e.,
a matrix) whose elements measure the gray scales of the corresponding pixels; and the color-image
can be represented as a 3-D tensor with the third mode representing different color channels (e.g., red,
green, blue).

We start with 1-D convolution operation as a feature extraction process (Section 10.3.1), and its
generalization to multidimensional convolution (Section 10.3.2). Based on that, we introduce the con-
volution layer, which will be in turn used to construct a convolutional neural network (Section 10.3.3).

10.3.1 Introducing convolution operation
Suppose we are given a 1-D time-series data (e.g., room temperature over time). In one scenario, we
might be interested in the overall trend of temperature without considering the noise or small fluctuation
of temperature. To this end, we could smooth the input time series by replacing the original temperature
by the average temperature in the local vicinity of the corresponding time stamp. In another scenario,
we might want to find out whether there is a sudden temperature change at certain time stamp(s). To
this end, we could compute the difference of the temperature before and after the corresponding time
stamps. Is there an automatic way to extract such signals or features (e.g., average, difference) from the
input data? A powerful technique that can be used to answer this question is called convolution, which
is the key operation in CNNs.

Given an input I represented as a tensor, and a kernel K (which is also referred to as a filter)
represented as another, but often smaller, tensor; the convolution operation generates a feature map S

that is also a tensor. We use ∗ to represent the convolution operation: S = I ∗ K . Roughly speaking,
each element in the feature map S, as its name suggests, is the feature of the corresponding element of
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the input. It is generated by a linear sum of the elements in the vicinity of the corresponding element of
the input I , where the linear weights are provided by the kernel K .

If the input I is 1-D, we represent it as a single dimensional array of length N . Let the index of the
array I start with 1. That is, the first and the last elements of I are I [1] and I [N ], respectively. The
kernel K is also a single-dimensional array, whose length P is often much smaller than the input data
I (i.e., P � N ). We often choose P to be an odd number and let the index of the middle element of
the kernel to be 0. That is, the first and the last elements of the kernel K are K[−P−1

2 ] and K[P−1
2 ],

respectively. With these notations, 1-D convolution operation is formally defined as follows7:

S[i] =
P−1

2∑
p=− P−1

2

I [i + p]K[p], (i = 1, ...,N), (10.16)

where the index of the feature map S starts with 1. In order to compute an element of the feature map
S[i], we first find the corresponding element of the input I [i]. Then, we draw a vicinity (or window
or neighborhood) of size P centered around element I [i], with P−1

2 elements before and after I [i]
respectively. Finally, we weight each element in such a vicinity by the corresponding element in the
kernel K and take the weight sum as the feature map element S[i].

Put another way, we can think of convolution operation as the following process. The kernel K
traverses the input I , and the feature map S is the response of the input I with respect to the kernel.
That is, each time the kernel K visits an element of the input I [i], it identifies a neighborhood: {I [i −
P−1

2 ], ..., I [i + P−1
2 ]}. The identified neighborhood has the same size as the kernel, and it is referred to

as the receptive field of I [i] in computer vision. The weighted sum of all the elements in the receptive
field, weighted by the elements in the kernel, becomes the corresponding element in the feature map,
which can be viewed as the response of the input element I [i] with respect to the kernel. This process
is equivalent to the dot product between the receptive field and kernel.

Note that Eq. (10.16) has a boundary issue. That is, when we compute the first few or the last few
elements of the feature map, there are not enough elements in the input I according to Eq. (10.16). For
example, in order to compute S[1], Eq. (10.16) requires I [−P−1

2 + 1], ..., I [0], none of which exists
in the input I . In order to address this boundary issue, we can resort to zero padding. For example,
we can append P−1

2 zeros before I [1] and P−1
2 zeros after I [N ], respectively. Without zero padding,

the generated feature map S will have a smaller size than the input I , without the first and the last few
elements. Another parameter that affects the size of the feature map is stride, which controls how the
kernel center visits the elements of the input to perform convolution. If the stride is 1, the kernel center
visits each element of the input; if the stride is 2, it will visit every other element of the input (and thus
the feature map is roughly half the size of the input), and so on. For the discussion in the rest of this
section, we assume that the stride is always 1 and the input is appropriately zero-padded so that the
feature map shares the same size as the input.

Example 10.5. Let us look at an example in Fig. 10.22. In this example, the input I has eight elements:
I [1] = 10, I [2] = 50, I [3] = 30, I [4] = 40, I [5] = 50, I [6] = 80, I [1] = 90, I [1] = 85, and N = 8.

7 Several alternative convolution definitions exist with different indexing mechanisms for the input, the kernel or feature map.
For example, the 1-D convolution can also be defined as S[i] = ∑

p I [i − p]K[p], which is equivalent to Eq. (10.16) by flipping
the kernel at the center K[0]. In literature, 1-D in Eq. (10.16) is also referred to as cross-correlation.
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FIGURE 10.22

An example of 1-D convolution. The input I has eight elements. The kernel K has three elements. In order to make
sure that the feature map S has the same length as the input I , we pad one zero before I [1] and one zero after I [8]
(two dashed boxes). The blue (mid gray in print version) lines and circles demonstrate how to compute one element
(S[2], the shaded cell in S) from the vicinity of the corresponding input element (I [2], the shaded cell in I ), with
the weights provided by the kernel K . The three elements, including I [1], I [2] and I [3], form the receptive field of
I [2].

The kernel K has three elements (i.e., P = 3). Note that the middle element of the kernel is indexed as
0 (i.e., K[−1] = 0.25, K[0] = 0.50, and K[1] = 0.25). In order to compute an element in the feature
map S[2], we first find the corresponding element in the input I [2]. Then, we draw a window of size
3 (i.e., the same size as the kernel), centered around I [2]. The three elements in this window are
I [1] = 10, I [2] = 50, and I [3] = 30. We weight each of these three elements by the corresponding
elements in the kernel and take the resulting sum as S[2]. That is, S[2] = K[−1] × I [1] + K[0] ×
I [2] + K[1] × I [3] = 0.25 × 10 + 0.50 × 50 + 0.25 × 30 = 35. In order to compute S[1] and S[8], we
pad a zero before I [1] and after I [8], respectively (i.e., I [0] = I [9] = 0). With the padded zeros, we
can compute S[1] by Eq. (10.16): S[1] = 0.25 × 0 + 0.50 × 10 + 0.25 × 50 = 17.5. Similarly, we have
that S[8] = 0.25 × 90 + 0.50 × 85 + 0.25 × 0 = 65.

We can view the convolution operation as a feature extraction process. To see this, suppose the
kernel K = (1/3,1/3,1/3). Then, in the above example, the convolution operation acts as a smoothing
operator. That is, the elements of the feature map tell us the average input measures in the local vicinity
of the corresponding elements of the input. With the same input I , if we choose a different kernel K =
(−1,0,1), the convolution operation acts as a change (or difference) detector. That is, the corresponding
feature map tells whether there is a sudden increase or decrease in the local vicinity of the input I .

10.3.2 Multidimensional convolution
If the input I is a 2-D matrix of size N × M , the kernel (or filter) K is also a 2-D matrix of size P × Q,
where P � N and Q � M . P and Q are often set as odd numbers, and typical choices are P = Q = 3
or P = Q = 5. The 2-D convolution will generate a 2-D feature map S as follows:

S[i][j ] =
Q−1

2∑
q=− Q−1

2

P−1
2∑

p=− P−1
2

I [i + p][j + q]K[p][q], (i = 1, ...,N; j = 1, ...,M), (10.17)
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FIGURE 10.23

An example of 2-D convolution. The input I is a 6 × 6 binary matrix. The kernel K is a 3 × 3 binary matrix. We pad
zeros around the input I . The 3 × 3 matrix with blue (mid gray in print version) borderline forms the receptive field
of I [1][2].

where the indices of the input and feature map start with 1. That is, the first elements of the input and
the feature map are I [1][1] and S[1][1], respectively, and the last elements of the input and the feature
map are I [N ][M] and S[N ][M], respectively. Like in the 1-D convolution, the center element of the
kernel is indexed as K[0][0]. In other words, some elements in the kernel have negative indices. We
can also zero-pad the input I to ensure the feature map has the size as the input.

Example 10.6. Let us look at an example in Fig. 10.23, to see how 2-D convolution works.
In order to compute the element in the feature map S[1][2], we first find the corresponding el-
ement in the input I [1][2] and draw the receptive field of I [1][2] (i.e., a 3 × 3 matrix cen-
tered around I [1][2] with blue (mid gray in print version) border line). We index the center el-
ement of the kernel as K[0][0]. Similar to 1-D convolution, we then weight each element in
the receptive field of I [1][2] by the corresponding elements in the kernel K and take the result-
ing sum as S[1][2] = I [0][1] × K[−1][−1] + I [0][2] × K[−1][0] + I [0][3] × K[−1][1] + I [1][1] ×
K[0][−1] + I [1][2] × K[0][0] + I [1][3] × K[0][1] + I [2][1] × K[1][−1] + I [2][2] × K[1][0] +
I [2][3] × K[1][1] = 0 × 0 + 0 × 1 + 0 × 0 + 1 × 1 + 1 × 0 + 1 × 1 + 0 × 1 + 0 × 1 + 1 × 1 = 3.
Since we pad zeros around the input I , we can compute other elements in the feature map S according
to Eq. (10.17). The resulting feature map S is shown on the right side of Fig. 10.23.

We can generalize the above definitions for 1-D (Eq. (10.16)) and 2-D convolutions (Eq. (10.17))
when the input is a multidimensional tensor. For example, if the input is a 3-D tensor, mathematically,
we can define a 3-D tensor with a much smaller size than the input, and then by generalizing the
2-D convolution in Eq. (10.17), we will output a 3-D feature map. The process is similar to 1-D or
2-D convolutions. That is, we let the kernel traverse or slide over each element of the input. For each
element of the input, we take the dot product between the elements of its receptive field and those of
the kernel, as the response of this element with respect to the kernel and it becomes the corresponding
element of the feature map. In principle, we could let the kernel traverse or slide along each of the three
dimensions, with the help of zero-padding. Thus, the feature map S could also be a 3-D tensor.

In many real applications (such as computer vision) with 3-D tensor input, we often use a variant
of the 3-D convolution introduced above. For example, given an input image, we can represent it as
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FIGURE 10.24

An example of 3-D convolution. The kernel K is local in width and height, but full in the depth (i.e., it has the same
depth as the input I ). The feature map S is a 2-D matrix.

a 3-D tensor I of size N × M × R, where N and M represent the width and the height of the image,
respectively, and R is the depth (e.g., R = 3 representing the number of color channels, including red,
green, and blue colors of the image). In practice, the kernel K is local in spatial (width and height) but
full in depth. That is, the kernel K has a size of P × Q × R, where P � N and Q � M but the depth
of the kernel is the same as the input I . The 3-D convolution operation is defined as follows:

S[i][j ] =
Q−1

2∑
q=− Q−1

2

P−1
2∑

p=− P−1
2

R∑
r=1

I [i + p][j + q][r]K[p][q][r], (i = 1, ...,N; j = 1, ...,M), (10.18)

where the indices of the input, the kernel, and the feature map are defined in the similar way as in 1-D
and 2-D convolutions. The only difference is that the index of the depth dimension of the kernel starts
with 1, which is shared with that of the input. In other words, when we slide the kernel over the input,
we only allow it to slide along the dimensions of the width and the height. As such, the resulting feature
map S is a 2-D matrix (instead of a 3-D tensor), which shares the same width and height as the input
with the help of zero-padding and setting stride as 1. See Fig. 10.24 for an illustration.

Why do we need 3-D convolution? For the example of Fig. 10.24, in order to generate an element
in the feature map, we only need to take the dot product between the kernel and the corresponding
receptive field. If we treat the input as fixed and the kernel as the model parameters (which can be
learned from the training tuples), there are P · Q · R parameters. More importantly, we use the same
kernel to traverse the input to generate the entire feature map S. In other words, if we view the kernel as
a neuron (i.e., a unit of the neural network), we only need one single kernel with P · Q · R parameters to
generate the feature map S. In contrast, if we resort to the fully connected feed-forward neural network,
for each element in the feature map, it needs to be connected to all elements of the input I , and thus
it requires N × M × R parameters. What is more, for different elements of the feature map, they have
different sets of connections to the input. Since there is no parameter sharing among different sets of
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FIGURE 10.25

An example of using a fully connected layer to generate the feature map. Each element of the feature map (the
black dot on the right) is connected to every element of the input (on the left). There is no parameter sharing among
different elements of the feature map. It requires significantly more parameters, compared with 3-D convolution
(Fig. 10.24).

connections, each set would require N × M × R parameters. Suppose the feature map has the same
size as the input (e.g., by zero-padding and setting stride as 1), a feed-forward neural network layer
would N × M × R × N × M parameters, which are significantly more than the 3-D convolution. See
Fig. 10.25 for an illustration.

Example 10.7. Given image of size 320 × 280 × 3, we aim to generate a feature map of size 320 × 280.
If we use a kernel of size 5 × 5 × 3, we only need 5 × 5 × 3 = 75 parameters. In contrast, if we use
a fully connected layer, we would need 320 × 280 × 3 × 320 × 280 = 24,084,480,000 (more than 24
billion!) parameters. Note that here, we have ignored the additional parameters for bias values for
simplicity.

There are two additional advantages of convolution. First, compared with a feed-forward neural net-
work, which is fully connected, the kernel is locally or sparsely connected. As mentioned before, we
only need to consider a small neighborhood around a given element of the input (i.e., its receptive field)
to calculate the corresponding element of the feature map. For applications like computer vision, the
locally connected property is highly desirable. For example, in order to detect whether certain features
(e.g., edge, object parts) exist at a certain location of an image, we only need to look at the vicinity of
that location. Second, in 3-D convolution, we apply the same kernel at different locations of an image.
This leads to an important property for some applications (such as computer vision), namely transla-
tional equivalence. To see this, suppose the kernel is designed to detect a certain type of edge in the
input image. If we shift the location of every pixel of the input image by the same amount, intuitively,
we should be able to use the same kernel to detect the shifted edge, only that the corresponding edge
is shifted in the feature map. Mathematically, if function f (x) represents the convolution and function
g(x) represents the translation (e.g., shifting the pixel location), then f (g(x)) = g(f (x)). Convolution
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FIGURE 10.26

A convolution layer. It takes the input volume and generates an output volume, both in the form of a 3-D tensor.
A convolutional layer consists of a set of convolutions, followed by a nonlinear activation (such as ReLU) and a
pooling operation. (In some literature, the convolution layer is referred to the set of the convolutions only; and the
nonlinear activation with ReLU and the pooling operations are referred to as two separate layers, namely ReLU layer
and pool layer, respectively.) Each kernel is applied separately to the input volume, generating a feature map. The
number of feature maps is the same as the number of kernels. The pooling operation reduces the size of feature maps
in both width and height, but keeps the same size of the depth.

is translational equivalent, which means that if we first translate the image (function g(x)) and then ap-
ply the convolution (function f (x)), the result is equivalent to if we first apply the convolution (function
f (x)) and then translate it (function g(x)).

10.3.3 Convolutional layer
In a convolutional layer, there are often multiple kernels (i.e., a set of kernels), which are organized
into a tensor (see the purple (mid gray in print version) box in the left part of Fig. 10.26). Each kernel is
applied separately to the input volume (or input for short) to perform a convolution operation between
them. Since each kernel is full in depth, meaning that it shares the same depth as the input (e.g., the
number of color channels), the convolution operation between the input and a given kernel will produce
a 2-D feature map. By applying all the kernels to the input volume, we will produce multiple feature
maps. The number of generated feature maps is the same as the number of kernels. We stack (organize)
all the feature maps into a 3-D tensor. The depth of the feature map tensor represents the number of
generated feature maps, and therefore it is the same as the number of kernels.

For the feature map tensor generated by the convolution operations, it is further fed into two ad-
ditional operations, including a nonlinear activation and a pooling operation. The typical choice for
nonlinear activation is ReLU, which basically sets all the negative entries in the feature maps as zeros
while keeping all other entries intact.

The output feature map tensor from the nonlinear activation is further fed into a pooling operation.
The pooling is essentially a down-sampling operation, and it works as follows. For each feature map, we
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FIGURE 10.27

An example of pooling operation. (a) The original feature map of size 4 × 4, where each color represents one region
for pooling. (b) The max pooling result of the feature map in (a). (c) The average pooling result of the feature map
in (a). (d) The small translation of the feature map in (a), by shifting each entry to the left by one position, with zero-
padding on the right most column. (e) The max pooling of the translated feature map in (d), which approximately
remains the same as the pooling result in (b).

partition it into several nonoverlapping regions (along the width and height dimensions). All the entries
in each region are then aggregated into a single entry. The typical aggregations including maximum (max
pooling) and average (averaging pooling). By the pooling operation, we effectively reduce the size of
the feature map tensor and thus reduce the overall model complexity to prevent overfitting. The output
of the pooling operation is referred to as the output volume (or output for short), which has the same
depth as the feature map tensor, but smaller width and depth (see the right part of Fig. 10.26). In addition
to reducing the size of output volume, the pooling (especially max pooling) also helps make the output
volume to be robust with respect to the perturbation of the feature maps. For example, if values of the
entries in the feature maps have small changes, due to either the noise or the small amount of location
shift, it is likely that the max pooling output will remain the same. For the latter case, where the output
of the max pooling remains (approximately) invariant with respect to the small translation of the input
(e.g., a small amount of location shift), it is also referred to as approximate translation invariant.

Example 10.8. Let us look at an example of pooling operation in Fig. 10.27. The feature map in
Fig. 10.27(a) is of size 4 × 4. We divide it into four regions of size 2 × 2, and each region is repre-
sented by one color. In max pooling (Fig. 10.27(b)), all the entries of the same region are aggregated
into the maximum value. For example, the four entries from the top-left corner are aggregated into
max(1,3,3,9) = 9. Therefore the blue element in (b) is 9. In average pooling (Fig. 10.27(c)), all the
entries of the same region are aggregated into the mean value. For example, the four entries from the
blue region are aggregated into ave(1,3,3,9) = 4. Therefore the blue element in (c) is 4. Other entries
in (b) and (c) are computed in a similar way. In Fig. 10.27(d), we translate the original feature map
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FIGURE 10.28

An example of CNNs, consisting of an input volume, L convolutional layers, and one fully connected output layer.

in (a) by a small amount (i.e., by shifting all the entries in (a) to the left by one position). By such
shifting, the right most column will be empty and, we pad it with zeros. The max pooling result of the
shifted feature map (Fig. 10.27(e)) is almost the same as Fig. 10.27(b). In other words, max pooling is
approximately translation-invariant with respect to a small amount of translation.

Convolutional Neural Networks (CNNs) are neural networks that have at least one convolutional
layer. Fig. 10.28 presents a typical architecture of CNNs. It takes a 3-D tensor as the input volume,
followed by L convolutional layers, and an output layer. As explained earlier, each convolutional layer
typically consists of a set of convolutional operations, followed by ReLU nonlinear activation and the
pooling operation.8 All the kernels of different convolutional layers and the weights and bias values of
the output layer form the model parameters of CNNs, which will be learned during the training stage.

Each convolutional layer consists of multiple kernels, each of which shares the same depth as that
of the input volume and is separately applied to the input volume. The pooling operation reduces the
size of the output volume in terms of width and height. Due to the repeated pooling across different
convolutional layers, the width and the height of the output volumes (the green (dark gray in print
version) boxes in Fig. 10.28) will keep shrinking, whereas the depth of the output volume is always the
same as the number of kernels of the corresponding convolutional layer. For the binary classification,
we only need one output unit in the output layer; for the multiclass classification task, we need multiple
(as many as the number of classes) output units. Similar to the feed-forward neural network, the output
layer is often a fully connected layer, meaning that each output unit is connected to all elements of the
output volume of the last convolutional layer. We often use the sigmoid activation function at the output
layer and use cross-entropy as the loss function.

The number of layers (i.e., the depth) of CNNs often plays a critical role in model performance. This
is because, as the model goes deeper, CNNs tend to learn a more complex and powerful representation
of the input data (e.g., images), due to the fact that the later (i.e., higher) layer is able to search and

8 Depending on the specific design of CNNs, the ReLU activation or the pooling operation might be omitted in some convolu-
tional layers.
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learn features from a larger receptive field. This, in turns leads to a higher classification accuracy. For
example, LeNet (one of the early popular CNN architecture, invented in the 1990s) has eight layers.
It is now common for a convolutional neural network to have more than 100 layers (e.g., ResNet,
DenseNet). The increasing depth of CNNs has helped significantly improve the image recognition
accuracy.

10.4 Recurrent neural networks
Recurrent Neural Networks (RNNs) are powerful models for mining sequential data, such as text,
audio, time series. For text, RNNs and related techniques have been playing a central role in appli-
cations like machine translation (e.g., Google Translate), question answering, sentence classification
(e.g., sentiment classification), token classification (e.g., information extraction), and so on. For au-
dio, RNNs have been successfully applied to many important applications like speech recognition and
speech synthesis. For time series, RNNs provide an alternative method of CNNs for prediction and
anomaly detection. When combined with CNNs, RNNs can be applied to an interesting application
called visual question answering (VQA), which provides an answer for a question regarding a given
image, and both the question and the answer are in the form of natural language. Other applications of
RNNs include protein structure prediction based on the sequence of amino acids in computational biol-
ogy; temporal recommender systems in e-commerce to model the temporal evolution of users’ interest;
and robot-assisted minimally invasive surgery (MIS) where the system learns how to tie suture knots
based on a special type of RNNs called long short-term memory.

In RNNs, the input is represented as a sequence of values (x1,x2, ...,xT ), where xt (t = 1, ..., T )

is the value at a particular position or time stamp t , and T is the length of the sequence. For natural
language processing, the sequence could be a sentence, where xt is the t th word of the input sentence
and T is the total length (number of words) of the sentence; in time series, the sequence could be a
sequence of temperature measurements at different time stamps, where xt is the temperature at the t th
time stamp and T is the number of the total time stamps. In both applications (and other sequential
data analysis), the key is to model the sequential dependence. For example, the temperature measures
at different time stamps could be strongly correlated; different words in the same sentence are likely to
be correlated with each other.

We start with the basic RNN models and their applications in Section 10.4.1. A major challenge
in RNNs lies in how to effectively model long-term dependency. A powerful family of techniques to
address this challenge is called gated RNNs, which will be introduced in Section 10.4.2. Additional
techniques to address long-term dependence, such as attention mechanism, will be introduced in Sec-
tion 10.4.3.

10.4.1 Basic RNN models and applications
Sequential data naturally arises in many applications. Take the natural language process as an example.
Given an input sentence, we might want to predict an overall label for the entire sentence (i.e., sentence-
level classification, e.g., the sentiment); we might want to predict the same sentence but shifted by one
position (i.e., next word prediction); we might want to predict a label for each of the input words
(i.e., token-level classification, e.g., in information extraction, we want to decide whether each word
is a location or a person or others); we could predict another sequence of the same language as the
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FIGURE 10.29

An example of RNNs, consisting of five input units, five hidden units, and one output unit.

output (i.e., question-answering, where the input sentence is the question, and the output sentence is
the answer.); or we could predict another sequence in a different language (i.e., machine translation).
Accurately modeling the sequential dependence is the key to these applications. To see this, suppose
we have two sentences, including “Tom beats Jack in the tournament” vs. “Jack beats Tom in the
tournament.” These two sentences have exactly the same length, with the same words. However, since
the orders of the (same) words are different, the two sentences have completely different meanings. Note
that the sequential dependence is not restricted to the nearby positions or time stamps.9 For example, the
temperature at the same location might exhibit daily periodic patterns (i.e., the temperature measures
around 8 am on different days might be close to each other); in order to predict the overall sentiment
of the entire sentence, we might need to consider two words that are far away from each other in the
sentence collectively. We will talk more about this in the next section. RNNs are powerful models to
capture such sequential dependence.

“So, what is recurrent neural networks?” Let us take the next-word prediction as an example to look
at the basic architecture of RNNs.

Example 10.9. Given a (partial) sentence “Illinois is the land of,” we want to predict the next possible
word (e.g., “Lincoln” or “Corn”). We can use an RNN model shown in Fig. 10.29.

Formally, there are three main types of units in an RNN model, including input unit, hidden unit,
and output unit. Each input unit represents the input data at a given position xt . In Example 10.9, the
input is a sentence of five words. Therefore there are five input units in Fig. 10.29, each corresponding

9 In this section, we use the terms “position” and “time stamp” interchangeably.
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to a word. For example, x1 = “Illinois,” x2 = “is,” and so on. For each hidden unit in an RNN model,
it is connected to the corresponding input unit and the hidden unit at the previous time stamp. For the
example in Fig. 10.29, the hidden unit h2 is connected to the input unit x2 at time stamp 2 and the
hidden unit h1 at time stamp 1. There are six hidden units in total, five of which (h1, ...,h5) correspond
to the five input units. Notice that the “previous hidden state” for h1 should be h0. Since the sequence
starts with time stamp 1, we can simply set h0 as a zero vector by default. In Fig. 10.29, there is only
one output unit ŷ5 that is connected to the last hidden unit h5. We use the output unit ŷ5 to predict the
next word.

Each hidden unit ht is represented as a vector, which is also called a hidden state. Each input xt

and each output ŷt are also represented as a vector respectively. In our example, let the N be the size
of the vocabulary, which contains all the possible words, from “a” to “Zyzzyva.” Since each input unit
xt represents a single word, we represent xt as an N -dimensional one-hot vector. Each entry of the
vector xt represents a word in the vocabulary; the entry in xt that corresponds to the input word is set
as 1, and all other entries in xt are set as zeros. Likewise, the output ŷt (t = 5 in our example) is an N -
dimensional vector, the entry of which represents the conditional probability of the corresponding word,
given the input up to time stamp t (i.e., x1, ...,xt ). In our example, ŷ5

(w) represents the conditional
probability of a word w given the input partial sentence “Illinois is the land of.” From Fig. 10.29, since
the ŷ5

(“Lincoln”) has the highest conditional probability value among all possible words, the word
“Lincoln” is chosen as the predicted next word for “Illinois is the land of.”

To summarize, in an RNN model, the input unit is connected to a hidden unit; the hidden unit is con-
nected to the hidden unit at the next time stamp; and optionally, the hidden unit could be connected to
an output unit. For the example in Fig. 10.29, only the last hidden unit h5 is connected to an output unit
ŷ5. In order to precisely describe the relationship between different types of units, we need three types
of weight matrices, including input-to-hidden weight matrix U , hidden-to-hidden weight matrix W ,
and hidden-to-output weight matrix V. The RNN model in Fig. 10.29 is formally defined as

ht = f (Uxt + Wht−1 + a) (10.19)

ŷT = g(V hT + b), (10.20)

where T is the length of the input sequence (T = 5 for the example in Fig. 10.29), and a and b are
two bias vectors. f () is the activation function for the hidden state, and a typical choice for f () is
the tanh function. (The definition of tanh activation function can be found in Fig. 10.6.) g() is the
activation function for the output unit, and a typical choice for g() is the softmax function that converts
a vector of values to a probability distribution. In order to train an RNN model (i.e., to find the optimal
weight matrices U , W , and V and the bias vectors a and b), there are some additional nodes in the
RNN model in Fig. 10.29, including the true target value (yT = “Lincoln” in this example) and the loss
function L, which measures the difference between the predicted output ŷT and the true target value
yT = “Lincoln.” We can use either the mean-squared loss or the cross-entropy loss.

Let us take a closer look at Eq. (10.19) and Eq. (10.20). From Eq. (10.19), we can see that each
hidden state ht is produced in the following way. First, it takes a linear transformation of the corre-
sponding input xt , that is, Uxt . Meanwhile, it takes a linear transformation of the previous hidden state
ht−1, that is, Wht−1. Then, it adds the results of the two linear transformations and offsets it by the bias
vector a, that is, (Uxt + Wht−1 + a). Finally, it feeds the sum Uxt + Wht−1 + a into the nonlinear
activation function f () to output the hidden state ht . From Eq. (10.20), we can see that the output ŷT
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is produced in a similar process. That is, it takes a linear transformation of the corresponding hidden
state (V ht ), offsets it by another bias vector b, and finally feeds the sum (V ht + b) into the activation
function g() to produce the output ŷT .

If we compare Eqs. (10.19) and (10.20) with the matrix form of feed-forward neural networks (hi =
f (W ihi−1 + bi )), it seems that they bear some similarity with each other. “So, what is the relationship
between RNNs and feed-forward neural networks?” Indeed, if we remove all but the first input unit
x1 and the hidden state h0 from Fig. 10.29, we can view the remaining network as a feed-forward
neural network. It takes x1 as the input, feed-forwards through five hidden layers (each corresponds
to a hidden state ht ) and finally outputs ŷ5. However, in this case, the output ŷ5 (the predicted word)
would only be dependent on the first input (the first word “Illinois”). By connecting each hidden state
ht to its corresponding input xt , the RNN model enables the predicted output ŷ5 to be dependent on
all the input units x1, ...,x5. Another important characteristic of an RNN model that differs itself from
feed-forward neural networks is as follows. In RNNs, we use the same hidden-to-hidden weight matrix
W , the same input-to-hidden weight matrix U , and the same bias vector a in Eq. (10.19). In other
words, Eq. (10.19) is recurrent in the sense that the same equation with the same parameters is applied
at different time stamps. In contrast, in a feed-forward neural network, the weight matrices and bias
vectors in different layers are often different. Eq. (10.19) can also be viewed as a parameter sharing
technique, in that different input units and different hidden layers share the same weight matrix and
bias vector, respectively. In the similar spirit that the parameter sharing in CNNs (i.e., the same kernel
is applied at different locations of the input image) significantly reduces the number of the model
parameters, there are only three weight matrices (U , W , and V ) and two bias vectors (a and b) in the
RNN model, which are significantly less than the number of model parameters of a feed-forward neural
network with the same number of layers.

“Well, you might wonder, speaking of CNNs, why do not we use CNNs for sequential data?” Indeed,
since sequential data can be viewed as 1-D grid data, we could use a 1-D convolutional neural network
to model the input sequence, such as a sentence in Fig. 10.29. However, there are subtle and important
differences between 1-D CNNs and RNNs. Recall that the connection in a CNN is always localized, in
that each entry in the output unit is only determined by the kernel and the receptive field, which is a
small neighborhood of the corresponding entry of the input. Therefore for the example in Fig. 10.29,
the predicted word ŷ5 might only depend on the last few words of the input sentence (e.g., “the,” “land,”
“of”). In contrast, thanks to its recurrent nature (Eq. (10.19)), an RNN model captures the long-term
dependence. For the example in Fig. 10.29, the predicted word depends on each of the five input words
before it.

For the example in Fig. 10.29, the input sentence “Illinois is the land of” misses the last word. In the
RNN model, there is only one output unit ŷ5 connecting to the last hidden state h5, and we use output
unit ŷ5 to predict the missing last word. In a general next-word prediction setting, we wish to predict
every next word, given the partial sentence the RNN modal has seen so far. To this end, we introduce
an output unit ŷt , connecting to each hidden state ht . The output unit is used to predict the next word,
given the partial sentence the model has seen so far, including x1, ...,xt . Let us look at an example in
Fig. 10.30.

Example 10.10. In Fig. 10.30, there are eight input units, eight hidden states, and eight output units,
respectively. The input xt (t = 1, ...,8) represents a sentence “The president Abraham Lincoln was born
in Kentucky.” Each hidden state ht is connected to an output unit ŷt , which is used to predict the next
word given the partial sentence the model has seen so far (x1, ...,xt ). For instance, ŷ1 = “president” is
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FIGURE 10.30

An example of RNNs for next word prediction. Each output unit ŷt predicts the next word given the partial sentence
the model has seen so far (x1, ...,x t ). There are eight time stamps t = 1,2, ...,8 in total. The two shaded nodes
(“Donald” and “shot”) are wrong predictions. The model parameters, including the input-to-hidden weight matrix,
the hidden-to-hidden weight matrix, the hidden-to-output weight matrix, and bias vectors are not shown for clarity.

the predicted next word for the partial sentence “The” (i.e., only the first word x1); ŷ4 = “was” is the
predicted next word for the partial sentence “The president Abraham Lincoln” (i.e., the first four words
(x1,x2,x3,x4)). Some predictions, including ŷ2 = “Donald” and ŷ5 = “shot,” are wrong predictions.
Each output unit is compared with the true target value to measure the disagreement (or loss) between
them. We train the RNN model (i.e., to find out the best model parameters) by minimizing the total loss∑8

t=1 Lt .

In addition to next-word prediction, we can use RNN models in Fig. 10.29 and Fig. 10.30 for other
applications. For example, the RNN model in Fig. 10.29 can be used for sentence-level prediction,
which predicts a label for the entire sentence (e.g., the overall sentiment of the input sentence); the RNN
model in Fig. 10.30 can be used for token-level prediction, which predicts a label for each word (i.e.,
token) of the input sentence (e.g., the entity type, such as “person” vs. “location” of the corresponding
token).

In addition to two RNN models in Fig. 10.29 and Fig. 10.30, there are many different types of RNNs.
Fig. 10.31 presents some examples. The RNN model in Fig. 10.31(a) has no output unit at all. This type
of RNN is often used to learn a hidden representation of the input sequence. That is, the last hidden
state hT provides a vector representation of the entire input sequence, which can be in turn used as the
input feature vector of data mining tasks, such as classification, clustering, and outlier detection.10 For
the RNN model in Fig. 10.31(b), the input units share the same vector x. If the input vector x is the

10 If the input sequence is a sentence, hT is called sentence embedding. Likewise, each ht (t = 1,2, ...) provides a vector repre-
sentation of the corresponding word with the preceding context considered, called contextualized word embedding.
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FIGURE 10.31

Different types of RNNs. (a) An RNN model without any output unit. (b) An RNN model with a vector input. (c) A
bi-directional RNN. For clarify, the model parameters of RNNs are not shown.

(hidden) representation of an image (say, learned from a CNN model), the RNN model can be used for
image captioning, where the output units produce a set of keywords (one keyword from each output
unit) to describe the input image.

For the RNNs model we have introduced so far (Fig. 10.29, Fig. 10.30, and Fig. 10.31(a–b)), the
information is propagated from the past to the future (i.e., from ht to ht+1). For applications like
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next-word prediction, this assumption makes sense. However, in some applications, only considering
the information in the past to make the prediction about the current state has its limitations. Take
information extraction as an example, in order to predict whether the current word is “location,” or
“person,” or “others,” it is desirable to consider the words both before and after the current word. In
this setting, a reasonable choice is to use bi-directional RNNs (Fig. 10.31(c)). In a bi-directional RNN
model (Fig. 10.31(c)), we introduce an additional hidden state pt (the blue (mid gray in print version)
circles in Fig. 10.31(c)), one for each time stamp. Like the hidden state ht , each pt is connected from
the corresponding input unit xt and is connected to the corresponding output unit ŷt (blue (mid gray
in print version) lines in Fig. 10.31(c)). However, the information in the newly introduced hidden units
q t is propagated from the future to the past (i.e., from q t to q t−1). By connecting the output unit ŷt to
both hidden units (ht and q t ), it is dependent on the input units from both the past and the future (i.e.,
the entire input sequence).

By combining these RNNs models together, we can apply them to even more complicated applica-
tions. One such example is machine translation, where we want to automatically translate a sentence in
the source language (e.g., “I speak English.” written in English) to another sentence in the destination
language (e.g., “Yo hablo inglés.” written in Spanish). One way to do machine translation is connecting
two RNN models together as follows. The first RNN model is the one in Fig. 10.31(a), which takes the
source sentence as the input, and its last hidden state hT

S produces a vector presentation for the entire
source sentence. The second RNN is the one in Fig. 10.31(b), which takes the last hidden state of the
first RNN model hT

S as the input and produces another sentence in the target language. An alternative
choice for the second RNN model is to use the RNN model in Fig. 10.30 for next word prediction, and
the last hidden state of the first RNN model is used as the initial hidden state of the second RNN h0

D .
The advantage of this approach is that we are able to leverage what has already been translated so far
(which is used as the input of the second RNN model) to help improve the translation accuracy for the
remaining sentence. See Fig. 10.32 for an example. We can see that by connecting two RNNs together,
we are able to transfer one sequence (e.g., the source sentence) to another sequence (e.g., the target
sentence). This is called sequence-to-sequence learning or seq2seq for short.

10.4.2 Gated RNNs
A major challenge of RNNs is long-term dependence. Let us go back to the next-word prediction
problem in Example 10.9. In this example, it is highly likely that the next word w is either “Lincoln”
or “corn” since they are both the symbols of “Illinois,” and the predicted word w is quite close to the
relevant keyword “Illinois” (i.e., there are only four other words between them). For such cases, an
RNN model such as the one in Fig. 10.29 works well. Now, let us look at a harder example.

Example 10.11. Given a sentence “The Urbana Sweetcorn Festival is held in every August... There
will be live music, food, beers... Enjoy the fresh corn.” without the last word “corn,” we would like to
predict it based on the remaining sentence. If we look at the short-term preceding words (e.g., “Enjoy,”
“the,” “fresh”), the predicted word w is likely to be a type of food or entertainment. However, if we want
to narrow down the specific food or entertainment, we have to look further back into the input sentence
to locate the keyword “Sweetcorn.” In this example, the gap between the predicted word w and its
relevant keyword “Sweetcorn” is large. In other words, the dependence between them is long.

Conceptually, the RNN models we have seen so far should be still able to capture such long-term
dependence by propagating the information of any preceding word to where we want to make a predic-



10.4 Recurrent neural networks 533

FIGURE 10.32

An example of using two RNN models for machine translation. Note that the first input unit of the second RNN
model is a special token <EOS>, which stands for the end of the sentence. This will cause the second RNN to start
to produce the first output (“Yo”). The process will continue until the second RNN model outputs a special token
<EOS>. Adapted from Charu C. Aggarwal “Neural Networks and Deep Learning.”

tion. However, this means that we will have to use a deep RNN, with many hidden states (one for each
preceding word). Similar to deep feed-forward neural networks, it is very challenging to train a deep
RNN, due to gradient vanishing or gradient exploding problems. Even worse, the gradient vanishing
problem or the gradient exploding problem with deep RNNs could be further exacerbated due to its
recurrent nature (i.e., the same activation function Eq. (10.19) is repeatedly applied to different hidden
states).

One of the most successful techniques to address the long-term dependence challenge in RNNs is
called long short-term memory (LSTM) model. Fig. 10.33 provides a pictorial comparison between a
traditional RNN model and an LSTM model. Fig. 10.33(a) is the same as the RNN model without any
output unit described in Fig. 10.31(a). To see this, we introduce the vector concatenation operation that
connects two vectors and combines them into a single vector. In Fig. 10.33, the vector concatenation is
denoted as a black dot, and it connects the input xt and the previous hidden state ht−1, and combines
them into a single vector [xt ,ht−1] whose length is equal to the sum of the length of xt and that of ht−1.
A hidden unit in Fig. 10.33(a) feeds the concatenated vector [xt ,ht−1] to the nonlinear activation func-
tion (e.g., tanh) to generate the new hidden state ht , which will be fed into the next hidden unit. Note
that this process is equivalent to Eq. (10.19). To see this, let us use tanh as the activation function f ()

in Eq. (10.19). We introduce a 2 × 2 block matrix W̃ , whose first diagonal block is the input-to-hidden
weight matrix U , the second diagonal block is the hidden-to-hidden weight matrix W in Eq. (10.19),
and the two off-diagonal blocks are zeros. Then, Eq. (10.19) becomes ht = tanh(W̃ [xt ,ht−1] + a),
which is the same as the hidden unit described in Fig. 10.33(a). By repeatedly applying the same acti-
vation function (i.e., to replace ht−1 by the previous input xt−1 and its preceding hidden state ht−2, and
so on), we can see that the influence of a distant input xt−τ on the current hidden state ht will decrease
rapidly as the gap τ increases.
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FIGURE 10.33

A comparison between a traditional RNN model (a) and an LSTM model (b). Each gray box in (a) is a hidden unit
of the RNN model. Each gray box in (b) is an LSTM cell of the LSTM model. The black dot (at the left side of the
hidden unit or LSTM cell) denotes vector concatenation operation. For clarity, the output units and the bias vectors
are not shown. Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

An LSTM model (Fig. 10.31(b)) addresses this issue by replacing the hidden unit in the traditional
RNN model by an LSTM cell, which is indicated as a gray box in Fig. 10.31(b). Like the traditional
RNN model, an LSTM cell concatenates the input xt and the previous hidden state ht−1 and eventually
produces a new hidden state ht that will be fed into the next LSTM cell. However, unlike the traditional
RNN model, an LSTM cell has an additional input called cell state Ct . The cell state is the key of the
LSTM model. It is specifically designed to accumulate (or to remember) the information from the past
for a long time, and thus it is able to address the long-term dependence challenge.

“How does the LSTM cell do the magic to address the long-term dependence challenge?” Let us
take a close look at Fig. 10.34. At a given time stamp t , an LSTM cell takes the previous cell state Ct−1

as the input (the top left corner), updates it, and feeds the updated cell state Ct to the next time stamp

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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FIGURE 10.34

An illustration of an LSTM cell. The black dot represents vector concatenation operation. The two tanh layers (the
two blue (mid gray in print version) boxes) are used for generating temporary cell state (the middle bottom) and the
temporary hidden state (the right middle), respectively. The three gates (the yellow (light gray in print version) parts)
are used to control how much information is passed through the corresponding variables, including the forget gate
f t for the old cell state, the input gate it for the temporary cell state, and the output gate ot for the temporary hidden
state, respectively. Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

(the top right corner). The cell state is designed to fulfill two seemingly competing objectives. First, it
needs to accumulate the information from the past for a long time to address the long-term dependence
challenge. Meanwhile, we want to update the cell state based on the current information, and in this
way, it is able to “forget” the irrelevant information from the past. The LSTM model achieves these
design objectives through three gates, namely the forget gate f t , the input gate it and the output gate
ot (the yellow (light gray in print version) parts in the figure).

Each gate takes the concatenated vector [xt ,ht−1] as the input of a sigmoid activation function σ().
Since the sigmoid activation function produces an output between 0 and 1, by multiplying the output of
the sigmoid activation function with the corresponding variable (the yellow (light gray in print version)
circles marked with ×), we can control how much information we want to pass through or remove with
respect to the corresponding variable. To be specific, each of the three gates is defined as follows:

f t = σ(W f [xt ,ht−1] + af ), (10.21)

it = σ(W i[xt ,ht−1] + ai ), (10.22)

ot = σ(W o[xt ,ht−1] + ao), (10.23)

where subscripts for the weight matrices and bias vectors are used to differentiate among different
gates: f for the forget gate, i for the input gate, and o for the output gate, respectively.

The output of the forget gate f t is multiplied with each element of the previous cell state Ct−1.
In other words, it is used to control how much information of the previous cell state Ct−1 will be
removed (or “forgotten”): the smaller the f t , the more information will be forgotten. In order to update
the cell state, we first feed the concatenated vector [xt ,ht−1] to an tanh activation function (the blue
(mid gray in print version) box in the middle bottom part) to generate a temporary cell state: C̃

t =

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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tanh(W c[xt ,ht−1] + ac), where W c and ac are the weight matrix and bias vector for the temporary
cell state, respectively. The temporary cell state C̃

t
is then multiplied with the input gate it , which is

further used to update the cell state:

Ct = f t︸︷︷︸
forget gate

·
old cell state︷ ︸︸ ︷

Ct−1 + it︸︷︷︸
input gate

·
temporary cell state︷︸︸︷

C̃
t

, (10.24)

where the forget gate f t controls how much old information from the previous cell state is removed,
and the input gate it controls how much new information from the temporary cell state is added. By
adjusting the forget gate and input gate, the LSTM cell strikes a balance between accumulating the past
information (from Ct−1) and updating with the new information (from C̃

t
).

Finally, the updated cell state Ct is used to generate a temporary hidden state h̃
t = tanh(W̃Ct + a),

which is further multiplied with the output gate ot to generate the new hidden state ht

ht = ot︸︷︷︸
output gate

· h̃
t︸︷︷︸

temporary hidden state

. (10.25)

We can see that the key of the LSTM model is to use various gates to control how much information
is passed through. In particular, the forget gate f t controls how much information of the old cell state
Ct−1 is kept (or forgotten); the input gate it controls how much new information from the temporary
cell state is used to update the cell state vector; and the output gate ot controls how much information of
the new cell state is used to generate the new hidden state. RNNs model equipped with gate functions
is called gated RNNs. Many variants of the LSTM model exist. For example, some variant only uses
two gates, by setting the input gate it = 1 − f t ; some variant (called gated recurrent units, or GRUs
for short) further merges the cell state and hidden state.

LSTM and its variants have been successfully applied in a variety of real-world applications, such
as machine translation, speech recognition, image captioning, and question answering.

10.4.3 Other techniques for addressing long-term dependence
In addition to gated RNNs, other techniques for addressing long-term dependence exist. For example,
we can apply the shortcut connections method (Section 10.2.7) to add additional links between nonad-
jacent hidden states; alternatively, we can replace some links between adjacent hidden states by longer
connections; we can also add self-connections to the hidden units with the weights close to 1 in order
to “remember” the historical information (such units are called leaky units).

Another alternative strategy to address long-term dependence is through attention mechanism. In
the machine translation example (Fig. 10.32), the sentence in the source language is summarized as the
hidden state of the last time stamp of the first RNN model, which is used as the initial hidden state of
the second RNN model. For short sentences, this treatment works fine. However, when the sentence
to be translated becomes longer or even becomes paragraphs, the influence of such a summary vector
on translation becomes weaker and weaker as the time stamp of the second RNN increases. In other
words, the gap between the summary vector hT

S , and the current word to translate xt
D becomes larger.
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FIGURE 10.35

An example of using attention mechanism in RNN models for machine translation. The black dot represents the
vector concatenation operation. The pink (light gray in print version) dots (c1, c2, c3, c4) are context vectors. The

context vector cj is concatenated with the hidden state h
j
D to produce a new hidden state h̃

j

D , which is in turn used
to produce the output yj .

The attention mechanism addresses this issue by augmenting each hidden state of the second RNN
model with an additional input, called context vector. For the example in Fig. 10.32, we augment each
of the four hidden states of the second RNN model with a context vector, and the resulting RNN model
is shown in Fig. 10.35. Intuitively, for a given time stamp j of the second RNN model, the context
vector cj attends to one or more hidden states of the first RNN model that are most relevant to the
current hidden state h

j
D . In this way, we will be able to pass the most relevant information from the first

RNN model (the sentence in the source language) to the current time stamp j , regardless of how far
away they are apart in the RNN model. The context vector cj is concatenated with the hidden state h

j
D

as the new hidden state h̃
j

D , which is used to produce the corresponding output y
j
D (the translated word

at the j th location).
“How can we obtain the context vectors?” If the words in the source language and the destination

language are perfectly aligned (i.e., the j th word in the destination language always corresponds to the
j th word in the source language), we can simply set cj = h

j
S . However, due to the grammar difference

between different languages, the perfect alignment almost never exists. In this case, we introduce an



538 Chapter 10 Deep learning

alignment vector a. The alignment vector a has the same length of the sequence in the source language
and its elements measure the relevance between the corresponding hidden state of the first RNN model
and the current hidden state of the second RNN model: a(i) = Rel(hi

S,h
j
D), where Rel() is a relevance

score function. We further require that
∑

i a(i) = 1 and a(i) ≥ 0. In other words, we can interpret a(i)

as the probability that the ith hidden state of the first RNN model is aligned with the j th hidden state
of the second RNN model. With the alignment vector a, the context vector is formally defined as

cj =
∑

i

a(i)hi
S . (10.26)

In other words, the context vector cj is a weighted average of the hidden states of the first RNN model,
where the weights are based on the relevance of the corresponding hidden state of the first RNN model
with respect to the hidden state h

j
D of the second RNN model. If all elements of the alignment vector a

are nonzeros, each hidden state will attend the hidden state h
j
D , which is referred to as global attention;

if only some elements of the alignment vector a are nonzeros, it is referred to as local attention; and if
only one element of the alignment vector a is nonzero, it is referred to as hard attention.

A typical way to compute the alignment vector a is to take the softmax of a score function between
different hidden states

a(i) = exp(score(hi
S,h

j
D))∑

i′ exp(score(hi′
S ,h

j
D))

, (10.27)

where score(hi
S,h

j
D) can be viewed as the unnormalized relevance score between two hidden states.

We can use the dot product as the score function: score(hi
S,h

j
D) = hi

S · hj
D . Alternatively, we can take

a bilinear form as the score function: score(hi
S,h

j
D) = (hi

S)T W ah
j
D , where the matrix W a is the pa-

rameter and T is the vector transpose operation. We can even use a single layer full-connected neural
network to calculate the score function, with the two hidden states (hi

S and h
j
D) as the input. The scores

(called attention weights) provide a natural way for interpretation as they tell the relative importance of
different hidden states hi

S (i = 1,2, ...) with respect to the current hidden state h
j
D .

The attention mechanism provides an effective way to address the long-term dependence. A pow-
erful deep learning architecture for text mining, called Transformer, is built entirely based on a spe-
cific type of attention mechanism called self-attention without any recurrent neural networks. At the
time Transformer was invented, it outperformed the best RNN-based methods on several sequence-
to-sequence tasks, such as machine translation. The attention mechanism in BERT, which stands for
Bidirectional Encoder Representations from Transformers, is also credited for its strong performance
in many natural language processing tasks.

The cell state in an LSTM model can be viewed as an internal or implicit memory to address
the long-term dependence challenge. If we manage the memory separately as the explicit or external
memory, and let the data mining model (such as an RNN model) access the memory through read and
write operations, it becomes a powerful technique called memory mechanism. Examples include neural
Turing machines and memory networks.
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10.5 Graph neural networks
Graph data,11 which is essentially a collection of nodes (or vertices) linked with each other by edges,
is a ubiquitous data type arising in many applications. For example, in a social network, nodes are
users and edges represent the friendship between two users; in a power-grid, nodes are power plants
and edges are the power lines connecting two power plants; in a financial transaction network, nodes
are financial accounts and edges are the transactions between two accounts; in bioinformatics, nodes
of a protein-protein interaction (PPI) network are proteins and edges indicate the interactions between
different proteins. Fig. 10.36 shows some graphs from various applications.

The high-level idea of graph neural networks (GNNs) is to turn graph data into multidimensional
data, where each node of the graph is represented as a multidimensional vector. For example, if we can
represent each user in a social network as a multidimensional vector, we can train a classification model
(e.g., decision trees, logistic regression) to classify if the given user is likely to leave the social network
site (churn prediction); alternatively, we can run a clustering algorithm on the vector representation of
users to find a group of similar users (community detection). Likewise, if we can represent each finan-
cial account in a financial transaction network as a vector, we can apply outlier detection techniques
(which will be introduced in Chapter 11) to find fraudulent accounts (fraud detection); or we can feed
the vector representation of power plants of a power grid into a regression model to forecast the likeli-
hood that a power plant might fail in the near future (failure prediction); we can calculate the similarity
between a user and an item based on their vector representation derived from a user-item rating graph
to predict which item(s) the user might like (recommender systems).

“So, how can we turn the graph data into multidimensional vectors?” In this section, we start with
some basic concepts of graph neural networks (GNNs)—deep learning models designed to answer this

FIGURE 10.36

Graphs from various applications.

11 In literature, graph data is also referred to as network data. In this section, we use the term graphs and networks interchange-
ably.
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question (Section 10.5.1). Then, we will introduce a particular type of GNNs called graph convolutional
networks (GCNs) (Section 10.5.2) and other types of GNNs (Section 10.5.3).

10.5.1 Basic concepts
Mathematically, a graph with n nodes can be represented by its adjacency matrix A of size n × n.
The rows and columns of the adjacency matrix A represent the nodes. Given two nodes i and j , if
there is a connection between them, we set the corresponding entries of the adjacency matrix as 1s
(i.e., A(i, j) = A(j, i) = 1); otherwise, we set A(i, j) = A(j, i) = 0.12 In addition, nodes or edges of
a graph might have attributes, which can be represented as a node (or edge) attribute matrix X, whose
rows are nodes (or edges), columns are attributes, and entries of the matrix are the attribute values.
Note that the grid (e.g., images) and sequence (e.g., text) introduced in Sections 10.3 and 10.4 can be
represented as special types of graphs as well (see Fig. 10.36). For example, we can represent an image
as a grid graph, where nodes are pixels, nearby pixels are connected with each other by edges, and
RGB colors are treated as the attributes of the pixels; and we can represent a sentence as a chain graph,
where nodes are words and adjacent words are linked with each other by edges.

Example 10.12. Consider an undirected and unweighted social network in Fig. 10.37(a) with six users,
and each user has three attributes, including gender, age, and occupation. We represent it by a 6 × 6
adjacency matrix A (Fig. 10.37(b)) and a 6 × 3 node attribute matrix X (Fig. 10.37(c)). Each row and
column of the adjacency matrix A represent a user (e.g., the first row and column represent User 1;
the second row and column represent User 2, etc.). Each entry of the adjacency matrix A indicates if
the two corresponding users are connected. For example, since User 1 and User 3 are connected, we
have that A(1,3) = A(3,1) = 1; since User 2 and User 5 are not connected, we have that A(2,5) =
A(5,2) = 0. Each row of the attribute matrix X represents a user, and each column of the attribute
matrix X represents an attribute. For example, the first column of X represents whether the user is male
(1) or female (0), the second column of X represents whether the user is young (1) or senior (0), and
the third column of X represents whether the user is a student (1) or a professor (0). The entry of the
attribute matrix X is the attribute value of the corresponding user on the corresponding attribute. For
example, since the first user is a young male student, we have that X(1,1) = 1 (male), X(1,2) = 1
(young), and X(1,3) = 1 (student).

The goal of GNNs is to use neural networks to map nodes (or subgraphs or graphs themselves) to
low-dimensional vectors. For the example in Fig. 10.37, we might use GNNs to map each user into a
2-D vector (Fig. 10.37(d)) (We will introduce how to compute the specific value of these 2-D vectors
in a minute.) Such low-dimensional vectors are also referred to as embedding or representation of
the nodes. For this reason, the term graph neural networks is sometimes used interchangeably with
graph embedding or network representation learning.13 We choose the term of graph neural networks

12 For brevity, we assume the graph is undirected (which means that an edge from node i to node j always implies there is
another edge from node j to node i) and unweighted (which means that the adjacency matrix A is a binary matrix). We can
generalize the techniques described in this section to a directed and weighted graph as well.
13 Do not confuse the term “network” in network representation learning with the term “network” in GNNs. For the former, the
term “network” refers to the input graph data.
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FIGURE 10.37

A toy social network (a). The topology of the social network is represented by its adjacency matrix A (b) and the
node attributes are represented by the attribute matrix X (c). (d) The 2-D embedding vectors of nodes are denoted
by Z.

to emphasize the use of neural networks techniques to learn the node embedding. The learned low-
dimensional vectors (i.e., the node embedding) can be used as the input of a variety of downstream
applications, such as classification, clustering, outlier detection, and link prediction.

10.5.2 Graph convolutional networks
An effective type of GNNs is called GCNs. Given an input graph A with node attributes X, a GCN
model uses a set of weight matrices W l (l = 1, ..,L), one weight matrix for each layer, to produce the
node embedding matrix Zl whose rows are the embedding of the corresponding nodes. The algorithm
is summarized in Fig. 10.38. The steps are described next.

Preprocessing and initialization: We first add a self-edge to each node i. For a given node i, this will
enable the GCN model to “remember” its own embedding while aggregating its neighboring nodes’
embedding that will be described next. In terms of the adjacency matrix, adding a self edge to each
node is equivalent to updating the adjacency matrix by an identity matrix I (Step 1), where I (i, i) = 1
and I (i, j) = 0 ∀i �= j (i, j = 1, ..., n). Then, in Step 2, we calculate the degree matrix D of the updated
adjacency matrix A, where D(i, i) = ∑n

j=1 A(i, j) and D(i, j) = 0 ∀i �= j (i, j = 1, ..., n). Using the

degree matrix D, in Step 3, we calculate a normalized matrix Â as Â = D−1/2AD−1/2, which is also
referred to as the normalized graph Laplacian of matrix A. Each element in the matrix Â is obtained
by normalizing the corresponding element in A by the square root of the degrees of the source and the
target nodes of the given element: Â(i, j) = A(i,j)√

D(i,i)
√

D(j,j)
. In Step 4, the initial embedding is simply

set as the input node attribute matrix Z0 = X.

Producing node embedding layer-by-layer: GCNs produce the node embedding at a given layer
Zl based on the embedding from the previous layer Zl−1 through the following three steps. First
(Step 6), for each dimension p of the previous node embedding of each node i, we take a weighted

aggregation of the embedding of its neighboring nodes: Z̃
l−1

(i,p) = ∑n
j=1 Â(i, j)Zl−1(j,p). This

step is also referred to as propagation, and in the matrix form, we have that Z̃
l−1 = ÂZl−1. Second
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Algorithm: Graph convolutional networks for producing node embedding at different layers.

Input:

• A, adjacency matrix of the input graph of size n × n;
• X, the node attribute matrix of size n × d;
• W l (L = 1, ...,L), the weight matrix at each layer;
• L, the number of layers;
• f , nonlinear activation function (e.g., sigmoid or ReLU function).

Output: The node embedding matrices Zl (l = 1, ...,L).
Method:

//Preprocessing and Initialization
(1) Add a self-edge for each node: A ← A + I where I is an identity matrix;
(2) Calculate the degree matrix D of A;
(3) Normalize Â = D−1/2AD−1/2;
(4) Initialize Z0 = X;
(5) for (l = 1, ...,L){ // for each layer of GCNs

//Propagation

(6) Z̃
l−1 = ÂZl−1; // aggregate the neighboring embedding

//Linear Transformation

(7) Z̄
l = Z̃

l−1
W l ; // linear transformation of aggregated embedding

//Nonlinear activation

(8) Zl = f (Z̄
l
); // nonlinear activation of linearly transformed embedding

(9) }

FIGURE 10.38

Graph convolutional networks. We assume the weights are given and the bias vectors are omitted for brevity.

(Step 7), we take a linear transformation of the aggregated embedding through the weight matrix:

Z̄
l = Z̃

l−1
W l . That is, we take a linear weighted sum of different dimensions of the aggregated embed-

ding: Z̄
l
(i,p) = ∑n

j=1 Z̃
l−1

(i, j)W l (j,p). Third (Step 8), we pass the linearly transformed embedding

matrix Z̄
l

through a nonlinear activation function, such as sigmoid function or ReLU function.
Notice that the last two steps are similar to a fully connected layer of a feed-forward neural network,

with the aggregated embedding matrix Z̃
l−1

as the input, the weight matrix W l as the model parameters,
and the node embedding matrix Zl in Step 8 as the output of this layer. That is,

Zl = f (Z̃
l−1

W l ). (10.28)

Eq. (10.28) is called batch implementation, in that we have stacked the embedding of all n nodes
(i.e., samples) into an n × dl matrix Zl , where dl is the embedding dimension of layer-l, and each row
of Zl is the embedding of one node (i.e., sample). It is not hard to re-write Eq. (10.28) with respect to
each individual node or sample

Zl (i, :) = f (Z̃
l−1

(i, :)W l ), (10.29)

where Zl (i, :) is the embedding of node i of the lth layer (i = 1, ..., n). A subtle point with respect to
notation is that GCNs typically use a row vector (e.g., Zl (i, :)) to represent the embedding of a node;
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FIGURE 10.39

A conceptual comparison between GCNs (b) and feed-forward neural networks (a). In the matrix form, the main
difference lies the extra propagation (i.e., aggregation) step through the normalized graph Laplacian matrix Â in
GCNs.

whereas in other deep learning models (e.g., feed-forward neural networks, CNNs, RNNs) and other
GNNs models (e.g., GraphSAGE that will be introduced next), the embedding of a data sample (e.g.,
a node) is represented by a column vector by convention. These two forms can be converted with each

other. For example, Eq. (10.29) is equivalent to (Zl (i, :))T = f ((W l )T (Z̃
l−1

(i, :))T ), where the column
vector (Zl (i, :))T is the transpose of the row vector Zl (i, :).

Conceptually, the main difference between GCNs and feed-forward neural networks lies in the
propagation (Step 6). That is, we first propagate (or aggregate) the node embedding matrix Zl−1 from

the previous layer and then use the aggregated embedding matrix Z̃
l−1 = ÂZl−1, instead of Zl−1, as

the input of this layer (layer-l). See Fig. 10.39 for a comparison.
“But, why do we want to introduce this extra (Propagation or Aggregation) step? Which part of the

GCNs algorithm in Fig. 10.38 corresponds to convolution?” Recall that for 2-D convolution, the filter
is a fixed, small-sized (e.g., 3 × 3) matrix. For a given element of the input matrix (e.g., a pixel), we
place the center of the filter on top of the pixel and thus identify a local neighborhood of the pixel, called
the receptive field. Then, we take a weighted sum of all the elements in the receptive field, weighted
by the corresponding elements in the filter, as the element in the feature map. However, we cannot
directly apply this strategy to perform convolution operations on graphs because the neighborhood of
different nodes often have different sizes, and there is no natural ordering of nodes in the neighborhood.
The propagation in Step 6 provides a clever way to address these issues as follows. First, the nonzero
entries in the ith row of matrix Â define the neighborhood of node i: N (i) = {j |j �= i, Â(i, j) �= 0}
(analogous to the receptive field in 2-D convolution). Then, we take a weighted sum of the embedding
of node i’s neighbors, weighted by the corresponding elements in Â (analogous to the filter in the 2-
D convolution). Finally, the aggregated embedding from the neighborhood is combined with node i’s
current embedding by a linear weighted sum as the updated embedding of node i (analogous to the
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FIGURE 10.40

An illustration of the convolution operation in GCNs. The nonzero elements in each row of the normalized graph
Laplacian matrix Â(i, :) identify the neighborhood N (i) of node i, plus node i itself (i.e., the pink (light gray in

print version) shaded area). In order to update node i’s embedding Z̃
l−1

(i, :), we first aggregate the embedding of
its neighboring nodes’ embedding. Equivalently, we can think of this process as propagating neighboring nodes’
embedding to the current node i. Then, we take a linear weighted sum of the aggregated embedding from the neigh-
borhood and node i’s current embedding.

corresponding element in the feature map in 2-D convolution): Z̃
l−1

(i, :) = ∑n
j=1 Â(i, j)Zl−1(j, :) =∑

j∈N (i) Â(i, j)Zl−1(j, :) + Â(i, i)Zl−1(i, :). See Fig. 10.40 for an illustration.

Example 10.13. Let us walk through the GCN algorithm using the example in Fig. 10.12, where we
consider the first GCN layer (i.e., l = 1). The computational results are summarized in Fig. 10.41.
Given the input Z0 = X and the normalized graph Laplacian matrix Â (computed in Steps 1–3), we
first compute the weighted aggregation of the embedding of neighboring nodes by Step 6 and output

Z̃
(l−1)

. Then we compute the linear transformation of Z̃
(l−1)

(i.e., Step 7). Here we assume the weight

matrix W 1 at the first layer is fixed. The output of this step Z̄
l

is then passed through a nonlinear
activation (we use the sigmoid function in this example), and we obtain the output node embedding
matrix Z1.

The GCN algorithm in Fig. 10.38 assumes that the weight matrices W l , (∀l = 1, · · · ,L) are given.
In case these parameters are unknown, but we do know the class labels for a subset of nodes, one way
to learn such model parameters is as follows. We augment the last layer of Fig. 10.38 with a fully
connected layer without the propagation step (e.g., with sigmoid activation function). Then, we can use
the backpropagation algorithm (Fig. 10.4) to learn the weight matrices W l (e.g., with the cross-entropy
as the loss function).
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FIGURE 10.41

An example of one-layer GCN computation steps (l = 1).

10.5.3 Other types of GNNs
For the GCNs model in Fig. 10.38, we aggregate the embedding of the neighboring nodes by a weighted
sum, where the weights are determined by the corresponding entries in the normalized graph Laplacian
matrix Â. Many alternative choices for aggregation exist, which lead to other types of GNN models.

Unlike GCNs where the node embedding is represented by a row vector, these other types of GNNs
often use column vectors to represent node embedding. To avoid notation confusion with GCNs, we
use hl

i , a column vector, to represent the embedding of node i in the lth layer in this section. Likewise,
the attributes of a node are presented by a column vector xi (i = 1, ..., n).

GraphSAGE, which stands for Graph SAmple and aggreGatE, can be viewed as a generalization of
graph convolutional networks. The algorithm of GraphSAGE is summarized in Fig. 10.42. We can see
that the main difference between GraphSAGE and GCNs lies in Step 4, where we use an aggregation
function (agg) to aggregate the embedding of neighboring nodes. In addition to taking a linear weighted
sum of neighboring nodes’ embedding as in GCNs, the function agg in GraphSAGE also supports other
types of aggregation. For example, we can use pooling aggregator as follows:

h̃
l−1
i = max(g(W poolh

l−1
j + b), ∀j ∈ N (i)), (10.30)

where g is the activation function for the pooling aggregator, and W pool and b are the corresponding
weight matrix and bias vector, respectively. A pooling aggregator first feeds the embedding of neigh-
boring nodes through a fully connected layer and then takes the element-wise maximum of the output
of the fully connected layer as the aggregation result. In addition to the pooling aggregator, we can
also use an LSTM model applied to a random permutation of the neighboring nodes to aggregate the
embedding of the neighboring nodes. Another subtle difference between GraphSAGE and GCNs lies
in Step 5, where GraphSAGE uses a separate weight matrix U l applied to node i’s current embedding
hl−1

i .14

Many other types of GNNs have been developed. For example, in a propagation-based spatial
graph convolutional network, we can simply add the embedding of the neighboring nodes as the aggre-

gated embedding Z̃
l−1

. In Graph Attention Network (GAT), it uses the attention mechanism (similar

14 This is equivalent to first concatenating h̃
l−1
i and hl−1

i
and then applying a linear transformation on the concatenated vector.
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Algorithm: GraphSAGE for producing node embedding at different layers.

Input:

• A, adjacency matrix of the input graph of size n × n;
• xi (i = 1, ..., n), the node attribute vector of length d;
• W l ,U l (L = 1, ...,L), the weight matrices at each layer;
• L, the number of layers;
• f , nonlinear activation function (e.g., sigmoid or ReLU function);
• agg, aggregation method.

Output: The node embedding vectors at different layers hl
i
(l = 1, ...,L, i = 1, ..., n).

Method:

(1) Initialize h0
i

= xi (i = 1, ..., n);
(2) for (l = 1, ...,L){ // for each layer of GraphSAGE
(3) for (i = 1, ..., n){ // for each node

//Neighborhood aggregation via an aggregation method Agg

(4) h̃
l−1
i = Agg(hl−1

j
, ∀j ∈ N (i)); //N (i): neighborhood of node i

//Linear Transformation

(5) h̄
l
i = W l h̃

l−1
i + U lhl−1

i
;

//Nonlinear activation

(6) hl
i
= f (h̄

l
i );

(7) }
(8) }

FIGURE 10.42

GraphSAGE, where the weights are given and the bias vectors are omitted for brevity.

to the one introduced in Section 10.4.3) to learn the impact (or the weights) of the embedding of the
neighboring nodes during the aggregation process.

GCNs and its variants (e.g., propagation-based spatial GCN and GraphSAGE) are often trained in
the supervised fashion, meaning that they require a set of labeled training tuples (i.e., nodes) to learn
the model parameters. There exist many methods (e.g., LINE, DeepWalk, node2vec) to learn node
embedding in the unsupervised fashion without the access to the labeled nodes. The central idea of
these methods is to find node embedding so that the similarity between nodes in the embedding space
resembles that in the input graph.

The GNNs models described here are primarily designed to learn node embedding that captures the
topological information of the input graph (e.g., the adjacency matrix A). Knowledge graph embedding
(e.g., TransE and its variants) aims to find embedding of both nodes and edges to capture the rich
semantic information (e.g., node and edge attributes) of the knowledge graph.

The model parameters of GNNs are often shared among different nodes. This renders the inductive
property to GNNs, in that once the model parameters are trained, we can use them to find embedding of
unseen nodes during the training process. After we obtain the embedding of the nodes, we can further
aggregate them (e.g., via average) to obtain the embedding of the entire graph.

GNNs are an active research area, and there are many open research questions. We give three ex-
amples to illustrate this. First, most of the existing GNNs work with a relatively small number of
layers (e.g., L = 2 or 3). When the number of layers becomes larger, the learned embedding tends
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to be “oversmooth”15 and thus become less discriminative for classification or clustering tasks. It has
largely remained as an open problem on how to make GNN “deeper” by allowing more layers without
suffering from the oversmoothing issue.16 Second, most of the existing GNNs are designed to find em-
bedding of the individual nodes or the entire graphs. A much less studied aspect is how to effectively
obtain the embedding of a subgraph (i.e., subgraph embedding), which has numerous applications in
question-answering, group recommendation, and so on. Third, graphs from some application domains
(e.g., finance, social networks) are often collected from multiple sources. How to develop effective
GNNs models for such multisourced graphs (e.g., Multi-GNNs) so that nodes from different graphs are
embedded in the same embedding space is another active research area.

10.6 Summary
• A neural network is made up of interconnected units. A unit is a mathematical function that (1)

takes a linear weighted sum of the input and then (2) passes the sum through an activation func-
tion. The activation function transforms the input of a unit to its output. The activation function is
typically a nonlinear function, such as the sign function, the sigmoid function and ReLU function.
A deep neural network is a neural network with many layers. It is capable of approximating any
nonlinear function and learning a hierarchy of features.

• A multilayer feed-forward neural network consists of an input layer, one or more hidden layers,
and an output layer. In the matrix form, a multilayer feed-forward neural network can be represented
as a chain graph.

• Backpropagation is a gradient descent based technique to learn the model parameters, including
the weights and bias values, of a neural network. It searches for a set of weights and bias values that
can model the data to minimize the loss function between the network’s prediction and the actual
target output of data tuples. It consists of two major steps, including forward propagating the net
input and output of each unit from the input layer to the output layer, and backward propagating the
errors from the output layer to the input layer.

• Two major challenges of training a deep neural network including optimization and generalization.
The optimization challenge refers to obtain a low-cost local minimal of the training loss function in
a computationally efficient way. The generalization challenge refers to making sure the trained deep
neural networks perform well on the future test tuples.

• Gradient vanishing refers to the phenomenon that the gradient of the loss function with respect
to the input of certain units quickly approaches zero during the backpropagation process. Gradient
vanishing could cause the backpropagation algorithm to be stuck at the high-cost region or take a
long time to converge. One common cause of gradient vanishing is the saturation of the output of
the activation function. Using a more responsive activation function, such as the rectified linear unit
(ReLU), could alleviate gradient vanishing.

15 This means that the embedding of nodes may become similar even for those nodes that are distinct and far away from each
other.
16 Another type of GNNs, called Gated Graph Neural Networks, updates the node embedding by a gated recurrent unit (GRU),
which can handle more than 20 layers. Nonetheless, how to make GNNs go even deeper remains an area of future research.
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• Using adaptive learning rate in backpropagation can help accelerate the algorithm convergence
or prevent oscillation. Commonly used strategies include setting the learning rate to be in reverse
proportion to the epoch number or the magnitude of the accumulated historical gradients.

• Dropout is an effective strategy to improve the generalization performance of backpropagation al-
gorithm. At each epoch, it randomly drops some nonoutput units and uses the remaining network to
update the model parameters.

• Pretraining presets the initial model parameters of a deep neural network in a suitable region. It
helps accelerate the backpropagation algorithm convergence and improves the generalization per-
formance. A commonly used pretraining strategy is supervised greedy pretraining, which gradually
adds hidden layers and pretrains the parameters of the newly added layers while fixing the parame-
ters of the previously added layers.

• For classification tasks, it is more common to use cross-entropy as the loss function to train a deep
neural network. Cross-entropy can help alleviate the gradient vanishing problem even when the unit
is saturated.

• Convolutional neural networks (CNNs) are effective deep learning models for grid-like data, such
as images. The key operation in CNNs is convolution. Given an input and a kernel, the convolution
generates a feature map, where the kernel is shared across different entries of the input. A convolu-
tion layer consists of a set of kernels, often followed up with a nonlinear activation and a pooling
operation. A CNN model is the neural network with at least one convolutional layer.

• Recurrent neural networks (RNNs) are effective deep learning models for sequential data, such
as text. There are three main types of units in an RNN model, including input unit, hidden unit,
and output unit. The same input-to-hidden weight matrix, hidden-to-hidden weight matrix, and
hidden-to-output weight matrix are shared across different time stamps. A major challenge of
RNNs is long-term dependence. The long short-term memory (LSTM) is one of the most suc-
cessful techniques to address the long-term dependence. The key component of LSTM is the cell
state in each LSTM cell, which is designed to accumulate the information in the past for a long time
and meanwhile use the current information to update the cell state. LSTM achieves these design ob-
jectives through three gates, including the forget gate, the input gate, and the output gate. Attention
mechanism is another effective way to address long-term dependence.

• The goal of graph neural networks (GNNs) is to use neural networks to map nodes of a graph
to low-dimensional vectors called node embeddings. An effective type of GNNs is graph convo-
lutional networks (GCNs). Given an input graph with node attributes, a GCN model uses a set
of weight matrices, one weight matrix for each layer, to produce the node embeddings. The key
operations in each layer of GCNs include propagation, linear transformation, and nonlinear ac-
tivation.

10.7 Exercises
10.1. The following table consists of training data from an employee database. The data have been

generalized. For example, “31 . . . 35” for age represents the age range of 31 to 35. For a given
row entry, count represents the number of data tuples having the values for department, status,
age, and salary given in that row.



10.7 Exercises 549

department status age salary count
sales senior 31 . . . 35 46K . . . 50K 30
sales junior 26 . . . 30 26K . . . 30K 40
sales junior 31 . . . 35 31K . . . 35K 40
systems junior 21 . . . 25 46K . . . 50K 20
systems senior 31 . . . 35 66K . . . 70K 5
systems junior 26 . . . 30 46K . . . 50K 3
systems senior 41 . . . 45 66K . . . 70K 3
marketing senior 36 . . . 40 46K . . . 50K 10
marketing junior 31 . . . 35 41K . . . 45K 4
secretary senior 46 . . . 50 36K . . . 40K 4
secretary junior 26 . . . 30 26K . . . 30K 6

Let status be the class-label attribute.
a. Design a multilayer feed-forward neural network for the given data. Label the nodes in the

input and output layers.
b. Using the multilayer feed-forward neural network obtained in (a), show the weight values

after one iteration of the backpropagation algorithm, given the training instance “(sales, se-
nior, 31 . . . 35, 46K . . . 50K).” Indicate your initial weight values and biases and the learning
rate used.

10.2. a. Derivatives of various activation functions. Show how the derivatives of activation func-
tions, including sigmoid, tanh, and ELU in Table 10.6, are derived in mathematical details.

b. Backpropagation algorithm. Consider a multilayer feed-forward neural network as
shown in Fig. 10.5 with sigmoid activation and mean-squared loss function L. Prove (1)
Eq. (10.3) for computing the error in the output unit (δ10); (2) Eq. (10.4) for computing
the errors in hidden units δ9 and δ6; (hint: consider the chain rule); and (3) Eq. (10.5) for
updating weights (hint: consider the derivative of the loss with respect to weights).

c. Relation between different activation functions. Given the sigmoid function σ(I) =
1

1+e−I and hyperbolic tangent function tanh(I ) = eI −e−I

eI +e−I , show in mathematics how
tanh(I ) can be transformed from sigmoid through shifting and re-scaling.

10.3. Feed-forward neural networks. In this exercise, we implement a feed-forward neural network
for a binary classification task. The goal is to predict whether the e-mail is spam (labeled as
1) or not (0) according to its attributes (e.g., word frequency, length of uninterrupted sequence
of capital letters). The detailed description of the data set can be found at http://archive.ics.uci.
edu/ml/datasets/Spambase. To complete this exercise, you are required to
a. construct a multilayer feed-forward neural network for the spam prediction task and eval-

uate the model from the following perspectives, including prediction accuracy, F1 score,
and AUC-ROC curve;

b. compare the performance of the models with various activation functions and different
depth/width.

10.4. Autoencoder. Autoencoder is a classic type of neural networks for unsupervised learning.
a. Demonstrate that PCA is a special case of the autoencoder by showing that the loss function

of PCA is equivalent to the mean-squared error of the autoencoder with linear activation,
where the encoder and decoder share the same parameters.

b. Implement an autoencoder with nonlinear activation, and use (1) mean-squared-error and
(2) binary cross-entropy as the loss function. Note that when using the binary cross-entropy

http://archive.ics.uci.edu/ml/datasets/Spambase
http://archive.ics.uci.edu/ml/datasets/Spambase
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loss, each data point should be normalized into [0,1]. Compare them with PCA on the
MNIST data set, which can be found at http://yann.lecun.com/exdb/mnist/, in terms of
classification accuracy and the visualization of reconstructed images. For the classification
task, first use the autoencoder or PCA to obtain the features of the data and then train a
linear SVM or logistic regression model using the features.

10.5. Dropout. (a) Explain why dropout can be used to mitigate the overfitting problem. (b) Suppose
we have a simple two-layer neural network y = W2(W1x + b1) + b2 where x ∈R

3, W1 ∈R
2×3,

b1 ∈ R
2, W2 ∈R

2 and b2 ∈ R. How many possible dropout networks are there that are not dis-
connected?

10.6. Pretraining on autoencoder.
a. Why pretraining helps the learning or converge?
b. How to pretrain an autoencoder?

10.7. Loss functions. Consider the following two loss functions, including (1) mean-squared error
Loss(T ,O) = 1

2 (T −O)2, and (2) cross-entropy Loss(T ,O) = −T logO − (1−T ) log (1−O)

for binary classification. Assume the activation function is sigmoid.
a. Show the derivation of the error δ for the output unit in backpropagation process and com-

pare the two loss functions (e.g., potential problems they might produce).
b. Now, we wish to generalize the cross-entropy loss to the scenario of multiclass classifica-

tion. The target output is a one-hot vector of length C (i.e., the number of total classes),
and the index of nonzero element (i.e., 1) represents the class label. The output is also a
vector of the same length O = [O1,O2, . . . ,OC]. Show the derivation of the categorical
cross-entropy loss and the error δ of the output unit. (hint: there are two key steps, includ-
ing (1) normalizing the output values by scaling between 0 and 1, and (2) deriving the cross
entropy loss following the definition for the binary case where the loss can be represented
as Loss(T ,O) = −∑2

i=1 Ti log(Oi).)
10.8. What are the key differences between CNNs and feed-forward neural networks? Why are CNNs

widely used on grid-like data?
10.9. 2-D convolution. Given the input and two kernels as shown in Fig. 10.43,

a. compute the feature maps by applying kernel K1, K2 (stride is defined as 1, and zeros are
padded around I ), respectively;

b. re-compute the feature maps if the stride is 2;
c. compute the new feature maps after we apply a downsampling process, max pooling, and

average pooling (filter size is 2 × 2), respectively, to the obtained feature maps in (a).
10.10. Training LSTM. It is usually hard to train LSTM on long sequences, answer the following

questions:
a. Why it is hard to train LSTM?
b. How to mitigate the problem?

10.11. LSTM and GRU Compare LSTM with GRU, and answer the following questions:
a. What do they have in common?
b. What are the differences between them?
c. What are the pros and cons of them?

10.12. Suppose we apply graph convolutional networks (GCNs) on grid-like graphs (e.g., images)
without normalizing adjacency matrix (i.e., removing Steps 2–3 in Fig. 10.38). Explain why it
is essentially a 2-D convolution with a special type of filters.

http://yann.lecun.com/exdb/mnist/
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FIGURE 10.43

Input is a 8 × 8 binary matrix and two kernels are of size 3 × 3.

10.13. In this exercise, we will derive the graph convolutional networks shown in Sec. 10.5.2 from
spectral graph signal processing perspective. The classic convolution on graphs can be com-
puted by y = Ugθ(�)UT x where x ∈ R

N is the input graph signal (i.e., a vector of scalars that
denote feature values of all nodes at a certain feature dimension). Matrices U and � denote
the eigen-decomposition of the normalized graph Laplacian: L = I − D− 1

2 AD− 1
2 = U�UT .

gθ (�) is the function of eigenvalues and is often used as the filter function.
a. If we directly use the classic graph convolution formula where gθ (�) = diag(θ) and θ ∈

R
N to compute the output y, what are the potential disadvantages?

b. Suppose we use K-polynomial filter gθ (�) = ∑K
k=0 θk�

k . What are the benefits, com-
pared to the above filter gθ (�) = diag(θ)?

c. By applying the Kth order Chebyshev polynomial approximation on the filter gθ (�) =∑K
k=0 θk�

k , the filter function can be written as gθ ′(�) ≈ ∑K
k=0 θ ′

kTk(�̃) with a rescaled
�̃ = 2

λmax
� − I , where λmax denotes the largest eigenvalue of L, and θ ′ ∈ R

K denotes
the Chebyshev coefficients. The Chebyshev polynomials can be computed recursively by
Tk(z) = 2zTk−1(z) − Tk−2(z) with T0(z) = 1 and T1(z) = z. Now derive the approximate
spectral graph convolution formula in terms of the Laplacian matrix. What is the compu-
tational complexity?

d. By further simplifying to K = 1, λmax = 2 and θ = θ ′
0 = −θ ′

1, derive the graph convolu-
tional layer for the input graph with A as the adjacency matrix and X ∈R

N×C as the input
node attribute matrix.

10.14. In this exercise, we aim to implement and learn the graph convolutional networks (GCNs)
shown in Fig. 10.38. Specifically, we apply a two-layer GCN for semisupervised node clas-
sification on Cora data set. The data can be downloaded at https://linqs.soe.ucsc.edu/data.
Specifically, first construct the undirected graph based on citation relations (i.e., there exists
one undirected edge between two papers if one paper cites another), and node attributes repre-
sent the content words. Randomly split 500 nodes for validation and 1000 nodes for testing and
the rest for training. Set the hidden dimension to be 64. Use ReLU and softmax functions as the
nonlinear activation functions of the first and second layers, respectively. For semisupervised

https://linqs.soe.ucsc.edu/data
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node classification, use cross-entropy loss function and Adam optimizer with a learning rate
0.01 and a dropout rate 0.5. Implement this model, then evaluate and report the node classifica-
tion accuracy.

10.8 Bibliographic notes
The history of deep learning dates back a long time ago. To date, it has experienced three waves since
the 1940s. The first wave was in 1940s–1960s. During this wave, the perceptron, a single neuron,
was invented in 1958 to perform a simple classification task, that is, to find a linear classification
decision boundary. The significance lies in that it demonstrates that we can learn a single neuron to
perform (relatively simple) classification tasks. The second wave was in 1980s–1990s. During this
wave, the backpropagation algorithm was invented in 1986 to train feed-forward neural networks. This
demonstrates the neural network’s capability to obtain a more complicated and intelligent learning
system (e.g., a nonlinear classifier) by connecting many simple units (e.g., perceptron) in the form of
a network. Neural network learning during this wave is also referred to as connectionist learning or
connectionism due to the connections between units. The third wave began around 2006 and lasted to
the date of the writing of this book. The major breakthrough during this wave lies in the invention of a
multitude of advanced techniques, often collectively referred to as “deep learning,” to effectively train
a large, deep neural network. The trained deep neural network has demonstrated great power, and it
has achieved the performance that is close to or even surpasses humans in many applications, such as
computer vision, natural language processing, social media analysis, and so on. Generally speaking,
there are three key reasons for the success of the third (the current) wave, including (1) the availability
of large-scale labeled training data, (2) the dramatic improvement of computational power, and (3) the
algorithmic advancement to train a large, deep neural network.

To describe how the neurons in the brain work, McCulloch and Pitts [MP43] utilize electrical cir-
cuits to model the operation of a simple neural network. Hebb [Heb49] mentions that neural connections
are enhanced every time they are used in the hypothesis of human learning. The perceptron algorithm
of binary classification for supervised learning is introduced by Rosenblatt [Ros58]. The first neural
network that is applied to real-world application, MADALINE, is developed from Widrow and Hoff
[WH60]. Fukushima [Fuk75] develops the first multilayer neural network for unsupervised learning.
The backpropagation algorithm is proposed by Rumelhart, Hinton, and Williams [RHW86b], which
serves as the key milestone of training a multilayer artificial neural network through backpropagating
errors, and Funahashi [Fun89] mathematically proves the capability of multilayer network with sigmoid
activation to approximate any continuous mapping (e.g., a binary classifier).

A series of challenges exist in training a deep neural network. From the perspective of activation
functions, rectifier is first introduced by Hahnloser and Seung [HS00], Nair and Hinton [NH10] incor-
porate the rectifier as the activation for a hidden unit in Restricted Boltzmann Machine. Other types of
activation functions include, Leaky ReLU from Maas, Hannun, and Ng [MHN], Parametric ReLU from
He, Zhang, Ren, and Sun [HZRS15], ELU from Clevert, Unterthiner, and Hochreiter [CUH15], and
Swish from Ramachandran, Zoph, and Le [RZL17]. From the optimization perspective, to reduce the
burden of computation, the idea of stochastic approximation is incorporated into the gradient-descent-
based optimization for deep neural networks (see Robbins and Monro [RM51], Kiefer and Wolfowitz
[KW+52]), where the key idea is to replace the actual gradient with an estimation. To help acceler-
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ate the computation of stochastic gradient descent (SGD), the momentum mechanism is utilized by
Qian [Qia99], where it introduces a parameter to preserve the gradient of the previous step. Nesterov
accelerated gradient (NAG) by Nesterov [Nes83] improves the gradient calculation by estimating the
value of the loss function. In order to set an appropriate learning rate, several methods have been de-
veloped. To name a few, AdaGrad from Duchi, Hazan, and Singer [DHS11] adapts the learning rate
to the magnitude of the parameter for each dimension; Adadelta from Zeiler [Zei12] aggregates the
past gradients in a given window size; RMSProp from Hinton, Srivastava, and Swersky [HSS] fur-
ther resolves the problem of diminishing learning rate of AdaGrad; Adam and AdaMax are developed
by Kingma and Ba [KB14], where Adam combines the advantages of momentum and RMSprop, and
AdaMax is a variant of Adam based on the infinity norm; NAdam from Dozat [Doz16] incorporates
Nesterov momentum into Adam. Other techniques for optimizing gradient descent include managing
the training samples in a meaningful order from curriculum learning by Bengio, Louradour, Collobert,
and Weston [BLCW09]; batch normalization for each mini-batch by Ioffe and Szegedy [IS15], which
makes it possible to use larger learning rate. Neelakantan et al. [NVL+15] add Gaussian noise to every
gradient, which improves the training for deeper networks and makes the network more robust. For
efficient training, new parameter initialization schemes are proposed by Glorot and Bengio [GB10] and
He et al. [HZRS15].

To prevent the network from overfitting, Srivastava et al. [SHK+14] propose a method called
dropout to randomly deactivate nodes during training. Related works include Wang and Manning
[WM13], Ba and Frey [BF13], Pham, Bluche, Kermorvant, and Louradour [PBKL14], Dahl, Sainath,
and Hinton [DSH13], Kingma, Salimans, and Welling [KSW15], and Gal and Ghahramani [GG16].
Prechelt [Pre98] introduces a technique called early stopping by leveraging validation. For pretrain-
ing used in deep learning, refer to Erhan, Courville, Bengio, and Vincent [ECBV10], Yu and Seltzer
[YS11], Saxe, McClelland, and Ganguli [SMG13], Radford, Narasimhan, Salimans, and Sutskever
[RNSS18], and Devlin, Chang, Lee, and Toutanova [DCLT18]. Besides supervised learning, for un-
supervised tasks, see Barlow [Bar89], Sanger [San89], Baldi [Bal12], Figueiredo and Jain [FJ02],
Radford, Meta, and Chintala [RMC15], and Le [Le13]. For semisupervised learning, see Chapelle,
Scholkopf, and Zien [CSZ09] and Zhu [Zhu05] for an introduction.

Many variations of backpropagation have been proposed, involving, for example, dynamic adjust-
ment of the network topology (Mézard and Nadal [MN89]; Fahlman and Lebiere [FL90]; Le Cun,
Denker, and Solla [LDS89]; and Harp, Samad, and Guha [HSG89]); and dynamic adjustment of the
learning rate and momentum parameters (Jacobs [Jac88]). Other variations are discussed in Chauvin
and Rumelhart [CR95]. Books on neural networks include Rumelhart and McClelland [RM86]; Hecht-
Nielsen [HN90]; Hertz, Krogh, and Palmer [HKP91]; Chauvin and Rumelhart [CR95]; Bishop [Bis95];
Ripley [Rip96]; and Haykin [Hay99]. Many books on machine learning, such as Mitchell [Mit97] and
Russell and Norvig [RN95], also contain good explanations of the backpropagation algorithm.

Yang, Fu, Sidiropoulos, and Hong [YFSH17] propose to integrate autoencoder and K-means to
simultaneously find clusters and embedding. Xie, Girshick, and Farhadi [XGF16] introduce KL-
divergence in deep clustering. Yang, Fu, and Sidiropoulos [YFS16] propose joint nonnegative matrix
factorization and K-means for latent clustering. For the application of deep clustering in image data,
see Caron, Bojanowski, Joulin, and Douze [CBJD18], and Yang, Parikh, and Batra [YPB16].

Convolution, rooted in mathematics, has been widely used in various areas like signal processing.
Convolutional neural networks (CNNs), inspired by the visual cortex [HW62], are one of the most
successful architectures in deep learning. Waibel et al. [WHH+89] introduces time-delayed neural net-
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work (TDNN) for speech recognition, which is the first CNN model. LeCun et al. [LBD+89] apply 2-D
convolution operation for recognizing handwritten zip code. LeNet-5 by LeCun, Bottou, Bengio, and
Haffner [LBBH98] represents a milestone of CNNs. Krizhevsky, Sutskever, and Hinton [KSH12] in-
troduce the first Deep CNN (DCNN) architecture—AlexNet, which has achieved superior performance
on the ImageNet data set [DDS+09]. VGGNets [SZ15] and GoogLeNets [SLJ+15] demonstrate that
deeper architectures with small filters in convolutional layers could achieve better results. DCNNs are
susceptible to the problems of vanishing gradients and exploding gradients. To address this, He, Zhang,
Ren,and Sun [HZRS16] introduce deep residual learning and propose residual nets (ResNet). Huang,
Liu, Van Der Maaten, and Weinberger [HLVDMW17] exploit the idea of skip-connections in ResNet
and introduce dense convolutional network (DenseNet) with dense connectivity.

These CNN models have not only achieved superior performance in image classification tasks,
but also been used as basic building blocks for other applications. DeepFace [TYRW14] and FaceNet
[SKP15] adopt variants of AlexNet [KSH12] and GoogLeNets [SLJ+15] for face recognition re-
spectively. R-CNN [GDDM14], Fast R-CNN [Gir15], Faster R-CNN [RHGS15], and Mask R-CNN
[HGDG17] are some representative works in the field of object detection and segmentation. DeepPose
[TS14] and two-stream CNNs [SZ14] adopt CNNs for human pose estimation and action recognition
respectively. DCGAN [RMC16] introduces a deconvolutional neural network for generating images.
Shen, Wu, and Suk [SWS17] review CNNs-based methods for medical image analysis. In addition to
computer vision tasks, CNNs have also been used in speech recognition [AHMJP12], natural language
processing [Kim14], and time-series analysis [WYO17].

Recurrent neural networks (RNNs) [RHW86a] are another classic neural network architecture, for
modeling sequential data. Inspired by the memory mechanism in human brains, Little [Lit74] and
Hopefield [Hop82] introduce (Little-)Hopefield Network, one of the earliest forms of RNNs with bi-
nary thresholds. Elman Network [Elm90] generalizes the Hopefield Network and is known as simple
recurrent network. Schuster and Paliwal [SP97] introduce bi-directional RNNs (BRNNs) to allow the
current state to gather the input information from not only the past but also the future. Hochreiter
and Schmidhuber [HS97] propose long short-term memory networks (LSTM), one of the most popular
RNNs, to solve the problem of vanishing gradients when training simple RNNs. Cho et al. [CVMG+14]
simplify LSTM by introducing the gated recurrent unit (GRU).

RNNs are widely used for modeling sequential data such as natural languages and time series. In
the field of natural language processing, RNN models have become cornerstones for most of the tasks,
such as machine translation [SVL14,CVMG+14,BCB15], dialog system [LGB+16,WVM+17], named
entity recognition [LBS+16], parsing [DBL+15], and speech recognition [GS05,GMH13]. RNNs have
also been used for time series classification [FFW+19,LKEW16], missing value recovery [CPC+18],
future value prediction [CMA94], and unsupervised feature learning [LKL14].

In addition to the independent usage of CNN and RNN models, these models are also used jointly
for multimodal deep learning [BAM18], such as image captioning [VTBE15,XBK+15], image syn-
thesis [RAY+16,OOS17], visual question answering [AAL+15,LYBP16], medical report generation
[JXX18], and video analysis [SMS15,YHNHV+15].

Graph neural networks (GNNs) refer to the neural network structures on graph-structured data. One
pioneering GNN architecture [SGT+08] is extended from recurrent models and iteratively updates each
node’s state by the propagation function of node neighborhood, node, and edge labels until the state
equilibrium is reached. Gated GNNs proposed by Li, Zemel, Brockschmidt, and Tarlow [LTBZ15]
use gated recurrent units as the recurrent propagation function. Seo, Defferrard, Vandergheynst, and
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Bresson propose to combine graph CNN [DBV16] with recurrent units to capture the spatial and tem-
poral patterns of graphs [SDVB18], and VGRNN [HHN+19] integrates variational graph autoencoder
[KW16b] to learn latent representations of dynamic graphs. In addition, SSE [DKD+18] applies the
stochastic updates of nodes’ states. All these models are graph recurrent neural networks.

Graph CNNs are inspired by the classic CNNs and graph signal processing [SNF+13]. Bruna,
Zaremba, Szlam, and LeCun propose to use spectral-based graph convolutions to learn the latent
graph representations [BZSL13]. Defferrard, Bresson, and Van der Gheynst follow up to approx-
imate the spectral graph convolution by Chebyshev polynomials [DBV16]. GCNs [KW16a] is a
well-established model that fills the gap between spectral-based and spatial-based graph convolu-
tional neural networks. Hamilton, Ying, and Leskovec propose an inductive model graphSage [HYL17]
with multiple aggregation operators. FastGCN proposes to sample a fixed number of nodes at each
convolutional layer [CMX18]. Graph attention networks (GATs) [VCC+17] apply an attention mech-
anism on the neighborhood aggregation. Graph isomorphism networks (GINs) [XHLJ18] use mul-
tilayer perceptrons as the aggregation function and are provable that it is as powerful as Weisfeiler
Lehman graph isomorphism test by Shervashidze et al. [SSVL+11]. Other spatial-based models in-
clude [NAK16,GSR+17,MBM+17]. All these GNNs are for homogeneous networks. For heteroge-
neous networks, Zhang et al. propose the heterogeneous graph neural networks (HetGNNs) [ZSH+19]
by designing the neighborhood aggregations that incorporate different node types. Graph CNNs are
widely applied to the applications where networks are of multiple node types, such as text classification
[YML19], and recommendation [WHW+19,YHC+18]. In addition to different graph convolutional
layers, several graph pooling operators are designed to adaptively learn the hierarchical graph repre-
sentations. Ying et al. propose DiffPool [YYM+18], which learns soft clustering assignment by GNNs
and coarsens the input graphs at different resolutions. Gao and Ji propose Graph U-Nets that uses top-
k node selection for graph pooling [GJ19], and SAGPool [LLK19] proposed by Lee, Lee, and Kang
leverages GCNs [KW16a] to select important nodes for pooling.

For unsupervised learning, network embedding techniques, which sometimes are considered as shal-
low representation learning, have been extensively studied. Tang et al. propose LINE [TQW+15] that
preserves first-order and second-order structural proximities and minimizes KL-divergence–based loss
function. DeepWalk [PARS14] follows the idea of word2vec [MSC+13] and generate context nodes by
truncated random walks, which are used in the Skip-gram type of loss function. Node2vec [GL16]
combines breadth-first sampling (BFS) and depth-first sampling (DFS) for context node sampling.
In addition to network embedding, Kipf and Welling propose variational graph autoencoder (VGAE)
[KW16b], which uses GCNs [KW16a] as the encoder and reconstructs input graph in decoder. Graph-
Sage [HYL17] can be also generalized to the unsupervised manner by using Skip-gram loss function.
Adapted from deep infomax [HFLM+18], deep graph infomax (DGI) [VFH+18] maximizes mutual
information between patch representations and the graph summaries.

In the age of big data, networks are often multisourced. Learning node representations of mul-
tisourced networks often suffer from the space disparity issue of the embedding vectors in different
networks. To address this issue, Du and Tong propose MrMine that learns node embeddings of multiple
networks in the same space based on the multiresolution characteristics of networks [DT19]. Origin
[ZTX+19] is proposed to leverage nonrigid point-set registration to address the embedding space dis-
parity issue. Another angle to tackle this issue is to learn graph-to-graph translation functions by GNNs.
Jin et al. propose to leverage adversarial training to align the distributions of generated graphs [JYBJ19],
and Guo et al. propose the graph-to-graph translation model to study network coevolution [GZN+19].
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NetTrans [ZTX+20] proposed by Zhang et al. learns how a source network can be transformed into a
target network and how nodes are associated across networks by an encoder-decoder architecture.

Recent years have witnessed an emerging research trend of generative models in deep learning. Gen-
erative adversarial networks (GANs) incorporate the idea of adversarial learning to generate new data
samples and are proposed by Goodfellow et al. [GPAM+14]. GANs have been widely studied in a vari-
ety of applications, ranging from high-resolution image generation [RMC15,LTH+17,BSM17], image-
to-image translation [ZPIE17,HZLH17], text/dialogue generation [YZWY17,GLC+18,LMS+17], text-
to-image synthesis [ZXL+17], and graph representation learning [WWW+18], to medical record gen-
eration [CBM+17]. Some variants of generative models include variational autoencoder (VAE) from
Kingma and Welling [KW13]. See Doersch [Doe16] for a detailed introduction.

Deep learning is also applied in other data mining problems. For example, in reinforcement learn-
ing, deep neural networks are utilized to estimate the state-value function (i.e., Q function) (Mnih et
al. [MKS+15,MKS+13,MBM+16] and Lillicrap et al. [LHP+15]). Deep neural networks are found to
be vulnerable to adversarial activities in the form of very subtle perturbation to the input data. Such
adversarial attacks result in degraded performance of the neural networks, including misclassification
of image data from Szegedy et al. [SZS+13], error in image reconstruction resulted from the gener-
ative model from Tabacof, Tavares, and Valle [TTV16], misclassification of sequences of words for
LSTM from Papernot, McDaniel, Swami, and Harang [PMSH16], reducing reward in deep reinforce-
ment learning from Lin et al. [LHL+17], and reducing the performance of GNNs in tasks such as node
classification (Dai et al. [DLT+18] and Zügner, Akbarnejad, and Günnemann [ZAG18]). To further
understand and interpret the results of machine learning models, research has been conducted toward
this direction, see Du, Liu, and Hu [DLH19] for an introduction. In a decentralized scenario where the
data samples are stored in multiple local devices, it is possible to collaboratively learn a shared ma-
chine learning model, and this refers to as federated learning [KMY+16,SCST17]. Automated machine
learning (AutoML) studies the problem of applying effective feature processing and machine learning
algorithms to a new data set (Feurer et al. [FKE+15] and Hutter, Kotthoff, and Vanschoren [HKV19]).
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CHAPTER

Outlier detection

Imagine that you are a transaction auditor in a credit card company. To protect your customers from
credit card fraud, you pay special attention to card usages that are rather different from typical cases.
For example, if a purchase amount is much bigger than usual for a card owner, and if the purchase
occurs far from the owner’s resident city, then the purchase is suspicious. You want to detect such
transactions as soon as they occur and contact the card owner for verification. This is common practice
in many credit card companies. What data mining techniques can help detect suspicious transactions?

Most credit card transactions are normal. However, if a credit card is stolen, its transaction pattern
usually changes dramatically—the locations of purchases and the items purchased are often very dif-
ferent from those of the authentic card owner and other customers. An essential idea behind credit card
fraud detection is to identify those transactions that are very different from the norm.

Outlier detection (also known as anomaly detection) is the process of finding data objects with be-
haviors that are very different from expectation. Such objects are called outliers or anomalies. Outlier
or anomaly detection is important in many applications in addition to fraud detection such as medical
care, public safety and security, industry damage detection, image processing, sensor and video network
surveillance, national security, and intrusion detection.

Outlier detection and clustering analysis are two highly related tasks. Clustering finds the majority
patterns in a data set and organizes the data accordingly, whereas outlier detection tries to capture those
exceptional cases that deviate substantially from the majority patterns. Outlier detection and clustering
analysis serve different purposes. In terms of methodologies, outlier detection might also use supervi-
sion during the detection process, whereas clustering analysis is typically unsupervised in nature.

In this chapter, we study outlier detection techniques. Section 11.1 introduces the basic concepts,
including different types of outliers and an overview of outlier detection methods. In the rest of the
chapter, you will learn about outlier detection methods in detail. These approaches, organized here
by category, are statistical (Section 11.2), proximity-based (Section 11.3), reconstruction-based (Sec-
tion 11.4), and clustering-based vs. classification-based approaches (Section 11.5). In addition, you
will learn about mining contextual and collective outliers (Section 11.6) and outlier detection in high-
dimensional data (Section 11.7).

11.1 Basic concepts
Let us first define what outliers are, categorize the different types of outliers, and then discuss the
challenges in outlier detection at a general level, followed by an overview of outlier detection methods.

Data Mining. https://doi.org/10.1016/B978-0-12-811760-6.00021-7
Copyright © 2023 Elsevier Inc. All rights reserved.
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11.1.1 What are outliers?
Assume that a given statistical process is used to generate a set of data objects. An outlier is a data
object that deviates significantly from the rest of the objects, as if it were generated by a different
mechanism. For ease of presentation within this chapter, we may refer to data objects that are not
outliers as “normal” or expected data. Similarly, we may refer to outliers as “abnormal” data.

Example 11.1. Outliers. In Fig. 11.1, most objects roughly follow a Gaussian distribution. However,
the objects in region R are significantly different. It is unlikely that they follow the same distribution as
the other objects in the data set. Thus, the objects in R are outliers in the data set.

Outliers are different from noisy data. As mentioned in Chapter 2, noise is a random error or variance
in a measured variable. In general, noise is not interesting in data analysis, including outlier detection.
For example, in credit card fraud detection, a customer’s purchase behavior can be modeled as a random
variable. A customer may generate some “noisy transactions” that may seem like “random errors” or
“variance,” such as by buying a bigger lunch one day, or having one more cup of coffee than usual.
Such transactions should not be treated as outliers; otherwise, the credit card company would incur
heavy costs from verifying that many transactions. The company may also lose customers by bothering
them with multiple false alarms. As in many other data analysis and data mining tasks, noise should be
removed before outlier detection.

Outliers are interesting because they are suspected of not being generated by the same mechanism
as the rest of the data. Therefore in outlier detection, it is important to justify why the detected outliers
are generated by some other mechanisms. This is often achieved by making various assumptions on the
rest of the data and showing that the detected outliers violate those assumptions significantly.

Outlier detection is also related to novelty detection in evolving data sets. For example, by monitor-
ing a social media web site where new content is incoming, novelty detection may identify new topics
and trends in a timely manner. Novel topics may initially appear as outliers. To this extent, outlier de-
tection and novelty detection share some similarity in modeling and detection methods. However, a
critical difference between the two is that in novelty detection, once new topics are confirmed, they are
usually incorporated into the model of normal behavior so that follow-up instances are not treated as
outliers anymore.

FIGURE 11.1

The objects in region R are outliers.
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11.1.2 Types of outliers
In general, outliers can be classified into three categories, namely global outliers, contextual (or condi-
tional) outliers, and collective outliers. Let’s examine each of these categories.

Global outliers
In a given data set, a data object is a global outlier if it deviates significantly from the rest of the data
set. Global outliers are sometimes called point anomalies and are the simplest type of outliers. Most
outlier detection methods are aimed at finding global outliers.

Example 11.2. Global outliers. Consider the points in Fig. 11.1 again. The points in region R signifi-
cantly deviate from the rest of the data set and hence are examples of global outliers.

To detect global outliers, a critical issue is to find an appropriate measurement of deviation with
respect to the application in question. Various measurements exist, and, based on these, outlier detection
methods are partitioned into different categories. We will come to this issue in detail later.

Global outlier detection is important in many applications. Consider intrusion detection in computer
networks, for example. If the communication behavior of a computer is very different from the normal
patterns (e.g., a large number of packages is broadcast in a short time), this behavior may be consid-
ered as a global outlier, and the corresponding computer is a suspected victim of hacking. As another
example, in trading transaction auditing systems, transactions that do not follow the regulations are
considered as global outliers and should be held for further examination.

Contextual outliers
“The temperature today is 28 ◦C. Is it exceptional (i.e., an outlier)?” It depends, for example, on the
time and location! If it is in winter in Toronto, yes, it is an outlier. If it is a summer day in Toronto, then
it is normal. Unlike global outlier detection, in this case, whether or not today’s temperature value is an
outlier depends on the context—the date, the location, and possibly some other factors.

In a given data set, a data object is a contextual outlier if it deviates significantly with respect to a
specific context of the object. Contextual outliers are also known as conditional outliers because they
are conditional on the selected context. Therefore, in contextual outlier detection, the context has to be
specified as part of the problem definition. Generally, in contextual outlier detection, the attributes of
the data objects in question are divided into two groups:

• Contextual attributes: The contextual attributes of a data object define the object’s context. In the
temperature example, the contextual attributes may be date and location.

• Behavioral attributes: These define the object’s characteristics and are used to evaluate whether
the object is an outlier in the context to which it belongs. In the temperature example, the behavioral
attributes may be the temperature, humidity, and pressure.

Unlike global outlier detection, in contextual outlier detection, whether a data object is an outlier
depends on not only the behavioral attributes but also the contextual attributes. A configuration of
behavioral attribute values may be considered an outlier in one context (e.g., 28 ◦C is an outlier for a
Toronto winter) but not an outlier in another context (e.g., 28 ◦C is not an outlier for a Toronto summer).

Contextual outliers are a generalization of local outliers, a notion introduced in density-based outlier
analysis approaches. An object in a data set is a local outlier if its density significantly deviates from
the local area in which it occurs. We will discuss local outlier analysis in greater detail in Section 11.3.2.
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Global outlier detection can be regarded as a special case of contextual outlier detection where the
set of contextual attributes is empty. In other words, global outlier detection uses the whole data set as
the context. Contextual outlier analysis provides flexibility to users in that one can examine outliers in
different contexts, which can be highly desirable in many applications.

Example 11.3. Contextual outliers. In credit card fraud detection, in addition to global outliers, an
analyst may consider outliers in different contexts. Consider customers who use more than 90% of their
credit limit. If one such customer is viewed as belonging to a group of customers with low credit limits,
then such behavior may not be considered an outlier. However, similar behavior of customers from a
high-income group may be considered outliers if their balance often exceeds their credit limit. Such
outliers may lead to business opportunities—raising credit limits for such customers can bring in new
revenue.

The quality of contextual outlier detection in an application depends on the meaningfulness of the
contextual attributes, in addition to the measurement of the deviation of an object to the majority in
the space of behavioral attributes. More often than not, the contextual attributes should be determined
by domain experts, which can be regarded as part of the input background knowledge. In many ap-
plications, neither obtaining sufficient information to determine contextual attributes nor collecting
high-quality contextual attribute data is easy.

“How can we formulate meaningful contexts in contextual outlier detection?” A straightforward
method simply uses group-bys of the contextual attributes as contexts. This may not be effective, how-
ever, because many group-bys may have insufficient data or noise. A more general method uses the
proximity of data objects in the space of contextual attributes. We discuss this approach in detail in
Section 11.3.

Collective outliers
Suppose you are a supply-chain manager of an electronics store. You handle thousands of orders and
shipments every day. If the shipment of an order is delayed, it may not be considered an outlier because,
statistically, delays occur from time to time. However, you have to pay attention if 100 orders are
delayed on a single day. Those 100 orders as a whole form an outlier, although each of them may not
be regarded as an outlier if considered individually. You may have to take a close look at those orders
collectively to understand the shipment problem.

Given a data set, a subset of data objects forms a collective outlier if the objects as a whole deviate
significantly from the entire data set. Importantly, the individual data objects may not be outliers.

Example 11.4. Collective outliers. In Fig. 11.2, the black objects as a whole form a collective outlier
because the density of those objects is much higher than the rest in the data set. However, every black
object individually is not an outlier with respect to the whole data set.

Collective outlier detection has many important applications. For example, in intrusion detection,
a denial-of-service package from one computer to another is considered normal and not an outlier at
all. However, if several computers keep sending denial-of-service packages to each other, they as a
whole should be considered as a collective outlier. The computers involved may be suspected of being
compromised by an attack. As another example, a stock transaction between two parties is considered
normal. However, a large set of transactions of the same stock among a small party in a short period are
collective outliers because they may be evidence of some people manipulating the market.
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FIGURE 11.2

The black objects form a collective outlier.

Unlike global or contextual outlier detection, in collective outlier detection we have to consider not
only the behavior of individual objects, but also that of groups of objects. Therefore to detect collective
outliers, we need background knowledge of the relationship among data objects such as distance or
similarity measurements between objects.

In summary, a data set can have multiple types of outliers. Moreover, an object may belong to
more than one type of outlier. In business, different outliers may be used in various applications or
for different purposes. Global outlier detection is the simplest. Contextual outlier detection requires
background information to determine contextual attributes and contexts. Collective outlier detection
requires background information to model the relationship among objects to find groups of outliers.

11.1.3 Challenges of outlier detection
Outlier detection is useful in many applications yet faces many challenges such as the following:

• Modeling normal objects and outliers effectively. Outlier detection quality highly depends on the
modeling of normal (nonoutlier) objects and outliers. Often, building a comprehensive model for
data normality is very challenging, if not impossible. This is partly because it is hard to enumerate
all possible normal behaviors in an application.
The border between data normality and abnormality (outliers) is often not clear-cut. Instead, there
can be a wide range of gray area. Consequently, while some outlier detection methods assign to
each object in the input data set a label of either “normal” or “outlier,” other methods assign to each
object a score measuring the “outlier-ness.”1

• Application-specific outlier detection. Technically, choosing the similarity or distance measure
and the relationship model to describe data objects is critical in outlier detection. Unfortunately,
such choices are often application-dependent. Different applications may have very different re-
quirements. For example, in clinic data analysis, a small deviation may be important enough to
justify an outlier. In contrast, in marketing analysis, objects are often subjected to larger fluctuations,
and consequently a substantially larger deviation is needed to justify an outlier. Outlier detection’s

1 In some literature, it is also referred to as the “outlyingness” score.
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high dependency on the application type makes it impossible to develop a universally applicable
outlier detection method. Instead, individual outlier detection methods that are dedicated to specific
applications must be developed.

• Handling noise in outlier detection. As mentioned earlier, outliers are different from noise. It is
also well known that the quality of real data sets tends to be poor. Noise often unavoidably ex-
ists in data collected in many applications. Noise may be present as deviations in attribute values
or even as missing values. Low data quality and the presence of noise bring a huge challenge to
outlier detection. They can distort the data, blurring the distinction between normal objects and out-
liers. Moreover, noise and missing data may “hide” outliers and reduce the effectiveness of outlier
detection—an outlier may appear “disguised” as a noisy point, and an outlier detection method may
mistakenly identify a noisy point as an outlier.

• Interpretability. In some application scenarios, a user may want to not only detect outliers but
also understand why the detected objects are outliers. To meet the understandability requirement, an
outlier detection method has to provide some justification of the detection. For example, a statistical
method can be used to justify the degree to which an object may be an outlier based on the likelihood
that the object was generated by the same mechanism that generated the majority of the data. The
smaller the likelihood, the more unlikely the object was generated by the same mechanism, and the
more likely the object is an outlier.

11.1.4 An overview of outlier detection methods
There are many outlier detection methods in the literature and in practice. Here, we present two or-
thogonal ways to categorize outlier detection methods. First, we categorize outlier detection methods
according to whether the sample of data for analysis is given with domain expert–provided labels that
can be used to build an outlier detection model. Second, we divide methods into groups according to
their assumptions regarding normal objects vs. outliers.

Supervised, semisupervised, and unsupervised methods
If expert-labeled examples of normal or outlier objects can be obtained, they can be used to build outlier
detection models. The methods used can be divided into supervised methods, semisupervised methods,
and unsupervised methods.

Supervised methods. Supervised methods model data normality and abnormality. Domain experts ex-
amine and label a sample of the underlying data. Outlier detection can then be modeled as a classifica-
tion problem (Chapters 6 and 7). The task is to learn a classifier that can recognize outliers. The sample
is used for training and testing. In some applications, the experts may label just the normal objects,
and any other objects not matching the model of normal objects are reported as outliers. Other methods
model the outliers and treat objects not matching the model of outliers as normal.

Although many classification methods can be applied, challenges to supervised outlier detection
include the following:

• The two classes (i.e., normal objects vs. outliers) are imbalanced. That is, the population of outliers
is typically much smaller than that of normal objects. Therefore methods for handling imbalanced
classes (Section 6.7.5) may be used, such as oversampling (i.e., replicating) outliers to increase
their distribution in the training set used to construct the classifier. Due to the small population of
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outliers in data, the sample data examined by domain experts and used in training may not even
sufficiently represent the outlier distribution. The lack of outlier samples can limit the capability of
the constructed classifiers. To tackle these problems, some methods “make up” artificial outliers.

• In many outlier detection applications, catching as many outliers as possible (i.e., the sensitivity or
recall of outlier detection) is far more important than not mislabeling normal objects as outliers.
Consequently, when a classification method is used for supervised outlier detection, it has to be
interpreted appropriately so as to consider the application interest on recall.

In summary, supervised methods of outlier detection must be careful in how they train and how they
interpret classification rates due to the fact that outliers are rare in comparison to the other data samples.

Unsupervised methods. In some application scenarios, objects labeled as “normal” or “outlier” are not
available. Thus an unsupervised learning method has to be used.

Unsupervised outlier detection methods make an implicit assumption: The normal objects are some-
what “clustered.” In other words, an unsupervised outlier detection method expects that normal objects
follow a pattern far more frequently than outliers. Normal objects do not have to fall into one group
sharing high similarity. Instead, they can form multiple groups, where each group has distinct features.
However, an outlier is typically expected to occur far away in feature space from any of those groups
of normal objects.

This assumption may not be true all the time. For example, in Fig. 11.2, the normal objects do
not share any strong patterns. Instead, they are uniformly distributed. The collective outliers, however,
share high similarity in a small area. Unsupervised methods might not be able to detect such outliers
effectively. In some applications, normal objects are diversely distributed, and many such objects do not
follow strong patterns. For instance, in some intrusion detection and computer virus detection problems,
normal activities are very diverse and many do not fall into high-quality clusters. In such scenarios,
unsupervised methods may have a high false positive rate—they may mislabel many normal objects as
outliers (intrusions or viruses in these applications), and let many actual outliers go undetected. Due to
the high similarity between intrusions and viruses (i.e., they have to attack key resources in the target
systems), modeling outliers using supervised methods may be far more effective.

Many clustering methods can be adapted to act as unsupervised outlier detection methods. The
central idea is to find clusters first, and then the data objects not belonging to any cluster could be
flagged as outliers. However, such methods suffer from two issues. First, a data object not belonging to
any cluster may be noise instead of an outlier. Second, it is often costly to find clusters first and then find
outliers. It is usually assumed that there are far fewer outliers than normal objects. Having to process a
large population of nontarget data entries (i.e., the normal objects) before one can touch the real meat
(i.e., the outliers) can be unappealing. More recent unsupervised outlier detection methods develop
various smart ideas to tackle outliers directly without explicitly and completely finding clusters. You
will learn more about these techniques in Sections 11.3 and 11.5.1 on proximity-based and clustering-
based methods, respectively.

Semisupervised methods. In many applications, although obtaining some labeled examples is feasible,
the number of such labeled examples is often small. We may encounter cases where only a small set of
the normal and outlier objects are labeled, but most of the data are unlabeled. Semisupervised outlier
detection methods were developed to tackle such scenarios.

Semisupervised outlier detection methods can be regarded as applications of semisupervised learn-
ing methods (Section 7.5.1). For example, when some labeled normal objects are available, we can use
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them, together with unlabeled objects that are close by, to train a model for normal objects. The model
of normal objects then can be used to detect outliers—those objects not fitting the model of normal
objects are classified as outliers.

If only some labeled outliers are available, semisupervised outlier detection is trickier. A small
number of labeled outliers are unlikely to represent all the possible outliers. Therefore building a model
for outliers based on only a few labeled outliers is unlikely to be effective. To improve the quality of
outlier detection, we can get help from models for normal objects learned from unsupervised methods.

For additional information on semisupervised methods, interested readers are referred to the biblio-
graphic notes at the end of this chapter.

Statistical methods, proximity-based methods, and reconstruction-based methods
As discussed earlier, outlier detection methods make assumptions about outliers vs. the rest of the
data. According to the assumptions made, we can categorize outlier detection methods into three types:
statistical methods, proximity-based methods, and reconstruction-based methods.

Statistical methods. Statistical methods (also known as model-based methods) make assumptions of
data normality. They assume that normal data objects are generated by a statistical (stochastic) model,
and that data not following the model are outliers.

Example 11.5. Detecting outliers using a statistical (Gaussian) model. In Fig. 11.1, the data points
except for those in region R fit a Gaussian distribution gD , where for a location x in the data space,
gD(x) gives the probability density at x. Thus, the Gaussian distribution gD can be used to model the
normal data, that is, most of the data points in the data set. For each object y in region R, we can
estimate gD(y), the probability that this point fits the Gaussian distribution. Because gD(y) is very low,
y is unlikely generated by the Gaussian model and thus is an outlier.

The effectiveness of statistical methods highly depends on whether the assumptions made for the
statistical model hold true for the given data. There are many kinds of statistical models. For example,
the statistic models used in the methods may be parametric or nonparametric. Statistical methods for
outlier detection are discussed in detail in Section 11.2.

Proximity-based methods. Proximity-based methods assume that an object is an outlier if the nearest
neighbors of the object are far away in feature space, that is, the proximity of the object to its neighbors
significantly deviates from the proximity of most of the other objects to their neighbors in the same
data set.

Example 11.6. Detecting outliers using proximity. Consider the objects in Fig. 11.1 again. If we
model the proximity of an object using its three nearest neighbors, then the objects in region R are
substantially different from other objects in the data set. For the two objects in R, their second and third
nearest neighbors are dramatically more remote than those of any other objects. Therefore we can label
the objects in R as outliers based on proximity.

The effectiveness of proximity-based methods relies heavily on the proximity (or distance) measure
used. In some applications, such measures cannot be easily obtained. Moreover, proximity-based meth-
ods often have difficulty in detecting a group of outliers if the outliers are close to one another. There are
two major types of proximity-based outlier detection, namely distance-based and density-based outlier
detection. Proximity-based outlier detection is discussed in Section 11.3.
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Reconstruction-based methods. Reconstruction-based outlier detection approaches are built upon the
following idea. Since the normal data samples often share certain similarities, they can often be repre-
sented in a more succinct way compared with their original representation (e.g., an attribute vector for
each data sample). With the succinct representation, we can well reconstruct the original representa-
tion of the normal samples. On the other hand, for samples that cannot be well reconstructed by such
alternative, succinct representation, we flag them as outliers.

There are two major types of reconstruction-based outlier detection approaches, namely matrix-
factorization based methods for numerical data; and pattern-based compression methods for categorical
data. Reconstruction-based outlier detection is discussed in detail in Section 11.4.

The rest of this chapter discusses approaches to outlier detection.

11.2 Statistical approaches
As with statistical methods for clustering, statistical methods for outlier detection make assumptions
about data normality. They assume that the normal objects in a data set are generated by a stochastic
process (e.g., a generative model). Consequently, normal objects occur in the regions of high probability
for the stochastic model, and objects in the regions of low probability are outliers.

The general idea behind statistical methods for outlier detection is to learn a generative model fitting
the given data set and then identify those objects in low-probability regions of the model as outliers.
However, there are many different ways to learn generative models. In general, statistical methods for
outlier detection can be divided into two major categories: parametric methods and nonparametric
methods, according to how the models are specified and learned.

A parametric method assumes that the normal data objects are generated by a parametric dis-
tribution with a finite number of parameters �. The probability density function of the parametric
distribution f (x,�) gives the probability that object x is generated by the distribution. The smaller
this value, the more likely x is an outlier.

A nonparametric method does not assume an a priori statistical model with a finite number of
parameters. Instead, a nonparametric method tries to determine the model from the input data. Note
that most nonparametric methods do not assume that the model is completely parameter-free. (Such an
assumption would make learning the model from data almost a mission impossible.) Instead, nonpara-
metric methods often take the position that the number and nature of the parameters are flexible and not
fixed in advance. Examples of nonparametric methods include histogram and kernel density estimation.

11.2.1 Parametric methods
In this subsection, we introduce several simple yet practical parametric methods for outlier detection.
We first discuss methods for univariate data based on normal distribution. We then discuss how to
handle multivariate data using multiple parametric distributions.

Detection of univariate outliers based on normal distribution
Data involving only one attribute or variable are called univariate data. For simplicity, we often choose
to assume that data are generated from a normal distribution. We can then learn the parameters of the
normal (i.e., Gaussian) distribution from the input data and identify the points with low probability as
outliers.
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Let’s start with univariate data. We will try to detect outliers by assuming the data follow a normal
distribution.

Example 11.7. Univariate outlier detection using maximum likelihood method. Suppose a city’s
average temperature values in July in the last 10 years are, in value-ascending order, 24.0 ◦C, 28.9 ◦C,
28.9 ◦C, 29.0 ◦C, 29.1 ◦C, 29.1 ◦C, 29.2 ◦C, 29.2 ◦C, 29.3 ◦C, and 29.4 ◦C. Let’s assume that the average
temperature follows a normal distribution, which is determined by two parameters: the mean, μ, and
the standard deviation, σ .

We can use the maximum likelihood method to estimate the parameters μ and σ . That is, we maxi-
mize the log-likelihood function

lnL(μ,σ 2) =
n∑

i=1

lnf (xi |(μ,σ 2)) = − n

2
ln(2π) − n

2
lnσ 2 − 1

2σ 2

n∑
i=1

(xi − μ)2, (11.1)

where n is the total number of samples, which is 10 in this example.
Taking derivatives with respect to μ and σ 2 and solving the resulting system of first-order conditions

leads to the following maximum likelihood estimates:

μ̂ = x = 1

n

n∑
i=1

xi (11.2)

σ̂ 2 = 1

n

n∑
i=1

(xi − x)2. (11.3)

In this example, we have

μ̂ = 24.0 + 28.9 + 28.9 + 29.0 + 29.1 + 29.1 + 29.2 + 29.2 + 29.3 + 29.4

10
= 28.61

σ̂ 2 = ((24.0 − 28.61)2 + (28.9 − 28.61)2 + (28.9 − 28.61)2 + (29.0 − 28.61)2

+ (29.1 − 28.61)2 + (29.1 − 28.61)2 + (29.2 − 28.61)2 + (29.2 − 28.61)2

+ (29.3 − 28.61)2 + (29.4 − 28.61)2)/10 � 2.29.

Accordingly, we have σ̂ = √
2.29 = 1.51.

The most deviating value, 24.0 ◦C, is 4.61 ◦C away from the estimated mean. We know that the
μ ± 3σ region contains 99.7% data under the assumption of normal distribution. Because 4.61

1.51 = 3.04 >

3, the probability that the value 24.0 ◦C is generated by the normal distribution is less than 0.15% and
thus can be identified as an outlier.

Example 11.7 elaborates a simple yet practical outlier detection method. It simply labels any object
as an outlier if it is more than 3σ away from the mean of the estimated distribution, where σ is the
standard deviation.

Such straightforward methods for statistical outlier detection can also be used in visualization. For
example, the boxplot method (described in Chapter 2) plots the univariate input data using a five-number
summary (Fig. 11.3): the smallest nonoutlier value (Min), the lower quartile (Q1), the median (Q2), the
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FIGURE 11.3

Using a boxplot to visualize outliers.

upper quartile (Q3), and the largest nonoutlier value (Max). The interquantile range (IQR) is defined
as Q3 − Q1. Any object that is more than 1.5 × IQR smaller than Q1 or 1.5 × IQR larger than Q3
is treated as an outlier because the region between Q1 − 1.5 × IQR and Q3 + 1.5 × IQR contains
99.3% of the objects. The rationale is similar to using 3σ as the threshold for normal distribution.

Another simple statistical method for univariate outlier detection using normal distribution is the
Grubb’s test (also known as the maximum normed residual test). For each object x in a data set, we
define a z-score as

z = |x − μ|
σ

, (11.4)

where μ is the mean, and σ is the standard deviation of the input data. An object x is an outlier if

z ≥ n − 1√
n

√√√√ t2
α/(2n),n−2

n − 2 + t2
α/(2n),n−2

, (11.5)

where t2
α/(2n),n−2 is the value taken by a t-distribution at a significance level of α/(2n), and n is the

number of objects in the data set.

Detection of multivariate outliers
Data involving two or more attributes or variables are multivariate data. Many univariate outlier de-
tection methods can be extended to handle multivariate data. The central idea is to transform the
multivariate outlier detection task into a univariate outlier detection problem. Here, we use two ex-
amples to illustrate this idea.

Example 11.8. Multivariate outlier detection using the Mahalanobis distance. For a multivariate
data set, let ō be the sample mean vector. For an object o in the data set, the squared Mahalanobis
distance from o to ō is

MDist (o, ō) = (o − ō)T S−1(o − ō), (11.6)

where S is the sample covariance matrix.
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MDist (o, ō) is a univariate variable, and thus Grubb’s test can be applied to this measure. Therefore
we can transform the multivariate outlier detection tasks as follows:

1. Calculate the mean vector from the multivariate data set.
2. For each object o, calculate MDist (o, ō), the squared Mahalanobis distance from o to ō.
3. Detect outliers in the transformed univariate data set, {MDist (o, ō)|o ∈ D}.
4. If MDist (o, ō) is determined to be an outlier, then o is regarded as an outlier as well.

Our second example uses the χ2-statistic to measure the distance between an object to the mean of
the input data set.

Example 11.9. Multivariate outlier detection using the χ2-statistic. The χ2-statistic can also be
used to capture multivariate outliers under the assumption of normal distribution. For an object, o, the
χ2-statistic is

χ2 =
n∑

i=1

(oi − Ei)
2

Ei

, (11.7)

where oi is the value of o on the ith dimension, Ei is the mean of the i-dimension among all objects,
and n is the dimensionality. If the χ2-statistic is large, the object is an outlier.

Using a mixture of parametric distributions
If we assume that the data are generated by a normal distribution, this works well in many situations.
However, this assumption may be overly simplified when the actual data distribution is complex. In
such cases, we instead assume that the data are generated by a mixture of parametric distributions.

Example 11.10. Multivariate outlier detection using multiple parametric distributions. Consider
the data set in Fig. 11.4. There are two big clusters, C1 and C2. To assume that the data are generated
by a normal distribution would not work well here. The estimated mean is located between the two
clusters and not inside any cluster. The objects between the two clusters cannot be detected as outliers
since they are close to the mean.

FIGURE 11.4

A complex data set.
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To overcome this problem, we can instead assume that the normal data objects are generated by
multiple normal distributions, two in this case. That is, we assume two normal distributions, �1(μ1, σ1)

and �2(μ2, σ2). For any object o in the data set, the probability that o is generated by the mixture of
the two distributions is given by

Pr(o|�1,�2) = w1f�1(o) + w2f�2(o),

where f�1 and f�2 are the probability density functions of �1 and �2, respectively, and w1 and w2
are the weights of two probability density functions. We can use the expectation-maximization (EM)
algorithm (Chapter 9) to learn the parameters μ1, σ1, μ2, σ2, w1, and w2 from the data, as we do in
mixture models for clustering. Each cluster is represented by a learned normal distribution. An object
o is detected as an outlier if it does not belong to any cluster, that is, the probability is very low that it
was generated by the combination of the two distributions.

Example 11.11. Multivariate outlier detection using multiple clusters. Most of the data objects
shown in Fig. 11.4 are in either C1 or C2. Other objects, representing noise, are uniformly distributed
in the data space. A small cluster, C3, is highly suspicious because it is not close to either of the two
major clusters, C1 and C2. The objects in C3 should therefore be detected as outliers.

Note that identifying the objects in C3 as outliers is difficult, whether or not we assume that the given
data follow a normal distribution or a mixture of multiple distributions. This is because the probability
of the objects in C3 will be higher than some of the noise objects, like o in Fig. 11.4, due to a higher
local density in C3.

To tackle the problem demonstrated in Example 11.11, we can assume that the normal data objects
are generated by a normal distribution, or a mixture of normal distributions, whereas the outliers are
generated by another distribution. Heuristically, we can add constraints on the distribution that is gen-
erating outliers. For example, it is reasonable to assume that this distribution has a larger variance if
the outliers are distributed in a larger area. Technically, we can assign σoutlier = kσ , where k is a user-
specified parameter and σ is the standard deviation of the normal distribution generating the normal
data. Again, the EM algorithm can be used to learn the parameters.

11.2.2 Nonparametric methods
In nonparametric methods for outlier detection, the model of “normal data” is learned from the input
data, rather than assuming one a priori. Nonparametric methods often make fewer assumptions about
the data, and thus can be applicable in more scenarios.

Example 11.12. Outlier detection using a histogram. An electronics store records the purchase
amount for every customer transaction. Fig. 11.5 uses a histogram (refer to Chapter 2) to graph these
amounts as percentages, given all transactions. For example, 60% of the transaction amounts are be-
tween $0.00 and $1000.

We can use the histogram as a nonparametric statistical model to capture outliers. For example,
a transaction in the amount of $7500 can be regarded as an outlier because only 1 − (60% + 20% +
10% + 6.7% + 3.1%) = 0.2% of transactions have an amount higher than $5000. On the other hand, a
transaction amount of $385 can be treated as normal because it falls into the bin (or bucket) holding
60% of the transactions.
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FIGURE 11.5

Histogram of purchase amounts in transactions.

As illustrated in the previous example, the histogram is a frequently used nonparametric statistical
model that can be used to detect outliers. The procedure involves the following two steps.

Step 1: Histogram construction. In this step, we construct a histogram using the input data (training
data). The histogram may be univariate as in Example 11.12 or multivariate if the input data are
multidimensional.
Note that although nonparametric methods do not assume a priori statistical model, they often
do require user-specified parameters to learn models from data. For example, to construct a good
histogram, a user has to specify the type of histogram (e.g., equal width or equal depth) and other
parameters (e.g., the number of bins in the histogram or the size of each bin). Unlike parametric
methods, these parameters do not specify types of data distribution (e.g., Gaussian).

Step 2: Outlier detection. To determine whether an object o is an outlier, we can check it against the
histogram. In the simplest approach, if the object falls in one of the histogram’s bins, the object is
regarded as normal. Otherwise, it is considered an outlier.
For a more sophisticated approach, we can use the histogram to assign an outlier-ness score to the
object. In Example 11.12, we can let an object’s outlier-ness score be the reciprocal of the volume
of the bin in which the object falls. For example, the outlier-ness score for a transaction amount of
$7500 is 1

0.2% = 500 and that for a transaction amount of $385 is 1
60% = 1.67. The scores indicate

that the transaction amount of $7500 is much more likely to be an outlier than that of $385.

A drawback of using histograms as a nonparametric model for outlier detection is that it is hard to
choose an appropriate bin size. On the one hand, if the bin size is set too small, many normal objects
may end up in empty or rare bins and thus be misidentified as outliers. This leads to a high false positive
rate and low precision. On the other hand, if the bin size is set too high, outlier objects may infiltrate
into some frequent bins and thus be “disguised” as normal. This leads to a high false negative rate and
low recall.
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To overcome this problem, we can adopt kernel density estimation to estimate the probability density
distribution of the data. We treat an observed object as an indicator of high probability density in the
surrounding region. The probability density at a point depends on the distances from this point to
the observed objects. We use a kernel function to model the influence of a sample point within its
neighborhood. A kernel K() is a nonnegative real-valued integrable function that satisfies the following
two conditions:

•
∫ +∞
−∞ K(u)du = 1.

• K(−u) = K(u) for all values of u.

A frequently used kernel is a standard Gaussian function with mean 0 and variance 1:

K

(
x − xi

h

)
= 1√

2π
e
− (x−xi )

2

2h2 . (11.8)

Let x1, . . . , xn be an independent and identically distributed samples of a random variable f . The
kernel density approximation of the probability density function is

f̂h(x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
, (11.9)

where K() is a kernel and h is the bandwidth serving as a smoothing parameter.
Once the probability density function of a data set is approximated through kernel density estima-

tion, we can use the estimated density function f̂ to detect outliers. For an object o, f̂ (o) gives the
estimated probability that the object is generated by the stochastic process. If f̂ (o) is high, then the
object is likely normal. Otherwise, o is likely an outlier. This step is often similar to the corresponding
step in parametric methods.

In summary, statistical methods for outlier detection learn models from data to distinguish outliers
from normal data objects. An advantage of using statistical methods is that the outlier detection may be
statistically justifiable. Of course, this is true only if the statistical assumption made about the underly-
ing data meets the constraints in reality.

The data distribution of high-dimensional data is often complicated and hard to be fully understood.
Consequently, statistical methods for outlier detection on high-dimensional data remain a big challenge.
Outlier detection for high-dimensional data is further addressed in Section 11.7.

The computational cost of statistical methods depends on the models. When simple parametric
models are used (e.g., a Gaussian), fitting the parameters typically takes linear time. When more
sophisticated models are used (e.g., mixture models, where the EM algorithm is used in learning),
approximating the best parameter values often takes several iterations. Each iteration, however, is typi-
cally linear with respect to the data set’s size. For kernel density estimation, the model learning cost can
be up to quadratic. Once the model is learned, the outlier detection cost is often very small per object.



572 Chapter 11 Outlier detection

11.3 Proximity-based approaches
Given a set of objects in feature space, a distance measure can be used to quantify the similarity be-
tween objects. Intuitively, objects that are far from others can be regarded as outliers. Proximity-based
approaches assume that the proximity of an outlier object to its nearest neighbors significantly deviates
from the proximity of most other objects to their nearest neighbors in the data set.

There are two types of proximity-based outlier detection methods: distance-based and density-based
methods. A distance-based outlier detection method consults the neighborhood of an object, which is
defined by a given radius. An object is then considered as an outlier if its neighborhood does not have
enough other points. A density-based outlier detection method investigates the density of an object and
that of its neighbors. Here, an object is identified as an outlier if its density is relatively much lower
than that of its neighbors.

Let’s start with distance-based outliers.

11.3.1 Distance-based outlier detection
A representative method of proximity-based outlier detection uses the concept of distance-based out-
liers. For a set, D, of data objects to be analyzed, a user can specify a distance threshold, r , to define a
reasonable neighborhood of an object. For each object, o, we can examine the number of other objects
in the r-neighborhood of o. If most of the objects in D are far from o, that is, not in the r-neighborhood
of o, then o can be regarded as an outlier.

Formally, let r (r ≥ 0) be a distance threshold and π (0 < π ≤ 1) be a fraction threshold. An object,
o, is a DB(r,π)-outlier if

‖{o′|dist (o,o′) ≤ r}‖
‖D‖ ≤ π, (11.10)

where dist (·, ·) is a distance measure.
Equivalently, we can determine whether an object, o, is a DB(r,π)-outlier by checking the distance

between o and its k-nearest neighbor, ok , where k = 
π‖D‖�. Object o is an outlier if dist (o,ok) > r ,
because in such a case, there are fewer than k objects except for o that are in the r-neighborhood of o.

“How can we compute DB(r,π)-outliers?” A straightforward approach is to use nested loops to
check the r-neighborhood for every object, as shown in Fig. 11.6. For any object, oi (1 ≤ i ≤ n), we
calculate the distance between oi and the other object and count the number of other objects in the
r-neighborhood of oi . Once we find π · n other objects within a distance r from oi , the inner loop can
be terminated because oi already violates (Eq. (11.10)), and thus is not a DB(r,π)-outlier. On the other
hand, if the inner loop completes for oi , this means that oi has less than π · n neighbors in a radius of
r , and thus is a DB(r,π)-outlier.

The straightforward nested loop approach takes O(n2) time. Surprisingly, the actual CPU runtime
is often linear with respect to the data set size. For most nonoutlier (i.e., normal) objects, the inner loop
terminates early when the number of outliers in the data set is small, which should be the case most of
the time. Correspondingly, only a small fraction of the data set is examined.
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Algorithm: Distance-based outlier detection.

Input:

• a set of objects D = {o1, . . . ,on}, threshold r (r > 0) and π (0 < π ≤ 1);

Output: DB(r,π) outliers in D.
Method:

for i = 1 to n do
count ← 0
for j = 1 to n do

if i = j and dist (oi ,oj ) ≤ r then
count ← count + 1
if count ≥ π · n then

exit {oi cannot be a DB(r,π) outlier}
endif

endif
endfor
print oi {oi is a DB(r,π) outlier according to (Eq. 11.10)}

endfor;

FIGURE 11.6

Nested loop algorithm for DB(r,π)-outlier detection.

11.3.2 Density-based outlier detection
Distance-based outliers, such as DB(r,π)-outliers, are just one type of outlier. Specifically, distance-
based outlier detection takes a global view of the data set. Such outliers can be regarded as “global
outliers” for two reasons:

• A DB(r,π)-outlier, for example, is far (as quantified by parameter r) from at least (1 − π) × 100%
of the objects in the data set. In other words, an outlier as such is remote from the majority of the
data.

• To detect distance-based outliers, we need two global parameters, r and π , which are applied to
every outlier object.

Many real-world data sets demonstrate a more complex structure, where objects may be considered
outliers with respect to their local neighborhoods rather than with respect to the global data distribution.
Let’s look at an example.

Example 11.13. Local proximity-based outliers. Consider the data points in Fig. 11.7. There are two
clusters: C1 is dense, and C2 is sparse. Object o3 can be detected as a distance-based outlier because it
is far from the majority of the data set.

Now, let’s consider objects o1 and o2. Are they outliers? On the one hand, the distance from o1
and o2 to the objects in the dense cluster, C1, is smaller than the average distance between an object in
cluster C2 and its nearest neighbor. Thus, o1 and o2 are not distance-based outliers. In fact, if we were
to categorize o1 and o2 as DB(r,π)-outliers, we would have to classify all the objects in cluster C2 as
DB(r,π)-outliers.

On the other hand, o1 and o2 can be identified as outliers when they are considered locally with
respect to cluster C1 because o1 and o2 deviate significantly from the objects in C1. Moreover, o1 and
o2 are also far from the objects in C2.
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FIGURE 11.7

Global outliers and local outliers.

To summarize, distance-based outlier detection methods cannot capture local outliers like o1 and
o2. Note that the distance between object o4 and its nearest neighbors is much greater than the distance
between o1 and its nearest neighbors. However, because o4 is local to cluster C2 (which is sparse), o4
is not considered a local outlier.

“How can we formulate the local outliers as illustrated in Example 11.13?” The critical idea here
is that we need to compare the density around an object with the density around its local neighbors.
The basic assumption of density-based outlier detection methods is that the density around a nonout-
lier object is similar to the density around its neighbors, while the density around an outlier object is
significantly different from the density around its neighbors.

Based on the preceding, density-based outlier detection methods use the relative density of an object
against its neighbors to indicate the degree to which an object is an outlier.

Now, let’s consider how to measure the relative density of an object, o, given a set of objects, D.
The k-distance of o, denoted by distk(o), is the distance, dist(o, p), between o and another object, p
∈ D, such that

• There are at least k objects o′ ∈ D/{o} such that dist(o, o′) ≤ dist(o, p).
• There are at most k − 1 objects o′′ ∈ D/{o} such that dist(o, o′′)< dist(o, p).

In other words, distk(o) is the distance between o and its k-nearest neighbor. Consequently, the k-
distance neighborhood of o contains all objects of which the distance to o is not greater than distk(o),
the k-distance of o, denoted by

Nk(o) = {o′|o′ ∈ D,dist (o,o′) ≤ distk(o)}. (11.11)

Note that Nk(o) may contain more than k objects because multiple objects may each be the same
distance away from o.

We can use the average distance from the objects in Nk(o) to o as the measure of the local density
of o. However, such a straightforward measure has a problem: If o has very close neighbors o′ such that
dist(o, o′) is very small, the statistical fluctuations of the distance measure can be undesirably high.
To overcome this problem, we can switch to the following reachability distance measure by adding a
smoothing effect.

For two objects, o and o′, the reachability distance from o′ to o is dist (o,o′) if dist (o, o′) >

distk(o), and distk(o) otherwise. That is,

reachdistk(o ← o′) = max{distk(o), dist (o,o′)}. (11.12)
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Here, k is a user-specified parameter that controls the smoothing effect. Essentially, k specifies the mini-
mum neighborhood to be examined to determine the local density of an object. Importantly, reachability
distance is not symmetric, that is, in general, reachdistk(o ← o′) = reachdistk(o

′ ← o).
Now, we can define the local reachability density of an object, o, as

lrdk(o) = ‖Nk(o)‖∑
o′∈Nk(o) reachdistk(o

′ ← o)
. (11.13)

There is a critical difference between the density measure here for outlier detection and that in
density-based clustering (Section 11.5.1). In density-based clustering, to determine whether an object
can be considered a core object in a density-based cluster, we use two parameters: a radius parameter,
r , to specify the range of the neighborhood, and the minimum number of points in the r-neighborhood.
Both parameters are global and are applied to every object. In contrast, as motivated by the observation
that relative density is the key to finding local outliers, we use the parameter k to quantify the neighbor-
hood and do not need to specify the minimum number of objects in the neighborhood as a requirement
of density. We instead calculate the local reachability density for an object and compare it with that of
its neighbors to quantify the degree to which the object is considered an outlier.

Specifically, we define the local outlier factor of an object o as

LOFk(o)=
∑

o′∈Nk(o)
lrdk(o

′)
lrdk(o)

‖Nk(o)‖ =
∑

o′∈Nk(o)

lrdk(o
′) ·

∑
o′∈Nk(o)

reachdistk(o
′ ← o). (11.14)

In other words, the local outlier factor is the average of the ratio of the local reachability density of
o and those of o’s k-nearest neighbors. The lower the local reachability density of o (i.e., the smaller
the item

∑
o′∈Nk(o) reachdistk(o

′ ← o)) and the higher the local reachability densities of the k-nearest
neighbors of o, the higher the LOF value is. This exactly captures a local outlier of which the local
density is relatively low compared to the local densities of its k-nearest neighbors.

The local outlier factor has some nice properties. First, for an object deep within a consistent cluster,
such as the points in the center of cluster C2 in Fig. 11.7, the local outlier factor is close to 1. This
property ensures that objects inside clusters, no matter whether the cluster is dense or sparse, will not
be mislabeled as outliers.

Second, for an object o, the meaning of LOF(o) is easy to understand. Consider the objects in
Fig. 11.8, for example. For object o, let

directmin(o) = min{reachdistk(o
′ ← o)|o′ ∈ Nk(o)} (11.15)

be the minimum reachability distance from o to its k-nearest neighbors. Similarly, we can define

directmax(o) = max{reachdistk(o
′ ← o)|o′ ∈ Nk(o)}. (11.16)

We also consider the neighbors of o’s k-nearest neighbors. Let

indirectmin(o) = min{reachdistk(o
′′ ← o′)|o′ ∈ Nk(o) and o′′ ∈ Nk(o

′)} (11.17)

and

indirectmax(o) = max{reachdistk(o
′′ ← o′)|o′ ∈ Nk(o) and o′′ ∈ Nk(o

′)}. (11.18)
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FIGURE 11.8

A property of LOF(o).

Then, it can be shown that LOF(o) is bounded as

directmin(o)

indirectmax(o)
≤ LOF(o) ≤ directmax(o)

indirectmin(o)
. (11.19)

This result clearly shows that LOF captures the relative density of an object.

11.4 Reconstruction-based approaches
The central idea behind reconstruction-based outlier detection approaches is as follows. Since the nor-
mal data samples share certain similarities, they can often be represented in a more succinct way,
compared with their original representation (e.g., an attribute vector for each data sample). With the
succinct representation, we can well reconstruct the original representation of the normal samples. On
the other hand, for samples that cannot be well reconstructed by such alternative, succinct representa-
tion, we flag them as outliers.

Example 11.14. Given a set of researchers in Fig. 11.9(a), where each researcher is described by the
list of venues the corresponding author publishes. Alternatively, we use a more succinct way, namely
the research areas, to represent each author, as shown in Fig. 11.9(b). For most authors, we can use
such succinct representation to perfectly reconstruct their original representation in Fig. 11.9(a). For
example, given the succinct representation “Data Mining” for John, Tom and Bob, we can infer (i.e.,
reconstruct) that their publication venues are “KDD” and “ICDM.” Likewise, given the succinct repre-
sentation “Software Engineering” for Van and Roy, we can infer (i.e., reconstruct) that their publication
venues are “FSE” and “ICSE.” Therefore we conclude that they are all “normal” researchers, which
in this example means that they all focus on a specific research area (e.g., either “Data Mining” or
“Software Engineering”). However, for Carl, we can only infer that his publication venues would be
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FIGURE 11.9

An example of using reconstruction-based approaches to detect outlying researchers. “KDD” and “ICDM” are two
conferences in the area of data mining; and “FSE” and “ICSE” are two conferences in software engineering. (a) The
original representation of authors, using the publication venues. (b) The succinct representation of authors, using
research areas.

“FSE” and “ICSE” based on his succinct representation (“Software Engineering”), which misses an
important venue he actually publishes (i.e., “ICDM”). In other words, there is a discrepancy between
Carl’s original representation and reconstructed one. We say that the reconstruction quality for Carl
is low. Therefore, we flag him as an outlier, which in this example means that he might be a multi-
disciplinary researcher who publishes mainly “Software Engineering” but also publishes in some data
mining venues (e.g., “ICDM”). Conceptually, if we treat each succinct representation (e.g., “Data Min-
ing” vs. “Software Engineering”) as a cluster, Carl is flagged as an outlier in this example, because he
is the only researcher who belongs to both clusters, whereas each of the remaining researchers only
belongs to a single cluster (i.e., either “Data Mining” or “Software Engineering”).2

The key questions in a reconstruction-based outlier detection method include (Q1) how to find
the succinct representation; (Q2) how to use the succinct representation to reconstruct the original data
samples; and (Q3) how to measure the quality (i.e., goodness) of reconstruction. In this section, you will
learn two types of reconstruction-based outlier detection approaches, including (1) matrix-factorization
based methods for numerical data and (2) pattern-based compression methods for categorical data.

11.4.1 Matrix factorization–based methods for numerical data
For data with numerical attributes (i.e., features), we represent each data sample as an attribute vec-
tor and the entire input data set is then represented by a data matrix, whose rows are different data
samples, columns are different attributes, and entries of the data matrix indicate the attribute values of
the corresponding data samples. In this setting, a powerful technique for detecting outliers is matrix
factorization. In this method, we approximate the data matrix by two or more low-rank matrices, which
serve as the succinct representation of the original data matrix and meanwhile, provide a natural way

2 Notice that this is different from the clustering-based outlier detection that will be introduced in Section 11.5.1, where an
outlier is often defined as a data tuple that either does not belong to any cluster or is far away from the cluster center it belongs
to.
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Algorithm: Matrix factorization based outlier detection

Input:

• Xi = (Xi,1, ...,Xi,m) (i = 1, ..., n), n data samples each of which is represented by an m dimensional numerical attribute
vector;

• r , the rank;
• k, the number of outliers.

Output: A set of k outliers.
Method:

//each row of X is a data sample
(1) Represent the input data samples as an n × m data matrix X;
(2) Approximate the data matrix by two rank r-matrices: X ≈ FG;
(3) for (i = 1, ..., n){ // for each sample

//compute the reconstruction error
//F (i, j) is the element of F at the ith row and the j th column
//G(j, :) is the j th row of G

(4) Compute ri = ‖Xi − X̂i‖2 = ‖Xi − ∑r
j=1 F (i, j)G(j, :)‖2 ;

}
(5) Return k samples with the largest reconstruction errors ri (i = 1, ..., n).

FIGURE 11.10

Matrix factorization–based outlier detection.

to reconstruct the original data matrix. The reconstruction error of each data sample is used as an indi-
cator of the outlier-ness: the higher the reconstruction error, the more likely the given data sample is an
outlier. The algorithm is summarized in Fig. 11.10 and the details are depicted as follows.

We start with representing the input data samples in the form of a data matrix X (step 1), whose
rows represent data samples and columns are attributes (i.e., features). Then (step 2), we approximate
the data matrix X by the multiplication of two matrices F and G. Here, an important point is that the
rank of F and G should be much smaller than the data matrix (i.e., r � m). In this way, the r rows of
matrix G provide a more succinct way to represent the input data samples, that is, G(j, :) (j = 1, ..., r)

are the new, succinct representation. In the meanwhile, matrix F tells us how to use such succinct
representation to reconstruct the original data sample, that is, X̂i = ∑r

j=1 F (i, j)G(j, :), where F (i, j)

is the element of F at the ith row and the j th column. The squared distance between the original data
sample Xi and the reconstructed one X̂i is called reconstruction error (step 4), and it measures the
outlier-ness of the corresponding data sample. Finally, in step 5, we return k data samples with the
highest reconstruction errors as the outliers.

Example 11.15. For Example 11.14, we represent each author as a 4-D binary vector, indicating
if the author publishes in the corresponding conferences, where the four dimensions are the four
conferences, including “KDD,” “ICDM,” “FSE,” and “ICSE,” respectively. For example, John is rep-
resented as (1,1,0,0), meaning that he publishes in both “KDD” and “ICDM”; Carl is represented
as (0,1,1,1), meaning that he publishes in all conferences but “KDD.” We organize the feature vec-
tors of all six authors as a 6 × 4 data matrix X (the left part of Fig. 11.11). Then, we approximate
the data matrix X by the multiplication of two low-rank matrices F and G, both with a rank of 2
(the middle part of Fig. 11.11). The two rows of matrix G provide an alternative, succinct represen-
tation compared with the original four features in the data matrix X. For example, the first row of
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FIGURE 11.11

Matrix factorization based method to detect outliers for Example 11.14. By approximating the original data matrix
(on the left) by the multiplication of two low-rank matrices F and G (in the middle), it provides an alternative, more
succinct representation of the original features. The reconstruction error of each author by comparing the original
and the reconstructed representation (on the right) provides an indicator of the outlier-ness of each author. In this
example, the reconstruction errors for all researchers except Carl is 0, and thus Carl is flagged as an outlying author.

G represents data mining research area, and the second row of G represents the software engineer-
ing research area. With the help of the rows of F , we can use the succinct representation in G to
reconstruct the original representation of each author. For example, the reconstructed representation
for John is 1 × (1,1,0,0) + 0 × (0,0,1,1) = (1,1,0,0), and the reconstructed representation for Carl
is 0 × (1,1,0,0) + 1 × (0,0,1,1) = (0,0,1,1). We put the reconstructed representation of all six au-
thors in another matrix X̂ (the right part of Fig. 11.11). Then, we compute the squared distance between
the rows of the original data matrix X and that of the reconstructed data matrix X̂, which are used as the
outlier-ness scores of the corresponding authors. In this example, the reconstruction error is zero for all
authors but Carl, who has a reconstruction error of 1. Therefore we flag Carl as an outlying author.

“So, how can we find these two magic low-rank matrices F and G?” Many approaches exist. A
popular choice is to use singular value decomposition (SVD). Given an input data matrix X, SVD
approximates it by the multiplication of three rank-r matrices

X ≈ U�V ′, (11.20)

where U and V are orthonormal matrices and their columns are called left singular vectors and right
singular vectors of data matrix X, respectively, V ′ is the transpose of matrix V , and � is a diagonal
with nonnegative diagonal elements called singular values. For the purpose of outlier detection, we can
set F = U� and G = V ′. See Fig. 11.12 for an illustration.

The full mathematical details of SVD are outside the scope of this textbook. Many software pack-
ages exist to compute SVD for a given data matrix. An appealing property of SVD lies in its optimal
approximation. This means that among all rank-r matrices, SVD provides the best approximation of
the original data matrix in terms of both L2 norm and Frobenious norm. Another interesting property
of SVD lies in its close connection with PCA. In particular, if the data matrix X is “centered,” mean-
ing that each column (i.e., feature) of X has a zero sample mean (we can achieve this, say by z-score
normalization), the columns of matrix V (i.e., the right singular vectors) are exactly the first r principle
components of the input data. (Why this is true is left as an exercise.)
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FIGURE 11.12

An illustration of SVD. Given a data matrix X (on the left), SVD approximates it by the multiplication of three
rank-r matrices. The multiplication of the left singular vector matrix U and the singular value matrix � becomes
matrix F in Fig. 11.11 and the transpose of the right singular vector matrix V ′ becomes matrix G in Fig. 11.11.
When the data matrix X is centered (i.e., each of its columns has zero sample mean), the columns of V are the first r

principal components of X.

A potential limitation of SVD is that the low-rank matrices (F and G) are often dense, even when
the input data matrix X itself is sparse, which makes the detection results somehow hard for the end
user to interpret. To address this issue, example-based matrix factorization has been developed. For
instance, CX-decomposition first samples (with replacement) a few columns of the data matrix X to
form matrix F , and then finds matrix G by projecting the data matrix X onto the column space spanned
by matrix F .3 In CX-decomposition, there might exist redundancy among the columns in matrix F

with duplicated or linearly correlated columns that have no impact on improving the reconstruction
error (the indicator for outlier detection) yet waste both time and space. An improved example-based
matrix factorization called Colibri only uses linearly independent columns of the data matrix X to
construct the matrix F . Both CX-decomposition and Colibri were found to improve the efficiency and
interpretability of outlier detection.

Example 11.16. Suppose we are given a set of authors, each of whom is represented by how many
papers she has published in two conferences, including “KDD”—a data mining conference, and
“ISBM”—a computational biology conference. Therefore the input data matrix X is an n × 2 matrix,
where each row (i.e., a circle in Fig. 11.13(a)) is an author and n is the number of authors. If we use
SVD to factorize the data matrix X ≈ FG, each column of matrix G is a right singular vector of X that
is a linear combination of all rows of the data matrix (Fig. 11.13(b)). Therefore the resulting matrix G

is dense, and so is matrix F . In contrast, example-based factorization (e.g., CX-decomposition and Col-
ibri in Fig. 11.13(c-d)) uses actual data samples (e.g., sampled authors) to construct matrix G, which
is more interpretable and computationally more efficient than SVD. In order to detect outlying authors,

3 Mathematically, let F consist of columns sampled from the data matrix X. We approximate X as X ≈ F (F ′F )+F ′X, where
+ is the matrix pseudo-inverse. We set matrix G = (F ′F )+F ′X.
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FIGURE 11.13

A pictorial comparison between SVD, CX-decomposition, and Colibri. (a) Input data: each circle is an author who is
represented by two features (“KDD” and “ISMB”). (b) SVD finds optimal factorization, where the two right singular
vectors (two red (gray in print version) arrows), together with the two corresponding singular values, form the matrix
G. Each right singular vector is a linear combination of all input authors, resulting in a dense matrix G. (c) CX-
decomposition randomly samples some actual authors (gray circles) to form matrix G, and some sampled columns
might be duplicated (indicated by the number of the corresponding circle). (d) Colibri uses two linearly indepen-
dent, sampled authors (two gray circles) to form the matrix G. Using the first singular vector (b), or one sampled
data point by either CX-decomposition (c) or Colibri (d), we might flag the author on the right bottom corner as an
outlier, with a high reconstruction error (the dashed line).

we can use the first singular vector (b), or one sampled data point by either CX-decomposition (c) or
Colibri (d) as the succinct representation. Then, an author (e.g., the one on the right bottom corner)
with a high reconstruction error (indicated by the length of the dashed line in the figure) is flagged as an
outlier. Notice that the meaning of outliers found in this example is quite different from Example 11.14.
In Example 11.14, most (i.e., normal) authors belong to one of the two research areas (“Data Mining”
or “Software Engineering”), and thus Carl, who belongs to both areas, is flagged as an outlying author.
In contrast, in this example, for most (i.e., normal) authors, the numbers of publications in “ISMB”
are positively correlated with that in “KDD,” which is captured by the succinct representation (e.g.,
the first singular vector). Therefore the author on the right bottom corner, with a significant number of
publications in “KDD” yet almost none in “ISMB,” is flagged as an outlier.

When the input data matrix X is nonnegative, a natural choice is to use nonnegative matrix factor-
ization (NMF, which was introduced in Chapter 9). In general, nonnegative entries are easier to interpret
since they often correspond to the actual “parts” of the input data (e.g., a nose, an eye if the input data is
face image). A typical NMF method imposes the nonnegativity constraints on the two factorized matri-
ces (F and G). However, in Fig. 11.11, we use the residual matrix R = X − FG to detect outlying data
samples (e.g., if the squared norm of a row of the residual matrix R is high, the corresponding data are
flagged as an outlier). Therefore it is natural to require the residual matrix R, instead of the factorized
matrices F and G, to be nonnegative. Matrix factorization with this type of constraint (i.e., the entries
of the residual matrix must be nonnegative) is called nonnegative residual matrix factorization (NrMF).
NrMF was found to be more interpretable to detect outliers which corresponds to some actual behaviors
or activities of certain data samples.

Example 11.17. An IP source might be detected as a suspicious port-scanner if it sends packages to a
lot of destinations in an IP traffic network; we might flag a group of users who always give good ratings
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to another group of users as a collusion type of fake reviewers. If we map such behaviors or activities
(e.g., “sends packages,” “gives good ratings,” etc.) to the language of matrix factorization, it suggests
that the corresponding entries in the residual matrix should be nonnegative.

Another method, called robust PCA, requires that the residual matrix R to be sparse with most of
the rows being empty. The intuition is as follows. For the vast majority of normal data tuples, they can
be perfectly reconstructed by the factorized matrices, whereas for a small number of outlying tuples,
they bear nonzero reconstruction errors indicated by the corresponding, nonempty rows in the residual
matrix R.

Matrix factorization based methods are linear methods in that the new, more succinct representation
is a linear combination of the original features. For example, in SVD, each right singular vector is a
linear combination of the original features of the input data. For the example in Fig. 11.9, the new repre-
sentation “Data Mining” is the result of a linear combination of the two conferences including “KDD”
and “ICDM.” If we wish to capture the nonlinear relationship between the original features, we can use
autoencoder, an unsupervised deep learning architecture introduced in Chapter 10, to reconstruct the
original data samples. Again, the data samples with high reconstruction errors are flagged as outliers.

11.4.2 Pattern-based compression methods for categorical data
For input data with categorical attributes, we could convert the categorical attributes to binary attributes
and then apply the matrix factorization based methods to detect outliers.

Example 11.18. Given an input data set in Fig. 11.14, where each row represents a customer who is
described by three categorical attributes, namely “income,” “credit,” and “purchase.” In order to detect
abnormal customers, we first convert the input data set into a binary data matrix B in Fig. 11.15(a).
Since each categorical attribute has three possible values, including “High,” “Medium,” and “Low,”
it is converted into three binary attributes. (How to convert a categorical attribute to binary ones was
introduced in Chapter 2.) Next, we approximate the binary data matrix B by the multiplication of two
low-rank matrices, say the ones in Fig. 11.15(b), which are in turn used to reconstruct the original data
matrix B. By comparing the original and reconstructed data matrices, we find out that the reconstruction
errors for the first four customers are all zeros. On the other hand, the reconstruction errors for Tom and
Jim are 2.5 and 1.34, respectively, both of whom are thus flagged as outliers.

FIGURE 11.14

Input data with categorical attributes, including “Income,” “Credit,” and “Purchase.” Each categorical attribute has
three values, including “High,” “Medium,” and “Low.”
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FIGURE 11.15

Using matrix factorization based method to detect outliers of input data with categorical attributes. (a) Representing
the input data by a binary data matrix B by converting the categorical attributes to binary attributes. (b) The two
factorized matrices F and G to approximate the binary data matrix B. “I/H,” “I/M,” and “I/L” represent the attribute
values of “Income” being “High,” “Medium,” and “Low,” respectively. Likewise. “C/H,” “C/M,” and “C/L” represent
the attribute values of “Credit” being “High,” “Medium,” and “Low,” respectively; and “P/H,” “P/M,” and “P/L”
represent the attribute values of “Purchase” being “High,” “Medium,” and “Low,” respectively. (c) The reconstructed
matrix.

When a categorical attribute has many different values, the binary data matrix B would have many
columns since we need to create a separate column (i.e., binary feature) for each categorical attribute
value. This might make the matrix factorization process computationally intensive and the detection
results hard to interpret. For example, it might be hard to tell why “Tom” and “Jim” are flagged as
outliers by just looking at the factorized matrices F and G in Fig. 11.15(b). So, how can we do better?

An alternative method is to use pattern-based compression methods to detect outliers for input
data with categorical attributes.

For the input data set in Fig. 11.14, we can construct a code table (also known as dictionary), shown
in Fig. 11.16. At the first glance, the table might look a bit abstract to you. Let us explain the details.

The first column of Fig. 11.16 consists of a set of code words, also known as a pattern. Each
code word or pattern (e.g., “[I/H, C/H, P/H]”) consists of one or more items, which are essentially an
attribute-value pairs (e.g., “I/H” meaning the value of “Income” is “High”). (Recall that we have used
the similar notations for pattern-based classification in Chapter 7.) The second column of Fig. 11.16
contains the binary codes that are used to represent the corresponding code words, and the last column is
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FIGURE 11.16

Code table for the input data in Fig. 11.14.

simply the length of each code (i.e., how many bits are used in the corresponding code).4 Using the code
words in the first column, we can now represent the original input data samples in an alternative, more
succinct way. For example, for John and Amy, we can just use the first code word “[I/H, C/H, P/H]”
to represent them respectively. Likewise, for Carl and Mary, we use the second code word “[I/L, C/L,
P/L]” to represent them respectively. On the other hand, for Tom, we need two code words, including
“[I/H, C/L]” and “[P/M],” to represent him; and for Jim, we also need two code words to represent him,
including “[I/H, C/L]” and “[P/L].” If a given code word is used to represent a data sample, we say
that the data sample covers the corresponding code word. The total number of times that a given code
word is used to represent the entire data set is the usage of that code word (i.e., the third column of
Fig. 11.16). For example, the usage of “[I/H, C/H, P/H]” is 2, since it is used to represent both John and
Amy; the usage of “[P/M]” is one since it is only used to represent Tom.

Once we have the alternative representation of the input data sample, we can use the encoding
length as an indicator of the outlier-ness. The longer the encoding length, the more likely the given data
sample is an outlier. For the example in Fig. 11.14, John is represented by a single code word “[I/H,
C/H, P/H]” with the encoding length of 2 (i.e., “01”). Likewise, the encoding length for Amy, Carl and
Mary is also 2. On the other hand, Tom is represented by two code words, including “[I/H, C/L]” and
“[P/M]” with the total encoding length of 5; Jim is also represented by two code words, including “[I/H,
C/L]” and “[P/L]” with the total encoding length of 5. Therefore we flag both Tom and Jim as outlying
customers. Compared with matrix-factorization methods, the pattern-compression based methods have
an advantage for detecting outliers with categorical attributes in terms of interpretability. For example,
by looking at the code words that Tom and Jim cover, an atypical pattern, namely “[I/H, C/L]” (high
income but low credit score), stands out. Therefore the low purchase activity of Tom and Jim might be
attributed to their low credit score despite that the income of both of them is high.

But, you might wonder, how can we obtain the code table from the input data set? Why is cer-
tain code word (e.g., “[I/H, C/H, P/H]”) assigned by a shorter code than others (e.g., “[I/H, C/L],”
“[P/L]”)? Why is the encoding length a reasonable indicator of outlier-ness? Pattern-based compres-
sion methods often use Minimum Description Length (MDL) principle to search for the optimal code
table. The full mathematical details of MDL are outside the scope of the textbook and interested read-
ers can refer to the bibliographic notes. Simply put, MDL principles favors the model that can most

4 It turns out that for the outlier detection task, it is the length of codes, not the actual codes, of the code words that matters with
the detection results.
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succinctly describe the input data set. That is, it favors a model M that minimizes the following cost:

L(M) + L(D|M), (11.21)

where L(M) is the length in bits of the description of the model itself, and L(D|M) is the length in bits
of the description of the data set D using the given model M .

In the outlier detection setting, the models are all possible code tables and thus L(M) is the encoding
cost to describe the first two columns in Fig. 11.16, including the encoding cost of the actual code words
(e.g., “[I/H, C/H, P/H]”) and the corresponding codes (e.g., “01”). Intuitively, in order to minimize
L(M), we would favor a concise code table (e.g., with a small number of short code words). L(D|M)

is the total cost to describe the input data set using the given code table M , which is the summation of
the encoding length of each data sample using the given code table. Intuitively, in order to minimize
L(D|M), on the one side, we should choose a comprehensive set of code words so that each input data
sample can be represented by a subset of chosen code words. On the other hand, we should choose
frequent code words, and if a code word is frequently used to represent different input data samples, we
should assign it with a shorter code.5 In this way, the total encoding cost L(D|M) could be minimized.
Therefore if the encoding length of a given data sample is long, it suggests that it is represented by rare,
infrequent patterns (code words), and thus looks outlying.

11.5 Clustering- vs. classification-based approaches
Depending on the availability of supervision, which is in the form of the labels of training tuples re-
garding whether they are normal or outlying samples, we can categorize outlier detection techniques
into clustering-based vs. classification-based methods. Clustering-based approaches are unsupervised
methods, which detect outliers by examining the relationship between objects and clusters. Intuitively,
an outlier could be an object that belongs to a small and remote cluster or does not belong to any cluster.
The notion of outliers is highly related to that of clusters. Classification-based approaches are essen-
tially supervised methods, which treat outlier detection as a classification problem. The general idea
of classification-based outlier detection methods is to train a classification model that can distinguish
normal data from outliers.

11.5.1 Clustering-based approaches
Generally speaking, there are three approaches to clustering-based outlier detection. Consider an object.

• Does the object belong to any cluster? If not, then it is identified as an outlier.
• Is there a large distance between the object and the cluster to which it is closest? If yes, it is an

outlier.
• Is the object part of a small or sparse cluster? If yes, then all the objects in that cluster are outliers.

5 According to Shannon entropy, the optimal encoding length of a given code c is log
∑

i usage(i)
usage(c) . The higher the usage of the

code c, the shorter its encoding length.
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FIGURE 11.17

Object a is an outlier because it does not belong to any cluster.

FIGURE 11.18

Outliers (a,b, c) are far from the clusters to which they are closest (with respect to the cluster centers).

Let’s look at examples of each of these approaches.

Example 11.19. Detecting outliers as objects that do not belong to any cluster. Gregarious animals
(e.g., goats and deer) live and move in flocks. Using outlier detection, we can identify outliers as animals
that are not part of a flock. Such animals may be either lost or wounded.

In Fig. 11.17, each point represents an animal living in a group. Using a density-based clustering
method, such as DBSCAN, we note that the black points belong to clusters. The white point, a, does
not belong to any cluster, and thus is declared an outlier.

The second approach to clustering-based outlier detection considers the distance between an object
and the cluster to which it is closest. If the distance is large, then the object is likely an outlier with
respect to the cluster. Thus this approach detects individual outliers with respect to clusters.

Example 11.20. Clustering-based outlier detection using distance to the closest cluster. Using the
k-means clustering method, we can partition the data points shown in Fig. 11.18 into three clusters, as
shown using different symbols. The center of each cluster is marked with a +.

For each object o, we can assign an outlier-ness score according to the distance between the object
and the center that is closest to the object. Suppose the closest center to o is co; then the distance
between o and co is dist(o, co), and the average distance between co and the objects assigned to co

is lco
. The ratio dist (o,co)

lco
measures how dist(o, co) stands out from the average. The larger the ratio,

the farther away o is relative from the center, and the more likely o is an outlier. In Fig. 11.18, points
a, b, and c are relatively far away from their corresponding centers and thus are suspected of being
outliers.

This approach can also be used for intrusion detection, as described in Example 11.21.
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Example 11.21. Intrusion detection by clustering-based outlier detection. A bootstrap method was
developed to detect intrusions in TCP connection data by considering the similarity between data points
and the clusters in a training data set. The method consists of three steps.

1. A training data set is used to find patterns of normal data. Specifically, the TCP connection data
are segmented according to, say, dates. Frequent itemsets are found in each segment. The frequent
itemsets that are in a majority of the segments are considered as patterns of normal data and are
referred to as “base connections.”

2. Connections in the training data that contain base connections are treated as attack-free. Such con-
nections are clustered into groups.

3. The data points in the original data set are compared with the clusters mined in step 2. Any point
that is deemed an outlier with respect to the clusters is declared as a possible attack.

Note that each of the approaches we have seen so far detects only individual objects as outliers
because they compare objects one at a time against clusters in the data set. However, in a large data
set, some outliers may be similar and form a small cluster. In intrusion detection, for example, hackers
who use similar tactics to attack a system may form a cluster. The approaches discussed so far may be
deceived by such outliers.

To overcome this problem, a third approach to cluster-based outlier detection identifies small or
sparse clusters and declares the objects in those clusters to be outliers as well. An example of this
approach is the FindCBLOF algorithm, which works as follows.

1. Find clusters in a data set and sort them according to decreasing size. The algorithm assumes that
most of the data points are not outliers. It uses a parameter α (0 ≤ α ≤ 1) to distinguish large from
small clusters. Any cluster that contains at least a percentage α (e.g., α = 30%) of the data set is
considered a “large cluster.” The remaining clusters are referred to as “small clusters.”

2. To each data point, assign a cluster-based local outlier factor (CBLOF). For a point belonging to a
large cluster, its CBLOF is the product of the cluster’s size and the similarity between the point and
the cluster. For a point belonging to a small cluster, its CBLOF is calculated as the product of the
size of the small cluster and the similarity between the point and the closest large cluster.

CBLOF defines the similarity between a point and a cluster in a statistical way that represents the
probability that the point belongs to the cluster. The larger the value, the more similar the point and
the cluster are. The CBLOF score can detect outlier points that are far from any clusters. In addition,
small clusters that are far from any large cluster are considered to consist of outliers. The points with
the lowest CBLOF scores are suspected outliers.

Example 11.22. Detecting outliers in small clusters. The data points in Fig. 11.19 form three clusters:
large clusters, C1 and C2, and a small cluster, C3. Object o does not belong to any cluster.

Using CBLOF, FindCBLOF can identify o and the points in cluster C3 as outliers. For o, the closest
large cluster is C1. The CBLOF score is simply the similarity between o and C1, which is small. For the
points in C3, the closest large cluster is C2. Although there are three points in cluster C3, the similarity
between those points and cluster C2 is low, and |C3| = 3 is small; thus, the CBLOF scores of points in
C3 are small.

Clustering-based approaches may incur high computational costs if they have to find clusters before
detecting outliers. Several techniques have been developed for improved efficiency. For example, fixed-
width clustering is a linear-time technique that is used in some outlier detection methods. The idea is
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FIGURE 11.19

Outliers in small clusters.

simple yet efficient. A point is assigned to a cluster if the center of the cluster is within a predefined
distance threshold from the point. If a point cannot be assigned to any existing cluster, a new cluster is
created. The distance threshold may be learned from the training data under certain conditions.

Clustering-based outlier detection methods have the following advantages. First, they can detect
outliers without requiring any labeled data, that is, in an unsupervised way. They work for many data
types. Clusters can be regarded as summaries of the data. Once the clusters are obtained, clustering-
based methods need only compare any object against the clusters to determine whether the object is an
outlier. This process is typically fast because the number of clusters is usually small compared to the
total number of objects.

A weakness of clustering-based outlier detection is its effectiveness, which highly depends on the
clustering method used. Such methods may not be optimized for outlier detection. Clustering methods
are often costly for large data sets, which could become a bottleneck.

11.5.2 Classification-based approaches
Let us consider a training set that contains samples labeled as “normal” and others labeled as “outlier.”
A classifier can then be constructed based on the training set. Any classification method can be used
(Chapters 6 and 7). This kind of brute-force approach, however, does not work well for outlier detection
because the training set is typically heavily biased. That is, the number of normal samples likely far
exceeds the number of outlier samples. This imbalance, where the number of outlier samples may be in-
sufficient, can prevent us from building an accurate classifier. Consider intrusion detection in a system,
for example. Because most system accesses are normal, it is easy to obtain a good representation of the
normal events. However, it is infeasible to enumerate all potential intrusions, as new and unexpected
attempts occur from time to time. Hence, we are left with an insufficient representation of the outlier
(or intrusion) samples.

To overcome this challenge, classification-based outlier detection methods often use a one-class
model. That is, a classifier is built to describe only the normal class. Any samples that do not belong
to the normal class are regarded as outliers. For example, in one-class SVM, it seeks to find a max-
margin hyperplane in the transformed high-dimensional space (called reproducing kernel Hilbert space
or RKHS for short) that separates the normal data tuples and the origin that represents the outlier. In
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FIGURE 11.20

Learning a model for the normal class.

Support Vector Data Description (SVDD), it seeks to find a minimum hypersphere that contains all
the normal tuples.

Example 11.23. Outlier detection using a one-class model. Consider the training set shown in
Fig. 11.20, where white points are samples labeled as “normal” and black points are samples labeled
as “outlier.” To build a model for outlier detection, we can learn the decision boundary of the normal
class using classification methods such as SVM (Chapter 7), as illustrated. Given a new object, if the
object is within the decision boundary of the normal class, it is treated as a normal case. If the object is
outside the decision boundary, it is declared an outlier.

An advantage of using only the model of the normal class to detect outliers is that the model can
detect new outliers that may not appear close to any outlier objects in the training set. This occurs as
long as such new outliers fall outside the decision boundary of the normal class.

The idea of using the decision boundary of the normal class can be extended to handle situations
where the normal objects may belong to multiple classes. For example, an electronics store accepts
returned items. Customers can return items for a number of reasons (corresponding to class categories)
such as “product design defects” and “product damaged during shipment.” Each such class is regarded
as normal. To detect outlier cases, the store can learn a model for each normal class. To determine
whether a case is an outlier, we can run each model on the case. If the case does not fit any of the
models, then it is declared an outlier.

Classification-based methods and clustering-based methods can be further combined to detect out-
liers in a semisupervised learning way.

Example 11.24. Outlier detection by semisupervised learning. Consider Fig. 11.21, where objects
are labeled as either “normal” or “outlier” or have no label at all. Using a clustering-based approach,
we find a large cluster, C, and a small cluster, C1. Because some objects in C carry the label “normal,”
we can treat all objects in this cluster (including those without labels) as normal objects. We use the
one-class model of this cluster to identify normal objects in outlier detection. Similarly, because some
objects in cluster C1 carry the label “outlier,” we declare all objects in C1 as outliers. Any object that
does not fall into the model for C (e.g., a) is considered an outlier as well.
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FIGURE 11.21

Detecting outliers by semisupervised learning.

Classification-based methods can incorporate human domain knowledge into the detection process
by learning from the labeled samples. Once the classification model is constructed, the outlier detection
process is fast. It only needs to compare the objects to be examined against the model learned from
the training data. The quality of classification-based methods heavily depends on the availability and
quality of the training set. In many applications, it is difficult to obtain representative and high-quality
training data, which limits the applicability of classification-based methods. A promising solution is to
combine outlier detection and active learning (introduced in Chapter 7) to obtain a few labeled training
tuples for each class (e.g., normal class, outlying class), with the help of a human annotator.

11.6 Mining contextual and collective outliers
An object in a given data set is a contextual outlier (or conditional outlier) if it deviates significantly
with respect to a specific context of the object (Section 11.1). The context is defined using contex-
tual attributes. These depend heavily on the application and are often provided by users as part of
the contextual outlier detection task. Contextual attributes can include spatial attributes, time, network
locations, and sophisticated structured attributes. In addition, behavioral attributes define character-
istics of the object and are used to evaluate whether the object is an outlier in the context to which it
belongs.

Example 11.25. Contextual outliers. To determine whether the temperature of a location is excep-
tional (i.e., an outlier), the attributes specifying information about the location can serve as contextual
attributes. These attributes may be spatial attributes (e.g., longitude and latitude) or location attributes in
a graph or network. The attribute time can also be used. In customer-relationship management, whether
a customer is an outlier may depend on other customers with similar profiles. Here, the attributes defin-
ing customer profiles provide the context for outlier detection.

In comparison to outlier detection in general, identifying contextual outliers requires analyzing the
corresponding contextual information. Contextual outlier detection methods can be divided into two
categories according to whether the contexts can be clearly identified.
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11.6.1 Transforming contextual outlier detection to conventional outlier detection
This category of methods is for situations where the contexts can be clearly identified. The idea is to
transform the contextual outlier detection problem into a typical outlier detection problem. Specifically,
for a given data object, we can evaluate whether the object is an outlier in two steps. In the first step,
we identify the context of the object using the contextual attributes. In the second step, we calculate the
outlier-ness score for the object in the context using a conventional outlier detection method.

Example 11.26. Contextual outlier detection when the context can be clearly identified. In
customer-relationship management, we can detect outlier customers in the context of customer groups.
Suppose an electronics store maintains customer information on four attributes, namely age_group
(i.e., under 25, 25–45, 45–65, and over 65), postal_code, number_of_transactions_per_year, and
annual_total_transaction_amount. The attributes age_group and postal_code serve as contextual at-
tributes, and the attributes number_of_transactions_per_year and annual_total_transaction_amount
are behavioral attributes.

To detect contextual outliers in this setting, for a customer, c, we can first locate the context of c

using the attributes age_group and postal_code. We can then compare c with the other customers in
the same group and use a conventional outlier detection method, such as some of the ones discussed
earlier, to determine whether c is an outlier.

Contexts may be specified at different levels of granularity. Suppose the same electronics store
also maintains customer information at a more detailed level for the attributes age, postal_code, num-
ber_of_transactions_per_year, and annual_total_transaction_amount. We can still group customers on
age and postal_code and then mine outliers in each group. What if the number of customers falling into
a group is very small or even zero? For a customer, c, if the corresponding context contains very few or
even no other customers, the evaluation of whether c is an outlier using the exact context is unreliable
or even impossible.

To overcome this challenge, we can assume that customers of similar age and who live within the
same area should have similar normal behavior. This assumption can help to generalize contexts and
makes for more effective outlier detection. For example, using a set of training data, we may learn a
mixture model, U , of the data on the contextual attributes, and another mixture model, V , of the data
on the behavior attributes. A mapping p(Vi |Uj ) is also learned to capture the probability that a data
object o belonging to cluster Uj on the contextual attributes is generated by cluster Vi on the behavior
attributes. The outlier-ness score can then be calculated as

S(o) =
∑
Uj

p(o ∈ Uj )
∑
Vi

p(o ∈ Vi)p(Vi |Uj ). (11.22)

Thus the contextual outlier problem is transformed into outlier detection using mixture models.

11.6.2 Modeling normal behavior with respect to contexts
In some applications, it is inconvenient or infeasible to clearly partition the data into contexts. For ex-
ample, consider the situation where an online store records customer browsing behavior in a search log.
For each customer, the data log contains the sequence of products searched for and browsed by the cus-
tomer. The store is interested in contextual outlier behavior, such as if a customer suddenly purchased
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a product that is unrelated to those she recently browsed. However, in this application, contexts cannot
be easily specified because it is unclear how many products browsed earlier should be considered as
the context, and this number will likely differ for each product.

This second category of contextual outlier detection methods models the normal behavior with
respect to contexts. Using a training data set, such a method trains a model that predicts the expected
behavior attribute values with respect to the contextual attribute values. To determine whether a data
object is a contextual outlier, we can then apply the model to the contextual attributes of the object. If
the behavior attribute values of the object significantly deviate from the values predicted by the model,
then the object can be declared a contextual outlier.

By using a prediction model that links the contexts and behavior, these methods avoid the explicit
identification of specific contexts. A number of classification and prediction techniques can be used
to build such models such as regression, Markov models, and finite state automaton. Interested read-
ers are referred to Chapters 6 and 7 on classification and the bibliographic notes for further details
(Section 11.10).

In summary, contextual outlier detection enhances conventional outlier detection by considering
contexts, which are important in many applications. We may be able to detect outliers that cannot
be detected otherwise. Consider a credit card user whose income level is low but whose expenditure
patterns are similar to those of millionaires. This user can be detected as a contextual outlier if the
income level is used to define context. Such a user may not be detected as an outlier without contextual
information because she does share expenditure patterns with many millionaires. Considering contexts
in outlier detection can also help to avoid false alarms. Without considering the context, a millionaire’s
purchase transaction may be falsely detected as an outlier if the majority of customers in the training set
are not millionaires. This can be corrected by incorporating contextual information in outlier detection.

11.6.3 Mining collective outliers
A group of data objects forms a collective outlier if the objects as a whole deviate significantly from
the entire data set, even though each individual object in the group may not be an outlier (Section 11.1).
To detect collective outliers, we have to examine the structure of the data set, that is, the relationships
between multiple data objects. This makes the problem more difficult than conventional and contextual
outlier detection.

“How can we explore the data set structure?” This typically depends on the nature of the data. For
outlier detection in temporal data (e.g., time series and sequences), we explore the structures formed
by time, which occur in segments of the time series or subsequences. To detect collective outliers in
spatial data, we explore local areas. Similarly, in graph and network data, we explore subgraphs. Each
of these structures is inherent to its respective data type.

Contextual outlier detection and collective outlier detection are similar in that they both explore
structures. In contextual outlier detection, the structures are the contexts, as specified by the contextual
attributes explicitly. The critical difference in collective outlier detection is that the structures are often
not explicitly defined and have to be discovered as part of the outlier detection process.

As with contextual outlier detection, collective outlier detection methods can also be divided into
two categories. The first category consists of methods that reduce the problem to conventional outlier
detection. Its strategy is to identify structure units, treat each structure unit (e.g., a subsequence, a
time-series segment, a local area, or a subgraph) as a data object, and extract features. The problem of



11.7 Outlier detection in high-dimensional data 593

collective outlier detection is thus transformed into outlier detection on the set of “structured objects”
constructed as such using the extracted features. A structure unit, which represents a group of objects in
the original data set, is a collective outlier if the structure unit deviates significantly from the expected
trend in the space of the extracted features.

Example 11.27. Collective outlier detection on graph data. Let’s see how we can detect collective
outliers in a store’s online social network of customers. Suppose we treat the social network as an
unlabeled graph. We then treat each possible subgraph of the network as a structure unit. For each
subgraph, S, let |S| be the number of vertices in S, and f req(S) be the frequency of S in the network.
That is, f req(S) is the number of different subgraphs in the network that are isomorphic to S. We
can use these two features to detect outlier subgraphs. An outlier subgraph is a collective outlier that
contains multiple vertices.

In general, a small subgraph (e.g., a single vertex or a pair of vertices connected by an edge or a
dense subgraph) is expected to be frequent, and a large subgraph is expected to be infrequent. Using
the preceding simple method, we can detect small subgraphs that are of very low frequency or large
subgraphs that are surprisingly frequent. These are outlier structures in the social network.

Predefining the structure units for collective outlier detection can be difficult or impossible. Conse-
quently, the second category of methods models the expected behavior of structure units directly. For
example, to detect collective outliers in temporal sequences, one method is to learn a Markov model
from the sequences. A subsequence can then be declared as a collective outlier if it significantly deviates
from the model.

In summary, collective outlier detection is subtle due to the challenge of exploring the structures
in data. The exploration typically uses heuristics and thus may be application-dependent. The com-
putational cost is often high due to the sophisticated mining process. While highly useful in practice,
collective outlier detection remains a challenging direction that calls for further research and develop-
ment.

11.7 Outlier detection in high-dimensional data
In some applications, we may need to detect outliers in high-dimensional data. The curse of dimension-
ality poses huge challenges for effective outlier detection. As the dimensionality increases, the distance
between objects may be heavily dominated by noise. That is, the distance and similarity between two
points in a high-dimensional space may not reflect the real relationship between the points. Conse-
quently, conventional outlier detection methods, which mainly use proximity or density to identify
outliers, deteriorate as dimensionality increases.

Ideally, outlier detection methods for high-dimensional data should meet the challenges that follow.

• Interpretation of outliers: They should be able to not only detect outliers but also provide an inter-
pretation of the outliers. Because many features (or dimensions) are involved in a high-dimensional
data set, detecting outliers without providing any interpretation as to why they are outliers is not very
useful. The interpretation of outliers may come from, for example, specific subspaces that manifest
the outliers or an assessment regarding the “outlier-ness” of the objects. Such interpretation can help
users understand the possible meaning and significance of the outliers.
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• Data sparsity: The methods should be capable of handling sparsity in high-dimensional spaces.
The distance between objects becomes heavily dominated by noise as the dimensionality increases.
Therefore data in high-dimensional spaces are often sparse.

• Data subspaces: They should model outliers appropriately, for example, adaptive to the subspaces
signifying the outliers and capturing the local behavior of data. Using a fixed-distance threshold
against all subspaces to detect outliers is not a good idea because the distance between two objects
monotonically increases as the dimensionality increases.

• Scalability with respect to dimensionality: As the dimensionality increases, the number of sub-
spaces increases exponentially. An exhaustive combinatorial exploration of the search space, which
contains all possible subspaces, is not a scalable choice.

Outlier detection methods for high-dimensional data can be divided into the following approaches.
These include extending conventional outlier detection (Section 11.7.1), finding outliers in subspaces
(Section 11.7.2), outlier detection ensemble (Section 11.7.3), deep learning–based approaches (Sec-
tion 11.7.4) and modeling high-dimensional outliers (Section 11.7.5).

11.7.1 Extending conventional outlier detection
One approach for outlier detection in high-dimensional data extends conventional outlier detection
methods. It uses the conventional proximity-based models of outliers. However, to overcome the dete-
rioration of proximity measures in high-dimensional spaces, it uses alternative measures or constructs
subspaces and detects outliers there.

The HilOut algorithm is an example of this approach. HilOut finds distance-based outliers, but uses
the ranks of distance instead of the absolute distance in outlier detection. Specifically, for each object,
o, HilOut finds the k-nearest neighbors of o, denoted by nn1(o), . . . , nnk(o), where k is an application-
dependent parameter. The weight of object o is defined as

w(o) =
k∑

i=1

dist (o, nni(o)). (11.23)

All objects are ranked in weight-descending order. The top-l objects in weight are output as outliers,
where l is another user-specified parameter.

Computing the k-nearest neighbors for every object is costly and does not scale up when the dimen-
sionality is high and the database is large. To address the scalability issue, HilOut employs space-filling
curves to achieve an approximation algorithm, which is scalable in both running time and space with
respect to database size and dimensionality.

While some methods like HilOut detect outliers in the full space despite the high dimension-
ality, other methods reduce the high-dimensional outlier detection problem to a lower-dimensional
one by dimensionality reduction (Chapter 2). The idea is to reduce the high-dimensional space to a
lower-dimensional space where normal instances can still be distinguished from outliers. If such a
lower-dimensional space can be found, then conventional outlier detection methods can be applied.
In principle, the matrix factorization based approaches introduced in Section 11.4 can be used to find
such lower-dimensional space. For example, the rows of the right matrix G in Fig. 11.10 provide the
representation of the input data tuples in the lower-dimensional space.
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To reduce the dimensionality, general feature selection and extraction methods may be used or
extended for outlier detection. For example, principal components analysis (PCA) can be used to extract
a lower-dimensional space. Heuristically, the principal components with low variance are preferred
because, on such dimensions, normal objects are likely close to each other and outliers often deviate
from the majority. Notice that this is different from the case when PCA is used as a general-purposed
dimensionality reduction tool, where the principal components with high variance are favored.

By extending conventional outlier detection methods, we can reuse much of the experience gained
from research in the field. These new methods, however, are limited. First, they cannot detect outliers
with respect to subspaces and thus have limited interpretability. Second, dimensionality reduction is
feasible only if there exists a lower-dimensional space where normal objects and outliers are well
separated. This assumption may not hold true.

11.7.2 Finding outliers in subspaces
Another approach for outlier detection in high-dimensional data is to search for outliers in various
subspaces. A unique advantage is that, if an object is found to be an outlier in a subspace of much lower
dimensionality, the subspace provides critical information for interpreting why and to what extent the
object is an outlier. This insight is highly valuable in applications with high-dimensional data due to
the overwhelming number of dimensions.

Example 11.28. Outliers in subspaces. As a customer-relationship manager at an electronics store,
you are interested in finding outlier customers. The store maintains an extensive customer information
database, which contains many attributes and the transaction history of customers. The database is high
dimensional.

Suppose you find that a customer, Alice, is an outlier in a lower-dimensional subspace that contains
the dimensions average_transaction_amount and purchase_frequency, such that her average transac-
tion amount is substantially larger than the majority of the customers, and her purchase frequency is
dramatically lower. The subspace itself speaks for why and to what extent Alice is an outlier. Using this
information, you strategically decide to approach Alice by suggesting options that could improve her
purchase frequency at the store.

“How can we detect outliers in subspaces?” We use a grid-based subspace outlier detection method
to illustrate. The major ideas are as follows. We consider projections of the data onto various subspaces.
If, in a subspace, we find an area that has a density that is much lower than average, then the area may
contain outliers. To find such projections, we first discretize the data into a grid in an equal-depth way.
That is, each dimension is partitioned into φ equal-depth ranges, where each range contains a fraction,

f , of the objects
(
f = 1

φ

)
. Equal-depth partitioning is used because data along different dimensions

may have different localities. An equal-width partitioning of the space may not be able to reflect such
differences in locality.

Next, we search for regions defined by ranges in subspaces that are significantly sparse. To quantify
what we mean by “significantly sparse,” let’s consider a k-dimensional cube formed by k ranges on k

dimensions. Suppose the data set contains n objects. If the objects are independently distributed, the

expected number of objects falling into a k-dimensional region is
(

1
φ

)k

n = f kn. The standard deviation

of the number of points in a k-dimensional region is
√

f k(1 − f k)n. Suppose a specific k-dimensional
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cube C has n(C) objects. We can define the sparsity coefficient of C as

S(C) = n(C) − f kn√
f k(1 − f k)n

. (11.24)

If S(C) < 0, then C contains fewer objects than expected. The smaller the value of S(C) (i.e., the more
negative), the sparser C is and the more likely the objects in C are outliers in the subspace.

By assuming S(C) follows a normal distribution, we can use normal distribution tables to determine
the significance level for an object that deviates dramatically from the average for a priori assumption
of the data following a uniform distribution. In general, the assumption of uniform distribution does
not hold. However, the sparsity coefficient still provides an intuitive measure of the “outlier-ness” of a
region.

To find cubes of significantly small sparsity coefficient values, a brute-force approach is to search
every cube in every possible subspace. The cost of this, however, is immediately exponential. An evo-
lutionary search can be conducted, which improves efficiency at the expense of accuracy. For details,
please refer to the bibliographic notes (Section 11.10). The objects contained by cubes of very small
sparsity coefficient values are output as outliers. In addition, genetic algorithm has been found to be
effective in searching for desirable cubes.

In summary, searching for outliers in subspaces is advantageous in that the outliers found tend to
be better understood, owing to the context provided by the subspaces.6 Challenges include making the
search efficient and scalable.

11.7.3 Outlier detection ensemble
Another effective way to detect outliers in high-dimensional data is via ensemble. Its general procedure
is as follows and a pictorial illustration is given in Fig. 11.22. Given an input data set X (the left
of Fig. 11.22), with n data tuples (rows) in d-dimensional space (columns), the ensemble methods
first create K base detectors (the middle of Fig. 11.22). For each base detector, we first represent the
input data set in a random subspace Xi (i = 1, ...,K) whose dimensionality d ′ is much smaller than
the original feature dimensionality (i.e., d ′ � d), and then use an off-the-shelf outlier detection method
(e.g., LOF) to assign each data tuple with an outlier-ness score. We represent the outlier-ness scores
of all n data tuples in the form of a vector yi of length n (i = 1, ...,K). After that, we aggregate the
detection results from the K base detectors to obtain the overall outlier-ness scores for all input data
tuples in the form of another vector y of length n (the right of Fig. 11.22). Finally, we flag data tuples
with the highest overall outlier-ness scores as outliers.

There are two key issues in outlier detection ensemble, including (1) how to represent the input
data in a random subspace and (2) how to aggregate the detection results of base detectors. For (1),
there are two commonly used methods, including feature bagging and rotated bagging. For feature
bagging, we randomly select a few original features to form the representation of the input data in
a random subspace; and for rotated bagging, we first generate a random subspace of dimensionality
d ′(d ′ � d) and then project the input data into this subspace. Conceptually, if we represent the input

6 For this reason, we can see that subspace-based outlier detection and contextual outlier detection are closely related with each
other.
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FIGURE 11.22

A pictorial illustration of using ensemble methods to detect outliers in high-dimensional data. (Left) The input data
set with n data tuples (rows) in d-dimensional space (columns). (Middle) K base detectors. (Right) The aggregated
detection results.

data set as an n × d data matrix X, feature bagging selects a few d ′(d ′ � d) actual columns of X as the
representation of the input data set in a random subspace, whereas rotated bagging first generates d ′
mutually orthonormal vectors and then projects the input data matrix X onto the subspace spanned by
these d ′ vectors.

In order to aggregate the detection results from the base detectors, we can either use mean aggre-
gation where the overall outlier-ness score of a given data tuple is the average of its outlier-ness scores
from K base detectors, or max aggregation where the overall outlier-ness score of a given data tuple is
the maximum of its outlier-ness scores from K base detectors. For both aggregation methods, it is im-
portant to normalize (e.g., min-max normalization, z-score normalization) the outlier-ness scores of the
base detectors before aggregation, so that the outlier-ness score of a base detector will not overwhelm
the scores of other base detectors.

11.7.4 Taming high dimensionality by deep learning
In the context of outlier detection in high-dimensional data, deep learning–based approaches offer
two appealing advantages. First, deep learning methods (e.g., autoencoder, feed-forward neural net-
works, convolutional neural networks (CNNs), recurrent neural networks (RNNs), graphical neural
networks (GNNs)) produce vector representation (i.e., embedding) of the input data tuples with a much
smaller number of dimensions than the original ones and thus naturally alleviate the high-dimesionality
challenge. Second, owing to deep learning’s strong ability to learning semantically meaningful repre-
sentation, the produced embedding often captures the complicate (e.g., nonlinear) interaction between
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different input futures and thus is capable of detecting outliers that might be overlooked by the alterna-
tive methods (e.g., linear matrix factorization–based approaches).

Generally speaking, there are two basic strategies to leverage deep learning for high-dimensional
outlier detection, which we will introduce next. Fig. 11.23 presents an illustration.

The first strategy uses the deep learning methods as a preprocessing step. For example, if we feed
the input data set into an autoencoder, the output from the encoder produces the embedding of the
input data tuples in a much lower-dimensional space. Then, with such embedding as the input, we can
use outlier detection methods (e.g., proximity-based approaches, reconstruction-based approaches) to
detect outlying tuples. The advantage of this type of strategy lies in its simplicity. In principle, we can
use a variety of deep learning models to produce embedding of the input data in a lower-dimensional
space, such as feed-forward neural networks for spatial data, convolutional neural networks for grid
data, recurrent neural networks for sequential data, and graph neural networks for graph data. The
learned embedding can in turn be fed into a variety of off-the-shelf outlier detection methods, without
the need of retraining or modifications. However, this strategy separates the embedding learning stage
and outlier detection stage and thus might lead to suboptimal detection results. For example, the outliers
in the learned embedding space might be mixed with that of the normal tuples and thus are missed by
the outlier detection methods.

FIGURE 11.23

An illustration of two basic strategies of using deep learning for high-dimensional outlier detection.
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The second strategy aims to integrate the embedding learning and outlier detection together. In
other words, it tries to find embedding of the input data tuples that is tailored for spotting the outliers
and simultaneously produce the embedding and detection results. Compared with the first strategy, it
often leads to a higher detection accuracy. The general idea of methods using this strategy is to replace
certain component of an existing outlier detection method by a deep learning model. Let us take one-
class SVM as an example. Recall that in the traditional one-class SVM (Section 11.5.2), it seeks to find
a max-margin hyperplane in the transformed high-dimensional space (i.e., RKHS) that separates the
normal data tuples from the origin which represents the outlier. To this end, it solves an optimization
problem that involves a component of wT φ(x) representing the output of the hyperplane, where w is
the weight vector and φ(x) in the feature vector of the input data x in the RKHS. In the One-Class
Neural Network (OC-NN), it replaces the hyperplane output (i.e., wT φ(x)) by a feed-forward neural
network, whose output layer produces an outlier-ness score, and the last hidden layer produces the
embedding of the input data. By combining the embedding learning and outlier detection together, it
was found that OC-NN leads to better performance than the traditional one-class SVM.

Another example is Deviation Networks (DevNet). Recall that for univariate outlier detection (Sec-
tion 11.2.1), a simple yet effective outlier detection method is Grubb’s test based on z-score: z = |x−μ|

σ
,

where x is the input feature value, and μ and σ are the sample mean and the sample standard deviation,
respectively. For high-dimensional data, DevNet replaces the raw feature value x by its outliner-ness
score f (x,�). The outliner-ness score f (x,�) is produced by a deep learning model (e.g., a feed-
forward neural network with a linear output layer) with x as the input and � being the model parameters
of the deep learning model. In addition, DevNet replaces μ and σ by the sample mean and the sample
standard deviation of the outlier-ness scores of the normal tuples, respectively.7 DevNet was found to
obtain significant detection accuracy improvement over alternative methods.

11.7.5 Modeling high-dimensional outliers
Another alternative approach for outlier detection methods in high-dimensional data tries to develop
new models for high-dimensional outliers directly. Such models typically avoid proximity measures
and instead adopt new heuristics to detect outliers, which do not deteriorate in high-dimensional data.

Let’s examine angle-based outlier detection (ABOD) as an example.

Example 11.29. Angle-based outliers. Fig. 11.24 contains a set of points forming a cluster, with the
exception of c, which is an outlier. For each point o, we examine the angle ∠xoy for every pair of
points x, y such that x = o, y = o. The figure shows angle ∠dae as an example.

Note that for a point in the center of a cluster (e.g., a), the angles formed as such differ widely. For
a point that is at the border of a cluster (e.g., b), the angle variation is smaller. For a point that is an
outlier (e.g., c), the angle variable is substantially smaller. This observation suggests that we can use
the variance of angles for a point to determine whether a point is an outlier.

We can combine angles and distance to model outliers. Mathematically, for each point o, we use the
distance-weighted angle variance as the outlier-ness score. That is, given a set of points, D, for a point,

7 Another subtle change DevNet made is to remove the absolute value sign in the z-score definition. In other words, it only looks
at the upper-tail of the outlier-ness scores produced by the deep learning model. The larger the outlier-ness score, the more likely
the given tuple is an outlier.
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FIGURE 11.24

Angle-based outliers.

o ∈ D, we define the angle-based outlier factor (ABOF) as

ABOF(o) = VARx,y∈D,x =o,y =o
〈−→ox,

−→oy〉
dist (o,x)2dist (o,y)2

, (11.25)

where 〈, 〉 is the scalar product (i.e., dot product) operator, VAR is the variance, and dist (, ) is a norm
distance.

Clearly, the farther away a point is from clusters and the smaller the variance of the angles of a
point, the smaller the ABOF. The ABOD computes the ABOF for each point and outputs a list of the
points in the data set in ABOF-ascending order.

Computing the exact ABOF for every point in a database is costly, requiring a time complexity of
O(n3), where n is the number of points in the database. Obviously, this exact algorithm does not scale
up for large data sets. Approximation methods have been developed to speed up the computation. The
angle-based outlier detection idea has been generalized to handle arbitrary data types. For additional
details, see the bibliographic notes (Section 11.10).

Developing native models for high-dimensional outliers can lead to effective methods. However,
finding good heuristics for detecting high-dimensional outliers is difficult. Efficiency and scalability on
large and high-dimensional data sets are major challenges.

11.8 Summary
• Assume that a given statistical process is used to generate a set of data objects. An outlier is a data

object that deviates significantly from the rest of the objects, as if it were generated by a different
mechanism.

• Types of outliers include global outliers, contextual outliers, and collective outliers. An object may
be more than one type of outlier.

• Global outliers are the simplest form of outlier and the easiest to detect. A contextual outlier
deviates significantly with respect to a specific context of the object (e.g., a Toronto temperature
value of 28 ◦C is an outlier if it occurs in the context of winter). A subset of data objects forms a
collective outlier if the objects as a whole deviate significantly from the entire data set, even though
the individual data objects may not be outliers. Collective outlier detection requires background
information to model the relationships among objects to find outlier groups.
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• Challenges in outlier detection include finding appropriate data models, the dependence of outlier
detection systems on the application involved, finding ways to distinguish outliers from noise, and
providing justification for identifying outliers as such.

• Outlier detection methods can be categorized according to whether the sample of data for anal-
ysis is given with expert-provided labels that can be used to build an outlier detection model. In
this case, the detection methods are supervised, semisupervised, or unsupervised. Alternatively,
outlier detection methods may be organized according to their assumptions regarding normal ob-
jects vs. outliers. This categorization includes statistical methods, proximity-based methods, and
reconstruction-based methods.

• Statistical outlier detection methods (or model-based methods) assume that the normal data ob-
jects follow a statistical model, where data not following the model are considered outliers. Such
methods may be parametric (they assume that the data are generated by a parametric distribution)
or nonparametric (they learn a model for the data rather than assuming one a priori). Parametric
methods for multivariate data may employ the Mahalanobis distance, the χ2 statistic, or a mixture
of multiple parametric models. Histograms and kernel density estimation are examples of nonpara-
metric methods.

• Proximity-based outlier detection methods assume that an object is an outlier if the proximity
of the object to its nearest neighbors significantly deviates from the proximity of most of the other
objects to their neighbors in the same data set. Distance-based outlier detection methods consult
the neighborhood of an object, defined by a given radius. An object is an outlier if its neighborhood
does not have enough other points. In density-based outlier detection methods, an object is an outlier
if its density is relatively much lower than that of its neighbors.

• Clustering-based outlier detection methods assume that the normal data objects belong to large
and dense clusters, whereas outliers belong to small or sparse clusters or do not belong to any
clusters.

• Classification-based outlier detection methods often use a one-class model. That is, a classifier
is built to describe only the normal class. Any samples that do not belong to the normal class are
regarded as outliers.

• Contextual outlier detection and collective outlier detection explore structures in the data. In
contextual outlier detection, the structures are defined as contexts using contextual attributes. In col-
lective outlier detection, the structures are implicit and are explored as part of the mining process. To
detect such outliers, one approach transforms the problem into one of conventional outlier detection.
Another approach models the structures directly.

• Outlier detection methods for high-dimensional data can be divided into five main approaches,
including extending conventional outlier detection, finding outliers in subspaces, outlier detection
ensemble, deep learning–based approaches, and modeling high-dimensional outliers.

11.9 Exercises
11.1. Give an application example where global outliers, contextual outliers, and collective outliers

are all interesting. What are the attributes, and what are the contextual and behavioral attributes?
How is the relationship among objects modeled in collective outlier detection?
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11.2. Give an application example of where the border between normal objects and outliers is often
unclear, so that the degree to which an object is an outlier has to be well estimated.

11.3. Adapt a simple semisupervised method for outlier detection. Discuss the scenario where you
have (a) only some labeled examples of normal objects and (b) only some labeled examples of
outliers.

11.4. Using an equal-depth histogram, design a way to assign an object an outlier-ness score.
11.5. Consider the nested loop approach to mining distance-based outliers (Fig. 11.6). Suppose the

objects in a data set are arranged randomly; that is, each object has the same probability to
appear in a position. Show that when the number of outlier objects is small with respect to the
total number of objects in the whole data set, the expected number of distance calculations is
linear to the number of objects.

11.6. In the density-based outlier detection method of Section 11.3.2, the definition of local reach-
ability density has a potential problem: lrdk(o) = ∞ may occur. Explain why this may occur
and propose a fix to the issue.

11.7. Because clusters may form a hierarchy, outliers may belong to different granularity levels. Pro-
pose a clustering-based outlier detection method that can find outliers at different levels.

11.8. In outlier detection by semisupervised learning, what is the advantage of using objects without
labels in the training data set?

11.9. Given a user-community bipartite graph, where the nodes are users and communities, and
links indicate the membership between users and communities. We can represent this bipar-
tite graph by its adjacency matrix A, where A(i, j) = 1 means user i belongs to community
j ; and A(i, j) = 0 otherwise. We further approximate the adjacency matrix A by the multipli-
cation of two low-rank matrices, that is, A ≈ FG, where F and G are two low-rank matrices.
Describe how you can leverage the above low-rank approximation result to detect (a) outlying
users and (b) outlying user-community memberships, respectively.

11.10. Describe a method to integrate support vector data description (SVDD) and deep learning for
outlier detection.

11.11. To understand why angle-based outlier detection is a heuristic method, give an example where
it does not work well. Can you come up with a method to overcome this issue?

11.10 Bibliographic notes
Hawkins [Haw80] defined outliers from a statistics angle. For surveys or tutorials on the subject of out-
lier and anomaly detection, see Chandola, Banerjee, and Kumar [CBK09]; Hodge and Austin [HA04];
Agyemang, Barker, and Alhajj [ABA06]; Markou and Singh [MS03a,MS03b]; Patcha and Park [PP07];
Beckman and Cook [BC83]; Ben-Gal [BG05]; and Bakar, Mohemad, Ahmad, and Deris [BMAD06].
For outlier detection on temporal data, see Gupta, Gao, Aggarwal, and Han [GGAH13]. For anomaly
detection on graph data, see Akoglu, Tong, and Koutra [ATK15]. Song et al. [SWJR07] proposed the
notion of conditional anomaly and contextual outlier detection. For a comprehensive textbook on outlier
detection, see Aggarwal [Agg15c].

Fujimaki, Yairi, and Machida [FYM05] presented an example of semisupervised outlier detection
using a set of labeled “normal” objects. For an example of semisupervised outlier detection using
labeled outliers, see Dasgupta and Majumdar [DM02]. For outlier detection with active learning, see
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He and Carbonell [HC08]; Prateek and Ashish [JK09]; He, Liu, and Richard [HLL08]; Hospedales,
Gong, and Xiang [HGX11]; and Zhou and He [ZHCD15].

Shewhart [She31] assumed that most objects follow a Gaussian distribution and used 3σ as
the threshold for identifying outliers, where σ is the standard deviation. Boxplots are used to de-
tect and visualize outliers in various applications such as medical data (Horn, Feng, Li, and Pesce
[HFLP01]). Grubb’s test was described by Grubbs [Gru69], Stefansky [Ste72], and Anscombe and
Guttman [AG60]. Laurikkala, Juhola, and Kentala [LJK00] and Aggarwal and Yu [AY01] extended
Grubb’s test to detect multivariate outliers. Use of the χ2 statistic to detect multivariate outliers was
studied by Ye and Chen [YC01].

Agarwal [Aga06] used Gaussian mixture models to capture “normal data.” Abraham and Box
[AB79] assumed that outliers are generated by a normal distribution with a substantially larger variance.
Eskin [Esk00] used the EM algorithm to learn mixture models for normal data and outliers.

Histogram-based outlier detection methods are popular in the application domain of intrusion de-
tection (Eskin [Esk00] and Eskin et al. [EAP+02]) and fault detection (Fawcett and Provost [FP97]).

The notion of distance-based outliers was developed by Knorr and Ng [KN97]. The index-based,
nested loop–based, and grid-based approaches were explored (Knorr and Ng [KN98] and Knorr, Ng,
and Tucakov [KNT00]) to speed up distance-based outlier detection. Bay and Schwabacher [BS03]
and Jin, Tung, and Han [JTH01] pointed out that the CPU runtime of the nested loop method is often
scalable with respect to database size. Tao, Xiao, and Zhou [TXZ06] presented an algorithm that finds
all distance-based outliers by scanning the database three times with fixed main memory. For larger
memory size, they proposed a method that uses only one or two scans.

The notion of density-based outliers was first developed by Breunig, Kriegel, Ng, and Sander
[BKNS00]. Various methods proposed with the theme of density-based outlier detection include Jin,
Tung, and Han [JTH01]; Jin, Tung, Han, and Wang [JTHW06]; and Papadimitriou et al. [PKGF03].
The variations differ in how they estimate density.

SVD and related techniques were used in [IK04] to detect anomalies in computer systems. In-
cremental SVD was developed by Papadimitriou, Sun, and Faloutsos [PSF05] to find anomalies in
coevolving time series data. Principal component analysis (PCA) was used to detect abnormal traffic
in [BSM09]. For example-based matrix factorization, see Mahoney and Drineas [MD09] and Tong et
al. [TPS+08]. For nonnegative residual matrix factorization, see Tong and Lin [TL11]. Xu, Constan-
tine, and Sujay proposed robust PCA for outlier detection [XCS12]. Pattern-compression–based outlier
detection was first developed by Vreeken, Leeuwen, and Siebes [VvLS11]. Akoglu, Tong, Vreeken,
and Faloutsos [ATVF12] further improved the method by building multiple codetables.

The bootstrap method discussed in Example 11.21 was developed by Barbara et al. [BLC+03]. The
FindCBOLF algorithm was given by He, Xu, and Deng [HXD03]. For the use of fixed-width clustering
in outlier detection methods, see Eskin et al. [EAP+02]; Mahoney and Chan [MC03]; and He, Xu, and
Deng [HXD03]. Barbara, Wu, and Jajodia [BWJ01] used multiclass classification in network intrusion
detection.

Song et al. [SWJR07] and Fawcett and Provost [FP97] presented a method to reduce the problem
of contextual outlier detection to one of conventional outlier detection. Yi et al. [YSJ+00] used regres-
sion techniques to detect contextual outliers in coevolving sequences. The idea in Example 11.26 for
collective outlier detection on graph data is based on Noble and Cook [NC03].
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The HilOut algorithm was proposed by Angiulli and Pizzuti [AP05]. Aggarwal and Yu [AY01]
developed the sparsity coefficient–based subspace outlier detection method. Kriegel, Schubert, and
Zimek [KSZ08] proposed angle-based outlier detection.

Zhou and Paffenroth introduced deep autoencoder for outlier detection [ZP17]. Chalapathy, Menon,
and Chawla proposed to integrate one-class SVM with neural networks for effective outlier detec-
tion [CMC18]. Pang, Shen, and Hengel developed deviation networks for deep outlier detection. For
surveys on deep learning–based outlier detection, see Chalapathy and Chawla [CC19] and Pang, Shen,
Cao, and Hengel [PSCH20].

There are numerous applications of outlier and anomaly detection, ranging from finance [NHW+11,
ZZY+17], healthcare [vCPM+16], accounting [MBA+09], intrusion detection [ZZ06], multiarmed
bandit [ZWW17,BH20], to misinformation [ZG20].
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CHAPTER

Data mining trends and research
frontiers

Still as a relatively young research field, data mining has made significant progress and covered a
broad spectrum of applications since its birth in the 1980s. Today, data mining is ubiquitous in a vast
array of areas. Numerous commercial data mining systems and services are available. Many challenges,
however, still remain. In this final chapter, we give a few examples of future trends and research fron-
tiers in data mining as a prelude to further in-depth study that readers may choose to do. Section 12.1
presents an overview of methodologies for mining complex data types, which extend the concepts
and tasks introduced in this book. Such mining includes mining text data, graphs and networks, and
spatiotemporal data. In Section 12.2, you will learn more about data mining applications, including
sentiment and opinion analysis, truth discovery and misinformation identification, information and dis-
ease propagation, and productivity and team science. Section 12.3 briefly introduces other approaches
to data mining, including structuring unstructured data, data augmentation, causality analysis, network-
as-a-context, and auto-ML. The social impacts of data mining are discussed in Section 12.4.

12.1 Mining rich data types
12.1.1 Mining text data
Data in the world can be organized in a highly structured form, such as that in a typical relational
database, or in a semistructured data format, which is a blend between structured and unstructured
data, such as XML, JSON, and HTML files. However, more than 80% of the world data reside in an
unstructured format, such as text data from various written sources such as books, emails, reviews,
articles, websites, news, product reviews, or social media or in rich media formats like video, image,
and audio data.

Text (data) mining, also called text analytics, is the process of deriving high-quality information,
such as structures, patterns, and summaries, from text. Text mining usually involves the process of
mining structures from text, deriving patterns within the structured data, and evaluation and interpre-
tation of the output. Typical text mining tasks include concept/entity extraction, extracting relations
between named entities, taxonomy discovery, sentiment analysis, text categorization, text clustering,
and document summarization.

A spectrum of methods have been developed to accomplish different text mining tasks. In general,
these methods can be categorized into (i) supervised approach, (ii) semisupervised approach, (iii) dis-
tantly supervised approach, (iv) weakly supervised approach, and (v) self-supervised approach. Take
document classification as an example. A supervised approach takes a good set of human-labeled docu-
ments as training data and applies some typical classification methods, such as support vector machine
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or logistic regression, to build text classification models, which can then be used for classifying unseen
documents. A semisupervised approach constructs models based on a combination of labeled and un-
labeled documents. A distantly supervised approach constructs models based on the labels provided in
some general or distant domains, such as those in Wikipedia or general knowledge bases. A weakly su-
pervised approach builds models relying on a small set of labeled documents or keywords together with
a large set of unlabeled data. Finally, self-supervised learning eliminates the necessity of data labeling
by building models autonomously based on a large set of unlabeled data.

Representation learning for natural language understanding. A fundamentally important issue for
text mining is how to represent text primitives (e.g., words, phrases, sentences, and documents) and how
to learn effective representation from unstructured text. Early studies use symbol-based representation,
such as using one-hot vectors for words (i.e., assigning 1 at the word appearing position and 0 at all
other positions) and using bag-of-words model for documents. However, symbol-based representation
encounters data sparsity and high-dimensionality challenges. Recent studies have been using distributed
representation where each object (e.g., word) is represented (or encoded) with a low-dimensional real-
valued dense vector. With a deep neural network architecture, distributed representation can be learned
effectively with a large amount of unlabeled natural language text data. Distributed representation can
represent data in a more compact and smooth way, carrying rich semantic meaning of an object by
encoding its semantics based on the context of the object in the text. We first examine one such effort:
word embedding.

Word embedding. With rich semantic meaning carried by a large number of words in a natural lan-
guage, words essentially stand in very high-dimensional space. Word embedding encodes words from
a space of high dimensionality to a continuous vector space with a much lower dimensionality so that
the words similar in meaning are expected to be closer in the embedded space. Methods to generate
such embeddings are language modeling and feature learning techniques including neural networks, di-
mensionality reduction on the word cooccurrence matrix, probabilistic models, explainable knowledge
base methods, and explicit representation in terms of the context in which words appear.

Word2vec is a popular word embedding method developed by Mikolov et al. at Google around 2013.
Word2vec is a two-layer neural network that processes text by taking a large corpus of text as its input
and producing a vector space, typically of several hundred dimensions, with each unique word in the
corpus being assigned a corresponding vector in the space. Word vectors are positioned in the vector
space such that words that share common contexts in the corpus are embedded in close proximity in the
vector space. For example, the word “Sweden” can be embedded close to Norway, Denmark, Finland,
Switzerland, Belgium, Netherlands, and so on. Given enough data, usage, and contexts, Word2vec can
make highly accurate guesses about a word’s meaning based on past appearances.

Word2vec can utilize either of two model architectures to produce a distributed representation of
words (see Fig. 12.11): (1) continuous bag-of-words (CBOW) or (2) continuous skip-gram (Skip-gram).
Given a corpus, the CBOW architecture predicts the current word from a window of surrounding context
words, where the order of context words does not influence prediction (bag-of-words assumption). On
the other hand, the Skip-gram architecture uses the current word to predict the surrounding window
of context words, and it weighs nearby context words more heavily than more distant context words.

1 Figure adapted from T. Mikolov, K. Chen, G. Corrado, J. Dean, “Efficient estimation of word representations in vector space”:
arXiv:1301.3781.



12.1 Mining rich data types 607

FIGURE 12.1

Two model architectures of Word2vec: CBOW and Skip-gram.

According to the authors, CBOW is faster than Skip-gram and has slightly better accuracy for the
frequent words, whereas Skip-gram works well with a small amount of training data and represents
well even rare words or phrases.

After Word2vec, there have been many word embedding methods proposed, notably, GloVe (coined
from Global Vectors) developed at Stanford, by combining the features of two model families: the
global matrix factorization and local context window methods, and fastText, developed at Facebook,
which represents each word as an n-gram of characters, allows the embeddings to capture information
about suffixes and prefixes, and enriches word vectors with subword information. Besides embedding
words in Euclidean space, one can also embed words in hyperbolic space to model hierarchical struc-
tures, such as Poincaré embedding. Since cosine similarity is computed in spherical space, embedding
in spherical space is recommended. Moreover, word embedding should also consider integration of its
global context (e.g., in surrounding paragraphs or in the whole short document) with its local context.
This leads to a new algorithm, JoSE, which conducts (local and global) joint spherical embedding.
Besides computing word embedding only based on underlying corpus without any supervision, a user
may like to influence the embedding computation based on his/her preference, such as making the em-
bedding clustered according to topics (e.g., science vs. politics vs. sports) or according to regions (e.g.,
United States vs. Europe). A user-guided topic embedding method, CatE, takes user-provided category
names as weak supervision in embedding computation.

Pretrained language models. Starting with ELMo and BERT around 2018, research in recent years has
generated a good set of new methods under the umbrella of Pretrained Language Models (PLMs). Such
pretrained language models use larger corpora, more parameters, and more computing resources than
word embedding methods to pretrain large and effective models on large corpora. They use multilayer
neural networks to calculate dynamic representations for the words based on their context. That is,
they capture the subtlety that a word should have different meanings in different contexts, generate
contextualized word embedding, and thus can distinguish multiple word senses in different contexts.
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Moreover, many models adopt a pretraining-and-fine-tuning pipeline, that is, using the same neural
network structure in both pretraining (for initialization) and fine-tuning on downstream tasks. Pretrained
language models implicitly encode a variety of linguistic knowledge and patterns inside their multilayer
network parameters and have achieved state-of-the-art performance on many NLP benchmarks. By
exploring large-scale data and great computing power, new pretrained language models emerge rapidly,
constantly advancing the frontiers of natural language processing and text mining.

Text mining has been focused on several tasks as outlined below.

Information extraction (IE). Information extraction is the task of automatically extracting struc-
tured information from unstructured and/or semistructured documents. The most typical subtasks in
IE include (i) named entity recognition (NER), which recognizes known entity names (for people and
organizations), locations, temporal expressions, and certain types of numerical expressions, by employ-
ing existing knowledge of the domain or information extracted from other sentences; (ii) coreference
resolution, which detects coreference and anaphoric links between text spans (especially, finding links
between previously–extracted named entities); and (iii) relationship extraction (RE), which identifies
relations between entities (e.g., “Jeff lives in Chicago.”). Event extraction is also a popular subtask
of IE, which extracts events often represented by verbs and their associated objects, such as “arrest a
suspect,” or “vaccinate a child.” Phrase mining, introduced in Section 5.6 as a way of finding mean-
ingful single or multiword phrases from documents helps entity/event extraction as well. Although
human-annotated documents have been typically used for training NER models, recent studies have
been exploring weakly or distantly supervised approaches to reduce human annotation efforts using
Wikipedia or other existing general or domain-specific knowledge bases, pretrained language models,
and text embedding methods.

Taxonomy construction: A taxonomy is a structured (and often hierarchical) organization or classifi-
cation of things or concepts. Different applications may need to organize objects/concepts differently or
even organize multiple layers differently according to some user-defined facets (e.g., region vs. theme).
Thus it is desirable to construct different multifaceted taxonomies based on different corpora or ap-
plications. Manually developing and maintaining a taxonomy is labor-intensive and costly. Moreover,
domain modelers may have their own points of view, which may inevitably lead to inconsistency. Au-
tomatic taxonomy construction uses text analysis techniques to automatically generate a taxonomy for
a domain or a corpus to avoid the above problems. A taxonomy may also be automatically maintained
or expanded based on the dynamic updates of corpus. A taxonomy can be used to organize and index
knowledge (stored as documents, articles, videos, etc.), classify documents, help users search and com-
prehend knowledge stored in a large corpus, and provide structured guidance in many other knowledge
engineering tasks.

Text clustering and topic modeling. Text clustering is to group a set of unlabeled texts (e.g., docu-
ments, sentences, words) in such a way that texts in the same cluster are more similar to each other
than to those in other clusters. Text clustering algorithms process texts and determine if natural clusters
(groups) exist in the data based on some similarity measures. Text clustering can benefit many text
analysis tasks, such as document retrieval (adding similar documents to improve recall), hierarchical
taxonomy generation, language translation, and social media analysis.

One special kind of text clustering analysis, called topic modeling, is to discover hidden semantic
structures in a text body, especially a set of abstract “topics” (i.e., clusters of similar words) that occur
in a collection of documents. Typical topic models include probabilistic topic models, such as LDA
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(Latent Dirichlet Allocation) and PLSA (Probabilistic Latent Semantic Analysis), which are statistical
algorithms for discovering the latent semantic structures of an extensive text body. Recent studies have
been exploring different embedding and pretrained language models for topic modeling. Topic models
can help organize and offer insights for us to understand large collections of unstructured text bodies,
besides many other applications.

Text classification. Text classification (also known as text categorization), is to analyze open-ended
texts (e.g., documents, messages, or webpages) and assign them to a set of predefined topics or
categories. Since manual text classification by human annotators is time-consuming, expensive, and
nonscalable, many algorithms have been developed for automated text classification adopting a super-
vised or semisupervised approach. A supervised approach takes a good amount of training data (i.e.,
annotated by experts or tagged with human feedback) to construct a quality classification model. A
semisupervised approach takes a portion of labeled texts but a large amount of unlabeled data as train-
ing data. Its further development leads to weakly supervised text classification methods that reduce the
labeled data to a very small amount (e.g., using class label name only) to conduct effective text classifi-
cation. Text classifiers can be used to organize, structure, and categorize pretty much any kind of text. It
has broad applications such as sentiment analysis, topic labeling, spam detection, and intent detection.

Text summarization. Automatic text summarization is the process of creating a subset of text that
represents the most important or relevant information from a single piece or multiple pieces of text
(typically, document). Based on the text to be summarized, text summarization can be categorized as
single-document or multidocument summarization. There are two general approaches to text summa-
rization: extraction and abstraction. Extractive summarization is to extract content (e.g., key sentences
or key-phrases) from the original data, without modification. Abstractive summarization builds an in-
ternal semantic representation of the original content and then uses it to create a summary that is closer
to what a human might express. Recent studies have also proposed extract-then-rewrite methods for
text summarization, which can be regarded as a combination of extractive methods and abstractive
methods. One may also perform machine-aided human summarization with human postprocessing of
machine-generated summary candidates.

Bibliographic notes
As an interdisciplinary research field, text mining is closely intertwined with natural language pro-
cessing. Comprehensive books cover different themes on text mining (e.g., Agarwal and Zhai [AZ12],
Zong, Xia, and Zhang [ZXZ21]), natural language processing (e.g., Jurafsky and Martin [JM09], Man-
ning and Schuetze [MS01]), and representation learning for natural language processing (e.g., Liu, Lin
and Sun [LLS20]).

Early researchers propose vector representation of words (e.g., Salton, Wong, and Yang [SWY75]).
Recent research has been focusing on learning distributed representations for natural language process-
ing, including an early overview by Bengio, Courville, and Vincent [BCV13]. Word2vec is proposed by
Mikolov et al. [MSC+13] at Google, GloVe [PSM14] by Pennington, Socher, and Manning at Stanford,
and fastText [BGJM16] by Bojanowski, Grave, Joulin, and Mikolov at Facebook. Poincaré embeddings
for learning hierarchical representations is proposed by Nickel and Kiela [NK17]. A joint spherical
embedding method, JoSE, is proposed by Meng et al. [MHW+19], which is further developed for user-
guided topic embedding (e.g., CatE [MHW+20]) and user-guided hierarchical topic embedding (e.g.,
JoSH [MZH+20b]).
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Pretrained language models (PLMs) have been studied popularly in recent years. Vaswani et al.
have proposed a Self-Attention mechanism [VSP+17]. Started with ELMo by Peters et al. [PNI+18]
and BERT by Devlin et al. [DCLT19], recent studies have developed many new methods, including
RoBERTa [LOG+19], XLNet [YDY+19], and ELECTRA [CLLM20], among others. Most of these
models are based on a deep learning architecture, Transformer [VSP+17]. An overview of Transformers
proposed recently is in [LWLQ21].

Progress on various text mining tasks, including information extraction, taxonomy construction, text
clustering and topic modeling, text classification, and text summarization, has been surveyed in various
forums in the fields of natural language processing, machine learning, data mining, and data science,
and will not be illustrated here in this short introduction.

12.1.2 Spatial-temporal data
Space and time are essential in many applications, such as smart cities, epidemiology, earth sciences,
ecology, climatology, astronomy, and astronautics. In general, many data mining principles and meth-
ods, including those introduced in this book, can be adapted to apply on spatial and temporal data. At
the same time, spatial-temporal data have some unique characteristics, which lead to noteworthy chal-
lenges and also opportunities for data mining techniques. Let us briefly discuss three important aspects
of spatial and temporal data and applications, namely unique properties, data types, and data models
for spatial-temporal data.

Auto-correlation and heterogeneity in spatial and temporal data
One important property commonly exists in spatial and temporal data and applications is that depen-
dencies and correlations often happen in proximate locations and time. Take road traffic as an example,
the traffic status of an intersection at this moment is often highly correlated to the traffic statuses of the
adjacent intersections at the same moment and also to the traffic status of this intersection at the last
moment, such as five minutes ago. This is called the auto-correlation property of spatial and temporal
data.

Another important property in spatial and temporal data and applications is heterogeneity; that is,
spatial and temporal data are often heterogeneous and nonstationary in distribution. For example, the
road traffic status of an intersection in a city may present to some extent a periodic pattern on weekdays
and weekends. At the same time, there may be some more sophisticated changes with longer periodicity
due to, for example, seasons and local and national economic development.

Clearly, the auto-correlation property and the heterogeneity in spatial and temporal data and appli-
cations require more sophisticated modeling and also lead to new opportunities for new data mining
techniques.

Spatial and temporal data types
Spatial and temporal data often have some advanced data types to represent more sophisticated seman-
tics in applications. Particularly, events, trajectories, point reference data and raster data are the most
important data types specific to spatial and temporal data and applications.

In general, an event happens at a spatial location and a time point. For example, in smart city
management, a traffic accident happens at a location and a time. The representation of an event may be
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extended to cover a spatial region, such as an area described by a polygon and/or a period between a
starting time stamp and an end time stamp.

The frequently used operations on event data include intersections and similarity/difference between
two events. For example, a forest fire and a rainfall can be recorded as two events, respectively, each
covering an area and a period of time. The intersection of the two events returns the overlapping area
and time of the two events and may be used to mine the effect of rainfall on alleviating forest fires. As
another example, we may want to cluster accidents in highways and identify patterns in location, time,
and other related attributes. To measure the similarity in location, in addition to the Euclidean distance,
we may also consider the shortest path distance in the road network. To measure the similarity in time,
in addition to the absolute difference in time, we may also consider the periodicities of day and week.
For example, one accident happening at 12:30 pm last Tuesday may still be considered very similar to
an accident happening at 1:05 pm this Thursday, since they both happened around weekday noon.

A trajectory is a path of an object over space and time. For example, tracing a vehicle produces a
trajectory. Trajectory data are common in many spatial temporal applications, such as transportation,
epidemiology, astronomy, and ecology. The frequently used operations on trajectory data include find-
ing relationships between two trajectories. For example, to determine whether two trajectories intersect
with each other, we need to check whether the two objects creating the trajectories are once close to
each other in both space and time, such as within a spatial distance of at most �d > 0 and a time
window of at most �t > 0.

In many spatial and temporal data mining tasks, we are interested in a field evolving over time. For
example, a meteorologist may want to maintain a field of temperature in space and time. There are two
general ways to obtain observation data to reconstruct and estimate the field of the target variable.

The first way is to collect point reference data. For example, temperature data may often be collected
using mobile sensors, such as weather balloons floating in space. While the field of temperature is con-
tinuous in both space and time, the data are collected using those discrete reference points, and then the
field is reconstructed. Some frequently used operations on point reference data include reconstructing
fields and modeling nonstationary spatial random processes. For example, based on the point reference
data, one may use smoothing techniques to reconstruct the field of a spatial-temporal variable. More-
over, one may apply variogram model to describe and analyze the behavior of a nonstationary spatial
random process.

Alternatively, one may collect raster data by recording observation data at fixed locations in space
and at fixed points in time. In general, a raster data set can be written as S × T , where S is a set
of fixed locations, and T is a set of fixed time points. Every pair (s, t) ∈ S × T is associated with
the observation at location s at time t . Raster data are popularly used in many applications, such as
medical imaging, demography, and remote sensing. Some frequently used operations on raster data
include converting a raster to a finer or coarser resolution. For example, road traffic data as raster data
are collected periodically (e.g., every minute) through road sensors and cameras set up on roadsides.
However, in some applications, one may want to have traffic data at a finer resolution. For example,
one may want to estimate the traffic of a segment of an alley where no sensors or cameras are deployed,
although data may be collected at the major roads that the alley connects to. In order to convert the
raster to a finer resolution, one may apply interpolation. Moreover, to obtain the traffic data at a coarser
solution, such as at the larger road block level, one may apply aggregation.
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Spatial and temporal data models
Using the four data types, events, trajectories, point reference data, and raster data, we can represent
many data objects in spatial and temporal applications, such as points, trajectories, time series, spatial
maps, and rasters. In general, there are three types of models for spatial data: the object model, the field
model, and the spatial network model. The object model uses points, lines, and polygons to describe
spatial data objects. More attributes may be associated with objects. For example, in road traffic mining,
one may use points to describe vehicles and use lines to describe roads. A traffic jam may be described
using a polygon. The field model describes spatial information as a function and thus is suitable for
modeling continuous spatial data. For example, one may use the field model to describe temperature,
humidity and some other meteorology variables over a geographical space. The spatial network model
uses graphs to represent the relationship among spatial elements. For example, a road network models
the road distance between points of interest.

To incorporate temporal data, three models can be used: the temporal snapshot model, the temporal
change model, and the event/process model. In the temporal snapshot model, there are multiple spatial
layers of the same theme associated with time stamps. For example, to model the development of
wildfires, the remote sensing spatial images of wildfires at different time points are collected as different
layers of the same theme. The temporal change model represents a spatial theme using a start time
and the incremental changes. For example, to describe the moving of a vehicle using the temporal
change model, one can describe the start time and the initial location and record the speed, direction,
and acceleration. The event and process model records multiple events and processes over time using
intervals. For example, one can represent volcanic activities over the world using the event and process
model, which can facilitate the comparison among those activities in time and locations.

Due to the rich and unique data types and data models for spatial and temporal information, many
generic data mining methods, while still valid on spatial and temporal applications, may have to be
adapted to be applied on spatial and temporal data. Moreover, specific methods may need to be devel-
oped to mine spatial and temporal relationships, which are unique to spatial and temporal data.

Bibliographic notes
There are a few good surveys on mining spatial and temporal data (Atluri, Karpatne, and Kumar
[AKK18] and Shekhar, Vatsavai, and Celik [SVC08]).

12.1.3 Graph and networks
With the technology advancement of information, biology, industry, and beyond, our world has become
increasingly connected than ever before. Many real-world complex systems consist of a vast number of
interacting components like the users of the online social platforms, molecular regulators (e.g., DNA,
RNA, etc.) in the gene relation systems, and sensors of different functionalities in the complex surveil-
lance systems. Mathematically, such a kind of complex systems can be often abstracted and modeled by
a graph or network,2 which essentially consists of a collection of nodes (i.e., the objects in the system)
interconnected with each other by a collection of edges (i.e., the interactions among the objects).

2 Hereafter, we use graph and network interchangeably.
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FIGURE 12.2

Examples of a homogeneous network and heterogeneous network.

Graphs can be categorized in different aspects. To name a few, based on whether node and edge
attributes exist in the graphs, they can be categorized as plain graphs and attributed graphs. Based
on whether graphs change over time, they can be categorized into static graphs and dynamic graphs.
In addition, based on whether nodes and edges are of different types, they can be categorized into
homogeneous and heterogeneous networks, respectively. Let us look at some examples to illustrate
homogeneous and heterogeneous networks in Example 12.1.

Example 12.1. In a homogeneous collaboration network, each node represents an author and each
edge indicates the coauthorship between two authors, shown in Fig. 12.2(a). In a heterogeneous bib-
liographic network shown in Fig. 12.2(b), in addition to the author nodes, other types of nodes (e.g.,
papers, venues, terms, etc.) exist. Accordingly, different types of edges describe different semantics.
For example, edges between papers and venues indicate the “is published at” relation, whereas an edge
between a paper and a term (e.g., a keyword) implies that the term appears in the paper.

How can we discover the insights and patterns from graphs? Graph mining has been a very active
research area. Here, we give three examples, including (1) graph modeling, (2) heterogeneous network
mining, and (3) knowledge graph mining.

Graph modeling. Understanding how graphs are created and formed plays a critical role in discovering
graph structural patterns and discerning the underlying governing mechanism of the graphs. In addi-
tion, it helps to anonymize social networks to protect user privacy. This motivates the graph modeling
problem, which aims to study and simulate the generation mechanisms behind real-world graphs. It has
been extensively studied in the past decades, and a variety of graph generation models has been pro-
posed. Here, we introduce the following graph models, including (1) Erdős-Rényi (ER) graph model
and its variants, (2) realistic graph generators, and (3) deep graph generative models.

ER graph model. The well-known ER graph model and its variants assume certain probability distribu-
tions, based on which edges are added randomly. The classic ER graph model assumes each edge has a
fixed probability of being present and is independent of the existence of other edges. Although mathe-
matically elegant, the ER model results in the exponential degree distribution, which is at odds with the
degree distributions of real-world graphs, such as the power law degree distribution of social networks.
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The power law random graph model, on the other hand, explicitly assumes the degree distribution to
follow power law distribution.

Realistic graph generators. Different from the ER graph model, realistic graph generators aim to create
succinct models that mimic one or more properties of real-world graphs. One class of these models
are the preferential attachment based models that grow graphs by iteratively adding nodes and edges
while preserving the rich-get-richer principle such as the Barabási-Albert model (i.e., BA model) and
its variant AB model. Another realistic graph generator is the stochastic Kronecker graph model that
grows the graph by iteratively applying Kronecker product starting from a small seed graph.

Deep graph generative model. The traditional models introduced above are hand-crafted to fit a few
specific properties of the graphs but not others, so they might lack the flexibility of being able to capture
various types of graphs (e.g., molecular graphs). With the advance of graph neural networks (introduced
in Chapter 10), classic deep generative models can be extended to graphs. Different from the previous
graph models, deep graph generative models directly learn to generate the synthetic graphs that mimic
the real graphs with high fidelity by applying deep learning models such as variational auto-encoder,
generative adversarial networks, and deep auto-regressive model.

Despite their power of modeling the latent characteristics of graphs owing to the learning capability,
these deep graph generative models generally require high training overheads and thus are less efficient
than the traditional graph models. Unlike these traditional graph modeling methods, the interpretability
of the graph neural networks-based modeling often lacks (e.g., what aspects or patterns of the graphs
these models focus on capturing). In addition, most, if not all, of the existing graph modeling methods
focus on homogeneous networks while leaving the modeling on heterogeneous networks absent.

Heterogeneous network mining. With multiple types of nodes and edges, heterogeneous networks
naturally bring the advantages of capturing rich semantics compared with the plain homogeneous net-
works. A core concept in heterogeneous networks is metapath, which is a sequence of relations that
imply certain semantic meanings among multiple types of nodes. For example, in Fig. 12.2(b), Author1-
Paper1-Author3 is an instance of the metapath Author-Paper-Author that indicates the coauthorship.
The rich semantics benefit various data mining tasks on networks such as similarity search, classifi-
cation, clustering and network embedding. Let us elaborate on this. First, similarity search aims to
measure the similarities among nodes and return the top-k most similar nodes to the given query node.
Different from homogeneous networks, by considering metapaths with different physical meanings, the
similarities among the nodes may vary and exhibit the ranking results in different aspects, which could
be more accurate. Second, for the node classification task, the goal is to classify all types of nodes
into different labels. Specifically, in the transductive setting, the similarity matrices derived by different
metapaths can be used in the consistency assumption to infer node labels. Third, different semantics
of metapaths could lead to different clustering results representing diverse meanings. Lastly, heteroge-
neous network embedding aims to learn the low-dimensional embedding vectors of nodes that can be
used in other downstream tasks. In the vast majority of heterogeneous network embedding methods,
metapaths are used as a core component to construct node neighborhood for representation learning.

Most of the existing methods on heterogeneous networks require domain knowledge to manually
define meaningful metapaths. As such, poorly designed metapaths could weaken, instead of strengthen,
the effectiveness of the mining model. In this way, a promising future direction is to avoid the man-
ual predesigns of metapaths such that the structure and semantics of heterogeneous networks can be
automatically inferred from the input data.
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Knowledge graph mining. Knowledge graph, which is essentially a directed heterogeneous multi-
graph, is often used to link concepts and entities of different types through human-interpretable
semantics. It has been widely used in a wealth of applications. For example, the knowledge graph
constructed upon DBPedia3 is capable of linking different concepts and entities (e.g., person, location,
etc.) from Wikipedia and has been used in many question answering and fact checking applications.
Google knowledge graph with its information retrieved from many sources is used to enhance Google’s
search engine. Product knowledge graph, which describes the relations among products and their facts,
facilitates many e-commerce services. Despite the tremendous benefits from knowledge graphs, it is
nontrivial to construct and update them. Take knowledge graph construction from unstructured texts
as an example. Traditional approaches rely on the prespecified ontology and a large amount of hu-
man labors for annotations, which makes it impractical to grow the knowledge graph when humans
acquire new knowledge. It has been a long-standing task to reduce or even avoid human labors so that
knowledge graphs can be automatically constructed. To be specific, the extractive construction usually
contains information extraction as its key stage that involves many NLP and text mining tasks (e.g.,
semantic role labeling). Recent knowledge graph construction methods show a promising avenue of
producing novel and diverse commonsense knowledge by training language models. Moreover, typical
data mining tasks on knowledge graphs include link prediction (i.e., whether an entity has a specific
relation with another entity), entity resolution (i.e., whether two entities represent the same object) and
triplet classification. Most of the existing methods for these tasks are often based on representation
learning.

Despite the extensive research on knowledge graphs, there still exist many limitations and chal-
lenges. For example, in addition to the specific challenges associated with the tasks for information
extraction, the extractive construction of knowledge graphs is often limited to the knowledge men-
tioned explicitly in the texts. Besides, great efforts are still needed towards automatic high-precision
knowledge graph construction and dynamic update. With the aid of knowledge graphs, many interest-
ing data mining applications are currently underexplored, such as medical AI, conversational AI, and
academic search engine.

Bibliographic notes
The ER graph model is first proposed by Erdős-Rényi in 1960, which assumes edges exist in the graph
with the same probability (Erdős and Rényi [ER60]). With its simple and elegant rule, the ER graph
model has been one of the most widely studied graph models and applied often as the starting point to
many network analyses (Lyzinski, Fishkind, and Priebe [LFP14] and Guimera, Sales-Pardo, and Ama-
ral [GSPA04]). The power law random graph model further extends the ER model to randomly insert
edges to the nodes such that their degree sequence matches the power law distribution (Aiello, Chung,
and Lu [ACL00]). The stochastic block model can be considered as a generalized graph model of the
ER model and encodes the community structure into graphs (Holland, Laskey, and Leinhardt [HLL83]).
Following the preferential attachment principle that the rich get richer, the BA graph model in each it-
eration adds a new node and connects it to some existing nodes with the probabilities proportional to
their node degrees (Barabási and Albert [BA99]). Dangalchev, Mendes, and Samukhin propose to ex-
tend the BA model by considering the attractiveness based on the degree of both existing nodes and

3 https://wiki.dbpedia.org/.

https://wiki.dbpedia.org/
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their corresponding neighbors (Dorogovtsev, Fernando, Mendes, and Samukhin [DMS00]). The AB
model further applies the edge rewiring process to the BA model (Albert and Barabási [AB00]). The
forest fire model also follows the preferential attachment principle by iteratively connecting the new
nodes to some of the nodes that are connected with a uniformly selected ambassador node (Leskovec,
Kleinberg, and Faloutsos [LKF05]). The Kronecker graph generator models graphs by recursively ap-
plying Kronecker multiplication between the intermediate adjacency matrix and itself (Leskovec et
al. [LCK+10]). Another random graph generator, known as Watts–Strogatz model (Watts and Stro-
gatz [WS98]), captures the small-world property of many real graphs (e.g., short average path lengths
and high clustering coefficients). To improve the flexibility and expressiveness of the graph models,
many deep graph generative models have been proposed. To name a few, GraphVAE leverages the
variational autoencoder (VAE) with graph matching to learn how to construct graphs from their vector
representations (Simonovsky and Komodakis [SK18]). Graphite utilizes an iterative refinement process
on top of GraphVAE (Grover, Zweig, and Ermon [GZE19]). Moreover, NetGAN leverages the GANs
to generate large-scale graphs that preserve many patterns in real graphs without explicitly specifying
them (Bojchevski, Shchur, Zügner, and Günnemann [BSZG18]). GANs can be also used to generate
molecular graphs (De Cao and Kipf [DCK18] and Wang et al. [WWW+18]). In addition, GraphRNN
generates synthetic graphs in a sequential generation fashion with deep auto-regressive model (You et
al. [YYR+18]).

One representative similarity measure based on metapaths is PathSim, which measures to what ex-
tent the nodes of the same type are connected and share similar visibility with the query node, defined
on the symmetric metapath of interests (Sun et al. [SHY+11]). HeteSim is subsequently designed to
measure the relevance not only among the nodes of the same type, but also those of different types
(Shi et al. [SKH+14]). For node classification, GNetMine classifies nodes by preserving consistency
over each type of edges (Ji et al. [JSD+10]). HetPathMine then extends the consistency over different
types of edges to metapaths with different semantic meanings (Luo, Guan, Wang, and Lin [LGWL14]).
For node clustering on heterogeneous networks, PathSelClus learns the weights of different metap-
aths, based on which generates node clusters (Sun et al. [SNH+13]). Regarding heterogeneous network
embedding, metapath2vec uses metapath based random walks to construct contexts of nodes and then
learns node embedding vectors by SkipGram model with negative sampling (Dong, Chawla, and Swami
[DCS17]). In addition, by generating neighbors with metapaths, the attention mechanism can be applied
to aggregate node representations among node neighbors (Wang et al. [WJS+19]).

Many knowledge graph construction methods are based on open information extraction (Fader,
Soderland, and Etzioni [FSE11]; Schmitz et al. [SSB+12]; and Mehta, Singhal, and Karlapalem
[MSK19]). COMET is a generative approach to knowledge graph construction by training transformer
language models (Bosselut et al. [BRS+19]). For other mining tasks, embedding-based methods have
been widely used. For example, by knowledge graph embedding methods, including the translation-
based methods (Bordes et al. [BUGD+13] and Wang, Zhang, Feng, and Chen [WZFC14]), rotation-
based methods (Sun, Deng, Nie, and Tang [SDNT19]), and neural network–based methods (Dettmers,
Minervini, Stenetorp, and Riedel [DMSR18]), the learned entity and relation embeddings can be natu-
rally used in link prediction, triplet classification, and so on. Knowledge graph alignment is another task
that aims to align entities across different knowledge graphs and plays an important role in knowledge
fusion. Many knowledge graph alignment methods exist, including the knowledge graph embedding–
based methods (Zhu, Xie, Liu, and Sun [ZXLS17] and Sun, Hu, Zhang, and Qu [SHZQ18]) and graph
neural network–based methods (Wang, Lv, Lan, and Zhang [WLLZ18]; Xu et al. [XWY+19]; and
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Yan et al. [YLB+21]). There also exist many works on other knowledge-aware applications, including
question answering (Chen, Wu, and Zaki [CWZ19] and Huang, Zhang, Li, and Li [HZLL19]), fact
checking (Shi and Weninger [SW17]), and recommendation (Zhang et al.[ZYL+16] and Wang et al.
[WHC+19]).

12.2 Data mining applications
12.2.1 Data mining for sentiment and opinion
In many applications, we want to conduct data mining on user produced data, such as product reviews
in e-commerce platforms. An important task in mining user produced data is to understand sentiment
expressed in text. This is achieved by a specific branch of data mining, called sentiment analysis and
opinion mining.

What are sentiments and opinions?
Literally, sentiment is “a view of attitude toward a situation or event.” It is a feeling or emotion. Opin-
ion is “a view or judgment formed about something, not necessarily based on fact or knowledge.”
Sentiment and opinion are heavily related and subtly different. For example, the sentence “I find data
mining highly interesting” expresses a sentiment, whereas “I believe data mining is promising and use-
ful for industry applications” is more an opinion. The subtle difference is that one may share the same
sentiment expressed in the first sentence and agree or disagree with the opinion in the second sen-
tence. However, after all, the underlying meanings of the two sentences are highly related. Moreover,
while many opinions imply positive or negative sentiments, some do not. For example, the opinion “I
think she will move to Canada after graduation” does not come with a positive or negative sentiment
immediately.

Sentiment analysis and opinion mining techniques
Sentiment analysis and opinion mining is a highly interdisciplinary direction. First of all, as we have
to handle text, natural language processing techniques are extensively used to process text in sentiment
analysis and opinion mining. Moreover, many problems in sentiment analysis and opinion mining can
be modeled as a classification problem, such as whether a product review is positive or negative. In
many scenarios, one may also want to group users according to their opinions, and thus clustering
analysis is needed. Outliers are useful in sentiment analysis and opinion mining, too. For example, an
application of mental health assistant may analyze social media data, such as user posts, to identify
possible extreme opinions. Correspondingly, machine learning and data mining techniques are fre-
quently used in sentiment analysis and opinion mining. As sentiments and opinions are expressed and
understood by people, naturally sentiment analysis and opinion mining has to leverage insights from
psychology and social sciences, and, at the same time, can be useful for those sciences as technical
tools.

Sentiment analysis and opinion mining is a highly dynamic application area, since many new types
of media emerge and thus new ways of sentiment and opinion expressions come out. It is impossible
to limit the data mining techniques used by this fast growing area. Instead, sentiment analysis and
opinion mining will keep adopting and adapting the latest development in data mining to tackle the
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novel application challenges. Here, let us briefly look at some technical directions popularly explored
in sentiment analysis and opinion mining.

First, we can conduct analysis of sentiments and opinions at different levels and granularities. At the
highest level, document-level sentiment classification determines whether a whole document, such as a
review, expresses a positive or negative sentiment. At a lower granularity, sentence-level analysis looks
at whether a sentence expresses a positive, negative, or neutral opinion. The third level frequently used
is aspect level, which looks at an opinion and the associated target. For example, the sentence “I really
like the pasta in this restaurant, but am not a big fan for the dessert here” expresses a positive opinion
on the aspect “pasta” and a negative opinion on the aspect “dessert” of the restaurant. Aspect-level
sentiment analysis and opinion mining can cross multiple sentences.

Second, to identify the sentiments and opinions expressed in a document or a sentence, we can pro-
duce sentiment/opinion lexicons and conduct sentiment classification. As an intuitive and practical idea,
one can identify a series of words and phrases as sentiment/opinion lexicons that can serve as indicates
of sentiments, such as “good,” “wonderful,” and “fantastic” for positive sentiments, and “poor,” “bad,”
and “awful” for negative sentiments. Based on sentiment/opinion lexicons, sentiment classification can
be conducted. However, in many situations, only those sentiment/opinion lexicons are not sufficient
or may be subtle for specific domains. For example, in most domains, “suck” is a lexicon for nega-
tive sentiments. However, for vacuum cleaners, a sentence like “My new vacuum cleaner really sucks”
in a review indeed is positive. Moreover, not every sentence containing sentiment lexicons expresses
sentiments. For example, sentence “What is the best pasta in your restaurant” contains a popular sen-
timent lexicon “best” but does not express any sentiment. At the same time, a sentence not containing
any sentiment lexicon may express some sentiment, such as “My new earbuds stop pairing with my
laptop after a week” expressing a negative sentiment. A lot of research is dedicated to extract and com-
pile sentiment/opinion lexicons and handle subtleties in conducting sentiment classification using those
lexicons.

Third, in general there are two types of text content on which sentiment analysis and opinion mining
may be conducted. The first type is the stand-alone posts, such as product reviews and blogs in social
media. The second type is online conversations, such as discussions and debates. Analyzing conversa-
tional content is much more challenging, due to the interactive and interdependent nature of pieces in a
multiround conversation. There are also some new types of sentiments in conversational content, such
as agreements and disagreements. Furthermore, more data mining tasks may be conducted on conver-
sational content than on stand-alone posts, such as checking sentiment consistency or contradictions
of one person in the conversation and finding groups of participants who share similar sentiments and
opinions in a conversation.

Fourth, mining intent is a data mining task highly related to sentiment analysis and opinion mining,
since in many situations, intent may imply sentiments and express opinions. For example, the sentence
“I cannot wait to see the new movie next Monday” expresses a strong positive sentiment, whereas the
sentence “I just want to return this microphone immediately to the store” conveys a clear negative sen-
timent. Indeed, the above two sentences represent a new type of sentiment, aspiration. Mining intent is
a natural, interesting and also challenging technical direction in sentiment analysis and opinion mining.

Last, as sentiments and opinions may be abused, in order to achieve data mining for social good, it is
important to explore opinion spam detection and assess review quality. Specifically, opinion spamming
is the fake or malicious opinions under hidden agendas to attack vulnerable products, services, organi-
zations, and individuals. One important challenge is that opinion spamming typically may happen not



12.2 Data mining applications 619

just as individual and independent posts. Instead, opinion spamming often happens in a coordinated
manner. Therefore successfully detecting opinion spamming involves not only techniques like natural
language processing and the sentiment analysis and opinion mining techniques mentioned above, but
also other data mining techniques like network mining.

Sentiment analysis and opinion mining applications
Sentiment analysis and opinion mining has many applications. It is impossible to enumerate all of them
or even design a categorization accommodating all of them. Here, according to how and by whom
the outcome of sentiment analysis and opinion mining is consumed, we briefly present three major
categories of sentiment analysis and opinion mining applications.

The outcome of sentiment analysis and opinion mining can help human being to understand the ad-
vantages and disadvantages of target objects. For example, in e-commerce, applying sentiment analysis
and opinion mining on product reviews, we can aggregate customers’ opinions on products and their
various aspects. The outcome of the analysis and mining can be used by customers in purchase decision
making, by e-commerce platform and vendors in supply chain optimization, and by product producers
and manufacturers in product improvements and new product development. The key tasks in sentiment
analysis and opinion mining for this kind of applications include, for example, aspect level sentiment
analysis and integration of sentiment analysis and customer categorization.

The outcome of sentiment analysis and opinion mining may also be consumed directly by other
artificial intelligence agents. That is, the outcome is taken by an automation system to trigger actions.
For example, in the applications of stock market prediction, sentiment analysis and opinion mining is
extensively applied to message board posts, social media like Twitter messages, real-time news like
Bloomberg news, and many other kinds of related media information sources. The analysis and mining
can produce buy and sell signals directly and thus can be used by online trading systems to take actions
in stock markets. There are several grand challenges in this type of real-time sentiment analysis and
opinion mining for automation systems. First, such a sentiment analysis and opinion mining system
has to be highly efficient and scalable, so that they can handle massive content in a real-time manner.
Second, such a system has to be highly accurate, since any mistake may either lead to a loss in real-time
action like trading or missed business opportunities. Last, such a system has to be highly robust, since
a lot of various kinds of noise exist in different content, and there may even be malicious attacks from
opinion spammers.

Sentiment analysis and opinion mining may also be used for monitoring and government adminis-
tration purpose. In other words, this category of applications is about public sentiments and opinions.
For example, in electoral politics, candidates and media may monitor the change of public sentiments
and opinions on various parties and candidates over time. Some governments may also monitor senti-
ments and opinions in cyberspace as part of the efforts of fighting against cyber-violence, terrorism, and
racism, for example. In addition to the common desiderata for general sentiment analysis and opinion
mining, this category of tasks faces some new challenges, such as fairness and privacy protection.

Bibliographic notes
Sentiment analysis and opinion mining started in early 2000s and remains a vivid interdisciplinary area
among data mining, natural language processing, machine learning, and some others. There are many
publications on the subject. Some informative survey and review books include (Liu [Liu20]; Shanahan,
Qu, and Wiebe [SQW06]; Liu [Liu12]; Pang and Lee [PL08]; and Cambria and Hussain [CH15a]).
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12.2.2 Truth discovery and misinformation identification
Truth discovery
With huge amounts of information provided by various information sources, it may happen that differ-
ent values can be provided by different sources for the same data item. Naturally, one may hope there
could be some automated methods that may help assess the quality and trustability of information on
the web, especially when there are different values for the same data item. This leads to an important
task in data mining, called truth discovery (also known as truth finding or fact finding), which is to
assess and choose the actual true value for a data item when different data sources provide conflicting
information on it. Truth discovery is an important task since we are increasingly relying on online re-
sources to find trusted information and make critical decisions. Truth discovery is also important for
data integration from multiple data sources, since assessing and choosing the quality values becomes
crucial in constructing an integrated, reliable data storage.

Truth discovery problems can be divided into two subclasses: single-truth and multitruth. In the first
case, single-truth discovery, only one true value is allowed for a data item (e.g., birth date of a person
or capital city of a country). In this case, different values provided for a given data item oppose to each
other, and the values and information sources can either be correct or erroneous. However, in the second
case, multitruth discovery, multiple true values are allowed (e.g., authors of a paper or members of a
team). In this case, the truth is a set of values, a different value could provide a partial truth, and the
information source that provides more correct values and less incorrect values for a given data item is
considered more valuable.

Early studies suggested some simple voting method, that is, each source votes for a value of a certain
data item and, the value with the highest vote is selected as the true one. However, unreliable sources or
sources simply copying information from others can mess things up since they may take the majority
in voting and overwhelm the reliable sources. Therefore a truth discovery algorithm must take source
reliability into consideration and estimate the trustworthiness of data sources.

Can we rely on supervised learning to assign a reliability score to information sources based on
human labeling of the provided values? Unfortunately, this may not be realistic since there are too
many information sources and too huge number of facts provided by such sources. Weakly supervised
or self-supervised methods based on a huge amount of unlabeled data could be a more realistic solution.

Taking a simple example in Fig. 12.3, we illustrate a process on single-truth discovery, where the
link sk–fj –oi indicates that object oi is supported by fact fj provided by source sk . Initially, we assume
all sources are independent and have equal trustworthiness. Since for o2, f3 is supported by three
sources s1, s3, and s4, but f4 is supported by only one source s2, f3 is likely more reliable. From this,

FIGURE 12.3

Truth finding.
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we may assert that s1, s3, and s4 are likely more trustable sources than s2. Then for o1, f1 is likely more
reliable than f2 since f1 is supported by s1 but f2 by s2.

This example shows truth discovery needs to compute both source trustworthiness and claim relia-
bility in a mutually enhanced manner. Source trustworthiness usually is not known a priori but estimated
with an iterative approach. At each step of the truth discovery algorithm the trustworthiness score of
each data source is recomputed, improving the assessment of the true values that in turn leads to a better
estimation of the trustworthiness of the sources. This process usually ends when all the values reach a
convergence state.

For effective truth discovery, it is important to detect copying behaviors since copying allows spread-
ing false values easily, leading many sources to vote for the wrong values, and complicating the truth
discovery process. Usually systems decrease the weight of votes associated with copied values or even
do not count them at all. In some applications, data sources may have different trustworthiness for
different categories of data. For example, a bookseller specialized on children books may provide high-
quality information on children books but not as reliable information on other books, such as science
and engineering. In this case, trustworthiness of data source can be computed separately for different
categories of objects.

For multitruth discovery, the evaluation of trustworthiness of a data source should consider multiple
truth values for a data item (e.g., the authors of a book). A data source that provides more correct
values for a data item should receive a reward but that provides incorrect values for the data item
should receive a penalty. Iterative mutual enhancement methods, Bayesian-based inference methods
and probabilistic graphical model-based methods have been developed for such analysis. Also, more
sophisticated methods should also consider domain coverage and copying behaviors to better estimate
source trustworthiness.

Some truth-finding methods evaluate the confidence of numerical value-based facts (e.g., the pop-
ulation of a city or the temperature of a time in a region). Even for trusted data sources, it is quite
possible to provide slightly different numerical values (e.g., depending on the time and method of
measurement). Thus the evaluation of source trustworthiness and fact confidence should be based on
data distribution and treat only those answers that deviated substantially from the norm as wrong ones.
Similar truth-finding mechanisms have been developed based on such observations.

Identification of misinformation
Different from truth discovery that identifies correct information from conflicting ones, a more chal-
lenging task is the identification of misinformation. Misinformation is false, inaccurate, or misleading
information deliberately created by some data source and is propagated regardless of the intention of
deception. Typical examples of misinformation include false rumors, insults, and hoaxes. Other re-
lated terms include disinformation that is a subset of misinformation that is deliberately deceptive (e.g.,
malicious hoaxes, fabricated information, and propaganda), and fake news, which refers to false infor-
mation in the form of news. The principal effect of misinformation is to elicit fear and suspicion among
a population since such population may take misinformation as credible or true.

In the information age, social networking sites have become a notable agent for the spread of misin-
formation, fake news, and propaganda. Misinformation on social media spreads quickly in comparison
with traditional media because of the lack of regulation and examination before posting. Any users on
such social media can generate and spread information quickly to other users without requiring the
confirmation of its truth.
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Ideas similar to those developed from the analysis of sources and claims in truth discovery can
be used for misinformation identification. For example, one can explore the mutual enhancement be-
tween source trustworthiness and claim credibility. The consistent information provided by multiple
news agencies and/or authoritative websites (i.e., those managed by responsible editors) can be con-
sidered credible. A source is more trustworthy if it provides more credible information and no or less
noncredible information. For the conflicting information on the same events/facts, the piece provided
consistently by multiple trustworthy sources is more likely to be credible, whereas those provided by
less trustworthy sources and conflicting with the credible one are likely misinformation.

In today’s world, massive social media are provided by multiple groups, parties, and countries of
rival interests. Additional vigilance is needed to identify misinformation. It is insufficient to rely on
simple votes of the claims since fabricated information, repeating hundreds of times or propagated by
the groups of similar interests or biases, could be mistaken as true information by a population. Meth-
ods need to be developed to distinguish misinformation from genuine information, with additional
measures, such as building up information literacy and media literacy through education, using com-
monsense knowledge and open-mindedness, developing critical thinking, holding nonbiased view, and
avoiding motivated reasoning just based on one’s own preference or belief. Eventually, identification
of misinformation will be determined by individual’s mental model, individual’s worldview beliefs,
taking into consideration of repetition of misinformation, time-lag between misinformation and correct
information, and relative coherency between misinformation and corrective message.

Flagging or eliminating fake news and misinformation using algorithmic fact checkers is becom-
ing the front line in the battle against the spread of misinformation. Methods that automatically detect
misinformation are still under active research, by further developing methods in natural language pro-
cessing and social network analysis, extracting, clustering, and classifying information for assessing
the quality or credibility of the information provided. Nevertheless, effective software programs are
being deployed by major information technology companies to detect and alert likely misinformation
and supply supplemental information for fact checking.

Bibliographic notes
Truth discovery has been studied by many researchers in recent years [LGM+15]. A study on interac-
tion between information source and information provided for webpage ranking can be traced back to
Kleinberg [Kle99]. Yin, Han, and Yu [YHY08] propose TruthFinder, a truth discovery method based
on the mutual enhancement between source trustworthiness and claim reliability. Li et al. study truth
finding in structured data in deep web [LDL+12]. Dong and Srivastava carry out a series of studies
on truth finding from data integration point of view [DS15]. Zhao et al. [ZRGH12] study truth finding
under multitruth assumption.

The history of misinformation can be traced back thousands of years ago when human started com-
munications with different means. In the information age, social network sites have become a notable
agent for the spread of misinformation, fake news, and propaganda and has attracted many data science
researchers to study misinformation, its detection, and its handling. Some overviews of recent studies
from data science point of view can be found at Berti-Équille and Borge-Holthoefer [BÉBH15], Shu
and Liu [SL19], and Wu et al. [WMCL19].
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12.2.3 Information and disease propagation
Data mining has been playing an important role in understanding information and disease propagation,
mainly due to the availability of digital data trace at an unprecedented scale and speed. For example,
Twitter was growing at a speed of 400M tweets per day in 2013, and Snapchat was producing 700M
new photos and videos per day in 2014. The data mining research problems studied in this field can be
divided into two categories, namely prediction problems and optimization problems. Underlying both
prediction and optimization problems are the propagation models, which include information diffusion
models and computational epidemiology models.

There are numerous applications of information and disease propagation. To name a few, for social
media, it helps predict which piece of information (e.g., a Twitter post) is likely to go viral, detect the
rumor source who started a misinformation campaign, and neutralize the propagation of misinformation
before it goes viral (e.g., by appropriately disseminating a piece of true information or suspending the
accounts of key spreaders, etc.). For computational epidemiology, it helps reveal the critical network
condition (e.g., epidemic threshold) under which an epidemic is likely to happen.

Prediction problems of propagation. Various prediction scenarios exist for information and disease
propagation, including the following:

Classification and regression. Basic classification and regression problems often aim at predicting the
popularity of a piece of information via diffusion at a designated time in the future, by a predefined
measure of popularity. The classification problem focuses on whether the information will be popular
and the regression problem focuses on predicting the popularity score.

Prediction around publication. Predictions can be made before or soon after a piece of information is
published. Before publishing, the available features and surrounding information are often very limited.
For prediction after publication, the aim is to predict the future dissemination of the published informa-
tion after observing the early stage of propagation, which provides more reliable information compared
to prediction before publication.

Prediction at different granularities. Information diffusion predictions can be conducted at different
granularities of information and users. On a finer granularity, predictions can be performed on an indi-
vidual piece of information or a user. On a coarser granularity, predictions can be performed on groups
of users or clusters of information. Furthermore, in a more complex scenario, predictions at different
granularities are performed simultaneously.

Optimization problems of propagation. Here, we discuss some representative optimization problems
of information diffusion, usually in a (social) network scenario.

Influence maximization. The goal of influence maximization is to maximize the average or total number
of infected nodes by choosing an optimal set of initially infected nodes to start the cascade process. Key
challenges include how to incorporate the time information and how to handle model scalability.

Source localization. Generally speaking, the goal of source localization is to identify the source from
the network with a partial observation of the cascade. A typical source localization method has two
stages. First, the diffusion model parameters are inferred from historical cascade data. Second, given
the diffusion model and possibly incomplete cascades, the source is identified. When the observed
cascades are incomplete, which is often the case in some real applications, the formulated optimization
objective for source localization is often difficult to solve.

Activity shaping. The activity shaping aims at steering users’ activity. From the data mining perspective,
the formal definition could vary, depending on the actual incentives and the specific goals. Compared



624 Chapter 12 Data mining trends and research frontiers

FIGURE 12.4

The taxonomy of information propagation models. Adapted from Zhou, Xu, Trajcevski, and Zhang [ZXTZ21].

with the influence maximization problem, activity shaping is different in the following three aspects.
First, activity shaping has variable incentives, whereas influence maximization often only has a fixed
incentive. Second, activity shaping usually uses multiple actions at multiple times, whereas influence
maximization often uses the same action at a time. Third, activity shaping might include various objec-
tives whereas the goal of influence maximization is primarily to maximize influence.

Graph connectivity optimization. The connectivity of the graph through which the information or
disease is propagated has an profound impact on the propagation outcome. Graph connectivity opti-
mization aims at manipulating the graph topology to affect the information propagation results. For
example, a typical instance of graph connectivity optimization is to maximize (or minimize) the dis-
semination of information on graphs, by adding (or removing) a set of edges or nodes, under a fixed
budget.

Models for information diffusion problems. A taxonomy of the propagation models for information
diffusion problems is shown in Fig. 12.4.

Feature-based model. The feature-based model utilizes supervised data mining models for informa-
tion diffusion prediction with various features, including temporal features, local and global structure
features, user and item features, information content features, and so on.

Generative model. Many information diffusion processes can be regarded as event sequences in the con-
tinuous temporal domain, so that they can be naturally formulated as statistical generative approaches,
such as epidemic models and various stochastic point processes. Representative generative models in-
clude the Poisson process, survival analysis, Hawkes process, epidemic model, and so on. Specifically,
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for the Poisson process, it is often used as a reinforced Poisson process, where the reinforcement mech-
anism is added alone with fitness of an item and temporal decay functions. For survival analysis, it is
adopted for characterizing the information diffusion process by specific design of the hazard functions
and survival probabilities. For the Hawkes process, it is generally difficult to distinguish cascades in
the event data. The key idea to tackle this issue is to model each user’s events as a counting process.
Based on users’ action sources, the activities are divided as exogenous (external to the network) and en-
dogenous (user-user interaction) activities, and the exogenous intensity could be modeled as a Hawkes
process. Epidemic models can often be used with self-exciting point process–based models to predict
the rate of certain events as a function of time and the previous history of the events.

Deep learning–based model. Recently, the deep learning models have been adopted for information
diffusion problems. Compared with traditional models, deep learning models do not have assumptions
on the information diffusion process such as the generative mechanisms, so they are usually quite
flexible. Moreover, deep learning models are able to incorporate multimodal data (such as text and
images) with various neural modules (e.g. RNNs and CNNs). This direction has received tremendous
attention, and it is developing rapidly.

Computational epidemiology models. There are many computational models in epidemiology for
modeling the spread of disease, such as the well-known susceptible-infectious-susceptible (SIS),
susceptible-infectious-recovered (SIR), and susceptible-exposed-infectious-removed (SEIR) models
and their variants. The basic SIS model contains only susceptible (S) and infectious (I) states, with
state transfer probabilities between these two states. As one of the most popular models, SEIR has
four states in which an individual could be in, namely susceptible (S), exposed (E), infectious (I), and
recovered (R). The states could only transit from S → E → I → R. The transition between different
states could be represented as a nonlinear dynamic process. The core tasks of modeling an epidemic
case include (1) designing an appropriate epidemiology models with targeted variables for estimation
(e.g. modifying SEIR by adding additional states and transition rules) and (2) estimating the targeted
variables by solving the corresponding partial derivative equations of the nonlinear dynamic process.
Note that a real-world epidemics is often more complex than these basic epidemiology models (e.g.,
incubation period, policy impact, etc.). Furthermore, the partial derivative equations often cannot be
solved directly. Instead, the variables are estimated by the observed data or supervised data mining
methods.

The research in this area is fast growing with many crucial challenges and promising future di-
rections. For example, epidemics modeling has drawn vast attention since the breakout of COVID-19.
Recently proposed techniques heavily concentrate on predicting transmission rate, number of death
cases, and influences of government policies in controlling propagation, in order to assist people and
the governments in understanding and acting during the global pandemic. Source localization and ac-
tivity shaping still face many technical challenges. For example, how can we identify source with a
small number of cascades, and how do we model more complex shaping behaviors? Furthermore, the
predictability and interpretability of the propagation models still need further exploration. To name a
few, what is the fundamental predictability of a prediction model? To what extent can a model predict
information popularity? How do we interpret the end-to-end deep models for various prediction tasks?

Bibliographic notes
As one of the most influential works on influence maximization, Kempe, Kleinberg, and Tardos
[KKT03] establish the first provable approximation guarantees for efficient algorithms in a social net-
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work scenario. Gomez-Rodriguez et al. [GRSD+16] show that finding the set of source nodes that
maximizes influence in the continuous time is NP-hard. To tackle this issue, Gomez-Rodriguez et al.
[GRSD+16] find that the influence function bears submodularity property. Therefore one could max-
imize the submodular function of the original influence function by a greedy algorithm (ConTinEst),
with ∼ 63% provable optimality guarantee. After Gomez-Rodriguez et al. [GRSD+16], Tong et al.
[TWTD16] introduce a dynamic independent cascade model and propose an adaptive influence max-
imization method in dynamic social networks. Tang et al. [TSX15] develop IMM that achieves the
state-of-the-art approximation guarantee and empirical efficiency with a novel algorithm design based
on martingales.

For source localization, Farajtabar et al. [FRZ+15] propose a sampling strategy with two auxiliary
distributions with the help of the diffusion model in order to approximate the incomplete cascade like-
lihood. It has been shown that it is difficult to locate sources when the number of cascades is small.
Recently, Chen, Tong, and Ying [CTY19] study the problem of reconstructing the entire history of a
diffusion process instead of only identifying the source of diffusion. A comprehensive survey is con-
ducted by Yu and Jian [YP19].

For activity shaping, Farajtabar et al. [FDR+14] represent the overall activity as the summation
of exogenous activity (by external factors) and endogenous activity (by user-user interactions); the
exogenous intensity and the average overall intensity have a linear relationship, which opens the door
to many optimization formulations for different activity shaping tasks. Recent research on pandemic
modeling and controlling includes (Car et al. [CBŠA+20]; Ardabili et al. [AMG+20]; and Poirier et al.
[PLC+20]). Zhou et al. [ZXTZ21] provide a comprehensive survey on feature-based, generative, and
deep learning models of prediction problems for information diffusion.

12.2.4 Productivity and team science
Recent years have witnessed an increasing interest in understanding the performance of a team, the
productivity of its team members, and the impact of the content that team produces. Teams, defined as
a group of people with different roles and positions, serve as an integral function where members work
collaboratively to achieve particular goals. In modern organizations (e.g., technology companies or
government), it has become common for the organization to depend on a hierarchical structure of teams
to boost productivity. More often than not, teams are often embedded in or operate on an underlying
network such as a communication network or a social network.

Example 12.2. Different types of teams are observed in real-world scenarios. For example, in film
production, directors, actors and actresses, designers, and editors collaborate with each other to make a
movie within a period of time (Fig. 12.5(b)). In sports such as football or basketball, players and coach
fight towards winning games with the support of other members like a physical therapist (Fig. 12.5(a)).
Researchers or software developers that coordinate on a specific research project or product can also
be viewed as a team where the members share the same goal and posses necessary skills. Furthermore,
these teams can be embedded in a network. Specifically, for a movie crew network, two actors or ac-
tresses are connected if they have participated in the same film in the past. The attributes of movie crew
network can be the genres (e.g., sci-fi, comedy, action) of movies that an actor or actress participates
in. Likewise, for a research team, we can consider the coauthorship as the network structure and the
expertise as the members’ attributes (e.g., machine learning, system, computer vision).
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FIGURE 12.5

Examples of teams.

Data mining techniques have been leveraged to answer the following key questions in team sci-
ence, including (1. team performance characterization) how to reveal the key characteristic patterns
that differentiate a high-performing team from a struggling one; (2. team performance prediction) how
to forecast the performance of the team before or soon after the start of the task; (3. team performance
optimization) how to further enhance the team performance by adjusting the team composition; and
(4. team performance explanation) how to interpret the team performance prediction and optimization
results in an intuitive way.

Team performance characterization. In general, the key components in a team include (1) team leader
and members, (2) the environment (e.g., networks) in which team members collaborate, and (3) the task
on which the team works. Various patterns have been discovered to have a strong correlation with team
performance, such as the collective intelligence as an outcome of collaboration and the average perfor-
mance of top-k members. Challenges in characterizing the team performance arise from all these three
components. First, different team members possess different types of skills and social connectivity. Sec-
ond, the nature of task varies depending on the specific application scenarios, such as collaborative tasks
for research teams vs. competitive tasks in team sports. Third, the environment (e.g., networks) that the
team is embedded in or operates on itself is often large in size, highly volatile in temporal dynamics,
noisy and incomplete. Furthermore, it is also challenging to accurately quantify the team performance.
For instance, it is very difficult, if not impossible, to find a single metric to precisely measure the per-
formance of a research team. Instead, we often have to rely on a set of proxy performance measures,
such as the citation counts of publications, h-index of members, and download counts. All these factors
have precipitated the team performance characterization into a challenging problem. Existing literature
characterizes the team performance as the outcome of collective intelligence from both virtual teams
(e.g., online games) and teams with face-to-face interactions (e.g., sports or research teams).

Team performance prediction. Accurately forecasting the team performance is a key stepping stone
to understand the underlying principles of constructing a high-performing team. In academia, it is de-
sirable to predict the long-term performance of a scholarly entity (e.g., a researcher). An effective
team performance prediction algorithm should be able to (1) identify crucial features (e.g., coauthor-
ship network topology, research topics), (2) model the correlation between identified features and the
team performance, and (3) encode the dynamics of team evolution. Complementary to the team perfor-
mance prediction, it is also important to predict the impact of the content that team produces at a finer
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granularity (e.g., forecasting the citation count of a research paper in each of the next 10 years upon
its publication) by modeling the temporal correlation between content impact and the team dynamics.
Furthermore, a team and its team members collectively constitute a specific instance of part-whole re-
lationship, where the team is the whole entity and its team members are part entities. The part-whole
relationship often goes beyond the linear correlation. For example, the performance of the team (the
whole entity) is often not simply the (weighted) sum of the productivity of its members (part entities).
By modeling the nonlinear correlation between the team performance and member productivity, it often
leads to further prediction performance improvement.

Team performance optimization. In many real-world applications, the team leader often needs to
optimize the team composition to maximize its performance. For example, during an NBA game, the
rotation between players is dependent on the current strategy and the physical conditions of players,
and we refer to this substitution as the team member replacement. Here, a key insight is that an effective
team member replacement algorithm should consider not only the skills of the team members but also
the network connectivity. In other words, the similarity between the teams before and after the replace-
ment should be measured in the context of the network that the team operates on. Generalizations of
such an approach have been used for other team optimization scenarios. To name a few, if the team
leader wishes to downsize the team because of budget cut, a possible solution is to select a member
whose departure has the least impact on the original team (i.e., team shrinkage); in other scenarios,
we might want to bring in new team members with certain skills and collaboration structure according
to the requirements of new tasks (i.e., team expansion); and if two or more team members do not get
along in an existing team, we might consider to swap one of them with another team (i.e., team con-
flict resolution). Furthermore, real-world teams are complex and dynamic systems with time-evolving
configuration and the team performance is likely to change over time. Hence, it is critical to model the
dynamic correlations between the team performance and the team optimization strategies in order to
sustain a high-performing team in real time (i.e., real-time team optimization), where reinforcement
learning (introduced in Chapter 7) might provide an effective solution.

Team performance explanation. The vast majority of the literature on team performance prediction
and optimization aims to answer questions like which team is most likely to succeed, who is the best
candidate to replace a departure member in the team, or what is the best strategy to expand the team. On
the other hand, the intuitive explanations for why the team performance prediction algorithm “thinks” a
given team will succeed or struggle, or why the team optimization algorithm recommends a particular
action for a given scenario are largely absent. The sparse literature on explainable team performance
prediction and optimization often resort to influence function, a technique rooted in robust statistics, to
identify key elements (e.g., team members, skills of team members, the connectivity between differ-
ent team members) to interpret the team performance prediction or optimization results. For example,
given the key components in a team (i.e., members, networks, tasks), the performance prediction results
can be interpreted from the aspects of multiple components (e.g., which tasks are more critical com-
pared to others?). The multilevel interpretation offers a comprehensive understanding of the prediction
results. In terms of explaining team performance optimization, existing methods identify the network
elements (e.g., edges and nodes) that are influential to the team optimization results. For instance, in
team member replacement, the best candidate may have a nearly identical collaboration structure and
possess the same important skills as the departure member does, which makes the candidate a favorable
replacement.
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Bibliographic notes
The definition of team is formally introduced by Hackman and Katz [HK10], which states that teams
function as “purposive social systems” for collective objectives. Different types of teams exist in real-
world applications, such as GitHub teams (Thung, Bissyand, Lo, and Jiang [TBLJ13]) and sports teams
(Duch, Waitzman, and Amaral [DWA10]).

In team performance prediction, Uzzi, Mukherjee, Stringer, and Jones [UMSJ13] aim to forecast
the impact of research works by evaluating the atypical combination of prior work, and Yan et al.
[YTL+11] propose to leverage effective content and contextual features for citation counts prediction.
Li and Tong [LT15] propose a joint predictive model for long-term scientific impact prediction under a
more complex scenario with nonlinearity among feature and prediction, network dynamics, and domain
heterogeneity. For performance trajectory forecasting, Li, Tong, Tang, and Fan [LTTF16] introduce a
new predictive model that can simultaneously fulfill two requirements, including prediction consistency
and parameter smoothness. To further understand the relationship between individual members and the
final outcome of the team, Li et al. [LTW+17] jointly model the part-whole correlation and the part-part
interdependency.

In team performance optimization, existing works can achieve good performance in the task of
static team member replacement using effective and efficient graph similarity based algorithms (Li
et al. [LTC+15,LTC+17]) and dynamic team formation (Zhou, Li, and Tong [ZLT19]). In addition,
Li, Tong, and Liu [LTL18] propose to interpret the networked prediction results from a multilevel
perspective. For team optimization results, Zhou et al. [ZLC+18] aim to provide intuitive explanation
for optimization results through visualization technique. Li and Tong [LT20] provide an introduction
of computational foundation for network science of teams ranging from prediction, optimization and
interpretation.

12.3 Data mining methodologies and systems
12.3.1 Structuring unstructured data for knowledge mining: a data-driven

approach
With massive unstructured data stored or streaming in dynamically, an important methodology for
turning data to knowledge is to systematically transform unstructured text-rich data into organized,
relatively structured data so that knowledge can be extracted effectively based on a user’s requests.
Among different approaches on turning unstructured data to structured knowledge, we promote a dis-
tantly supervised, data-driven approach, as outlined in Fig. 12.6. The essence of this approach is to
make good use of available knowledge-bases such as Wikipedia, domain-specific dictionaries, and pre-
trained language models computed from massive corpora, explore the power of distant-supervision
or human-guided weak supervision, and conduct information extraction, taxonomy construction, doc-
ument classification, knowledge graph, or information network construction and enrichment. Such
information-rich structure will assist knowledge discovery in massive text. Although many of these
functional components are still under active research and development, we overview some essential
progress or major ideas in the following discussion.

Taxonomy construction and refinement using massive text corpora. Taxonomy organizes important
concepts into semantically rich structures and may play an essential role at organizing massive unstruc-
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FIGURE 12.6

Structuring text to knowledge: A data-driven approach.

tured text data into relatively organized structures. There are a lot of largely human-curated taxonomies
available in different domains, such as science, engineering, bio-medical, and business. However, a
suitable taxonomy that fits a particular application should be multifaceted and corpus- and application-
dependent. Thus it is often desirable to (i) generate a corpus- or application-dependent new taxonomy,
based on available corpus and application demands; (ii) refine an existing taxonomy, which could be
initially constructed/provided by domain experts but is outdated or unfit to a particular application; or
(iii) expand a human-provided, incomplete taxonomy skeleton, based on the corpus and expected appli-
cations. In all these cases, human-extensive annotation could be costly and inconsistent, and it is often
desirable to develop a weakly supervised or distantly supervised approach to do this automatically or
semiautomatically (e.g., interacting with human experts).

In recent years, weakly or distantly supervised methods have been developed for taxonomy gener-
ation and expansion. For example, a Rank-Ensemble method has been developed in set expansion to
automatically expand from a small set of user-provided seeds, representing a set of items of similar
semantics (e.g., a set of US states) and generate additional entities in the same set (e.g., the remaining
US states). Such set expansion methods can be further enhanced by parallel expansion of the negative
sets (to guard each other and avoid semantic drifting) or by exploring the power of pretrained language
models. Further, taxonomy can be generated by starting with a small sample taxonomy and conducting
both depth and width expansion to form a more complete hierarchy or generated by embedding-based
hierarchical clustering. Moreover, a taxonomy can be extended by adding new emerging terms or delet-
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ing old, obsolete ones. Appropriate taxonomy modification can be done incrementally by evaluation of
the semantic consistency and balance of the updated taxonomy.

Weakly supervised text classification. Text could be massive, diverse, and in multiple granularities,
and it is costly to rely on human to annotate text data in complex and dynamic environment. Although
there are many supervised methods for document classification, it is often realistic and desirable to rely
on weakly supervised text classification with a small set of labeled data and a massive set of unlabeled
text data. Given a small set of labels, which can be informative category names, or some human-
provided keywords or labeled documents or their combinations, the key challenge becomes how to
enlarge the seeds based on the massive set of unlabeled data. Several effective weakly supervised text
classification methods have been explored: (i) use embedding methods to generate pseudo-documents
and then train neural networks based on the generated pseudo-documents and the large set of unla-
beled text data (e.g., in WeSTClass); (ii) use category-guided embedding to generate class-distinctive
keywords or phrases (which enlarges the seed set effectively) (e.g., in CatE); or (iii) use pretrained
language model (e.g., BERT) to generate class-distinctive keywords to improve the quality of weakly
supervised classification (e.g., in LOTClass).

In many real-world applications, text classification may need to consider a large number of classes
(e.g., potential themes of a research paper) and multiple labels (e.g., a paper can be tagged by a set
of tags or themes). Massive human-labeled documents are often too costly to obtain. Fortunately, a
large set of classes are often organized into a taxonomy. A taxonomy-based, hierarchical multilabel
text classification method can be developed (e.g., TaxoClass) to tag each document with a set of classes
from a class hierarchy, as follows. First, class surface names are represented by nodes in a taxonomy,
and such a skeleton structure can be used to generate category-distinctive keywords or phrases (e.g.,
using hierarchical text embedding methods) and be used as supervision signals. Second, a multiclass
classification scheme may first identify a few most essential classes for a document as its “core classes,”
and then check the parent/ancestor classes of the core classes to generate remaining related tags. Third,
it is easier to conduct a top-down search for the right classes since there will be only a small number
of the candidate classes that need to be considered at the top-layer, and the search for “core classes”
can follow the most likely high-level nodes to walk down the taxonomy as promising paths. Finally,
it is beneficial to calculate document-class similarities using a textual entailment model, identify a
document’s core classes, utilize confident core classes to train a taxonomy-enhanced classifier, and
generalize the classifier via multilabel self-training.

Fine-grained information extraction via context-aware distant supervision. Instead of identifying
an entity belonging to one of several major types (e.g., person, organization, location, time), it is often
more useful to conduct fine-grained entity recognition to extract the concrete role that an entity plays in
a particular context (e.g., Trump can be a businessman, president, or ex-president in different contexts).
For identification of the context of an entity in a sentence or paragraph, it is good to first use an effective
data-driven phrase mining method to generate entity mention candidates and relation phrases, and then
conduct distant supervision to find the most appropriate fine-grained types for the entities to be ex-
amined. Distant supervision may come from the “type-labeled” entities in Wikipedia, domain-specific
dictionaries, or other knowledge bases, One method, ClusType, enforces the principle that relation
phrases should be softly clustered when propagating type information between their argument entities
and jointly optimizes two tasks, type propagation with relation phrases, and multiview relation phrase
clustering to achieve good performance. Embedding can also be explored in type inference and relation
phrase clustering. Moreover, one can explore taxonomy-guided supervision and pretrained language
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model for fine-grained entity recognition. Its general philosophy is to use a human-selected taxonomy
as guidance to generate additional terms/phrases belonging to the corresponding node classes in the tax-
onomy, based on dictionaries, embedding, and pretrained language models. The taxonomy so enriched
with additional phrases can be used for taxonomy-guided text classification and for fine-grained named
entity recognition. When an entity may have multiple potential types, the one that fits the local context
best, according to the taxonomy information, will be given the highest confidence to the corresponding
fine-grained type.

Knowledge graph/information network construction. Knowledge graphs and information networks
are important structures to help turn unstructured data into structures and knowledge. Knowledge
graphs consist of a set of entities, associated with their corresponding attributes and values, and a set of
(possibly labeled) edges linking among entities. The graph can be further structured with taxonomy in-
formation and with conditions/probabilities associated with edges or attributes/values, indicating under
what condition/probability such a relationship holds. A heterogeneous information network may not
treat one entity (e.g., an author) as the attribute value of another entity (e.g., a paper) but treat them as
heterogeneously typed entities linking together via a labeled edge (e.g., wrote).

It is useful to use distant or weak supervision for construction of knowledge graphs/information
networks from massive text. Taxonomy-guided text classification may allocate text to the corresponding
nodes or subgraphs. This will help extraction of information related to particular entities and their
associated attributes/values with fine-grained entity recognition. With massive text data, it is likely
that an entity can be associated with different attributes/values and linked to different other entities in
different times or conditions. Without clear distinction of appropriate conditions, it is easy to cause
confusion if such different associations are merged into a single “global” knowledge graph. Therefore
in many cases, it is often more useful to construct local knowledge graphs from a set of documents
corresponding to specific situations and use such local knowledge graphs under similar conditions.

Bibliographic notes
Lots of research have been contributing to this important research frontier: structuring unstructured
data for knowledge mining. Good progress has been made on data-driven, weakly, or distantly su-
pervised approach in recent years (e.g., Wang and Han [WH15]; Liu, Shang, and Han [LSH17]; Ren
and Han [RH18]; and Zhang and Han [ZH19]). This includes (i) weakly/distantly supervised or un-
supervised phrase mining for extraction of informative entities from massive unstructured text (e.g.,
AutoPhrase by Shang et al. [SLJ+18] and UCPhrase by Gu et al. [GWB+21]), (ii) distantly supervised
or ontology-guided fine-grained NER or pretrained language model-based NER (e.g., ClusType by Ren
et al. [REKW+15], ChemNER by Wang et al. [WHS+21], and RoSTER by Meng et al. [MZH+21]),
(iii) embedding-based taxonomy construction and expansion (e.g., TaxoGen by Zhang et al. [ZTC+18],
HiExpan by Shen et al. [SWL+18], SetCoExpan by Huang et al. [HXM+20], TaxoExpan by Shen et
al. [SSX+20]), and (iv) weakly supervised and/or ontology-guided text classification (e.g., WeSTClass
by Meng, Shen, Zhang, and Han [MSZH18], LoTClass by Meng et al. [MZH+20a], and TaxoClass by
Shen et al. [SQM+21]).

12.3.2 Data augmentation
A high-performing data mining model often requires a great amount of labeled data samples for train-
ing. However, for many domains, due to the data privacy, expensive labor cost, data imbalance, and
ever-growing new data, we might be only provided by a limited number of labeled data. For example,
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in the medical image processing domain, an important data resource is from magnetic resonance imag-
ing (MRI) whose average cost is more than 2000 dollars in the United States. Besides, many patients,
out of concern of their privacy, might be unwilling to provide their MRI images for data analysis. Hence,
for a wide range of real-world applications, we have to train a data mining model with scarce training
data, which could lead to the overfitting issue. A myriad of solutions are proposed, including those
introduced in Chapter 7 (i.e., classification with weak supervision). Here, we briefly introduce another
promising technique called data augmentation. In general terms, the core idea of data augmentation is
to enrich the training data set to help the data mining and machine learning models extract meaningful
features for generalization. Roughly speaking, data augmentation methods can be categorized in basic
methods and learning-based methods.

The key idea of data augmentation is to utilize the invariance property of data samples. Let us look
at some examples to illustrate the invariance property of different types of data.

Example 12.3. For an image classification task, the human visual system can recognize a cat from
a wide variety of angles; for audio data, most speech can be recognized with the partial loss on time
domain and frequency domain; and for network data such as social networks, the hidden user profiles
for a group of users do not vary significantly by adding a few new relationships with another group of
users.

Basic methods. Thanks to the strong generalization ability and robustness of human recognition sys-
tems, basic data augmentation methods develop a set of operations that can be verified by the human
recognition systems to generate augmented samples. By augmenting training samples, the data min-
ing models are expected to be as robust as the human recognition systems and therefore are capable
of extracting features with greater generalizability. For instance, for most cases, a flipped image has
the same label as the original image and can be added into the training set with the same label as the
original image. Other basic image augmentation methods include adjusting the color space, rotation,
erasing part of the images, and many more. We provide several examples for basic image augmentation
methods in Fig. 12.7.

As the invariance property exists in various types of data, the basic augmentation methods can boost
a wide range of tasks as well. For instance, the audio with randomly erased pieces can serve as the
augmented audio recognition data. Based on the knowledge of basic augmentation methods, next, we
further introduce three typical learning-based augmentation methods, including augmentation policy
learning, generative adversarial nets (GANs)-based methods, and adversarial training.

Augmentation policy learning. Most of the basic data augmentation methods are centered around the
guidance of human recognition systems, which might make the workflow somehow ad hoc and subopti-
mal. For instance, to achieve a more comprehensive augmentation, some works combine multiple basic
augmentations together as augmentation policy. However, not all the policies are equally informative.
Intuitively, for example, the samples augmented by “flipping+rotation” might not be as informative as
the samples augmented by “rotation+equalization.” To automatically search for the best augmentation
policy, existing works such as AutoAugment define the augmentation policy by a sequence of subpoli-
cies, each of which is composed of a specific operation and the corresponding magnitude. For example,
an augmentation policy can be divided into two subpolicies; the first subpolicy is to rotate the image
by x degrees, and the second subpolicy is to equalize the image with magnitude y. Then, a parame-
terized policy selection model (e.g., recurrent neural networks) searches the combination of different
subpolicies as the candidate policy. Finally, AutoAugment formulates it as a meta-learning problem
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FIGURE 12.7

Examples of basic augmentations on image data.

whose procedure is as follows: (1) the policy selection model selects a set of augmentation policies
to enrich the data set; (2) another target model for a specific task (e.g., convolutional neural networks
for image classification) is trained with the augmented data; and (3) it validates the performance of
the well-trained target model (by a validation set) and provides feedback to update the policy selection
model.

GANs-based methods. With the augmentation policy selection model, the augmentation procedure
can be implemented automatically and more accurately. However, users of the system still need to as-
sign specific basic augmentation methods to construct the search space, and the effectiveness of such
a system might also be limited by the power of basic augmentation methods. In fact, a wide range of
transformations can retain the invariance of data labels but nonetheless cannot be represented by the
basic augmentation methods effectively. For example, a running cat and a sleeping cat should both be
labeled as “a cat” however, we cannot apply any combinations of the basic augmentation methods to
transform a running cat image into a sleeping cat image. The development of GANs provides a new
solution toward the data augmentation problem. The full details of GANs are outside the scope of this
textbook. In a nutshell, the training of GANs can be viewed as a cat-and-mouse game between its two
components, including the generator and the discriminator, where the generator tries to mimic the distri-
bution of real data samples, and the discriminator is optimized to effectively tell the generated samples
and the real samples apart. Hence, for data scarcity scenarios, especially data imbalance scenarios,
GANs-based data augmentation method can enrich the classes with limited data samples by learning
from the classes with abundant samples. To be specific, by training GANs with the classes of abundant
samples (e.g., running dogs and sleeping dogs), the generator learns to fool the discriminator by import-
ing versatile posture. Then if the user change the input of generator from dog images to cat images, the
generator is expected to generate both running cats and sleeping cats. Valuable transformations such as
changing the postures of animals in images are hard to be covered in the previously-introduced meth-
ods. In contrast, GANs-based methods can handle it effectively. It is worth mentioning that this line of
methods is closely related with the “imagination” (or “hallucination”) concept in the few-shot learning
scenario. Interested readers can refer to the references in the bibliographic notes.
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Adversarial training. Another related work of learning-based data augmentation is adversarial train-
ing whose intuition shares several common grounds with the GANs-based methods. The motivation
of adversarial training lies in the fragility of great quantities of learning models. Both empirical and
theoretical results illustrate that unnoticeable perturbations toward the original data samples can often
change the output of data mining models dramatically. However, every story has two sides and by mix-
ing the trickily perturbed samples into the training samples, the trained models have been proven to be
more robust compared with the models trained with original training samples.

To make a comparison, the basic augmentation methods and the augmentation policy learning
methods require predefined basic operations (e.g., flipping, rotation for image data) to guide the aug-
mentation; augmentation policy learning, GANs-based methods, and adversarial training resort to
parameterized components that are often learned from abundant data. For augmentation policy learning
methods, they might suffer from the efficiency problem since every updating of the policy selection
model requires the feedback from a retrained target model on a set of augmented samples. As for
GANs-based augmentation methods, in principle, the augmentation can be viewed as an instantiation
of transfer learning by which the models learn the manifold from classes with plenty of data samples
to construct the manifold of classes with limited number of data samples. However, in many tasks (e.g.,
medical imaging processing), it is hard to find a class with plenty of data samples and how to design
effective transfer learning mechanism from other data-rich domains is the key challenge. For adver-
sarial training, although it has intrinsic connection with data augmentation methods, there are some
subtle differences: (1) samples “augmented” by adversarial training are nearly the same as the original
samples for the human recognition system since they are perturbed “unnoticeably”; and (2) the goal
of adversarial training is to improve the robustness of models (against adversarial attack), whereas the
goal of data augmentation is to improve the generalizability of models.

Bibliographic notes
AutoAugment developed by Cubuk et al. [CZM+18] is the pioneering work that automates the augmen-
tation procedure but requires a great amount of computing resources. For the family of GANs-based
methods, DAGAN proposed by Antoniou et al. [ASE17] is the first work to incorporate GANs model
into the data augmentation task and has inspired a great number of GANs-based works in various appli-
cations such as machine fault diagnosis by Shao, Wang, and Yan [SWY19] and medical image analysis
by Shin et al. [STR+18]. The “hallucination” strategy developed by Wang et al. [WGHH18] for the
few-shot learning scenario is closely related with the GANs-based methods. Shorten and Khoshgof-
taar [SK19] provided a comprehensive survey about the augmentation for image data.

For other data types such as audio data, Park et al. [PCZ+19] developed SpecAugment to obtain
strong performance improvement by augmentation from frequency and time domains. The augmenta-
tion of graph-structured data is still underexplored. One of the GANs-based solutions, GraphSGAN
developed by Ding et al. [DTZ18], showed that data augmentation can benefit semisupervised learning
on graph data effectively. You et al. [YCS+20] augmented the graph data by predefined basic operations
to improve the performance of graph representation learning.

12.3.3 From correlation to causality
Data mining models have obtained dramatic achievements in many applications, ranging from stock
market prediction to recommended system. However, most of the existing data mining methods are
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essentially correlation analysis and much less has been done on causality analysis. In general terms,
correlation analysis is to study the statistical associations between different observed variables, whereas
causal analysis focuses on the causality relation between them. We use the following example to illus-
trate the difference between these two kinds of analyses.

Example 12.4. Suppose the temperature is low in winter. Both the electric bill and food expense are
very high. In this scenario, we have observed three variables, including low temperature, high electric
bill, and high food expense. There exists a correlation between the high electric bill and the high food
expense. However, it is not the high electric bill that has caused the high food expense and vice versa.
The causality might instead lie in the low temperature for both the food expense and the electric bill.

Compared with correlation analysis, the challenges for causality analysis could be explained by its
main tasks, including causality inference and causality discovery.

• Causality discovery is qualitative: analysis. For example, if we want to change the value of some
specific variable(s), which variables should we manipulate?

• Causality inference is quantitative: analysis. For instance, if we modify some variable’s value, what
kind of quantitative changes will happen to some specific variable(s)?

For causality discovery, it is more difficult than correlation analysis and may need some prior expert
knowledge; as for causality inference, it needs well-designed complex experiments like A/B test, where
other variables are kept same.

Causality analysis can be applied to different aspects of data mining models. For example, with a
good causality discovery, the interpretability of black-box deep learning models will be enhanced. In
some intelligent systems (e.g., university admission system), causality analysis can help avoid unfair
results related to some sensitive variables (e.g., gender). In addition, causality analysis could improve
the robustness of models.

The taxonomy of causality analysis is shown in Fig. 12.8. We divide existing methods according
to their tasks. For causality discovery, traditional methods include constraint-based algorithms, score-
based algorithms, and functional causal models. The Peter-Clark (PC) Algorithm tests the conditional

FIGURE 12.8

The taxonomy of causality analysis. Adapted from Guo et al. [GCL+20].
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independence while generating possible causal graphs. Score-based algorithms evaluate the score of
generated causal graph. In functional causal models, variables are formulated as output of functions
with direct cause and noise as input. To tackle the challenge posed by big data, it has been shown
that high-dimensional situation could be solved by adding restrictions on search space. For causality
inference task, with the assumption that all confounders are observed, there exist three representative
categories of methods, including regression adjustment, propensity score methods, and covariate bal-
ancing methods. Regression adjustment is based on counterfactual analysis to estimate the average
treatment effect (ATE) score. Propensity score method has been designed to match each instance into
a set, and ATE is estimated within each set. Instead of weighting instances with propensity scores,
Entropy Balancing (EB) has been used to learn instance weight, which is a classical method in covari-
ate balancing category. Usually, some unobserved confounders exist in real applications, which means
back-door path in causal model can not be blocked by conditions. To handle these cases, instrumen-
tal variable (IV) and front-door criterion are proposed. In particular, the utilization of IV allows us to
analyze the causal effect in two stages. The effect of relevant IV on treatment is analyzed in the first
stage, followed by analyzing treatment’s effect on outcome in the second stage. In front-door criterion,
mediating variables are set to block paths from the treatment to the outcome, which makes it easier to
conduct causality inference with unobserved confounders. With the support of big data, some advanced
learning methods emerge for causality inference. Neural networks and ensemble models are applied to
enhance causal model’s representation power.

Current trends in causality analysis are twofold. In the era of big data, researchers aim to replace
prior knowledge in traditional methods with data-driven strategy. Deep learning methods have become
popular, which could be integrated in causal models to further improve the performance. Some prob-
lems are still open for causality analysis. For example, when the treatment is complex or varies with
time, the causality analysis becomes much more difficult. Many applications of causality analysis such
as black-box interpretation, model robustness, and fairness still wait to be explored.

Bibliographic notes
Spirtes et al. [SGSH00] first generate a skeleton casual graph and decide the direction of each edge
later. Chicker et al. [Chi02] set additive Gaussian noise in the structural equations and calculate the
score function of a causal graph based on the structural equations. Shimizu et al. [SHH+06] transform
detecting causal relations into a lower triangle matrix estimation task. Nandy et al. [NHM+18] verify
the theoretical consistency from a low-dimensional situation to a high-dimensional situation.

For causality inference task, Hirano et al. [HIR03] use inverse probability to construct the weight of
different instances. Louizos et al. [LSM+17] adopt a variational autoencoder to learn latent represen-
tation of instances. Hill et al. [Hil11] utilize Bayesian Additive Trees to obtain the conditional average
treatment effect (CATE). Shalit et al. [SJS17] focus on the individual causal effect and give a general-
ization bound with the help of neural networks. In Wager et al. [WA18], heterogeneous treatment effect
is analyzed by a nonparametric random forest, which is also a representative ensemble model.

12.3.4 Network as a context
Networks (i.e., graphs) not only appear in many high-impact application domains but also have become
an indispensable ingredient in a variety of data mining and machine learning problems. Specifically,
networks have not only become a ubiquitous data type (see Section 12.1.3 for some representative



638 Chapter 12 Data mining trends and research frontiers

works on mining network and graph data) but also provided a powerful context that links different types
of data from different sources with different data mining algorithms. We refer to this phenomenon as
Network-of-X, where different Xs (i.e., entities, data sets or data mining models) are interconnected with
each other by an underlying contextual network. In other words, each node of the underlying contextual
network is associated with or mapped to an X representing an entity, a data set or a data mining model.
In particular, when each X represents an entity (e.g., a user, a web page, a device, etc.), Network-of-
X is simply equivalent to the typical network or graph data we have seen in Section 12.1.3. When
each X represents an entire data set or a data mining model, we can leverage Network-of-X to enrich
the modeling power and boost the mining performance in various real-world applications. Let us look
at some examples, including network of time series, network of networks, and network of regression
models.

Network of time series. A typical example of network of time series is the complex surveillance system
as follows.

Example 12.5. A complex surveillance system to detect invasions is often integrated with the devices
that monitor multiple types of signals, including ratio frequency and temperature. These devices are
connected by a contextual sensor network, and generate specific coevolving time-series data to monitor
abnormal activities. Fig. 12.9(a) shows an illustrative example. Nodes represent different devices that
are connected by edges indicating the similarities or correlations among devices. Each device monitors

FIGURE 12.9

Illustrative examples of network-of-X. (a) An example of a sensor network with nodes as time series of temperature
(adapted from Cai et al. [CTF+15]). (b) An example of a research domain network with nodes as domain-specific
collaboration networks.
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a specific type of signals (i.e., time series). Here, the time series of temperature monitored by all devices
are shown.

In this example, each device (e.g., a sensor) provides signals (e.g., a time series) monitoring a
specific aspect of activity, which alone might fall short in detecting abnormal activities. The underlying
contextual network is the device-to-device network (i.e., a sensor network) whose edges capture the
correlations between different devices. By mining multiple intercorrelated signals (i.e., multiple time
series) together with the underlying sensor network, it could help detect the abnormal activities more
precisely. The key idea for mining network of time series data is to (1) model each time series by
either traditional signal processing approaches (e.g., Kalman filter) or deep neural networks (e.g., long
short-term memory) and (2) leverage the contextual network to regularize different time-series models.

Network of networks. When each X (i.e., node) itself of the contextual network represents another
domain-specific network, this corresponds to the network of networks model. Let us look at an example.

Example 12.6. Authors collaborate with each other to publish papers in different research domains
(e.g., data mining, database, machine learning, etc.), which leads to a set of domain-specific collabora-
tion networks shown in Fig. 12.9(b). These collaboration networks are connected by a research domain
network whose edges could measure the similarities or correlations among different domains. Note that
some authors may exist in more than one domain if they have multiple research interests.

The main advantages of the network of networks model over other complex network models are
mainly twofold. First, by connecting domain-specific networks with a contextual network, the model
explicitly encodes the hierarchical structure such that the multiresolution characteristic of such com-
plex data sets can be exploited for the mining tasks. Second, the contextual network provides additional
regularization for the mining tasks by admitting a cross-network consistency principle upon the com-
mon nodes shared by different domain-specific networks (e.g., the same author who publishes papers
in multiple domains).

Network of data mining models. When each X itself is a data mining model, we can use Network-of-X
to link multiple, potentially intercorrelated data mining models together. An example of team perfor-
mance prediction (see Section 12.2.4 for a general introduction of data mining application in team
science) is illustrated in Example 12.7. With the help of the underlying contextual network, different
performance prediction models can “borrow” data from each other and thus mutually boost each other’s
prediction performance. In this setting, the contextual network may work as a graph-based regulariza-
tion term on the performance prediction model parameters.

Example 12.7. One crucial ingredient of the success of an organization is the coordination and col-
laboration among different task-specific teams (e.g., research teams, production teams, human resource
teams, etc., in an IT company). The collaboration among teams can be modeled as a contextual net-
work. With a regression model on each team to predict its performance, these regression models are
connected by the contextual collaboration network.

Network-of-X model is still an underexplored area with many possible future directions. First, the
contextual network construction is of key importance in the overall performance and a poorly con-
structed contextual network may even hurt the performance. For example, the contextual network is
usually constructed by computing the domain similarities as edges of the contextual networks. How-
ever, it remains unclear what the “optimal” similarity measures are for a specific task. Second, in terms
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of X, it has many other options so that the model can be applied to more applications, such as knowledge
graphs from different domains or database, heterogeneous networks, and representation learning mod-
els. The third future direction is to integrate other data mining problems with network-of-X, including
adversarial learning, fairness, and explainable learning.

Bibliographic notes
For a network of time series, Cai, Tong, Fan, and Ji propose a dynamic contextual matrix factoriza-
tion method to learn common latent factors behind the time-series and the contextual network structure
[CTFJ15]. Li, Yu, Shahabi, and Liu propose a sequence-to-sequence architecture with diffusion con-
volutional gated recurrent units to capture both the spatial information behind the sensor network and
the temporal information of the time series [LYSL17]. Similarly, other spatial-temporal forecasting
methods can be also considered as the prediction methods on network of time series (Yu, Yin, and Zhu
[YYZ17] and Geng et al. [GLW+19]). These models focus on the single-mode time series. To model
more complex systems where each temporal snapshot of the coevolving time series is a multimode ten-
sor (e.g., describing temperature, wind speed, etc.), tensor decomposition can be adopted to preserve
both contextual constraints and temporal smoothness of multimode time series (Cai et al. [CTF+15]).
In addition, Jing, Tong, and Zhu [JTZ21] propose a deep learning model that captures both the ex-
plicit relations by tensor graph convolution networks and the implicit relations of temporal dynamics
by tensor recurrent neural networks.

For network of networks, Ni, Tong, Fan, and Zhang [NTFZ14] propose to apply the cross-network
consistency principle that the ranking scores of the common nodes shared across multiple domain-
specific networks should be similar if these domains themselves are closely related. Likewise, Ni, Tong,
Fan, and Zhang [NTFZ15] also propose a clustering method by assuming the cluster assignments of the
same node in two highly similar domain-specific networks should be similar to each other. In addition,
for the task of graph classification, by constructing each graph instance as a node of the contextual net-
work, the classifiers at both the graph instance (i.e., domain-specific network) level and the contextual
network level can be learned in an alternative manner (Li et al. [LRC+19]).

Lastly, for network of data mining models, Li and Tong [LT15] propose a joint predictive model
that connects individual predictive models with the main network and encourages the parameters of the
closely related predictive models to be consistent.

12.3.5 Auto-ML: methods and systems
Data mining and machine learning models have been widely applied and implemented to tackle with a
variety of applications in the fields of computer vision, natural language processing, and many more.
However, there are numerous and diverse settings (e.g., tasks and data sets) in the real world, and thus
building and training appropriates mining models for each task could be time-consuming. Additionally,
domain experts (e.g., biology and business) might not be always familiar with the detailed implemen-
tation of mining models, not to mention building and tuning appropriate mining models for the specific
domain applications.

Example 12.8. Suppose a stock trader would like to forecast the stock price of some companies of
interest, but he is not familiar with data mining or machine learning models for modeling time series
and has no idea about how to build and train an accurate prediction model. In this scenario, the trader
could leverage the Auto-ML platform to find the optimal model and its hyperparameters.
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FIGURE 12.10

Taxonomy of Auto-ML. FE denotes feature engineering. MHT denotes model and hyperparameter tuning.

To tackle with these problems, Automated Machine Learning (Auto-ML) has been proposed, and
it has garnered plenty of research attention in recent years. Auto-ML can be classified into two ma-
jor categories, including (1) Automated Feature Engineering (Auto-FE), which automatically detects
the most representative and informative features, and (2) Automated Model and Hyperparameter Tun-
ing (Auto-MHT), which automatically builds machine learning models and tunes the hyperparameters.
The most commonly used techniques for Auto-ML include Reinforcement Learning (RL), Evolution-
ary Algorithms (EA), Bayesian Optimization (BO), and Gradient Approaches (GA). The taxonomy of
Auto-ML is presented in Fig. 12.10.

In the category of Auto-FE, an RL-based method constructs a transformation graph consisting of all
of combination of the transformation operations and features. The ultimate goal is to learn the optimal
path in the transformation graph, which will lead to the best performance. An EA-based approach con-
structs a tree to represent the transformation of the features. In the category of Auto-MHT, BO is one
of the most widely used approaches, which leverages probabilistic models (e.g., Gaussian process) to
find the optimal settings for hyperparameters. RL is another widely adopted approach for tuning hyper-
parameters and designing machine learning pipelines. Some methods view the hyperparameter tuning
problem as a multiarm bandit problem, where the hyperparameters of a learning model are viewed
as arms. Policy gradient has been adopted to train agents to construct the optimal neural architectures.
The EA-based approaches mainly focus on finding the optimal machine learning model architectures or
pipeline. A tree-structured machine learning pipeline has been formulated, where a leaf node represents
the input data and an intermediate node represents a particular machine learning model. Auto-ML can
also be formulated as a case of the tournament selection, which repeatedly compares two randomly se-
lected architectures and then chooses the one with better performance into the next population. Methods
based on GA usually encode neural architectures into a continuous space. Some methods relax the cat-
egorical choices over the operations to a softmax of all the possible operations during training, whereas
others map the input network architecture into a hidden representation via an encoder and then generate
a new network architecture via a decoder. Interested readers can refer to bibliographic notes for other
related works.
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There are several key challenges for Auto-ML. The first challenge is the lack of authoritative bench-
marks for Auto-FE and Auto-MHT. For Auto-FE, there is no standard protocol for the training setting
and the transform operations for features by the date of writing this textbook. For Auto-MHT, espe-
cially deep learning models, the existing benchmark named NAS-Bench-101 only considers cell-based
search space, whereas there is still no benchmark for the whole-network space. The second challenge
is the efficiency of Auto-ML. Many Auto-MHT methods for deep learning models are time and re-
source consuming. Besides, some models also require prolonged time at the evaluation stage. The third
challenge is how to incorporate human knowledge or experiences into the Auto-ML to find suitable
subspace of the entire search space. The fourth challenge is the interpretability of Auto-ML. It will
be useful if the users of the Auto-ML framework could understand why the features and the specific
architectures are chosen. The fifth challenge is the scope of applications. Most of the existing Auto-ML
frameworks focus on the classification and regression tasks. Auto-ML frameworks for more complex
tasks such as image captioning and recommender systems are still under explored.

Bibliographic notes
Auto-FE manipulates input data features to improve the model’s performance. Khurana et al. [KST18]
and Chen et al. [CLL+19] use RL to find the optimal sequence of data transformations. Tran et al.
[TXZ16] and Viegas et al. [VRG+18] generate tree-structured data transformations by EA. There are
also some other approaches for Auto-FE. Kanter et al. [KV15] and Katz et al. [KSS16] employ trun-
cated SVD and random forest to select features.

Auto-MHT aims to obtain an optimal model and/or its hyperparameters for the given data sets
and tasks. For traditional machine learning methods, Snoek et al. [SLA12] and Hutter et al. [HHLB11]
propose BO-based approaches relying on the Gaussian process and random forest, respectively. Li et al.
[LJD+17] use RL to tune hyperparameters. Olson et al. [OBUM16] and Chen et al. [CWM+18] propose
a tree-based EA and a layer-based EA, respectively. For deep learning methods, Jin et al. [JSH19]
introduces Auto-Keras for a neural architecture search based on BO. Zoph et al. [ZL16,ZVSL18] use
policy gradient and proximal policy optimization of RL to search for the optimal neural networks. Real
et al. [RMS+17,RAHL19] propose EA-based methods that search for the optimal neural architectures
via variants of tournament selection process (Goldberg and Deb [GD91]). GA-based approaches encode
the architectures into continuous vector representations. Liu et al. [LSY18] and Luo et al. [LTQ+18],
respectively, use mixed operations and encoder-decoder to learn continuous representations for neural
architectures.

12.4 Data mining, people, and society
12.4.1 Privacy-preserving data mining
Data mining harvests knowledge from data. At the same time, people may also raise concerns about
privacy protection when their data is analyzed. As a concrete example of privacy intrusion by mining
personal data, in 2012, a major retail company accurately identified that a teen girl was pregnant and
sent her ads for baby products using a pattern that indicates a woman is likely pregnant if 25 specific
products were purchased together. The dad only discovered the pregnancy after receiving the ads. How
to protect privacy in data mining becomes a more and more serious and extensively worrying concerns.
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Privacy leakage during data analytics may bring dramatic risks to data owners, data users, data min-
ing service providers, and our society in general. For example, privacy leakage may lead to significant
risks for business. With big data and powerful data mining techniques, individuals may be re-identified,
and anonymity may be broken. For example, a user may provide reviews on products under the agree-
ment of being kept anonymous. However, though accurate mining of rich customer data, the user may
be re-identified, and thus the user’s privacy is intruded. Data breaches or misusing data in analytics
may cause lawsuits and consequent financial liabilities. At the ethical level, just because that some
knowledge can be discovered and some events can be predicted, should that knowledge be used and the
prediction be acted on?

As re-identifying an object, such as a user, from data is one important type of intrusions, a large
group of methods have been developed to anonymize data and protect privacy. For example, k-
anonymity (Samarati and Sweeney [SS98]) is one of the early and fundamental techniques. Consider
Table 12.1, which contains a set of personal records. The column ID is for reference only and is not
released. We want to publish the data to researchers so that they can investigate the distribution of
disabled people. Thus the column Disability is to be published as it is. Attributes Address and Age in
the table are identifying attributes. Suppose we want to protect privacy of any people with disability.
Publishing the original table immediately leaks the privacy of records R3 and R5 to R8, since using the
address and age information the person with disability can be identified. The k-anonymity idea gener-
alizes the data in the identifying attributes such that each record published is identical to at least k − 1
other records on the identifying attributes. For example, Table 12.2 shows such a four-anonymization,
where each tuple is identical to another three tuples on the identifying attributes, and thus one cannot
be re-identified from the published data with probability higher than 1

k
, that is, 1

4 in this example. When
we produce a k-anonymity, we try to make minimal changes so that the data utility can be retained as
much as possible. For example, in the second group containing records R5 to R8 in Table 12.2, the
street name, Franklin Avenue, is retained, and only the street numbers are generalized.

k-anonymity is simple and can protect privacy to some extent. However, it is vulnerable to many
attacks, particularly when attackers are equipped with some background knowledge. For example, the
group of records R5 to R8 have the same value on the sensitive attribute Disability. Thus even though the
identifying attributes are k-anonymized, the sensitive values of these group of four records are leaked.
This is known as the homogeneity attack (Machanavajjhala, Gehrke, Kifer, and Venkitasubramaniam
[MGKV06]). As another example, if an attacker may learn the background knowledge that people in

Table 12.1 A data set containing sensitive personal data
attribute “disability.”

ID Address Age Disability
R1 12 Front Street, Central Park, MyState 32 No

R2 38 Main Street, Central Park, MyState 43 No

R3 16 Front Street, Central Park, MyState 35 Yes

R4 833 Clinton Drive, Central Park, MyState 40 No

R5 1654 Franklin Avenue, Central Park, MyState 74 Yes

R6 235 Franklin Avenue, Central Park, MySate 78 Yes

R7 2323 Franklin Avenue, Central Park, MyState 72 Yes

R8 392 Franklin Avenue, Central Park, MyState 75 Yes
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Table 12.2 A data set containing sensitive personal data
attribute “disability.”

ID Address Age Disability
R1 Central Park, MyState [30-45] No

R2 Central Park, MyState [30-45] No

R3 Central Park, MyState [30-45] Yes

R4 Central Park, MyState [30-45] No

R5 Franklin Avenue, Central Park, MyState [70–75] Yes

R6 Franklin Avenue, Central Park, MyState [70–75] Yes

R7 Franklin Avenue, Central Park, MyState [70–75] Yes

R8 Franklin Avenue, Central Park, MyState [70–75] Yes

age group [70–75] have a probability of disable at least twice higher than the average, then the attacker
can issue a background knowledge attack (Machanavajjhala, Gehrke, Kifer, and Venkitasubramaniam
[MGKV06]) to increase the chance of obtaining the sensitive information on victims in the age group.

In order to describe the patterns of groups in a database and, at the same time, protect the information
about individuals, differential privacy (Dwork, McSherry, Nissim, and Smith [DMNS06]) is developed.
The general idea is that we allow users to derive aggregates on groups of records in a data set, as
long as for an aggregate derived from a group, whether an individual belongs to the group cannot be
determined with a high confidence. Since whether a single individual belongs to a group or not cannot
be determined accurately, the privacy of individuals is protected.

Technically, a randomized algorithm A is said to be ε-differentially private if for any two neighbor-
ing data sets D1 and D2 that differ on only a single element and for all subsets S of possible outputs
of A, Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S]. In other words, for any two neighboring data sets D1 and
D2, e−ε ≤ Pr[A(D1)∈S]

Pr[A(D2)∈S] ≤ eε . Here, ε is a parameter taking a small real number. For example, when

ε = 0.01, 0.99 ≤ Pr[A(D1)∈S]
Pr[A(D2)∈S] ≤ 1.01. Since the probabilities of the results are produced by D1 and D2

are so close, an attacker cannot accurately determine whether the only element that is the difference
between D1 and D2 participates in the computation or not, and thus the privacy of that element is pro-
tected. When ε = 0, the level of privacy protection is maximized, since the algorithm outputs A(D1)

and A(D2) with indistinguishable distributions. In this situation, the output results do not reflect any
useful information about the data. Thus parameter ε balance the tradeoff between privacy and data
utility.

How can we add noise to achieve differential privacy? For a function f , the global sensitivity of
f for all pairs of neighboring data sets D1 and D2 is the maximum difference of the function values,
that is, GSf = maxD1,D2 ‖f (D1) − f (D2)‖1, where ‖ · ‖1 is the L1 norm. We can make up a ran-

domized algorithm A(D) = f (D) + Z, where Z ∼ Lap(
GSf

ε
) is random noise following the Laplace

distribution with scale
GSf

ε
. The Laplace distribution centered at μ with scale b is the distribution with

probability density function h(x) = 1
2b

e− |x−μ|
b .

The global sensitivity of some functions is easy to calculate, such as sum, count, and max. However,
there are many functions whose global sensitivity is hard to compute or even infinite, such as the max-
imum diameter of k-means clusters and subgraph counting. There are many relaxations and extensions
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of differential privacy to accommodate the need of balancing tradeoff between privacy protection and
data utility.

Privacy leakage happens not only between data owners and data mining result consumers, but also
may occur between different data owners who collaboratively conduct data mining using jointly their
data. For example, multiple companies want to collaboratively select k locations to build product ship-
ment delivery stations so that their customers can be served with fast deliveries. This can be solved by
conducting k-means clustering on the customer address data. However, those companies do not want to
share the customer address information, since customer address information may be considered private
information for customers and commercial secrets for each company. How can those companies jointly
conduct data mining using their data but do not disclose the sensitive address information?

One general framework to tackle the challenge is to conduct federated learning and federated an-
alytics. Federated learning and federated analytics apply data mining methods to analyze data stored
locally on data owners’ devices and sites. It works by running local computation over each data owner’s
data, and makes only the aggregated results available to the central server or the other users. Detailed
data from individual data owners is never transmitted or reflected.

For example, to conduct k-means over data from n owners in a federated manner, instead of consol-
idating the data from those owners into a single data set, the central server randomly selects the initial k

centers and sends to the owners. Each owner locally computes the data objects assigned to each center,
and the updated local center for each cluster. Only the k updated local center and, for each updated
center, the corresponding number of objects assigned and the within-cluster variation (Eq. (9.1)) are
reported to the central server. Any specific data records are kept within the data owner and never shared
with either the central server or other data owners. Then the central server collects the local information
from the owners and updates the global k centers. Multiple iterations can be conducted until the global
k centers become stable.

Federated learning and federated analytics provide a promising way to achieve data mining and
data analytics collaboration. Various models can be built in federated way, such as classifiers, clus-
tering, and data distributions. Federation may happen in horizontal or vertical ways. Horizontally, the
data owned by each data owner follows the same schema. Vertically, different data owners have the
data on only some attributes of a set of objects. In the above example, centralized federated learning
is assumed, where there is a central server to orchestrate different steps of the mining process and
coordinate the participating data owners. Alternatively, in decentralized federated learning, the partici-
pating data owners coordinate themselves. Recently, heterogeneous federated learning is developed to
accommodate heterogeneous users with very different computation and communication capabilities.

Privacy preservation in data mining goes far beyond just technical. It calls for societal and legal ef-
forts. For example, significant efforts on legislations have been committed to protect privacy on various
aspects. For example, the European Union (EU) and the United States established Directive 95/46/EC of
the European Parliament and the Council of 1995 and Health Insurance Portability and Accountability
Act of the US Department of Health and Human Services (HHS) of 1996 (HIPAA) as the anonymization
and de-identification-based legislation. General Data Protection Regulation (EU GDPR) is a regulation
in EU law on data and data protection, that gives individuals control on personal data, and simplifies
the regulatory environment for international business by unifying the regulation within the EU.
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12.4.2 Human-algorithm interaction
So far in this textbook, we have been mainly focusing on designing effective and scalable algorithms for
a data mining model. “But, how do such algorithms interact with humans (i.e., system administrators,
end-users)?” In general terms, the human-algorithm interaction aims to optimize the collaboration
between human intelligence and data mining algorithms and consequently enhances the system per-
formance and user experience. Let us elaborate this from the following perspectives, including (1)
utilizing the human intelligence to solve tasks that are difficult for algorithms (i.e., crowdsourcing);
(2) leveraging human intervention to further improve the data mining algorithms (human-in-the-loop);
(3) improving humans’ query strategy by algorithms (i.e., machine-in-the-loop); and (4) fostering the
effective teamwork between humans and algorithms (i.e., human-machine-teaming).

Crowdsourcing. The objective of crowdsourcing is to harness the human intelligence to resolve the
problems that are difficult to be solely solved by machine learning and data mining algorithms, such as
recognizing a specific type of plant in a picture, rating the products on a website, or writing a summary
for a short paragraph. The major applications for crowdsourcing are summarized as follows. First, an
important application of crowdsourcing is generating data samples with high-quality labels, including
binary or categorical labels, sentence translation, and image annotations. To improve the quality of
the crowdsourced labels, some studies present each data sample to multiple workers and obtain the
final label by summarizing the workers’ responses. Another research direction of label generation is to
evaluate the worker’s quality by considering other workers’ response on the same instances (i.e., peer
prediction). Second, crowdsourcing has been widely applied to evaluate the learning models and debug
faulty components in a learning system. For model evaluation, crowdsourcing is leveraged to determine
whether the output from the unsupervised topic model is meaningful (i.e., to what extent the extracted
key words from an article are helpful for users to understand the article). Additionally, crowdsourcing is
capable of evaluating the interpretability of model predictions in some critical domains such as medical
diagnosis where researchers are interested in developing human-interpretable algorithms. In terms of
debugging the AI system, existing works utilize human power to identify the weakest component in the
AI system that consists of multiple discrete parts for a complex task. Third, human intelligence has been
explored in the AI systems that are dependent on human judgment or domain knowledge. Such hybrid
AI systems often achieve superior performance compared to individual humans or learning algorithms
in the tasks of clustering, planning and scheduling, events prediction, and forecasting. Beyond machine
learning and data mining research, crowdsourcing platforms have been extensively exploited in psy-
chology and social science researches to conduct experiments on social behaviors, which consequently
facilitates the development of interdisciplinary research and helps gain a profound comprehension of
the interaction between human and learning algorithms (e.g., whether people trust the prediction results
and how they react to the recommended items in online shopping).

Human-in-the-loop. In general, human-in-the-loop (HITL) aims to effectively incorporate human
intelligence in the development of learning algorithms to create advanced AI systems. Human interven-
tions in an AI system can be in various formats. In the training phase, supervised learning tasks (e.g.,
image classification, speech recognition) often rely on human effort to obtain high-quality data sam-
ples with annotations (i.e., labels) and to design algorithms that are applicable to the specific scenario.
Recent trends in deep neural networks have led the automated AI systems to be increasingly powerful
and complex. Nonetheless, the intrinsic black-box property of deep learning approaches makes it highly
challenging to interpret the prediction results for end users. Therefore human intelligence with sufficient
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background knowledge is essential to enhance the model’s capability to explain predictions, particu-
larly in societally critical domains of applications such as healthcare and justice systems. Additionally,
human intelligence can also function as the evaluator for algorithms that aim to generate explanations
for the results by assessing the quality of explanations, which is also one important role of human in the
system (i.e., improving the quality of explanations). In medical science, experts’ experience and prior
knowledge are critical for annotating medical data. For example, in medical image acquisition, certain
expertise is required to label the informative area in an image for accurate computer-aided diagnosis.
Future cyber-physical systems (CPSs) also rely on a closer connection with human intent to develop
powerful and complex systems with a large number of intelligent devices (e.g., smart phones, sensors,
computational resources.).

Machine-in-the-loop. Compared to human-in-the-loop systems, machine-in-the-loop concentrates
more on leveraging learning algorithms to support human workers to accomplish certain tasks. Gener-
ally speaking, the goal of machine-in-the-loop is to explore the best approaches to integrate learning
algorithms into human decision making. For instance, existing work investigates the possibility of in-
corporating algorithms to generate ideas for creative writing. Another interesting application is that
artificial intelligence techniques are leveraged to help users achieve fast and creative drawing. Given
the fact that labeled data are often expensive and requires laborious human effort and sometimes the
number of labeled data is limited because of privacy constraint, numerous works in active learning (AL)
focus on achieving comparable performance while maximally reducing the number of labeled data for
training.

Human-machine teaming. The recent advancement of team science in the context of networks (see
Section 12.2.4 for an introduction), together with the breakneck development of data mining and ma-
chine learning algorithms, cultivates a unique form of teams that involves both human agents and
learning algorithms (i.e., human-machine-team, or HMT for short). Humans and algorithms have mu-
tually complementary skills. Therefore the well-coordinated teamwork between human agents and
machine agents will be likely to achieve superior performance than human-only or machine-only teams.
The key challenges of human-machine teaming include the following: (1) effectively modeling the
coordination, communication, and collaborations in a human-machine team given its nature of hetero-
geneity, hierarchy, and dynamics; (2) accurately predicting the team performance in both static and
dynamic scenarios; and (3) refining the human-machine team toward high performance in terms of
improving learning algorithms and updating human-machine interactions. Fig. 12.11 provides an il-
lustration of human-machine teaming, where Fig. 12.11(a) is an overview of HMT that represents the
key components and the interactions inside an HMT network. Fig. 12.11(b) presents more details for
a cyber-defense scenario involving both human and machine members, where the security agents (i.e.,
machines) aim to identify suspicious cyber activities and the cyber analyst (i.e., humans) can provide
feedback (e.g., annotation) for machine agents and resolve difficult cases. Effective cyber defense is
achieved by inter/intrateam information sharing among the human and machine members in this sys-
tem.

Bibliographic notes
Crowdsourcing has been widely explored in a variety of tasks. For example, Raykar et al. [RYZ+10]
propose to leverage crowdsourcing to generate image annotation in order to train a computer vision
model. Miao et al. study the problem of adversarial activities against crowdsourcing system [MLS+18].
Crowdsourcing techniques are also utilized to improve the reliability of medical diagnosis, which is
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FIGURE 12.11

Human-machine teaming.

studied by Li et al. [LDL+17]. To resolve the noisy issue of data labels, Khetan and Oh [KO16] in-
troduce an adaptive scheme to balance the tradeoff between model performance and budget. To infer
the true labels from the large pool of noisy labels, Zhou and He [ZH16] first leverage tensor augmen-
tation and completion to improve the quality of obtained labels. For heterogeneous data, Zhou and
He [ZH17] propose a learning framework that can effectively utilize the structural information from
data heterogeneity to improve the model generality and quality. The quality of workers is a key factor
in determining the label accuracy. To address this challenge, Zhou, Ying, and He [ZYH19] propose an
optimization framework to model the task and the worker dual heterogeneity by studying the cross-
network behaviors.

By incorporating humans in the loop in building hybrid intelligent systems, clustering algorithms
can be facilitated based on shared knowledge, which is investigated by Heikinheimo and Ukko-
nen [HU13]. Human intelligence is also leveraged to effectively select the high-quality training set
to construct a machine learning model (i.e., machine teaching). For instance, Zhou, Nelakurthi, and
He [ZNH18] propose a novel teaching framework to supervise crowd to label. Under the scenario that
the quality of some labels are imperfect, Zhou et al. propose an adaptive approach to improve the la-
beling through sequential interactions between machine teacher and workers. Human can also support
the explainability of machine learning algorithms; Lai, Carton, and Tan [LCT20] aim to assist human
decision making through high-quality explanations. Mothilal, Sharma, and Tan [MST20] propose a
framework for generating and evaluating counterfactual explanations to aid users understand the learn-
ing algorithms.

12.4.3 Mining beyond maximizing accuracy: fairness, interpretability, and
robustness

The ever-growing amount of data and the rapid development of data mining techniques have enabled
ubiquitous automated decision making in various application domains. For example, social media ap-
plications such as Facebook and Instagram can automatically recommend multimedia contents and
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friends based on users’ tastes and social networks. Companies such as LinkedIn and XING adopt data
mining–based systems for ranking potential candidates during recruiting and hiring.4 Courts in United
States adopt the COMPAS algorithm for recidivism prediction, which is reported to achieve higher ac-
curacy compared with trained humans.5 For such applications and many more, in addition to accuracy
(e.g., precision and recall of recommendation as well as ranking, and AUC of recidivism prediction),
there are a number of other important metrics we need to consider. In this section, we look at three of
them: fairness, interpretability, and robustness.

Algorithmic fairness. As promising as the data mining techniques might be, there might exist potential,
often unintentional, bias when used inappropriately.

In order to solve the fairness issues in the data mining techniques, the first question is how to define
fairness in a formal way. From a data mining perspective, the fairness definition can be categorized
as group fairness, individual fairness, and counterfactual fairness. First, group fairness includes three
subcategories, namely demographic parity (i.e., statistical parity), equalized odds, and predictive rate
parity. Specifically, the demographic parity denotes that the probability of prediction results should be
independent of the sensitive attributes (e.g., gender, race, etc.). The equalized odds denote that for differ-
ent sensitive attributes, the conditional probability of the same prediction results given the same labels
should be equal. The predictive rate parity means that for different sensitive attributes, the conditional
probability of the labels given the prediction results should be equal. Second, the idea of individual
fairness is to preserve individual similarities, such that similar individuals should be treated similarly.
Third, the counterfactual fairness aims to correct predictions of a label variable that are unfairly al-
tered by an individual’s sensitive attribute. It offers a way to check the potential impact of replacing the
sensitive attribute.

Generally speaking, there are three types of strategies for fair learning algorithms, including prepro-
cessing, optimization at training, and postprocessing. The key idea of preprocessing methods is to learn
a representation of individual features so that the impact of sensitive attributes are removed. The learned
representation is in turn used in the downstream data mining tasks, so that the individual fairness or the
demographic parity could be enforced. The key idea of optimization at training is to use additional reg-
ularizers or constraints in the original objective function for the corresponding data mining tasks. The
optimization at training methods could often obtain a good tradeoff between mitigating the bias and
retaining the original mining accuracy. Given a classifier which uses real-valued predictive score (e.g.,
FICO scores for predicting loan default), the key idea of postprocessing is to find a proper threshold
using the original score function for each group in order to achieve certain types of fairness constraints
(e.g., equalized odds). Neither preprocessing nor postprocessing requires changes to the original data
mining model (e.g., a classifier). A summary of these three categories of learning algorithms can be
found in Table 12.3.

Algorithmic fairness is an active research area with many possible future directions. To name a few,
besides inspecting data mining models, one could scrutinize data and how the bias was introduced in
the first place during the data generation process. Besides static one-shot problems that are the main
focus of the current research, it would be interesting to examine the long-term effects of feedback loops
and human interventions on the potential bias of the data mining systems. For the fair learning model

4 https://emerj.com/ai-sector-overviews/machine-learning-for-recruiting-and-hiring/.
5 https://news.berkeley.edu/2020/02/14/algorithms-are-better-than-people-in-predicting-recidivism-study-says/.

https://emerj.com/ai-sector-overviews/machine-learning-for-recruiting-and-hiring/
https://news.berkeley.edu/2020/02/14/algorithms-are-better-than-people-in-predicting-recidivism-study-says/
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Table 12.3 Summary of fairness learning algorithms, using classification as an example.

Fair learning
methods

Preprocessing Optimization at training Postprocessing

Key ideas Learning feature representation
to mitigate the impact of sensi-
tive attributes

Using additional constraints in
the objective of original mining
tasks

Modifying thresholds of learned
models in order to satisfy fair-
ness constraints

Pros (1) Can be used for any down-
stream task
(2) No need to modify classifier
(3) No need to access sensitive
attributes at test time

(1) Relatively good performance
(2) Flexible on tradeoff between
accuracy and fairness measures
(3) No need to access sensitive
attributes at test time

(1) Can be applied after any
classifiers
(2) Relatively good performance
(3) No need to modify classifier

Cons (1) Only capable of optimizing
statistical parity and individual
fairness
(2) Relatively lower perfor-
mance

(1) Task specific solver
(2) Need to modify classifier
(may not be feasible)

(1) Need to access the sensitive
attribute at test time
(2) No explicit accuracy and
fairness tradeoff

itself, both the theoretical and experimental tradeoff between utilities and individual or group fairness
is worth further studying.

Interpretability. Most of the existing data mining and machine learning methods are “black boxes”
and thus are hard for the end users (who are often not data mining experts) to understand the mining
process or the results. The lack of interpretability and transparency in a data mining model and system
will in turn cause trust, safety, and contestability issues.

Example 12.9. The AI-aided diagnosis of Alzheimer’s disease6 via patients’ word usage or brain MRI
image has received extensive interest in data mining research. However, if the model can not provide
human (doctor) interpretable predictions, the results will face trust and reliability issues. In another
application, the lack of contestability has already led to significant criticism of proprietary recidivism
predictors such as COMPAS, because it fails to let people appeal these decisions.7

In Chapter 7, we have learned some basic techniques to interpret classification. Beyond that, many
interpretable data mining methods have been developed. To name a few, some works use summary
statistics for each feature as interpretation; some methods visualize the feature summary statistics as
intuitive interpretation; some methods aim to explore self-interpretable components of the models for
interpretation, such as the weights in linear models or the learned tree structure of decision trees; and
other methods focus on identifying key data points (both existing and newly created samples) to make
a model interpretable.

Robustness. Another important aspect is the robustness of data mining models. Generally speaking, a
robust data mining model should satisfy the condition that the test results are consistent with training
results, or the test results stay stable with unintentionally inserted noises and intentional adversarial
attacks.

6 https://www.scientificamerican.com/article/ai-assesses-alzheimers-risk-by-analyzing-word-usage/.
7 https://www.theatlantic.com/technology/archive/2018/01/equivant-compas-algorithm/550646/.

https://www.scientificamerican.com/article/ai-assesses-alzheimers-risk-by-analyzing-word-usage/
https://www.theatlantic.com/technology/archive/2018/01/equivant-compas-algorithm/550646/
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FIGURE 12.12

The taxonomy of adversarial attacks.

Example 12.10. One of the most well-known examples of robustness is the image classification by
Convolutional Neural Networks (CNNs). Researchers have found that slight modifications that are
imperceptible to the human eyes (e.g., a few additional darker pixels inserted in an image) may cause a
CNN model to produce drastically different classification results.

The taxonomy of representative adversarial attacks is shown in Fig. 12.12, based on four crite-
ria (i.e., adversarial falsification, adversary’s knowledge, adversarial specificity, and attack frequency).
Common defend strategies can be divided as reactive methods and proactive methods. Reactive meth-
ods detect adversarial examples after data mining models have been built, whereas proactive methods
try to make mining models more robust before attackers generate adversarial examples. Representa-
tive reactive approaches include adversarial detection, input reconstruction, and network verification;
representative proactive approaches include network distillation, adversarial (re)training, and classifier
robustifying. Besides adversarial attacks and defense, other robustness studies focus on the stability
of the model performance. For example, an interesting method for studying the model robustness is
through a game. Considering a classifier, the goal of designing a robust classifier through the game is
to minimize the loss while choosing a distribution of test data to maximize the expected loss given the
knowledge of this classifier.

Bibliographic notes
Calmon et al. [CWV+17] develop a convex optimization method for learning a data transformation
in order to mitigate discrimination, limit distortion in individual data samples, and preserve utility.
Gordaliza et al. [GDBFL19] try to detect when a binary classification rule lacks fairness and to fight
against the potential discrimination by two fairness definitions (i.e., disparate impact and balanced
error rate). Zemel et al. [ZWS+13] develop an optimization method for maintaining group fairness
and finding a good representation for obfuscating the data. Lum et al. build a statistical framework
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for removing the sensitive information in the features. Calders, Kamiran, and Pechenizkiy [CKP09]
develop an accurate model for which the predictions are independent from a given binary (sensitive)
attribute for ensuring individual fairness. Kang et al. [KHMT20] define individual fairness for graph
mining and develop debiased approaches for tackling fairness problem on graph mining tasks.

Molnar comprehensively summarizes the fundamental interpretable machine learning approaches
[Mol20]. Samek et al. [SWM17] propose two methods to explain predictions of deep learning models.
One method computes the sensitivity of the prediction with respect to changes in the input, and the
other decomposes the decision in terms of the input variables. Lundberg et al. [LNV+18] explore an
explainable machine learning approach for the prevention of hypoxaemia during surgery, which draws
extensive attention in both machine learning and bioinformatics domains. Holzinger [Hol18] compre-
hensively elaborates various explainable machine learning and points out several future directions.

Ren et al. [RZQL20] survey the recent advances in adversarial attacks and defense approaches com-
prehensively. Papernot et al. use network distillation to defend deep neural networks against adversarial
examples [PMW+16]. Goodfellow et al. [GSS14] and Huang et al. [HXSS15] propose to include ad-
versarial examples in the training stage and generate adversarial examples in every step of training to
inject them into the training set. Zugner et al. [ZAG18] introduce the adversarial attack problem on
graphs, which focuses on the training stage of Graph Convolutional Networks. Bagnell et al. develop
a wrapper framework around a broad class of supervised learning algorithms to guarantee the robust
behavior under changes in the input distribution [Bag05].

12.4.4 Data mining for social good
In recent years, data mining techniques have been applied to various settings with significant societal
impacts, under an umbrella term “data mining for social good.” Let us look at an example of the lead
water pipe detection project.

Example 12.11. Due to the corrosion of lead water pipes, Flint’s drinking water in Michigan was
contaminated seriously, with significant consequences to public health. Since most of the records of
water pipe services were incomplete or even lost, city officials were uncertain about the locations of
lead water pipes. The ActiveRemediation project, led by a group of researchers at the University of
Michigan, adopts various machine learning and data mining techniques to guide the pipe replacement
procedure. For instance, it combines XGBoost (an ensemble technique introduced in Chapter 6) with a
hierarchical Bayesian spatial model to estimate the probability that a pipe contains hazardous materials.
Furthermore, active learning technique (introduced in Chapter 7) is used to identify homes for inspec-
tion and to guide the data collection process. Since its first deployment in 2016, the ActiveRemediation
project has achieved an impressive accuracy of 70%, and it has successfully replaced 6228 pipes made
of hazardous metals through 2017.

Numerous efforts have been made by leveraging data mining techniques to make positive societal
impacts on a multitude of applications, ranging from education, public health, combating information
manipulation, social care and urban planning, and public safety, to transportation (see Table 12.4 for
a summary). For example, various data mining models (such as Random Forests and Adaboost) have
been used to identify students who need intervention to graduate high school on time; a deep learning
approach called EpiDeep has been developed to predict the future trend of the epidemic, with im-
proved prediction accuracy and interpretability; the SVM classifier with RBF kernel function has been



12.4 Data mining, people, and society 653

Table 12.4 Applications and related data mining techniques.
Adapted from Shi, Wang, and Fang [SWF20].

Applications Key Data Mining Techniques
Education Random Forests

Logistic Regressions

Public Health Long Short-Term Memory (LSTM)

Autoencoder

Deep Clustering

Combating Information Manipulation SVM with RBF Kernel Function

Markov Random Field (MRF)

Graph Attention Network (GAT)

Social Care and Urban Planning Gradient Boosting Decision Trees

AdaBoost

Transfer Learning

Public Safety Generalized Linear Model (GLM)

Naive Bayes (NB)

Transportation Demand and Supplier Modeling

Multiagent Reinforcement Learning

shown to be effective to detect rumors on social media; a multimodal transfer learning method called
FLORAL has been developed that is capable of transferring semantically related dictionaries between
different cities and enriching feature representations of a target city with knowledge from the source
city; generalized linear models including logistic regression have been used to forecast civil protests
from multiple data sources such as tweets, news, and blogs; and multiagent reinforcement learning
framework has been developed to model the complicated and high-dimensional dynamics between de-
mands and supplies on ride-sharing platforms.

The key challenges of data mining for social good come from the following aspects. First (data
scarcity), it is usually difficult to collect large-scale data from real scenarios, which could impair the
performance of supervised data mining methods. To tackle this challenge, researchers have used unsu-
pervised learning or transfer learning in some current efforts. Second (evaluation), since the primary
goal of data mining for social good is to address real-world problems with significant societal conse-
quence, standard evaluation metrics alone might be insufficient. It is important to develop application
domain-specific evaluation metrics. Third (human-in-the-loop), domain experts such as social workers
and doctors have many critical knowledge and experiences that should be leveraged to further improve
the data mining methods. Hence, how to seamlessly incorporate such human knowledge into the data
mining process and build effective interactions between humans and algorithms is another important
research challenge. Fourth (sustainable deployment), the ultimate goal of data mining for social good
is to develop models that could be deployed in real-word sustainably. However, only a few of the cur-
rent projects have completely achieved this goal. The reasons include the willingness of collaborating
partners and the status of funding.
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Combining T-LSTM with the autoencoder, they introduce an unsupervised approach that can group pa-
tients only by their historical records. Adhikari, Xu, Ramakrishnan, and Prakash [AXRP19] design a
novel deep learning approach called EpiDeep that learns embeddings from the historical data to pre-
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transfer learning method called FLORAL to tackle the data insufficiency challenge in urban computing
task. FLORAL was evaluated on the air quality prediction problem and exhibits superior performance
on data from real scenarios. Avvenuti et al. [ACM+14] propose an emergency management system,
EARS, to discover meaningful tweets about outbreaking crisis events such as earthquakes. With careful
design of feature extraction and detection rules, EARS is capable of detecting earthquake events with
a relatively low false positive and alert interested parties in time. Ramakrishnan et al. [RBM+14] de-
velop the EMBERS system, which aims at forecasting civil protests from multiple data sources such as
tweets, news, blogs, and other sources.

A variety of data mining models such as logistic regression and generalized linear models has been
employed to make predictions for data from different sources, and these predictions are fused to gen-
erate final results. Lin, Zhao, Xu, and Zhou [LZXZ18] propose a multiagent reinforcement learning
framework to model the complicated and high-dimensional dynamics between demands and supplies
on ride-sharing platforms. With a proper design of action, reward, and state, the framework obtains
efficient coordination between different agents in the dynamically changing environment.
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Mathematical background

Notation naming convention
Unless otherwise stated, we use bold upper-case letters for matrices (e.g., A), bold lower-case letters for
vectors (e.g., u), and lower-case letters for scalars (e.g., c). Regarding matrix indexing conventions, we
use rules similar to Numpy. We use A[i, j ] to represent the entry of matrix A at the ith row and the j th
column, A[i, :] to represent the ith row of matrix A, and A[:, j ] to represent the j th column of matrix
A. We use superscript T to represent the transpose of a matrix (i.e., AT is the transpose of matrix A)
and the superscript plus sign to represent the pseudo-inverse of matrix (i.e., A+ is the pseudo-inverse
of matrix A).

A.1 Probability and statistics
A.1.1 PDF of typical distributions
For a continuous random variable, its probability density function (PDF) is a function whose value at
any given sample is the relative likelihood that the random variable would equal that sample. Any PDF
f (x) must satisfy two conditions: (1) ∀x,f (x) ≥ 0 and (2)

∫ +∞
−∞ f (x)dx = 1.

Some PDFs of typical distributions are listed as follows:

• Uniform Distribution: X ∼ U(a,b), where a < b. The mean value of this distribution is (a + b)/2
and the variance is (b − a)2/12. The PDF of a uniform distribution is as follows:

f (x) =
⎧⎨
⎩

1

b − a
, a < x < b

0, others.

• Exponential Distribution: X ∼ E(λ), where λ > 0. The mean value of this distribution is 1/λ. The
variance of this distribution is 1/λ2. The PDF of an exponential distribution is as follows:

f (x) =
{

λe−λx, x ≥ 0

0, others.

• Normal Distribution: X ∼ N(μ,σ), where −∞ < μ < ∞ and σ > 0. The mean value of this
distribution is μ. The variance of this distribution is σ 2. The PDF of a normal distribution is

f (x) = 1√
2πσ

e
− (x−μ)2

2σ2 .
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• Gamma Distribution: X ∼ Ga(α,β), where α > 0 and β > 0 are parameters. The mean value of
this distribution is α/β. The variance of this distribution is α/β2. The PDF of a gamma distribution
is f (x,β,α) = βα

�(α)
xα−1e−βx , x > 0, where �(α) = ∫ ∞

0 tα−1e−t dt is the Gamma function.
• Beta Distribution: X ∼ B(a, b), where 0 < x < 1, a > 0 and b > 0. The mean value of this dis-

tribution is a/(a + b). The variance of this distribution is ab/((a + b)2(a + b + 1)). The PDF of
a beta distribution is f (x, a, b) = �(a+b)

�(a)�(b)
xa−1(1 − x)b−1, a > 0, b > 0, where �(·) is the Gamma

function.

A.1.2 MLE and MAP
Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP) are two statistical meth-
ods for estimating parameters. We have the observed data points X = {xi}, which satisfies the i.i.d.
(independent and identically distributed) condition. The target for both MLE and MAP is to find the
best parameter θ .

In MLE, we assume that there exists a true fixed parameter θ . The process to obtain θ is as follows:

θMLE = arg max
θ

P(X|θ)

= arg max
θ

∏
i

P (xi |θ).
(A.1)

Usually, we use the logarithm form for the above equation as follows:

θMLE = arg max
θ

logP(X|θ)

= arg max
θ

log
∏
i

P (xi |θ)

= arg max
θ

∑
i

logP(xi |θ).

(A.2)

For MAP, it regards θ as a random variable. By Bayes’ rule, we have

P(θ |X) = P(X|θ)P (θ)

P (X)

∝ P(X|θ)P (θ).

(A.3)

Therefore

θMAP = arg max
θ

logP(X|θ)P (θ)

= arg max
θ

log
∏
i

P (xi |θ)P (θ)

= arg max
θ

∑
i

logP(xi |θ) + logP(θ).

(A.4)

We can see that the difference between MLE and MAP is the final term logP(θ), which represents the
prior distribution of the parameter θ .
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A.1.3 Significance test
Significance test is a procedure for assessing the truthfulness of a claim about the observed data. The
claim is also called the null hypothesis (H0). H0 is usually about no difference for a specific value. Its
opposite hypothesis is referred to as the alternative hypothesis (Ha). If Ha states the parameter is larger
or smaller than the value in H0, it is defined as one-side alternative hypothesis. If Ha just claims that
the value is different from that in H0, it is two-side alternative hypothesis. Significance level α is the
probability that we make a mistake when H0 is true but the significance test result suggests that we
should reject H0. In most cases, we select α from {0.001,0.005,0.01,0.05}. Before the significance
test is conducted, the value of α should be determined. p-value is used as the statistic evidence of the
observed data, which is the probability that H0 is true. Therefore if p-value < α, we should reject H0.
Otherwise, we should accept H0.

The procedure of significance test can be summarized as follows:

• State null hypothesis H0 and alternative hypothesis Ha .
• Decide significance level α and select a suitable testing method according to the observed data.
• Find the p-value by using a table or statistical software.
• Compare p-value with α and decide whether H0 should be rejected or accepted.

Here, we introduce two most commonly used testing methods (z-test and t-test) in detail.

z-test
z-test is used when the sample size is large or the variances are known. The data are assumed to have a
normal distribution.

• One-sample z-test. It is used to compare the sample mean x̄ and the population mean μ. z-score =
x̄−μ

σ/
√

n
, where σ is the known population standard deviation and n is the sample size. After obtaining

the z-score, we can find the corresponding p-value with a p-value table or a statistical software. If
the p-value is less than the selected significance level α, we reject H0. Otherwise, we accept H0.

• Two-sample z-test. It is used to compare the sample means of two groups of samples. z-score =
(x̄1−x̄2)−(μ1−μ2)√

σ2
1

n1
+ σ2

2
n2

, where x̄1, x̄2 are sample means, μ1, μ2 are population means, σ1, σ2 are population

standard deviations, and n1, n2 are the sample sizes. The remaining procedure is the same as one
sample z-test.

t-test
t-test is used when the sample size is small (e.g., n < 30) and the variances are unknown. The data are
also assumed to have a normal distribution.

• One-sample t-test. It is used to compare the sample mean x̄ and the population mean μ. t = x̄−μ

s/
√

n
,

where s is the sample standard deviation and n is the sample size. After obtaining t , we can find
the corresponding p-value with a p-value table or statistical software. If the p-value is less than the
selected significance level α, we reject the H0. Otherwise, we accept H0.

• Two-sample t-test. It is used to compare the sample means of two groups of samples. t =
(x̄1−x̄2)−(μ1−μ2)√

s2
1

n1
+ s2

2
n2

, where x̄1, x̄2 are sample means, μ1, μ2 are population means, s1, s2 are sample
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standard deviations, and n1, n2 are the sample sizes. The remaining procedure is the same as one
sample t-test.

A.1.4 Density estimation
The goal of Density Estimation (DE) is to estimate an underlying probability distribution (e.g., proba-
bility density function) of a random variable using a set of observed data. To be specific, given a set of
n observations, x1,x2, . . . ,xn, that are sampled from an unknown distribution P , DE aims to recover
the probability density function generating the data. Density estimation serves as a fundamental and
essential technique in a variety of tasks, such as regression, classification, and clustering.

Existing approaches for density estimation can be characterized into the following two categories,
including (1) nonparametric, where no assumption on the probability distributions is specified, and (2)
parametric, where a particular form of probability density function is given and DE aims to estimate
the corresponding parameters.

For nonparametric density estimation, we do not confine the form of probability distribution, P , with
specified distribution parameters. We introduce four nonparametric methods for density estimation:

• Histogram. Histogram is probably the simplest and most adopted probability density estimator.
For convenience, we assume that xi ∈ [0,1] where i ∈ {1, . . . , n} and P(xi ) = 0 for xi /∈ [0,1]. His-
togram first partitions the region [0,1] into M bins that are defined as intervals of width h = 1

M
.

Therefore given a data point xi and its associated bin B, the probability density can be estimated as

P̂ (xi ) = #data points in B

n

1

h
. (A.5)

The intuition behind histogram is to assign the same probability density for data points that are close
to each other (i.e., in the same bin).

• Naive Estimator. The true probability density P(xi ) can be also defined as

P(xi ) = lim
h→0

1

2h
P {xi − h < x < xi + h}, (A.6)

which can be estimated as P̂ (xi ) = #data points in (xi−h,xi+h)
2nh

. P̂ (xi ) can be further represented as

P̂ (xi ) = 1

nh

n∑
t=1

g(
xi − xt

h
), (A.7)

where g(x) = 1
2 for x ∈ (−1,1), and 0 otherwise. Compared to histogram, the naive estimator has

2h-width bins that are centered at the given data points.
• Kernel Estimator. By replacing the term g(·) in naive estimator with a nonnegative and symmetric

function (called kernel function) K(z) that satisfies

∫ ∞

−∞
K(z)dz = 1, (A.8)
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we obtain the kernel density estimator as follows:

P̂ (z) = 1

nh

n∑
t=1

K(
z − xt

h
), (A.9)

where h is called bandwidth and is a smoothing parameter in kernel density estimator. Intuitively,
the kernel density estimator smooths the input data Xi into small density bumps where the bump
shape is determined by the kernel function and h decides the bump width. The final estimation is
obtained by aggregating all the corresponding values of input data. A common choice of the kernel
function is Gaussian distribution that is (1) nonnegative and (2) symmetric.

• Nearest Neighbor. The nearest neighbor method aims to capture the local information of input data
based on distances. Having defined the distance using L2 norm between data points, d(xi ,xj ) =
‖xi − xj‖2, we denote dk(y) as the distance between y and its kth nearest neighbor. The nearest
neighbor density estimator is as follows:

P̂ (y) = k − 1

2ndk(y)
. (A.10)

Let di,k , K(·) be the distance between xi and its kth nearest data point in {x1, . . . ,xn} \ {xi} and
kernel function, respectively. We further obtain a variant of kernel estimator as

P̂ (y) = 1

n

n∑
i=1

1

hdi,k

K(
y − xi

hdi,k

), (A.11)

where the bandwidth is determined by the distance di,k . We can observe that for region with sparse
data points (i.e., large di,k), the kernel function will be flatter.

For parametric density estimation, we assume the form of the probability density function is known
(e.g., Gaussian) and we aim to estimate the associated parameters of the distribution (e.g., mean, vari-
ance). In general, given a set of n observed data points, i.e., {x1,x2, . . . ,xn} and a specified form of
distribution parameterized by θ , i.e., P(x; θ), the goal is to compute θ̂ such that P(x; θ̂ ) best fits the
observation. According to the input data, parametric density estimation can be (1) supervised where
labeled data samples are available, (2) unsupervised where label information is not available (e.g., clus-
tering), and (3) semisupervised where only a portion of observed data points have labels. We can use
either maximum likelihood estimation (MLE) or maximum a posteriori (MAP) to estimate the corre-
sponding parameters. MLE and MAP are introduced in the previous section.

A.1.5 Bias-variance tradeoff
In statistics, the bias is the difference between the estimator’s expected prediction and the true values
that the estimator aims to predict. High bias represents that the estimator cannot accurately capture
the correlation between input features and the true output, which leads to the problem of underfitting.
Variance, on the other hand, represents the variability of the estimator in terms of prediction. An es-
timator with high variance is very sensitive to small perturbations of input features, which causes the
overfitting problem. In general, we can reduce the bias by increasing the model complexity (e.g., adding
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more learnable parameters); however, higher model complexity might cause the overfitting issue of the
model (i.e., high variance), which results in a tension in terms of simultaneously minimizing both bias
and variance. We leverage bias-variance decomposition to mathematically analyze the generalization
error of a learning algorithm as follows.

Given a set of i.i.d. samples, D = {(x1, y1), . . . , (xn, yn)} that are drawn from P(X,Y ), we denote
the learned model from D as fD(·). The generalization error (i.e., expected test error) in the squared
loss is computed as

E(x,y)∼P

[
(fD(x) − y)2] =

∫
x,y

(fD(x) − y)2Pr(x, y)dxdy. (A.12)

We can think of fD(·) as a random variable of learning model from data set D. Then, we can represent
the expected learning model as f̄ (·). The expected test error can be further decomposed as

Ex,y,D

[
(fD(x) − y)2] = Ex,y,D

[
(fD(x) − f̄ (x) + f̄ (x) − y)2]

= Ex,D

[
(fD(x) − f̄ (x))2] +Ex,y

[
(f̄ (x) − y)2]. (A.13)

Eq. (A.13) holds because Ex,y,D

[
(fD(x) − f̄ (x))(f̄ (x) − y)

] = 0. We find that the first term
Ex,D

[
(fD(x) − f̄ (x))2

]
on the right-hand side is the variance, and similarly, we decompose the second

term Ex,y

[
(f̄ (x) − y)2

]
as

Ex,y

[
(f̄ (x) − y)2] = Ex,y

[
(f̄ (x) − ȳ + ȳ − y)2]

= Ex,y

[
(f̄ (x) − ȳ)2] +Ex,y

[
(ȳ − y)2]. (A.14)

where the second step is due to the fact that Ex,y

[
(f̄ (x) − ȳ)(ȳ − y)

] = 0. The first term Ex,y

[
(f̄ (x) −

ȳ)2
]

represents squared bias, and the second term Ex,y

[
(ȳ − y)2

]
is the data noise that cannot be re-

moved.
From the above decomposition, we observe that the expected test error (i.e., generalization error) is

composed of the bias, variance, and data noise.

A.1.6 Cross-validation and Jackknife
Cross-validation
Data used for training data mining models are usually split into a training set, a validation set, and a
test set. The model with the best performance on the validation set is finally evaluated on the test set.
However, this split method is not suitable for applications with scarce data, because we want to train the
model with as much data as possible. Cross-validation can be used to address this challenge. For k-fold
cross validation, the original data set is split into k chunks. In each time, the model is trained with k − 1
chunks (i.e., folds) and validated on the remaining chunk. This procedure is repeated k times and the
final performance score (e.g., the classification accuracy) is the average of the performance scores from
k runs. If we let k = n, where n is the total number of samples in the data set, this technique is called
leave-one-out cross-validation.
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Jackknife
Given a data set Dn � {(xi , yi)}ni=1, where xi ∈R

d , yi ∈ Y and samples are i.i.d. We would like to fit a
prediction model f (x; θ) : Rd → Y on the data set where θ represents the model parameters. Suppose
that we have a new test point (xn+1, yn+1), the goal of Jackknife is to construct a confidence interval
Cn,α(xn+1) such that the target value yn+1 is covered with a probability of at least 1 − α:

P

{
yn+1 ∈ Cn,α (xn+1)

} ≥ 1 − α. (A.15)

Let us define some notation first. Suppose R= {r1, · · · , rn}, Q̂+
n,α is defined as the (1 − α) quantile

of the empirical distribution of the set R:

Q̂+
n,α(R) � the �(1 − α)(n + 1)�-th smallest value in R. (A.16)

Similarly, Q̂−
n,α denotes the α quantile of the empirical distribution:

Q̂−
n,α(R) � the �α(n + 1)�-th smallest value in R. (A.17)

A straightforward solution to construct the confidence interval is to use the (1 − α) quantile of the
residuals |yi − f (xi; θ̂ )| on the training data set. However, due to the overfitting problem, residuals on
the training data set are typically smaller than the residual on the test point. Therefore the coverage
probability of the interval is likely to be smaller than the target probability 1 − α. To address the over-
fitting problem, Jackknife computes the confidence interval with the leave-one-out residuals. For each
i = 1, · · · , n, the prediction model f (x; θ̂i ) is trained on the data set without ith sample Dn\ {(xi , yi)},
and the leave-one-out residual is computed as ri = |yi − f (xi; θ̂i )|. Then, f (x; θ̂ ) is trained with the
full training data, and the Jackknife interval is

Cn,α (xn+1) = f (xn+1; θ̂ ) ± Q̂+
n,α(R), (A.18)

where R is the set of leave-one-out residuals R = {r1, · · · , rn}.

A.2 Numerical optimization
For clarity, we use superscripts with parentheses (e.g., (t), (t + 1)) to distinguish parameters from
different time steps (i.e., iterations).

A.2.1 Gradient descent
Batch gradient descent
Given a loss function L(θ (t)) and the corresponding gradient information ∇L(θ (t)) with respect to the
model parameters θ (t). A simple yet often effective method to obtain the (local) minima of the loss
function is gradient descent (GD), which is also known as steepest descent,

θ (t+1) = θ (t) − η∇L(θ (t)), (A.19)
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where η > 0 is learning rate representing the step size of update. Note that if the loss function is
evaluated on the whole data set, that is,

L(θ (t)) =
∑

i

Li(θ
(t)), (A.20)

where i is the index of a data point, then the method is called batch gradient descent.

Stochastic gradient descent
In order to (1) reduce the computation cost in each iteration and (2) render randomness into the opti-
mization to escape from the local minima, stochastic gradient descent (SGD) works as follows:

θ (t+1) = θ (t) − η∇Li(θ
(t)), (A.21)

where the loss function is only evaluated on a single data point i that is randomly sampled from the
whole data set. To balance the effectiveness and efficiency, an alternative method named mini batch
gradient descent randomly samples a mini batch (e.g., composed by 32 data points) in each iteration
and then evaluates the loss function and its gradient information on the sampled mini batch to guide the
optimization process.

A.2.2 Variants of gradient descent
Momentum
Momentum prevents the oscillation of update by reusing the update vector from the previous step (i.e.,

θ (t−1)) as follows:


θ (t) = γ
θ (t−1) + η∇L(θ (t))

θ (t+1) = θ (t) − 
θ (t).
(A.22)

Note that based on the selection of data points to calculate the loss and the corresponding gradient,
momentum (and almost all the methods introduced later) works in either the batch, mini-batch, or
stochastic fashions. The mini-batch style is the most common in practice.

Adagrad
Adagrad is designed to adaptively tune the learning rate based on the gradients from previous steps. Its
update formula is as follows:

θ (t+1) = θ (t) − η√
G(t) + ε

∇L(θ (t)), (A.23)

where ε is a smooth hyperparameter to prevent divide-by-zero error, and G(t) is a diagonal matrix
whose element G(t)[i, i] represents the sum of squared gradients with respect to the ith variable up to
time step t . Hence if a variable receives a large gradient in the history, it will get a small learning rate at
the current time step. Note that η√

G(t)+ε
is a matrix in general, and there is a matrix-vector multiplication

between η√
G(t)+ε

and ∇L(θ (t)).
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Adadelta
Adadelta extends the idea of Adagrad by modifying the monotonically increasing sum of squared gra-
dients into an exponentially decaying average. To be specific, the expected sum of squared gradients
E(g2) is computed as follows:

E((g(t))2) = ρE((g(t−1))2) + (1 − ρ)(∇L(θ (t)))2, (A.24)

where ρ is a decay hyperparameter and (∇L(θ (t)))2[i] = (∇L(θ (t))[i])2. By defining root mean square
of gradients as RMS(g(t)) = √

E((g(t))2) + ε, the update of the parameters can be represented as fol-
lows:


θ (t) = η

RMS(g(t))
∇L(θ (t)). (A.25)

In addition, in order to match the unit between 
θ (t) and θ (t), which has been neglected by SGD,
Momentum and other optimizers, Adadelta calibrates the 
θ (t) as


θ (t) = RMS(
θ (t−1))

RMS(g(t))
∇L(θ (t)), (A.26)

where RMS(
θ (t)) =
√

E((
θ (t))2) + ε and

E((
θ (t))2) = ρE((
θ (t−1))2) + (1 − ρ)(
θ (t))2. (A.27)

Finally, Adadelta updates parameters as follows:

θ (t+1) = θ (t) − 
θ (t). (A.28)

RMSprop
RMSprop shares the similar idea as Adadelta, although they are developed independently. RMSprop
updates parameters as follows:

θ (t+1) = θ (t) − η√
E((g(t))2) + ε

∇L(θ (t)), (A.29)

where

E((g(t))2) = ρE((g(t−1))2) + (1 − ρ)(∇L(θ (t)))2. (A.30)

Adam
Adaptive Moment Estimation (Adam) is another method designed to adaptively adjust the learning rate
by estimating two moments. The first and second moments of gradients are calculated as follows:

m(t) = β1m(t−1) + (1 − β1)∇L(θ (t))

v(t) = β2v(t−1) + (1 − β2)(∇L(θ (t)))2.
(A.31)
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With calibration of both two moments as follows:

m̂(t) = m(t)

1 − βt
1

v̂(t) = v(t)

1 − βt
2
,

(A.32)

where βt
1 and βt

2 refer to the t power of β1 and β2, Adam updates parameters as follows:

θ (t+1) = θ (t) − η√
v̂(t) + ε

m̂(t). (A.33)

AdaMax
AdaMax is a variant of Adam based on the infinity norm. Moment vectors are computed as follows:

m(t) = β1m(t−1) + (1 − β1)∇L(θ (t))

v(t) = max(β2v(t−1), |∇L(θ (t))|). (A.34)

Finally AdaMax updates parameters as follows:

θ (t+1) = θ (t) − η

(1 − βt
1)v

(t)
m(t), (A.35)

where βt
1 refers to the t power of β1.

A.2.3 Newton’s method
Newton’s method
Given a function f (θ(t)) with respect to a single variable θ , Newton’s method aims to find the root of
the function f (θ(t)) = 0 by following approximation:

θ(t+1) = θ(t) − f (θ(t))

f ′(θ(t))
. (A.36)

Geometrically, the updated θ(t+1) is the intersection of the x-axis and the tangent of the function f at
the old θ(t).

Given a loss function L(θ (t)) with respect to parameters θ (t), both global and local minima satisfy
∇L(θ (t)) = 0. Hence by extending Eq. (A.36) into multivariable scenario and replacing f (θ(t)) with
∇L(θ (t)), the Newton’s method takes the form as follows:

θ (t+1) = θ (t) − H−1∇L(θ (t)), (A.37)

where H is the Hessian matrix of L with respect to the entries of θ (t). Newton’s method works well
when the problem is convex; that is, the Hessian matrix is positive definite.
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Quasi-Newton method
Notice that searching the extrema for an optimization problem in Eq. (A.37) requires the availability of
the Hessian matrix H, which may be violated in some scenarios, and the inverse matrix of Hessian is
expensive to compute. In response, a family of approximations of the Hessian matrix are proposed and
they are named as quasi-Newton methods.

The general formula of quasi-Newton methods is as follows:

θ (t+1) ← θ (t) − (B(t))−1∇L(θ (t)), (A.38)

where B(t) is the approximation of the Hessian matrix H. A good approximation of Hessian matrix (i.e.,
B) should satisfy the following condition:

B(t+1)(θ (t+1) − θ (t)) = ∇L(θ (t+1)) − ∇L(θ (t)), (A.39)

which is known as the secant equation. Before we move forward, let us first consider a 1-D scenario
from Eq. (A.39) that

f ′′(θ(t+1)) = f ′(θ(t+1)) − f ′(θ(t))

θ (t+1) − θ(t)
. (A.40)

Hence we can easily rewrite the 1-D version of Eq. (A.38) based on Eq. (A.40) as follows:

θ(t+1) ← θ(t) − θ(t) − θ(t−1)

f ′(θ(t)) − f ′(θ(t−1))
f ′(θ(t)), (A.41)

which is known as the secant method, a member of the quasi-Newton methods. In fact, various quasi-
Newton methods generalize the secant method into a multidimension scenario. Here, we introduce
one of the most commonly used methods. It is called the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method. For other quasi-Newton methods, please refer to the bibliographic notes.

Despite of the success of the secant method in one-dimensional scenario, grafting it into multidi-
mensional scenario is not trivial since it is underdetermined to obtain B from Eq. (A.39). Since the
matrix inverse operation is time-consuming, we directly study the inverse matrix B−1 as follows:

min
(B(t+1))−1

||(B(t+1))−1 − (B(t))−1||F
s.t. ((B(t+1))−1)T = (B(t+1))−1


θ (t) = (B(t+1))−1y(t),

(A.42)

where 
θ (t) = θ (t+1) − θ (t), y(t) = ∇L(θ (t+1)) − ∇L(θ (t)), and || · ||F denotes the Frobenius norm.
The first constraint of Eq. (A.42) requires the inverse matrix of B to be symmetric, and the second
constraint is the secant equation (i.e., Eq. (A.39)). In order to keep symmetric and ensure the closeness
between (B(t+1))−1 and (B(t))−1, the BFGS method incrementally updates B by two rank-one matrices
as follows:

B(t+1) = B(t) + U(t) + V(t) = B(t) + αuuT + βvvT , (A.43)
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where u and v are two linearly independent vectors and α and β are two constants. Recall the secant
equation from Eq. (A.39) we have

B(t)
θ (t) + αuuT 
θ (t) + βvvT 
θ (t) = y(t). (A.44)

By choosing u = y(t) and v = B(t)
θ (t) we obtain that α = 1
(y(t))T 
θ (t) and β = −1

(
θ (t))T B(t)
θ (t) . Hence

Eq. (A.43) can be rewritten as follows:

B(t+1) = B(t) + y(t)(y(t))T

(y(t))T 
θ (t)
− B(t)
θ (t)(
θ (t))T B(t)

(
θ (t))T B(t)
θ (t)
. (A.45)

To incrementally update B−1 to prevent multiple matrix inverse operations, based on the Sherman–
Morrison–Woodbury formula, we have

(B(t+1))−1 =
(

I − 
θ (t)(y(t))T

(y(t))T 
θ (t)

)
(B(t))−1

(
I − y(t)(
θ (t))T

(y(t))T 
θ (t)

)
+ 
θ (t)(
θ (t))T

(y(t))T 
θ (t)
. (A.46)

A.2.4 Coordinate descent
Coordinate descent is a technique that solves the problem by breaking up the whole into parts. Specif-
ically, given a loss function L(θ) with respect to the parameters θ , in each iteration, we minimize the
loss function with respect to the first parameter θ[1], and then minimize it with respect to the second
parameter θ [2], and repeat this process to all the parameters in a cycling fashion. A more general prac-
tice extended from coordinate descent is named as block coordinate descent, which minimizes the loss
function with respect to a subset of parameters.

A typical example where coordinate descent works well is sparse coding whose loss function is as
follows:

L(�,�) = ||X − ��||2F + λ
∑

i

||�[i]||1, (A.47)

where the training data X is aimed to be reconstructed by the coefficient matrix � and a set of overcom-
plete basis vectors (i.e., the columns of �). The sparse coding problem requires the coefficients � to
have few nonzero entries or have few entries far from zero by the second term of Eq. (A.47). The prob-
lem itself is not convex with respect to � and �. However, if we fix either one of them and minimize
the loss function with respect to the other one, the problem is convex. Hence through block coordi-
nate descent method, it is promising to solve this problem more efficiently by updating two parameters
alternatively.

A.2.5 Quadratic programming
If the objective function of an optimization problem is quadratic and the constraints are affine, this prob-
lem is named as a quadratic program (QP). Generally, objective functions of the quadratic programs
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fall into the following form:

min a + bT x + 1

2
xT Cx

s.t. Px ≤ d

Qx = e.

(A.48)

Without loss of generality, we can assume that matrix C is symmetric.
A typical example is constrained regression analysis

min
x

||Ax − b||22
s.t. l[i] ≤ x[i] ≤ u[i],∀i,

(A.49)

which is equivalent to

min
x

xT AT Ax − 2bT Ax + bT b

s.t. l[i] ≤ x[i] ≤ u[i],∀i.
(A.50)

There are versatile solutions toward various QPs. In this section, we provide a solution toward the
equality-constrained QPs (EQPs) and solutions for the general QPs can be found in the bibliographic
notes. EQPs are QPs where only equality constraints exist, and their objective functions fall into the
following form:

min bT x + 1

2
xT Cx

s.t. Qx = e,
(A.51)

where the constant term is dropped. If x∗ is a solution of an EQP, a necessary condition is to have a λ∗
vector satisfying the following KKT system:[

C QT

Q 0

][−p
λ∗

]
=

[
b + Cx
Qx − e

]
, (A.52)

where x is an estimation of the solution and x∗ = x + p. If Q is positive definite, based on Eq. (A.52)
we can obtain λ∗ from the following equation:

(QC−1QT )λ∗ = QC−1b + e. (A.53)

Hence p can be obtained from the following equation:

Cp = QT λ∗ − b − Cx, (A.54)

by which we can obtain the final solution x∗.
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A.3 Matrix and linear algebra
A.3.1 Linear system Ax = b
In this section, we discuss three types of linear systems Ax = b: (1) A ∈ R

n×n is a standard square
matrix, (2) A ∈R

n×m, n > m, A has more rows than columns (overdetermined), and (3) A ∈R
n×m,

n < m, A has less rows than columns (underdetermined).

Standard square system
If A is invertible, we could directly solve it with the matrix inverse A−1:

Ax = b ⇒ x = A−1b. (A.55)

Iterative methods provide an indirect way to solve the linear system. Widely used iterative methods
include Jacobi method, Richardson method, Krylov subspace methods, and so on. The key idea of
iterative methods is to choose suitable S and d and set up an iteration in the form of

x(k+1) = Sx(k) + d. (A.56)

In each iteration, the residual error
∥∥x(k) − x∗∥∥ is reduced where x∗ is the solution to Ax = b. After

several iterations, x(k) converges to x∗.
A preconditioning method aims to find a simpler matrix P, which is close to A, that is, (A − P) has

low rank or small norm. Then, we solve P−1Ax = P−1b instead of Ax = b because working on P−1A
is usually faster. Some typical choices of P include the diagonal matrix with the main diagonal of A,
triangular matrix copying the corresponding part of A, and so on.

Overdetermined system
Suppose A has independent columns rank(A) = m, we have

Ax = b ⇐⇒ A�Ax = A�b ⇐⇒ x =
(

A�A
)−1

A�b, (A.57)

which gives the solution minimizing ‖Ax − b‖2.
When A�A is not invertible, the least square solution is x = A+b where A+ is the pseudo-inverse

of A. Specifically, we first perform singular value decomposition (SVD) on A and obtain A = U�VT,
then we have A+ = V�−1U�.

Underdetermined system
For underdetermined system, there are many least square solutions, and it turns out that A+b is the
least square solution with the smallest norm ‖x‖2. Similar to the overdetermined system, when A has
independent rows rank(A) = n, we have

Ax = b ⇐⇒ x = A� (
AA�)−1

b. (A.58)

In some cases, we want to regularize the linear system with an l2 penalty term. Thus our optimization
goal becomes

Minimize ‖Ax − b‖2 + δ2‖x‖2
2, (A.59)
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where δ2 is the weight of the penalty term. It is equivalent to solve
(
A�A + δ2I

)
x = A�b, and this

approach is called ridge regression.

A.3.2 Norms of vectors and matrices
Norms of vectors
The norm of a vector is defined as a function mapping from vector space V to a real value: ‖ · ‖ : V →
R. Given a vector v, it measures the length of the vector ‖v‖. For each v,w ∈ V and c ∈ R, these three
properties always hold:

• Positive definite: ‖v‖ ≥ 0 and ‖v‖ = 0 ⇐⇒ v = 0.
• Absolutely homogeneous: ‖cv‖ = |c|‖v‖, where |c| is the absolute value of c.
• Triangle inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖.

Here, we give the definitions of some widely used vector norms:

• �1 norm (Manhattan Norm): ‖v‖1 = ∑
i |v[i]|.

• �2 norm (Euclidean Norm): ‖v‖2 =
√∑

i v[i]2 = √
vTv.

• �∞ norm: ‖v‖∞ = maxi |v[i]|.
Norms of matrices
Induced matrix norm could be induced by the vector norm with:

‖A‖ = max
v�=0

‖Av‖
‖v‖ . (A.60)

In addition to the properties that the vector norm satisfies, induced matrix norm has the following
properties, that is, for all A, B and v, ‖Av‖ ≤ ‖A‖‖v‖ and ‖AB‖ ≤ ‖A‖‖B‖.

Here, we introduce how to compute some typical matrix norms:

• �1 norm is the largest �1 norm of the columns of A: ‖A‖1 = maxj

∑
i |A[i, j ]|.

• �2 norm is the largest singular value of A: ‖A‖2 =
√

maxeig
(
AT A

)
, where maxeig (·) denotes the

maximum eigenvalue.
• �∞ norm is the largest �1 norm of the rows of A: ‖A‖∞ = maxi

∑
j |A[i, j ]|.

• Frobenius norm comes from the singular values σi (i = 1, ...r) of A, that is, ‖A‖2
F = σ 2

1 + · · · + σ 2
r ,

where r is the rank of matrix A. It could also be derived with: ‖A‖2
F = ∑

ij |A[i, j ]|2.

A.3.3 Matrix decompositions
Eigenvalues and eigendecomposition
Given a square matrix A ∈ R

n×n, if λ ∈R and x ∈R
n\{0} satisfy that Ax = λx, we call λ an eigenvalue

of A and x is the corresponding eigenvector.1 From Ax = λx, we have (A − λI)x = 0. Since x is not

1 We often make eigenvectors have unit length.
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a zero vector, we have that A − λI is not invertible, and its determinant must be zero. To compute all
the eigenvalues of A, we need to solve the roots of equation det(A − λI) = 0. Since the equation has n

degrees for λ, there are n eigenvalues in total, with possible duplicates.
There are some useful relationships between eigenvalues and matrix’s traces and determinants:

• The sum of eigenvalues equals to the trace: tr(A) = ∑n
i=1 λi .

• The product of eigenvalues equals to the determinant: det(A) = ∏n
i=1 λi .

When matrix A has n independent eigenvectors, it could be decomposed into

A = X�X−1, (A.61)

where the columns of X are the n eigenvectors of A, and � is a diagonal matrix whose diagonal
entries are the n eigenvalues of A. This decomposition is named as eigendecomposition. Notice the
symmetric matrix always has n independent eigenvectors and could always be eigendecomposed. From
A = X�X−1, we have Ak = X�kX−1, which means the eigenvalues of Ak are λk

1, · · · , λk
n. Besides, for

each v ∈R
n, it could be written as v = c1x1 + · · · + cnxn. This gives an easier way to compute Akv:

Akv = c1λ
k
1x1 + · · · + cnλ

k
nxn. (A.62)

Singular value decomposition (SVD)
Given a matrix Am×n with rank r , the SVD of A is written as

A = U�VT, (A.63)

where U ∈R
m×n is the orthogonal matrix containing orthonormal eigenvectors of AAT, V ∈R

n×n is
the orthogonal matrix containing orthonormal eigenvectors of ATA, � ∈ R

m×n is a matrix that satisfies
�ii = σi , i = 1, · · · , r , and the other entries are all zeros. Here, we call σ1, · · · , σr singular values. The
singular values are all positive and in the descending order. Notice that different from eigendecompo-
sition, SVD is applicable for any rectangle matrix.

To compute SVD, we first perform eigendecomposition on ATA and obtain the orthonormal
eigenvectors v1, · · · ,vr . From the form of SVD, we know that Avk = ukσk , k = 1, · · · , r . Hence
uk = Avk

σk
, k = 1, · · · , r . For the last n − r columns of V, we have Avk = 0, k = r + 1, · · · , n. There-

fore vr+1, · · · ,vn are the orthonormal basis from the nullspace of A. Similarly, ur+1, · · · ,um are the
orthonormal basis from the nullspace of AT.

With SVD, A could be written as the sum of rank one matrices:

A = σ1u1vT
1 + · · · + σrurvT

r . (A.64)

This provides important factors for matrix approximation. Specifically, singular values σ1, σ2, · · · , σr

are ordered according to its importance. The first term σ1u1vT
1 is the closest rank one matrix to A, which

means ‖A − B‖ achieves the minimum value in terms of both l2 norm and Frobenius norm only if rank
one matrix B = σ1u1vT

1 . Furthermore, Ak = σ1u1vT
1 + · · · + σrukvT

k is the closest rank k approximation
to A.
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A.3.4 Subspace
Subspace of a vector space is an important concept in linear algebra. In this section, we first introduce
the concept of the vector space and then introduce the concept of the subspace. We also present several
typical examples of subspaces.

Vector space
Formally, a vector space V S is a set of vectors, such that

1. the addition of any two vectors ∀x,y ∈ V S satisfies x + y ∈ V S;
2. the multiplication of any vector ∀x ∈ V S and any real number ∀λ ∈R satisfies λ · x ∈ V S.

Subspace
The definition of the subspace is similar to the vector space.

Formally, a subspace SS of a vector space V S satisfies the following:

1. it is a nonempty subset of V S;
2. the addition of any two vectors ∀x,y ∈ SS satisfies x + y ∈ SS;
3. the multiplication of any vector ∀x ∈ SS and any real number ∀λ ∈R satisfies λ · x ∈ SS.

According to the above definition of the subspace, it is obvious that there are two trivial subspaces of
a vector space V S: zero vector space Z, which only contains the zero vector (i.e., the origin), and the
vector space itself V S, which contains all the vectors within V S.

In the Rn space, in addition to the two trivial spaces: the set of 0 and R
n, any hyperplane containing

0 is also a subspace of Rn. However, a hyperplane that does not contain 0 is not a subspace of Rn. For
example, in the R

2 space, any line passing through 0 is a subspace of R2, but a line that does not pass
through 0 is not a subspace of R2.

The concept of subspace is closely related to the concept of span. Formally, given a set of vectors
S, then its span span(S) is a set of vectors that contains all of the linear combinations of vectors in S:

span(S) = {
k∑

i=1

λixi |k ∈ N,xi ∈ S,λi ∈ R}. (A.65)

A subspace can be constructed from a set of vectors. Given a set of vectors S = {x1, · · · ,xm}, where
∀xi ∈ V S and i ∈ [1, · · · ,m], then span(S) is a subspace of V S. On the other hand, for any subspace
SS, we could always find a set of vectors S, such that its span is SS: span(S) = SS.

Given a matrix A ∈ R
m×n, the span of its rows is a subspace of Rm, and the span of its columns is a

subspace of Rn. These two subspaces are referred to as the row space and column space, respectively.
Given a linear equation Ax = 0, where A ∈ R

m×n and x ∈ R
n, the solution of this equation is called

null space and denoted as null(A), which is a subspace of Rn:

null(A) = {x|Ax = 0}. (A.66)
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A.3.5 Orthogonality
The concept of orthogonality in linear algebra is a generalization of perpendicularity in elementary
geometry, which denotes the relation between two lines where they meet at 90 degrees. Orthogonality
is an important concept for studying the space and subspace.

Orthogonal vectors
Two vectors x ∈ R

n and y ∈ R
n are said to be orthogonal if their inner product is zero:

xT y =
n∑

i=1

x[i] · y[i] = 0. (A.67)

If xT y = 0, then the angle between x and y is 90◦; if xT y < 0, then the angle is greater than 90◦; if
xT y > 0, then the angle is less than 90◦.

A useful fact of the orthogonality is that if nonzero vectors {x1, · · · ,xm} are mutually orthogonal,
then they are linearly independent.

If we further let x and y to be unit vectors: ||x||2 = ||y||2 = 1, then they are orthonormal vectors.
When studying geometry or linear function within a subspace or a space, it is always convenient to

find a set of basis vectors of the subspace or space to make the calculation simple. For example, any
vector x ∈R

2, can be easily represented by a linear combination of the coordinate vectors e1 = [1,0]T
and e2 = [0,1]T , which represent the x-axis and y-axis: x = x[1]e1 + x[2]e2. In addition to the natural
orthonormal basis (i.e., coordinate vectors), there are also other popular orthonormal basis, such as
v1 = [cos θ, sin θ ]T and v2 = [− sin θ, cos θ ]T .

Orthogonal subspaces
Given two subspaces SS1 and SS2, these two subspaces are orthogonal, if any vector x in SS1 and any
vector y in SS2 are orthogonal: xT y = 0, ∀x ∈ SS1, ∀y ∈ SS2.

In the R2 space, all the lines passing through the zero vector 0 are its subspaces. If the angle between
the two lines is 90◦, then they are orthogonal. Besides, the zero subspace {0} is orthogonal to all the
subspaces of R2.

There are two closely related subspaces of Ax = 0: the row space of A and the null space of A.
These two subspaces are orthogonal to each other. This is because the inner product of any row of A
and any vector x∗ satisfying Ax∗ = 0 is zero: A[i, :]x = 0.

Orthogonal complement is an important concept related to the orthogonal subspace. Formally, given
a subspace SS of the vector space V S, the space of all vectors which is orthogonal to SS is called the
orthogonal complement of SS, which is denoted as SS⊥.

According to this terminology, it is obvious that the null space of A is the orthogonal complement
for the row space of A.

An interesting property of the subspace SS of V S and its orthogonal complement SS⊥ is that the
dimension of V S equals to the dimension of SS adds the dimension of SS⊥.
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A.4 Concepts and tools from signal processing
A.4.1 Entropy
In information theory, the entropy of a random variable (r.v.) measures the amount of uncertainty of
this random variable. Let X be a discrete random variable with the probability mass function (PMF)
pX(x) = Pr(X = x, x ∈X ). The entropy H(X) of the discrete random variable X is summarized as
follows:

H(X) = −
∑
x

pX(x) logpX(x) = Ex∼pX
[− logpX(x)]. (A.68)

In the case of continuous random variable, the amount of uncertainty of such random variable is
called differential entropy. Let Y be a continuous random variable with PDF pY (y), the differential
entropy H(Y) of the continuous random variable Y is summarized as follows:

H(Y) = −
∫

y

pY (y) logpY (y)dx = Ey∼pY
[− logpY (y)]. (A.69)

Remarks.

• We assume 0 log 0 = 0. The rationale behind this assumption is due to limx→0 x logx = 0.
• If the base of logarithm is 2, the entropy is measured in bits. If the base of logarithm is e, the entropy

is measured in nats. Unless otherwise specified, the base of logarithm is 2 through this section.

Other commonly used entropy measures.

• Joint Entropy. Given a joint random variable (X,Y ) of two random variables X and Y with PMF
pXY (x, y), the joint entropy H(X,Y ) of the joint random variable (X,Y ) is summarized as follows:

H(X,Y ) = −
∑
x,y

pXY (x, y) logpXY (x, y) = E(x,y)∼pXY
[− logpXY (x, y)]. (A.70)

• Conditional Entropy. Given two random variables X and Y , the conditional entropy H(X|Y) of the
random variable X given the random variable Y is summarized as follows:

H(X|Y) = −
∑
x,y

pXY (x, y) log
pXY (x, y)

pY (y)
= E(x,y)∼pXY

[− log
pXY (x, y)

pY (y)
], (A.71)

where pY (y) is the marginal PMF of random variable Y .

Properties of entropy.

• Entropy is always nonnegative, that is, H(X) ≥ 0,∀X.
• Entropy follows the chain rule, that is, H(X,Y ) = H(X) + H(Y |X).
• Entropy H(X) is a concave function with respect to PMF pX(x).
• Entropy achieves the maximum value when the distribution is uniform, that is, H(X) ≤ logn and

H(X) = logn if pX(x) = 1
n

.
• If X and Y are two independent random variables,
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• its joint entropy is H(X + Y) = H(X) + H(Y).
• its conditional entropy is H(X|Y) = H(X).

• Entropy will not increase with the information on another random variable, that is, H(X|Y) ≤
H(X).

• (Fano’s inequality) The intuition of Fano’s inequality is that the probability of making a wrong
estimate X̃ of a random variable X when using another random variable Y depends on how certain
we are about X given Y . Given a Markov chain X → Y → X̃, where X̃ is an estimation of X by
applying some function on Y (i.e., f (Y ) = X̃), let e represent the occurrence of X �= X̃ and P(e) =
P(X �= X̃), then we have

H(X|Y) ≤ H(X|X̃) ≤ H(e) + P(e) log |X |, (A.72)

where X is the support set that includes all possible values of X, and |X | is the cardinality of X.

A.4.2 Kullback-Leibler divergence (KL-divergence)
In information theory, the Kullback-Leibler divergence (KL-divergence) or relative entropy is a measure
of the difference between two probability distributions. Given a random variable X, a true distribution
pX

2 and a target distribution qX, the KL-divergence DKL(pX||qX) of distributions pX and qX is sum-
marized as follows:

DKL(pX||qX) = Ex∼pX
[log

pX(x)

qX(x)
]

=
⎧⎨
⎩

∑
x pX(x) log pX(x)

qX(x)
, X is discrete r.v.∫

x∼pX
pX(x) log pX(x)

qX(x)
dx, X is continuous r.v.

(A.73)

Remarks. We assume that the following conventions hold in order to validate the definition of KL-
divergence.

• 0 log 0
0 = 0

• 0 log 0
qX(x)

= 0

• pX(x) log pX(x)
0 = ∞

With that being said, if for some value in the true distribution x ∼ pX(x) with pX(x) > 0 and
qX(x) = 0, we have DKL(pX||qX) = ∞.

Properties of KL-divergence.

• KL-divergence is always nonnegative, that is, DKL(p||q) ≥ 0,∀p,q.
• KL-divergence is not symmetric, that is, DKL(p||q) �= DKL(q||p).
• KL-divergence is not a metric because it is not symmetric and does not follow triangle inequality.
• KL-divergence is 0 if and only if pX = qX for a random variable X, that is, pX = qX ⇔

DKL(p||q) = 0.

2 Here, we violate our general naming conventions and use italic lowercase letters to represent a probability distribution.
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• KL-divergence follows chain rule, that is, DKL(pXY ||qXY ) = DKL(pX||qX) + DKL(pY |X||qY |X).
• KL-divergence is a convex function with respect to PMFs pX and qX.

A.4.3 Mutual information
In information theory, the mutual information of two random variables measures the amount of in-
formation we gain on one random variable with the prior knowledge on observing the other random
variable. Given two random variables X and Y , the mutual information I (X;Y) of random variables X

and Y is summarized as follows:

I (X;Y) = E(x,y)∼pXY
[log

pXY (x, y)

pX(x)pY (x)
]

=
⎧⎨
⎩

∑
(x,y) pXY (x, y) log pXY (x,y)

pX(x)pY (x)
, X,Y are discrete r.v.∫

(x,y)∼pXY
pXY (x, y) log pXY (x,y)

pX(x)pY (x)
dxdy, X,Y are continuous r.v.

(A.74)

where pXY is the joint distribution of the joint random variable (X,Y ), pX is the marginal distribution
of random variable X, and pY is the marginal distribution of random variable Y .

Relationship between mutual information and KL-divergence. In terms of KL-divergence, mutual
information I (X;Y) of two random variables X and Y is equivalent to the KL-divergence between
the joint distribution pXY and the product of their marginal distributions pX ⊗ pY . The relationship
between mutual information and KL-divergence is summarized as follows:

I (X;Y) = DKL(pXY ||pX ⊗ pY ). (A.75)

Relationship between mutual information and entropy. In terms of entropy, mutual information of
two random variables measures how much uncertainty we lose in one random variable by observing
the other random variable. The relationship between mutual information and entropy is summarized as
follows:

I (X;Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) = H(X) + H(Y) − H(X,Y ), (A.76)

where the last equality holds by applying the chain rule of entropy.

Conditional mutual information. Given three random variables X, Y , and Z, the conditional mutual
information of the random variables X and Y given the random variable Z is summarized as follows:

I (X;Y |Z) = E(x,y,z)∼pXYZ
[log

pX,Y |Z(x, y|z)
pX|Z(x|z)pY |Z(y, z)

] = H(X|Z) − H(X|Y,Z). (A.77)

Properties of mutual information.

• Mutual information is nonnegative, that is, I (X;Y) ≥ 0, ∀X,Y .
• Mutual information is symmetric, that is, I (X;Y) = I (Y ;X).
• Mutual information of a random variable with itself is the entropy of that random variable, that is,

I (X;X) = H(X).
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• Mutual information of two independent random variables is 0, that is, I (X;Y) = 0 if X is indepen-
dent to Y .

• Mutual information follows the chain rule, that is, I (X;Y,Z) = I (X;Y) + I (X;Z|Y), where
I (X;Y,Z) is the mutual information of X and joint random variable (Y,Z).

• Data processing inequality. Suppose the random variable Y is obtained by applying some function
f on the random variable X (i.e., Y = f (X)) and the random variable Z is obtained by processing
the random variable Y (e.g., applying some function g on the random variable Y to have Z = g(Y )).
Data processing inequality guarantees that the mutual information between X and Z can never
be larger than the mutual information between X and Y . Mathematically, given a Markov chain
X → Y → Z of three random variables, we have

I (X;Z) ≤ I (X;Y), (A.78)

where the equality holds if and only if I (X;Y |Z) = 0.
• The variation of information of two random variables, which is a metric, can be inferred by their

mutual information and joint entropy, that is, d(X,Y ) = H(X,Y ) − I (X;Y).

A.4.4 Discrete Fourier transform (DFT) and fast Fourier transform (FFT)
Unless otherwise specified, we use sequence to represent discrete-time sequence in this section and
use N to represent the length of a finite discrete-time sequence or the length of a period of a periodic
discrete-time sequence.

Finite sequence. A finite sequence x[n] of length N is the sequence of the following form3:

x[n] =
{

some number, 0 ≤ n ≤ N − 1

0, otherwise.
(A.79)

Relationship between finite sequence and periodic sequence. It is intuitive that any finite sequence
x[n] is associated with a corresponding periodic sequence x̃[n], that is,

x̃[n] =
+∞∑

t=−∞
x[n − tN ] = x[(n mod. N)], (A.80)

where mod. is the modulo operation.
Similarly, a finite sequence x[n] can always be extracted from its corresponding periodic sequence

x̃[n], that is,

x[n] =
{

x̃[n], n ∈ {0, . . . ,N − 1}
0, otherwise.

(A.81)

3 Here, we violate the general naming conventions. We use (1) italic lowercase letters to represent a sequence of signals and (2)
[i] to represent the ith position in this sequence.
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Discrete Fourier series (DFS) of a periodic sequence. Given a periodic sequence x̃[n] with period
N , the analysis and synthesis equations of the DFS X̃[k] (k ∈ {0, . . . ,N − 1} of the periodic sequence
x̃[n] is summarized as follows4:

Analysis equation: X̃[k] =
N−1∑
n=0

e−i(2π/N)knx̃[n]

Synthesis equation: x̃[n] =
N−1∑
k=0

ei(2π/N)knX̃[k].
(A.82)

DFT of a finite sequence. Since a finite sequence x[n] is one period of a periodic sequence x̃[n], in
order to maintain the duality between time and frequency domains, the DFT X[k] of the finite sequence
x[n] corresponds to one period of DFS X̃[k] of its corresponding periodic sequence x̃[n]. As a result,
the analysis and synthesis equations of the DFT X[k] of a finite sequence x[n] is summarized as follows:

Analysis equation: X[k] =
N−1∑
n=0

e−i(2π/N)knx[n]

Synthesis equation: x[n] =
N−1∑
k=0

ei(2π/N)knX[k].
(A.83)

It is worth mentioning that the matrix W with W[i, j ] = e−i(2π/N)ij is called the DFT matrix.

Properties of DFT.

• Linearity. Given two finite sequences x1[n], x2[n] and their associated DFT X1[k], X2[k], if x3[n] =
ax1[n] + bx2[n], the DFT of x3[n] is

X3[k] = aX1[k] + bX2[k]. (A.84)

• Given a finite sequence x[n] and its DFT X[k], if we have a circular shift of length m in the time
window and get the new finite sequence x1[n] = x[((n − m) mod. N)], the DFT of the new finite
sequence x1[k] is

X1[k] = e−i(2π/N)kmX[k]. (A.85)

• The vector uk = [
e−i(2π/N)k0, e−i(2π/N)k1, . . . , e−i(2π/N)k(N−1)

]
forms an orthogonal basis over the

set of N -dimensional complex vectors, i.e., uT
k u∗

k = N .
• Parseval’s theorem. Given two sequences x1[n] and x2[n] and their associated DFT X1[k] and X2[k],

we have
N−1∑
n=0

x1[n]x∗
2 [n] = 1

N

N−1∑
k=0

X1[k]X∗
2[k], (A.86)

4 Here, we violate the general naming conventions and use italic uppercase letters to represent a sequence in frequency domain.
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where x∗
2 [n] is the conjugate transpose of the sequence x2[n] and X∗

2[k] is the conjugate transpose
of X2[k].

• Duality. Given a sequence x[n] and its DFT X[k], the DFT of X[k] is Nx[(−k mod. N)]
• For a finite sequence x[n] and its DFT X[k], if all values are real numbers, we have

X[k] = X∗[(−k mod. N)], (A.87)

which is called even symmetry. Here, X∗[k] is the conjugate transpose of X[k]; if all values are
imaginary numbers, we have

X[k] = −X∗[(−k mod. N)], (A.88)

which is called odd symmetry.
• Given three finite sequences x1[n], x2[n], and x3[n] and their corresponding DFT X1[k], X2[k], and

X3[k], if X3[k] = X1[k]X2[k], we have

x3[n] =
N−1∑
m=0

x2[m]x1[((n − m) mod. N)]. (A.89)

FFT. FFT is a set of algorithms that efficiently compute the DFT of a finite sequence, based on theories
ranging from arithmetic to number theory. FFT is widely applied in many real world scenarios like
mathematics, engineering and music. The key principle of FFT is to decompose the computation of the
DFT of a length-N sequence into computing several smaller subsequences. Some representative FFT
algorithms include the prime-factor algorithm (PFA), the Cooley-Tuck algorithm, the Goertzel’s algo-
rithm, and the Winograd’s algorithm. For details of FFT algorithms, please refer to the bibliographic
notes.

A.5 Bibliographic notes
Probability density function (PDF) and significance test are introduced in many statistic books (Larsen
and Marx [LM05] and Casella and Berger [CB21]). For MLE and MAP, they are covered in many
machine learning books (Bishop [Bis06b] and James, Witten, Hastie, and Tibshirani [JWHT]). Cross-
validation is described by Bishop [Bis06b], and Jackknife is introduced by Barber, Candes, Ramdas,
and Tibshirani [BCRT21]. GD, SGD, variants of GD, coordinate descent, and Newton’s method are
introduced in many primary and advanced books such as Goodfellow, Bengio, and Courville [GBC16]
and Boyd, Boyd, and Vandenberghe [BBV04]. Dennis and Moré provide a detailed survey of Quasi-
Newton methods [DM77]. For quadratic programming (QP), it is systematically introduced by Boyd,
Boyd, and Vandenberghe [BBV04]. The solutions for QP are versatile such as active set methods (Murty
and Yu [MY88]), Interior-point methods (Wright [Wri97]), and many more. For basic concepts, the-
ories, and applications of linear algebra, they are comprehensively introduced by Strang [Str93,Str19]
and Leon, Bica, and Hohn [LBH06].

Density estimation, which aims to approximate the underlying probability density function, has been
an essential topic in statistics textbooks (Silverman [Sil18] and Devroye and Lugosi [DL12]). Density
estimation using kernel tricks is extensively investigated in related research works (Botev, Grotowski,
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and Kroese [BGK10] and Sheather and Jones [SJ91]). In addition to shallow methods, neural networks-
based density estimation approaches are well explored in a variety of applications (Likas [Lik01] and
Magdon-Ismail and Atiya [MIA99]). For instance, Magdon-Ismail and Atiya leveraged neural networks
for density estimation [MIA99]. Density estimation is adopted in a variety of high-impact applications,
including wind power forecasting (He and Li [HL18]) and predicting data distribution for large-scale
sensor network (Nakamura and Hasegawa [NH16]). The bias-variance trade-off represents a com-
peting scenario where it is impossible to simultaneously reduce learning model’s bias and variance.
Many efforts have been devoted to understanding the bias-variance trade-off (Belkin, Hsu, Ma, and
Mandal [BHMM19]). For example, Yang et al. re-investigated the bias-variance problem in neural net-
works [YYY+20]. Li et al. incorporated the bias-variance trade-off to improve the performance of face
recognition [LSG11].

Many information theory–related books (e.g., Cover [Cov99]) cover the fundamental concepts of
entropy, Kullback-Leibler (KL)-divergence and mutual information. Oppenheim [Opp99] systemati-
cally studied discrete Fourier transform (DFT), and introduced several fast Fourier transform (FFT)
algorithms for efficient computation of DFT. The prime-factor algorithm (PFA) was firstly proposed
by Good [Goo58]. Cooley and Tuck proposed the divide-and-conquer based Cooley-Tuck algo-
rithm [CT65], which is later found to be a re-invention of the algorithm proposed by Gauss [Gau66] to
interpolate trajectories of two asteroids. Goertzel proposed Goertzel’s algorithm [G+58] by solving a
digital filtering problem with the Goertzel filter. Winograd proposed the Winograd’s algorithm [Win78]
for efficient DFT computation by drawing ideas from cyclic convolution computation.
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patterns, 175, 185, 232
training, 269
training example, 323
tuples, 278, 279, 281, 287, 297, 310, 326, 337, 344, 487
tuples attribute vectors, 276

Neighborhoods, 58, 66, 356, 384, 408, 409, 461, 462, 467, 472,
518, 522, 571, 572, 614

Nesterov accelerated gradient (NAG), 553
Network

mining, 619
mining social, 18
representation learning, 540

Network of networks, 638–640
Network of time series, 638–640
Neural network, 7, 10, 261, 298, 300, 485–488, 606, 608, 614,

616, 637, 642
architecture, 554
capability, 552
classifiers, 259, 263
deep, 274, 488, 489, 498, 499, 501, 504, 505, 509, 515, 547,

606, 639, 646
learning, 490, 552
models, 543, 545

Ng-Jordan-Weiss algorithm, 461, 462
Noise, 2, 10, 11, 13, 21, 23, 27, 42, 56, 58, 60, 68, 137, 229,

244, 257, 276, 283, 298, 307, 326, 360, 382, 384,
388, 431, 442, 443, 506, 517, 524, 553, 558, 560,
562, 619, 637, 644

Nominal attributes, 23–25, 37, 44–46, 55, 81, 177, 180, 181,
267, 336, 390, 391, 429

Nonantimonotonic constraint, 196
Nonbase cuboid, 113

Noncancer tuples, 281
Nonclosed itemset, 188
Noncore objects, 409
Nonhierarchical clustering methods, 429
Nonlinear

classification models, 365
classifier, 326, 487, 552

Nonmetric measure, 53
Nonnegative matrix factorization (NMF), 454, 458, 480, 514
Nonnegativity constraints, 581
Nonneural network, 489
Nonoverlapping partitions, 156, 170
Nonparametric statistical methods, 564, 565, 569, 570
Nonrepresentative object, 389, 390
Normalization, 24, 50, 61, 63–65, 99, 252, 357, 446, 457, 515,

553, 579, 597
Numeric

attribute, 23–29, 31, 33–36, 38, 41, 43, 46, 48–51, 175, 180,
235, 267, 391

attribute values, 180
data sets, 30, 458
measure, 28
prediction, 7, 240, 266, 267, 298, 319, 489

Numerical
attributes, 577
prediction, 240
prediction model, 242

O
Objective interestingness measures, 163
Objects

allocation, 391
assignment, 426
class label, 7
cluster, 9, 402, 426, 431, 447
clustering, 381
data, 7, 23, 24, 43, 193, 380–385, 388, 431, 432, 441,

445–447, 456, 459, 557–561
database, 410
dissimilarity, 43, 48
identifier, 47
matching, 62
multiple, 574
outliers, 562, 563, 570, 572, 574, 589, 602
similarity, 43, 55, 79, 438
unlabeled, 564

OLAP
data cubes, 106, 144
databases, 113
mining, 144
query, 88, 110, 112, 129, 134
query processing, 117, 133, 142, 143

OLTP database, 90
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One-class model, 588, 589, 601
Online

social networks, 431
store, 33, 39, 591
webstore, 55

Online analytical processing (OLAP), 15
Operational databases, 86, 88, 92, 96, 133
Opinion mining, 617–619

applications, 619
techniques, 617, 619

OPTICS, 411, 412, 427
Optimal

biclusters, 453
biclusters local, 452
clustering, 471

Optimization objective, 481
Ordinal attributes, 23, 25, 26, 43, 49, 50
Organization donation database, 141
Outlier detection

methods, 562, 564
techniques, 585

Outliers
analysis, 6, 10, 20, 43, 55, 59, 79
contextual, 559, 560, 590–592, 600
detection, 10, 20, 21, 78, 381, 485, 530, 539, 541, 557–566,

569–571, 575, 579, 580, 585, 589
applications, 563
cost, 571
ensemble, 596
interpretability, 580
methods, 559, 561, 562, 564, 566, 587, 591, 593–596,

598, 599, 601
models, 562
problem, 591, 594
process, 590, 592
quality, 561, 564
setting, 585
stage, 598
techniques, 557

distribution, 563
local, 559, 574, 575
multivariate, 567, 568, 603
objects, 562, 563, 570, 572, 574, 589, 602
samples, 563, 588
score, 570, 586, 591, 599, 602
sensitivity, 397
structures, 593
vertex, 470

Outweighing attributes, 64, 267
Overlapping biclusters, 454

P
Pairwise distance measurements, 442

PAM, see Partitioning Around Medoids (PAM) algorithm
Parametric statistical methods, 564, 565
Partition

boundaries, 128
data, 244, 253
data objects, 383
photos, 380
projects, 380
quality, 384
size, 156
tuples, 249

Partitioned cube shell fragments, 135
Partitioning

algorithm, 385, 404
clustering, 385, 386, 482
clustering approaches, 478
cost, 119
criterion, 385, 426
customers, 383
data, 285, 302
hierarchical, 395
methods, 379, 383–386, 388, 389, 391, 394, 398, 399, 426
process, 395
quality, 386
rules, 67
technique, 156, 173
tuples, 256

Partitioning Around Medoids (PAM) algorithm, 389, 391, 428,
429

Patient object, 25
Pattern

antimonotonic constraint, 196, 222
candidate, 183, 193
classification, 429
cluster, 188
clustering, 187
complete set, 183
compressed, 232
compression problem, 189
growth mining, 173
interestingness measure, 169
mining, 4, 5, 11, 13, 175, 183, 197, 198, 200, 202, 210, 211,

223
algorithm, 194, 202, 226
constraints, 193
frequent, 6, 15, 145, 165, 185, 193, 223, 237
methods, 175, 183, 236
multilevel, 175, 178
process, 191, 193, 197, 232

monotonic constraint, 194, 196, 222
multidimensional, 175
negative, 175, 185, 232
pruning, 196
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pruning constraints, 193, 236
sequential, 6, 15, 175, 198–202, 205, 207

Pearson’s correlation coefficient, 36, 82
Peer prediction, 646
Percentiles, 28, 31, 32, 39
Perceptron, 272, 274, 276, 298, 304, 320, 365, 485, 487, 488,

552
algorithm, 273, 276
classifier, 273
learning algorithm, 273
model, 300

Performance prediction, 239, 628, 639
Pessimistic pruning, 258, 303
Phrase

clustering, 631
mining, 223, 224, 226–229, 233, 237, 608, 631, 632

framework, 228
methods, 226, 229
process, 227

quality, 224, 225
estimation, 227, 228
score, 229

Pivot (rotate) operation, 108, 134
Pool-based approach, 345
Pooling, 523–525
Postpruning, 257, 258
Postpruning approach, 258
Potential outliers, 43, 60
Power law distribution, 614, 615
Precaution measures, 240
Predefined concept hierarchies, 180, 181
Predetermined significance threshold, 227
Predictability, 625
Prediction

accuracy, 549, 652
class, 243, 292, 329, 330, 337, 365, 487
class label, 7, 278, 290
consistency, 629
cube, 141
error, 314, 360
methods, 640
model, 13, 144, 302, 625
numeric, 7, 240, 266, 267, 298, 319, 489
performance, 639
performance improvement, 628
problems, 240, 242, 298, 623, 626, 654
quality, 295
results, 628, 646, 649
tasks, 625
techniques, 17, 239

Predictive
abilities, 278, 299
accuracy, 243, 278

analysis, 7, 19
analytics, 17
data mining, 5
modeling, 16
models, 629, 640
power, 338
rate, 649
rate parity, 649
score, 649
statistics, 13

Predictor, 283
Prepruning, 257, 258
Prepruning approach, 257
Pretrained language model (PLM), 607–610, 629–631
Pretrained model, 508
Pretraining, 507–509, 514, 516, 550, 553, 608

method, 509
strategy, 548
supervised, 507, 514
unsupervised, 509, 512, 514

Price attribute, 40
Principal component analysis (PCA), 71, 454, 456, 480, 595,

603
Privacy-preserving data mining, 642
Probabilistic

classifier, 287, 288
clustering methods, 513
clusters, 432, 435–438, 479
hierarchical clustering, 404

PROCLUS, 446
Proximity measures, 23, 44, 46, 356, 357, 359, 369, 594, 599

for
binary attributes, 46
ordinal attributes, 49

Prune
actions, 150
component, 153
rules, 337
step, 150, 151, 170

Pruning
algorithm, 258
Apriori, 182, 202, 204, 233
constraints, 196, 236
data, 196
methodology, 194
methods, 258, 303
pattern, 193, 196
pattern search space, 193
power, 236
rules, 210
set, 258, 335
strategies, 193, 375
trees, 258
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Q
Qualitative attributes, 26
Quality

classification models, 14, 609
classifier, 227
cluster, 397, 426, 479
cluster analysis, 417
clustering, 382, 384, 389, 396, 406, 417, 420, 421, 424, 477,

480
control, 380
estimation, 227, 228
estimator, 229
hierarchical clustering, 384
interestingness measures, 186
measures, 226, 420
mining, 10
outliers detection, 561, 564
partition, 384
partitioning, 386
phrases, 224–229
prediction, 295
segmentation, 226

Quantile plots, 23, 28, 38, 40, 79
Quantile-quantile plots, 28, 38, 39, 79
Quantitative attributes, 30, 175, 180, 181, 232

clusters, 182
Quartiles, 28, 31, 32
Query

approximation, 143
language, 118, 192
mining, 193, 198
node, 358
OLAP, 88, 110, 112, 129, 134
optimizer, 192
processing, 92, 113, 118, 132, 133, 415
processing in data cubes, 132
processing time, 416
specification, 416
tuple, 363
user, 17, 464
vector, 357
words, 52

Querying, 90
Querying function, 345

R
Radial basis function (RBF), 75, 371, 393
Random forest, 227, 290, 296, 297, 299, 304, 342, 637, 642,

652, 654
Random walk, 356–359, 465–469, 555, 616
Ranking, 25, 26, 49, 50, 108, 134, 140, 240, 242, 249, 331, 364,

366, 649
cube, 140, 141, 144

query, 140
query processing, 141
results, 614
scores, 640
task, 363

Rare patterns, 175, 185, 232
mining, 175, 185, 236

Raster data set, 611
Ratio-scaled attributes, 79
Reachability

density, 575, 602
distance, 411, 574, 575

Receiver operating characteristic (ROC) curves, 278, 286–288
Recidivism prediction, 649
Recognition rate, 278, 280, 281
Recurrent Neural Network (RNN), 10, 485, 489, 499, 526, 527,

538, 548, 554, 555, 633, 640
model, 527–530, 532, 533, 536–538

Recursive partitioning, 247
Redundancy measure, 191
Redundant attributes, 71, 72
Regression, 6–9, 57, 59, 71, 144, 240, 242, 247, 248, 308, 311,

312
Regularized autoencoder, 514
Reinforcement Learning (RL), 307, 359, 367, 368, 370, 374,

377, 485, 556, 628, 641
Relational

data store, 119
database, 4, 5, 20, 28, 43, 86, 88, 93, 99, 118, 133, 135, 145,

174, 179, 224
query processing, 142

Relational OLAP (ROLAP), 117, 134
Relationship extraction (RE), 608
Representation learning, 489, 555, 606, 614, 615
Retraining, 228, 598
RFID data warehouse, 137
Robustness, 88, 94, 183, 283, 366, 383, 633, 635–637, 648–651
ROC curves, see Receiver operating characteristic (ROC)
ROLAP data store, 118
Rule pruning, 331, 335
Rule pruning strategies, 337
Rule-based classification, 307, 327, 329, 365, 375

S
Sampling, 24, 63, 70, 78, 83, 156, 173, 196, 284, 291, 293, 345,

555, 616, 626
Saturation, 547
Scalable

data mining tools, 1
database technologies, 15
hierarchical clustering, 394
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Scan
algorithm, 482, 483
database, 157

Scatter plots, 28, 36, 38, 41, 42, 79, 271, 310
Scattered patterns, 176
Self-training, 343, 344, 369, 371, 631
Semantic attribute, 350, 351

classifier, 350, 351, 369
classifier output, 351
vector, 351

Semantic classifier, 351
Semisupervised

classification, 242, 342–344, 369, 371
clustering, 431, 475–477, 479, 480, 483
clustering methods, 475, 476
hierarchical clustering, 478, 483
learning, 14, 242, 344, 364, 553, 589, 602, 635
learning methods, 563
node classification, 358
outlier detection, 563, 564, 602

Sensitive attributes, 649
Sentiment classification, 240, 346, 348, 526, 618

accuracy, 364
example, 348
method, 376

Sentiment classifier, 348
Sequence

classification, 354, 355
data set, 4
database, 199–202, 204, 205, 208
mining, 237
mining methods, 5

Sequential
learning, 331
mining, 200
mining algorithms, 233
pattern mining, 4, 198–201, 207, 209–211, 230–233

algorithm, 231, 235
applications, 200
methods, 200
process, 211

patterns, 6, 15, 175, 198–202, 205, 207
complete set, 205, 208

Shell
cubes, 140
fragments, 117, 120, 129–132, 135

Sigmoid function, 274, 275, 485, 491, 492, 500, 501, 542
Significance

measures, 191
tests, 285, 299, 304

Similarity
assessing, 23
cluster, 429

function, 53, 399, 461
graph, 455, 461, 462
learning problem, 364
matrix, 394, 462, 471, 480–482, 614
measure for clustering graph, 482
measurements, 431, 446, 561
measurements unreliable, 383
measures, 43, 52, 55, 188, 383, 395, 443, 463, 465, 466,

608, 616, 639
objects, 43, 55, 79, 438
scale, 401
search, 614
SimRank measure, 483
threshold, 472
values, 43, 50

Simple random sample with replacement (SRSWR), 70
SimRank, 466–468, 480, 482
Singleton clusters, 401
Singular value decomposition (SVD), 579
Skyline query, 141
Slice operation, 108
Snowflake schema, 96, 100–102, 118, 134, 135
Social

event mining, 198
media, 17, 18, 90, 96, 605, 618, 619, 621–623

analysis, 608
applications, 648
data, 18, 21, 617
layout, 90
mining, 18
networks, 18
repository, 90
sites, 18
tools, 1
trustability analysis, 18
usage, 18

network, 1, 5, 16–18, 464, 466, 539, 540, 547, 593, 613, 626
analysis, 10, 18, 480, 485, 622
data, 18, 21
mining, 18
sites, 539, 622
structures, 18

networking sites, 621
Soft clustering, 435
Software bug mining program, 232
Sorted data set, 32
Space pruning, 196, 197

data, 197
mining, 197

Spam prediction task, 549
Sparse

clusters, 404, 587, 601
data cubes, 136, 143
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data sets, 118
learning, 312
linear classifiers, 365, 366

Spatiotemporal data mining, 5
Specificity, 278, 281, 283, 297, 299
Spectral clustering, 455, 460, 461, 463, 471

approaches, 461
methods, 460, 463, 471, 481

Spherical clusters, 382
SQL query, 116, 135
Stacked autoencoder, 511, 512
Standard deviation, 28, 31, 33, 34, 36, 60, 64, 65, 79, 137, 263,

415, 437, 440, 457, 515, 566, 567, 569, 595
Star schema, 96, 99–101, 134, 136
Statistics, 9, 11–13, 15, 23, 27, 29, 34, 38, 163, 198, 226, 239,

302, 366, 381, 388, 402, 411, 441, 602, 628, 650
Stepwise

backward elimination, 73, 311
forward selection, 73, 311

STING clustering, 415, 417
Stochastic block model (SBM), 480
Stochastic gradient descent (SGD), 553
Stochastic neighbor embedding (SNE), 74, 75
Stopwords, 226
Stratified cross-validation, 284
Stream data

classification, 352
mining tasks, 376

Stream mining algorithms, 20
Streaming data mining algorithms, 16
Structure patterns, 214
Structuring unstructured data, 605, 629, 632
Student’s t-test, 285
Subcluster, 404
Subcube query, 132
Subfrequent items, 233
Subgraph

mining, 230
mining algorithms, 233
pattern, 220
pattern mining, 175, 211, 233
pattern mining closed, 233
pattern mining frequent, 19, 212

Subitemset, 149
Subjective measures, 191
Subspace clustering, 383

algorithm, 427
methods, 445, 454, 480

Substructure
mining, 215, 223
mining algorithms, 213
patterns, 223
patterns mining, 221

Subtree pruning, 258
Succinct constraints, 210, 222
Succinctness constraints, 197
Sum of squared errors (SSE), 399
Superitemset, 149, 188
Superpatterns, 197
Supervised

data mining methods, 625, 653
greedy pretraining, 548
learning, 13, 239, 242, 342, 345, 359, 381, 553, 620, 646
learning algorithms, 244, 652
pretraining, 507, 514

Support
association rule, 147
group-based, 178, 185
reduced, 178
uniform, 177, 178

Support vector data description (SVDD), 589, 602
Support vector machine (SVM), 318, 323, 371, 374

classification, 371
classifier, 324, 326, 364, 370, 652, 654

Suspected outliers, 587
Symbolic patterns, 198
Symmetric binary

attributes, 46
dissimilarity, 46

Synthetic data sets, 283

T
t-test, 225, 285, 286
Tables, 4, 6, 63, 86, 95, 97, 98, 154, 167, 173, 315, 585, 596
Taxonomy, 9, 53, 605, 608, 624, 629, 630
Taxonomy construction, 608, 610, 629
Team performance prediction, 627–629, 639
Temporal data mining tasks, 611
Term-frequency vectors, 43, 52, 53, 79
Test

sets, 243, 258, 278, 280, 283–286, 335, 353, 420
tuples, 243, 248, 266, 268, 286, 287, 323, 499, 506, 515, 547

Text
classification, 366, 376, 555, 606, 609, 610, 631
classifiers, 609
clustering, 605, 608, 610
clustering algorithms, 608
clustering analysis, 608
databases, 143
document clustering, 52
mining, 4, 19, 21, 431, 605, 606, 608, 609
mining tasks, 605, 610, 615

Tightness measure, 187
Time Delayed Neural Network (TDNN), 554
Time-series data, 4, 5, 70, 144, 237, 517, 638
Token classification, 526
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ToPMine, 226, 227
TrAdaBoost, 347, 369, 376
Trained

Bayesian belief networks, 315, 369
binary classifiers, 360, 371
classifier, 276, 307, 311, 349, 351, 352, 359
deep neural networks, 547, 552
models, 515, 635
network, 495

Training
cases, 269
data, 7

Transactional
data, 154, 176, 179
data analysis, 172
data sets, 4, 167
database, 6, 171, 172

Transactions
compressed, 113
customers, 85, 146, 569
data, 20
data set, 145, 170, 196, 233
database, 11, 147, 149, 151, 158, 160, 168, 189, 197, 204
database mining, 157
identifiers, 160, 171
pattern, 557

Transfer learning, 14, 342, 346–348, 509, 635, 653
Transitive similarity, 472
Tree pruning, 244, 257, 299, 303

algorithms, 298
methods, 257, 330
process, 312

Trend analysis, 90, 108, 198
True negative, 279, 286, 299, 301
True positive, 279, 286, 287, 299, 301
Truth discovery, 605, 620–622
Tuples

class label, 278
data, 10, 24, 36, 37, 74, 76, 232, 242, 243, 260, 263, 316,

317, 338, 344, 345, 349, 352, 355, 359, 481, 482,
496, 499, 547, 596

data set, 336
database, 242
negative, 278, 279, 281, 287, 297, 310, 326, 337, 344, 487
nonunique classification, 282
outlying, 582
partition, 249
partitioning, 256
unlabeled, 344

Two sample t-test, 286

U
UCI data sets, 338

Unimodal, 30, 285
Uninteresting patterns, 187
Univariate distribution, 38, 39
Univariate outlier, 565

detection, 566, 567, 599
Unlabeled

data, 342–345, 349, 369, 475, 606, 609, 620, 631
data tuples, 342
objects, 564
training tuples, 242
tuples, 344
tuples clustering structure, 344

Unordered attributes, 71
Unpruned

decision tree, 229
tree, 330

Unstructured data, 4, 6, 15, 20, 93, 94, 605, 629, 632
Unsupervised

attribute subset selection, 84
classification, 381
data mining tasks, 308
deep learning, 511, 582
feature learning, 554
learning, 13, 14, 242, 381, 425, 429, 509, 512, 555, 563, 653
method ToPMine, 233
outlier detection methods, 563
phrase mining, 226
phrase mining method ToPMine, 237
pretraining, 509, 512, 514

User
behavior, 432
feedback, 479
knowledge, 431
query, 17, 464

V
Variance, 28, 31, 33, 34, 108, 136, 261, 284–286, 292, 309,

310, 405, 412, 419, 420, 425, 516, 558, 569, 595
Variational autoencoder (VAE), 556
Variational graph autoencoder (VGAE), 555
Vertical data format, 149, 160, 161, 169–171, 183, 201, 202,

204
Very fast decision tree (VFDT), 354
Visual question answering (VQA), 526
Visualizing spatial data warehouses, 143

W
Warehouse database server, 88, 90, 133
WaveCluster, 430
Weak supervision, 242, 307, 342, 343, 364, 607, 629, 632, 633
Weakly supervised, 14, 226, 227, 233, 237, 242, 343, 348, 605,

609, 620, 631
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Webpage
classification, 355
ranking, 622

Weight attribute, 63
Weighted Euclidean distance, 49
World Wide Web (WWW), 1
Wrapper, 84, 90, 311

framework, 652
methods, 308, 311, 370

Wrong predictions, 261, 530

X
XGBoost, 295, 296, 302, 652, 654

Z
z-score normalization, 64, 65, 82, 515, 579, 597
Zero-shot learning, 242, 343, 349, 351, 360, 369
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