

DATA MINING WITH R
LEARNING WITH CASE STUDIES

SECOND EDITION

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

PUBLISHED TITLES

SERIES EDITOR
Vipin Kumar

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, Minnesota, U.S.A.

AIMS AND SCOPE
This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. This
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. The inclusion of concrete examples and applications is highly encouraged. The scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

ACCELERATING DISCOVERY : MINING UNSTRUCTURED INFORMATION FOR
HYPOTHESIS GENERATION
Scott Spangler

ADVANCES IN MACHINE LEARNING AND DATA MINING FOR ASTRONOMY
Michael J. Way, Jeffrey D. Scargle, Kamal M. Ali, and Ashok N. Srivastava

BIOLOGICAL DATA MINING
Jake Y. Chen and Stefano Lonardi

COMPUTATIONAL BUSINESS ANALYTICS
Subrata Das

COMPUTATIONAL INTELLIGENT DATA ANALYSIS FOR SUSTAINABLE
DEVELOPMENT
Ting Yu, Nitesh V. Chawla, and Simeon Simoff

COMPUTATIONAL METHODS OF FEATURE SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: ADVANCES IN ALGORITHMS, THEORY,
AND APPLICATIONS
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

CONTRAST DATA MINING: CONCEPTS, ALGORITHMS, AND APPLICATIONS
Guozhu Dong and James Bailey

DATA CLASSIFICATION: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal

DATA CLUSTERING: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal and Chandan K. Reddy

DATA CLUSTERING IN C++: AN OBJECT-ORIENTED APPROACH
Guojun Gan

DATA MINING: A TUTORIAL-BASED PRIMER, SECOND EDITION
Richard J. Roiger

DATA MINING FOR DESIGN AND MARKETING
Yukio Ohsawa and Katsutoshi Yada

DATA MINING WITH R: LEARNING WITH CASE STUDIES, SECOND EDITION
Luís Torgo

EVENT MINING: ALGORITHMS AND APPLICATIONS
Tao Li

FOUNDATIONS OF PREDICTIVE ANALYTICS
James Wu and Stephen Coggeshall

GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY,
SECOND EDITION
Harvey J. Miller and Jiawei Han

GRAPH-BASED SOCIAL MEDIA ANALYSIS
Ioannis Pitas

HANDBOOK OF EDUCATIONAL DATA MINING
Cristóbal Romero, Sebastian Ventura, Mykola Pechenizkiy, and Ryan S.J.d. Baker

HEALTHCARE DATA ANALYTICS
Chandan K. Reddy and Charu C. Aggarwal

INFORMATION DISCOVERY ON ELECTRONIC HEALTH RECORDS
Vagelis Hristidis

INTELLIGENT TECHNOLOGIES FOR WEB APPLICATIONS
Priti Srinivas Sajja and Rajendra Akerkar

INTRODUCTION TO PRIVACY-PRESERVING DATA PUBLISHING: CONCEPTS
AND TECHNIQUES
Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, and Philip S. Yu

KNOWLEDGE DISCOVERY FOR COUNTERTERRORISM AND
LAW ENFORCEMENT
David Skillicorn

KNOWLEDGE DISCOVERY FROM DATA STREAMS
João Gama

MACHINE LEARNING AND KNOWLEDGE DISCOVERY FOR
ENGINEERING SYSTEMS HEALTH MANAGEMENT
Ashok N. Srivastava and Jiawei Han

MINING SOFTWARE SPECIFICATIONS: METHODOLOGIES AND APPLICATIONS
David Lo, Siau-Cheng Khoo, Jiawei Han, and Chao Liu

MULTIMEDIA DATA MINING: A SYSTEMATIC INTRODUCTION TO
CONCEPTS AND THEORY
Zhongfei Zhang and Ruofei Zhang

MUSIC DATA MINING
Tao Li, Mitsunori Ogihara, and George Tzanetakis

NEXT GENERATION OF DATA MINING
Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar

RAPIDMINER: DATA MINING USE CASES AND BUSINESS ANALYTICS
APPLICATIONS
Markus Hofmann and Ralf Klinkenberg

RELATIONAL DATA CLUSTERING: MODELS, ALGORITHMS,
AND APPLICATIONS
Bo Long, Zhongfei Zhang, and Philip S. Yu

SERVICE-ORIENTED DISTRIBUTED KNOWLEDGE DISCOVERY
Domenico Talia and Paolo Trunfio

SPECTRAL FEATURE SELECTION FOR DATA MINING
Zheng Alan Zhao and Huan Liu

STATISTICAL DATA MINING USING SAS APPLICATIONS, SECOND EDITION
George Fernandez

SUPPORT VECTOR MACHINES: OPTIMIZATION BASED THEORY,
ALGORITHMS, AND EXTENSIONS
Naiyang Deng, Yingjie Tian, and Chunhua Zhang

TEMPORAL DATA MINING
Theophano Mitsa

TEXT MINING: CLASSIFICATION, CLUSTERING, AND APPLICATIONS
Ashok N. Srivastava and Mehran Sahami

TEXT MINING AND VISUALIZATION: CASE STUDIES USING OPEN-SOURCE
TOOLS
Markus Hofmann and Andrew Chisholm

THE TOP TEN ALGORITHMS IN DATA MINING
Xindong Wu and Vipin Kumar

UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX
DECOMPOSITIONS
David Skillicorn

DATA MINING WITH R
LEARNING WITH CASE STUDIES

SECOND EDITION

Luís Torgo
University of Porto, Portugal

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161025

International Standard Book Number-13: 978-1-4822-3489-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com

Contents

Preface xi

Acknowledgments xiii

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 How to Read This Book . 2
1.2 Reproducibility . 3

I R and Data Mining 5

2 Introduction to R 7

2.1 Starting with R . 7
2.2 Basic Interaction with the R Console . 9
2.3 R Objects and Variables . 10
2.4 R Functions . 12
2.5 Vectors . 16
2.6 Vectorization . 18
2.7 Factors . 19
2.8 Generating Sequences . 22
2.9 Sub-Setting . 24
2.10 Matrices and Arrays . 26
2.11 Lists . 30
2.12 Data Frames . 32
2.13 Useful Extensions to Data Frames . 36
2.14 Objects, Classes, and Methods . 40
2.15 Managing Your Sessions . 41

3 Introduction to Data Mining 43

3.1 A Bird’s Eye View on Data Mining . 43
3.2 Data Collection and Business Understanding 45

3.2.1 Data and Datasets . 45
3.2.2 Importing Data into R . 46

3.2.2.1 Text Files . 47
3.2.2.2 Databases . 49
3.2.2.3 Spreadsheets . 52

vii

viii Contents

3.2.2.4 Other Formats . 52
3.3 Data Pre-Processing . 53

3.3.1 Data Cleaning . 53
3.3.1.1 Tidy Data . 53
3.3.1.2 Handling Dates . 56
3.3.1.3 String Processing . 58
3.3.1.4 Dealing with Unknown Values 60

3.3.2 Transforming Variables . 62
3.3.2.1 Handling Different Scales of Variables 62
3.3.2.2 Discretizing Variables . 63

3.3.3 Creating Variables . 65
3.3.3.1 Handling Case Dependencies 65
3.3.3.2 Handling Text Datasets . 74

3.3.4 Dimensionality Reduction . 78
3.3.4.1 Sampling Rows . 78
3.3.4.2 Variable Selection . 82

3.4 Modeling . 87
3.4.1 Exploratory Data Analysis . 87

3.4.1.1 Data Summarization . 87
3.4.1.2 Data Visualization . 96

3.4.2 Dependency Modeling using Association Rules 110
3.4.3 Clustering . 119

3.4.3.1 Measures of Dissimilarity 119
3.4.3.2 Clustering Methods . 120

3.4.4 Anomaly Detection . 131
3.4.4.1 Univariate Outlier Detection Methods 132
3.4.4.2 Multi-Variate Outlier Detection Methods 133

3.4.5 Predictive Analytics . 140
3.4.5.1 Evaluation Metrics . 141
3.4.5.2 Tree-Based Models . 145
3.4.5.3 Support Vector Machines 151
3.4.5.4 Artificial Neural Networks and Deep Learning 158
3.4.5.5 Model Ensembles . 165

3.5 Evaluation . 172
3.5.1 The Holdout and Random Subsampling 174
3.5.2 Cross Validation . 177
3.5.3 Bootstrap Estimates . 179
3.5.4 Recommended Procedures . 181

3.6 Reporting and Deployment . 182
3.6.1 Reporting Through Dynamic Documents 183
3.6.2 Deployment through Web Applications 186

II Case Studies 191

4 Predicting Algae Blooms 193

4.1 Problem Description and Objectives . 193
4.2 Data Description . 194
4.3 Loading the Data into R . 194
4.4 Data Visualization and Summarization . 196
4.5 Unknown Values . 205

Contents ix

4.5.1 Removing the Observations with Unknown Values 205
4.5.2 Filling in the Unknowns with the Most Frequent Values 207
4.5.3 Filling in the Unknown Values by Exploring Correlations 208
4.5.4 Filling in the Unknown Values by Exploring Similarities between

Cases . 212
4.6 Obtaining Prediction Models . 214

4.6.1 Multiple Linear Regression . 215
4.6.2 Regression Trees . 220

4.7 Model Evaluation and Selection . 225
4.8 Predictions for the Seven Algae . 237
4.9 Summary . 239

5 Predicting Stock Market Returns 241

5.1 Problem Description and Objectives . 241
5.2 The Available Data . 242

5.2.1 Reading the Data from the CSV File 243
5.2.2 Getting the Data from the Web . 243

5.3 Defining the Prediction Tasks . 244
5.3.1 What to Predict? . 244
5.3.2 Which Predictors? . 247
5.3.3 The Prediction Tasks . 251
5.3.4 Evaluation Criteria . 252

5.4 The Prediction Models . 254
5.4.1 How Will the Training Data Be Used? 254
5.4.2 The Modeling Tools . 256

5.4.2.1 Artificial Neural Networks 256
5.4.2.2 Support Vector Machines 259
5.4.2.3 Multivariate Adaptive Regression Splines 260

5.5 From Predictions into Actions . 263
5.5.1 How Will the Predictions Be Used? 263
5.5.2 Trading-Related Evaluation Criteria 264
5.5.3 Putting Everything Together: A Simulated Trader 265

5.6 Model Evaluation and Selection . 271
5.6.1 Monte Carlo Estimates . 271
5.6.2 Experimental Comparisons . 272
5.6.3 Results Analysis . 278

5.7 The Trading System . 286
5.7.1 Evaluation of the Final Test Data 286
5.7.2 An Online Trading System . 291

5.8 Summary . 292

6 Detecting Fraudulent Transactions 295

6.1 Problem Description and Objectives . 295
6.2 The Available Data . 296

6.2.1 Loading the Data into R . 296
6.2.2 Exploring the Dataset . 297
6.2.3 Data Problems . 304

6.2.3.1 Unknown Values . 304
6.2.3.2 Few Transactions of Some Products 309

x Contents

6.3 Defining the Data Mining Tasks . 313
6.3.1 Different Approaches to the Problem 313

6.3.1.1 Unsupervised Techniques 313
6.3.1.2 Supervised Techniques . 314
6.3.1.3 Semi-Supervised Techniques 315

6.3.2 Evaluation Criteria . 316
6.3.2.1 Precision and Recall . 316
6.3.2.2 Lift Charts and Precision/Recall Curves 317
6.3.2.3 Normalized Distance to Typical Price 320

6.3.3 Experimental Methodology . 321
6.4 Obtaining Outlier Rankings . 323

6.4.1 Unsupervised Approaches . 323
6.4.1.1 The Modified Box Plot Rule 323
6.4.1.2 Local Outlier Factors (LOF) 327
6.4.1.3 Clustering-Based Outlier Rankings (ORh) 330

6.4.2 Supervised Approaches . 332
6.4.2.1 The Class Imbalance Problem 333
6.4.2.2 Naive Bayes . 335
6.4.2.3 AdaBoost . 339

6.4.3 Semi-Supervised Approaches . 344
6.5 Summary . 350

7 Classifying Microarray Samples 353

7.1 Problem Description and Objectives . 353
7.1.1 Brief Background on Microarray Experiments 353
7.1.2 The ALL Dataset . 354

7.2 The Available Data . 354
7.2.1 Exploring the Dataset . 357

7.3 Gene (Feature) Selection . 359
7.3.1 Simple Filters Based on Distribution Properties 360
7.3.2 ANOVA Filters . 362
7.3.3 Filtering Using Random Forests . 364
7.3.4 Filtering Using Feature Clustering Ensembles 367

7.4 Predicting Cytogenetic Abnormalities . 368
7.4.1 Defining the Prediction Task . 368
7.4.2 The Evaluation Metric . 369
7.4.3 The Experimental Procedure . 369
7.4.4 The Modeling Techniques . 370
7.4.5 Comparing the Models . 373

7.5 Summary . 381

Bibliography 383

Subject Index 395

Index of Data Mining Topics 399

Index of R Functions 401

Preface

The main goal of this book is to introduce the reader to the use of R as a tool for data
mining. R is a freely downloadable1 language and environment for statistical computing and
graphics. Its capabilities and the large set of available add-on packages make this tool an
excellent alternative to many existing (and expensive!) data mining tools.

The main goal of this book is not to describe all facets of data mining processes. Many
books exist that cover this scientific area. Instead we propose to introduce the reader to
the power of R and data mining by means of several case studies. Obviously, these case
studies do not represent all possible data mining problems that one can face in the real
world. Moreover, the solutions we describe cannot be taken as complete solutions. Our goal
is more to introduce the reader to the world of data mining using R through practical
examples. As such, our analysis of the case studies has the goal of showing examples of
knowledge extraction using R, instead of presenting complete reports of data mining case
studies. They should be taken as examples of possible paths in any data mining project
and can be used as the basis for developing solutions for the reader’s own projects. Still,
we have tried to cover a diverse set of problems posing different challenges in terms of
size, type of data, goals of analysis, and the tools necessary to carry out this analysis. This
hands-on approach has its costs, however. In effect, to allow for every reader to carry out
our described steps on his/her computer as a form of learning with concrete case studies,
we had to make some compromises. Namely, we cannot address extremely large problems
as this would require computer resources that are not available to everybody. Still, we think
we have covered problems that can be considered large and we have shown how to handle
the problems posed by different types of data dimensionality.

This second edition strongly revises the R code of the case studies, making it more up-
to-date with recent packages that have emerged in R. Moreover, we have decided to split
the book into two parts: (i) a first part with introductory material, and (ii) the second part
with the case studies. The first part includes a completely new chapter that provides an
introduction to data mining, to complement the already existing introduction to R. The idea
is to provide the reader with a kind of bird’s eye view of the data mining field, describing
more in depth the main topics of this research area. This information should complement
the lighter descriptions that are given during the case studies analysis. Moreover, it should
allow the reader to better contextualize the solutions of the case studies within the bigger
picture of data mining tasks and methodologies. Finally, we hope this new chapter can serve
as a kind of backup reference for the reader if more details on the methods used in the case
studies are required.

We do not assume any prior knowledge about R. Readers who are new to R and data
mining should be able to follow the case studies. We have tried to make the different case
studies self-contained in such a way that the reader can start anywhere in the document.
Still, some basic R functionalities are introduced in the first, simpler case studies, and are
not repeated, which means that if you are new to R, then you should at least start with the
first case studies to get acquainted with R. Moreover, as we have mentioned, the first part

1Download it from http://www.R-project.org.

xi

xii Preface

of the book includes a chapter with a very short introduction to R, which should facilitate
the understanding of the solutions in the following chapters. We also do not assume any
familiarity with data mining or statistical techniques. Brief introductions to different data
mining techniques are provided as necessary in the case studies. Still, the new chapter in the
first part with the introduction to data mining includes further information on the methods
we apply in the case studies as well as other methodologies commonly used in data mining.
Moreover, at the end of some sections we provide “further readings” pointers that may help
find more information if required. In summary, our target readers are more users of data
analysis tools than researchers or developers. Still, we hope the latter also find reading this
book useful as a form of entering the “world” of R and data mining.

The book is accompanied by a set of freely available R source files that can be obtained
at the book’s Web site.2 These files include all the code used in the case studies. They
facilitate the “do-it-yourself” approach followed in this book. We strongly recommend that
readers install R and try the code as they read the book. All data used in the case studies
is available at the book’s Web site as well. Moreover, we have created an R package called
DMwR2 that contains several functions used in the book as well as the datasets already in R
format. You should install and load this package to follow the code in the book (details on
how to do this are given in the first chapter).

2http://ltorgo.github.io/DMwR2

Acknowledgments

I would like to thank my family for all the support they give me. Without them I would
have found it difficult to embrace this project. Their presence, love, and caring provided
the necessary comfort to overcome the ups and downs of writing a book. The same kind
of comfort was given by my dear friends who were always ready for an extra beer when
necessary. Thank you all, and now I hope I will have more time to share with you.

I am also grateful for all the support of my research colleagues and to LIAAD/INESC Tec
LA as a whole. Thanks also to the University of Porto for supporting my research, and also
to my colleagues at the Department of Computer Science of the Faculty of Sciences of the
same University for providing such an enjoyable working environment. Part of the writing
of this book was financially supported by a sabbatical grant (SFRH/BSAB/113896/2015)
of FCT.

Finally, thanks to all students and colleagues who helped improving the first edition
with their feedback, as well as in proofreading drafts of the current edition. In particular, I
would like to thank to my students of Data Mining at the Masters on Computer Science of
the Faculty of Sciences of the University of Porto, and also my students of the Data Mining
with R subject at the Masters of Science on Business Analytics of Stern Business School of
NYU — their involvement and feedback on my teaching material is strongly reflected on
this new edition of the book.

Luis Torgo
Porto, Portugal

xiii

http://taylorandfrancis.com

List of Figures

2.1 A simple scatter plot . 11

3.1 The Typical Data Mining Workflow. 44
3.2 The front end interface provided by package DBI. 49
3.3 An example of using relative variations . 68
3.4 Forest fires in Portugal during 2000 . 73
3.5 An example plot . 97
3.6 An example of ggplot mappings with the Iris dataset 98
3.7 A barplot using standard graphics (left) and ggplot2 (right) 99
3.8 A histogram using standard graphics (left) and ggplot2 (right) 100
3.9 A boxplot using standard graphics (left) and ggplot2 (right) 101
3.10 A conditioned boxplot using standard graphics (left) and ggplot2 (right) . 102
3.11 Conditioned histograms through facets . 103
3.12 A scatterplot using standard graphics (left) and ggplot2 (right) 104
3.13 Two scatterplots with points differentiated by a nominal variable 105
3.14 Faceting a scatterplot in ggplot . 106
3.15 Scatterplot matrices with function pairs() 107
3.16 Scatterplot matrices with function ggpairs() 108
3.17 Scatterplot matrices involving nominal variables 109
3.18 A parallel coordinates plot . 110
3.19 Some frequent itemsets for the Boston Housing dataset 114
3.20 Support, confidence and lift of the rules 117
3.21 A matrix representation of the rules show the lift 118
3.22 A graph representation of a subset of rules 118
3.23 A silhouette plot . 124
3.24 The dendrogram for Iris . 127
3.25 The dendrogram cut at three clusters . 128
3.26 A classification (left) and a regression (right) tree. 146
3.27 The partitioning provided by trees. 146
3.28 The two classification trees for Iris . 150
3.29 Two linearly separable classes. 151
3.30 Mapping into a higher dimensionality. 152
3.31 Maximum margin hyperplane. 152
3.32 The maximum margin hyperplane and the support vectors. 153
3.33 SVMs for regression. 156
3.34 An artificial neuron. 159
3.35 A feed-forward multi-layer ANN architecture. 160
3.36 Visualizing the Boston neural network results 163
3.37 Marginal plot of Petal.Length . 173
3.38 k-Fold cross validation. 177
3.39 The results of a 10-fold CV estimation experiment 180

xv

xvi List of Figures

3.40 An example of an R markdown document and the final result. 185
3.41 A simple example of a Shiny web application. 188

4.1 The histogram of variable mxPH . 198
4.2 An “enriched” version of the histogram of variable extitMxPH (left) together

with a normal Q-Q plot (right) . 199
4.3 An “enriched” box plot for orthophosphate 200
4.4 A conditioned box plot of Algal a1 . 202
4.5 A conditioned violin plot of Algal a1 . 203
4.6 A conditioned dot plot of Algal a3 using a continuous variable 204
4.7 A visualization of a correlation matrix . 210
4.8 A histogram of variable mxPH conditioned by season 212
4.9 The values of variable mxPH by river size and speed 213
4.10 A regression tree for predicting algal a1 222
4.11 Errors scatter plot . 227
4.12 Visualization of the cross-validation results 231
4.13 Visualization of the cross-validation results on all algae 232
4.14 The CD Diagram for comparing all workflows against randomforest.v3. . . 237

5.1 S&P500 on the last 3 months and our T indicator 246
5.2 Variable importance according to the random forest 250
5.3 Three forms of obtaining predictions for a test period. 256
5.4 An example of two hinge functions with the same threshold. 261
5.5 The results of trading using Policy 1 based on the signals of an SVM . . . 270
5.6 The Monte Carlo experimental process. 273
5.7 The results on the final evaluation period of the “nnetRegr 288
5.8 The cumulative returns on the final evaluation period of the “nnetRegr . . 289
5.9 Yearly percentage returns of the “nnetRegr 290

6.1 The number of transactions per salesperson 299
6.2 The number of transactions per product 299
6.3 The distribution of the unit prices of the cheapest and most expensive

products . 301
6.4 Some properties of the distribution of unit prices 310
6.5 Smoothed (right) and non-smoothed (left) precision/recall curves 318
6.6 Lift (left) and cumulative recall (right) charts 320
6.7 The PR (left) and cumulative recall (right) curves of the 326
6.8 The PR (left) and cumulative recall (right) curves of the 330
6.9 The PR (left) and cumulative recall (right) curves of the 333
6.10 Using SMOTE to create more rare class examples 335
6.11 The PR (left) and cumulative recall (right) curves of the Naive Bayes and

ORh methods . 337
6.12 The PR (left) and cumulative recall (right) curves for the two versions of

Naive Bayes and ORh methods . 340
6.13 The PR (left) and cumulative recall (right) curves of the Naive Bayes, ORh,

and AdaBoost.M1 methods. 344
6.14 The PR (left) and cumulative recall (right) curves of the self-trained Naive

Bayes, together with the standard Naive Bayes and ORh methods 348
6.15 The PR (left) and cumulative recall (right) curves of AdaBoost.M1 with

self-training together with ORh and standard AdaBoost.M1 methods. . . . 350

List of Figures xvii

7.1 The distribution of the gene expression levels 359
7.2 The median and IQR of the gene expression levels 361
7.3 The median and IQR of the final set of genes 364
7.4 The median and IQR of the gene expression levels across the mutations . 366
7.5 The accuracy results of the top 10 workflows 379

http://taylorandfrancis.com

List of Tables

3.1 The grades of some students. 53
3.2 The grades of some students in a tidy format. 54
3.3 An example of a confusion matrix. 142
3.4 An example of a cost/benefit matrix. 142
3.5 A confusion matrix for prediction of a rare positive class. 143

5.1 A Confusion Matrix for the Prediction of Trading Signals. 254

6.1 A Confusion Matrix for the Illustrative Example. 319

xix

http://taylorandfrancis.com

Chapter 1
Introduction

R1 is a programming language and an environment for statistical computing (R Core Team,
2015b). It is similar to the S language developed at AT&T Bell Laboratories by Rick Becker,
John Chambers and Allan Wilks. There are versions of R for the Unix, Windows and
MacOS families of operating systems. Moreover, R runs on different computer architectures
like Intel, PowerPC, Alpha systems and Sparc systems. R was initially developed by Ihaka
and Gentleman (1996), both from the University of Auckland, New Zealand. The current
development of R is carried out by a core team of a dozen people from different institutions
around the world and it is supported by the R Foundation. R development takes advantage of
a growing community that cooperates in its development due to its open source philosophy.
In effect, the source code of every R component is freely available for inspection and/or
adaptation. This fact allows you to check and test the reliability of anything you use in R
and this ability may be crucial in many critical application domains. There are many critics
of the open source model. Most of them mention the lack of support as one of the main
drawbacks of open source software. It is certainly not the case with R! There are many
excellent documents, books and sites that provide free information on R. Moreover, the
excellent R-help mailing list is a source of invaluable advice and information. There are also
searchable mailing list archives that you can (and should!) use before posting a question.
More information on these mailing lists can be obtained at the R Web site in the section
“Mailing Lists”.

Data mining has to do with the discovery of useful, valid, unexpected, and understand-
able knowledge from data. These general objectives are obviously shared by other disciplines
like statistics, machine learning, or pattern recognition. One of the most important distin-
guishing issues in data mining is size. With the widespread use of computer technology
and information systems, the amount of data available for exploration has increased ex-
ponentially. This poses difficult challenges for the standard data analysis disciplines: One
has to consider issues like computational efficiency, limited memory resources, interfaces
to databases, etc. Other key distinguishing features are the diversity of data sources that
one frequently encounters in data mining projects, as well as the diversity of data types
(text, sound, video, etc.). All these issues turn data mining into a highly interdisciplinary
subject involving not only typical data analysts but also people working with databases,
data visualization on high dimensions, etc.

R has limitations with handling enormous datasets because all computation is carried
out in the main memory of the computer. This does not mean that you will not be able to
handle these problems. Taking advantage of the highly flexible database interfaces available
in R, you will be able to perform data mining on large problems. Moreover, the awareness
of the R community of this constant increase in dataset sizes has lead to the development
of many new R packages designed to work with large data or to provide interfaces to other
infrastructures better suited to heavy computation tasks. More information on this relevant
work can be found on the High-Performance and Parallel Computing in R task view2.

1http://www.r-project.org
2http://cran.at.r-project.org/web/views/HighPerformanceComputing.html

1

2 Data Mining with R: Learning with Case Studies

In summary, we hope that at the end of reading this book you are convinced that you
can do data mining on large problems without having to spend any money at all! That is
only possible due to the generous and invaluable contribution of lots of people who build
such wonderful tools as R.

1.1 How to Read This Book
The main spirit behind the book is

Learn by doing it!

The first part of the book provides you with some basic information on both R and Data
Mining. The second part of the book is organized as a set of case studies. The “solutions”
to these case studies are obtained using R. All the necessary steps to reach the solutions
are described. Using the book Web site3 and the book-associated R package (DMwR2), you
can get all of the code included in the document, as well as all data of the case studies.
This should facilitate trying them out by yourself. Ideally, you should read this document
beside your computer and try every step as it is presented to you in the book. R code and
its respective output is shown in the book using the following font:

> citation()

To cite R in publications use:

R Core Team (2016). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.org/.

A BibTeX entry for LaTeX users is

@Manual{,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2016},
url = {https://www.R-project.org/},

}

We have invested a lot of time and effort in creating R, please
cite it when using it for data analysis. See also
'citation("pkgname")' for citing R packages.

R commands are entered at R command prompt, “>” in an interactive fashion. Whenever
you see this prompt you can interpret it as R waiting for you to enter a command. You type
in the commands at the prompt and then press the enter key to ask R to execute them.
This may or may not produce some form of output (the result of the command) and then
a new prompt appears. At the prompt you may use the arrow keys to browse and edit

3http://ltorgo.github.io/DMwR2

Introduction 3

previously entered commands. This is handy when you want to type commands similar to
what you have done before as you avoid typing them again.

Still, you can take advantage of the code provided at the book Web site to copy and
paste between your browser or editor and the R console, thus avoiding having to type all
the commands described in the book. This will surely facilitate your learning experience
and improve your understanding of its potential.

1.2 Reproducibility
One of the main goals of this book is to provide you with illustrative examples of how

to address several data mining tasks using the tools made available by R. For this to be
possible we have worked hard to make sure all cases we describe are reproducible by our
readers on their own computers. This means that if you follow all steps we describe in the
book you should get the same results we describe.

There are two essencial components of this reproducibility goal: (i) the used R code;
and (ii) the data of the case studies. Accompanying this book we provide two other means
of facilitating your access to the code and data: (i) the book Web page; and (ii) the book
R package. Together with the descriptions included in this book, the Web page and the
package should allow you to easily replicate what we describe and also re-use and/or adapt
it to your own application domains.

The book Web page4 provides access to all code used in the book in a copy/paste-friendly
manner, so that you can easily copy it from your browser into your R session. The code is
organized by chapters and sections to facilitate the task of finding it.

The Web page also contains other useful information like the list of packages we use,
or the data sets, as well as other files containing some of the objects created in the book,
particularly when these can take considerable time to compute on more average desktop
computers.

R is a very dynamic “ecosystem”. This means that when you read this book most proba-
bly some of the packages we use (or even R itself) already have new versions out. Although
this will most probably not create any problem, in the sense that the code we show will still
work with these new versions, we can not be sure of this. If something stops working due to
these new versions we will try to quickly post solutions in the “Errata” section of the book
Web page. The book and the R code in it was created and tested in the following R version:

> R.version

_
platform x86_64-apple-darwin13.4.0
arch x86_64
os darwin13.4.0
system x86_64, darwin13.4.0
status
major 3
minor 3.1
year 2016
month 06
day 21

4http://ltorgo.github.io/DMwR2

4 Data Mining with R: Learning with Case Studies

svn rev 70800
language R
version.string R version 3.3.1 (2016-06-21)
nickname Bug in Your Hair

At the book Web page you will also find the information on the versions of all used
packages in our R system when the code was executed.

The book R package is another key element for allowing reproducibility. This package
contains several of the functions we describe and/or use in the book, as well as the datasets
of the case studies (which as we have mentioned above are also available in the book Web
page). This package is available and installable from the usual sources, i.e. the R central
repository (CRAN). It is possible that the package evolves to new versions if any bug is found
in the code we provide. These corrections will tend to follow a slow pace as recommended
by CRAN policies. In this context, for more up-to-date versions of the package, which
may include not yet so well tested solutions (so use it at your own risk), you may wish to
download and install the development version of the package from its Web page:
https://github.com/ltorgo/DMwR2

Part I

A Short Introduction to R and
Data Mining

5

http://taylorandfrancis.com

Chapter 2
Introduction to R

This chapter provides a very short introduction to the main features of the R language.
We do not assume any familiarity with computer programming. Readers should be able to
easily follow the examples presented in this chapter. Still, if you feel some lack of motivation
to continue reading this introductory material, do not worry. You may proceed to the case
studies and then return to this introduction as you get more motivated by the concrete
applications.

The material in this chapter should serve as a quick tutorial for those that are not
familiar with the basics of the R language. Some other more specific aspects of R will also
appear in the next chapter when we introduce the reader to some concepts of Data Mining.
Finally, further learning will also take place when presenting the case studies in the second
part of the book. Still, some basic knowledge of R is necessary to start addressing these
case studies and this chapter should provide that in case you do not have it.

2.1 Starting with R
R is a functional language for statistical computation and graphics. It can be seen as a

dialect of the S language (developed at AT&T) for which John Chambers was awarded the
1998 Association for Computing Machinery (ACM) Software award that mentioned that
this language “forever altered how people analyze, visualize and manipulate data”.

R can be quite useful just by using it in an interactive fashion at its command line.
Still, more advanced uses of the system will lead the user to develop his own functions to
systematize repetitive tasks, or even to add or change some functionalities of the existing
add-on packages, taking advantage of being open source.

The easiest way to install R in your system is to obtain a binary distribution from the
R Web site1 where you can follow the link that takes you to the CRAN (Comprehensive
R Archive Network) site to obtain, among other things, the binary distribution for your
particular operating system/architecture. If you prefer to build R directly from the sources,
you can get instructions on how to do it from the CRAN but most of the times that is not
necessary at all.

After downloading the binary distribution for your operating system you just need to
follow the instructions that come with it. In the case of the Windows version, you simply
execute the downloaded file (R-3.3.1-win.exe)2 and select the options you want in the
following menus. In some operating systems you may need to contact your system admin-
istrator to fulfill the installation task due to lack of permissions to install software.

To run R in Windows you simply double-click the appropriate icon on your desktop,

1http://www.R-project.org.
2The actual name of the file changes with newer versions. This is the name for version 3.3.1

7

8 Data Mining with R: Learning with Case Studies

while in Unix versions you should type R at the operating system prompt. Both will bring
up the R console with its prompt “>”.

If you want to quit R you can issue the command q() at the prompt. You will be asked if
you want to save the current workspace. You should answer yes only if you want to resume
your current analysis at the point you are leaving it, later on.

A frequently used alternative way to interact with R is through RStudio3. This free
software can be downloaded and installed for the most common setups (e.g. Linux, Windows
or Mac OS X). It is an integrated development environment that includes on the same
graphical user interface several important elements of R, like its console where you can
interact with R, a script editor where you can write more complex programs/solutions to
your problems, an interface to browse the help pages of R, and many other useful facilities.
I strongly recommend its usage, particularly if you are starting with R.4

Although the set of tools that comes with R is by itself quite powerful, it is natural
that you will end up wanting to install some of the large (and growing) set of add-on
packages available for R at CRAN. In the Windows version this is easily done through the
“Packages” menu. After connecting your computer to the Internet you should select the
“Install package from CRAN...” option from this menu. This option will present a list
of the packages available at CRAN. You select the one(s) you want, and R will download the
package(s) and self-install it(them) on your system. In Unix versions, things may be slightly
different depending on the graphical capabilities of your R installation. Still, even without
selection from menus, the operation is simple.5 Suppose you want to download the package
that provides functions to connect to MySQL databases. This package name is RMySQL.6
You just need to type the following command at R prompt:

> install.packages("RMySQL")

The install.packages() function has many parameters, among which there is the
repos argument that allows you to indicate the nearest CRAN mirror.7 Still, the first time
you run the function in an R session, it will prompt you for the repository you wish to use.

One thing that you surely should do is to install the package associated with this book,
named DMwR2. This package will give you access to several functions used throughout
the book as well as the datasets. You install the package as any other package available
on CRAN, i.e by issuing the following command at your R prompt (or using the respective
menu if using RStudio),

> install.packages("DMwR2")

Once this procedure is finished you may use the book package when necessary by loading
it as any other package,

> library(DMwR2)

The function installed.packages() allows you to know the packages currently in-
stalled in your computer,

3https://www.rstudio.com/
4Other alternatives include for instance the excellent Emacs package called ESS (http://ess.r-project.

org/), in case you prefer Emacs as your editor.
5Please note that the following code also works in other versions, although you may find the use of the

menus more practical.
6You can get an idea of the functionalities of each of the R packages in the R FAQ (frequently asked

questions) at CRAN.
7The list of available mirrors can be found at http://cran.r-project.org/mirrors.html.

Introduction to R 9

> installed.packages()

This produces a long output with each line containing a package, its version information,
the packages it depends on, and so on. A more user-friendly, although less complete, list of
the installed packages can be obtained by issuing

> library()

The following command can be very useful as it allows you to check whether there are
newer versions of your installed packages at CRAN:

> old.packages()

Moreover, you can use the following command to update all your installed packages:

> update.packages()

R has an integrated help system that you can use to know more about the system and
its functionalities. Moreover, you can find extra documentation at the R site. R comes with
a set of HTML files that can be read using a Web browser8. On Windows and Mac OS
X versions of R, these pages are accessible through the help menu. Alternatively, you can
issue help.start() at the prompt to launch a browser showing the HTML help pages.
Another form of getting help is to use the help() function. For instance, if you want some
help on the plot() function, you can enter the command “help(plot)” (or alternatively,
?plot). A quite powerful alternative, provided you are connected to the Internet, is to
use the RSiteSearch() function that searches for key words or phrases in the mailing list
archives, R manuals, and help pages; for example,

> RSiteSearch('neural networks')

Finally, there are several places on the Web that provide help on several facets of R,
such as the sites http://www.rseek.org/ or http://www.rdocumentation.org/. For more
direct questions related to R, stack overflow is a “must”9.

2.2 Basic Interaction with the R Console
The R console is the place where you carry out most of the interaction with R. This

allows for easy interactive exploration of ideas that may solve your data analysis problems.
Frequently, after this exploration phase one tends to dump the sequence of R commands
that lead to the solution we have found into an R script file. These script files can then
be reused, for instance by asking R to execute all commands contained in the script file in
sequence.

The interaction with the R console consists of typing some instruction followed by the
Enter key, and receiving back the result of this command. The simplest example of this
usage would be to ask R to carry out some calculation:

8Obviously if you are using RStudio it is even easier to browse the help pages.
9http://stackoverflow.com/questions/tagged/r

10 Data Mining with R: Learning with Case Studies

> 4 + 3 / 5^2

[1] 4.12

The rather cryptic “[1]” in front of the output can be read as “this output line is
showing values starting from the first element of the object”. This is particularly useful for
results containing many values, as these may be spread over several lines of output. For now
we can simply ignore the “[1]” as we will return to this issue later.

More interesting usages of R typically involve some of its many functions, as shown in
the following simple examples:

> rnorm(4, mean = 10, sd = 2)

[1] 10.257398 10.552028 9.677471 4.615118

> mean(sample(1:10, 5))

[1] 6

The first of these instructions randomly generates 4 numbers from a normal distribution
with mean 10 and standard deviation 2, while the second calculates the mean of 5 random
numbers generated from the interval of integers from 1 to 10. This last instruction is also
an example of something we see frequently in R- function composition. This mathematical
concept involves applying a function to the result of another function, in this case calculating
the mean of the result of the call to the function sample().

Another frequent task we will carry out at the R prompt is to generate some statistical
graph of a dataset. For instance, in Figure 2.1 we see a scatter plot containing 5 points
whose coordinates were randomly generated in the interval 1 to 10. The code to obtain such
a graph is the following:10

> plot(x=sample(1:10,5),y=sample(1:10,5),
+ main="Five random points",xlab="X values",ylab="Y values")

These are just a few short examples of the typical interaction with R. In the next sections
we will learn about the main concepts behind the R language that will allow us to carry out
useful data analysis tasks with this tool.

2.3 R Objects and Variables
Everything in R is stored as an object. An object is most of the time associated with a

variable name that allows us to refer to its content. We can think of a variable as referring
to some storage location in the computer memory that holds some content (an object) that
can range from a simple number to a complex model.

R objects may store diverse types of information. The simplest content is some value of

10The “+” sign you see is the continuation prompt. It appears any time you type Enter before you finish
some statement as a way of R reminding you that there is something missing till it can execute your order.
You should remember that these prompt characters are not to be entered by you! They are automatically
printed by R (as with the normal prompt “>”).

Introduction to R 11

2 4 6 8 10

2
4

6
8

Five random points

X values

Y
 v

al
ue

s

FIGURE 2.1: A simple scatter plot.

one of R basic data types : numeric, character, or logical values11. Character values in R are
strings of characters12 enclosed by either single or double quotes (e.g. "hello" or 'today'),
while the logical values are either true or false.13 Please be aware that R is case-sensitive
so true and false must be in capital letters!

Other more complex data types may also be stored in objects. We will see examples of
this in the following sections.

Content (i.e. objects) may be stored in a variable using the assignment operator. This
operator is denoted by an angle bracket followed by a minus sign (<-):14

> vat <- 0.2

The effect of the previous instruction is thus to store the number 0.2 on a variable named
vat. By simply entering the name of a variable at the R prompt one can see its contents:15

> vat

[1] 0.2

Below you will find other examples of assignment statements. These examples should
make it clear that this is a destructive operation, as any variable can only have a single
content at any time t. This means that by assigning some new content to an existing variable,
you in effect lose its previous content:

11Things are in effect slightly more complex, as R is also able to distinguish between floating point and
integer numbers. Still, this is seldom required, unless you are heavily concerned with memory usage and
CPU speed. Moreover, R also has complex numbers as another base data type but again this is not frequently
used.

12This means the character type is in effect a set of characters, which are usually known as strings in
some programming languages, and not a single character as you might expect.

13You may actually also use T or F.
14You may also use the = sign but I would not recommend it as it may be confused with testing for

equality.
15Or an error message if we type the name incorrectly, a rather frequent error!

12 Data Mining with R: Learning with Case Studies

> y <- 39
> y

[1] 39

> y <- 43
> y

[1] 43

You can also assign numerical expressions to a variable. In this case the variable will
store the result of the evaluation of the expression, not the expression:

> z <- 5
> w <- z^2
> w

[1] 25

> i <- (z * 2 + 45)/2
> i

[1] 27.5

This means that we can think of the assignment operation as “evaluate whatever is given
on the right side of the operator, and assign (store) the result (an object of some type) of
this evaluation in the variable whose name is given on the left side”.

Every object you create will stay in the computer memory until you delete it (or you
exit R). You may list the objects currently in the memory by issuing the ls() or objects()
command at the prompt. If you do not need an object, you may free some memory space
by removing it using the function rm():

> ls()

[1] "i" "vat" "w" "y" "z"

> rm(vat,y,z,w,i)

Variable names may consist of any upper- and lower-case letters, the digits 0 to 9 (except
in the beginning of the name), and also the period, “.”, which behaves like a letter. Once
again we remind that names in R are case sensitive, meaning that Color and color are two
distinct variables with potentially very different content. This is in effect a frequent cause
of frustration for beginners who keep getting “object not found” errors. If you face this type
of error, start by checking the correctness of the name of the object causing the error.

2.4 R Functions
R functions are a special type of R object designed to carry out some operation. R

functions, like mathematical functions, are applied to some set of arguments and produce a
result. In R, both the arguments that we provide when we call the function and the result

Introduction to R 13

of the function execution are R objects whose type will depend on the function. R functions
range from simple objects implementing some standard calculation, e.g. calculating the
square root of a number, to more complex functions that can obtain some model of a
dataset, e.g. a neural network. R already comes with an overwhelming set of functions
available for us to use, but as we will see, the user can also create new functions.

In terms of notation, a function has a name and can have zero or more parameters.
When we call (execute) the function we use its name followed by the arguments between
parentheses separated by commas16,

> max(4, 5, 6, 12, -4)

[1] 12

In the above example we are calling a function named max() that as the name suggests
returns the maximum value of the arguments supplied by the user when calling the function.

In R we frequently tend to use function composition that, as mentioned before, consists
of applying functions to the result of other functions, as shown in this example where we
obtain the maximum of a random sample of 30 integers in the interval 1 to 10017:

> max(sample(1:100, 30))

[1] 99

R allows the user to create new functions. This is a useful feature, particularly when you
want to automate certain tasks that you have to repeat over and over. Instead of typing
the instructions that perform this task every time you want to execute it, you encapsulate
them in a new function and then simply use it whenever necessary.

R functions are objects that can be stored in a variable. The contents of these objects
are the statements that, when executed, carry out the task for which the function was
designed. These variables where we store the content of a function will act as the function
name. Thus to create a new function we use the assignment operator to store the contents
of the function in a variable (whose name will be the name of the function).

Let us start with a simple example. Suppose you often want to calculate the standard
error of a mean associated with a set of values. By definition, the standard error of a sample
mean is given by

standard error =
√
s2

n

where s2 is the sample variance and n the sample size.
Given a set of numbers, we want a function to calculate the respective standard error

of the mean of these numbers. Let us decide to call this function se. Before proceeding to
create the function we should check whether there is already a function with this name in
R. If that is the case, then it would be better to use another name, not to “hide” the other
R function from the user.18 We can check the existence of some object with a certain name
using the function exists(),

16Note that even if the function takes no arguments we need to call it with the parentheses, e.g. f().
17Due to the random nature of the sample() function you may get a different maximum if you run this

code.
18You do not have to worry about overriding the definition of the R function. It will continue to exist,

although your new function with the same name will be on top of the search path of R, thus “hiding” the
other standard function.

14 Data Mining with R: Learning with Case Studies

> exists("se")

[1] FALSE

The fact that R answered false means that there is no object with the name se and
thus we are safe to create a function with that name. The following is a possible way to
create our function:

> se <- function(x) {
+ v <- var(x)
+ n <- length(x)
+ return(sqrt(v/n))
+ }

Thus, to create a function object, you assign to its name something with the general
form

function(<set of parameters>) { <set of R instructions> }

A set of R instructions (a block) is delimited by curly braces and it is formed by each
instruction on its own line. This means that in our example we have decided that to calculate
the standard error of the sample mean of a set of numbers it would be sufficient to execute
the above 3 statements. The first of these calls the function var() with the content of the
variable x. This variable is a parameter of the function. Parameters are special variables
that will hold the values supplied in the arguments of the function when the user calls it.
This means that whenever some user calls our se function he will have to supply a set of
values in the first (and only) argument of this function. These values will be assigned by R
to the parameter (variable) x. The function var() is an R function that returns the variance
of a set of values, that we decided to store in the variable v. The second statement uses
function length() to obtain the number of values in x, that we store in another variable
named n. Having these two quantities we are ready to calculate the standard error, by
simply calculating the square root (function sqrt()) of the quotient of v by n. The result
of this calculation is then returned back to the user by using the function return().

After creating this function, we could use it as follows:

> mySample <- rnorm(100, mean=20, sd=4)
> se(mySample)

[1] 0.3550299

In the above code we have used the function rnorm() to obtain a random sample of 100
numbers from a normal distribution with mean 20 and standard deviation 4. We have then
called our function with this set of numbers. Please note that due to the random nature of
the function rnorm() you may get a different result.

Sometimes we want to create functions that may have some parameters that have default
values. For instance, we could create a function to convert a value in meters to other units
of length. This function could take as a first argument the value in meters and as a second
argument the target unit. However, we could allow the user to omit this second argument
by setting a default value when we create the function. The following is an illustration of
this:

Introduction to R 15

> convMeters <- function(val, to="inch") {
+ mult <- switch(to,inch=39.3701,foot=3.28084,yard=1.09361,mile=0.000621371,NA)
+ if (is.na(mult)) stop("Unknown target unit of length.")
+ else return(val*mult)
+ }
> convMeters(23,"foot")

[1] 75.45932

> convMeters(40,"inch")

[1] 1574.804

> convMeters(40)

[1] 1574.804

> convMeters(2.4,"km")

Error in convMeters(2.4, "km"): Unknown target unit of length.

The above function is able to convert meters to inches, feet, yards, and miles. As seen
in the example calls, the user may omit the second argument as this has a default value
(“inch”). This default value was established at the function creation by telling R not only
the name of the parameter (to), but also a value that the parameter should take in case
the user does not supply another value. Note that this value will always be overridden by
any value the user supplies when calling the function.

The code of the function also illustrates a few other functions available in R. Function
switch() for instance, allows us to compare the contents of a variable (to in the above
code), against a set of options. For each option we can supply the value that will be the
result of the function switch(). In the above example, if the variable to has the value “inch”
the value assigned to the variable mult will be 39.3701. The function also allows to supply
a return value in case the variable does not match any of the alternatives. In this case we
are returning the special value NA. The goal here is to foresee situations where the user
supplies a target unit that is unknown to this function. The following statement is another
conditional statement. The if statement allows us to have conditional execution of other
statements. In this case if the value assigned to variable mult was NA (which is checked
by a call to the function is.na()), then we want to stop the execution of the function
with some sort of error message (using function stop()) because the user has supplied an
unknown target unit. Otherwise we simply carry out the conversion calculation and return
it as the result of the function execution.

The way we call functions (either existing or the ones we create) can also have some
variations, namely in terms of the way we supply the values for the parameters of the
functions. The most frequent setup is when we simply supply a value for each parameter,
e.g.:

> convMeters(56.2,"yard")

[1] 61.46088

Calling the function this way we are supplying the values for the parameters “by posi-
tion”, i.e. the value in the first argument (56.2) is assigned by R to the first parameter of
the function (val), and the value in the second argument (“yard”) is assigned to the second

16 Data Mining with R: Learning with Case Studies

parameter (to). We may also supply the parameter values “by name”. We could get the
same exact result with the following call:

> convMeters(to="yard",val=56.2)

[1] 61.46088

In effect, we can even mix both forms of calling a function,

> convMeters(56.2,to="yard")

[1] 61.46088

Calling by name is particularly useful with functions with a lot of parameters, most of
which with default values. Say we have a function named f with 20 parameters, all but the
two first having default values. Suppose we want to call the function but we want to supply
a value different from the default for the tenth parameter named tol. With the possibility
of calling by name we could do something like:

> f(10,43.2,tol=0.25)

This avoids having to supply all the values till the tenth argument in order to be able
to use a value different from the default for this parameter.

2.5 Vectors
The most basic data object in R is a vector. Even when you assign a single number to a

variable (like in x <- 45.3), you are creating a vector containing a single element. A vector
is an object that can store a set of values of the same base data type. Thus you may have
for instance vectors of strings, logical values, or numbers. The length of a vector object is
the number of elements in it, and can be obtained with the function length().

Most of the time you will be using vectors with length larger than 1. You can create a
vector in R, using the c() function, which combines its arguments to form a vector:

> v <- c(4, 7, 23.5, 76.2, 80)
> v

[1] 4.0 7.0 23.5 76.2 80.0

> length(v)

[1] 5

> mode(v)

[1] "numeric"

The mode() function returns the base data type of the values stored in an object. All
elements of a vector must belong to the same base data type. If that is not true, R will force
it by type coercion. The following is an example of this:

Introduction to R 17

> v <- c(4, 7, 23.5, 76.2, 80, "rrt")
> v

[1] "4" "7" "23.5" "76.2" "80" "rrt"

> mode(v)

[1] "character"

All elements of the vector have been converted to the character type, i.e. strings.
All vectors may contain a special value called NA. This represents a missing value:

> u <- c(4, 6, NA, 2)
> u

[1] 4 6 NA 2

> k <- c(TRUE, FALSE, FALSE, NA, TRUE)
> k

[1] TRUE FALSE FALSE NA TRUE

You can access a particular element of a vector through an index between square brack-
ets:

> u[2]

[1] 6

The example above gives you the second element of the vector u. In Section 2.9 we will
explore more powerful indexing schemes.

You can also change the value of one particular vector element by using the same indexing
strategies:

> k[4] <- TRUE
> k

[1] TRUE FALSE FALSE TRUE TRUE

R allows you to create empty vectors like this:

> x <- vector()

The length of a vector can be changed by simply adding more elements to it using a
previously nonexistent index. For instance, after creating the empty vector x, you could
type

> x[3] <- 45
> x

[1] NA NA 45

Notice how the first two elements have a missing value, NA. This sort of flexibility comes
with a cost. Contrary to other programming languages, in R you will not get an error if you
use a position of a vector that does not exist:

18 Data Mining with R: Learning with Case Studies

> length(x)

[1] 3

> x[10]

[1] NA

> x[5] <- 4
> x

[1] NA NA 45 NA 4

To shrink the size of a vector, you can take advantage of the fact that the assignment
operation is destructive, as we have mentioned before. For instance,

> v <- c(45, 243, 78, 343, 445, 44, 56, 77)
> v

[1] 45 243 78 343 445 44 56 77

> v <- c(v[5], v[7])
> v

[1] 445 56

Through the use of more powerful indexing schemes to be explored in Section 2.9, you
will be able delete particular elements of a vector in an easier way.

2.6 Vectorization
One of the most powerful aspects of the R language is the vectorization of several of its

available functions. These functions can be applied directly to a vector of values producing
an equal-sized vector of results. For instance,

> v <- c(4, 7, 23.5, 76.2, 80)
> sqrt(v)

[1] 2.000000 2.645751 4.847680 8.729261 8.944272

The function sqrt() calculates the square root of its argument. In this case we have used
a vector of numbers as its argument. Vectorization makes the function produce a vector of
the same length, with each element resulting from applying the function to the respective
element of the original vector.

You can also use this feature of R to carry out vector arithmetic:

> v1 <- c(4, 6, 87)
> v2 <- c(34, 32.4, 12)
> v1 + v2

[1] 38.0 38.4 99.0

Introduction to R 19

What if the vectors do not have the same length? R will use a recycling rule by repeating
the shorter vector until it reaches the size of the larger vector. For example,

> v1 <- c(4, 6, 8, 24)
> v2 <- c(10, 2)
> v1 + v2

[1] 14 8 18 26

It is just as if the vector c(10,2) was c(10,2,10,2). If the lengths are not multiples,
then a warning is issued, but the recycling still takes place (it is a warning, not an error):

> v1 <- c(4, 6, 8, 24)
> v2 <- c(10, 2, 4)
> v1 + v2

Warning in v1 + v2: longer object length is not a multiple of shorter object length

[1] 14 8 12 34

As mentioned before, single numbers are represented in R as vectors of length 1. Together
with the recycling rule this is very handy for operations like the one shown below:

> v1 <- c(4, 6, 8, 24)
> 2 * v1

[1] 8 12 16 48

Notice how the number 2 (actually the vector c(2)!) was recycled, resulting in multi-
plying all elements of v1 by 2. As we will see, this recycling rule is also applied with other
objects, such as arrays and matrices.

2.7 Factors
Factors provide an easy and compact form of handling categorical (nominal) data. Fac-

tors have levels that are the possible values they can take. Factors are particularly useful in
datasets where you have nominal variables with a fixed number of possible values. Several
graphical and summarization functions that we will explore in the following chapters take
advantage of this type of information. Factors allow you to use and show the values of your
nominal variables as they are, which is clearly more interpretable for the user, while inter-
nally R stores these values as numeric codes that are considerably more memory efficient
(but this is transparent to the user).

Let us see how to create factors in R. Suppose you have a vector with the sex of ten
individuals:

> g <- c("f", "m", "m", "m", "f", "m", "f", "m", "f", "f")
> g

[1] "f" "m" "m" "m" "f" "m" "f" "m" "f" "f"

You can transform this vector into a factor by:

20 Data Mining with R: Learning with Case Studies

> g <- factor(g)
> g

[1] f m m m f m f m f f
Levels: f m

Notice that you do not have a character vector anymore. Actually, as mentioned above,
factors are represented internally as numeric vectors.19 In this example, we have two levels,
‘f’ and ‘m’, which are represented internally as 1 and 2, respectively. Still, you do not need
to bother about this as you can use the “original” character values, and R will also use them
when showing you the factors. So the coding translation, motivated by efficiency reasons,
is transparent to you, as you can confirm in the following example:

> g[3]

[1] m
Levels: f m

> g[3] == "m"

[1] TRUE

In the above example we asked R to compare the third element of vector g with the char-
acter value "m", and the answer TRUE, which means that R internally translated this char-
acter value into the respective code of the factor g. Note that if you tried to do g[3] == m
you would get an error... why?

Suppose you have five extra individuals whose sex information you want to store in
another factor object. Suppose that they are all males. If you still want the factor object to
have the same two levels as object g, you must use the following:

> other.g <- factor(c("m", "m", "m", "m", "m"), levels = c("f","m"))
> other.g

[1] m m m m m
Levels: f m

Without the levels argument the factor other.g would have a single level ("m").
One of the many things you can do with factors is to count the occurrence of each

possible value. Try this:

> table(g)

g
f m
5 5

> table(other.g)

other.g
f m
0 5

The table() function can also be used to obtain cross-tabulation of several factors.
19You can confirm it by typing mode(g).

Introduction to R 21

Suppose that we have in another vector the age category of the ten individuals stored in
vector g. You could cross-tabulate these two factors as follows:

> a <- factor(c('adult','adult','juvenile','juvenile','adult',
+ 'adult','adult','juvenile','adult','juvenile'))
> table(a, g)

g
a f m

adult 4 2
juvenile 1 3

Sometimes we wish to calculate the marginal and relative frequencies for this type of
contingency table. The following gives you the totals for both the sex and the age factors
of this dataset:

> t <- table(a, g)
> margin.table(t, 1)

a
adult juvenile

6 4

> margin.table(t, 2)

g
f m
5 5

The “1” and “2” in the function calls represent the first and second dimensions of the
table, that is, the rows and columns of t.

For relative frequencies with respect to each margin and overall, we do

> prop.table(t, 1)

g
a f m

adult 0.6666667 0.3333333
juvenile 0.2500000 0.7500000

> prop.table(t, 2)

g
a f m

adult 0.8 0.4
juvenile 0.2 0.6

> prop.table(t)

g
a f m

adult 0.4 0.2
juvenile 0.1 0.3

Notice that if we wanted percentages instead, we could simply multiply these function
calls by 100 making use of the concept of vectorization we have mentioned before.

22 Data Mining with R: Learning with Case Studies

2.8 Generating Sequences
R has several facilities to generate different types of sequences. For instance, if you want

to create a vector containing the integers between 1 and 100, you can simply type

> x <- 1:100

which creates a vector called x containing 100 elements—the integers from 1 to 100.
You should be careful with the precedence of the operator “:”. The following examples

illustrate this danger:

> 10:15 - 1

[1] 9 10 11 12 13 14

> 10:(15 - 1)

[1] 10 11 12 13 14

Please make sure you understand what happened in the first command (remember the
recycling rule!).

You may also generate decreasing sequences such as the following:

> 5:0

[1] 5 4 3 2 1 0

To generate sequences of real numbers, you can use the function seq(),

> seq(-4, 1, 0.5)

[1] -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

This instruction generates a sequence of real numbers between −4 and 1 in increments
of 0.5. Here are a few other examples of the use of the function seq():20

> seq(from = 1, to = 5, length = 4)

[1] 1.000000 2.333333 3.666667 5.000000

> seq(from = 1, to = 5, length = 2)

[1] 1 5

> seq(length = 10, from = -2, by = 0.2)

[1] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

Another very useful function to generate sequences with a certain pattern is the function
rep():

20You may want to have a look at the help page of the function (typing, for instance, ‘?seq’), to better
understand its arguments and variants.

Introduction to R 23

> rep(5, 10)

[1] 5 5 5 5 5 5 5 5 5 5

> rep("hi", 3)

[1] "hi" "hi" "hi"

> rep(1:2, 3)

[1] 1 2 1 2 1 2

> rep(1:2, each = 3)

[1] 1 1 1 2 2 2

The function gl() can be used to generate sequences involving factors. The syntax of
this function is gl(k,n), where k is the number of levels of the factor, and n is the number
of repetitions of each level. Here are two examples,

> gl(3, 5)

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Levels: 1 2 3

> gl(2, 5, labels = c("female", "male"))

[1] female female female female female male male male male male
Levels: female male

Finally, R has several functions that can be used to generate random sequences ac-
cording to different probability density functions. The functions have the generic structure
rfunc(n, par1, par2, ...), where func is the name of the probability distribution, n is
the number of data to generate, and par1, par2, ... are the values of some parameters of
the density function that may be required. For instance, if you want ten randomly generated
numbers from a normal distribution with zero mean and unit standard deviation, type

> rnorm(10)

[1] -0.38016381 0.84988686 1.78151879 -0.43124411 0.54127286
[6] -0.36367234 0.18326414 -0.13043720 0.30978034 -0.05407895

while if you prefer a mean of 10 and a standard deviation of 3, you should use

> rnorm(4, mean = 10, sd = 3)

[1] 14.231845 12.781868 17.509875 8.088479

To get five numbers drawn randomly from a Student t distribution with 10 degrees of
freedom, type

> rt(5, df = 10)

[1] 1.6069443 1.6778517 -1.2440164 1.4702562 0.7808423

R has many more probability functions, as well as other functions for obtaining the
probability densities, the cumulative probability densities, and the quantiles of these distri-
butions.

24 Data Mining with R: Learning with Case Studies

2.9 Sub-Setting
We have already seen examples of how to get one element of a vector by indicating its

position inside square brackets. R also allows you to use vectors within the brackets. There
are several types of index vectors. Logical index vectors extract the elements corresponding
to true values. Let us see a concrete example:

> x <- c(0, -3, 4, -1, 45, 90, -5)
> x > 0

[1] FALSE FALSE TRUE FALSE TRUE TRUE FALSE

The second instruction of the code shown above is a logical condition. As x is a vector,
the comparison is carried out for all elements of the vector (remember the famous recycling
rule!), thus producing a vector with as many logical values as there are elements in x. If
we use this vector of logical values to index x, we get as a result the positions of x that
correspond to the true values:

> x[x > 0]

[1] 4 45 90

This reads as follows: Give me the positions of x for which the following logical expression
is true. Notice that this is another example of the notion of function composition, which we
will use rather frequently. Taking advantage of the logical operators available in R, you can
use more complex logical index vectors, as for instance,

> x[x <= -2 | x > 5]

[1] -3 45 90 -5

> x[x > 40 & x < 100]

[1] 45 90

As you may have guessed, the “|” operator performs logical disjunction, while the “&”
operator is used for logical conjunction.21 This means that the first instruction shows us
the elements of x that are either less than or equal to −2, or greater than 5. The second
example presents the elements of x that are both greater than 40 and less than 100.

R also allows you to use a vector of integers to extract several elements from a vector.
The numbers in the vector of indexes indicate the positions in the original vector to be
extracted:

> x[c(4, 6)]

[1] -1 90

> x[1:3]

21There are also other operators, && and ||, to perform these operations. These alternatives evaluate
expressions from left to right, examining only the first element of the vectors, while the single character
versions work element-wise.

Introduction to R 25

[1] 0 -3 4

> y <- c(1, 4)
> x[y]

[1] 0 -1

Alternatively, you can use a vector with negative indexes to indicate which elements are
to be excluded from the selection:

> x[-1]

[1] -3 4 -1 45 90 -5

> x[-c(4, 6)]

[1] 0 -3 4 45 -5

> x[-(1:3)]

[1] -1 45 90 -5

Note the need for parentheses in the last example due to the precedence of the “:”
operator.

Indexes can also be formed by a vector of strings, taking advantage of the fact that R
allows you to name the elements of a vector, through the function names(). Named elements
are sometimes preferable because their positions are easier to memorize. For instance, imag-
ine you have a vector of measurements of a chemical parameter obtained at five different
locations. You could create a named vector as follows:

> pH <- c(4.5, 7, 7.3, 8.2, 6.3)
> names(pH) <- c("area1", "area2", "mud", "dam", "middle")
> pH

area1 area2 mud dam middle
4.5 7.0 7.3 8.2 6.3

In effect, if you already know the names of the positions in the vector at the time of its
creation, it is easier to proceed this way:

> pH <- c(area1 = 4.5, area2 = 7, mud = 7.3, dam = 8.2, middle = 6.3)

The vector pH can now be indexed using the names shown above:

> pH["mud"]

mud
7.3

> pH[c("area1", "dam")]

area1 dam
4.5 8.2

Finally, indexes may be empty, meaning that all elements are selected. An empty index

26 Data Mining with R: Learning with Case Studies

represents the absence of a restriction on the selection process. For instance, if you want
to fill in a vector with zeros, you could simply do “x[] <- 0”. Please notice that this is
different from doing “x <- 0”. This latter case would assign to x a vector with one single
element (zero), while the former (assuming that x exists before, of course!) will fill in all
current elements of x with zeros. Try both!

2.10 Matrices and Arrays
Data elements can be stored in an object with more than one dimension. This may be

useful in several situations. Arrays store data elements in several dimensions. Matrices are
a special case of arrays with two single dimensions. Arrays and matrices in R are nothing
more than vectors with a particular attribute that is the dimension. Let us see an exam-
ple. Suppose you have the vector of numbers c(45,23,66,77,33,44,56,12,78,23). The
following would “organize” these ten numbers as a matrix:

> m <- c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23)
> m

[1] 45 23 66 77 33 44 56 12 78 23

> dim(m) <- c(2, 5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 45 66 33 56 78
[2,] 23 77 44 12 23

Notice how the numbers were “spread” through a matrix with two rows and five columns
(the dimension we have assigned to m using the dim() function). Actually, you could simply
create the matrix using the simpler instruction:

> m <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2, 5)

You may have noticed that the vector of numbers was spread in the matrix by columns;
that is, first fill in the first column, then the second, and so on. You can fill the matrix by
rows using the following parameter of the function matrix():

> m <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2, 5, byrow = TRUE)

As the visual display of matrices suggests, you can access the elements of a matrix
through a similar indexing scheme as in vectors, but this time with two indexes (the dimen-
sions of a matrix):

> m[2, 3]

[1] 12

You can take advantage of the sub-setting schemes described in Section 2.9 to extract
elements of a matrix, as the following examples show:

Introduction to R 27

> m[-2, 1]

[1] 45

> m[1, -c(3, 5)]

[1] 45 23 77

Moreover, if you omit any dimension, you obtain full columns or rows of the matrix:

> m[1,]

[1] 45 23 66 77 33

> m[, 4]

[1] 77 78

Notice that, as a result of sub-setting, you may end up with a vector, as in the two above
examples. If you still want the result to be a matrix, even though it is a matrix formed by
a single line or column, you can use the following instead:

> m[1, , drop = FALSE]

[,1] [,2] [,3] [,4] [,5]
[1,] 45 23 66 77 33

> m[, 4, drop = FALSE]

[,1]
[1,] 77
[2,] 78

Functions cbind() and rbind() may be used to join together two or more vectors or
matrices, by columns or by rows, respectively. The following examples should illustrate this:

> m1 <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2, 5)
> cbind(c(4, 76), m1[, 4])

[,1] [,2]
[1,] 4 56
[2,] 76 12

> m2 <- matrix(rep(10, 20), 4, 5)
> m2

[,1] [,2] [,3] [,4] [,5]
[1,] 10 10 10 10 10
[2,] 10 10 10 10 10
[3,] 10 10 10 10 10
[4,] 10 10 10 10 10

> m3 <- rbind(m1[1,], m2[3,])
> m3

[,1] [,2] [,3] [,4] [,5]
[1,] 45 66 33 56 78
[2,] 10 10 10 10 10

28 Data Mining with R: Learning with Case Studies

You can also give names to the columns and rows of matrices, using the functions
colnames() and rownames(), respectively. This facilitates memorizing the data positions.

> results <- matrix(c(10, 30, 40, 50, 43, 56, 21, 30), 2, 4, byrow = TRUE)
> colnames(results) <- c("1qrt", "2qrt", "3qrt", "4qrt")
> rownames(results) <- c("store1", "store2")
> results

1qrt 2qrt 3qrt 4qrt
store1 10 30 40 50
store2 43 56 21 30

> results["store1",]

1qrt 2qrt 3qrt 4qrt
10 30 40 50

> results["store2", c("1qrt", "4qrt")]

1qrt 4qrt
43 30

Arrays are extensions of matrices to more than two dimensions. This means that they
have more than two indexes. Apart from this they are similar to matrices and can be used in
the same way. Similar to the matrix() function, there is an array() function to facilitate
the creation of arrays. The following is an example of its use:

> a <- array(1:24, dim = c(4, 3, 2))
> a

, , 1

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

, , 2

[,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24

The above instruction has created an array with 3 dimensions, the first with 4 possible
“positions”, the second with 3 and the third 2. The 24 integers were “spread” in this data
structure.

You can use the same indexing schemes to access elements of an array. Make sure you
understand the following examples.

> a[1, 3, 2]

[1] 21

Introduction to R 29

> a[1, , 2]

[1] 13 17 21

> a[4, 3,]

[1] 12 24

> a[c(2, 3), , -2]

[,1] [,2] [,3]
[1,] 2 6 10
[2,] 3 7 11

The recycling and arithmetic rules also apply to matrices and arrays, although they are
tricky to understand at times. Below are a few examples:

> m <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2, 5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 45 66 33 56 78
[2,] 23 77 44 12 23

> m * 3

[,1] [,2] [,3] [,4] [,5]
[1,] 135 198 99 168 234
[2,] 69 231 132 36 69

> m1 <- matrix(c(45, 23, 66, 77, 33, 44), 2, 3)
> m1

[,1] [,2] [,3]
[1,] 45 66 33
[2,] 23 77 44

> m2 <- matrix(c(12, 65, 32, 7, 4, 78), 2, 3)
> m2

[,1] [,2] [,3]
[1,] 12 32 4
[2,] 65 7 78

> m1 + m2

[,1] [,2] [,3]
[1,] 57 98 37
[2,] 88 84 122

R also includes operators and functions for standard matrix algebra that have different
rules. You may obtain more information on this by looking at Section 5 of the document
“An Introduction to R” that comes with R.

30 Data Mining with R: Learning with Case Studies

2.11 Lists
R lists consist of an ordered collection of other objects known as their components. Unlike

the elements of vectors, list components do not need to be of the same type, mode, or length.
The components of a list are always numbered and may also have a name attached to them.
Let us start by seeing a simple example of how to create a list:

> my.lst <- list(stud.id=34453,
+ stud.name="John",
+ stud.marks=c(14.3,12,15,19))

The object my.lst is formed by three components. One is a number and has the name
stud.id, the second is a character string having the name stud.name, and the third is a
vector of numbers with name stud.marks.

To show the contents of a list you simply type its name as any other object:

> my.lst

$stud.id
[1] 34453

$stud.name
[1] "John"

$stud.marks
[1] 14.3 12.0 15.0 19.0

You can extract individual elements of lists using the following indexing schema:

> my.lst[[1]]

[1] 34453

> my.lst[[3]]

[1] 14.3 12.0 15.0 19.0

You may have noticed that we have used double square brackets. If we had used
my.lst[1] instead, we would obtain a different result:

> my.lst[1]

$stud.id
[1] 34453

This latter notation extracts a sub-list formed by the first component of my.lst. On the
contrary, my.lst[[1]] extracts the value of the first component (in this case, a number),
which is not a list anymore, as you can confirm by the following:

> mode(my.lst[1])

[1] "list"

> mode(my.lst[[1]])

[1] "numeric"

Introduction to R 31

In the case of lists with named components (as the previous example), we can use an
alternative way of extracting the value of a component of a list:

> my.lst$stud.id

[1] 34453

The names of the components of a list are, in effect, an attribute of the list, and can be
manipulated as we did with the names of elements of vectors:

> names(my.lst)

[1] "stud.id" "stud.name" "stud.marks"

> names(my.lst) <- c("id", "name", "marks")
> my.lst

$id
[1] 34453

$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

Lists can be extended by adding further components to them:

> my.lst$parents.names <- c("Ana", "Mike")
> my.lst

$id
[1] 34453

$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

$parents.names
[1] "Ana" "Mike"

You can check the number of components of a list using the function length():

> length(my.lst)

[1] 4

You can remove components of a list as follows:

> my.lst <- my.lst[-5]

You can concatenate lists using the c() function:

32 Data Mining with R: Learning with Case Studies

> other <- list(age = 19, sex = "male")
> lst <- c(my.lst, other)
> lst

$id
[1] 34453

$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

$parents.names
[1] "Ana" "Mike"

$age
[1] 19

$sex
[1] "male"

Finally, you can unflatten all data in a list using the function unlist(). This will create
a vector with as many elements as there are data objects in a list. This will coerce different
data types to a common data type,22 which means that most of the time you will end up
with everything being character strings. Moreover, each element of this vector will have a
name generated from the name of the list component that originated it:

> unlist(my.lst)

id name marks1 marks2 marks3
"34453" "John" "14.3" "12" "15"
marks4 parents.names1 parents.names2

"19" "Ana" "Mike"

2.12 Data Frames
Data frames are the recommended data structure for storing data tables in R. They

are similar to matrices in structure as they are also bi-dimensional. However, contrary to
matrices, data frames may include data of a different type in each column. In this sense
they are more similar to lists, and in effect, for R, data frames are a special class of lists.

We can think of each row of a data frame as an observation (or case), being described
by a set of variables (the named columns of the data frame).

You can create a data frame as follows:

> my.dataset <- data.frame(site=c('A','B','A','A','B'),
+ season=c('Winter','Summer','Summer','Spring','Fall'),

22Because vector elements must have the same type (c.f. Section 2.5).

Introduction to R 33

+ pH = c(7.4,6.3,8.6,7.2,8.9))
> my.dataset

site season pH
1 A Winter 7.4
2 B Summer 6.3
3 A Summer 8.6
4 A Spring 7.2
5 B Fall 8.9

Elements of data frames can be accessed like a matrix:

> my.dataset[3, 2]

[1] Summer
Levels: Fall Spring Summer Winter

Note that the “season” column has been coerced into a factor because all its elements are
character strings. Similarly, the “site” column is also a factor. This is the default behavior
of the data.frame() function.23

You can use the indexing schemes described in Section 2.9 with data frames. Moreover,
you can use the column names for accessing the content of full columns of a data frame
using the two following alternatives:

> my.dataset$pH

[1] 7.4 6.3 8.6 7.2 8.9

> my.dataset[["site"]]

[1] A B A A B
Levels: A B

You can perform some simple querying of the data in the data frame, taking advantage
of the sub-setting possibilities of R, as shown on these examples:

> my.dataset[my.dataset$pH > 7,]

site season pH
1 A Winter 7.4
3 A Summer 8.6
4 A Spring 7.2
5 B Fall 8.9

> my.dataset[my.dataset$site == "A", "pH"]

[1] 7.4 8.6 7.2

> my.dataset[my.dataset$season == "Summer", c("site", "pH")]

site pH
2 B 6.3
3 A 8.6

23Check the help information on the data.frame() function to see examples of how you can use the I()
function, or the stringsAsFactors parameter to avoid this coercion.

34 Data Mining with R: Learning with Case Studies

In the above examples you could eventually feel tempted to refer to the columns directly,
but this would generate an error as R would interprete the column names as names of
variables and such variables do not exist:

> my.dataset[pH > 7,]

Error in ‘[.data.frame‘(my.dataset, pH > 7,): object ’pH’ not found

To make this possible you would need to resort to the function attach(). Let us see
some examples of this:

> attach(my.dataset)
> my.dataset[site=='B',]

site season pH
2 B Summer 6.3
5 B Fall 8.9

> season

[1] Winter Summer Summer Spring Fall
Levels: Fall Spring Summer Winter

The inverse of the function attach() is the function detach() that disables these facil-
ities:

> detach(my.dataset)
> season

Error in eval(expr, envir, enclos): object ’season’ not found

Please note that the use of this simplification through the function attach() is not
recommended if your data frame will change, as this may have unexpected results. A safer
approach, when you are simply querying the data frame, is to use the function subset():

> subset(my.dataset, pH > 8)

site season pH
3 A Summer 8.6
5 B Fall 8.9

> subset(my.dataset, season == "Summer", season:pH)

season pH
2 Summer 6.3
3 Summer 8.6

Notice however, that contrary to the other examples seen above, you may not use this
sub-setting strategy to change values in the data. So, for instance, if you want to sum 1 to
the pH values of all summer rows, you can only do it this way:

> my.dataset[my.dataset$season == 'Summer','pH'] <-
+ my.dataset[my.dataset$season == 'Summer','pH'] + 1

You can add new columns to a data frame in the same way you did with lists:

Introduction to R 35

> my.dataset$NO3 <- c(234.5, 256.6, 654.1, 356.7, 776.4)
> my.dataset

site season pH NO3
1 A Winter 7.4 234.5
2 B Summer 7.3 256.6
3 A Summer 9.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

The only restriction to this addition is that new columns must have the same number
of rows as the existing data frame; otherwise R will complain. You can check the number of
rows or columns of a data frame with these functions:

> nrow(my.dataset)

[1] 5

> ncol(my.dataset)

[1] 4

> dim(my.dataset)

[1] 5 4

Usually you will be reading your datasets into a data frame either from some file or
from a database. You will seldom type the data using the data.frame() function as above,
particularly in a typical data mining scenario. In the next chapters we will see how to import
several types of data into data frames, namely in Section 3.2.2 (page 46) of the next chapter.
In any case, you may want to browse the “R Data Import/Export” manual that comes with
R to check all the different possibilities that R has.

R has a simple spreadsheet-like interface that can be used to enter small data frames.
You can edit an existent data frame by typing

> my.dataset <- edit(my.dataset)

or you may create a new data frame with,

> new.data <- edit(data.frame())

You can use the names() function to check and/or change the name of the columns of
a data frame:

> names(my.dataset)

[1] "site" "season" "pH" "NO3"

> names(my.dataset) <- c("area", "season", "pH", "NO3")
> my.dataset

area season pH NO3
1 A Winter 7.4 234.5
2 B Summer 7.3 256.6
3 A Summer 9.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

36 Data Mining with R: Learning with Case Studies

As the names attribute is a vector, if you just want to change the name of one particular
column, you can type

> names(my.dataset)[4] <- "PO4"
> my.dataset

area season pH PO4
1 A Winter 7.4 234.5
2 B Summer 7.3 256.6
3 A Summer 9.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

2.13 Useful Extensions to Data Frames
In the previous section we have presented data frames as the main form of storing

datasets in R. The packages tibble (Wickham et al., 2016) and dplyr (Wickham and
Francois, 2015a) provide some useful extensions to data frames that are very convenient for
many data manipulation tasks.

The package tibble defines tibbles that can be regarded as “special” data frames. Tibbles
change some of the behavior of “standard” data frames. The more important differences
between a tibble and a data frame are: (i) tibbles never change character columns into
factors as data frames do by default; (ii) tibbles are more relaxed in terms of naming of
the columns; and (iii) the printing methods of tibbles are more convenient particularly with
large datasets. Tibbles can be created with the function tibble()

> dat <- tibble(TempCels = sample(-10:40, size=100, replace=TRUE),
+ TempFahr = TempCels*9/5 + 32,
+ Location = rep(letters[1:2], each=50))
> dat

A tibble: 100 × 3
TempCels TempFahr Location

<int> <dbl> <chr>
1 -4 24.8 a
2 21 69.8 a
3 12 53.6 a
4 4 39.2 a
5 38 100.4 a
6 31 87.8 a
7 -9 15.8 a
8 -8 17.6 a
9 24 75.2 a
10 9 48.2 a
... with 90 more rows

This function works in a similar way as the standard data.frame() function but, as
you can observe, each column is calculated sequentially allowing you to use the values of
previous columns, and character vectors are not converted into factors.

Any standard data frame can be converted into a tibble. For illustration purposes we

Introduction to R 37

will use the (in)famous Iris dataset. This dataset is available directly in R and contains 150
rows with information (5 attributes) on variants of Iris plants.

> data(iris)
> dim(iris)

[1] 150 5

> class(iris)

[1] "data.frame"

The first statement loads the Iris dataset into a standard local R data frame with 150
rows and 5 columns. Even-though this is a rather small dataset, if you accidentally type
iris at the R command line and press the enter key you will get your screen filled with
data which would not happen with tibbles. To convert this data frame into a tibble we can
proceed as follows

> library(tibble)
> ir <- as_tibble(iris)
> class(ir)

[1] "tbl_df" "tbl" "data.frame"

> ir

A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

<dbl> <dbl> <dbl> <dbl> <fctr>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
... with 140 more rows

Using function as_tibble() we create the object ir that contains the original dataset
converted into a tibble. It is important to be aware that we did not create a new copy of
the data frame! As you see the new object is still of class data.frame but it also belongs
to two new classes: tbl_df and tbl. The first is the class of a tibble (tbl_df), while the
second is a further generalization that allows us to look at a dataset independently of the
data source used to store it. As you can observe the printing method of tibbles is more
interesting than that of standard data frames as it provides more information and avoids
over cluttering your screen. Please note that if you wish you can still get all output as in
standard data frames. One possible way of achieving this is through the method print() of
objects of the class tbl_df that has extra parameters that allow you to control how many
rows to show as well as the width of the output. For instance, the following would show the
full Iris dataset24,

24Check the help page of print.tbl_df() for further details and examples.

38 Data Mining with R: Learning with Case Studies

> print(ir, n=Inf, width=Inf)

On top of printing another crucial difference between standard data frames and tibbles
is subsetting. In standard data frames subsetting may sometimes lead to some puzzling
results, particularly for newcomers to the R language. Check the following example

> iris[1:15, "Petal.Length"]

[1] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.1 1.2

> class(iris[1:15, "Petal.Length"])

[1] "numeric"

Asking for the first 15 values of Petal.Length resulted in a vector! We sub-
setted a data frame and we obtained as result a different data structure. This
is surprising for many people, although you can avoid it by using the construct
iris[1:15, "Petal.Length",drop=FALSE]. With tibbles this never happens. Subsetting a
tibble always results in a tibble,

> ir[1:15, "Petal.Length"]

A tibble: 15 × 1
Petal.Length

<dbl>
1 1.4
2 1.4
3 1.3
4 1.5
5 1.4
6 1.7
7 1.4
8 1.5
9 1.4
10 1.5
11 1.5
12 1.6
13 1.4
14 1.1
15 1.2

The only way you get a similar result with tibbles is by being specific on extracting a
single column and then selecting the first 15 values of this set of values

> ir$Petal.Length[1:15]

[1] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.1 1.2

> ir[["Petal.Length"]][1:15]

[1] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.1 1.2

Please be aware that this difference between tibbles and data frames may invalidate the
use of some packages with tibbles. This will be the case if the functions of these packages
somehow assume the above mentioned simplification after subsetting a single column of a

Introduction to R 39

data frame. If you provide them with a tibble instead of a data frame they will not get the
expected result and may return some error. If that is the case then you need to call these
functions with a standard data frame and not a tibble.

The package dplyr defines the class tbl that can be regarded as a wrapper of the actual
data source. These objects encapsulate the data source and provide a set of uniform data
manipulation verbs irrespectively of these sources. The package currently covers several
data sources like standard data frames (in the form of tibbles), several database manage-
ment systems, and several other sources. The main advantages of this package are: (i) the
encapsulation of the data source; (ii) providing a set of uniform data manipulation func-
tions; and (iii) the computational efficiency of the provided functions. In summary, using
dplyr you can create tbl objects connected with some data source, and once you do this
you can mostly ignore this source as all data manipulation statements the package provides
work the same way independently of the source.

The package dplyr has many functions that allow easy manipulation of these tbl objects.
We will explore most of these facilities later in the book. For now let us just see some
examples involving querying the data. This package provides two main functions for this
task. Function select() can be used to select a subset of columns of the dataset, whilst
function filter() is used to select a subset of the rows. Suppose you wish to inspect the
petal lengths and widths of the plants of the species Setosa. You could achieve that as
follows:

> select(filter(ir,Species=="setosa"),Petal.Width,Petal.Length)

A tibble: 50 × 2
Petal.Width Petal.Length

<dbl> <dbl>
1 0.2 1.4
2 0.2 1.4
3 0.2 1.3
4 0.2 1.5
5 0.2 1.4
6 0.4 1.7
7 0.3 1.4
8 0.2 1.5
9 0.2 1.4
10 0.1 1.5
... with 40 more rows

A few things are worth noting on the above statement. First of all you may refer to the
column names directly (like you could in the function subset() mentioned in Section 2.12).
Then you do not need to worry about the output that is automatically truncated to the first
few rows. Obviously, you may still inspect all output if you wish. You may for instance call
the function View() with the above statement as argument, and you will get a graphical
spreadsheet-like window where you can explore the full output of the statement. The above
statement uses the traditional function composition by applying the select function to the
output of the filter function. Function composition is a very nice concept but it often gets
too difficult to understand the code if a lot of composition is taking place. Unfortunately,
this is frequently necessary when querying datasets. The package dplyr provides the pipe
operator to make our life easier in those cases. The above statement could have been written
as follows using this operator:

40 Data Mining with R: Learning with Case Studies

> filter(ir,Species == "setosa") %>% select(Petal.Width,Petal.Length)

A tibble: 50 × 2
Petal.Width Petal.Length

<dbl> <dbl>
1 0.2 1.4
2 0.2 1.4
3 0.2 1.3
4 0.2 1.5
5 0.2 1.4
6 0.4 1.7
7 0.3 1.4
8 0.2 1.5
9 0.2 1.4
10 0.1 1.5
... with 40 more rows

The pipe operator is in effect a simple re-writing operator and this can be applied to any
R function, not only in this context. The idea is that the left-hand side of the operator is
passed as the first argument of the function on the right side of the operator. So x %>% f(y)
is translated into f(x,y). Independently of these technicalities, the fact is that for dataset
querying these statements using the pipe operator are often significantly easier to “read”
than with the standard function composition strategies. For instance, the above code can
be read as: “filter the dataset ir by the setosa species and then show the respective petal
width and length”. This reading is more natural and more related with the way our brain
thinks about these querying tasks.

Later in the book we will explore many more facets of this wonderful dplyr package.
For now it is sufficient to be aware of this alternative way of handling and querying datasets
in R.

2.14 Objects, Classes, and Methods
One of the design goals of R is to facilitate the manipulation of data so that we can easily

perform the data analysis tasks we have. In R, data are stored as objects. As mentioned
before, everything in R is an object, from simple numbers to functions or more elaborate
data structures. Every R object belongs to a class. Classes define the abstract characteristics
of the objects that belong to them. Namely, they specify the attributes or properties of these
objects and also their behaviors (or methods). For instance, the matrix class has specific
properties like the dimension of the matrices and it also has specific behavior for some types
of operations. In effect, when we ask R the content of a matrix, R will show it with a specific
format on the screen. This happens because there is a specific print method associated
with all objects of the class matrix. In summary, the class of an object determines (1)
the methods that are used by some general functions when applied to these objects, and
also (2) the representation of the objects of that class. This representation consists of the
information that is stored by the objects of this class.

R has many predefined classes of objects, together with associated methods. On top of
this we can also extend this list by creating new classes of objects or new methods. These
new methods can be both for these new classes or for existing classes. New classes are

Introduction to R 41

normally created after existing classes, usually by adding some new pieces of information
to their representation.

The representation of a class consists of a set of slots. Each slot has a name and an
associated class that determines the information that it stores. The operator “@” can be
used to access the information stored in a slot of an object. This means that x@y is the
value of the slot y of the object x. This obviously assumes that the class of objects to which
x belongs has a slot of information named y.

Another important notion related to classes is the notion of inheritance between classes.
This notion establishes relationships between the classes that allow us to indicate that a
certain new class extends an existing one by adding some extra information. This extension
also implies that the new class inherits all the methods of the previous class, which facilitates
the creation of new classes, as we do not start from scratch. In this context, we only need
to worry about implementing the methods for the operations where the new class of objects
differs from the existing one that it extends.

Finally, another very important notion is that of polymorphism. This notion establishes
that some functions can be applied to different classes of objects, producing the results that
are adequate for the respective class. In R, this is strongly related to the notion of generic
functions. Generic functions implement a certain, very general, high-level operation. For
instance, as we have already seen, the function plot() can be used to obtain a graphical
representation of an object. This is its general goal. However, this graphical representation
may actually be different depending on the type of object. It is different to plot a set of
numbers, than to plot a linear regression model, for instance. Polymorphism is the key to
implementing this without disturbing the user. The user only needs to know that there is
a function that provides a graphical representation of objects. R and its inner mechanisms
handle the job of dispatching these general tasks to the class-specific functions that provide
the graphical representation for each class of objects. All this method-dispatching occurs in
the background without the user needing to know the “dirty” details of it. What happens,
in effect, is that as R knows that plot() is a generic function, it will search for a plot
method (that in effect is just another function) that is specific for the class of objects that
were included in the plot() function call. If such a method exists, it will use it; otherwise it
will resort to some default plotting method. When the user decides to create a new class of
objects he needs to decide if he wants to have specific methods for his new class of objects.
So if he wants to be able to plot objects of the new class, then he needs to provide a specific
plot method for this new class of objects that “tells” R how to plot these objects.

These are the basic details on classes and methods in R. In effect, R even has several
general frameworks for handling classes and object oriented programming in general. The
creation of new classes and respective methods is outside the scope of this book. More
details can be obtained in many existing books on programming with R, such as, the books
Software for Data Analysis by Chambers (2008) or Advanced R by Whickam (2014).

2.15 Managing Your Sessions
When you are using R for more complex tasks, the command line typing style of inter-

action becomes a bit limited. In these situations it is more practical to write all your code
in a text file and then ask R to execute it. To produce such a file, you can use your favorite
text editor (like Notepad, Emacs, etc.) or, in case you are using RStudio, you can use the

42 Data Mining with R: Learning with Case Studies

script editor available in the File menu.25 After creating and saving the file, you can issue
the following command at R prompt to execute all commands in the file:

> source('mycode.R')

This assumes that you have a text file called “mycode.R” in the current working directory
of R. In Windows versions the easiest way to change this directory is through the option
“Change directory” of the “File” menu. In Mac OS X versions there is an equivalent option
under menu “Misc”. In RStudio you may use the option “Set working directory” of the
“Session” menu. In Unix versions (actually, on all versions) you may use the functions
getwd() and setwd() to check and change the current working directory, respectively.

When you are using the R prompt in an interactive fashion you may wish to save some of
the objects you create for later use (such as some function you have typed in). The following
example saves the objects named f and my.dataset in a file named “mysession.RData”:

> save(f,my.dataset,file='mysession.RData')

Later, for instance in a new R session, you can load these objects by issuing

> load('mysession.RData')

You can also save all objects currently in R workspace,26 by issuing

> save.image()

This command will save the workspace in a file named “.RData” in the current working
directory. This file is automatically loaded when you run R again from this directory. This
kind of effect can also be achieved by answering Yes when quitting R.

Further readings on R
The online manual An Introduction to R that comes with every distribution of R is an excellent source of
information on the R language. The “Contributed” subsection of the “Documentation” section at the R Web site,
includes several free books on different facets of R. For more advanced aspects of the R language we recommend
Chambers (2008) and Whickam (2014) (which is also freely available at http://adv-r.had.co.nz/).

25Windows and Mac OS X versions of R also include a dedicated script editor.
26These can be listed issuing ls(), as mentioned before.

Chapter 3
Introduction to Data Mining

The approach followed in this book is to learn Data Mining through solving a set of case
studies. This means that concepts of this discipline are introduced as they are needed. Al-
though we are strongly supportive of this approach as a way of easily motivating people to
understand the concepts, we agree that there are also some drawbacks. The most impor-
tant is probably the fact that you do not get a global perspective of the organization and
relationship between different data mining topics, i.e. you do not get a global overview of
the discipline. This is the main goal of this chapter. We introduce the reader to the main
topics and concepts of Data Mining and provide a short introduction to their main questions
and how they are related to each other. This should give the reader a global perspective of
this research field as well as allowing her/him to better place the approaches that will be
followed in the case studies, in the context of this larger picture of Data Mining.

Data Mining is a vast discipline, so this chapter will necessarily provide a short introduc-
tion to this area. We have tried to explain the key concepts within the different steps of a
typical Data Mining workflow. For each of these steps we describe some of the main existing
techniques and provide simple illustrations of how these are implemented in R. Further de-
tails and broader descriptions of this field will have to be found elsewhere as this is not the
main goal of the current book. Good examples of manuscripts with an extensive coverage
of current Data Mining topics include the books by Aggarwal (2015) and Han et al. (2012).
For a more “statistically” oriented perspective the books by Hastie et al. (2009) and James
et al. (2013) are good references. Finally, a Machine Learning perpective can be obtained
in the books by Flach (2012) and Kononenko and Kukar (2007).

A second goal of this chapter is to provide links between the main topics and tasks of
Data Mining and some key R packages that may help with these tasks. We will provide
short illustrations of some of these packages but more detailed usage will be left to the
second part of the book where we use them in concrete applications.

3.1 A Bird’s Eye View on Data Mining
Data is present in most of our activities. With the widespread usage of computational

devices, storing these data is more and more frequent. This obviously leads to a huge amount
of available data on a large set of human activities. There are several factors that have, and
still are, contributing a lot for this dawn of the age of data1. Among them we can highlight:
(i) the widespread availability of all sorts of cheap sensors that can collect a diverse set
of data values; (ii) the ever increasing power of all sorts of computation devices; (iii) the
fact that we have networking available almost everywhere; and also (iv) the recent trend
on the Internet of Things (IoT) where we have many physical objects inter connected and

1This is a shameless copy of the title of an interesting talk I listened to by Bernhard Pfahringer - thank
you Bernhard!

43

44 Data Mining with R: Learning with Case Studies

able to collect and share data. These and several other aspects of our current societies lead
to an overwhelming collection of data and also to pressure on making use of these data to
optimize our activities. In this context, it should not come as a surprise that data mining
analysts2 are one of the hottest professions these days and it does not look like this is going
to change in the near future, on the contrary.

Data Mining is a relatively recent research field. So much that the name is still evolving,
as we frequently witness the dawn of new terms, like for instance the recent Data Science.
Its main goals are the analysis of data in the search for useful knowledge. The field has
been receiving lots of attention from many actors of the society as a consequence of the
amount of data we are collecting in most of our activities. This data potentially hides
useful information on these activities and uncovering this knowledge may prove to be a key
advantage for many organizations. Analyzing data is not a novel task, so it does not come
as a surprise to find out that Data Mining shares many goals and methods with other fields
like Statistics, Machine Learning, Pattern Recognition and other areas. At the end of the
day all these fields strive to analyze data, and that is also the main goal of Data Mining.

When people talk about Data Mining they are frequently referring to the overall pro-
cess of starting with data and some analysis goals, and trying to obtain unknown, useful
and frequently actionable knowledge from the process. This workflow is often cyclic and
interactive as the feedback we obtain from end-users or from our own evaluation procedures
leads to revising some of the steps taken before. We can summarize the different steps in
this data analysis workflow through some main blocks, as shown in Figure 3.1.

FIGURE 3.1: The Typical Data Mining Workflow.

On the left side of Figure 3.1 we have the main building blocks of the Data Mining
workflow. On the right side we have some high level Data Mining Tasks that we frequently
use when addressing some particular application. The rest of this chapter will be organized in
several sections that will provide details on these main building blocks as well as presenting
some R packages and concepts that help in implementing the steps of this workflow.

2Or if you want to be more trendy, data scientists.

Introduction to Data Mining 45

3.2 Data Collection and Business Understanding
The first step in any Data Mining project has to do with collecting the data that will

be used in the project as well as meeting with domain experts to better grasp what should
be the main goals of the analysis.

Data collection is an important step as it may heavily condition the sort of analysis
we can carry out. Still, this is frequently an uncontrollable step for the data analyst. In
effect, the analyst can seldom provide advice and/or control what is measured and stored
in a given application domain — this is frequently given as a fact. Unfortunately, this
also means that one frequently faces several hard problems with the available data. Issues
like measurement errors, sampling errors, not measuring necessary variables, among several
others, are problems that data analysts need to be able to handle. Suggesting changes to
the data collection process is possible, but it usually takes too much time to implement
and even more to collect a reasonable sample of data after the changes are implemented.
This means that most of the time the task of the analyst at this stage consists essentially of
implementing the interface between the analysis tools (R in our case) and the computational
infrastructure storing the data, i.e. getting the data into R.

Business understanding is a key task for a successful data mining project. In its essence
it involves understanding the goals of the end-user in terms of what he wants to obtain
from data mining. This is not an easy task and it is strongly domain-dependent. The
difficulty of this task is frequently proportional to the gap between the “culture” of the
data analyst and that of the end-user. Normally, there is a serious language problem that
stems from these different contexts, and this makes simple communication of goals and
of available tools/solutions very hard between the two parts. End-users frequently assign
different meanings to words that the analysts take for granted and they often lack the ability
to describe in a precise and concrete form what are their goals and their preference biases.
Persistence, patience, frequent communication and writing things down, are all important
tools at this very relevant step. Still, most probably there will be communication problems,
misunderstandings and revisions, and all these are causes for the fact that the data mining
workflow is so often a cyclic process. To avoid loss of valuable working hours it is of key
importance to frequently involve the end-user in the analysis of the outcome of the data
mining steps, as the feedback we get from this interaction may be very important for a
successful project. Nevertheless, this is clearly a process that is more dependent on human
qualities than on computational tools or data mining knowledge and thus neither R, nor
other tools can help much in here.

3.2.1 Data and Datasets
Some of the issues that most distinguish Data Mining from other related fields that also

deal with analyzing data are the facts that in Data Mining one tends to deal with a diverse
set of data sources (e.g. sensors, Internet, etc.) and also many different types of data (e.g.
text, sound, images, etc.). Still, the fact is that most existing modeling techniques are a
bit more restrictive on the type of data they can handle. This means that a lot of time is
spent on pre-processing these data into some data structure that is manageable by these
standard data analysis techniques — and this typically means a standard two-dimensional
data table3.

3Though relational data mining is a very active field of research that provides models able to handle
multiple tables, the fact is that these are still not very common tools.

46 Data Mining with R: Learning with Case Studies

In this context, let us focus on some properties of these standard data tables, leaving the
pre-processing of non-standard data types for later sections. A data table (or dataset) is a
two-dimensional data structure where each row represents an entity (e.g. product, person,
etc.) and the columns represent the properties (e.g. name, age, temperature, etc.) we have
measured for the entities. The terms entity and property have many synonyms. The entities
are frequently referred to as objects, tuples, records, examples or feature-vectors, while the
properties are often called features, attributes, variables, dimensions or fields.

In terms of the rows of a dataset we can have two main types of setups: (i) each row is
independent from the others; or (ii) there is some dependency among the rows. Examples
of possible dependencies include some form of time order (e.g. the rows represent the mea-
surements of a set of variables in successive time steps), or some spatial order (e.g. each
row has an associated location and this may entail some form of neighborhood relationship
among rows).

Regarding the columns of a dataset we can talk about the type of data values they
store. The most frequent distinction is between quantitative and categorical variables. A
finer taxonomy of the data types can cast these into:

• interval - quantitative variables like for instance dates.

• ratio - quantitative variables like for instance height of a person or price of a product.

• nominal - these are categorical variables whose values are some sort of labels without
any ordering among them (e.g. colors).

• ordinal - again categorical variables but this time with some implicit ordering among
their finite set of values (e.g. small, medium and large).

In spite of these categories, in practice people do tend to distinguish only between
quantitative (also referred to as continuous) and categorical (also referred to as discrete)
variables.

Columns of a dataset may also be independent from each other or they may be somehow
correlated, i.e. the values of one variable may have some form of dependency on the values
of other variable(s).

In R data tables typically are stored in a data frame with columns that will store
quantitative variables as numeric data types and categorical variables as factors or character
strings.

3.2.2 Importing Data into R
One of the first problems you will face for carrying out data analysis in R is the question

of loading these data into R. Answering this question depends on the data source from
which you need to import your data.

There are many computational infrastructures used to store data. Some common setups
include:

• Text files

• Databases

• Spreadsheets

• Other software-specific formats

In this section we will explore some of these common data sources and see how to import
data from these sources into an R data frame.

Introduction to Data Mining 47

3.2.2.1 Text Files

Text files are frequently used to store and share data. Datasets stored in text files usually
follow some fixed format where typically each text line represents a row of the dataset,
with the column values separated by some special character. Frequent choices as separator
character include spaces, tabs, or commas, among others. When values are separated by
commas we have what is usually known as a CSV file. Many software tools include an
option to save data as a CSV file, so this is frequently an option when every other way of
getting your data into R fails.

Base R has several functions that are able to read different types of text files. Although
these functions are perfectly suitable for most setups, we will be mainly using the functions
provided by package readr (Wickham and Francois, 2015b), instead. The functions provided
by this package are more robust in some setups, are much faster, and have the added
advantage of returning a tbl data frame object (c.f. Section 2.13).

Let us start by learning how to read the content of CSV files in R. Suppose we have a
file named x.csv with the following content:

ID, Name, Age
23424, Ana, 45
11234, Charles, 23
77654, Susanne, 76

The following code will read its content into an R data frame table:

> library(readr)
> dat <- read_csv("x.csv")

Parsed with column specification:
cols(
ID = col_integer(),
Name = col_character(),
Age = col_integer()
)

> dat

A tibble: 3 × 3
ID Name Age

<int> <chr> <int>
1 23424 Ana 45
2 11234 Charles 23
3 77654 Susanne 76

> class(dat)

[1] "tbl_df" "tbl" "data.frame"

Function read_csv() takes the name of the CSV file as the first argument and may
include a series of other arguments that allow to fine tune the reading process. The result
of the function is a data frame table object from package dplyr.

Some countries use the comma character as decimal separator in real numbers. In these
countries the CSV format uses the semi-colon as the values separator character. Function
read_csv2() works exactly as the above function, but assumes the semi-colon as the values
separator instead of the comma, which is used as decimal separator.

48 Data Mining with R: Learning with Case Studies

Some files simply use spaces as separators between the values. Suppose we have a file
named z.txt with the following content:

ID Name Age Phone
23424 Ana 40 ???
11234 Charles 12 34567678
77654 Susanne 45 23435567

The content of this file could be read as follows:

> d <- read_delim("z.txt", delim=" ", na="???")

Parsed with column specification:
cols(
ID = col_integer(),
Name = col_character(),
Age = col_integer(),
Phone = col_integer()
)

> d

A tibble: 3 × 4
ID Name Age Phone

<int> <chr> <int> <int>
1 23424 Ana 40 NA
2 11234 Charles 12 34567678
3 77654 Susanne 45 23435567

You may have noticed that the file included a strange value (“???”) in the first record.
We are assuming that we were informed by the owner of the file that such values were used
to represent missing data. Missing data in R are represented by the special value NA. All
these functions from the package readr that read data from text files have a parameter
(na) that accepts as values a vector of strings that are to be interpreted as missing values
in the files.

There are several other similar functions to read text files. Most of them are simply
special cases of the function read_delim() with some specific values of its parameters to
match some concrete text format. In effect, function read_delim() includes many parame-
ters that allow fine tuning the reading process to your specific files. You may wish to browse
the help page and the vignettes of package readr to check these parameters. Some of the
more frequently used are:

• delim - allowing you to indicate the character used as separator of the column values.

• col_names - a Boolean indicating whether the first line contains the column names.

• na - provides a vector of strings that are to be taken as missing values.

The result of all these functions is a dplyr data frame table.
A word of warning on reading text files. A frequent source of frustrating errors is charac-

ter encoding. Different countries or event different operating systems may be using different
character encodings and reading files created on these other environments may lead to some
strange results. The above functions also include facilities to handle such situations through
parameter locale that you may wish to explore in the respective help pages.

The functions of package readr are considerably faster than the equivalent functions of
base R. Still, for extremely large files you may consider the alternative provided by function

Introduction to Data Mining 49

fread() from package data.table (Dowle et al., 2015), or function read.csv.raw() from
package iotools (Urbanek and Arnold, 2015).

3.2.2.2 Databases

Databases are a frequently used infra-structure to store data in organizations. R has
many packages that provide an interface with the most common relational database sys-
tems (e.g. Oracle, MySQL, PostgreSQL, etc.). Package DBI (R Special Interest Group on
Databases, 2014) introduces another layer of abstraction by providing a series of functions
that are independent of the back-end database management system that is being used.
Figure 3.2 provides an illustration of the way this works. On one end you have your own
R scripts from which you want to access some data that is stored in some database man-
agement system (the other end). Package DBI allows you to write your code with almost
100% independence of which database management system is on the other end. You basi-
cally select in the beginning which system you are using and then the code querying the
database remains unchanged irrespective of the database system on the other end.

FIGURE 3.2: The front end interface provided by package DBI.

The following example code illustrates this concept with MySQL as the back-end
database management system:

> library(DBI)
> ## The DBMS-specific code starts here
> library(RMySQL)
> drv <- dbDriver("MySQL") # Loading the MySQL driver
> con <- dbConnect(drv,dbname="transDB", # connecting to the DBMS
+ username="myuser",password="mypasswd",
+ host="localhost")
> ## The DBMS-specific code ends here
>
> ## getting the results of an SQL query as a data frame
> data <- dbGetQuery(con,"SELECT * FROM clients")
>

50 Data Mining with R: Learning with Case Studies

> ## closing up stuff
> dbDisconnect(con)
> dbUnloadDriver(drv)

After loading the package DBI the above code includes three instructions that are the
only part that is specific to the connection to MySQL. All the remaining code would stay
untouched if we were to change the back-end database management system from MySQL
to any of the other supported systems. Functions dbDisconnect() and dbUnloadDriver()
finish the connection to the database management system that was started with the calls
to dbDriver() and dbConnect().

The main function of package DBI is dbGetQuery() that allows you to enter an SQL
query that will be sent to the database with the result being returned as an R data frame.
This simple process allow us to easily retrieve data stored in one or more database tables
into an R data frame.

Sometimes the result of a database query may be too large to be handled at the same
time inside R. Package DBI also allows you to retrieve the results of a query in chunks.
Here is an illustration of this,

> library(DBI)
> library(RMySQL)
> drv <- dbDriver("MySQL") # Loading the MySQL driver
> con <- dbConnect(drv,dbname="transDB", # connecting to the DBMS
+ username="myuser",password="mypasswd",
+ host="localhost")
>
> res <- dbSendQuery(con,"SELECT * FROM transactions")
> while (!dbHasCompleted(res)) {
+ # get the next 50 records on a data frame
+ someData <- fetch(res, n = 50)
+ # call some function that handles the current chunk
+ myProcessingFunction(someData)
+ }
> dbClearResult(res) # clear the results set
>
> dbDisconnect(con) # closing up stuff
> dbUnloadDriver(drv)

Notice that this time we are using function dbSendQuery(). This function retrieves an
object (called a result set) from which we can then iteratively obtain successive chunks of
results using the function fetch() that allows you to specify how many records you want to
retrieve (as a data frame) from the result set. Function dbHasCompleted(), when applied
to a result set, allows you to check if there are still some records remaining for retrieval.
The while() loop instruction allows you to repeat a block of instructions while the Boolean
condition you supply is true. In this case we can read the above loop as follows: while there
are still some records to retrieve, get 50 more records and process them.

Further information on this powerfulDBI package can be obtained in the documentation
that is available in its help pages.

Package dplyr (Wickham and Francois, 2015a) can also be used for interfacing R with
databases. This alternative has the advantage of making your code even less dependent on
the database requirements. In effect, one of the key issues of the data manipulation facilities
provided by dplyr is exactly to make your code independent from the data source, be it
a local data frame or a database. In this context, using dplyr may actually be a better

Introduction to Data Mining 51

alternative if you do not want to delve into the SQL language at all, or if your are already
used to the data manipulation strategies provided by dplyr.

Let us see an example with a database containing a (large) table with values of several
sensors along time. The only time you need to “worry” about databases is when you establish
the connection to the database management system. Using dplyr this connection consists
of a single statement,

> library(RMySQL)
> library(dplyr)
> dbConn <- src_mysql("sonae",
+ host="localhost",user="prodUser",password="myPassword")

The above statement establishes a connection with the MySQL database management
system on your own computer. Equivalent functions are provided for other database man-
agement systems. Once this connection is successfully established we can create dplyr tbl
objects using the tables of the “sonae” database as data sources,

> sensors <- tbl(dbConn,"sensor_values")

The object sensors can be used in the same way as any other dplyr tbl object. This
means that we can query it in the same exact way as if the data source was a local data
frame. For instance, the following example checks when a certain sensor has shown a value
higher than 100,

> sensors %>%
+ filter(sid==274,value > 100) %>%
+ select(time,value)

Source: query [?? x 2]
Database: mysql 5.7.14 [prodUser@localhost:/sonae]

time value
<chr> <dbl>

1 2009-04-01 06:31:56 100.60
2 2009-04-01 06:32:04 103.11
3 2009-04-01 06:38:21 104.05
4 2009-04-01 06:38:29 103.87
5 2009-04-01 06:44:46 101.29
6 2009-04-01 06:44:54 100.16
7 2009-04-01 08:00:01 100.25
8 2009-04-01 08:55:52 101.64
9 2009-04-01 09:00:14 100.44
10 2009-04-01 09:11:50 102.33
... with more rows

Note that given that dplyr has several functions for querying datasets that result from
joining several data sources, you are not restricted to using a single table of your database. In
effect, you can easily query datasets that result from joining several tables of your database
using the several join functions of dplyr, and all that without needing to know anything
about SQL, i.e. you may focus on learning a single data manipulation language, in this case
the set of functions provided by package dplyr.

52 Data Mining with R: Learning with Case Studies

3.2.2.3 Spreadsheets

Spreadsheets are another frequently used platform for holding datasets. There are several
ways of importing data from spreadsheets, in particular from the common Excel spread-
sheets. We are going to illustrate a few of the simplest.

Most spreadsheets (all?) should easily allow to export some data table into a CSV text
file, or even other text formats. This means that we could first export the data from the
spreadsheet into a text file and then use one of the procedures described in Section 3.2.2.1
to load data from these files into a data frame. Although this is a simple process it is still
a bit indirect.

When the data tables are small there is a very simple form of getting the data from the
spreadsheet into an R data frame. Open your spreadsheet and select the data range you
want to import. Copy this range into the clipboard (for instance on Excel in Windows by
doing Ctrl+C). Now go to R and type the following:

> d <- read.table("clipboard", header=TRUE)

Function read.table() is one of the base R functions for reading text files. The first
argument of theses functions is the name of the file from which you want to import data.
However, these functions allow you to specify as the filename a special string — “clipboard”.
With this “filename” these functions will read the data from the contents of the clipboard
into a data frame. In the above example we are assuming that we have selected and copied a
range that included the column names in the first row and thus the header=TRUE argument.
Sometimes we may need a few more tweaks of the parameters of the read.table() function,
but it should be straightforward most of the times. Please note that you can not use this
special filename with the functions from package readr that we have explored before.

For larger data tables stored in Excel the usage of the clipboard may not be so conve-
nient. For such situations the package readxl (Wickham, 2015a) contains a function named
read_excel() that is very handy. The following is an example of its usage:

> library(readxl)
> fc <- "c:\\Documents and Settings\\xpto\\My Documents\\calc.xls"
> dat <- read_excel(fc,sheet=1)

This reads the contents of the first sheet of the Excel spreadsheet named “calc.xls” into
a data frame named dat. Please note the way paths should be indicated in R4.

3.2.2.4 Other Formats

R includes many other packages and functions that may help you in getting your data
into an R data frame. The manual “R Data Import/Export” that comes with any R in-
stallation is a good starting point if you are searching for some specific format. Formats
used in other statistical and data mining software packages can be read using the functions
provided by package foreign (R Core Team, 2015a). As usual, searching the Web is most
probably the fastest way of getting an answer on how to read some strange data format
using R.

4You may also use the slash (“/”) instead of the double backslashes.

Introduction to Data Mining 53

3.3 Data Pre-Processing
Data pre-processing is one of the most time-consuming steps in a typical data mining

project. It has to do with the steps that are typically required to transform the data you have
read into R in a way that allows you to apply further analysis tools. This may involve cleaning
up the data (sometimes also known as data munging or data wrangling), transforming the
data (e.g. changes of the scale of variables), or even creating new variables that may bring
useful information for your analysis steps. In this section we will give you some examples of
some typical data pre-processing steps and how to carry them out in R. Further examples
will appear in the concrete case studies to be addressed later in the book.

3.3.1 Data Cleaning
Data is frequently not made available in a state that is susceptible to be used for mod-

eling. In this section we will mention some common problems, and some possible solutions
available in R to address them.

3.3.1.1 Tidy Data

Wickham (2014) presented the notion of tidy data as a general objective we should
pursue to make our posterior analysis in R easier. The key properties of tidy data are that:
(i) each value belongs to a variable and an observation; (ii) each variable contains all values
of a certain property measured across all observations; and (iii) each observation contains
all values of the variables measured for the respective case. These properties lead to a kind
of rectangular data table made up of rows (representing the observations) and columns
(representing the variables).

Sometimes data is not provided in such a tidy format, which is required by most modeling
tools available in R. Package tidyr (Wickham, 2015c) can be used to clean up the data and
make it more standard.

TABLE 3.1: The grades of some students.
Math English

Anna 86 90
John 43 75
Catherine 80 82

Table 3.1 contains the grades of three students in two subjects. These data do not follow
the guidelines mentioned above. The variables involved in this problem that describe each
student performance are “StudentName”, “Subject”, and “Grade”, so a tidy version of these
data should look like what is shown in Table 3.2.

The first version of the data (Table 3.1) is sometimes said to be in a wide format, while
the version in Table 3.2 is said to be in a long format. Package tidyr has two functions

54 Data Mining with R: Learning with Case Studies

TABLE 3.2: The grades of some students in a tidy format.
StudentName Subject Grade

Anna Math 86
Anna English 90
John Math 43
John English 75

Catherine Math 80
Catherine English 82

that can be used to easily convert between the two formats. Let us see how. Suppose file
“stud.txt” is a text file containing the original data:

Math English
Anna 86 90
John 43 75
Catherine 80 82

The contents of this file could be read as follows:

> library(readr)
> std <- read_delim("stud.txt", delim=" ",
+ skip=1, col_names=c("StudentName","Math","English"))

Parsed with column specification:
cols(
StudentName = col_character(),
Math = col_integer(),
English = col_integer()
)

> std

A tibble: 3 × 3
StudentName Math English

<chr> <int> <int>
1 Anna 86 90
2 John 43 75
3 Catherine 80 82

Because the first line of the file contained one less value we had to use the parameter
skip to make read_delim() ignore it, and thus we needed to supply the column names “by
hand”.

Now we can proceed to move from this wide format into a long (tidy) format using the
function gather() of the package tidyr,

> library(tidyr)
> stdL <- gather(std, Subject, Grade, Math:English)
> stdL

A tibble: 6 × 3
StudentName Subject Grade

<chr> <chr> <int>
1 Anna Math 86
2 John Math 43

Introduction to Data Mining 55

3 Catherine Math 80
4 Anna English 90
5 John English 75
6 Catherine English 82

The stdL object is in a standard tidy format. Function gather() receives the data in
wide format as first argument. We then provide the name for the new variable whose values
are currently being shown as column names (in our case we selected the name “Subject”).
The next argument is the name of the column that will contain the values, and the final
argument is the range of columns of the current format that are to be used as source data
for these values (notice that we can supply a range of columns using the “:” operator).

Package tidyr also provides function spread() that reverts the operation putting the
data back to the wide format,

> spread(stdL, Subject, Grade)

A tibble: 3 × 3
StudentName English Math

* <chr> <int> <int>
1 Anna 90 86
2 Catherine 82 80
3 John 75 43

Suppose that the text file also included an extra column of data where the degree and
the enrollment year were supplied. Sometimes data files include several values encoded as
a single one and we want to disaggregate these values into separate variables. Function
separate() from package tidyr becomes handy in these situations,

> std2 <- read_delim("stud2.txt", delim=" ",
+ skip=1, col_names=c("StudentName","Math","English","Degree_Year"))

Parsed with column specification:
cols(
StudentName = col_character(),
Math = col_integer(),
English = col_integer(),
Degree_Year = col_character()
)

> std2

A tibble: 3 × 4
StudentName Math English Degree_Year

<chr> <int> <int> <chr>
1 Anna 86 90 Bio_2014
2 John 43 75 Math_2013
3 Catherine 80 82 Bio_2012

> std2L <- gather(std2, Subject, Grade, Math:English)
> std2L <- separate(std2L, Degree_Year, c("Degree","Year"))
> std2L

A tibble: 6 × 5
StudentName Degree Year Subject Grade

* <chr> <chr> <chr> <chr> <int>

56 Data Mining with R: Learning with Case Studies

1 Anna Bio 2014 Math 86
2 John Math 2013 Math 43
3 Catherine Bio 2012 Math 80
4 Anna Bio 2014 English 90
5 John Math 2013 English 75
6 Catherine Bio 2012 English 82

Function separate() includes a parameter (sep) that sets the separator that is used
to divide the values to extract. It has reasonable defaults both for character columns (as
in the above example) and numeric columns. Still, you may use it to fine tune the function
to your own needs. The function also assumes you want to remove the original column but
that can also be changed. The help page of the function may be checked for further details
on other parameters of this useful clean-up function. The package tidyr also includes the
function unite() that reverses the actions carried out by the function separate(), i.e.
merge several columns into a single one.

3.3.1.2 Handling Dates

Dates are values that are becoming more and more common in datasets. With the
existence of a wide range of formats for storing a date, converting between these formats or
extracting information from the provided values turns out to be a frequent task we need to
carry out during data pre-processing.

R has many packages and classes devoted to store and process date and time information.
On the web page5 of the Time Series Analysis task view available on the R central repository
(CRAN), you may find a section devoted to describing the many packages that handle dates
and times.

Package lubridate (Grolemund and Wickham, 2011) is particularly handy in terms of
parsing different date and time formats, as well as extracting different components of these
dates. This package includes a series of functions that can be used to parse strings that
contain dates and times into proper POSIXct objects that are one of the most flexible
classes R provides to store dates and times. These functions have names composed by the
letters “y”, “m”, “d”, “h”, “m” and “s” arranged in a way to match the format of the string
you are trying to parse. Here are a few examples:

> library(lubridate)
> ymd("20151021")

[1] "2015-10-21"

> ymd("2015/11/30")

[1] "2015-11-30"

> myd("11.2012.3")

[1] "2012-11-03"

> dmy_hms("2/12/2013 14:05:01")

[1] "2013-12-02 14:05:01 UTC"

> mdy("120112")

[1] "2012-12-01"

5https://cran.r-project.org/web/views/TimeSeries.html

Introduction to Data Mining 57

These functions can also be applied to vectors returning a vector of results. Moreover,
they are very robust even to vectors containing dates in different formats,

> dates <- c(20120521, "2010-12-12", "2007/01/5", "2015-2-04",
+ "Measured on 2014-12-6", "2013-7+ 25")
> dates <- ymd(dates)
> dates

[1] "2012-05-21" "2010-12-12" "2007-01-05" "2015-02-04" "2014-12-06"
[6] "2013-07-25"

Frequently we also want to extract some of the temporal information on the dates and/or
times we have received. For instance, we could be interested in having an extra column with
the weekday corresponding to some dates. Package lubridate also includes an extensive
set of functions to help you with these operations. For instance, with the previous vector
with dates we could build the following data frame that includes some extra columns with
information extracted from these dates,

> data.frame(Dates=dates,WeekDay=wday(dates),nWeekDay=wday(dates,label=TRUE),
+ Year=year(dates),Month=month(dates,label=TRUE))

Dates WeekDay nWeekDay Year Month
1 2012-05-21 2 Mon 2012 May
2 2010-12-12 1 Sun 2010 Dec
3 2007-01-05 6 Fri 2007 Jan
4 2015-02-04 4 Wed 2015 Feb
5 2014-12-06 7 Sat 2014 Dec
6 2013-07-25 5 Thurs 2013 Jul

There are several other similar functions for extracting other components of dates and
times. You may wish to check the vignette accompanying the package to see further exam-
ples.

Time zones are another critical aspect of dates and times. These may be measured
in places under different time zones and we may wish to either keep that information or
eventually convert between time zones. Once again lubridate can help you with that.
Suppose some measurement took place in Berlin, Germany, at some date. If we want to
store the time zone information with the date we should parse it as follows:

> date <- ymd_hms("20150823 18:00:05",tz="Europe/Berlin")
> date

[1] "2015-08-23 18:00:05 CEST"

Converting this to the New Zealand time zone would give,

> with_tz(date,tz="Pacific/Auckland")

[1] "2015-08-24 04:00:05 NZST"

You may also force the time zone associated with some date/time,

> force_tz(date,tz="Pacific/Auckland")

[1] "2015-08-23 18:00:05 NZST"

58 Data Mining with R: Learning with Case Studies

You may check the available names of the time zones with function OlsonNames().
The package lubridate also includes several other functions that help with handling

time intervals or carrying out arithmetic operations with dates/times. Information on these
features can be obtained in the respective package vignette.

3.3.1.3 String Processing

String processing is a tool frequently required when cleaning up data or extracting
information from raw data. Base R contains several functions for string processing but their
names and interface are frequently not too coherent. Package stringr (Wickham, 2015b)
was designed to solve these issues and provide a set of simple functions that address the
most common needs of users. Our description will be based on the functionality provided
by this package. Still, for more complex string processing needs you should also explore
package stringi6 (Gagolewski and Tartanus, 2015).

We will now present a simple example that illustrates a few of the functions of package
stringr as well as some common string processing operations. Our example consists of
reading a dataset from the UCI dataset repository (Lichman, 2013). The most common
format of the datasets in this repository consists of having the information spread over
two files, one with extension “.data” and the other with the extension “.names”. The first
contains the data in a CSV format without column headers. The second usually contains
some textual information on the dataset authors and donors (that we will discard for the
purposes of reading the data into R) and also information on the column names and types
of data. If the dataset contains many columns it would be tedious to manually assign the
names to the data frame based on the information in this file. We will use string processing
to filter and process the information in this “.names” file to do this automatically.

> library(dplyr)
> library(stringr)
> library(readr)
> uci.repo <- "https://archive.ics.uci.edu/ml/machine-learning-databases/"
> dataset <- "audiology/audiology.standardized"
> dataF <- str_c(uci.repo,dataset,".data")
> namesF <- str_c(uci.repo,dataset,".names")
> ## Reading the data file
> data <- read_csv(url(dataF), col_names=FALSE, na="?")
> data

A tibble: 200 × 71
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 f mild f normal normal <NA> t <NA> f f
2 f moderate f normal normal <NA> t <NA> f f
3 t mild t <NA> absent mild t <NA> f f
4 t mild t <NA> absent mild f <NA> f f
5 t mild f normal normal mild t <NA> f f
6 t mild f normal normal mild t <NA> f f
7 f mild f normal normal mild t <NA> f f
8 f mild f normal normal mild t <NA> f f
9 f severe f <NA> <NA> <NA> t <NA> f f
10 t mild f elevated absent mild t <NA> f f
... with 190 more rows, and 61 more variables: X11 <chr>, X12 <chr>,

6Package stringr is actually a wrapper for some of the functions provided by stringi, the advantage of
the former being its increased simplicity.

Introduction to Data Mining 59

X13 <chr>, X14 <chr>, X15 <chr>, X16 <chr>, X17 <chr>, X18 <chr>,
X19 <chr>, X20 <chr>, X21 <chr>, X22 <chr>, X23 <chr>, X24 <chr>,
X25 <chr>, X26 <chr>, X27 <chr>, X28 <chr>, X29 <chr>, X30 <chr>,
X31 <chr>, X32 <chr>, X33 <chr>, X34 <chr>, X35 <chr>, X36 <chr>,
X37 <chr>, X38 <chr>, X39 <chr>, X40 <chr>, X41 <chr>, X42 <chr>,
X43 <chr>, X44 <chr>, X45 <chr>, X46 <chr>, X47 <chr>, X48 <chr>,
X49 <chr>, X50 <chr>, X51 <chr>, X52 <chr>, X53 <chr>, X54 <chr>,
X55 <chr>, X56 <chr>, X57 <chr>, X58 <chr>, X59 <chr>, X60 <chr>,
X61 <chr>, X62 <chr>, X63 <chr>, X64 <chr>, X65 <chr>, X66 <chr>,
X67 <chr>, X68 <chr>, X69 <chr>, X70 <chr>, X71 <chr>

> dim(data)

[1] 200 71

> ## Now reading the names file
> text <- read_lines(url(namesF))
> text[1:3]

[1] "WARNING: This database should be credited to the original owner whenever"
[2] " used for any publication whatsoever."
[3] ""

> length(text)

[1] 178

> text[67:70]

[1] " age_gt_60:\t\t f, t."
[2] " air():\t\t mild,moderate,severe,normal,profound."
[3] " airBoneGap:\t\t f, t."
[4] " ar_c():\t\t normal,elevated,absent."

Function str_c() is equivalent to the function paste0() of base R that concatenates
strings. Function read_lines() can be used to read a text file producing a vector of strings
with as many elements as there are text lines in the file. Checking these lines we can confirm
that the information we are searching for (the names of the columns) starts at line 67 and
it goes till line 135. This information is stored in the format “name : type”, so we need to
extract the part before the “:” to get the column names. Function str_split_fixed() can
be used with this purpose as we can see below,

> nms <- str_split_fixed(text[67:135],":",n=2)[,1] # get the names
> nms[1:3]

[1] " age_gt_60" " air()" " airBoneGap"

> nms <- str_trim(nms) # trim white space
> nms[1:3]

[1] "age_gt_60" "air()" "airBoneGap"

> nms <- str_replace_all(nms,"\\(|\\)","") # delete invalid chars.
> nms[1:3]

[1] "age_gt_60" "air" "airBoneGap"

60 Data Mining with R: Learning with Case Studies

> colnames(data)[1:69] <- nms
> data[1:3,1:10]

A tibble: 3 × 10
age_gt_60 air airBoneGap ar_c ar_u bone boneAbnormal bser

<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 f mild f normal normal <NA> t <NA>
2 f moderate f normal normal <NA> t <NA>
3 t mild t <NA> absent mild t <NA>
... with 2 more variables: history_buzzing <chr>,
history_dizziness <chr>

After extracting the names we still had some clean-up to do. Namely, we have
used function str_trim() to trim out the spaces around the names, and also function
str_replace_all() to replace all occurrences of some strange characters by the empty
string. Because some of these characters have special meaning in the context of regular
expressions, we had to “escape” some of them to “remove” this special meaning. This is
achieved by preceding these characters by double backslashes. Regular expressions are a
key element in many string-related R functions, and actually for many other programming
languages. They can be used to specify patterns to match to real strings. In the above
example we want to say that any “(” or “)” characters should be replaced by the empty
string, i.e. eliminated. Explaining the large number of details involved in regular expressions
is clearly out of the scope of this book. Several tutorials can be easily found around the
Web. Functions str_view() and str_view_all() may also be interesting to explore as
they provide an HTML rendering (appearing in your browser) of the matches of a regular
expression against a set of strings (check the help page of these functions for examples).

Package stringr contains several other functions for string processing. They typically
follow the same type of interface with strings to be processed in the first argument and
some pattern in the second. Further details and examples of several other functions can be
found in the respective package vignette.

3.3.1.4 Dealing with Unknown Values

Unknown values occur very frequently in many real world applications. They can be
caused by measurement errors, typing errors, equipment failures, etc. The first thing we
must do is to read them properly into R. By properly we mean to use the special value
R has (value NA) to denote these values. We have already seen in Section 3.2.2.1 that the
functions we have used to read data stored in text files allow you to indicate, through
parameter na, the characters that are to be interpreted as missing values. Still, it may
happen that you are forced to use other reading methods and that you end up with a data
frame where missing values are not coded as NA’s, and you need to make this change in
the data frame. Suppose you have a data frame where a column contains a few values that
should be interpreted as missing values,

> dat

X Y
1 green 56
2 blue ?
3 green 100
4 red -10

> class(dat$Y)

Introduction to Data Mining 61

[1] "factor"

As you see, probably caused by some wrong reading procedure, the column Y is currently
a factor (i.e. a nominal variable), because of the presence of the "?" that was not interpreted
as a missing value indicator. How can we solve this problem a posteriori? An easy way is to
resort to the facilities of the readr package once again,

> library(readr)
> dat$Y <- parse_integer(dat$Y, na="?")
> dat

X Y
1 green 56
2 blue NA
3 green 100
4 red -10

> class(dat$Y)

[1] "integer"

Function parse_integer() can be used to parse a vector of values into integers. This
function allows you to specify values that should be interpreted as unknown values through
the parameter na. As you can observe, we now have our column with the correct values and
data type.

Once we have all missing values properly coded using the R special NA value, we may still
need to carry out some further pre-processing. This will depend on the posterior analysis
steps we will carry out with the data. In effect, some tools can not handle datasets with
unknown values. In these situations we need to do something about this before we proceed.
Still, we will see examples of data mining tools that can easily handle datasets with unknown
values by having their treatment embedded in the tool. For the other situations there are
several ways of trying to overcome missing values, some of the most frequently used being:

• remove any row containing an unknown value

• fill-in (impute) the unknowns using some common value (typically using statistics of
centrality)

• fill-in the unknowns using the most similar rows

• using more sophisticated forms of filling-in the unknowns

These alternatives range from computationally cheap (removing the rows) to more de-
manding alternatives that may involve using predictive models to estimate the missing
values. Which alternative is the best is clearly domain dependent and also a function of
the size of the problem. For instance, if we have a very large dataset and a few rows with
unknown values, then removing them will probably have a small impact on the quality of
your analysis.

R has several packages that provide tools to handle unknown values. Examples include
functions on our DMwR2 package, to more specific packages like imputeR (Feng et al.,
2014). In Chapter 4 we will see concrete examples of these techniques applied to a dataset
with unknown values.

62 Data Mining with R: Learning with Case Studies

3.3.2 Transforming Variables
Sometimes the original data needs to go through some extra modification steps to make

it more useful for our analysis. The procedures described in this section fall in this category
that does not have to do with cleaning up as in previous sections, but more with somehow
enriching the data to make our analysis more effective. In this section we describe some
examples of this type of step, and further illustrations will appear throughout the case
studies described in the second part of the book.

3.3.2.1 Handling Different Scales of Variables

Numeric variables sometimes have rather different scales. This can create problems for
some data analysis tools. In effect, anything that involves calculating and comparing dif-
ferences among values in different rows of the dataset will make the differences of variables
with a larger range of values stand out, when compared to differences involving variables
with a smaller scale. This may make the former differences artificially prevail and decrease
the impact of the variables with smaller scale, thus strongly biasing our analysis as a result
of these different scales. To avoid these effects we frequently apply some transformation to
the original values of these numeric variables. Let us see some examples.

Standardization is a frequently used technique that creates a new transformed variable
with mean zero and unit standard deviation. It consists of applying the following formula
to the original values:

Y = X − x̄
sX

(3.1)

where x̄ is the sample mean of the original variable X, while sX is its sample standard
deviation.

Other scaling statistics can be used, for instance using the median instead of the mean
and the inter-quartile range instead of the standard deviation to ensure more robustness to
the presence of outlying values that may distort the more standard statistics. Some people
also refer to the previous technique as normalization, although this name is more frequently
assigned to a transformation method that creates a new variable in the range [0, 1], as
follows:

Y = X −minX
maxX −minX

(3.2)

Taking the log of the original values is also frequently used as a means to “squash” the
scale of the variables. However, this can only be applied to variables with positive values,
as the log is not defined for zero and negative values.

The function scale() can be used to apply many of these standardization techniques.
For instance, if we wish to apply the normal standardization (Equation 3.1) to a set of
columns of a dataset we can use it as follows,

> library(dplyr)
> data(iris)
> iris.stand <- cbind(scale(select(iris,-Species)),select(iris,Species))
> summary(iris.stand)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :-1.86378 Min. :-2.4258 Min. :-1.5623 Min. :-1.4422
1st Qu.:-0.89767 1st Qu.:-0.5904 1st Qu.:-1.2225 1st Qu.:-1.1799
Median :-0.05233 Median :-0.1315 Median : 0.3354 Median : 0.1321
Mean : 0.00000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000

Introduction to Data Mining 63

3rd Qu.: 0.67225 3rd Qu.: 0.5567 3rd Qu.: 0.7602 3rd Qu.: 0.7880
Max. : 2.48370 Max. : 3.0805 Max. : 1.7799 Max. : 1.7064

Species
setosa :50
versicolor:50
virginica :50

Function scale() works as follows. You provide it a numeric matrix (or a data frame
with numeric only columns) and it will (by default) apply to each of the columns the stan-
dardization process described in Equation 3.1. Note that we can use the function select()
from the package dplyr to more easily select columns of the data frame iris, even-though
this is a standard data frame and not a tibble7. The function scale() can also be used in
other ways if the user wants to have control of the constant to be used for centering the
columns (x̄ by default), and scaling them (sX by default). These constants can be supplied
through parameters center and scale, respectively. They both accept vectors with as many
values as there are numeric columns to standardize. The following illustrates this usage to
implement the normalization of Equation 3.2,

> mxs <- apply(select(iris,-Species), 2, max, na.rm=TRUE)
> mns <- apply(select(iris,-Species), 2, min, na.rm=TRUE)
> iris.norm <- cbind(scale(select(iris,-Species), center=mns, scale=mxs-mns),
+ select(iris,Species))
> summary(iris.norm)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.00000
1st Qu.:0.2222 1st Qu.:0.3333 1st Qu.:0.1017 1st Qu.:0.08333
Median :0.4167 Median :0.4167 Median :0.5678 Median :0.50000
Mean :0.4287 Mean :0.4406 Mean :0.4675 Mean :0.45806
3rd Qu.:0.5833 3rd Qu.:0.5417 3rd Qu.:0.6949 3rd Qu.:0.70833
Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.00000

Species
setosa :50
versicolor:50
virginica :50

We have used the function apply() to easily obtain the maximums and minimums of
the numeric columns. We then used scale() by supplying the centering and scaling values
according to what is specified by Equation 3.2, leading to columns that range between [0, 1]
as confirmed by the call to summary().

3.3.2.2 Discretizing Variables

Another frequently used data pre-processing technique is the discretization of numeric
variables by transforming them into factors with meaningful bins. This can be motivated by

7A small word of caution here — any row names that eventually existed in the original data frame are
silently dropped when applying these dplyr functions to standard data frames.

64 Data Mining with R: Learning with Case Studies

the analysis objectives or even for reducing the computational complexity of some modeling
tools that have this factor dependent on the number of different values of the variables.
Whatever the motivation this involves changing a numeric variable into an ordinal variable,
though frequently it ends up being treated as a nominal variable because some tools do not
distinguish between these two different types of variables.

Most of the time discretization is carried out based on some domain knowledge that
provides the bins on the range of the original variable that make sense for the end users.
For instance, if we have a numeric column with the age of some clients, it may make sense
for some applications to discretize these ages into “young”, “adults”, or “seniors”, with the
limits of these bins being determined by the background knowledge of the application (i.e.
the end users). If no such domain knowledge exists one can use other criteria to determine
the break points of the continuous variables domains. Two frequent choices are: (i) equal
width that consists of splitting the range of the variable into k equal size bins; and (ii) equal
frequency that makes sure every bin contains the same number of values appearing in the
original dataset.

Whatever method we select we can easily implement it through the functions cut2()
of package Hmisc (Harrell Jr. et al., 2015) and cut() from base R. The former is a slight
variation of the latter that is more convenient on some situations. Let us see an example of
discretization in R using the Boston Housing dataset available in package MASS (Venables
and Ripley, 2002).

> library(Hmisc) # for cut2()
> data(Boston, package="MASS") # loading the data
> summary(Boston$age) # the numeric variable we are going to discretize

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.90 45.02 77.50 68.57 94.07 100.00

If you want to apply equal width discretization to this variable then it is simpler to use
the cut() function by specifying the number of bins you want,

> Boston$newAge <- cut(Boston$age,5)
> table(Boston$newAge)

(2.8,22.3] (22.3,41.7] (41.7,61.2] (61.2,80.6] (80.6,100]
45 71 70 81 239

> Boston$newAge <- cut(Boston$age,5, # alternative using our own labels for the bins
+ labels=c("verynew","new","normal","old","veryold"))
> table(Boston$newAge)

verynew new normal old veryold
45 71 70 81 239

If we want to apply equal frequency to this variable then the function cut2() is more
convenient,

> Boston$newAge <- cut2(Boston$age, g=5)
> table(Boston$newAge)

[2.9, 38.1) [38.1, 66.1) [66.1, 86.1) [86.1, 95.7) [95.7,100.0]
102 101 101 101 101

Introduction to Data Mining 65

One drawback of the cut2() function is that is does not allow you to specify the labels
of the bins which you need to do separately,

> Boston$newAge <- factor(cut2(Boston$age, g=5),
+ labels=c("verynew","new","normal","old","veryold"))
> table(Boston$newAge)

verynew new normal old veryold
102 101 101 101 101

Other more sophisticated discretization methods exist. For instance, there are methods
that try to optimize the selection of the break points of the bins according to the resulting
performance of some modeling tool. This is frequently applied when your goal is to use
your data as training set for a classification task (c.f. Section 3.4.5). These methods are
usually known as supervised discretization methods. Further information can be obtained
for instance in Dougherty et al. (1995).

3.3.3 Creating Variables
Sometimes we need to create new variables from the available data in order to be able to

properly address our data mining goals. This necessity may be caused by several factors. For
instance, we may create a new variable whose values are calculated as a function of other
measured variables because we think the result of this relationship is useful for mining
the data. More frequently, the need for creating new variables arises from limitations of
the data mining tools we have available in terms of being able to handle the original data
format. Most data mining tools assume a data table where each row is described by a set
of variables. Moreover, many of these tools assume that each row is independent from each
other, and there are even tools that assume independence among the columns (or at least
suffer when that is not the case). Finally, another motivation for feature construction may
be the fact that the level of detail at which the data is measured is too high (leading for
instance to a too large dataset to be manageable), and we prefer to create and use some
form of aggregated summaries of these original values.

3.3.3.1 Handling Case Dependencies

Data observations (rows of a dataset) may not be completely independent. Some fre-
quent dependencies among observations are time and/or space. The fact that some sort of
dependency exists between cases has a big impact on the data mining process. In effect,
data mining has to do with finding useful patterns in the data. If some sort of dependencies
exist among the observations this will change the way we look at the data and also what
we find useful on these data.

Aggarwal (2015) proposes to consider two types of information on datasets with de-
pendencies: (i) contextual; and (ii) behavioral. The former describes the information of the
context where the data was measured. For instance, for time dependent data this would
typically be the time stamps, while for geo-referenced datasets with space dependencies this
could be the latitude and longitude. Behavioral information consists of the measurements
(variable values) that are collected for each context. For instance, for each time tag we could
record the values of several variables that would be the behavioral information associated
with a certain time context.

When handling this type of case dependencies there are essentially two main approaches:
(i) either one is constrained on using data analysis tools that are able to cope and model

66 Data Mining with R: Learning with Case Studies

the type of dependencies that exist in our dataset; or (ii) we carry out some sort of data
transformation that somehow fits the independence assumptions of the “standard” models
and moreover, is able to provide information to these models on the dependencies so that
they are used when mining the data. The latter of these options is less limited in terms of
the tools we are able to use. Still, it is more demanding from the analyst perspective in the
sense that it requires extra data pre-processing steps. In the next paragraphs we will see
some examples of this second alternative for different types of case dependencies.

Time dependencies
Time dependencies occur when observations are tagged by time stamps and thus there is

an implicit ordering among them. For instance, suppose air temperature is being measured
at each time stamp. Naturally, one expects that there is some form of correlation between
the values of temperature at time t and t+1, unless the actual time difference between these
time stamps is too large. The possibility of existence of this correlation has consequences
on the type of analysis we can carry out with these data. These data are usually known
as time series (uni-variate or multi-variate depending on the dimension of the behavioral
information being measured at each time stamp). Time series analysis is a vast area of
research with many specific tools being developed for this type of dataset. These specific
tools directly cope with several types of time dependencies, like trends or seasonal effects. R
has many packages providing implementations of these standard time series analysis tools.
The TimeSeries CRAN task view8 is a good starting point for knowing what is available in
R.

R has several facilities for dealing with data with time dependencies. As we have seen
there are many forms of processing dates and times. Moreover, there are also specific data
structures for storing time series data. For instance, package xts (Ryan and Ulrich, 2014)
defines the class of xts objects that can be used to store uni- and multi-variate time series
data. This data structure allows creating objects where the contextual information (time
stamps) is clearly separated from the behavioral data, as well as providing useful tools for
making temporal queries (i.e. queries involving the contextual information) to the datasets.
Let us see some examples.

> library(lubridate)
> library(xts)
> sp500 <- xts(c(1102.94,1104.49,1115.71,1118.31),
+ ymd(c("2010-02-25","2010-02-26","2010-03-01","2010-03-02"),
+ tz=Sys.getenv("TZ"))
+)
> sp500

[,1]
2010-02-25 1102.94
2010-02-26 1104.49
2010-03-01 1115.71
2010-03-02 1118.31

The above example uses function xts() from the package with the same name to create
a univariate time series object with the prices of S&P 500 at some concrete dates. The
function accepts the measurements (the behavioral information) in the first argument, and
the time stamps (the context) in the second. We have used the function ymd() from package
lubridate to create and parse the time stamps from a vector of character representations of
these dates. In the call to ymd(), and just for illustration purposes, we have indicated that

8https://cran.r-project.org/web/views/TimeSeries.html

Introduction to Data Mining 67

the time stamps should be taken as dates using the current time zone of the computer where
the code is executed. To obtain this local time zone we have used the function Sys.getenv()
to query the corresponding environment variable in the operating system of our computer.
Note that the returned object is printed with the time stamps as row names, and with the
measurements as columns (in this case a single one). If you supply a matrix with k columns
in the first argument of the function xts(), it will assume that you are creating a multi-
variate time series formed by k measurements at each time stamp. Obviously, such matrix
should have as many rows as there are time stamps supplied in the second argument of the
function xts().

Using these xts objects has several advantages. For instance, there are plotting methods
that take care of selecting the adequate labels for representing times in the X -axis (try doing
plot(sp500)). More importantly, there are several facilities to make temporal queries on
these time series objects9. Here are a few examples:

> sp500["2010-03-02"]

[,1]
2010-03-02 1118.31

> sp500["2010-03"]

[,1]
2010-03-01 1115.71
2010-03-02 1118.31

> sp500["2010-03-01/"]

[,1]
2010-03-01 1115.71
2010-03-02 1118.31

> sp500["2010-02-26/2010-03-01"]

[,1]
2010-02-26 1104.49
2010-03-01 1115.71

Temporal queries consist of strings following the ISO:8601 time format. As you see from
the above examples you may include things like time intervals and so on.

There are many different types of time dependencies. One frequently occurring depen-
dency is trend effects. These consist of series of values that exhibit some consistent tendency
(e.g. upwards) along time. This type of dependency may create difficulties in some data anal-
ysis tasks. Imagine we are trying to forecast the future values of some time series with a
strong upwards tendency based on some historical observation of its values. Due to the ten-
dency, the future values (that we need to forecast) will most probably be significantly larger
than the ones observed in the historical record. Without knowledge about this tendency,
or without modeling it, the forecasting models will have strong difficulties in correctly pre-
dicting the future values because nothing similar was observed in the past. Motivated by
these issues sometimes analysts prefer to transform the original time series variables to try
to remove these trend effects. One relatively easy way of proceeding consists of working
with the series of relative variations instead of the original values. This consists of creating
a new variable using the following formula,

9Note that you may still use the normal indexing schemes on these objects, e.g. sp[2,1] .

68 Data Mining with R: Learning with Case Studies

Jan
1949

Jul
1951

Jan
1954

Jul
1956

Jan
1959

10
0

20
0

30
0

40
0

50
0

60
0

The original absolute values

Jan
1949

Jan
1951

Jan
1953

Jan
1955

Jan
1957

Jan
1959

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

The relative values

FIGURE 3.3: An example of using relative variations.

Yt = Xt −Xt−1

Xt−1
(3.3)

where Xt is the value of the original time series at time stamp t10.
This type of transformation can be easily obtained in R as shown in the following ex-

ample, whose results you may check in Figure 3.3. This figure clearly shows that the initial
trend was “removed” by this simple pre-processing step.

> library(xts)
> data(AirPassengers)
> ap <- as.xts(AirPassengers)
> apRel <- diff(ap)/ap[-length(ap)]

Using such a process we would then proceed with trying to obtain a model that forecasts
the next variation (i.e. the next value of variable Y) instead of the next value of the original
series (X). Obviously, if at time t we observe the value of Xt, and our model forecasts a
certain value for Yt+1, it is straightforward to obtain the predicted value of Xt+1 using
the relationship between the original values and the variations established by Equation 3.3.
There is however, a caveat. In spite of eliminating the trend effects, we do not eliminate
the case dependencies. In effect, if there is some sort of time dependency between the
successive values of X, then such a dependency will also exist among the values of Y ,
i.e. the variation between the original values at time t (captured by Yt), will naturally
depend on the variation at time t − 1. This means that once again we can not assume
that the values of Y are independent. What can we do about this if we want to use some
modeling tools that assume the observations are independent? There are several possible
paths with time series data. One is based on the idea of time delay embedding (Takens,

10Note that there are potential division-by-zero problems with this transformation.

Introduction to Data Mining 69

1981). Time delay embedding consists of describing the state of the dynamic system that
generates the observed time series values by a set of k recently observed values. The value k
is the dimension of the embedding, and needs to be determined. Function embed() can be
used to generate an embedding from a time series. It receives a time series and an embed
dimension k and generates a data matrix where row i contains the values of the series at
time i, i− 1, · · · , i− k + 1, e.g.

> head(ap)

[,1]
Jan 1949 112
Fev 1949 118
Mar 1949 132
Abr 1949 129
Mai 1949 121
Jun 1949 135

> head(embed(ap,4))

[,1] [,2] [,3] [,4]
[1,] 129 132 118 112
[2,] 121 129 132 118
[3,] 135 121 129 132
[4,] 148 135 121 129
[5,] 148 148 135 121
[6,] 136 148 148 135

The following simple function11 could be used to generate a data frame from a given
xts object with a uni-variate time series,

> createEmbedDS <- function(s, emb=4) {
+ d <- dim(s)
+ if (!is.null(d) && d[2] > 1) stop("Only applicable to uni-variate time series")
+ if (emb < 2 || emb > length(s)) stop("Invalid embed size")
+ e <- embed(s,emb)
+ colnames(e) <- c("T",paste("T",1:(emb-1),sep="_"))
+ if (is.xts(s)) return(xts(e,index(s)[emb:length(s)])) else return(e)
+ }
> dataSet <- createEmbedDS(ap,emb=5)
> head(dataSet)

T T_1 T_2 T_3 T_4
Mai 1949 121 129 132 118 112
Jun 1949 135 121 129 132 118
Jul 1949 148 135 121 129 132
Ago 1949 148 148 135 121 129
Set 1949 136 148 148 135 121
Out 1949 119 136 148 148 135

Assuming that the time dependency among the series observations is not larger than the
embed size, using such simple transformation would ensure we can safely use any “standard”
modeling tool. In effect, although there is still some form of dependency between the rows
of dataSet, we can “safely” ignore it. The reason is that the information on the time

11You do not need to type it as it is available in the book package.

70 Data Mining with R: Learning with Case Studies

dependency between the k recent values of the original time series was “moved” to different
features of the data set we have created. This means that the time dependencies among the
k past values can be modeled as relationships between the variables of the new dataset, and
for this we can use “standard” modeling tools. Still, we should not ignore the time ordering
that continues to exist between the rows of dataSet. This is particularly important when
carrying out experiments involving the estimation of the predictive performance of models.
We will address this critical issue later in the book in a case study that uses time series
data.

Other alternative transformations are possible for time series data. Discrete wavelet
transform (DWT) and discrete Fourier transform (DFT) are two of the most frequently
used. Symbolic representations where we move from the original numeric values of a time
series into a sequence of symbols are also popular ways of representing a series.

The idea of wavelet transformations is to decompose a time series into a set of coefficient-
weighted wavelet basis vectors, with each of the coefficients presenting the rough variation
of the series between two halves of some time range of the series (Aggarwal, 2015). The
calculation of these coefficients is typically followed by a feature selection process where
only larger coefficients are retained. Haar wavelet transforms are one of the most commonly
used. If n is the length of the time series the Haar coefficients are defined for the orders
1 to log2(n), assuming the length n is a power of 2. For each order k, 2k−1 coefficients
are obtained that represent information on a time segment of the series of size n/2k−1.
The coefficient i of order k is the average difference between the average values of the
series for two consecutive time segments. Imagine the time series is formed by the values
10, 9, 11, 13. The first set of coefficients are given by (10 − 9)/2, (11 − 13)/2, i.e. they are
0.5,−1. The second set works at a lower granularity, namely at the averages of the original
values, i.e. it works with the series (10 + 9)/2 = 9.5, (11 + 13)/2 = 12. The coefficient is
thus (9.5 − 12)/2 = −1.25. Finally, the last average is (9.5 + 12)/2 = 10.75, which is the
overall average of the original time series. With this last average value (10.75) and the 3
coefficients (0.5,−1,−1.25), it is possible to reconstruct the original series. Obviously, these
are 4 numbers, which is the size of the original series, thus this seems a waste of time.
However, the idea is that some of these coefficients can be thrown away without too much
loss of information.

Independently of the process followed to deal with temporal dependencies, the general
approach involves passing the information on temporal correlation between the rows into
new features (columns) so that it can be used in the construction of models. This happens
both with simple approaches like time-delay embedding, but also with more sophisticated
approaches like wavelets.

Spatial dependencies
Datasets with spatial dependencies involve observations that are collected at different

nearby locations. This neighborhood relationship between observations may entail some
form of dependency between the measured behavioral attribute values. In effect, according
to the first law of Geography (Tobler, 1970), everything is related with everything else but
near things are more related than distant things. In this context, as with temporal data,
one should take these potential effects into account when analyzing this type of data. With
the advent of GPS-enabled devices, this sort of data is becoming more and more prevalent
and thus tools for handling and analyzing it are essential.

The contextual information on spatial datasets may take several forms but the usual
is some form of geo-reference, e.g. latitude and longitude. Once again R includes many

Introduction to Data Mining 71

packages devoted to this type of dataset12. Spatial coordinates are just numbers and thus
we could simply include this contextual information as extra columns of the dataset. Still,
more sophisticated data structures provide other facilities, like easier plotting and querying.
Package sp (Pebesma and Bivand, 2005) contains a series of classes of objects for handling
these data. Several other packages build upon the classes defined in this package. These
classes include structures to store data about geographical locations (spatial points), but
also for trajectories and other types of geo-referenced datasets. We will see a concrete
illustration of its usage with a dataset on forest fires in Portugal. The dataset is available
in a CSV file13,

> library(readr)
> ff <- read_csv("forestFires.txt")
> ff

A tibble: 25,000 × 14
FID_ CID ano1991 ano1992 ano1993 ano1994 ano1995 ano1996 ano1997

<chr> <int> <int> <int> <int> <int> <int> <int> <int>
1 <NA> 1 0 0 0 0 0 0 0
2 <NA> 2 0 0 0 0 0 0 0
3 <NA> 3 0 0 0 0 0 0 0
4 <NA> 4 0 0 0 0 0 0 0
5 <NA> 5 0 0 0 0 0 0 0
6 <NA> 6 0 0 0 0 0 0 0
7 <NA> 7 0 0 0 0 0 0 0
8 <NA> 8 0 0 0 0 0 0 0
9 <NA> 9 0 0 0 0 0 0 0
10 <NA> 10 0 0 0 0 0 0 0
... with 24,990 more rows, and 5 more variables: ano1998 <int>,
ano1999 <int>, ano2000 <int>, x <dbl>, y <dbl>

The dataset contains information on different locations (i.e. each row refers to a loca-
tion). The two first columns are essentially irrelevant for the analysis. They are followed by
10 columns (named “ano....”) that contain information on whether the location had or did
not have (a binary 0/1 variable) a fire in a certain year (“ano” means year in Portuguese).
The last two columns, named “x” and “y”, are the longitude and latitude, respectively.
For now, let us focus our study on a concrete year, which turns this into a spatial dataset
(otherwise it would be a spatio-temporal dataset). Looking only at a single year (say 2000)
what we have is information on a series of spatial locations. We can store this on a Spa-
tialPointsDataFrame object as follows:

> library(sp)
> library(dplyr)
> spatialCoords <- select(ff,long=x,lat=y) # the contextual data
> firesData <- select(ff,ano2000) # the behavioral data
> coordRefSys <- CRS("+proj=longlat +ellps=WGS84")
> fires2000 <- SpatialPointsDataFrame(spatialCoords,
+ firesData,
+ proj4string=coordRefSys)
> fires2000[1:3,]

coordinates ano2000

12Extensive information may be obtained at the Spatial Task View of CRAN (https://cran.r-project.
org/web/views/Spatial.html) or in the book by Roger S. Bivand (2013).

13You can download the CSV file from the book Web page.

72 Data Mining with R: Learning with Case Studies

1 (-7.31924, 38.5406) 0
2 (-7.63557, 40.5022) 0
3 (-7.90273, 40.3418) 0

The object fires2000 is an object of class SpatialPointsDataFrame. As we see from
the output of the last statement it has special printing methods that show the geographical
coordinates associated with each behavioral attribute value. To create such object we need
to provide a matrix or data frame with two columns containing the longitude and latitude
of each location, the behavioral data measured at each location and also information on the
coordinate reference system to use.

Package sp contains several utility functions that can provide useful information on our
data. Below are a few examples:

> bbox(fires2000)

min max
long -9.49174 -6.20743
lat 36.98050 42.14360

> coordinates(fires2000)[1:3,]

long lat
[1,] -7.31924 38.5406
[2,] -7.63557 40.5022
[3,] -7.90273 40.3418

> summary(fires2000)

Object of class SpatialPointsDataFrame
Coordinates:

min max
long -9.49174 -6.20743
lat 36.98050 42.14360
Is projected: FALSE
proj4string : [+proj=longlat +ellps=WGS84]
Number of points: 25000
Data attributes:

ano2000
Min. :0.00000
1st Qu.:0.00000
Median :0.00000
Mean :0.01612
3rd Qu.:0.00000
Max. :1.00000

Function bbox() returns the coordinates of the bounding box where all locations are
included. The function coordinates() can be used to access the matrix with the coordinates
of all locations (i.e. the matrix with the contextual information). Function summary() can
also be applied to SpatialPointsDataFrame objects, producing an adequate summary of
the dataset.

R also provides many possibilities in terms of spatial data visualization. Here we de-
scribe a small illustration using package ggmap (Kahle and Wickham, 2013). This package
includes, among other things, an interface to several map providers (e.g. Google Maps) and
it is based on the excellent infra-structure provided by package ggplot2 (Wickham, 2009),

Introduction to Data Mining 73

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

37

38

39

40

41

42

−10 −8 −6
lon

la
t

FIGURE 3.4: Forest fires in Portugal during 2000.

that we will be using extensively for data visualization. The following is a simple illustration
for visualizing the forest fires in the year 2000 with the result shown on Figure 3.4:

> library(ggmap)
> library(tibble)
> mapPT <- get_map("Portugal",zoom=7)
> d4plot <- as_tibble(cbind(coordinates(fires2000),burnt=fires2000$ano2000))
> ggmap(mapPT) +
+ geom_point(data=filter(d4plot, burnt==1),aes(x=long,y=lat),col="orange")

Function get_map() was used to obtain a map (by default from Google Maps) of the
region where we want to plot our data. Then we have created a data frame with the data
required to build the plot, which includes the coordinates and the binary variable that
indicates whether each location has or has not burned in 2000. Finally, we generate the
map calling function ggmap() that draws the downloaded map and then super-imposing
the points on the locations where there were fires.

Other dependencies
R has several packages that can help with other types of dependencies. For instance,

a frequent format of data dependency is spatio-temporal correlation. This refers to data
observations that include both time and space contexts. Package spacetime (Pebesma,
2012) includes facilities for handling this type of dataset. The classes provided by this
package can handle many different setups in terms of spatio-temporal dependencies and are
based upon the classes provided by packages sp and xts that we have covered before. More

74 Data Mining with R: Learning with Case Studies

information on facilities for analyzing this type of data can be found in the SpatioTemporal
CRAN task view14.

Another frequent type of dependency appears in data collected from networks. Networks
are frequently represented as graphs (sets of connected nodes). These structures are covered
by several packages in R, like for instance the package gRbase (Dethlefsen and Højsgaard,
2005) that can handle frequent data structures like undirected or direct acyclic graphs. More
information on this type of data is available in the gR CRAN task view15.

3.3.3.2 Handling Text Datasets

Text is a very frequent form of conveying information. It is used in many different
communication channels like reports, emails, or social networks. Being able to analyze this
type of data and extract useful knowledge from it is very important for many application
domains. There is a large volume of research being invested on text mining. A text document
is a string of characters. Analyzing text documents as strings involves deep knowledge about
linguistic rules and semantics of the languages. In this context, most approaches tend to
transform text documents into the more common attribute-based representation. In a way
this exercise is similar to what we have seen before with e.g. temporal data, where we
tried to move contextual information (time stamps) into features describing the cases to
allow capturing relevant relationships involving this context. With textual data there is
also some obvious dependency among successive words, and this is important for properly
analyzing the documents. Which attributes/properties should be used to represent a text
document? There are several answers to this question, with different degrees of complexity.
One of the simplest, and most frequently used approach, is known as the bag of words
representation. In this approach a text document is transformed into a vector of features
where each feature is associated with one word of the language in which the document is
written. Some approaches use simple binary features stating whether the word is or is not
present in the document. Other approaches are counts of the number of occurrences of the
words or other more sophisticated values like TF-IDF, that integrates term frequency with
inverse document frequency that tries to measure the amount of information brought by
each term. The idea of TF-IDF is to cope with terms (words) that are very frequent but
do not bring much information (say the word “the” in English). Once we have a feature
vector representation of a set of documents, we have in effect a standard dataset, where
each row is a document and each column a feature. Still, because of the large number of
words available in any language, this is typically a dataset with a “difficult dimensionality”
because it will have many more columns than rows, something that creates problems to
several data analysis methods. Please note that bag of words representations completely
ignore the order of words in a text. More sophisticated representations try to incorporate
some information on this ordering by using n-grams instead. N-grams are successive sets of
n words that occur in a text. Again we can count their occurrences or use more sophisticated
scores.

R has many packages devoted to the analysis of text data. Extensive information on these
facilities can be obtained in the Natural Language Processing CRAN task view16. Many of
these packages are in effect interfaces to existing external linguistic resources (e.g. WordNet
or OpenNLP). A good starting point is the tm (Feinerer and Hornik, 2015) package that
provides a general text mining framework within R. This package includes several functions
for reading text documents from many different sources and formats, functions for carrying
out the most frequent pre-processing steps of these documents, and also other functions for

14https://cran.r-project.org/web/views/SpatioTemporal.html
15https://cran.r-project.org/web/views/gR.html
16https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

Introduction to Data Mining 75

analyzing the documents. Moreover, it provides specific classes of objects for adequately
storing this type of data. Let us see a concrete example of how to use this package.

Suppose you were given a set of text files, each with a text document that you wish
to analyze. Assume these files were stored in a sub-folder of the current folder, named
Documents. The following code would read these files into R,

> library(tm)
> docs <- Corpus(DirSource("Documents"))
> docs

<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 300

The function Corpus() can be used to create objects of class Corpus that contain a
text-based dataset. In this case we can observe that it is formed by 300 documents that
were read using the DirSource() function. This function assumes the provided path leads
to a folder containing plain text files that are to be read into R. Package tm provides many
other possibilities for reading different types of text documents and using different sources.
Check the package documentation for further details and examples.

Each individual document can be inspected as follows:

> docs[[2]]

<<PlainTextDocument>>
Metadata: 7
Content: chars: 1543

> content(docs[[2]])[1:3]

[1] "Africa Fashion Week London kicks off"
[2] "Article By: Simamkele Matuntuta Fri, 07 Aug 2015 12:05 PM"
[3] "Your Email Photo Credit: Africa Fashion Week London"

Individual documents are treated as elements of a list as you can observe from the
above code. The content (text) of each document can be inspected (and changed) with the
function content() that returns a vector of strings, each being a text line of the document.
This means the above code shows the first three lines of the second document. Documents
and corpus can also have meta information (e.g. document heading, document language)
associated with them.

As we have mentioned before, instead of analyzing the strings forming the documents
directly, it is common to carry out a series of transformations to these documents in order
to represent them as feature vectors. Package tm includes several functions that help in
this task, as shown below:

> docs <- docs %>%
+ tm_map(removePunctuation) %>%
+ tm_map(content_transformer(tolower)) %>%
+ tm_map(removeNumbers) %>%
+ tm_map(removeWords, stopwords("en")) %>%
+ tm_map(stripWhitespace) %>%
+ tm_map(stemDocument)
> content(docs[[2]])[1:3]

76 Data Mining with R: Learning with Case Studies

[1] "africa fashion week london kick"
[2] "articl simamkel matuntuta fri aug pm"
[3] " email photo credit africa fashion week london"

The above code includes some typical pre-processing steps that are applied to the corpus
using the function tm_map(). These include self-explanatory things like removing punctua-
tion, numbers, transforming everything to lowercase, or stripping white space. Also common
is to eliminate from further analysis the stop words (e.g. “the”, “a”, etc.) of the language of
the documents that bring no information. Finally, to make all linguistic variations of some
words the same term, we carry out word stemming in the documents. The last statement
shows again the same three sentences of the second document after all these steps.

Finally, we can transform the pre-processed documents into a dataset by using some
feature vectors to describe them. The example below uses TF-IDF to represent each docu-
ment:

> data <- DocumentTermMatrix(docs, control=list(weighting=weightTfIdf))
> data

<<DocumentTermMatrix (documents: 300, terms: 13276)>>
Non-/sparse entries: 67308/3915492
Sparsity : 98%
Maximal term length: 43
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)

> inspect(data[1:2,1:5])

<<DocumentTermMatrix (documents: 2, terms: 5)>>
Non-/sparse entries: 0/10
Sparsity : 100%
Maximal term length: 7
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)

Terms
Docs aadid aapl abalon abandon abat

1.text 0 0 0 0 0
10.text 0 0 0 0 0

Function DocumentTermMatrix() can be used to create these feature representations. It
accepts several arguments that allow for instance to select the way each feature is calculated
(in this case using TF-IDF). The result is an object of class DocumentTermMatrix that
is typically a very sparse matrix, given that most documents contain only a small fraction
of all words. Function inspect() can be used to see some entries of this large data matrix.

Package tm also contains several functions that allow some form of exploration of these
document term matrices. For instance, we can use function findFreqTerms() to filter out
the terms that have a feature value above a certain threshold,

> findFreqTerms(data,0.9)

[1] "can" "cent" "compani" "corbyn" "famili" "food"
[7] "govern" "like" "million" "music" "new" "offic"

[13] "olymp" "peopl" "per" "polic" "race" "report"
[19] "research" "said" "say" "show" "team" "use"
[25] "water" "will" "work" "world" "year"

Introduction to Data Mining 77

We can also find terms that are correlated with each other,

> findAssocs(data,"race",0.5)

$race
finish sail

0.53 0.53

Function findAssocs() allows you to specify a term and correlation threshold, and
returns the terms in the document collection that have a correlation with the supplied term
higher than the threshold.

Finally, we can use function removeSparseTerms() to filter out terms in the document
term matrix that have most of their values zero, i.e. sparse terms that occur in very few of
the documents. For instance, if we want to filter all terms for which 70% of the entries are
zero, we would proceed as follows,

> newData <- removeSparseTerms(data,0.7)
> newData

<<DocumentTermMatrix (documents: 300, terms: 49)>>
Non-/sparse entries: 6280/8420
Sparsity : 57%
Maximal term length: 6
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)

As you see we have moved from an original matrix with 13276 terms (i.e. columns) to a
matrix with only 49! For further modelling steps it would be interesting to have this dataset
representing the 300 text documents in a more “standard” data structure, i.e. a data frame
type object. This could be easily obtained as follows:

> library(tibble)
> as_tibble(as.matrix(newData))

A tibble: 300 × 49
also back call can come day

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.002696966 0.002393000 0.002767608 0.005681151 0.002644988 0.000000000
2 0.000000000 0.000000000 0.000000000 0.012779535 0.000000000 0.000000000
3 0.003398828 0.000000000 0.003487853 0.002386540 0.000000000 0.005922018
4 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
5 0.000000000 0.000000000 0.000000000 0.005268159 0.000000000 0.000000000
6 0.002988376 0.010606261 0.006133301 0.008393339 0.000000000 0.000000000
7 0.005282822 0.000000000 0.000000000 0.003709416 0.000000000 0.000000000
8 0.000000000 0.000000000 0.005588645 0.000000000 0.000000000 0.000000000
9 0.003896446 0.006914579 0.000000000 0.005471900 0.003821350 0.003394527
10 0.000000000 0.004286092 0.000000000 0.000000000 0.014212281 0.004208283
... with 290 more rows, and 43 more variables: dont <dbl>, even <dbl>,
first <dbl>, get <dbl>, includ <dbl>, just <dbl>, know <dbl>,
last <dbl>, like <dbl>, look <dbl>, made <dbl>, make <dbl>,
mani <dbl>, may <dbl>, month <dbl>, much <dbl>, need <dbl>, new <dbl>,
now <dbl>, one <dbl>, part <dbl>, peopl <dbl>, report <dbl>,
right <dbl>, said <dbl>, say <dbl>, see <dbl>, show <dbl>, sinc <dbl>,
take <dbl>, think <dbl>, time <dbl>, told <dbl>, two <dbl>, use <dbl>,
want <dbl>, way <dbl>, week <dbl>, well <dbl>, will <dbl>, work <dbl>,
world <dbl>, year <dbl>

78 Data Mining with R: Learning with Case Studies

3.3.4 Dimensionality Reduction
The amount and diversity of data sources often leads to datasets whose dimensional-

ity raises serious challenges to most analysis tools, even if extreme computation power is
available. This dimensionality problem can take several forms. The data can be too large to
handle by the available hardware, but it can also have a dimensionality that goes against
the assumptions of some modeling tools. That is the case of datasets where there are many
more variables (columns) than observations (rows), as it is often the case in text mining,
for instance. While these datasets may fit perfectly well in our available hardware, they still
can be problematic for some tools due to this imbalance between the number of columns
and rows.

3.3.4.1 Sampling Rows

A large number of rows is one of the most frequently encountered facets of large dimen-
sionality. As datasets grow in size it becomes difficult to fit all data in memory. R uses a
computation model that requires data to fit in the central memory of computers. Although
memory is becoming cheaper and larger, datasets grow at an even faster rate. Solutions
have been appearing trying to overcome this limitation of R for big data. More information
on some of these solutions can be found in the Hig Performance Computing task view17.

Another possible path to handle this type of datasets is not to use all available rows.
This typically involves sampling the rows of the data table. Random sampling of a subset of
the rows can be easily achieved in R. Below you may find a simple example, where a small
dataset is used for illustration purposes,

> data(iris)
> prop2sample <- 0.5
> rowIDs <- sample(1:nrow(iris), as.integer(prop2sample*nrow(iris)))
> iris.sample <- iris[rowIDs,]

This simple example illustrates the use of the sample() function to draw random num-
bers from a certain range. When both the range and the required size are integers (as in
the example above) we can use sample.int() instead.

In case you prefer sampling with replacement, you may use the replace argument,

> data(iris)
> prop2sample <- 0.5
> rowIDs <- sample(1:nrow(iris), as.integer(prop2sample*nrow(iris)), replace=TRUE)
> iris.sample <- iris[rowIDs,]

In spite of the virtues of the above approach, the fact is that it requires that the full
dataset fits in memory. If that is a problem because the dataset is to big to be loaded into
R, then this method is useless. In those situations we need a method that does not involve
reading the full dataset into memory. We are going to consider two possible situations: (i)
the full dataset is stored in a text file; and (ii) the dataset is in a relational database.

Let us assume our extremely large dataset is stored in a CSV file. We will illustrate
how we could obtain a random sample of the lines in this text file. Even simple operations
(e.g knowing the number of lines of the file) on very large files can be taxing in terms
of computation time. This means that this apparent straightforward task of picking some
random lines from a text file is not as simple as one may think. It is indeed a source
of big debates as you may easily confirm by a Web search. We are going to provide a

17https://cran.r-project.org/web/views/HighPerformanceComputing.html

Introduction to Data Mining 79

solution that has its drawbacks. Solving these problems would either compromise seriously
the performance of the solution or involve much more complex computations. You may find
alternative approaches/solutions around the Web18.

Our solution has the following limitations: (i) it is based on command-line tools of unix-
based operating systems; (ii) it is not guaranteed to obtain the exact number of observations
we want. The first of these limitations is justified by the efficiency of the tools we use.
Overcoming this limitation would involve either implementing a similar solution in some
efficient programming language (e.g. C), or compromising the applicability to very large files
by using a solution within R. The second limitation is again justified by efficiency reasons.
The strategy we use essentially goes through each line of the original large file and draws
a random number between 0 and 1. If the number is below a certain percentage the line
is selected for the final sample, otherwise we move to the next line. For instance, suppose
we want a 10% sample. On each line we check if the random number is below 0.1 — if yes
we pick the line otherwise we step to the next. The problem with this approach is that as
drawing a random number is a probabilistic task, we may end-up with less than 10% of the
lines because there is no guarantee that there will be 10% numbers below 0.1. We limit a
bit this drawback by using a threshold larger than 0.1, and then in the end just pick the
first 10% of the lines that were selected, but still there is no guarantee that this will always
work as expected. The function we show below will issue a warning on those occasions.

> nrLinesFile <- function(f) {
+ if (.Platform$OS.type == "unix")
+ as.integer(strsplit(trimws(system(paste("wc -l",f),intern=TRUE)),
+ " ")[[1]][1])
+ else
+ stop("This function requires unix-based systems")
+ }
>
> sampleCSV <- function(file, percORn, nrLines, header=TRUE, mxPerc=0.5) {
+ if (.Platform$OS.type != "unix")
+ stop("This function requires unix-based systems")
+ require(readr, quietly=TRUE)

+ if (missing(nrLines)) nrLines <- nrLinesFile(file)

+ if (percORn < 1)
+ if (percORn > mxPerc)
+ stop("This function is not adequate for that big samples.")
+ else percORn <- as.integer(percORn*nrLines)
+ perc <- min(2*percORn/nrLines, mxPerc)

+ system(paste0("perl -ne 'print if (rand() < ",perc,")' ",file,
+ " > ",file,".tmp.csv"))
+ dt <- read_csv(paste0(file,".tmp.csv"),col_names=header, n_max=percORn)
+ file.remove(paste0(file,".tmp.csv"))
+ if (nrow(dt) != percORn)
+ warning(paste("Expecting",percORn,"rows, but got",nrow(dt)))
+ dt
+ }

We split the solution in two functions, one that determines the number of lines of a text
file and the other that obtains the random sample. The first uses the unix command wc that

18e.g. http://stackoverflow.com/questions/22261082

80 Data Mining with R: Learning with Case Studies

can be used to compute this number of lines in a very efficient manner. The second function
does the heavy part (randomly selecting the rows) using the Perl scripting language. The
selected rows are then read into a data frame using the function read_csv() from package
readr.

If the user knows beforehand the number of lines in the original large file it can provide
this information through the parameter nrLines, thus saving some computation. Otherwise
the function will calculate this number. The user may specify the size of the random sample
either as a percentage (in the interval [0, 1]) or as the desired number of lines. We should
note that the function will not work with percentages higher than 0.5. The reason has to do
with using a percentage higher than what the user specifies to try to overcome the limitation
of the probabilistic nature of drawing random numbers. Still, we should refer that this is
not a very serious limitation. In effect, as we are talking about a function to be applied
over extremely large files, having a 50% sample may even be too much to fit in memory, so
typically we will use much lower percentages.

We now present an example by drawing a 1% random sample from a file with roughly
135 million rows (the file size is ≈ 5Gb),

> t <- Sys.time()
> d <- sampleCSV("allsensors.csv", 0.01, header=FALSE)

Parsed with column specification:
cols(
X1 = col_datetime(format = ""),
X2 = col_double(),
X3 = col_integer()
)

> Sys.time()-t

Time difference of 34.91942 secs

> nrow(d)

[1] 1349305

We use the function Sys.time() to access the system clock and time the sampling
operation. As you can observe, even using the fast utility programs we get a computation
time around 30 seconds (this will obviously vary with the hardware you have available).

In the second setup we are going to address the case when our large dataset is stored in a
relational database. We are going to provide a simple illustration using a MySQL database.
The solution we are going to describe should work well with other databases. Obtaining
a random sample from a database table is again surprisingly not straightforward. If you
search around the Web you will see that there are long debates and a huge number of (often
complex) solutions proposed. The solution we are going to describe has its drawbacks and it
is not the most efficient of the solutions. Still, it has the advantage of being relatively simple
so if very fast performance for obtaining the sample is not a critical issue this should be more
than enough. For more efficient (but considerably more complex) solutions we recommend
you search the Web for other solutions19.

Our source database contains roughly 135 million rows. Let us assume we want a sample
of 10,000 rows from this large table to carry out some analysis in R. We first establish the
connection to the database,

19Two possible starting points are http://jan.kneschke.de/projects/mysql/order-by-rand/ and http:
//mysql.rjweb.org/doc.php/random

Introduction to Data Mining 81

> library(DBI)
> library(RMySQL)
> drv <- dbDriver("MySQL") # Loading the MySQL driver
> con <- dbConnect(drv,dbname="transDB",
+ username="myuser",password="mypassword",
+ host="localhost")

The following function obtains the random sample from a table of a given database
connection,

> sampleDBMS <- function(dbConn, tbl, percORn, mxPerc=0.5) {
+ nrRecords <- unlist(dbGetQuery(dbConn, paste("select count(*) from",tbl)))

+ if (percORn < 1)
+ if (percORn > mxPerc)
+ stop("This function is not adequate for that big samples.")
+ else percORn <- as.integer(percORn*nrRecords)
+ perc <- min(2*percORn/nrRecords, mxPerc)

+ dt <- dbGetQuery(dbConn,paste("select * from (select * from",tbl,
+ "where rand() <= ",perc,") as t limit ",percORn))
+ if (nrow(dt) != percORn)
+ warning(paste("Expecting",percORn,"rows, but got",nrow(dt)))
+ dt
+ }

The solution is similar in strategy to the previous one for datasets stored in a CSV file.
We again use a random number generator to decide which rows to pick. This time we use
the rand() SQL function to draw these random numbers.

We can use the above function to obtain our random sample with 10,000 rows, storing
it in a data frame,

> t1 <- Sys.time()
> d <- sampleDBMS(con,"sensor_values",10000)
> Sys.time()-t1

Time difference of 5.192664 secs

> nrow(d)

[1] 10000

We have again used the function Sys.time() to time the execution of our code that
obtains the random sample. As you see, it is reasonably fast, though we are talking of a
table with 135 million rows.

As with the function for CSV files, this function can also be used by specifying a per-
centage of the rows of the original database table. Note that the function is also limited to
small values of this percentage.

Finally, we can close the connection to the DBMS,

> dbDisconnect(con)

[1] TRUE

> dbUnloadDriver(drv)

[1] TRUE

82 Data Mining with R: Learning with Case Studies

3.3.4.2 Variable Selection

The selection of a subset of variables (also known as feature selection) is a very frequent
task we carry out in data analysis. This may have several motivations, like for instance trying
to remove irrelevant variables or variables that are highly correlated with others. Applying
these methods for these reasons is usually motivated by the use some modeling tools that do
not handle these “problems” very well, or make some strong assumptions on the variables
describing the cases that are violated by the original dataset. Another motivation for feature
selection is simply reducing the dimensionality of the dataset. A frequent setting that creates
problems to most tools are datasets where the number of variables is considerably larger
than the number of cases. We have seen such example in Section 3.3.3.2 when exploring
document-based data.

There are many methods we can use to select features. These are frequently cast into
(i) filter methods, and (ii) wrapper methods. Filter methods involve looking at variables
individually and asserting their value using some metric, which is then used to rank them
and remove the less relevant ones (in terms of the selected metric). Wrapper methods work
by taking into consideration the objectives of the analysis we plan to carry out with the
dataset. This means that they try to search for the subset of variables that are more adequate
in terms of the criteria used to evaluate the results of the posterior modeling stages. In this
context, the models we plan to apply after the variable selection are brought back to the
feature selection step so that we can select the subset of variables that best optimize their
performance. These methods typically involve an iterative search procedure where at each
step a candidate set of features is used to obtain a model, which is evaluated and the results
of this evaluation are used to decide if the features are good enough or if we need to try other
set. Because of this iterative search process, wrapper methods are typically more demanding
in computation terms. In summary, while filter methods are one-shot approaches, wrapper
techniques involve an iterative search process.

Another way of grouping existing feature selection methods is into (i) unsupervised
and (ii) supervised methods. Unsupervised methods look at each feature individually and
calculate its relevance using only the values of the variable. Supervised methods explore
the existence of a “special” variable in the dataset, the so-called target variable. As we
will see, this forms the basis of predictive analytics that we will address in Section 3.4.5.
These supervised methods evaluate each feature by looking at its relationship with the
target variable. This may be as simple as calculating the correlation of each feature with
the target, but it may also involve other metrics. Wrapper methods are most of the time
supervised methods because they typically use some predictive model to assert the value of
a set of candidate features.

Examples of simple unsupervised filter methods include for instance, checking for con-
stant variables (i.e. variables that have a constant value on all observations), or for ID-like
variables (i.e. variables that are different on all observations, like for instance the product
ID on a dataset of products). In the case study of Chapter 7 we will see another example of
this type of simple filter where we will eliminate features that have very low variability as
measured by some statistic of spread. These unsupervised filering methods typically search
for irrelevant and/or noisy features that we can safely discard from our analysis.

Supervised filtering methods try to obtain some statistic that relates the values of a
variable to those of a target variable (a variable whose values are supposed to depend on
the values of the other variables). A simple example is to calculate the correlation between
the two variables, given by

ρŷ,y =
∑Ntest
i=1 (ŷi − ¯̂y)(yi − ȳ)√∑Ntest

i=1 (ŷi − ¯̂y)2∑Ntest
i=1 (yi − ȳ)2

(3.4)

Introduction to Data Mining 83

Other examples include information theoretic metrics. These metrics are based on the
concept of entropy which is the expected information contained in a message. In the context
of supervised classification tasks (i.e. with a nominal target variable) we can talk about the
class entropy,

H(Y) = −
∑
ci∈Y

P (Y = ci) · logP (Y = ci) (3.5)

where Y is the domain of the target, i.e. the set of classes of the problem; and P (Y = ci) is
the probability of class ci.

We can also talk about the conditioned class entropy given the value of a certain predictor
variable,

H(Y |X) = −
∑
vi∈X

P (X = vi)
∑
ck∈Y

P (Y = ck ∨X = vi)
P (X = vi)

log P (Y = ck ∨X = vi)
P (X = vi)

(3.6)

Based on these notions we can defined the Information Gain of a variable (which is
also referred to as mutual information) as the difference between the class entropy and the
conditioned class entropy,

IG(X) = H(Y)−H(Y |X) (3.7)
A variant of this metric is the Gain Ratio which is the information gain normalized by

the variable entropy, i.e.

GR(X) = IG(X)
H(X) (3.8)

where H(X) = −
∑
vi∈X P (X = vi) · logP (X = vi).

All these quantities are easy to estimate using frequencies calculated from the available
training data. For continuous variables it is harder to calculate, as the summations turn
into integrals.

These and other metrics have been implemented in packages FSelector (Romanski and
Kotthoff, 2014) and CORElearn (Robnik-Sikonja and Savicky, 2015). Below we show a
few examples using the latter,

> library(CORElearn)
> data(iris)
> attrEval(Species ~ ., iris, estimator="GainRatio")

Sepal.Length Sepal.Width Petal.Length Petal.Width
0.5919339 0.3512938 1.0000000 1.0000000

> attrEval(Species ~ ., iris, estimator="InfGain")

Sepal.Length Sepal.Width Petal.Length Petal.Width
0.5572327 0.2831260 0.9182958 0.9182958

> attrEval(Species ~ ., iris, estimator="Gini")

Sepal.Length Sepal.Width Petal.Length Petal.Width
0.2277603 0.1269234 0.3333333 0.3333333

> attrEval(Species ~ ., iris, estimator="MDL")

Sepal.Length Sepal.Width Petal.Length Petal.Width
0.5112764 0.2465980 0.8311280 0.8311280

84 Data Mining with R: Learning with Case Studies

The above examples consider the task of forecasting the species of Iris plants using
four biometric properties of the plants. We show four examples of supervised metrics for
problems with a nominal target variable: the Gain Ratio, the Information Gain, the Gini
index, and the MDL score. All of them somehow agree that the predictors related with the
petals are the more relevant, followed by the sepal length.

Package CORElearn contains many more metrics that you can apply to this type of
problem, as shown by the following list of available metrics for supervised classification
tasks (check the package help pages for full descriptions),

> infoCore(what="attrEval")

[1] "ReliefFequalK" "ReliefFexpRank" "ReliefFbestK"
[4] "Relief" "InfGain" "GainRatio"
[7] "MDL" "Gini" "MyopicReliefF"

[10] "Accuracy" "ReliefFmerit" "ReliefFdistance"
[13] "ReliefFsqrDistance" "DKM" "ReliefFexpC"
[16] "ReliefFavgC" "ReliefFpe" "ReliefFpa"
[19] "ReliefFsmp" "GainRatioCost" "DKMcost"
[22] "ReliefKukar" "MDLsmp" "ImpurityEuclid"
[25] "ImpurityHellinger" "UniformDKM" "UniformGini"
[28] "UniformInf" "UniformAccuracy" "EqualDKM"
[31] "EqualGini" "EqualInf" "EqualHellinger"
[34] "DistHellinger" "DistAUC" "DistAngle"
[37] "DistEuclid"

For supervised problems with numeric target (known as regression problems) we also
have several alternative metrics for feature importance. Here are a few examples again using
the package CORElearn,

> data(algae, package ="DMwR2")
> attrEval(a1 ~ ., algae[,1:12], estimator="MSEofMean")

season size speed mxPH mnO2 Cl NO3
-453.2142 -395.9696 -413.5873 -413.3519 -395.2823 -252.7300 -380.6412

NH4 oPO4 PO4 Chla
-291.0525 -283.3738 -272.9903 -303.5737

> attrEval(a1 ~ ., algae[,1:12], estimator="RReliefFexpRank")

season size speed mxPH mnO2
-0.031203465 -0.028139035 -0.035271926 0.080825823 -0.072103230

Cl NO3 NH4 oPO4 PO4
-0.152077352 -0.011462467 -0.009879109 -0.134034483 -0.076488066

Chla
-0.142442935

> infoCore(what="attrEvalReg")

[1] "RReliefFequalK" "RReliefFexpRank" "RReliefFbestK"
[4] "RReliefFwithMSE" "MSEofMean" "MSEofModel"
[7] "MAEofModel" "RReliefFdistance" "RReliefFsqrDistance"

The second metric in the above examples is a variant of the adaptation of the Relief
metric (Kira and Rendell., 1992) to regression tasks (Robnik-Sikonja and Kononenko, 2003).
Relief is a powerful feature evaluation metric because it does not evaluate each variable

Introduction to Data Mining 85

independently of the others, which is interesting when we suspect there is strong correlation
between the variables of our dataset.

We should remark that, in the context of supervised methods, there are tools that include
the feature selection process “inside” the modeling stage or associated with it. Examples
include tree-based models that carry out some feature selection as part of the modeling
stage, or even tools that can be used to estimate the relevance of each feature for their
modeling approach (we will see examples of this with random forests later in the book).

Another strongly related topic that sometimes is also used as a means for reducing the
dimensionality of the problem by using less variables, is the transformation of the feature
space by axis rotation. Each case in a dataset is described by a set of p variables. In
this context, we can look at each case as a point in a p-dimensional hyper-space. Axis
rotation methods try to change the axes used to describe each case. Typically, one of the
objectives is to find a smaller set of axes that still captures most of the variability in the
original dataset, but using fewer variables to describe each case. These “new” constructed
variables are normally functions of the original variables. An example of such techniques
is the Principle Components Analysis (PCA). In short, this method searches for a set of
“new” variables, each being a linear combination of the original variables. The idea is that
a smaller set of these new variables could be able to “explain” most of the variability of the
original data, and if that is the case we can carry out our analysis using only this subset.
Let us see an example of this in R using the Iris dataset,

> data(iris)
> pca.data <- iris[,-5] # each case is described by the first 4 variables
> pca <- princomp(pca.data)
> loadings(pca)

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4

Sepal.Length 0.361 -0.657 -0.582 0.315
Sepal.Width -0.730 0.598 -0.320
Petal.Length 0.857 0.173 -0.480
Petal.Width 0.358 0.546 0.754

Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00

The function princomp() can be used to obtain the PCAs of a certain dataset. The
associated function loadings() was used to check what were the found (rotated) axes, as
well as the proportion of the original variance that is captured by each of them. From the
analysis of the output of this function one can conclude that, in this example, if we used
only the first three components (each component is a “new” feature) to describe the data,
then we would only be capturing 75% of the original variance of the cases. This is a bit on
the short side, but if we decide to go with four components then we have no dimensionality
reduction at all, so we may as well stay with the original data! The first part of the output
produced by loadings() shows us that each of the new variables is a linear combination
of the original features. For instance, in the above example we see that the 1st component
is calculated as 0.361 × Sepal.Length + 0.857 × Petal.Length + 0.358 × Petal.Width. We
do not need to do these calculations by hand. We can obtain the values of the new features
for all cases as follows (we only show them for the first 5 cases):

86 Data Mining with R: Learning with Case Studies

> pca$scores[1:5,]

Comp.1 Comp.2 Comp.3 Comp.4
[1,] -2.684126 -0.3193972 -0.02791483 0.002262437
[2,] -2.714142 0.1770012 -0.21046427 0.099026550
[3,] -2.888991 0.1449494 0.01790026 0.019968390
[4,] -2.745343 0.3182990 0.03155937 -0.075575817
[5,] -2.728717 -0.3267545 0.09007924 -0.061258593

Suppose we are happy with the proportion of variance explained by a small subset of
the components (say the first 2). We could carry out the posterior modeling stages on this
new (and reduced) feature space. For instance, instead of using the original Iris dataset we
could use the scores of the first two components,

> dim(iris)

[1] 150 5

> reduced.iris <- data.frame(pca$scores[,1:2],Species=iris$Species)
> dim(reduced.iris)

[1] 150 3

> head(reduced.iris)

Comp.1 Comp.2 Species
1 -2.684126 -0.3193972 setosa
2 -2.714142 0.1770012 setosa
3 -2.888991 0.1449494 setosa
4 -2.745343 0.3182990 setosa
5 -2.728717 -0.3267545 setosa
6 -2.280860 -0.7413304 setosa

There are other methods that work in a similar way as the PCA (e.g. Independent
Component Analysis or Singular Value Decomposition). Still, most of these methods have
a few drawbacks. They typically require the original features to be numeric20, and the
resulting dataset is clearly less comprehensible for the end-user as the new features are
combinations of the original variables.

Further readings on variable importance
Several books include chapters/sections on the important issue of variable/feature importance metrics. A good
example with an extensive survey is Chapter 6 in Kononenko and Kukar (2007). Several survey articles also exist
like for instance the work by Guyon and Elisseeff (2003). Regarding methods involving axis rotation and other
types of transformations of the original variables prior to the selection stage, a good overview can be found in
Section 2.4.3 of the book by Aggarwal (2015).

20If that is not the case we can use the so-called dummy variables, but for nominal variables with lots of
values this becomes impractical.

Introduction to Data Mining 87

3.4 Modeling
Before we start to provide details and examples of concrete models of a dataset it may

be interesting to clarify what we mean by a model. This word is obviously used in many
different contexts but in our case we are talking about some scientific activity based on
observations of a phenomena in the form of a dataset. It is interesting to look at a reference
definition of a scientific model. According to Wikipedia21,

“Scientific modelling is a scientific activity, the aim of which is to make a par-
ticular part or feature of the world easier to understand, define, quantify,
visualize, or simulate by referencing it to existing and usually commonly ac-
cepted knowledge. It requires selecting and identifying relevant aspects
of a situation in the real world and then using different types of models
for different aims, such as conceptual models to better understand, operational
models to operationalize, mathematical models to quantify, and graphical mod-
els to visualize the subject.”

We have highlighted in bold several aspects of this definition that are particularly rele-
vant for the type of modeling one carries out in data mining. In the following sections we
will see some examples of data mining techniques that address some of these aspects. We
will group our description of these techniques into 5 main groups of tasks as already hinted
at in Figure 3.1 (page 44): (i) exploratory data analysis; (ii) dependency modeling; (iii)
clustering; (iv) anomaly detection; and (v) predictive analytics.

Data mining can be seen as a search for interesting, unexpected, and useful relationships
in a dataset. These findings may be interesting mainly because either they are unusual pat-
terns or because they are very common in the sense of being considered key characteristics
of the phenomena. Most data mining techniques we will explore can be regarded as either:
(i) searching for relationships among the features (columns) describing the cases in a dataset
(e.g. anytime some patient shows some set of symptoms, described by some feature values,
the diagnostic of a medical doctor is a certain disease); or (ii) searching for relationships
among the observations (rows) of the dataset (e.g. a certain subset of products (rows) show
a very similar sales pattern across a set of stores; or a certain transaction (a row) is very
different from all other transactions). In the following sections we will see instances of data
mining techniques that address these tasks in different ways with the goal of helping to
answer some questions the user may have concerning the available dataset.

3.4.1 Exploratory Data Analysis
Exploratory data analysis includes a series of techniques that have as the main goal to

provide useful summaries of a dataset that highlight some characteristics of the data that
the users may find useful. We will consider essentially two main types of summaries: (i)
textual summaries; and (ii) visual summaries.

3.4.1.1 Data Summarization

Most datasets have a dimensionality that makes it very difficult for a standard user to
inspect the full data and find interesting properties of these data. As the size of the datasets
keeps increasing this task gets even harder. Data summaries try to provide overviews of key
properties of the data. More specifically, they try to describe important properties of the

21https://en.wikipedia.org/wiki/Scientific_modelling

88 Data Mining with R: Learning with Case Studies

distribution of the values across the observations in a dataset. Examples of these properties
include answers to questions like:

• What is the “most common value” of a variable?

• Do the values of a variable “vary” a lot?

• Are there “strange” / unexpected values in the dataset?

– e.g. outliers or unknown values

In the next paragraphs we will describe a few ways of answering these questions with
illustrations using R code.

Finding the “most common value” of a variable given a sample of its values is the goal
of statistics of centrality/location. In the case of numeric variables two common examples
are the sample mean and median. The sample mean of a variable X is an estimate of the
(full) distribution/population mean (µx) and is given by,

x̄ = 1
n

n∑
i=1

xi (3.9)

The sample median, x̃, involves ordering the observed values of the variable and picking
the value in the middle as the median (in case of an even number of values we take the
average of the two values in the middle). Computationally, the median is considerably more
expensive to compute than the mean due to the sorting operation, though this would only
be noticeable on very large samples. However, this statistic has the advantage of not being
sensitive to outlying values, which is not the case of the mean, and thus it is said to be a
more “robust” statistic of centrality.

The mode is another statistic of central tendency. It is the most frequent value in the
sample. It is often used with nominal variables given that for numeric variables the values
may not appear repeated too often. The main drawback of this statistic is which value
to select when more than one have the same observed frequency of occurrence in a given
dataset.

R has specific functions for obtaining both the mean and the median, as shown in the
next short examples,

> data(algae,package="DMwR2")
> mean(algae$a1)

[1] 16.9235

> mean(algae$NO3)

[1] NA

> mean(algae$NO3, na.rm=TRUE)

[1] 3.282389

> median(algae$a3)

[1] 1.55

> median(algae$mxPH, na.rm=TRUE)

[1] 8.06

Introduction to Data Mining 89

The mean() and median() functions have a parameter (na.rm) that can be used to ignore
the unknown values of a variable when calculating the statistic and thus avoid having an
NA as result. Both these functions can also be used with the summarise() function of
package dplyr,

> library(dplyr)
> alg <- tbl_df(algae)
> summarise(alg, avgNO3=mean(NO3,na.rm=TRUE), medA1=median(a1))

A tibble: 1 × 2
avgNO3 medA1
<dbl> <dbl>

1 3.282389 6.95

> select(alg, mxPH:Cl) %>%
+ summarise_each(funs(mean(.,na.rm=TRUE),median(.,na.rm=TRUE)))

A tibble: 1 × 6
mxPH_mean mnO2_mean Cl_mean mxPH_median mnO2_median Cl_median

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 8.011734 9.117778 43.63628 8.06 9.8 32.73

The summarise() function can be used to apply any function that produces a scalar
value to any column of a data frame table.

The second example above shows how to apply a set of functions to all columns of a
data frame table using function summarise_each() together with function funs().

Sometimes we are interested in obtaining summaries for sub-groups of our datasets.
Often these sub-groups can be defined using the values of some nominal variable (e.g.
obtaining the mean age per sex of our clients). These conditional summaries are easy to
obtain using package dplyr22. The following is an example of this type of summaries,

> group_by(alg, season, size) %>%
+ summarize(nObs=n(), mA7=median(a7)) %>%
+ ungroup() %>% arrange(desc(mA7))

A tibble: 12 × 4
season size nObs mA7
<fctr> <fctr> <int> <dbl>

1 spring large 12 1.95
2 summer small 14 1.45
3 winter medium 26 1.40
4 autumn medium 16 1.05
5 spring medium 21 1.00
6 summer medium 21 1.00
7 autumn large 11 0.00
8 autumn small 13 0.00
9 spring small 20 0.00
10 summer large 10 0.00
11 winter large 12 0.00
12 winter small 24 0.00

The function group_by() can be used to form sub-groups of a dataset using all com-
binations of the values of one or more nominal variables (in this case we are using season

22Please not that base R also allows this type of summaries. e.g. check functions by() and aggregate().

90 Data Mining with R: Learning with Case Studies

and size). Subsequent calls to the summarise() function will be applied not to all dataset
but to each of these sub-groups, thus returning one result for each sub-group. This is par-
ticularly interesting if you want to study potential differences among the sub-groups. As we
will see, we can carry out similar sub-group comparisons with visual summaries.

Please note the above use of function ungroup() to remove the grouping information
before ordering the results of the summary. Without this, the ordering provided by the
arrange() function would take place within each group, which does not make sense in this
case.

To obtain the mode of a variable we can create a function23 for that given that base R
does not have it,

> Mode <- function(x, na.rm = FALSE) {
+ if(na.rm) x <- x[!is.na(x)]
+ ux <- unique(x)
+ return(ux[which.max(tabulate(match(x, ux)))])
+ }
> Mode(algae$mxPH, na.rm=TRUE)

[1] 8

> Mode(algae$season)

[1] winter
Levels: autumn spring summer winter

Function centralValue() in our book package can be used to obtain the more adequate
statistic of centrality of a given sample of values. It will return the median in the case of
numeric variables and the mode for nominal variables,

> library(DMwR2)
> centralValue(algae$a1)

[1] 6.95

> centralValue(algae$speed)

[1] "high"

In terms of the “variability” of the values of a variable we can use statistics of spread to
obtain that information. The most common for numeric variables are the standard deviation
or the variance. These statistics depend on the value of the mean and thus share the problems
in terms of sensitivity ot outliers (and also skewed distributions). The sample variance of a
continuous variable is an estimate of the population variance (σ2

x) and is given by,

s2
x = 1

n− 1

n∑
i=1

(xi − x̄)2 (3.10)

where x̄ is the sample mean.
The sample standard deviation is the square root of the sample variance.
A more robust statistic of spread is the inter-quartile range. This is given by the difference

between the 3rd and 1st quartiles. The x-quantile is the value below which there are x%
of the observed values. This means that the inter-quartile range (IQR) is the interval that

23This function was taken from http://stackoverflow.com/questions/2547402

Introduction to Data Mining 91

contains 50% of the most central values of a continuous variable. A large value of the IQR
means that these central values are spread over a large range, where a small value represents
a very packed set of values.

The range is another measure of variability, though less used as it is even more susceptible
to outliers than the standard deviation or the variance. It is defined as the difference between
the maximum and minimum values of the variable.

Below you may find a few examples of how to obtain these statistics in R,

> var(algae$a1)

[1] 455.7532

> sd(algae$Cl, na.rm=TRUE)

[1] 46.83131

> IQR(algae$mxPH, na.rm=TRUE)

[1] 0.7

> quantile(algae$a3)

0% 25% 50% 75% 100%
0.000 0.000 1.550 4.925 42.800

> quantile(algae$a3, probs=c(0.2,0.8))

20% 80%
0.00 7.06

> range(algae$a1)

[1] 0.0 89.8

> max(algae$a5)-min(algae$a5)

[1] 44.4

As you see the function quantile() can be used to obtain any of the quantiles of a
continuous variable.

The functions that return scalar values can also be used with the summarise() function
of dplyr,

> select(alg,a1:a7) %>% summarise_each(funs(var))

A tibble: 1 × 7
a1 a2 a3 a4 a5 a6 a7

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 455.7532 121.6212 48.28217 19.51346 56.1211 135.9722 26.61078

This constraint of requiring summarization functions to return a scalar is one of the
reasons we may sometimes prefer to use functions from base R over those provided by
dplyr. In the context of the Iris dataset, suppose you want to obtain the quantiles of the
variable Sepal.Length by Species. You could feel tempted to use the grouping facilities
of dplyr as follows, but this would generate an error,

92 Data Mining with R: Learning with Case Studies

> data(iris)
> group_by(iris,Species) %>% summarise(qs=quantile(Sepal.Length))

Error in eval(expr, envir, enclos): expecting a single value

The error is caused by the fact that the quantile() function returns a vector of values.
In these contexts, it would be easier to use the aggregate() function from base R,

> aggregate(iris$Sepal.Length, list(Species=iris$Species), quantile)

Species x.0% x.25% x.50% x.75% x.100%
1 setosa 4.300 4.800 5.000 5.200 5.800
2 versicolor 4.900 5.600 5.900 6.300 7.000
3 virginica 4.900 6.225 6.500 6.900 7.900

The second argument of the aggregate() function is a list that can include as many
factors as you want to form the sub-groups of the data. For each sub-group the function
supplied in the third argument is applied to the values of the variables specified in the first.
The aggregate() function can also be used with a formula-like interface that may actually
be simpler for this particular example,

> aggregate(Sepal.Length ~ Species, data=iris, quantile)

Species Sepal.Length.0% Sepal.Length.25% Sepal.Length.50%
1 setosa 4.300 4.800 5.000
2 versicolor 4.900 5.600 5.900
3 virginica 4.900 6.225 6.500

Sepal.Length.75% Sepal.Length.100%
1 5.200 5.800
2 6.300 7.000
3 6.900 7.900

Regarding the issue of “strange” values in our dataset we will consider two types of
situations: (i) unknown values; and (ii) outliers. As we have mentioned in Section 3.3.1.4
(page 60), R contains several packages that implement different methods for dealing with
unknown values (NA in R). We will use several of these facilities in the practical case study
presented in Chapter 4. Here we will simply illustrate different forms of detecting that some
dataset contains these values. If we want to check how many unknown values exist in a
dataset we can proceed as follows,

> data(algae, package="DMwR2")
> nasRow <- apply(algae,1,function(r) sum(is.na(r)))
> cat("The Algae dataset contains ",sum(nasRow)," NA values.\n")

The Algae dataset contains 33 NA values.

> cat("There are ",sum(!complete.cases(algae)),
+ " rows that have at least one NA value.\n")

There are 16 rows that have at least one NA value.

The function is.na() can be used to check if a value is NA. If applied to a vector

Introduction to Data Mining 93

we get a vector of Booleans, which we can sum to know how many are TRUE24. Function
complete.cases() returns a vector of Boolean values, one for each row of a dataset. Each
value is TRUE if the respective row does not contain any NA, and FALSE otherwise.

In terms of outliers, we first need to settle on what we consider an outlier. According
to Hawkins (1980), an outlier is “an observation which deviates so much from other obser-
vations as to arouse suspicions that it was generated by a different mechanism”. We can dis-
tinguish between univariate outliers where we are talking about finding unusual values in a
sample of observations of a single variable, and multivariate outliers where each observation
is in effect a vector of values of a set of variables. For univariate outlier detection a frequently
used method is the boxplot rule. This rules states that a value in a sample of a continuous
variable is considered an outlier if it is outside of the interval [Q1−1.5×IQR,Q3+1.5×IQR],
where Q1(Q3) is the first (third) quartile, and IQR = Q3−Q1 the interquartile range. This
rule can be easily implemented as follows,

> bpRule <- function(x, const=1.5, positions=FALSE) {
+ x <- x[!is.na(x)]
+ qs <- quantile(x,probs = c(0.25,0.75))
+ iqr <- qs[2]-qs[1]
+ if (!positions) x[x < qs[1]-const*iqr | x > qs[2]+const*iqr]
+ else which(x < qs[1]-const*iqr | x > qs[2]+const*iqr)
+ }
> bpRule(algae$a1)

[1] 69.9 74.2 66.0 75.8 89.8 81.9 82.7 66.9 64.2 64.9 64.3 86.6

> bpRule(algae$NO3)

[1] 10.416 9.248 9.773 9.715 45.650

> bpRule(algae$NO3, positions=TRUE)

[1] 5 6 139 144 152

Although very simple to implement and understand, this rule also has some drawbacks,
like for instance its inadequacy when the distribution of the values is multi-modal.

Further methods both for univariate as well as multivariate outlier detection will be
described in Section 3.4.4 that deals with anomaly detection tasks.

R has several functions that try to provide useful summaries of the full datasets. The
simplest of these consists of applying the function summary() to any data frame. The result
is a summary of basic descriptive statistics of the dataset,

> data(iris)
> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

24As you may have guessed TRUE corresponds to a 1, while FALSE is a 0.

94 Data Mining with R: Learning with Case Studies

Species
setosa :50
versicolor:50
virginica :50

For numeric variables this returns some of the metrics we have discussed before, while
for nominal variables the summary consists of showing the number of occurrences of each
value (if there are too many, only the most frequent are shown).

Another global summary of a dataset can be obtained using the function describe()
from package Hmisc (Harrell Jr. et al., 2015),

> library(Hmisc)
> describe(iris)

iris

5 Variables 150 Observations

Sepal.Length

n missing unique Info Mean .05 .10 .25 .50
150 0 35 1 5.843 4.600 4.800 5.100 5.800
.75 .90 .95

6.400 6.900 7.255

lowest : 4.3 4.4 4.5 4.6 4.7, highest: 7.3 7.4 7.6 7.7 7.9

Sepal.Width

n missing unique Info Mean .05 .10 .25 .50
150 0 23 0.99 3.057 2.345 2.500 2.800 3.000
.75 .90 .95

3.300 3.610 3.800

lowest : 2.0 2.2 2.3 2.4 2.5, highest: 3.9 4.0 4.1 4.2 4.4

Petal.Length

n missing unique Info Mean .05 .10 .25 .50
150 0 43 1 3.758 1.30 1.40 1.60 4.35
.75 .90 .95

5.10 5.80 6.10

lowest : 1.0 1.1 1.2 1.3 1.4, highest: 6.3 6.4 6.6 6.7 6.9

Petal.Width

n missing unique Info Mean .05 .10 .25 .50
150 0 22 0.99 1.199 0.2 0.2 0.3 1.3
.75 .90 .95
1.8 2.2 2.3

lowest : 0.1 0.2 0.3 0.4 0.5, highest: 2.1 2.2 2.3 2.4 2.5

Species

n missing unique

Introduction to Data Mining 95

150 0 3

setosa (50, 33%), versicolor (50, 33%)
virginica (50, 33%)

Sometimes we want this sort of summary involving several variables applied over sub-
groups of data. As we have seen, using the group_by() function of dplyr limits us to
summarization functions that return scalars. If we want to use a function that does not
return a scalar we can either use the function aggregate() as we have seen before, or
the function by() that is more interesting if the summary is not easily transformable to a
matrix-like structure. Here is an example,

> by(algae[,2:5], algae$season,summary)

algae$season: autumn
size speed mxPH mnO2

large :11 high :15 Min. :5.700 Min. : 6.50
medium:16 low : 8 1st Qu.:7.588 1st Qu.:10.22
small :13 medium:17 Median :8.060 Median :10.90

Mean :7.952 Mean :10.60
3rd Qu.:8.400 3rd Qu.:11.43
Max. :8.870 Max. :12.90

--
algae$season: spring

size speed mxPH mnO2
large :12 high :21 Min. :5.600 Min. : 1.800
medium:21 low : 8 1st Qu.:7.790 1st Qu.: 6.000
small :20 medium:24 Median :8.070 Median : 8.900

Mean :8.024 Mean : 8.010
3rd Qu.:8.400 3rd Qu.: 9.875
Max. :9.500 Max. :12.500

NA's :1
--
algae$season: summer

size speed mxPH mnO2
large :10 high :20 Min. :6.400 Min. : 4.400
medium:21 low : 7 1st Qu.:7.600 1st Qu.: 8.125
small :14 medium:18 Median :8.000 Median :10.100

Mean :7.905 Mean : 9.415
3rd Qu.:8.200 3rd Qu.:10.875
Max. :8.800 Max. :12.100

NA's :1
--
algae$season: winter

size speed mxPH mnO2
large :12 high :28 Min. :6.600 Min. : 1.500
medium:26 low :10 1st Qu.:7.800 1st Qu.: 7.625
small :24 medium:24 Median :8.100 Median : 9.500

Mean :8.119 Mean : 8.880
3rd Qu.:8.430 3rd Qu.:10.650
Max. :9.700 Max. :13.400
NA's :1

96 Data Mining with R: Learning with Case Studies

In the above example the function summary() was applied to sub-groups of the columns
2 to 5 of the algae dataset, formed according to the value of the variable season.

3.4.1.2 Data Visualization

Data visualization is an important tool for exploring and understanding our datasets.
Humans are outstanding at capturing visual patterns, and data visualization tries to capi-
talize on these abilities. In this section we will go through some of the more relevant tools
for data visualization and at the same time introduce the reader to the capabilities of R in
terms of visual representations of a dataset. This is one of the areas where R excels.

We will organize our description by talking about tools for visualizing: (i) a single vari-
able; (ii) two variables; and (iii) multivariate plots.

Before that, let us briefly introduce the reader to R graphics. R has two main graphics
systems: (i) the standard graphics and (ii) the grid graphics. The first is implement by the
package graphics, while the second is provided by functions of the package grid, both
being part of any base R installation. These two packages create an abstraction layer that is
used by several graphics packages that provide higher level plotting functions. In this short
description we will focus on two main approaches to statistical plots: (i) the one provided by
standard plotting functions that build upon the facilities provide by the graphics system;
and (ii) the tools available in the ggplot2 package (Wickham, 2009) that build upon the
grid graphics system.

R graphics architecture can be seen as a series of layers providing increasingly higher
level facilities to the user. At one end we have concrete graphics devices (the most common
being the computer screen) where the plots will be shown. On the other end we have the
graphics functions we will use to produce concrete statistical plots. An interesting aspect
of this layered architecture is that it allows users to almost completely ignore the output
devices in the sense that to obtain a plot in the screen or as, say, a PDF file, the process is
the same minus one specific instruction where you “tell” R where to “show” the plot. For
instance, the following instruction produces on your screen the plot shown in Figure 3.5,

> plot(sin(seq(0,10,by=0.1)),type="l")

If instead of on the screen, you want this plot in a PDF file, you simply type,

> pdf("myplot.pdf")
> plot(sin(seq(0,10,by=0.1)),type="l")
> dev.off()

And if you prefer a JPEG file instead, you do,

> jpeg("myplot.jpg")
> plot(sin(seq(0,10,by=0.1)),type="l")
> dev.off()

As you see, you simply open the target device (that defaults to the screen) and then
type the instructions that produce your plot that are the same irrespective of the output
device. In the end you close your device using the dev.off() function. Check the help pages
of these functions for pointers to other available devices as well as many parameters of the
functions that allow you to fine tune the output.

Most of the functions in R standard graphics system produce complete plots, like the
above example using the plot() function. There are also other functions that allow you to
add information (e.g. text, legends, arrows, etc.) to these plots.

Introduction to Data Mining 97

0 20 40 60 80 100

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

si
n(

se
q(

0,
 1

0,
 b

y
=

 0
.1

))

FIGURE 3.5: An example plot.

Package ggplot2 follows a different approach. This package implements the ideas pro-
posed by Wilkinson (2005) on a grammar of graphics that resulted from a theoretical study
on what is a statistical plot. The package builds upon this theory by implementing the con-
cept of a layered grammar of graphics (Wickham, 2009). This grammar defines a statistical
graphic as a mapping from data properties into aesthetic attributes (color, shape, size,
etc.) of geometric objects (points, lines, bars, etc.). For instance, within the Iris dataset
we could decide to map the values of the variable Petal.Length into the coordinates of
the X axis, the values of Petal.Width as the values of coordinates in the Y axis, and the
values of the variable Species as different colors. With these mappings we could decide to
plot each of the 150 plants in the dataset as a point, which would produce a plot like that
shown in Figure 3.6.

Let us now explore a few examples of statistical plots. We start our exploration by
considering the visualization of the values of a nominal variable. If we want to explore
the distribution of these values we can use a barplot with this purpose. These graphs will
show as many bars as there are different values of the variable, with the height of the bars
corresponding to the frequency of the values. Figure 3.7 shows one barplot obtained with
the standard graphics of R (left plot), and an equivalent barplot obtained using ggplot (right
plot). They were obtained with the following code,

> library(ggplot2)
> data(algae, package="DMwR2")
> ## Plot on the left (standard)
> freqOcc <- table(algae$season)

98 Data Mining with R: Learning with Case Studies

lllll

l
l
ll
l
ll
ll

l

ll
l ll

l

l

l

l

ll

l

llll

l

l
llll
l
ll
ll
l

l

l
l
llll

l
l l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l
l l

l

l

l
l
l

l

l
l
l
l

lll
l

l

l

l

l
l
ll

l

l

l

l

l

l

l
l

l
ll

l

l
l

l
l

l
l

l

l
l

l

l

l l

l

l

lll

l

l

l
l

l

l
l

l
l

ll

l

l
l

l

l

l

l

l
l

l

l

0.0

0.5

1.0

1.5

2.0

2.5

2 4 6
Petal.Length

P
et

al
.W

id
th Species

l

l

l

setosa

versicolor

virginica

FIGURE 3.6: An example of ggplot mappings with the Iris dataset.

> barplot(freqOcc,main='Frequency of the Seasons')
> ## Plot on the right (ggplot2)
> ggplot(algae,aes(x=season)) + geom_bar() + ggtitle("Frequency of the Seasons")

In standard graphics we start by using the function table() to obtain the frequency of
each of the values of the nominal variable. Then we use the function barplot() to obtain
the graph using the parameter main to set the plot title.

For the ggplot graphic we build a kind of expression where each “term” defines a layer
of the plot. The first layer is the call to the function ggplot() that allows you to specify
the data source of your graph, and also the aesthetic mappings the plot will use through
function aes(). In this case it is enough to say that the season variable is mapped into
the X axis of the graph. Using the geom_bar() function we create the graphical objects
(“geoms” in ggplot jargon), which in this case are bars. This function takes care of the
frequency calculation for us, so we only need to add another layer with the title of the plot
using the function ggtitle().

A few notes on barplots (also known as barcharts). When the labels of the values of
the nominal variable are too long it may be easier to read the graph if you plot the bars
horizontally. To achieve this with the above barplot in ggplot2 it is enough to do,

> ggplot(algae,aes(x=season)) + geom_bar() +
+ ggtitle("Frequency of the Seasons") + coord_flip()

The coord_flip() function can be used to swap the X and Y coordinates of the plot.
Note that you could alternatively rotate the labels in the X axis if you prefer to maintain
the bars in the vertical direction.

Another important warning on barplots is the problem that one sometimes faces of
having a few of the bar differences being almost undistinguishable (e.g. the frequencies of
the 3 values of a nominal variable are 989, 993 and 975). To try to make the differences

Introduction to Data Mining 99

autumn spring summer winter

Frequency of the Seasons

0
10

20
30

40
50

60

0

20

40

60

autumn spring summer winter
season

co
un

t

Frequency of the Seasons

FIGURE 3.7: A barplot using standard graphics (left) and ggplot2 (right).

more visible, you might feel tempted to change the limits of the Y axis, so that it does not
start at zero, thus making the differences more noticeable. Do not do this! It is wrong. The
differences are not noticeable because that is what they are! Do not use the graphs to “lie”
about your data.

Finally, the information provided by barplots could also be shown as a pie chart. Al-
though used very frequently, this is generally a bad idea. The idea of barplots and pie charts
is to compare the frequencies of several values. In barplots these frequencies are associated
with the height of bars, while in pie charts they are associated with areas of pie slices. Com-
paring the heights of the bars is much easier for the eyes than comparing areas of slices,
particularly if there are many slices/values.

Let us now consider continuous variables. To study the distribution of these variables
there are several options. The first we will explore is the histogram that is strongly related
to the barplot we have seen above. The idea of the histogram is to divide the range of
the numeric variable into bins and then count the frequency of these bins and show this
information as heights of bars. The key issue here is how to select the size of the bins. This
is a subject of debate and there are several alternative algorithms to determine these bins.
This is an important issue as the shape of the distribution as shown by the histogram may
change considerably with changes in the bin sizes.

In Figure 3.8 we have two histograms of the variable Petal.Length of the Iris dataset,
one obtained with the base graphics and the other with ggplot. They were obtained with
this code,

> library(ggplot2)
> data(iris)
> ## Plot on the left (standard)
> hist(iris$Petal.Length,xlab='Petal Length')
> ## Plot on the right (ggplot2)
> ggplot(iris,aes(x=Petal.Length)) + geom_histogram() + xlab("Petal Length")

In standard graphics we use the function hist() to obtain the histogram of the variable.
We have used the parameter xlab to set the label for the X axis.

100 Data Mining with R: Learning with Case Studies

Histogram of iris$Petal.Length

Petal Length

F
re

qu
en

cy

1 2 3 4 5 6 7

0
10

20
30

0

10

20

2 4 6
Petal Length

co
un

t

FIGURE 3.8: A histogram using standard graphics (left) and ggplot2 (right).

In ggplot, after setting the aesthetic mappings, we use the geom_histogram() function
to obtain the plot. We also use the function xlab() to set the axis label.

As you can observe, due to the different settings in terms of bin size used by default on
both methods for obtaining an histogram, the plots we obtain transmit a slightly different
idea on the way the values of this variable are distributed. This highlights the importance
of this decision.

A different way of showing information on the distribution of the values of a continuous
variable is through the boxplot. This statistical graphic provides several information on
some descriptive statistics of the variable. The boxplot tries to convey information on the
centrality of variable, its spread, and also the eventual existence of outliers. For this purpose
it uses robust statistics, namely the median and inter-quartile range, and also the boxplot
rule we have described before, to signal outliers. Below you have the code to generate
boxplots in the two graphics systems. The results are shown in Figure 3.9.

> library(ggplot2)
> data(iris)
> ## Plot on the left (standard)
> boxplot(iris$Sepal.Width, ylab='Sepal Width')
> ## Plot on the right (ggplot2)
> ggplot(iris, aes(x=factor(0), y=Sepal.Width)) + geom_boxplot() +
+ xlab("") + ylab("Sepal Width") + theme(axis.text.x=element_blank())

The function boxplot() is used in standard graphics to obtain these plots.
For the ggplot graph, the code is slightly more complex. We use the geom_boxplot()

function to obtain adequate geom. However, we need a few more tweaks in order to obtain
a similar plot. First of all, we need to create a fake variable for the X axis. Then we
need to hide its guides in this axis to make the plot look nicer. This is clearly much more
cumbersome than with the standard graphics system.

A boxplot shows a rectangle whose horizontal limits represent the first and third quar-
tiles (thus the height of the rectangle is the inter-quartile range). Inside this rectangle an
horizontal line shows the median of the sample. From the rectangle two vertical lines exend
till the limits above (below) which a value is considered an outlier (the limits established
by the boxplot rule). If any such values exist they are shown as separate dots in the graph.

Introduction to Data Mining 101

2.
0

2.
5

3.
0

3.
5

4.
0

S
ep

al
 W

id
th

l

l

l

l2.0

2.5

3.0

3.5

4.0

4.5

S
ep

al
 W

id
th

FIGURE 3.9: A boxplot using standard graphics (left) and ggplot2 (right).

Boxplots provide interesting and useful information on the distribution of a continuous
variable, and are one of the best options when analyzing these variables.

Frequently, we want to obtain this type of descriptive graphs for sub-groups of our
dataset, as we did for textual summaries. Conditioned plots provide this type of analysis.
With the exception of the boxplot() function, this is not possible with the functions of stan-
dard graphics. Within the ggplot “ecosystem” this is usually achieved through the notion
of faceting. Facets are variations of the same plot that are obtained with different subsets
of a dataset. That is different from showing several plots on the same screen. Conditioned
plots are designed with the goal of comparing behaviors across sub-groups and this imposes
some design criteria that are not compatible with multiple individual plots shown on the
same screen. For instance, the different plots should have the same exact ranges in the axes
to facilitate their visual comparison. Moreover, as they are the same plots (just obtained
with different data) we can take advantage of this to avoid repeating extra information (e.g.
axes labels) and thus optimize the use of the available space.

It is worth mentioning that conditioned graphs are also possible through the use of
the excellent lattice (Sarkar, 2010) package. This package implements most of the ideas
behind Trellis graphics (Cleveland, 1993). We will not cover this package in the book as
most facilities are also available within ggplot; still this is an important package for data
visualization within R.

The first example we are going to show involves boxplots. Conditioned boxplots allow
us to compare the distribution of a continuos variable along subsets defined by the values of
another variable (typically nominal to constrain the number of subsets). For instance, the
example in Figure 3.10 shows the distribution of the variable Sepal.Length for the plants
of the different species. The figure was obtained with the following code,

> library(ggplot2)
> data(iris)
> ## Plot on the left (standard)
> boxplot(Sepal.Length ~ Species, iris, ylab="Sepal.Length")
> ## Plot on the right (ggplot2)
> ggplot(iris,aes(x=Species,y=Sepal.Length)) + geom_boxplot()

102 Data Mining with R: Learning with Case Studies

setosa versicolor virginica

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

S
ep

al
.L

en
gt

h

l

5

6

7

8

setosa versicolor virginica
Species

S
ep

al
.L

en
gt

h

FIGURE 3.10: A conditioned boxplot using standard graphics (left) and ggplot2 (right).

The function boxplot() also accepts in the first argument a formula that specifies the
variables to use on each axis of the condition boxplot. The second argument in this case is
the source data.

For the ggplot graph we use the aesthetic mappings to provide the same type of infor-
mation and then use again the geom_boxplot() function to obtain the plot.

The ggplot graphics system provides more sophisticated conditioning through facets.
For instance, suppose we want to check the distribution of algal “a1” for the different types
of rivers (in terms of water speed and river size), through a histogram. What we need are
as many histograms as there are combinations of river size and speed. Figure 3.11 shows us
these graphs. Note that in this case we do not show a solution with base graphics as this is
not directly feasible. The plot in Figure 3.11 was obtained as follows,

> library(ggplot2)
> data(algae, package="DMwR2")
> ggplot(algae,aes(x=a1)) + geom_histogram() + facet_grid(size ~ speed)

The function facet_grid() allows us to set up a matrix of plots with each dimension of
the matrix getting as many plots as there are values of the respective variable. For each cell
of this matrix the graph specified before the facet is shown using only the subset of rows
that have the respective values on the variables defining the grid.

Graphs involving two variables allow us to try to understand the relationship between
their values across the observations in the dataset. The typical example of such plots is
the scatterplot. Scatterplots represent each observation by a point whose coordinates are
the values on two variables we want to analyze. In Figure 3.12 we have two scatterplots:
one obtained with base graphics and the other with ggplot. The code to obtain them is as
follows,

> library(ggplot2)
> data(iris)
> ## Plot on the left (standard)
> plot(iris$Sepal.Length,iris$Sepal.Width,
+ main="Relationship between Sepal Length and Width",

Introduction to Data Mining 103

high low medium

0

5

10

0

5

10

0

5

10

large
m

edium
sm

all

0 25 50 75 0 25 50 75 0 25 50 75
a1

co
un

t

FIGURE 3.11: Conditioned histograms through facets.

+ xlab="Sepal Length", ylab="Sepal Width")
> ## Plot on the right (ggplot2)
> ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width)) + geom_point() +
+ xlab("Sepal Length") + ylab("Sepal Width") +
+ ggtitle("Relationship between Sepal Length and Width")

The function plot() accepts as the first two parameters the vectors of X and Y coor-
dinates of the points. The remaining arguments of the above call have obvious meaning.

For the ggplot graph the only novelty is the usage of the geom_point() function to draw
points.

Looking at the scatterplots in Figure 3.12 there is no obvious relationship between
the two variables we have used. The dots are rather widespread and there is no obvious
conclusion of the type “if one variable has a certain pattern (e.g. upward trend) then the
other variable shows this other pattern (e.g. decreases)”.

As mentioned before, sometimes it is useful to split the analysis by subgroups defined
by some nominal variable. With scatterplots there are several ways to achieve this effect.
For instance, we could associate the color of the points to the values of a nominal variable,
or even the size of these points, or any other aesthetic property (e.g the character used to
represent the points). With the ggplot we can also use facets in addition to these aesthetic
changes. Let us see some examples. In Figure 3.13 we show two illustrations using base
graphics where we split the data by the values of a nominal variable,

> data(algae, package="DMwR2")
> ## Plot on the left (standard)

104 Data Mining with R: Learning with Case Studies

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Relationship between Sepal Length and Width

Sepal Length

S
ep

al
 W

id
th

l

l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal Length

S
ep

al
 W

id
th

Relationship between Sepal Length and Width

FIGURE 3.12: A scatterplot using standard graphics (left) and ggplot2 (right).

> plot(algae$a1, algae$a2, col=algae$season,
+ main="Relationship between A1 and A2 by Season",
+ xlab="A1", ylab="A2")
> legend("topright",legend=levels(algae$season),
+ col=palette()[1:nlevels(algae$season)],pch=1)
> ## Plot on the right (ggplot2)
> plot(algae$a4, algae$a7, pch=as.integer(algae$speed),
+ main="Relationship between A4 and A7 by River Speed",
+ xlab="A4", ylab="A7")
> legend("topright",legend=levels(algae$speed),
+ pch=1:nlevels(algae$season))

The function plot() accepts several parameters to control several aesthetic properties
of the plot. The parameter col can be used to specify the color of the points. In the first
call we set this to the value of the season variable. This may seem strange, as the values of
this variable are not colors. In effect, R transforms these values into integers25, and uses a
standard palette to obtain the colors to use in the plot. This standard palette is obtained
with the function palette() that returns the names of the colors. We have used the function
legend() to create a legend in the plot to allow the user to interprete the graph. Creating
the legend involves setting its position, the labels associated with each color, the colors and
the characters used to plot the points. The second call to the plot() function is similar
but this time we associate the values of the nominal variable to different plotting characters
through the parameter pch.

This type of comparison becomes clearer with facets, although at the cost of space as we
move from one single plot into as many plots as there are values of the nominal variables.
For instance the left plot of Figure 3.13 could be obtained as follows using facets in ggplot,

> data(algae, package="DMwR2")
> ggplot(algae, aes(x=a1,y=a2,color=season)) + geom_point() + facet_wrap(~ season)

The result of this code is shown in Figure 3.14. Note that as each subset is shown in a
25Actually, any factor is stored internally as a set of integer codes, one associated with each value of the

nominal variable.

Introduction to Data Mining 105

0 20 40 60 80

0
20

40
60

Relationship between A1 and A2 by Season

A1

A
2

autumn
spring
summer
winter

0 10 20 30 40

0
5

10
15

20
25

30

Relationship between A4 and A7 by River Speed

A4

A
7

high
low
medium

FIGURE 3.13: Two scatterplots with points differentiated by a nominal variable.

different plot we could even avoid the color (and thus the legend). The faceting was obtained
with function facet_wrap(). This function allows you to indicate a nominal variable whose
values will create a set of subplots that will be presented sequentially with reasonable
wrapping around the screen space. Note that the specification of the legend is much simpler
in ggplot. Although it is possible to tune its settings (like position and so on), the defaults
are sufficiently reasonable for most setups. Finally, although we do not show the code for
this, we could also obtain the graphs of Figure 3.13 with ggplot using adequate aesthetic
mappings26 and avoiding facets.

Some common pitfalls with scatterplots have to do with the scales used on the axes.
If one of the variables has a few extreme values the interpretation of the graph may be
difficult due to the fact that the scale of that variable needs to be stretched to cope with
these extremes, which squashes all other values, making the analysis of their variability very
difficult. In those cases we can either eliminate those outliers from our visualization or we
can use logarithmic scales for the axes that suffer those problems. We will see an example
of this in Chapter 6.

Another interesting concept related to scatterplots are scatterplot matrices. This involves
producing a matrix of scatterplots which allows us to make several pairwise comparions
among a set of variables. Obviously, if this set is large the analysis of each individual
scatterplot becomes impractical and this is clearly not recommended.

Scatterplot matrices can be obtained with base graphics through function pairs(), as
shown in Figure 3.15, produced with the following code,

> data(algae, package="DMwR2")
> pairs(algae[,12:16])

This function has many parameters that provide several extra functionalities, allowing
for instance to have differentiated visualizations on the upper and lower parts of the matrix
avoiding the repetition of the scatterplots. The same happens with the diagonal of the
matrix as well as other elements. Several examples can be found on the help page of this
function.

Package GGally (Schloerke et al., 2016) provides a series of interesting additions to

26More specifically, through the “color” and “shape” aesthetic properties.

106 Data Mining with R: Learning with Case Studies

l

l
l

ll
l

l

l

l

l
l

ll
l llll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l l

l

l

l

l ll l

l

l l
ll

l ll ll l

l

l

l

l
l

ll

l
l

l

l l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l
l
l

l

l
l

l

l

l
ll ll

l

l

l l ll
l

l

ll l

ll
l

l
l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l l

l

ll lll

l

l

l

l

l

l

l

ll ll ll

l
l

l

l

ll

l

l

l

l l
l

ll

ll

l

l

l

ll
ll

l

l

l

l

l
l

l

l

l

l

l

ll l

l

autumn spring

summer winter

0

20

40

60

0

20

40

60

0 25 50 75 0 25 50 75
a1

a2

season
l

l

l

l

autumn

spring

summer

winter

FIGURE 3.14: Faceting a scatterplot in ggplot.

the graphs available in package ggplot2. Among these are scatterplot matrices obtained
with function ggpairs(). Figure 3.16 shows the result of this function produced with the
following code,

> library(GGally)
> ggpairs(algae,columns=12:16)

This function will automatically take advantage of the symmetry of the graphs and use
the upper part of the matrix to show the correlation values between each pair of variables.
Moreover, in the diagonal we get a continuous approximation of the distribution of the
respective variable. Once again, several other variants are possible, and in particular if the
columns include nominal variables we get different types of plots on each cell of the matrix,
as shown in Figure 3.17 that was obtained as follows,

> library(GGally)
> ggpairs(algae,columns=2:5)

As you can observe we get different types of statistical plots depending on the types of
the variables in the respective matrix cell. Analyze the figure carefully and try to understand
each of the graphs (they were already described in this section).

Another statistical graph provided by package GGally that also involves the visualiza-
tion of several variables at the same time, is the parallel coordinate plot. These graphs try
to show all observations of a dataset in a single plot, each being represented by a line. This
is clearly not feasible for large datasets, but sometimes these graphs are very interesting for
detecting strongly deviating cases in a dataset. Figure 3.18 shows an example of this type
of graph where we try to compare the frequency values of all 200 observations of the algae
dataset, with the color of the lines representing the season of the year when the respective
water sample was collected. The following code obtained that figure,

Introduction to Data Mining 107

a1

0 20 40 60 0 10 20 30 40

0
20

40
60

80

0
20

40
60

a2

a3

0
10

20
30

40

0
10

20
30

40

a4

0 20 40 60 80 0 10 20 30 40 0 10 20 30 40

0
10

20
30

40

a5

FIGURE 3.15: Scatterplot matrices with function pairs().

108 Data Mining with R: Learning with Case Studies

a1
a2

a3
a4

a5

a1 a2 a3 a4 a5

0.00

0.01

0.02

0.03

Corr:
−0.294

Corr:
−0.147

Corr:
−0.038

Corr:
−0.292

0

20

40

60

l

l

l

l

l

l

l l
l

ll l ll
l

lll lll l l l

l

l lll l

ll

l l

l

l

l l

l

l
l

l

l

l l
l

l
l l

l

l l lll l
l

lll lll
l

l ll ll
l l

l
ll

ll

l

l

llll
ll

lllll

l

l
l
l
l
l

l

l

l

ll l
l ll

l

l

l

l

l

l

llll

l

ll l

l

l

l

l
l

lll

l

l

l

lllll

l

l

l

l
l

l

l

l ll

l

l

l

l

l

l

l

ll

l

l

l l

l

l

ll l

l

l

ll

l

l

l
l

ll

ll
l

l

l

l
l

ll
ll

l

l
ll

l
l

l l
l

l

l

l

l

l

l
ll

Corr:

0.0321

Corr:

−0.172

Corr:

−0.16

0

10

20

30

40

l

l
l

l

l

l
l

l
l

ll l
l

l

l

l
l

l

l

ll l l lll ll

l

l

l

l

l
l

l
l l l

l

l

l

l

l

l l
l

ll lll l lll l

l

lll lll

l
l

l

l

l
ll ll
l

l

l

l

l

l

l

l

l
l

l

llll
l
l

l

l
l

l
l

l l
l
l

l

l

l

l
l

l
ll

l

l

l

l

l

l
ll l ll l

l
l

l

ll

l

l

l

l

l

ll

l

l
l

l
l

l

l
l

ll
l

l

ll

l

l l
ll

l

lll

l

l l ll
l
l
l

l

lll
l
ll

lll

l

l

l

l

l

ll

l

ll l

l

l
ll

l
ll

l

ll

l

l
ll

ll
l

l

l

l
l

l

l

l
l

l
l

lll
l
l

l

l
l

l

l

lllll llll

l

l

l

l

l
l

l
lll

l

l

l

l

l

ll
l
lll lllllll

l

llllll

l
l

l

l

l
l l
ll
l

l

l

l

l

l

l

l

l
l

l

llll
l
l

l

l
l

l
l

ll
l

l

l

l

l

l
l

l
ll
l

l

l

l

l

l
ll llll

l
l

l

ll

l

l

l

l

l

ll

l

l
l

l
l

l

l
l

ll
l

l

ll

l

l l
ll

l

lll

l

l ll l
l

l
l
l

lll
l

l l
ll l

l

l

l

l

l

l l

l

lll

l

l
ll
l

ll

l

l l

l

l
l l

l l
l

l

Corr:

0.0123

Corr:

−0.108

0

10

20

30

40

l
l
ll l l

l

l l
l
l l ll l ll

l l

l

l

l
l

ll

l

l

ll llll ll l l l
l
l
l

l

ll l

l

ll l
l

l
l

l
l

l l

l

l

l

l l
l

l ll
ll

l

l

l

l

l
l

ll
l l

l

l

ll

l ll

ll
ll

llll
ll
l

l

ll

l

l
ll

l
l

l
ll

l

l

l lll
l

l ll llllll
lll

ll

l
ll

ll

l

lll
l

l

ll

l

l

l

l

l

l
l

l
llll
ll

l
l

lll
l

lll
l
lll ll
lll
l

ll ll lll llllllll
l

llll lllll

l

l
l

lll l

l

ll
l
lllllll

ll

l

l

l
l

l l

l

l

lll llll llll
l

l
l

l

lll

l

lll
l

l
l
l
l
ll

l

l

l

ll
l
lll
ll
l

l

l

l

l
l

ll
ll

l

l

ll

lll

ll
ll
l lll

ll
l

l

ll

l

l
ll
l
l

l
l l

l

l

llll
l

llll ll lll
lll

ll

l
ll
ll

l

l l l
l

l

l l

l

l

l

l

l

l
l

l
llll ll

l
l

ll l
l
l ll

l
l l lll

lll
l

l ll llllll llll ll
l
l l l ll ll ll

l

l
l

l lll

l

ll
l
llll lll

l l

l

l

l
l

ll

l

l

l lll lll llll
l

l
l

l

lll

l

lll
l
l
l
l
l
ll

l

l

l

ll
l
l ll
l l
l

l

l

l

l
l

ll
ll

l

l

ll

l ll

ll
ll
l lll

ll
l

l

ll

l

l
ll

l
l

l
l l

l

l

l lll
l
llll lll ll
l ll

l l

l
l l
ll

l

l ll
l

l

ll

l

l

l

l

l

l
l
l

llll
ll

l
l

lll
l
lll

l
lllll

l l l
l

l l llllll lllllll
l

ll lllllll

l

Corr:

−0.109

0

10

20

30

40

0 25 50 75

l

l

l
l

l

l

l l

lll l ll
l

ll

l

l

l

l

l

l

ll

l

l
l

l l

l

l

l

l
l l l ll

l
l

l

l

l

ll

l

l l

l

l

l

lll ll lll lll ll ll lll l

l
l
l
l
l

ll
ll

ll

l

l

l

l

ll

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l l

l
l

l

ll lll

l

l

ll ll

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l
l l

l

l

l
l l

l
l

l

l
ll

l

l
ll
l

l

l ll
l
ll llll

l

ll

l
ll

l

l

l

l

l l
l l

ll lll
l

l
ll
l

l

l

l

l
l

l

l

l

lll

0 20 40 60

l

l

l
l

l

l

ll

lllll
l
l

ll

l

l

l

l

l

l

l l

l

l
l
ll

l

l

l

l
llll l

l
l

l

l

l

ll

l

ll

l

l

l

llll lllllllllllll ll

l
l
l
l
l

l l
ll
ll

l

l

l

l

ll

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l l

l
l

l

l llll

l

l

lll l

l

l

l

l

l

l

l

ll l

l

l

l

l

l

l

l
ll

l

l

l
ll

l
l

l

l
ll

l

l
ll

l

l

ll l
l

lll lll

l

l l

l
l l

l

l

l

l

ll
ll

llll l
l
l
l l
l

l

l

l

l
l

l

l

l

lll

0 10 20 30 40

l

l

l
l

l

l

ll

llllll
l

ll

l

l

l

l

l

l

ll

l

l
l

ll

l

l

l

l
llll l

l
l

l

l

l

l l

l

ll

l

l

l

llll lllllll lll lllll

l
l

l
l

l

l l
ll

ll

l

l

l

l

ll

l

l

ll

l

l

l

l

ll

l

l

l

l

l

ll

l
l

l

ll lll

l

l

lll l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l
ll
l

l

l
ll

l
l

l

l
ll l

l
ll

l

l

lll
l

llllll

l

ll

l
ll

l

l

l

l

l l
ll

lll ll
l
l

ll
l

l

l

l

l
l
l

l

l

ll l

0 10 20 30 40

l

l

l
l

l

l

ll

l llll
l
l

ll

l

l

l

l

l

l

ll

l

l
l
ll

l

l

l

l
lllll

l
l

l

l

l

l l

l

ll

l

l

l

llll l lllllllllll ll l

l
l

l
l

l

ll
ll

ll

l

l

l

l

ll

l

l

ll

l

l

l

l

ll

l

l

l

l

l

ll

l
l

l

lllll

l

l

llll

l

l

l

l

l

l

l

ll l

l

l

l

l

l

l

l
ll

l

l

l
ll

l
l

l

l
ll

l

l
ll
l

l

lll
l
llllll

l

ll

l
ll

l

l

l

l

ll
ll
lllll
l
l
ll
l

l

l

l

l
l
l

l

l

ll l

0 10 20 30 40

FIGURE 3.16: Scatterplot matrices with function ggpairs().

Introduction to Data Mining 109

si
ze

sp
ee

d
m

xP
H

m
nO

2

size speed mxPH mnO2

0

20

40

60

80
lll

l

ll l lll lll

large
m

edium
sm

all

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

l

ll lll l

llll

ll

high
low

m
edium

6

7

8

9

10

Corr:

−0.169

5

10

0 3 6 9 0 3 6 9 0 3 6 9 0 5 10 0 5 10 0 5 10 6 7 8 9

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

ll

l

l

l

l

ll
ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

5 10

FIGURE 3.17: Scatterplot matrices involving nominal variables.

110 Data Mining with R: Learning with Case Studies

0.0

2.5

5.0

7.5

10.0

a1 a2 a3 a4 a5 a6 a7
variable

va
lu

e

season

autumn

spring

summer

winter

FIGURE 3.18: A parallel coordinates plot.

> library(GGally)
> ggparcoord(algae,columns=12:18,groupColumn="season")

In parallel coordinate plots the X axis represents the variables being used to characterize
each row of the dataset that is represented as a line (with color depending on the season in
this example). The Y axes represents the standardized (c.f. Equation 3.1, page 62) value of
each variable. As we can see there are a few observations that clearly stand out from the
others.

Further readings on data visualization
An excellent document on data visualization is the book by Cleveland (1993). A more formal follow-up of this
work is the book The Elements of Graphing Data (Cleveland, 1995). A more recent and outstanding contribution
is the Handbook of Data Visualization edited by Chen et al. (2008). Other nice books include Tufte (2001)
and Steele and Iliinsky (2010). More related with R we have Murrell (2006), and Wilkinson (2005) that establish
the theoretical grounds for the graphs implemented in package ggplot2 that are described in Wickham (2009).

3.4.2 Dependency Modeling using Association Rules
Dependency modeling has to do with finding relationships between groups of variables.

The most common approach to this task uses association rules that are also frequently
associated with market basket analysis, due to the fact that one of the most common
applications is exactly the analysis of market baskets of consumers in search for associations
between products (i.e. products that are bought together frequently). The formalization of

Introduction to Data Mining 111

these tasks typically uses a terminology that is also related with market basket analysis. We
have a set of transactions D (our dataset), each described as a set of itens, i ∈ I (basically
binary variables that represent whether each item is present or not in the transaction). An
association rule is defined as an implication X → Y , where X and Y are sets of items
(itemsets), i.e. X,Y ⊆ I, where X 6= ∅, Y 6= ∅, and X ∩ Y = ∅. Within an association rule
X is usually known as the antecedent, while Y is known as the consequent.

Finding association rules requires a search process over an extremely large space of
possible rules. This search is usually constrained by some minimal requirements on two
important properties of a rule: the support and the confidence. The support of an itemset,
sup(X), is defined as the proportion of the transactions in the dataset that include this set of
items, i.e. the estimated probability of the itemset, P (X). In this context, the support of an
association rule is defined as sup(X → Y) = sup(X ∪ Y). The confidence of an association
rule X → Y is defined as the proportion of times that the itemset Y is included in a
transaction, when X is also included defined as conf(X → Y) = sup(X ∪ Y)/sup(X), i.e.
the estimated probability of Y given X — P (Y |X). The support of an itemset is estimated
by counting the number of times the itemset occurs in the available dataset of transactions.

Algorithms for finding association rules involve an iterative process that starts by: (i)
finding all frequent itemsets that have a certain minimal support, minsup; and then (ii)
generating candidate association rules from these frequent itemsets. For a task with k differ-
ent items there are 2k − 1 distinct subsets, which makes brute force not a feasible approach
for even small values of k. Moreover, counting the support of candidate itemsets can also
be computationally very demanding depending on the size of the dataset (number of trans-
actions). This means that association rule mining is only possible with clever algorithmic
tricks that minimize this search effort.

The Apriori algorithm (Agrawal and Srikant, 1994) is among the most well-known imple-
mentations of association rules. The algorithm proceeds in an iterative fashion by producing
itemsets of increasing size. Itemsets of size k + 1 are efficiently generated from itemsets of
size k. The efficiency of this is ensured by imposing a lexicographical ordering among the
itemsets of size k and using this ordering to generate the new itemsets with size k+1. Apri-
ori uses other tricks to further reduce the computational requirements of this task, some
of which take advantage of some well-known properties of itemsets, like for instance, the
downward closure property that states that every non-empty subset of a frequent itemset
(i.e. an itemset with sup() > minsup) is also frequent. After all itemsets are generated one
needs to obtain their support, which can be very demanding depending on the size of the
dataset. Once again Apriori makes use of hash tree data structures to improve the efficiency
of the task.

There are many other algorithms for finding frequent itemsets in a dataset. Goethals and
Zaki (2004) provide a nice comparison of some of the fastest implementations, among which
there were the implementations of Apriori (Agrawal and Srikant, 1994) and Eclat (Zaki
et al., 1997) algorithms by Borgelt (2003). Package arules (Hahsler et al., 2016) provides
an interface to these implementations in R.

The second step of the algorithms for finding association rules consists of building them
from the obtained set of frequent itemsets. The generated association rules are constrained
by having a minimum support, minsup, and a minimum confidence, minconf . This consists
of a two step process: (i) generate all non-empty subsets of each frequent itemset; and (ii)
for each subset s of itemset i generate the association rule s → (i − s) if sup(i)/sup(s) ≥
minconf .

In R the package arules can be used to find association rules. We will explore its
facilities by applying it to the Boston housing dataset. Succinctly, this dataset has to do
with a study carried out in 1978 concerning the median prices of housing in 506 residential
areas of Boston, MA, USA. Originally one of the motivations of the study was to check if

112 Data Mining with R: Learning with Case Studies

the pollution levels were having an impact on these prices. The dataset contains a series
of descriptive socio-economic variables on each residential area and also the measurements
of a pollutant (nitrogen oxides concentration), as well as characteristics of the houses in
each area. There is also a “target” variable, the median price of the houses in each region
(variable medv), whose values are supposed to somehow depend on the values of the other
descriptor variables. The dataset contains both numeric and nominal variables. More details
on their meaning can be obtained on the help page associated with the dataset available in
package MASS (Venables and Ripley, 2002).

In order to be able to use this type of “standard” dataset with the arules package
functions we need some pre-processing stages in order to transform the dataset into a
“transactions” dataset, where each row is described by a series of binary variables (the
items). An easy way to achieve this involves first discretizing the numeric variables into
factors of ordered bins of the original values (c.f. Section 3.3.2.2, page 63). Once we do this
we can associate each bin to a binary variable, such that a variable with k bins will be
transformed into k binary variables. In the illustration below we have decided to arbitrarily
discretize all numeric variables into 4 equal width bins. Obviously, in a real world scenario
this should be done with the help of domain experts so that meaningful bins are used. Note
that we will not apply this strategy to the variables chas and rad because although they
are provided as integers in the original dataset, they are in effect nominal variables (ordinal
in the case of rad). We have also treated the variable black differently. This variable is
related to the proportion of black people in the region. However, as you may check using the
help page of the dataset, the variable is a (non-linear) function of this proportion. We have
“decoded” the values of this function so that the values of the nominal variable translate to
the proportion of black people, which makes the rules more comprehensible. The following
code prepares the data for usage with the arules package,

> library(arules)
> library(dplyr)
> data(Boston,package="MASS")
> b <- Boston
> b$chas <- factor(b$chas,labels=c("river","noriver"))
> b$rad <- factor(b$rad)
> b$black <- cut(b$black,breaks=4,labels=c(">31.5%","18.5-31.5%","8-18.5%","<8%"))
> discr <- function(x) cut(x,breaks=4, labels=c("low","medLow","medHigh","high"))
> b <- select(b,-one_of(c("chas","rad","black"))) %>%
+ mutate_each(funs(discr)) %>%
+ bind_cols(select(b,one_of(c("chas","rad","black"))))
> b <- as(b,"transactions")
> b

transactions in sparse format with
506 transactions (rows) and
59 items (columns)

We have used the facilities of dplyr to manipulate the dataset more easily. Try to un-
derstand what was done for discretizing the numeric variables into 4 bins. The last step
involved transforming the data frame resulting from the discretization into a transactions
dataset, which consists of creating the binary variables as mentioned above. The arules
package allows us to do that easily through the function as() that can be used to con-
vert a data frame into an object of class transactions. As you can observe, the resulting
transactions dataset contains items (binary variables), instead of the original 14 variables.

The following code allows us to obtain some further information on this dataset, both
textually and visually (resulting in Figure 3.19),

Introduction to Data Mining 113

> summary(b)

transactions as itemMatrix in sparse format with
506 rows (elements/itemsets/transactions) and
59 columns (items) and a density of 0.2372881

most frequent items:
crim=low chas=river black=<8% zn=low dis=low (Other)

491 471 452 429 305 4936

element (itemset/transaction) length distribution:
sizes
14

506

Min. 1st Qu. Median Mean 3rd Qu. Max.
14 14 14 14 14 14

includes extended item information - examples:
labels variables levels

1 crim=low crim low
2 crim=medLow crim medLow
3 crim=medHigh crim medHigh

includes extended transaction information - examples:
transactionID

1 1
2 2
3 3

> itemFrequencyPlot(b, support=0.3,cex.names=0.8)

Once we have a transactions dataset we can apply the Apriori algorithm to it. The
following code does this, using some minimal support and confidence,

> ars <- apriori(b, parameter=list(support=0.025, confidence=0.75))

Apriori

Parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen

0.75 0.1 1 none FALSE TRUE 0.025 1 10
target ext
rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 12

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[59 item(s), 506 transaction(s)] done [0.00s].
sorting and recoding items ... [52 item(s)] done [0.00s].

114 Data Mining with R: Learning with Case Studies

ite
m

 fr
eq

ue
nc

y
(r

el
at

iv
e)

0.
0

0.
2

0.
4

0.
6

0.
8

cr
im

=lo
w

zn
=lo

w

ind
us

=lo
w

ind
us

=m
ed

High

no
x=

low

no
x=

m
ed

Lo
w

rm
=m

ed
Lo

w

rm
=m

ed
High

ag
e=

hig
h

dis
=lo

w

ta
x=

low

pt
ra

tio
=m

ed
High

pt
ra

tio
=h

igh

lst
at

=lo
w

lst
at

=m
ed

Lo
w

m
ed

v=
m

ed
Lo

w

ch
as

=r
ive

r

bla
ck

=<
8%

FIGURE 3.19: Some frequent itemsets for the Boston Housing dataset.

creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 5 6 7 8 9 10 done [0.07s].
writing ... [408638 rule(s)] done [0.08s].
creating S4 object ... done [0.32s].

> ars

set of 408638 rules

You may wonder why we have used such low values of support. The reason is that we
wanted to check if we could find some association rules involving the bins of the target
variable (medv) corresponding to the cheapest and most expensive houses, and the latter
are very few (see below) so to have chances of finding rules involving these houses we had
to lower the minimum support.

> table(discr(Boston$medv))

low medLow medHigh high
116 284 74 32

As you see, and as is frequently the case27, we obtained a large set of rules. Checking
all these rules is obviously not feasible. Fortunately, package arules contains a series of
functions that can help in querying an analyzing these rules. For instance, the following

27Though our parameter settings have not helped.

Introduction to Data Mining 115

code shows us the top 5 rules in terms of confidence that have the regions with houses of
highest median price on the right-hand side (rhs) of the rules,

> inspect(head(subset(ars, subset=rhs %in% "medv=high"),5,by="confidence"))

lhs rhs support confidence lift
1 {rm=high,

ptratio=low} => {medv=high} 0.02964427 1 15.8125
2 {rm=high,

ptratio=low,
lstat=low} => {medv=high} 0.02964427 1 15.8125

3 {rm=high,
ptratio=low,
black=<8%} => {medv=high} 0.02964427 1 15.8125

4 {crim=low,
rm=high,
ptratio=low} => {medv=high} 0.02964427 1 15.8125

5 {rm=high,
ptratio=low,
lstat=low,
black=<8%} => {medv=high} 0.02964427 1 15.8125

We have used the subset() method applied to the set of association rules. The method
for this class of objects includes a parameter (subset) that allows us to indicate a logical
condition for filtering the rules. This logical condition may involve tests on the left- and
right-hand sides of the rules (lhs and rhs), and also on the quality metrics that the package
produces to qualify each rule. These are the support and confidence, but also the lift. The
lift of an association rule is given by lift(X → Y) = sup(X ∪ Y)/(sup(X)sup(Y)). The
higher the value of the lift the stronger the association. It is based on the fact that if the
occurrence of the itemset X is independent from that of itemset Y , then P (X ∪ Y) =
P (X)P (Y). Otherwise there exists some form of dependency or correlation between X and
Y . So the higher the value of lift(X → Y), the higher the confidence on the existence of
this dependency relationship. Note that if the value of the lift is negative, the itemsets are
said to be negatively correlated, which means that the occurrence of X is likely to lead to
the absence of Y . For instance, if lift(X → Y) = 4 this has the interpretation that the
occurrence of X will increase the likelihood of Y by a factor of 4. The function head()
applied to the result allows us to pick the top x rules according to some of the quality
metrics (we are selecting the top 5 in terms of confidence). Finally, the inspect() function
provides a textual representation of the rules together with their metrics.

The rules all seem to have an intuitive and sociologically expected interpretation (re-
member this is data from the 1970s). We always see itemsets including houses with a large
number of rooms and located in areas with a low pupil-teacher ratio. Other items associated
with these extremely expensive houses include a low percentage of lower status population,
low crime rate and low percentage of black people. We should remark that all these 5 rules
have 100% confidence, meaning that every time the left-hand side happens the right-hand
side is true.

We may carry out a similar analysis for rules involving lower median price regions on
the right-hand side,

> inspect(head(subset(ars, subset=rhs %in% "medv=low"),5,by="confidence"))

lhs rhs support confidence lift
1 {nox=medHigh,

116 Data Mining with R: Learning with Case Studies

lstat=medHigh} => {medv=low} 0.05928854 1 4.362069
2 {nox=medHigh,

lstat=medHigh,
rad=24} => {medv=low} 0.05928854 1 4.362069

3 {nox=medHigh,
tax=high,
lstat=medHigh} => {medv=low} 0.05928854 1 4.362069

4 {indus=medHigh,
nox=medHigh,
lstat=medHigh} => {medv=low} 0.05928854 1 4.362069

5 {nox=medHigh,
ptratio=high,
lstat=medHigh} => {medv=low} 0.05928854 1 4.362069

Once again we find expected items in the left-hand side. However, it is interesting to
remark, in the context of the original goals of this study, that above average pollution level
appears in the rules.

Again, in the context of the goals of the study, we may wish to look at the rules that
involve high pollution levels either in the left- or right-hand sides of the rules,

> inspect(head(subset(ars, subset=lhs %in% "nox=high" | rhs %in% "nox=high"),
+ 5,by="confidence"))

lhs rhs support confidence lift
38 {nox=high} => {indus=medHigh} 0.04743083 1 3.066667
40 {nox=high} => {age=high} 0.04743083 1 1.931298
41 {nox=high} => {dis=low} 0.04743083 1 1.659016
42 {nox=high} => {zn=low} 0.04743083 1 1.179487
44 {nox=high} => {crim=low} 0.04743083 1 1.030550

Apriori has not found any rule with this high pollution level on the right-hand side.
However, when this occurs we observe a series of other interesting items occurring, like
industrialization, lower levels of residential areas, or old houses. The association with a low
crime rate may seem strange but maybe can be explained by the fact that crime will tend
to happen in areas with more wealthy people/houses (still we should note that the lift of
this rule is rather low).

Package arulesViz (Hahsler and Chelluboina, 2016) provides a series of interesting
facilities to visualize the association rules produced by package arules. For instance, we
can have a visual overview of the main quality metrics of all produced rules as follows,

> library(arulesViz)
> plot(ars)

The result of this code is shown in Figure 3.20. The plot method provided by this
package includes many parameters that allow to obtain several interesting variants of this
plot. In particular, for interactive exploration of the graph, you can add the argument
interactive=TRUE to the above call, which allows you to use the mouse to select points
(rules) in the plot that you which to see, with the corresponding lhs and rhs of the selected
rule appearing in the R terminal — try it.

Another type of exploration that is possible with this package are the so-called matrix
representations of the rules. These plots show the rules antecedents in the X axis and the
consequents in the Y axis. At each intersection of lhs and rhs we have the corresponding
quality measure (e.g. lift). The following example, whose result is shown in Figure 3.21,
should illustrate this concept,

Introduction to Data Mining 117

Scatter plot for 408638 rules

5

10

15

lift
0.2 0.4 0.6 0.8

0.75

0.8

0.85

0.9

0.95

1

support

co
nf

id
en

ce

FIGURE 3.20: Support, confidence and lift of the rules.

> somerules <- subset(ars,
+ subset=rhs %in% c("medv=high","medv=medHigh") & confidence>0.75)
> plot(somerules, method="matrix", measure="lift")

In the figure the lhs and rhs are referred to using numbers to avoid filling too much of
the graphs. The association of the numbers with the respective itemsets is shown in the R
console when you call the plot() function.

Yet another interesting visualization is to look at a small subset of the rules as graphs. For
instance, the following code obtains a graph (Figure 3.22) of the rules involving expensive
houses on the rhs whose confidence is higher than 95%,

> somerules <- subset(ars, subset=rhs %in% "medv=high" & confidence > 0.95)
> plot(somerules, method="graph", control=list(type="itemsets"))

Package arulesViz includes several other interesting ways of exploring the association
rules visually. Check the vignette accompanying the package for more examples.

Further readings on association rules
Chapter 4 of the book by Aggarwal (2015) provides an excellent and extensive overview of the area of asso-
ciation rule mining. The same happens in Chapter 6 of the book by Han et al. (2012). More related with R
implementations the vignettes accompanying both the arules and the arulesViz packages are very good sources
of information.

118 Data Mining with R: Learning with Case Studies

Matrix with 256 rules

1818314457708396112131150169188207226245

1

2

Antecedent (LHS)

C
on

se
qu

en
t (

R
H

S
)

6

8

10

12

14

lift

FIGURE 3.21: A matrix representation of the rules show the lift.

Graph for 8 rules

{crim=low,rm=high,ptratio=low,black=<8%}

{crim=low,rm=high,ptratio=low,lstat=low,black=<8%}

{crim=low,rm=high,ptratio=low,lstat=low}

{crim=low,rm=high,ptratio=low}

{medv=high}

{rm=high,ptratio=low,black=<8%}

{rm=high,ptratio=low,lstat=low,black=<8%}

{rm=high,ptratio=low,lstat=low}

{rm=high,ptratio=low}

width: support (0.03 − 0.03)
color: lift (15.812 − 15.812)

FIGURE 3.22: A graph representation of a subset of rules.

Introduction to Data Mining 119

3.4.3 Clustering
Clustering has to do with finding similar sub-groups of the rows in a dataset. In this

context, at the basis of clustering is the definition of row similarity. Similarity is usually
asserted through the definition of some distance function between any pair of rows.

The results of a clustering method is usually a partitioning of the data observations in a
set of groups (the clusters). Cases inside each group are supposed to be very similar to each
other and at the same time rather different from cases in other groups. A typical practical
application of clustering methods is to perform customer segmentation given a dataset
containing information about the customers of some company. Nevertheless, clustering has
many other applications across a wide range of domains.

3.4.3.1 Measures of Dissimilarity

Given the goals of clustering it is of utmost importance to be able to correctly assert
the (dis)similarity between any pair of cases of a dataset. This issue is in effect relevant to
other data mining tasks, as we will see in other sections of this book. The dissimilarity of
two cases is usually calculated by a distance function. These functions receive as arguments
two cases (two vectors of feature values) and return a distance value — the higher, the more
different the cases are supposed to be. Distance functions use the information of the values
in the variables describing the cases to come up with this score. In this context, there are
other issues that become important to avoid unwanted biases in the distance calculation.
These include, among others, issues of the different scales of the variables, the relevance of
the variables, the type of the variables, etc.

The definition of the distance function is often a crucial step in the application of data
mining models. Incorrect distance functions may easily lead to biased results of the posterior
modeling stages with potentially serious consequences to the conclusions drawn from the
data mining workflow.

For numeric variables one of the most common choices is the Euclidean distance, defined
as,

d(x,y) =

√√√√ d∑
i=1

(xi − yi)2 (3.11)

where xi is the value of case x on variable i
This function is in effect a special case of the general Minkowski distance function28,

d(x,y) =
(

d∑
i=1
|xi − yi|p

)1/p

(3.12)

If p = 2 in the above equation we have the Euclidean distance, while for p = 1 we have
what is usually known as the Manhattan distance.

In R these, and other distance functions applicable to numeric vectors, are implemented
in the function dist(), as shown in the following simple examples,

> set.seed(1234)
> randDat <- matrix(rnorm(50), nrow=5)
> dist(randDat) # Euclidean distance (default)

28Also known as the Lp norm.

120 Data Mining with R: Learning with Case Studies

1 2 3 4
2 4.261667
3 4.038030 2.060117
4 3.456732 3.726399 4.037978
5 5.307253 4.415046 4.111230 4.814393

> dist(randDat, method="manhattan")

1 2 3 4
2 11.382197
3 10.016795 4.536827
4 9.887932 8.845512 8.829131
5 14.683770 10.617871 9.091241 11.362705

> dist(randDat, method="minkowski", p=4)

1 2 3 4
2 2.899494
3 2.875467 1.653824
4 2.208297 2.814135 3.453336
5 3.488531 3.192217 3.398721 3.643788

For nominal variables typically one simply distinguishes whether the values on each fea-
ture are equal or not, though some specialized functions exist for binary variables. Function
vegdist() from package vegan (Oksanen et al., 2016) contains a larger set of distance
functions and also allows the specification of further metrics through the use of function
designdist().

The more challenging setups occur when we have mixed mode data, i.e. datasets that
include both nominal and numeric features. One of the main challenges of this type of data
is the question of how to make sure the importance given to the differences in the values
of both nominal and numeric variables is equivalent. A possible solution to this problem is
the following distance function,

d(x,y) =
d∑
i=1

δi(xi, yi) (3.13)

where,

δi(v1, v2) =

1 if i is nominal and v1 6= v2
0 if i is nominal and v1 = v2

|v1−v2|
range(i) if i is numeric

This distance function makes sure all differences (either in numeric or nominal vari-
ables) have a score in the interval [0, 1]. It does this by normalizing the differences in the
numeric variables by their range. Still, this is not very satisfactory if any of these variables
has outliers. This distance function is implemented in function daisy() of package clus-
ter (Maechler et al., 2015). The function also allows the specification of weights to be used
in the distance calculation that enables you to assign different importance to the feature
differences (the default is to use equal weights).

3.4.3.2 Clustering Methods

The are many clustering methods some of which follow quite different approaches to
the general problem of finding groups of the cases in a dataset. Usually, we can classify the
different methods into one of the following categories:

Introduction to Data Mining 121

• Partitioning methods

• Hierarchical methods

• Density-based methods

• Grid-based methods

Partitioning methods receive as input a dataset and a target number of clusters k. They
use the information on the distances between the cases in the dataset to obtain the k “best”
groups according to a certain criterion. This is normally an iterative process where at each
step some of the cases may be moved between the clusters in order to improve the overall
quality of the solution.

Contrary to partitioning methods, hierarchical methods obtain a hierarchy of alternative
clustering solutions, known as a dendrogram. These methods can follow a divisive or an
agglomerative approach to the task of building the hierarchy. The former starts with a
single group containing all the observations and then it iteratively keeps splitting one of
the current groups into two separate clusters according to some criterion, until n groups
with a single observation are obtained, where n is the number of cases in the dataset.
Agglomerative methods, on the other hand, proceed from n groups to a single group. At
each iteration the two most similar groups are selected for being merged.

Methods based on the distances between cases have limitations on the “shape” of the
clusters they can obtain. Density-based methods try to overcome these limitations through
the notion of density. These methods try to find regions of the feature space where cases are
packed together with high density, and because of this they are frequently also used as a
way of finding outliers as these are by definition rather different from other cases and thus
should not belong to these high-density regions of the features space.

Finally, grid-based methods obtain clusters using a division of the feature space into
a grid-like structure. Compared to the other approaches this leads to high computational
efficiency as the clustering operations are performed within the cells of this grid. This
approach to the computational complexity of building clusters is often integrated with
hierarchical or density-based methods.

In our necessarily succinct description of clustering methods we will focus on the first
three approaches.

Partitioning a dataset into a set of k groups requires the specification of some sort of
criteria that allows us to evaluate each candidate solution that is tried in the iterative
process by following these methods. Two important criteria that can be used to evaluate a
clustering solution are: (i) compactness — how similar are the cases on each cluster; and
(ii) separation — how different is a cluster from the others.

Having chosen a certain criterion that assigns a score for each cluster/group of cases,
h(c), and given a clustering solution formed by a set of k clusters, C = c1, c2, · · · , ck, we can
obtain the overall score of this clustering, H(C, k), in several ways, among which we can
include the following common solutions,

• H(C, k) =
∑
c∈C

h(c)
|C|

• H(C, k) = maxc∈C h(c)

• H(C, k) = minc∈C h(c)

In terms of evaluating each cluster, for numeric data only, common criteria include,

• The sum of squares to the center of each cluster

h(c) =
∑
x∈c

d∑
i=1

(vx,i − v̂ci)2 (3.14)

where v̂ci = 1
|c|
∑|c|
j=1 vj,i

122 Data Mining with R: Learning with Case Studies

• The L1 measure with respect to the centroid of the cluster

h(c) =
∑
x∈c

d∑
i=1
|vx,i − ṽci | (3.15)

where ṽci is the median value of variable i in the cluster c

Using an approach similar to that used in Equation 3.13 we can easily come up with
similar formulations when using mixed-mode datasets.

One of the simplest and most well-known partitioning methods is the k-means clustering
algorithm. This algorithm is very simple and consists, in its simplest form, of,

• Initialize the centers of the k groups to a set of randomly chosen observations

• Repeat

– Allocate each observation to the group whose center is nearest
– Re-calculate the center of each group

• Until the groups are stable

A few observations on this simple clustering method. The method is based on distance
calculations, and typically Euclidean distance is the used function. This algorithm results
in maximizing the inter-cluster dissimilarity, i.e. the cluster separation. However, the word
maximizing must be taken with care as there are no guarantees of an optimal clustering
solution. Moreover, using different starting points as cluster centers may lead the algorithm
to converge to a different solution. Obviously, in the research literature we can find some
approaches that try to overcome some of these limitations.

In R the k-means algorithm is implemented in function kmeans(). The following is a
simple illustrative example of applying this function to the Iris dataset ignoring the target
variable. As we know that there are 3 species of these plants, assuming we did not know the
species information for the 150 plants, we could try to use a clustering algorithm to form 3
groups with these plants, expecting that the algorithm would allocate to each cluster plants
of the same species.

> set.seed(1234) # setting a seed for the random number generator
> data(iris)
> ir3 <- kmeans(iris[,-5], centers=3, iter.max=200) # not using Species info.
> ir3

K-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.073684 5.742105 2.071053

Clustering vector:
[1] 1

[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[71] 2 2 2 2 2 2 2 3 2 3 2 3 3 3

[106] 3 2 3 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3

Introduction to Data Mining 123

[141] 3 3 2 3 3 3 2 3 3 2

Within cluster sum of squares by cluster:
[1] 15.15100 39.82097 23.87947
(between_SS / total_SS = 88.4 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"
[9] "ifault"

The object returned by the function contains a series of useful information, among which
is a vector with as many elements as there are cases in the dataset, with the number of the
cluster assigned to each case.

One of the key issues with any clustering algorithm is the question of how to decide if an
obtained solution is good or not, i.e. cluster validation. This question becomes even more
relevant when we face a new problem and we have a series of alternative clustering methods
that we can apply to the available data. Cluster validation is related to several questions
one may ask once we get a solution from a method, like for instance: (i) is the obtained
group structure random? or (ii) what is the “right” number of clusters for this dataset?

Validation measures are usually split into internal and external metrics. External mea-
sures require the existence of information that was not available when obtaining the cluster-
ing solution, that can be used to compare against the structure obtained by the clustering
algorithm. For instance, in the above example with the Iris dataset, this external informa-
tion could consist of the class labels of each of the 150 plants. This information was not
used in the clustering process and we could use it as a kind of ground truth to validate the
results of the k-means method. The following code illustrates this idea,

> table(ir3$cluster, iris$Species)

setosa versicolor virginica
1 50 0 0
2 0 48 14
3 0 2 36

> cm <- table(ir3$cluster, iris$Species)
> 1-sum(diag(cm))/sum(cm)

[1] 0.1066667

As you can observe, the clustering that was obtained assigns 10.7% of the plants to
the wrong cluster, at least according to the class label. While the first cluster is clearly
right in that it contains all setosa plants, the other two clusters mix the remaining species
(particularly cluster 2).

While external validation measures are interesting they are often not applicable in prac-
tice. In effect, having access to this sort of class label is not very frequent in real problems,
because having them reduces the need for the clustering step in the first place.

Internal validation metrics only use information available during the clustering process.
They essentially evaluate the cluster quality from the point of view of issues like cluster
compactness or cluster separation, among others. A typical example of such a metric is
the Silhouette coefficient (Rousseeuw, 1987). This metric is calculated as follows. For each

124 Data Mining with R: Learning with Case Studies

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = ir3$cluster, dist = dist(iris[, −5]))

Average silhouette width : 0.55

n = 150 3 clusters Cj

j : nj | avei∈Cj si

1 : 50 | 0.80

2 : 62 | 0.42

3 : 38 | 0.45

FIGURE 3.23: A silhouette plot.

observation i we start by obtaining the average distance to all objects in the same group
as i and call this average ai. For each observation we also calculate the average distance to
the cases belonging to the other groups to which this observation does not belong, calling
this value bi. Finally, the silhouette coefficient of any observation, si, is equal to

si = bi − ai
max(ai, bi)

(3.16)

The coefficient takes values between −1 and 1. Ideally all objects should have positive
values (meaning ai < bi), and the ai’s should be near zero. This metric is implemented
in R through function silhouette() available in package cluster (Maechler et al., 2015).
The following is an illustration of its usage on the results obtained above with the k-means
algorithm,

> library(cluster)
> s <- silhouette(ir3$cluster, dist(iris[,-5]))

Note that the function requires the distance matrix of the dataset used in the clustering
process. The result of this function can be given to the plot() function producing the
output shown in Figure 3.23,

> plot(s)

As you may observe in the figure, the overall average silhouette coefficient of all 150
cases is 0.55, which is a reasonable value (the nearer 1 the better). We can also observe that
the best cluster is number 1, with an average silhouette of 0.8, while the other two clusters

Introduction to Data Mining 125

have lower scores. This clearly confirms what we have observed when using the true class
labels for an external evaluation of the results.

The silhouette coefficient can be used to compare different clustering solutions or even to
select the “ideal” number of clusters for a given method. The following code illustrates this
idea with the k-means method applied to the Iris dataset. We check for the best number of
groups in the interval [2, 6],

> set.seed(1234)
> d <- dist(iris[,-5])
> avgS <- c()
> for(k in 2:6) {
+ cl <- kmeans(iris[,-5],centers=k,iter.max=200)
+ s <- silhouette(cl$cluster,d)
+ avgS <- c(avgS,mean(s[,3]))
+ }
> data.frame(nClus=2:6,Silh=avgS)

nClus Silh
1 2 0.6810462
2 3 0.5528190
3 4 0.4152074
4 5 0.4609502
5 6 0.3712570

As we can observe, the maximum average silhouette is obtained with 2 groups.
There are many other internal and external validation measures of the clustering results.

A good survey of this important topic can be found in Chapter 23 of the book by Aggarwal
and Reddy (2014). Package clv (Nieweglowski, 2013) contains an extensive list of both
internal and external measures that you may wish to try.

Another widely used partitioning algorithm is the k-medoids method. This is a slight
variation of the ideas used in the k-means method, but revolving around the medoids as
cluster centers instead of means, which leads to better robustness against outliers. Moreover,
instead of squared distances the implementations of this algorithm typically use sums of
dissimilarities as search criterion. The method is implemented in the function pam() of the
cluster package. The following is a similar application to the Iris dataset,

> library(cluster)
> set.seed(1234)
> pc <- pam(iris[,-5],k=3)
> (cm <- table(pc$clustering, iris$Species))

setosa versicolor virginica
1 50 0 0
2 0 48 14
3 0 2 36

> 100*(1-sum(diag(cm))/sum(cm))

[1] 10.66667

> pc$silinfo$avg.width

[1] 0.552819

126 Data Mining with R: Learning with Case Studies

As you can observe, the pam() function already provides the average silhouette coefficient
so in this case we do not need to use the function to calculate it (though we could do it
anyway). In this particular example the results obtained with the k-medoids algorithm were
the same as with the k-means.

A short remark on the computational cost of these methods. For large datasets these
methods can be computationally too demanding. Package cluster contains a more efficient
implementation of pam() in the function clara(). This is achieved through a sampling
mechanism that leads to the application of pam() to smaller samples, with the results being
aggregated in the end (check the complete details in the help page of clara()).

Finally, a note on the issue of determining the number of clusters for these methods.
We have seen a simple way of searching for this “ideal” number using a simple for() loop.
We could apply the same strategy to the pam() function. However, in package fpc (Hennig,
2015) we have function pamk() that does that with more flexibility in terms of options. This
function allows us to supply a range of possible number of clusters and then we can use
different criteria (including the silhouette coefficient) to search for the best solution, using
either pam() or clara(). Here is a simple example of its usage,

> library(fpc)
> data(iris)
> sol <- pamk(iris[,-5], krange=2:10, criterion="asw", usepam=TRUE)
> sol

$pamobject
Medoids:

ID Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 8 5.0 3.4 1.5 0.2
[2,] 127 6.2 2.8 4.8 1.8
Clustering vector:

[1] 1
[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
[71] 2 1 2 2 2 2 2 2

[106] 2
[141] 2 2 2 2 2 2 2 2 2 2
Objective function:

build swap
0.9901187 0.8622026

Available components:
[1] "medoids" "id.med" "clustering" "objective" "isolation"
[6] "clusinfo" "silinfo" "diss" "call" "data"

$nc
[1] 2

$crit
[1] 0.0000000 0.6857882 0.5528190 0.4896972 0.4867481 0.4703951 0.3390116
[8] 0.3318516 0.2918520 0.2918482

The output of the function is a list with 3 components: pamobject with the object
resulting from running pam() (or clara()) with the “optimal” number of clusters; nc with
this number of clusters; and crit with the scores of the internal validation metric used for
the different values of the number of clusters. In the above example we have tried from 2
to 10 and selected the best using the average silhouette width (“asw”).

Introduction to Data Mining 127

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

ve
rs

ic
ol

or
vi

rg
in

ic
a

ve
rs

ic
ol

or
vi

rg
in

ic
a

ve
rs

ic
ol

or
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
se

to
sa

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
vi

rg
in

ic
a

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

0
1

2
3

4
5

6

Cluster Dendrogram

hclust (*, "complete")
d

H
ei

gh
t

FIGURE 3.24: The dendrogram for Iris.

We will now shift our attention to hierarchical clustering methods. As mentioned
before, their goal is to obtain a hierarchy of possible solutions ranging from one single
group to n groups, where n is the number of observations in the dataset.

Agglomerative hierarchical clustering methods start with as many groups as there are
cases in the dataset. At each iteration the pair of groups that is most similar is merged
into a single group. Several criteria exist to select this pair of groups. The single linkage
criterion measures the difference between two groups by the smallest distance between
any two observations in each group. The complete linkage method measures this difference
using the largest distance, instead. On the other hand, the average linkage uses the average
distance between any two observations of the two groups. Several other criteria exist, but
the general idea is similar: select the pair of groups that are more likely to be similar to
each other and merge them into a single group at the next level of the hierarchy.

This type of clustering is implemented in function hclust(). This function takes in the
first argument the distance matrix of the dataset, while the second argument specifies the
criterion used to select the two groups for merging at each step. The following is an example
of its application,

> d <- dist(scale(iris[,-5]))
> h <- hclust(d)

The first statement obtains the distance matrix of the cases. We have standardized the
data before to avoid different scale effects. The second statement obtains the clustering. In
this call we have not specified the merging method, thus accepting its default value that is
complete linkage. The resulting hierarchy, usually known as a dendrogram, can be shown
by applying the function plot() to the object resulting from the call to hclust(),

> plot(h,hang=-0.1,labels=iris[["Species"]],cex=0.5)

The result of this code is shown in Figure 3.24. We have used a negative value for the
hang parameter so that the labels are all at the bottom, and then used the labels parameter
to show the actual species of the plants instead of the respective row numbers (the default).

A dendrogram corresponds to a set of possible clustering solutions. Cutting this hierarchy
at different heights corresponds to selecting a particular number of clusters (i.e. a solution),
depending on how many vertical lines of the dendrogram are crossed by the cut.

128 Data Mining with R: Learning with Case Studies

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

ve
rs

ic
ol

or
vi

rg
in

ic
a

ve
rs

ic
ol

or
vi

rg
in

ic
a

ve
rs

ic
ol

or
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
se

to
sa

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
vi

rg
in

ic
a

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

0
1

2
3

4
5

6

Cluster Dendrogram

hclust (*, "complete")
d

H
ei

gh
t

FIGURE 3.25: The dendrogram cut at three clusters.

For instance, suppose we want three clusters, we would proceed as follows,

> clus3 <- cutree(h, 3)
> (cm <- table(clus3, iris$Species))

clus3 setosa versicolor virginica
1 49 0 0
2 1 21 2
3 0 29 48

> 100*(1-sum(diag(cm))/sum(cm))

[1] 21.33333

The function cutree() can be used to perform the cutting by specifying the desired
number of groups. The result of this function is a vector with the number of the cluster
to which each observation was assigned, according to the dendrogram cut. In the above
example we observe that this particular solution is considerably worse than the previous
ones we have tried, at least from the perspective of the external validation provided by the
class labels.

This cutting of the dendrogram can also be represented graphically thanks to the func-
tion rect.hclust(). Figure 3.25 shows this effect, and was obtained with the following
code,

> plot(h,hang=-0.1,labels=iris[["Species"]],cex=0.5)
> rect.hclust(h,k=3)

The function rect.hclust() was used to draw in the dendrogram the actual cutting
corresponding to three clusters.

Once again, and given the variants we may consider for applying this clustering algo-
rithm, we may question which is the best for a given problem. In the example we are going
to show we assume the lack of external information and resort to the silhouette coefficient
to compare a few of these variants,

Introduction to Data Mining 129

> set.seed(1234)
> d <- dist(scale(iris[,-5]))
> methds <- c('complete','single','average')
> avgS <- matrix(NA,ncol=3,nrow=5,
+ dimnames=list(2:6,methds))
> for(k in 2:6)
+ for(m in seq_along(methds)) {
+ h <- hclust(d,meth=methds[m])
+ c <- cutree(h,k)
+ s <- silhouette(c,d)
+ avgS[k-1,m] <- mean(s[,3])
+ }
> avgS

complete single average
2 0.4408121 0.5817500 0.5817500
3 0.4496185 0.5046456 0.4802669
4 0.4106071 0.4067465 0.4067465
5 0.3520630 0.3424089 0.3746013
6 0.3106991 0.2018867 0.3248248

According to this simple example it seems the best scores are obtained with the single
and average linkage methods. Please note that this experiment is far from exhaustive, being
simply another illustration of the use of the silhouette coefficient for selecting a clustering
solution when no external information is available.

Divisive hierarchical methods proceed in a top down fashion to build the dendrogram.
They are less common than agglomerative methods. In package cluster we may find an
example of these methods — the DIANA algorithm. This algorithm selects the cluster to
be split in two during the iterative process of building the dendrogram by looking at the
cluster diameter. This diameter is estimated as the largest dissimilarity between any two
observations of the cluster. Once this group is identified, the observation in that group with
the largest average dissimilarity to the other members of the group is selected. Then all
observations are allocated to either the cluster of this selected observation or to the “old”
group (represented by its center), depending on which one is nearest. Function diana()
from package cluster implements this algorithm. Here is another simple illustration of its
usage,

> di <- diana(iris[,-5], metric='euclidean', stand=TRUE)
> di3 <- cutree(di, 3)
> (cm <- table(di3, iris$Species))

di3 setosa versicolor virginica
1 50 0 0
2 0 11 33
3 0 39 17

> 100*(1-sum(diag(cm))/sum(cm))

[1] 48

The function can internally calculate the distance between the observations, which in the
above example was done through Euclidian distance after standardization of the variables.
Alternatively, it is also possible to supply a dissimilarity matrix in the first argument. The

130 Data Mining with R: Learning with Case Studies

results seem rather bad in terms of the external validation. However, looking closer we can
observe a problem with the procedure we have been using. In effect, we have been assuming
that the order of the clusters corresponds to the order of values in the target variable. In this
case, looking at the numbers in the confusion matrix it is obvious that cluster 2 should be
regarded as the cluster of the virginica species, and cluster 3 of the versicolor species.
This means we should swap rows 2 and 3 before calculating the error,

> cm <- cm[c(1,3,2),]
> 100*(1-sum(diag(cm))/sum(cm))

[1] 18.66667

As expected, this leads to a considerably lower error.

We will now mention a density-based clustering method. These methods search for
regions of the input space where cases are packed tightly. An instance of this idea is the
DBSCAN algorithm (Ester et al., 1996). The key idea of this method is to estimate the
density of a single observation as the number of observations that are within a certain
radius of the observation, the radius being a key parameter of the method known as the
reachability distance. Based on this idea the method defines three classes of observations
in the provided dataset: (i) core points are cases that have a number of observations within
its radius above a certain threshold; (ii) border points that have a number of observations
within their radius that does not reach that threshold but are within the radius of a core
point; and (iii) noise points that do not have enough observations within their radius nor
are sufficiently close to any core point. Based on the classification of all cases into one of
these three classes, the algorithm starts by removing the noise points into a separate cluster
that contains cases that are too different up to a point of not making sense to use them in
the cluster formation. These cases can actually be regarded as outliers from the perspective
of this method. Then all core points that are within a certain distance of each other are
put together in the same cluster, leading to a set of clusters containing at this stage core
points that are nearer to each other. Finally, all border points are allocated to the cluster to
which they are nearer. This means that, contrary to the methods we have seen before, this
algorithm does not require the user to specify the number of clusters. In effect, it is a result
of the method to determine the “correct” number of groups according to the parameter
settings selected by the user.

Function dbscan() from package fpc (Hennig, 2015) contains an implementation of this
density-based clustering algorithm. The function contains two main parameters (eps and
MinPts) that control the reachability distance and the minimum number of observations
within this distance for a case to be considered a core point, respectively. The following is
a simple illustration of the application of this method to the Iris dataset,

> library(fpc)
> d <- scale(iris[,-5])
> db <- dbscan(d, eps=0.9, MinPts=5)
> db

dbscan Pts=150 MinPts=5 eps=0.9
0 1 2

border 4 1 4
seed 0 48 93
total 4 49 97

> table(db$cluster,iris$Species)

Introduction to Data Mining 131

setosa versicolor virginica
0 1 0 3
1 49 0 0
2 0 50 47

Cluster 0 contains the set of observations that the algorithm has decided to tag as
too different from the remaining cases. With the parameter settings used the algorithm has
clustered the remaining cases in two groups. Looking at the confusion matrix it seems cluster
1 contains the setosas, with the exception of one that was put in the group of outliers.
Cluster 2 contains the plants of the other two species. This seems to be a bad result, but
in effect, as we have seen previously when analyzing the silhouette coefficients for different
clustering settings, creating two groups often appeared as the best option. Moreover, it is
well known that in this dataset the versicolor and virginica species are very hard to
differentiate.

Further readings on clustering
The book by Aggarwal and Reddy (2014) contains an extensive set of interesting articles that address most of
the different aspects involved in clustering data. Most reference books on data mining (e.g. Aggarwal (2015) or
Han et al. (2012)) will also contain chapters on clustering, that is one of the major tasks in data mining.

3.4.4 Anomaly Detection
Anomaly detection has to do with finding observations that are too different from the

remaining cases. This task is obviously related with that of clustering. In clustering we
aim at putting together similar cases, while here we want to identify the more deviating
observations. This means that these anomalies should be hard to cluster together with other
cases, as they are too different. Still, we should note that what we have just described are the
most common types of anomalies (or outliers), known as point outliers. There are other types
of deviations whose identification requires different analysis. That is the case of contextual
outliers whose identification requires looking at the context in which they appear, given that
in isolation they look “normal”. For instance, a certain value of some medical indicator of a
patient may be normal from the perspective of all patients, but may also be anomalous given
some context of the particular patient (e.g. having some type of disease). This is related with
case dependencies that we have mentioned in Section 3.3.3.1 (page 65). In effect, in these
applications cases are described by both contextual properties that provide information on
the specific context of the observation under analysis, and behavioral features that describe
the case in itself. In the case of contextual outlier detection we use the contextual properties
to decide whether the behavioral feature values are or are not anomalous. Finally, another
type of anomalies is known as collective outliers. These are cases that individually can not be
considered anomalous but when taken together as a whole they are indeed anomalous. Take
for instance the scenario of computer network security. Some types of events (e.g. denial
of service) when occurring in isolation may be seen as normal. However, when we observe
these events happening in succession, this may provide clear indications that something
strange is occurring (e.g. an attack). Our brief description of the main approaches to outlier
detection will be focussed on point outliers.

Outlier detection raises several challenges to analysis methods, mainly due to the intrin-
sic nature of these events. In effect, by definition anomalies are infrequent and thus being
able to identify them means to work with higher uncertainty given the lack of statistical
support of any conclusions from these small number of samples. Moreover, being able to
differentiate anomalies from noisy observations or simple typing (or other types of) errors

132 Data Mining with R: Learning with Case Studies

is not easy. Other types of challenges include the fact that characterizing what is “normal”
behavior may also not be an easy task as the frontier between normal and deviating cases
may be imprecise. Moreover, anomalies are frequently associated with malicious activities,
which means that the authors of these activities will typically make a big effort to try to
disguise their activities as normal. Finally, in many applications the notion of outlier evolves
with time (or may even be different depending on the location).

In terms of types of outlier detection methods we can distinguish the following three
main approaches:

• Supervised methods
When we have access to a historical record of observations that have been audited by
some domain expert that has tagged them as being normal or anomalous.

• Non-supervised methods
When there is no previous information on the available data concerning the cases
being or not being outliers.

• Semi-supervised methods
When some of the available cases are tagged while others are not (the latter being
frequently the majority).

In spite of the clear differences among these approaches, as we will see in Chapter 6, it
is sometimes possible to apply all of them to the same problem.

Even in terms of output of outlier detection methods we can also distinguish between
methods that simply tag cases as being or not being anomalous, from methods that output
a kind of probability of being an outlier. The latter are more flexible, particularly in appli-
cations where the outcome of the method is used to guide some sort of auditing activities, as
they allow for different types of inspection resource management strategies. For instance, a
company may have limited auditing resources and if a method outputs as potential outliers
more cases than it is possible to inspect with the available resources, we are left with no
guidance on which cases should be audited. When probabilities (or scores) are available
we can use them to create a kind of inspection ranking that is more flexible for managing
limited resources.

3.4.4.1 Univariate Outlier Detection Methods

The simplest outlier detection methods only look at a single variable. In Section 3.4.1.1
(page 87) we have already mentioned one frequently used uni-variate outlier detection
method — the boxplot rule. This rule can be applied to a sample of a numeric variable
and tags any value outside the interval [Q1− 1.5× IQR,Q3 + 1.5× IQR], where Q1(Q3) is
the first (third) quartile and IQR = Q3 −Q1 the interquartile range, as an outlier. In that
section we have created an R function (bpRule()) that can be used to find these outlying
values.

A related method is the so-called Grubb’s testthat starts by calculating the following z
score for each observation x,

z = |x− x̄|
sx

(3.17)

where x̄ is the sample mean of the variable X and sx the respective sample standard
deviation. Using this score a case is declared an outlier if the following holds,

z ≥ N − 1√
N

√√√√ t2α/(2N),N−2

N − 2 + t2α/(2N),N−2
(3.18)

Introduction to Data Mining 133

where N is the sample size and t2α/(2N),N−2 is the value of the t-distribution at the signifi-
cance level of α/(2N).

Package outliers (Komsta, 2011) contains function grubbs.test() that can be used for
applying this method. Unfortunately, the function can not be used to obtain all outliers in a
sample, at least without writing another function that iteratively calls the package function.
Let us write such a function copying the part of the code of the function grubbs.test()
that is useful for our objective,

> grubbs.outliers <- function(x, p.thresh=0.05) {
+ require(outliers, quietly=TRUE)
+ x <- x[!is.na(x)]
+ n <- length(x)
+ zs <- abs(x - mean(x)) / sd(x)
+ outs <- 1 - sapply(zs, function(z) pgrubbs(z, n, type=10))
+ posOuts <- which(outs <= p.thresh)
+ return(list(zs=zs,
+ pvals=outs,
+ outliers=x[posOuts],
+ positions=posOuts))
+ }
> data(algae, package="DMwR2")
> grubbs.outliers(algae$a2)$outliers

[1] 53.6 72.6

Package outliers contains other tests that can be used for uni-variate outlier detection.
In the case of categorical variables we can only resort to observed frequencies of each

value on the available sample. Whether the frequency of some value is too unusual to indicate
that it may be an outlying value, depends on the distribution you assume for the values.
For instance, if your prior expectations for a variable (say the sex of some sample of clients)
is roughly uniform, and you observe that one of the values hardly appears, then you may
suspect a problem. Finding the frequencies of the values of some nominal variable is easy
in R,

> data(algae, package="DMwR2")
> table(algae$season)/length(algae$season)

autumn spring summer winter
0.200 0.265 0.225 0.310

3.4.4.2 Multi-Variate Outlier Detection Methods

For multi-variate outlier detection we can use different types of approaches, as we have
mentioned before: unsupervised, supervised, or semi-supervised methods. We start our de-
scription with the unsupervised approaches.

We have already seen an example of unsupervised methods that can be used to identify
outliers. In effect, in Section 3.4.3.2 we have described the DBSCAN density-based clustering
method (Ester et al., 1996) that returns a special cluster containing cases that are too
isolated to be part of the “normal” clusters created by this method. According to this
algorithm, these are observations that do not have a minimum number of cases (set as a
parameter) within a certain distance (another parameter), and moreover, are not part of the

134 Data Mining with R: Learning with Case Studies

neighborhood of any core case. These are the outliers according to DBSCAN. The following
simple function can be used to identify the outliers in a dataset using DBSCAN,

> dbscan.outliers <- function(data, ...) {
+ require(fpc, quietly=TRUE)
+ cl <- dbscan(data, ...)
+ posOuts <- which(cl$cluster == 0)
+ list(positions = posOuts,
+ outliers = data[posOuts,],
+ dbscanResults = cl)
+ }

In the illustrations of this section we will use a dataset available in package ml-
bench (Leisch and Dimitriadou, 2010). The dataset is named Glass and each observation
consists of a sample of glass from a crime scene. For each sample a series of chemical prop-
erties is provided and also the type of glass assigned by a human expert. The goal of this
problem is to try to forecast the type of glass based on the measured chemical properties.
Among the different types of glass some are less frequent. We will slightly change this data
to make it more interesting for outlier detection. We will group the rare types into a “rare”
class and tag the remaining as “normal” glasses,

> library(dplyr)
> library(forcats)
> data(Glass, package="mlbench")
> count(Glass,Type) # a dplyr alternative to "table(Glass$Type)"

A tibble: 6 × 2
Type n

<fctr> <int>
1 1 70
2 2 76
3 3 17
4 5 13
5 6 9
6 7 29

> g <- mutate(Glass,
+ Type=fct_collapse(Type,
+ rare = as.character(c(3,5,6)),
+ normal = as.character(c(1,2,7))
+)
+)
> g %>% count(Type) %>% mutate(prop=100*n/nrow(g))

A tibble: 2 × 3
Type n prop

<fctr> <int> <dbl>
1 normal 175 81.7757
2 rare 39 18.2243

We have used the function fct_collapse() from package forcats Wickham (2016) to
create the new factor levels that consist in joining the less frequent glass types into a “rare”
class and the remaining as “normal”. This package contains several other interesting and
useful functions to work with factors in R.

Introduction to Data Mining 135

Let us now illustrate the use of the function for detecting outliers using DBSCAN on
this dataset,

> outs <- dbscan.outliers(g[,-10], eps=1, scale=TRUE)
> head(outs$outliers)

RI Na Mg Al Si K Ca Ba Fe
22 1.51966 14.77 3.75 0.29 72.02 0.03 9.00 0.00 0.00
48 1.52667 13.99 3.70 0.71 71.57 0.02 9.82 0.00 0.10
51 1.52320 13.72 3.72 0.51 71.75 0.09 10.06 0.00 0.16
57 1.51215 12.99 3.47 1.12 72.98 0.62 8.35 0.00 0.31
62 1.51977 13.81 3.58 1.32 71.72 0.12 8.67 0.69 0.00
67 1.52152 13.05 3.65 0.87 72.22 0.19 9.85 0.00 0.17

> nrow(outs$outliers)

[1] 66

> slice(g, outs$positions) %>% count(Type)

A tibble: 2 × 2
Type n

<fctr> <int>
1 normal 42
2 rare 24

> count(g, Type)

A tibble: 2 × 2
Type n

<fctr> <int>
1 normal 175
2 rare 39

The DBSCAN-based outlier detection method has signalled 66 cases as outliers. How-
ever, according to the external information provided by the Type column, we observe that
from these only 24 are real outliers. Moreover, we can also observe that there are 39 outliers
in the dataset, so this method is missing some of the outliers.

Note that any extra parameters you give the function on top of the data, will be passed
down to the dbscan() function. This simple example shows that from the outliers detected
by DBSCAN 24 are outliers, from the 39 available in the full dataset.

Another example of an outlier detection method strongly related with clustering is the
ORh method (Torgo, 2007). This method uses the results of a hierarchical agglomerative
clustering process to assign an outlyingness score to each case in a dataset. This means
that contrary to the DBSCAN method, ORh will output a score of outlyingness that can
be used to produce rankings. The idea of ORh is simple: cases that are outliers should
be harder to merge with other cases because they are too different. In this context, this
fact should be evident by looking at their path in the dendrogram. In effect, the merging
process used to obtain the dendrogram is guided by some criterion that tries to put together
observations that are more similar to each other. The function hclust() of the base package
stats implements several variants of hierarchical agglomerative clustering, as we have seen
in Section 3.4.3.2. The object returned by this function includes a data structure (merge)
that has information on which cases are involved in each merging step. The ORh method

136 Data Mining with R: Learning with Case Studies

uses the information in this data structure as the basis for the following outlier ranking
method. The basic idea is that outliers should offer greater resistance to being merged and
thus, when they are finally merged, the size difference between the group in to which they
belong and the group to which they are being merged should be very large. This reflects
the idea that outliers are rather different from other observations, and thus their inclusion
in groups with more “normal” observations should clearly decrease the homogeneity of the
resulting group. Occasionally, outliers are merged at initial stages with other observations,
but only if these are similar outliers. Otherwise, they will only be merged at later stages
of the clustering process and usually with a much larger group of cases. This is the general
idea that is captured by the ORh method. This method calculates the outlier score of each
case as follows. For each merging step i involving two groups (gix and giy), we calculate the
following value:

ofi(x) = max
(

0,
|giy| − |gix|
|giy|+ |gix|

)
(3.19)

where gix is the group to which x belongs at iteration i of the merging process, and |gix| is
the group cardinality.

At each merging step i any case x belongs to some group. This group may: (i) not
be involved in the merging taking place at iteration i, and thus the score of the case at
this step will be 0; (i) be the larger (in size) of the two groups involved in the merge, and
according to the above definition the score at this iteration will also be 0; or (iii) be the
smaller group, and then the score will be positive, and the larger the size difference between
the two groups, the larger the score the case will get at this step i.

Each observation can be involved in several merges throughout the iterative process of
the hierarchical clustering algorithm — sometimes as members of the larger group, other
times as members of the smaller group. The final outlier score of each case in the data
sample is given by

OFH(x) = max
i
ofi(x) (3.20)

The function outliers.ranking() of our book package implements this method. The
following is an example of using it with the Glass dataset,

> library(DMwR2)
> library(dplyr)
> og <- outliers.ranking(select(g, -Type))
> slice(g, og$rank.outliers[1:40]) %>% count(Type)

A tibble: 2 × 2
Type n

<fctr> <int>
1 normal 30
2 rare 10

Although you can control the clustering process used by this method through the pa-
rameter clus of the function, most of the time you can simply use the defaults. The function
returns a list with several components one of which is named rank.outliers and contains
a ranking of the rows of the dataset with higher “probability” of being an outlier. Above we
are using it to check the Type value of the top 40 outliers according to this method. From
these 40 only 10 seem to belong to the rare class, which is not an interesting result.

One of the most well-known unsupervised methods for multi-variate outlier detection is

Introduction to Data Mining 137

LOF (Breunig et al., 2000). As with ORh, the result of this method is an outlier score for
each case. The main idea of LOF is to try to obtain an outlyingness score for each case
by estimating its degree of isolation with respect to its local neighborhood. The method
is based on the notion of the local density of the observations. Cases in regions with very
low density are considered outliers. The estimates of the density are obtained using the
distances between cases. The authors defined a few concepts that drive the algorithm used
to calculate the outlyingness score of each point. These are: the (1) concept of core distance
of a point p, distk(p), which is defined as its distance to its kth nearest neighbor; (2) the
k-distance neighborhood of p, Nk(o), which is the set of k nearest neighbors of p; (3) the
concept of reachability distance between the case p1 and p2, which is given by the maximum
of the core distance of p1 and the distance between both cases, i.e. reach.distk(p1, p2) =
max{distk(p1), d(p1, p2)} ; and (4) the local reachability distance of a point p, which is
inversely proportional to the average reachability distance of its k neighbors, i.e.

lrdk(p) = |Nk(p)|∑
o∈Nk(p) reach.distk(p, o) (3.21)

The LOF score of a case p captures the degree to which we can consider it an outlier
and it is calculated as a function of its local reachability distance,

LOFk(p) =
∑
o∈Nk(p)

lrdk(p)
lrdk(o)

Nk(p) (3.22)

This factor is the average of the ratio between the local reachability-distance of p and
those of its k-nearest neighbors. This ratio can be seen as a kind of normalization that
allows for this method to cope with problems where observations belong to clusters with
different data density, that are problems for which methods that rely on establishing a
global threshold on the distances (e.g. DBSCAN) will not be able to address properly.

This method was implemented in package dprep (Acuna et al., 2009) that was redrawn
from the CRAN repository. In our book package we include function lofactor() based on
the code that was available in package dprep. This function receives as arguments a dataset
and the value of k that specifies the size of the neighborhood used in calculating the LOF of
the observations. This implementation of the LOF method is limited to datasets described
by numeric variables. Package Rlof (Hu et al., 2015) contains a similar implementation but
is optimized for parallel execution and thus should be preferred for large datasets. Below
we show a small illustrative example of its usage,

> library(DMwR2)
> library(dplyr)
> lof.scores <- lofactor(select(g, -Type),10)
> slice(g, order(lof.scores,decreasing=TRUE)[1:40]) %>% count(Type)

A tibble: 2 × 2
Type n

<fctr> <int>
1 normal 25
2 rare 15

The function lofactor() takes as arguments the data and the number of k neighbors
used in the formulae we have described above. The results of the function are the LOF
scores for each of the rows of the dataset. Once again we check the Type value of the top
40 outliers according to LOF . We get a slightly better result than with ORh, but still not

138 Data Mining with R: Learning with Case Studies

very impressive taking into account that we know that there are 39 cases belonging to the
“rare” class.

In terms of supervised approaches to multi-variate outlier detection we usually define this
task as a binary classification problem. Classification tasks are part of predictive analytics
that will be described in detail in Section 3.4.5. For now we can informally describe these
tasks as having the objective of forecasting the values of a nominal target variable using the
values of other variables. In the case of binary classification this target variable only has
two possible values. Within outlier detection, supervised approaches assume the existence
of a dataset where all observations were previously audited by some human expert that has
tagged the cases as either “normal” or “outliers”. The results of this auditing are stored in
the target variable, thus having as possible values “normal” or “outlier”. With this dataset
we can apply any of the algorithms we are going to describe in Section 3.4.5. However,
there is a caveat. The distribution of the values of the target variable for these outlier
detection tasks is typically very imbalanced. This means that one of the values (“outlier”)
will usually be much less frequent than the other. This type of datasets creates all sorts
of problems for standard classification algorithms (see Branco et al. (2016b) for a survey
on these problems and some of the available solutions). Section 3.4.5 will describe in detail
different classification methods, while in Chapter 6 we will address a concrete case study
where the classification methods will be applied. Moreover, in this chapter we will see one
of the possible solutions for overcoming the class imbalance problem that consists of trying
to re-sample the available training data in a biased way in order to try to obtain a more
balanced distribution to use for obtaining the classification models.

Handling imbalanced classification tasks raises problems at two different levels: (i) the
metrics used to evaluate the performance; and (ii) the modeling stages. The former has to do
with the fact that standard classification metrics, like the percentage of correct predictions
(accuracy), will be misleading if one of the classes is too rare, and moreover, this is the
more interesting class for the user. This is the case of our problems where the rare class
(“outlier”) is the more important. If in our datasets say 95% of the cases are “normal”, it is
easy to achieve a percentage of accurate predictions of 95% — it is enough to always predict
“normal”! However, such a model is useless from the perspective of outlier detection. This
means we need to use evaluation metrics that are more adequate for these problems. In
Section 3.4.5.1 we will describe several metrics that can be used for this class of problems.
The second issue where class imbalance has a strong impact is on the development of the
models. Predictive modeling is strongly based on finding regularities in the provided data
sample. Outliers are so rare that they are often disregarded due to their low frequency. Given
that they are the most relevant cases for the end-user of these applications something needs
to be done to avoid this. The more frequent approaches involve either manipulating the
data used for obtaining the models, or by somehow changing the learning algorithms. The
former may involve strategies like under-sampling the more frequent cases, or over-sampling
the outliers, always with the goal of obtaining a more balanced distribution between the
two classes. Package UBL (Branco et al., 2016a) contains several functions that implement
these strategies. The following is an example of trying to obtain a more balanced sample of
the Glass dataset that we have used before,

> library(UBL)
> library(dplyr)
> count(g,Type)

A tibble: 2 × 2
Type n

<fctr> <int>

Introduction to Data Mining 139

1 normal 175
2 rare 39

> ## Undersampling the largest class
> newg <- RandUnderClassif(Type ~ ., g)
> count(newg,Type)

A tibble: 2 × 2
Type n

<fctr> <int>
1 normal 39
2 rare 39

> ## Now specifying the degree of undersampling by hand
> newg2 <- RandUnderClassif(Type ~ ., g, list(normal=0.4, rare=1))
> count(newg2,Type)

A tibble: 2 × 2
Type n

<fctr> <int>
1 normal 70
2 rare 39

> ## Oversampling the minority class
> newg3 <- RandOverClassif(Type ~ .,g)
> count(newg3,Type)

A tibble: 2 × 2
Type n

<fctr> <int>
1 normal 175
2 rare 175

You may check the package vignette accompanying packageUBL for further alternative
methods (and examples) for changing the distribution of the original dataset to make it more
in accordance with the goals of the end-user (which in this case is performance on a rare
class).

Regarding changes to the learning process there are several alternatives that try to bias
the methods for the cases most relevant to the end-user. Examples include the use of cost
matrices or the usage of different evaluation metrics to guide the search for patterns that
are more biased towards the performance on the “outliers”.

Given the imbalanced problem another frequently used alternative for supervised outlier
detection is to use the so-called one-class models. Contrary to standard classification meth-
ods these algorithms focus on obtaining a description of the “normal” (and more prevailing)
class. Given this description any case that does not satisfy it will be tagged as an “outlier”.
The main advantage of these methods is that they do not suffer from a lack of cases of
the rare class. For instance, in package e1071 (Dimitriadou et al., 2009), that we will use
extensively later in the book, there is an implementation of a classification algorithm —
the SVM — that can handle one-class problems. Let us see an example of how to use this
function for the Glass data,

> library(e1071)
> trainD <- filter(g, Type == "normal") %>% select(-Type)
> s <- svm(trainD, y=NULL, type="one-classification", nu=0.5)

140 Data Mining with R: Learning with Case Studies

> (cm <- table(g$Type, predict(s,select(g, -Type))))

FALSE TRUE
normal 86 89
rare 28 11

We start by training the one-class SVM on the normal cases only. Then we apply it to
the full dataset to check which ones are not tagged as normal (predicted value of FALSE).
As we can observe, the from the 39 cases that are outliers, this approach predicts 28 as
being outliers. Moreover, it predicts as outliers 86 cases that are in effect normal, i.e. a
large number of false positives.

Semi-supervised methods are able to handle datasets where some of the available ob-
servations were tagged by a human expert, but where the remaining (frequently the largest
portion) were not audited. In these contexts, we can either ignore the cases without tag,
and apply a supervised classification method to the others, or ignore the labels and apply
an unsupervised method to the full data. Both approaches waste some information and this
is the motivation for using semi-supervised methods. These methods are not very common
(see Chapelle et al. (2006) for a reference on these methods). Still, they usually revolve
around: (i) improving supervised methods by trying to take advantage of the non-tagged
cases; or (ii) improving the unsupervised methods by imposing constraints based on the
information of the available labels. For instance, for the latter we could try to make sure
that a clustering algorithm does not create groups that contain both outliers and normal
cases. For the former we could try to use the results of a clustering method to assign labels
to the cases that are not tagged. For instance, if as the result of clustering the data we
find a group that contains a few outliers and also some non tagged observations, then we
have some confidence in assigning the outlier tag to these other observations because the
clustering method found them to be similar enough to cluster them together with outliers.
In Chapter 6 we will see yet another example of a semi-supervised method where we start
by building a classifier using only the labeled data and then iteratively use it to predict the
labels for the unlabeled cases, assuming this prediction is true for the ones in which the
classifier has more confidence, thus extending our training set that is then used to obtain
another classifier.

Further readings on anomaly detection
The book by Aggarwal (2013) contains an extensive description of anomaly detection methods for different types
of data and applications. It is an excellent reference for the state of the art on this topic within the data mining
field. Chandola et al. (2007) and Hodge and Austin (2004) provide shorter surveys of outlier detection. More
“classical” references are the books by Hawkins (1980) and Barnett and Lewis (1994). Finally, most data mining
reference books (e.g. Aggarwal (2015) or Han et al. (2012)) will contain chapters devoted to anomaly detection.

3.4.5 Predictive Analytics
Predictive analytics has to do with obtaining models using a sample of observations

for solving predictive tasks. Predictive tasks involve trying to obtain an approximation of
an unknown function f that maps the values of a set of variables (the predictors) into
the values of a target variable. For instance, in a medical domain we may have access to
a historical record of patient analysis where some medical doctor has assigned a certain
diagnosis to each patient based on a set of measurements of symptoms. This means that
there is an unknown function that we are trying to approximate based on a historical record
of mappings from symptoms into diagnoses.

Introduction to Data Mining 141

The main goal of the obtained models is to predict the target variable for new observa-
tions of the problem at hand. Still, sometimes we also have the goal of understanding how
the predictor variables influence the value of the target variable, i.e. we want to uncover
eventually unknown relationships between the predictors and the target.

Obviously, to develop prediction models we must assume that there is some regularity on
what we observe (the historical dataset), i.e. that the phenomenon is not completely random.
Our goal is then to uncover these regularities based on the dataset provided and according
to some preference criteria that allow us to compare possible alternative “explanations”
of what we observe. In summary, we want to obtain a model, h, of the unknown function
Y = f(X1, X2, · · · , Xp), using a dataset D = {〈xi1, · · · , xip, yi〉}Ni=1, where Y is a target
variable, the X’s are predictor variables and N is the dataset size (number of rows of our
data table).

Depending on the type of the target variable Y , we are going to distinguish two types of
prediction tasks: (i) classification tasks where Y is nominal; and (ii) regression tasks where Y
is numeric. For instance, re-visiting our Iris dataset we can look at it as a classification task
where we are trying to find the function that maps the biometric properties of the plants
into the species of Iris, which is a nominal variable with three possible values. On the other
hand, looking at the Algae dataset that we have explored before, we can see a regression
task when we try to estimate the frequency of say Algal A1 using the 11 descriptors of the
water sample.

Both regression and classification tasks share many relevant questions and we are going
to see that several available techniques can handle both tasks. However, there are obvious
differences between the tasks that are frequently related with the criteria used to evaluate
and compare different candidate models.

Independently of facing a regression or a classification task we have to : (i) make some
assumptions on the shape of the unknown function f() that we are trying to approximate;
and then (ii) try to search for the “optimal” instance of this assumed form taking into
account the dataset provided and also some preference criteria that allow us to compare
the different candidate instances.

There are many alternatives in terms of assumptions of functional forms, i.e. types of
models. These include simple linear models (e.g. linear regression or linear discriminants),
logical approaches (e.g. trees or rules), probabilistic approaches (e.g. Naive Bayes), more
complex models (e.g. neural networks or support vector machines), or even sets of mod-
els (ensembles). These different classes of models typically entail different compromises in
terms of: (i) the strictness of the assumed functional form of the unknown function; (ii) the
computational complexity of the task of obtaining the best instance of this form; (iii) or
the interpretability of the resulting model; among other less relevant characteristics.

Given this wide variety of modeling approaches users typically face the question of
which technique to apply given a new prediction task. This is usually known as the model
selection problem and will be the topic of Section 3.5. Nevertheless, this will always involve
the question of the preference criteria, i.e. the metrics that are used to evaluate the different
models we may consider for a given task. In the next section we will describe some of the
most common metrics.

3.4.5.1 Evaluation Metrics

In classification tasks the target variable is nominal. Given a set of Ntest test cases we
can use an obtained model h() to obtain predictions for these test cases. Assuming we have
access to the true value of the target variable of these test cases (sometimes known as the
ground truth) we can compare the predictions of the model against these true values. The
results of this comparison can be summarized in a matrix, usually known as the confusion

142 Data Mining with R: Learning with Case Studies

TABLE 3.3: An example of a confusion matrix.
Pred.

c1 c2 c3

O
bs
. c1 nc1,c1 nc1,c2 nc1,c3

c2 nc2,c1 nc2,c2 nc2,c3
c3 nc3,c1 nc3,c2 nc3,c3

TABLE 3.4: An example of a cost/benefit matrix.
Pred.

c1 c2 c3

O
bs
. c1 B1,1 C1,2 C1,3

c2 C2,1 B2,2 C2,3
c3 C3,1 C3,2 B3,3

matrix. This is a square matrix with dimensions nc×nc, where nc is the number of possible
values of the target variable, frequently known as the number of classes. Assuming nc = 3,
Table 3.3 shows an example of a confusion matrix for a problem where the target variable
takes values from the domain {c1, c2, c3}.

Each cell of a confusion matrix has a number and the sum of all numbers is equal to the
number of test cases, Ntest. For instance, the number nc2,c3 represents the number of times
for the given test cases the model has predicted the class c3, when the true value was c2.
This means that the ideal model (perfect predictions) will only have numbers greater than
zero at the diagonal of this matrix.

Using the numbers of the confusion matrix we can calculate several metrics that are often
used to evaluate classification models. The most common is the Error Rate (also known as
the 0/1 loss), defined as,

L0/1 = 1
Ntest

Ntest∑
i=1

I(ĥ(xi) 6= yi) (3.23)

where I() is an indicator function such that I(x) = 0 if x is false and 1 otherwise; and ĥ(xi)
is the prediction of the model being evaluated for the test case i that has as true class the
value yi.

Please note that the error rate can also be obtained as the proportion of the Ntest cases
that are outside of the diagonal of the confusion matrix.

Some people prefer to use the Accuracy that is basically the complement of the error
rate, i.e. Acc = 1− L0/1 .

There are applications where errors (or accurate predictions) do not have the same value.
For instance, in a medical domain having a model forecasting that a patient is OK when it
suffers from a serious disease is much more serious than the opposite. In these contexts, one
often resorts to the use of cost/benefit matrices. These matrices have the same dimension
as confusion matrices but they specify the costs and benefits associated with each pair of
predicted/true class values. For instance, the value B1,1 in Table 3.4 is the benefit of an
accurate prediction of class c1 ,while the value C1,3 is the cost of forecasting c3 for a true
class value of c1. Typically, benefits are positive, while costs are negative.

In the context of these applications the performance of a model is measured by the total
utility of the model predictions for a given test set. If CM is the confusion matrix of the
model predictions and CB the cost/benefit matrix of the problem, then the total utility is
given by,

Introduction to Data Mining 143

TABLE 3.5: A confusion matrix for prediction of a rare positive class.
Preds.

Pos Neg

O
bs
. Pos True Positives (TP) False Negatives (FN)

Neg False Positives (FP) True Negatives (TN)

totU =
nc∑
i=1

nc∑
k=1

CMi,k × CBi,k (3.24)

Another frequent application setup within classification tasks is that of binary classi-
fication where one of the classes is not only more relevant for the user but is also less
frequent in the available dataset. Example application domains include fraud detection or
any type of outlier detection task based on supervised techniques. As we have mentioned in
Section 3.4.4 using the standard error rate (or its complement accuracy) will lead to over-
optimistic estimates of the capacities of a model. In effect, these metrics will be dominated
by the performance of the model on the prevailing class, which is the least important in
these applications.

For these applications it is common to call the class of interest (and least frequent) the
positive class, while the other class is the negative class. A confusion matrix for these appli-
cations with the nomenclature one usually applies in these contexts is shown in Table 3.5.

In these applications the main goal of the end-user is to maximize the number of true
positives (TP). From the numbers in the above confusion matrix one usually defines two key
metrics for these applications: (i) precision that is the proportion of the positive predictions
of the model that are correct; and (ii) recall that is the proportion of real positive events
that are captured by the model. These metrics are calculated as follows,

Prec = TP

TP + FP
(3.25)

Rec = TP

TP + FN
(3.26)

There is typically a trade-off between these two metrics. For instance, it is easy to get
100% recall by having a model that always predicts a positive class. However, this model
would score poorly in terms of precision as the positive class is rare.

It is common to aggregate these two metrics into a single score — the F-measure. This
metric is a weighted average of precision and recall and it is given by,

Fβ = (β2 + 1) · Prec ·Rec
β2 · Prec+Rec

(3.27)

where β controls the relative importance of Prec and Rec. If β = 1 then F is the harmonic
mean between Prec and Rec; When β → 0 the weight of Rec decreases. When β →∞ the
weight of Prec decreases.

For regression tasks the target variable is numeric. In this context, the available evalua-
tion metrics revolve around the numeric differences between the true and predicted values.
The most frequently used metric is the mean squared error (MSE) defined as,

MSE = 1
Ntest

Ntest∑
i=1

(ŷi − yi)2 (3.28)

144 Data Mining with R: Learning with Case Studies

where ŷi is the prediction of the model under evaluation for the case i and yi the respective
true target variable value.

Note that theMSE is measured in units that are the square of those of the original vari-
able. Because of this it is sometimes common to use the root mean squared error (RMSE)
instead, which is defined as RMSE =

√
MSE.

Another frequently used metric is the mean absolute error (MAE) defined as,

MAE = 1
Ntest

Ntest∑
i=1
|ŷi − yi| (3.29)

Note that the MAE is measured in the same units as the original variable.
Relative error metrics are also very common for regression tasks. They are unit-less

measures that compare the performance of a model against some baseline. The relative score
is expected to be a value between 0 and 1, with values nearer (or even above) 1 representing
performances as bad as the baseline model, which is usually chosen as something too naive.
The most common baseline model is the constant model consisting of predicting for all test
cases the average target variable value calculated with the training data. An example of
such a metric is the normalized mean squared error (NMSE) given by,

NMSE =
∑Ntest
i=1 (ŷi − yi)2∑Ntest
i=1 (ȳ − yi)2

(3.30)

where ȳ is the sample average of the target variable in the training data.
Similarly, we can also calculate the normalized mean absolute error (NMAE) using,

NMAE =
∑Ntest
i=1 |ŷi − yi|∑Ntest
i=1 |ȳ − yi|

(3.31)

Another popular relative metric is the mean average percentage error (MAPE) given
by,

MAPE = 1
Ntest

Ntest∑
i=1

|ŷi − yi|
yi

(3.32)

Note, however, that the MAPE has problems when the target variable can be zero.
Finally, the correlation between the predictions and the true values is also used as a

metric of success. In this case the nearer the correlation gets to one, the better. This metric
is given by,

ρŷ,y =
∑Ntest
i=1 (ŷi − ¯̂y)(yi − ȳ)√∑Ntest

i=1 (ŷi − ¯̂y)2∑Ntest
i=1 (yi − ȳ)2

(3.33)

Many R packages provide these and other evaluation metrics for classification and re-
gression tasks. Examples include the function mmetric() from package rminer (Cortez,
2015) that contains an extensive list of classification and regression metrics, the functions
classificationMetrics() and regressionMetrics() from package performanceEsti-
mation (Torgo, 2014a), the function performance() from package ROCR (Sing et al.,
2009), or the function performance() from package mlr (Bischl et al., 2016), among oth-
ers.

Introduction to Data Mining 145

3.4.5.2 Tree-Based Models

We now start our brief description of some of the most relevant modeling techniques
that can be used to solve predictive tasks. The first we are going to present are tree-based
models. This is a rather popular approach that is known for producing reasonably inter-
pretable models with acceptable predictive performance, and moreover, is able to address
both classification and regression tasks. Other key characteristics of tree-based models are
their computational efficiency, the ability to handle datasets with unknown values, the em-
bedded feature selection and also the lack of very strong assumptions on the functional form
of the function we are trying to approximate, which makes them a good alternative for a
wide range of applications. On the other hand these models are not known for achieving
top predictive performance, meaning that if this is the key goal of your application, they
are probably not the best choice. Still, trees are at the basis of many ensemble models (c.f.
Section 3.4.5.5) that achieve top performance, so it is important to understand how these
models work.

A tree-based model is a hierarchy of logical tests on some of the predictor variables. This
inverted tree ends at the so-called leaf nodes where we have the predictions of the model.
Any path from the top (root) node till a leaf can be seen as a conjunction of logical tests
that leads to some conclusion (the prediction at the leaf). Figure 3.26 shows two examples of
tree-based models: on the left side a classification tree for the BreastCancer dataset available
in package mlbench, and on the right side a regression tree for the Boston Housing dataset
available in package MASS. Each node of the tree has a logical test (e.g. Cell.siz < 2.5)
on one of the predictors. The left branch of the node is followed if the condition is true,
otherwise we follow the right branch. We keep going down the tree until we reach a leaf node
where we have the predictions — class labels in the case of classification trees, and numeric
predictions for regression trees. For instance, the leftmost path on the classification tree can
be read as: “if cell size is less than 2.5 and bare nuclei is less than 5.5 then we predict that
the case is of class benign”. We have as many of these “rules” as there are leaves in the tree.
To use these models for making predictions we simply “drop” the test case down the tree
starting at the root node until a leaf is reached, where we have the prediction for the case.
You may have noticed that both trees do not use all predictors of the respective datasets,
which means that they automatically carry out feature selection. Moreover, the trees are
able to easily handle data with unknown values, as is the case of the BreastCancer dataset.

Tree-based models can be seen as providing a partitioning of the predictors space into
a set of hyper-rectangles where all test cases are assigned the same prediction. Figure 3.27
shows an example of this for a simple 2-dimensional illustration dataset. As you can observe
each path (a conjunction of logical conditions) that leads to a leaf corresponds to a certain
rectangle in the predictors space.

Trees are obtained using a very simple algorithm (Algorithm 1) that builds these par-
titions recursively. This algorithm has three key issues: (i) the termination criterion that
decides when we stop growing the tree creating a leaf node; (ii) the value that is selected
for these leaves (the representative of the cases in each leaf); and (iii) the procedure used
for selecting the best logical test for each non-leaf node. The answer to these questions is
different for classification and regression trees. They are both grown using the recursive
partitioning algorithm but they differ in the preference criterion guiding the tree building
process. Classification trees typically use criteria related to the minimization of the error
rate (e.g. the Gini index, the Gain ratio, entropy, etc.). Regression trees typically use the
least squares error criterion that minimizes the mean squared error of the tree.

Let us focus on classification trees built with the Gini index. The Gini index of a dataset
D where each example belongs to one of C classes is given by,

146 Data Mining with R: Learning with Case Studies

Cell.siz < 2.5

Bare.nuc < 5.5 Cell.sha < 2.5

Cl.thick < 5.5 Cell.siz < 4.5

Bare.nuc < 2.5

Marg.adh < 3.5

benign
416 5
60%

malignan
1 7
1%

benign
18 1
3%

malignan
0 4
1%

benign
10 1
2%

malignan
0 3
0%

malignan
8 48
8%

malignan
5 172
25%

yes no

rm < 6.9

lstat >= 14

crim >= 7

dis >= 1.4

rm < 6.5

rm < 7.4

crim >= 7.4

ptratio >= 18

12
n=74 15%

17
n=101 20%

22
n=195 39%

27
n=55 11%

46
n=5 1%

14
n=3 1%

33
n=43 8%

33
n=3 1%

46
n=27 5%

yes no

FIGURE 3.26: A classification (left) and a regression (right) tree.

Example of a Regression Tree

x1 < 3.4

x2 < 31

x1 >= 6.1

x1 >= 3.4

x2 >= 31

x1 < 6.1

x1 < 3.4

x2 < 31

x1 >= 6.1

x1 >= 3.4

x2 >= 31

x1 < 6.1

y = 36
n=20 100%

y = 20
n=5 25%

y = 42
n=15 75%

y = 29
n=9 45%

y = 17
n=5 25%

y = 44
n=4 20%

y = 62
n=6 30%

y = 20

y = 17y = 44

y = 62

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

ll

20

30

40

50

2.5 5.0 7.5 10.0
x1

x2

Partitioning of the Predictors' Space

FIGURE 3.27: The partitioning provided by trees.

Introduction to Data Mining 147

Algorithm 1 The recursive partitioning algorithm.
1: function RecursivePartitioning(D)
Input : D, a sample of cases, {〈xi,1, · · · , xi,p, yi〉}Ntraini=1
Output : t, a tree node

2: if <termination criterion> then
3: Return a leaf node with the <representative> of D
4: else
5: t← new tree node
6: t.split← <Find the best predictors test>
7: t.leftNode← RecursivePartitioning(x ∈ D : x→ t.split)
8: t.rightNode← RecursivePartitioning(x ∈ D : x 6→ t.split)
9: Return the node t
10: end if
11: end function

Gini(D) = 1−
C∑
i=1

p2
i (3.34)

where pi is the probability of class i usually estimated with the observed frequency of this
class on the training data.

If the dataset is split on a logical test s then the resulting Gini index is given by,

Ginis(D) = |Ds|
|D|

Gini(Ds) + |D¬s|
|D|

Gini(D¬s) (3.35)

where Ds is the subset of cases of set D that satisfies the test s and D¬s is the subset of
cases in D that do not satisfy this test.

Therefore, the reduction in impurity provided by the test s is,

∆Ginis(D) = Gini(D)−Ginis(D) (3.36)

These equations are used to compare and select the best test for a given node of the
tree.

The tests that are considered as candidates depend on the type of predictor variable.
For numeric predictors, we start by sorting the values in the set of cases of the node, and
then consider as candidates all tests of the form X < k, where k is a mid-point between
the successive sorted values. For instance, if the sorted values of a numeric variable X are
{4, 6, 10, 12}, the tried tests would be X < 5, X < 8 and X < 11. For nominal predictors,
in principle all possible combinations of the values in the node should be tried. If there are
L different values, this would correspond to 2L candidate tests. However, Breiman et al.
(1984) have proven a theorem that allows reducing the complexity of finding the best test
on a nominal variable to a complexity of the order of L. In summary, all these tests are
tried and the best according to Equation 3.36 is selected for each test node.

For regression trees, the most frequent method for selecting the best logical test is to
use the least squares (LS) criterion. According to the LS criterion the error in a dataset D
is given by,

Err(D) = 1
|D|

∑
〈xi,yi〉∈D

(yi − kD)2 (3.37)

148 Data Mining with R: Learning with Case Studies

where D is the sample of cases in a node, |D| is the cardinality of this set and kD is the
constant used in the node. It can be easily proven that the constant kD that minimizes this
error is the sample average target variable value of the cases in D. Any logical test s divides
the cases in D in two partitions, Ds and D¬s. As with classification trees, the resulting
pooled error is given by,

Errs(D) = |Ds|
|D|
× Err(Ds) + |D¬s|

|D|
× Err(D¬s) (3.38)

where |Ds|/|D| (|D¬s|/|D|) is the proportion of cases going to the left (right) branch of the
node.

We can estimate the value of the split s by the respective error reduction,

∆Errs(D) = Err(D)− Errs(D) (3.39)

The tests tried for each node of a regression tree are similar to those tried on classification
trees, which we have described before.

The second key issue of the recursive partitioning algorithm (Algorithm 1) is the decision
on which value to select as the representative of the cases in a leaf node. This decision is
related to the criterion used to grow the trees. As we have seen above, for regression trees,
the constant that minimizes the LS criterion is the average value of the target variable
estimated using the cases in the leaf node. For classification trees the value is the majority
class of the cases in the node.

Finally, the last issue is the decision on when to stop the tree growth process. This
question is related with a problem known as overfitting. A too large tree will most probably
capture spurious patterns on the training data that will hardly generalize to new test cases,
thus leading to poor predictive performance. On the other hand a very small tree will be
too general and will fail to capture more detailed patterns, again leading to poor predictive
performance. This results from the models being obtained based on a sample of the unknown
full distribution of the problem. This means that all decisions are based on estimates of
the true value of each test in the tree. Moreover, given the way the recursive partitioning
algorithm works, these decisions are being taken on smaller and smaller samples, and thus
are getting potentially less reliable as we go down the tree. In this context, the most frequent
method for obtaining reliable tree-based models is to grow an overly large tree and then use
some statistical procedure that tries to eliminate branches of the tree that are statistically
unreliable, in a procedure usually known as post-pruning. This procedure typically involves
generating a large sequence of subtrees of the original large tree and then selecting one of
them according to some statistical test.

In R there are two main packages for obtaining tree-based models: (i) package rpart (Th-
erneau and Atkinson, 2010) and package party (Hothorn et al., 2006). Package rpart closely
follows the ideas in the seminal book Classification and Regression Trees by Breiman et al.
(1984), while package party implements the concept of conditional inference trees (Hothorn
et al., 2006). In this book we will use the package rpart.

Package rpart provides two main functions to assist in obtaining tree-based models:
(i) one for growing the trees (named rpart()); and (ii) the other for post-pruning them
(named prune.rpart()). Our book package provides function rpartXse() that joins the
two steps in a single function call, which is more practical in most cases. This function calls
the functions implemented in package rpart to obtain trees that are post-pruned using the
X-SE rule. Trees in rpart are grown till one of three criteria is true: (1) the decrease in
the error of the current node goes below a certain threshold; (2) the number of samples in
the node is less than another threshold; or (3) the tree depth exceeds another value. These
thresholds are controlled by the parameters cp, minsplit, and maxdepth, respectively. Their

Introduction to Data Mining 149

default values are 0.01, 20, and 30. Function prune.rpart() implements a pruning method
called cost complexity pruning (Breiman et al., 1984). This method uses the values of the
parameter cp that R calculates for each node of the tree. The pruning method tries to
estimate the value of cp that ensures the best compromise between predictive accuracy
and tree size. Given a tree obtained with the rpart() function, R can produce a set of
subtrees of this tree and estimate their predictive performance using a procedure based on
cross validation estimates (c.f. Section 3.5). For each subtree an error estimate is obtained
together with a standard error of this estimate. The X-SE pruning rule determines that the
final selected tree is the smallest tree in the sequence whose estimated error is smaller than
the lowest error plus the respective standard error. For instance, if the tree in the sequence
of subtrees with the lowest error has an estimate of 4.5± 0.4 and has 13 nodes, but there is
a (smaller) tree in the sequence with 10 nodes and an estimated error of 4.8, this latter tree
will be selected if we are using the 1-SE rule because 4.8 < 4.5 + 0.4 and this rule prefers
smaller trees. Function rpartXse() allows you to specify the number of standard errors to
use in the X-SE pruning rule, i.e the value of X. It then grows a very large tree using very
relaxed values of parameters cp and minsplit, which then is pruned using the procedure
described above.

Functions rpart() and rpartXse() use the standard formula interface that most mod-
eling functions in R use. This means specifying the abstract functional form of the model
we are trying to obtain in the first argument and the available training data in the second.
Say you are trying to obtain a model to forecast variable Y using the values of variables X
and Z. The functional form would be specified by the formula Y ∼ X + Z. Alternatively, if
your dataset only includes these 3 variables you could instead use the simpler form Y ∼ ·,
where the dot means all remaining variables.

The following example obtains two classification trees for the Iris dataset,

> library(DMwR2)
> set.seed(1234)
> data(iris)
> ct1 <- rpartXse(Species ~ ., iris)
> ct2 <- rpartXse(Species ~ ., iris, se=0)

The first tree is obtained with the default parameters of rpartXse(), which means
using 1-SE post pruning. The second tree is obtained with a less “aggressive” pruning by
specifying 0-SE pruning. This corresponds to selecting the lowest estimated error subtree of
the original overly large tree. Note the use of the function set.seed() as a way of ensuring
you get the same trees. Given that there is some random component on the method used
to obtain the error estimates of the subtrees, it is possible to obtain a different tree if you
run the same code twice.

While we can ask R for the content of the two objects (ct1 and ct2), which will get us a
textual representation of the trees, it is more interesting to have a graphical representation.
Package rpart.plot (Milborrow, 2015) provides powerful graphical visualizations for rpart
trees. Namely, function prp() can be used to plot the trees with many graphical variants,
accessible through the large amount of parameters of this function. Figure 3.28 shows the
two trees of the above example. The graphs were obtained as follows,

> library(rpart.plot)
> prp(ct1, type=0, extra=101) # left tree
> prp(ct2, type=0, extra=101) # right tree

Regression trees are obtained using the same exact procedure. Function rpart() decides

150 Data Mining with R: Learning with Case Studies

Petal.Le < 2.5

Petal.Wi < 1.8
setosa
50 0 0

33%

versicol
0 49 5

36%

virginic
0 1 45

31%

yes no

Petal.Le < 2.5

Petal.Wi < 1.8

Petal.Le < 5

Petal.Wi >= 1.6

setosa
50 0 0

33%

versicol
0 47 1

32%

versicol
0 2 1

2%

virginic
0 0 3

2%

virginic
0 1 45

31%

yes no

FIGURE 3.28: The two classification trees for Iris.

to obtain either a classification or a regression tree, depending on the type of the target
variable you indicate in the formula.

Trees obtained with this package can also be used to obtain predictions for a set of test
cases. Package rpart uses the standard procedure of providing a predict() method for the
objects produced by function rpart(). As with most modeling functions the usage of this
predict() function requires you to specify the model in the first argument and the test
cases (a data frame) in the second. Let us see an example,

> set.seed(1234)
> rndSample <- sample(1:nrow(iris),100)
> tr <- iris[rndSample,]
> ts <- iris[-rndSample,]
> ct <- rpartXse(Species ~ ., tr, se=0.5)
> ps1 <- predict(ct, ts)
> head(ps1)

setosa versicolor virginica
1 1 0 0
3 1 0 0
9 1 0 0
11 1 0 0
12 1 0 0
14 1 0 0

> ps2 <- predict(ct, ts, type="class")
> head(ps2)

1 3 9 11 12 14
setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica

> (cm <- table(ps2, ts$Species))

ps2 setosa versicolor virginica

Introduction to Data Mining 151

b

w

Class , y= +1
Class , y = −1

FIGURE 3.29: Two linearly separable classes.

setosa 12 0 0
versicolor 0 21 3
virginica 0 0 14

> 100*(1-sum(diag(cm))/sum(cm)) # the error rate

[1] 6

If called without any further argument with a classification tree in the first argument,
the predict() method of these rpart objects will output a matrix with the estimated
probabilities of each class for each test case. With the extra argument type="class" we
get a vector with the predicted classes for all test cases (which are the classes with highest
probability).

To obtain predictions using regression trees we use the same predict() function. How-
ever, in this case the argument type="class" does not make sense as the predictions are
numbers and there are no class probabilities.

Further readings on tree-based models

The book by Breiman et al. (1984) can be seen as the major reference on tree-based models. The book covers
most of the aspects related with this type of modeling approach. The book by Quinlan (1993) provides a less
formal approach to classification trees, while in Torgo (1999a) you can find extensive coverage on regression
trees and several variants of these models.

3.4.5.3 Support Vector Machines

Support vector machines (SVMs) are one of the most successful modeling approaches.
To explain their approach it is easier to start with one particularly simple classification
problem — binary classification where the two classes can be separated by a linear model
as is the case in Figure 3.29.

These simple problems have a very elegant solution in the form of a linear model whose
additive form is usually considered very interpretable. In spite of their attractiveness, lin-
early separable classes do not abound in the real world. In effect, one frequently encounters

152 Data Mining with R: Learning with Case Studies

FIGURE 3.30: Mapping into a higher dimensionality.

Class , y= +1
Class , y = −1

FIGURE 3.31: Maximum margin hyperplane.

non-linear domains where such solutions are not applicable. SVMs try to overcome this prob-
lem by using a non-linear mapping of the original data into a very high dimension space
where the classes can be separated linearly (by an hyperplane) as illustrated in Figure 3.30.

The question of finding the hyperplane separating the classes is also relevant. There is
a potentially infinite number of hyperplanes that are able to separate the cases of the two
classes. Which one should we choose? Our goal is to ensure that the selected hyperplane
leads to higher classification accuracy. In this context, the best hyperplane is the one that
maximizes the separating margin between the points of the two classes, because this de-
creases the probability of confusion between the classes. The idea is illustrated in Figure 3.31
where we see two hyperplanes (red and blue) that are able to separate the cases of the two
classes. However, the blue hyperplane has a larger separating margin between the cases so
we prefer it over the red.

To determine the maximum margin hyperplane SVMs use a quadratic optimization
process. Going back to Figure 3.29, the equation of the separating hyperplane is,

Introduction to Data Mining 153

Class , y= +1
Class , y = −1

X2

X1

H1

H2

FIGURE 3.32: The maximum margin hyperplane and the support vectors.

w · x + b = 0 (3.40)

where w is a vector of coefficients and b is the distance to the origin.
If we assume that the points of one of the classes have Y = +1 while the others have

Y = −1, then we have that the separating hyperplane is such that,

w · xi + b ≥ 0 ∀i : yi = +1
w · xi + b ≤ 0 ∀i : yi = −1 (3.41)

These constraints still do not introduce the notion of margin. Assuming that the sepa-
rating hyperplane is in the center of the two maximum margin hyperplanes, H1 and H2, as
shown in Figure 3.32, and assuming that m is the distance from the maximum margin hy-
perplane to both H1 and H2, we can say that the equations defining these two hyperplanes
are,

w · xi + b = +m
w · xi + b = −m (3.42)

The points in these two hyperplanes are known as the support vectors (in red in Fig-
ure 3.32).

Without loss of generality we can scale the variables so that m = 1. Moreover, by
definition of H1 and H2, we know that there are no cases between the two, which means
that,

w · xi + b ≥ +1 ∀i : yi = +1
w · xi + b ≤ −1 ∀i : yi = −1 (3.43)

which can be re-written as,

154 Data Mining with R: Learning with Case Studies

yi(w · xi + b) ≥ +1 ∀i (3.44)

SVMs search to maximize the margin between H1 and H2. Using linear algebra we can
show that the distance between these two hyperplanes is the normalized difference between
their constant terms, where the normalization factor is the L2-norm, ‖w‖, of the coefficients.
This means that the distance between H1 and H2 is 2/‖w‖, which is the margin we want
to maximize. This maximization problem is inconvenient because calculating the L2-norm
involves a square root. This can be overcome because maximizing 2/‖w‖ is equivalent to
minimizing 1

2‖w‖
2. Taking into account the constraints of Equation 3.43, this minimization

is a convex quadratic programming problem.
This optimization problem can be solved with the help of Lagrange multipliers, through

a method known as Lagrangian relaxation. This leads to the primal optimization problem
defined as,

LP = ‖w‖
2

2 −
N∑
i=1

λi[yi(w · xi + b)− 1] (3.45)

where λ1, · · · , λN ≥ 0 are the Lagrangian multipliers.
It is possible to derive a simpler dual optimization problem that is a lower bound of the

solution to the primal problem LP . Under a set of conditions known as the Karush-Kuhn-
Tucker conditions the solutions to the two problems are equal. SVMs obtain the maximum
margin hyperplane by solving this dual optimization problem, that consists of maximizing
the following expression,

LD =
N∑
i=1

λi −
1
2

N∑
i=1

N∑
j=1

λiλjyiyj(xi · xj) (3.46)

subject to,

N∑
i=1

λiyi = 0

λi ≥ 0 , 1 ≤ i ≤ N

At this stage it is important to remark that solving the problem of Equation 3.46 only
requires knowledge of the class values (yi’s) and of the dot products between the cases in
the dataset (xi · xj). This latter issue is particularly relevant when we consider the case of
non-linearly separable classes as we will see below.

Till now we have seen that SVMs solve the problem of linearly separable binary classifi-
cation by finding the maximum margin hyperplane using a quadratic optimization approach
that involves solving Equation 3.46. We have also mentioned that when cases are not lin-
early separable, SVMs move the data into a higher dimension where this is feasible, i.e.
where they can apply the same optimization procedure.

When moving the data into a much higher dimension solving Equation 3.46 in this new
space would involve dot products of vectors of a much higher size than the original data.
This makes the computational complexity of the optimization problem much higher. Enter
the so-called kernel trick. A kernel function, K() is a function that when evaluated on two
vectors of dimension p gives the same result as the dot product of the transformation of
these two vectors into a much higher dimension r, i.e. K(x, z) = φ(x) · φ(z), where φ is a
mapping from the original space into a new higher dimension space. Let us see a concrete

Introduction to Data Mining 155

example. Suppose x = 〈x1, x2〉 and z = 〈z1, z2〉 are two points in a bi-dimensional space.
Take the polynomial kernel of degree 2, defined as K(xi,xj) = (xi · xj)2. In this context,

(x · z)2 = (〈x1, x2〉 · 〈z1, z2〉)2

= (x1z1 + x2z2)2

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= 〈x2
1, x

2
2,
√

2x1x2〉 · 〈z2
1 , z

2
2 ,
√

2z1z2〉

This means that the transformation φ(〈x1, x2〉) = 〈x2
1, x

2
2,
√

2x1x2〉 has the property
that K(x, z) = φ(x) · φ(z). In other words, instead of calculating the dot product of two
vectors in a high dimension, 〈x2

1, x
2
2,
√

2x1x2〉 · 〈z2
1 , z

2
2 ,
√

2z1z2〉, we can get the same exact
result by applying the kernel function to two vectors of smaller dimension! While in this
short illustrative example the difference in dimensions is irrelevant, with larger differences
this can be crucial when you have to make a large number of dot products. That is the case
with SVMs when they need to solve the optimization problem of Equation 3.46, for vectors
in a very high dimension, which was necessary to solve the non-linearity in the original
low-dimensional space. With this so-called kernel trick we can replace the dot products
in this high dimension on Equation 3.46, by cheap kernel calculations in the original low-
dimensional space.

Some common kernel functions are:

• Gaussian Kernel

K(xi,xj) = e

(
−
‖xi−xj‖

2

2σ2

)
• Polynomial Kernel with degree d

K(xi,xj) = (xi · xj)d

• Radial Kernel
K(xi,xj) = e−γ‖xi−xj‖2

In summary, SVMs solve binary classification tasks by searching for the maximum mar-
gin hyperplane using a quadratic programming formulation. When the classes are not lin-
early separable this problem needs to be solved in a very high dimensional space. To escape
the resulting computational problems due to “moving” into this high-dimension space, SVMs
use the kernel trick we described above.

The above procedure works well with two linearly separable classes. Unfortunately, some-
times it is hard to get a perfect linear separation between the classes, even at high dimen-
sions. In this context, SVMs tend to use a slightly more relaxed formulation than the one of
Equation 3.46. This is usually known as the soft margin optimization problem. Essentially,
this resorts to allowing a few cases to be on the “wrong” side of the separating hyperplane.
For each of these cases we establish a penalty (frequently a parameter on SVM imple-
mentations). In this context, the optimization problem is slightly reformulated to take into
account for this penalty for each case on the wrong side of the hyperplane. More specifically,
it can be proven that the dual problem of this reformulated optimization task is exactly
the same as before (Equation 3.46) with the addition of an extra constraint stating that
λi ≤ C, where C is the penalty to pay for each case on the wrong side of the hyperplane.
This means that the soft margin optimization problem consists of finding the solution for
Equation 3.46, subject to

∑N
i=1 λiyi = 0 and 0 ≤ λi ≤ C.

Till now we have always talked about binary classification tasks. How do SVMs tackle

156 Data Mining with R: Learning with Case Studies

x

x
x x

x x x x

x x

x 0

−ε

−ε

+ε

+ε

FIGURE 3.33: SVMs for regression.

non-binary classification? These problems are usually handled by solving m binary classifi-
cation tasks with the previously described optimization method, where m is the number of
classes of the problem. In summary, given a problem with m classes, obtain m hyperplanes,
each separating the respective class from all others. Given a test case, we assign it to the
class whose separating hyperplane is more distant, i.e. we have more confidence that it is
on a certain side of the hyperplane.

The idea of SVMs was adapted to regression tasks in Vapnik (1995). The author has
proposed ε-SV regression as a method that aims at finding an hyperplane whose distance
to all training cases is at most ε. This means that there is a kind of “envelope” of size ε
around the hyperplane where all cases are (Figure 3.33).

In the following short description we mostly follow Smola and Schölkopf (1998). ε-SV
regression uses as an error metric the following,

|ξ|ε =
{

0 if |ξ| ≤ ε
|ξ| − ε otherwise (3.47)

This error metric and the idea of the “envelope” in ε-SV regression are synthesized in
Figure 3.33.

The theoretical developments that lead to the formalization of the optimization problem
for ε-SV regression are similar to what we have seen before for classification. For the more
general case where we accept some cases outside of the “envelop” (each paying some penalty
C) we have the following minimization problem,

Minimize : 1
2‖w‖

2 + C
∑l
i=1(ξi + ξ∗i) (3.48)

Subject to :

 yi −w · x− b ≤ ε+ ξi
w · x + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

As in classification it is possible to use Lagrangian multipliers to obtain a primal op-
timization function that also has a dual representation that corresponds to the following
optimization problem,

Maximize :
{
− 1

2
∑N
i=1
∑N
j=1(λi − λ∗i)(λj − λ∗j)(xi · xj)

−ε
∑N
i=1(λi + λ∗i) +

∑N
i=1 yi(λi − λ∗i)

(3.49)

Introduction to Data Mining 157

Subject to :
{ ∑N

i=1(λi − λ∗i) = 0
λi, λ

∗
i ∈ [0, C]

Once again, when solving this problem in high dimension spaces we can resort to the
kernel trick to avoid the computational burden of the dot products in Equation 3.49.

In R there are two main implementations of SVMs: the one available in package
e1071 (Dimitriadou et al., 2009), and that of package kernlab (Karatzoglou et al., 2004).
Both follow a similar formula-based interface and are able to handle regression and (multi-
class) classification tasks. Package kernlab is probably more flexible in terms of the avail-
able options. Let us look at a few examples with the simpler svm() function from package
e1071.

> library(e1071)
> data(iris)
> set.seed(1234)
> rndSample <- sample(1:nrow(iris), 100)
> tr <- iris[rndSample,]
> ts <- iris[-rndSample,]
> s <- svm(Species ~ ., tr)
> ps <- predict(s, ts)
> (cm <- table(ps, ts$Species))

ps setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 1
virginica 0 1 16

> 100*(1-sum(diag(cm))/sum(cm)) # the error rate

[1] 4

Using the default parameter settings as above, the svm() function uses a radial kernel
with constraints violation cost of 1. For instance, to obtain a solution using a polynomial
kernel of degree 3 and with a higher cost of constraints violations, we would do,

> s2 <- svm(Species ~ ., tr, cost=10, kernel="polynomial", degree=3)
> ps2 <- predict(s2, ts)
> (cm2 <- table(ps2, ts$Species))

ps2 setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 3
virginica 0 1 14

> 100*(1-sum(diag(cm2))/sum(cm2)) # the error rate

[1] 8

Below you will find similar illustrations for handling the regression task of the Boston
Housing dataset,

158 Data Mining with R: Learning with Case Studies

> data(Boston,package='MASS')
> set.seed(1234)
> sp <- sample(1:nrow(Boston),354)
> tr <- Boston[sp,]
> ts <- Boston[-sp,]
> s1 <- svm(medv ~ ., tr)
> ps1 <- predict(s1, ts)
> mean(abs(ps1-ts$medv))

[1] 2.769211

> s2 <- svm(medv ~ ., tr, kernel="radial", cost=10, epsilon=0.02, gamma=0.01)
> ps2 <- predict(s2, ts)
> mean(abs(ps2-ts$medv))

[1] 2.400234

Further readings on support vector machines

A good reference book on SVMs is Cristianini and Shawe-Taylor (2000). A good alternative is also the book
by Schölkopf and Smola (2002). The web site http://www.kernel-machines.org contains a large list of up
to date references on this active area. For shorter documents Burges (1998) provides a nice tutorial on SVMs.
Another good tutorial, this time focused on SVMs for regression, is the report by Smola and Schölkopf (1998).

3.4.5.4 Artificial Neural Networks and Deep Learning

Artificial Neural Networks (ANNs) are non-linear models that can be used to solve
both classification and regression tasks. At the origins of these models is a strong biological
inspiration. McCulloch and Pitts (1943) have proposed the first artificial model of a neuron.
An artificial neural network is composed of a set of units (neurons) that are connected
together, with each of these connections having an associated weight. Each of the units
has an activation level and carries out a computation that provides means to update this
activation level. In simple terms, obtaining an ANN consists of updating the weights of
the connections in such a way that leads the model to produce “correct” outputs, i.e. good
approximations of the function we are trying to “learn” given a historical record of function
mappings (i.e. a training set).

Neurons in ANNs are computation units that receive inputs from other neurons, perform
a computation using these inputs, and produce an output value that is fed into other
neurons. ANNs also have some special neurons that allow the models to receive input from
the outside world and also to output the overall result of their computation. Each connection
between nodes has an attached weight that is a metaphor of the strength of synapses in
real neural networks. The weights play a key role in the way the values transmitted from
one neuron to the others influence the output of these neurons. By changing these weights
in an adequate manner we can lead the ANN to produce the correct outputs, i.e. to provide
a good approximation of the function we are modeling using some dataset.

Figure 3.34 shows a graphical representation of an artificial neuron. We can describe
the computation taking place at these units as consisting of two sequential steps: (i) first
we have a linear computation using the input values arriving from other units weighted by
the strength of the respective connections; (ii) then a non-linear function (known as the
activation function) is applied to the value resulting from the previous computation; (iii)
the result of this non-linear function is the output of this neuron that is sent to the neurons
to which the unit is connected.

Introduction to Data Mining 159

ini =
∑

ai

g

Input
Function

Activation
Function

Output

Input
Connections

ai wi,j
ai = g(ini)

Output
Connections

FIGURE 3.34: An artificial neuron.

The linear computation is essentially a weighted sum of the inputs to the neuron,

ini =
k∑
j=1

wj,iaj (3.50)

where k is the number of input neurons to the neuron i, wx,y is the weight of the connection
between neurons x and y, and ar is the output of neuron r.

The non-linear computation at neuron i is applied to the value ini. It consists of an
activation function that will determine the output of the neuron, ai. Different activation
functions lead to different behaviors of the ANN. Some common activation functions include,

• The Step Function
step(x) =

{
1 if x ≥ t
0 if x < t

• The Sign Function
sign(x) =

{
+1 if x ≥ 0
−1 if x < 0

• The Sigmoid Functions
sigmoid(x) = 1

1 + exp−x

As we have mentioned before, an ANN is a set of neurons that are connected to each
other. Rosenblatt (1958) introduced the perceptron, one of the simplest examples of an ANN.
This work, later extended by Minsky and Papert (1969), defines a network formed solely
by a set of input units (as many as there are predictor variables of the problem) that are
directly connected to the output units. This type of network has very limited approximation
capabilities (essentially linear tasks) and thus has essentially a historical interest. Multi-layer
architectures are much more powerful and are the most frequently used type of networks.
There are two main types of multi-layer ANNs: (i) feed-forward (acyclic); and (ii) recurrent
(cyclic). The former consist of uni-directional connections between neurons from the input
till the output neurons. The latter may include arbitrary connections between nodes. In our
short description of this area we will focus on feed-forward multi-layer ANNs, which are the
most common models of this type.

On feed-forward ANNs neurons are structured in layers. There is an input layer with as
many neurons as there are predictor variables in the problem being tackled. At the other
end there is the output layer. This may consist of a single neuron for regression tasks, or
a set of neurons (as many as there are class values) in the case of classification problems.
Between these two layers one may have one or more hidden layers, though the most common
architecture includes a single hidden layer. Figure 3.35 illustrates this most common setup
of feed-forward ANNs.

Training a multi-layer feed-forward ANN consists of iteratively presenting each training

160 Data Mining with R: Learning with Case Studies

...

Ik wk,j

aj

Input
Layer

Hidden
Layer

Output
Layer

wj,i

O1

Om

FIGURE 3.35: A feed-forward multi-layer ANN architecture.

case at the input nodes of the network and carrying out the calculations at each node in a
forward manner (from the input to the output layers). Once an output is obtained in the
output neurons this is compared with the true target variable value of the training case.
If there is an error, then this error is used to update the weights of the ANN using a rule
that we will discuss below. This iterative process keeps going until the weights of the ANN
converge or some other termination criterion is reached.

The process of updating the weights consists of trying to propagate the error at the
output neurons back to the neurons in previous layers. This is usually achieved by the
application of an algorithm known as backpropagation. If Oi is the value at output node i,
and Ti is the true target variable value of the training case, we can calculate the error at
the output neuron as Erri = (Ti −Oi). The updating of the weights from the hidden layer
units till this output unit is done using,

wj,i = wj,i + η · aj ·∆i (3.51)

where ∆i = g′(ini) · Erri, with g′(.) being the derivative of the activation function g(.)
while η is known as the learning rate.

To update the weights of the connections from the input units till the hidden layer units
we need a quantity similar to Erri for each of these units in the hidden layer. This is where
the backpropagation idea enters. Each hidden unit j is responsible for a certain fraction
of the error ∆i in the output nodes to which it is connected. Thus each ∆i value is going
to be divided according to the weight of the connection between the respective hidden and
output units (i.e. wj,i), thus propagating the errors backwards. This corresponds to,

∆j = g′(inj) ·
∑
i

wj,i ·∆i (3.52)

where the i’s are the output units to which the hidden unit j is connected.

Introduction to Data Mining 161

Finally, we can update the weights from the input units to the hidden units using these
∆j quantities, as follows,

wk,j = wk,j + η · Ik ·∆j (3.53)

where k is an input unit and j is a hidden unit.
ANNs are a powerful modeling technique that have been shown to be universal func-

tion approximators, meaning that with the correct architecture they can approximate any
function. Still, this generality comes with two main costs: (i) first we need to know how to
correctly define the best network architecture for a given predictive task; and (ii) we must
be able to pay the price of a potentially slow and computationally demanding convergence
process. Nevertheless, on this latter issue one should add that ANNs architectures are very
adequate for parallel computation and there are even specialized computer architectures
designed from scratch to learn ANNs in an efficient manner.

In R the most frequently used implementation of feed forward ANNs is that provided
by the package nnet (Venables and Ripley, 2002) that comes with base R. Other available
implementations include the package RSNNS (Bergmeir and Benítez, 2012) that provides
an interface to the Stuttgart Neural Network Simulator29, the package FCNN4R (Klima,
2016) that provides an interface to the FCNN library30 that is a fast and highly extensible
C++ library for learning ANNs, and also the package neuralnet (Fritsch et al., 2012).

The following code illustrates using the function nnet() from package nnet,

> library(nnet)
> data(iris)
> set.seed(1234)
> rndSample <- sample(1:nrow(iris), 100)
> tr <- iris[rndSample,]
> ts <- iris[-rndSample,]
> n <- nnet(Species ~ ., tr, size=6 ,trace=FALSE, maxit=1000)
> ps <- predict(n, ts, type="class")
> (cm <- table(ps, ts$Species))

ps setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 1
virginica 0 1 16

> 100*(1-sum(diag(cm))/sum(cm)) # the error rate

[1] 4

The parameter size allows the user to specify how many neurons the hidden layer has
(note that this package only allows for a single hidden layer). The parameter trace is
simply to avoid the output of the convergence process involved in learning the network.
Finally, the parameter maxtit allows you to set a maximum number of iterations of the
weight convergence process to limit the computation time. Although not used in the above
call, the parameter decay can be used to set the learning rate (η in Equation 3.51). By
default, the function nnet() sets the initial weights of the connections between neurons
with random values in the interval [−0.5 · · · 0.5]. This means that two successive runs of
the function with exactly the same arguments can actually lead to different solutions. To

29http://www.ra.cs.uni-tuebingen.de/SNNS/
30http://fcnn.sourceforge.net/

162 Data Mining with R: Learning with Case Studies

ensure you get the same results as we present above, we have added a call to the function
set.seed() that initializes the random number generator to some seed number.

As you can observe, the predict method of the resulting class of objects also includes
the setting type="class" like rpart ojects, to obtain the actual predicted classes instead
of a matrix of class probabilities.

For handling regression tasks the process is similar, but the function nnet() requires
you to call it with the argument linout=TRUE, as seen in the following example,

> data(Boston,package='MASS')
> set.seed(1234)
> sp <- sample(1:nrow(Boston),354)
> tr <- Boston[sp,]
> ts <- Boston[-sp,]
> nr <- nnet(medv ~ ., tr, linout=TRUE, trace=FALSE, size=6, decay=0.01, maxit=2000)
> psnr <- predict(nr, ts)
> mean(abs(psnr-ts$medv))

[1] 3.028373

Neural networks are usually considered “black-box” models in the sense that we can
not try to understand or show the models. Still, some efforts have been made in terms of
trying to get some form of visualization of the outcome of these tools. Package Neural-
NetTools (Beck, 2015) is an example of a package that provides some interesting tools
for exploring these models. Figure 3.36 shows two plots obtained with this package. The
left-most graph shows a ranking of the importance given by the network to each of the pre-
dictors of the Boston Housing dataset, whilst the right-hand graph shows the architecture
of the neural network obtained above. The graphs were obtained as follows:

> library(ggplot2)
> library(NeuralNetTools)
> ## Feature importance (left graph)
> garson(nr) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
> ## Network diagram (rigth graph)
> plotnet(nr)

In the plot of the neural network (right graph) obtained by function plotnet(), positive
weights of neuron connections are presented in black, while negative weights are in gray. The
line thickness is proportional to the relative magnitude of the weights. Function garson()
obtains and plots (using the ggplot2 infra-structure) a bar plot with the feature relevance
scores of each of the input variables. It is interesting to observe the ranking of the features
provided by the garson() function. On the top part of the ranking appears the pollution
indicator nox. This indicator was actually the motivation of the original study with this
dataset, i.e. to check if the pollution levels were having some impact on housing prices.

In recent years a new research area, usually known as deep learning, has emerged as a
consequence of several successful practical applications of this type of technique. As we will
see, there are strong relationships with ANNs and there are even critics who say that this
is just a rebranding of ANNs that were seeing their popularity decrease.

Deep learning is related to the issue of representation of concepts with the long term
objective of having machines that are able to learn concepts, a critical step toward artificial
intelligence. The idea is to have a kind of hierarchy of concepts each built upon the previous
simpler concepts. Thinking of image recognition, one of the success cases of the deep learning
approaches, we can start at the lowest levels with pixels but we can build increasingly more

Introduction to Data Mining 163

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

crim

zn

indus

chas

nox

rm

age

dis

rad

tax

ptratio

black

lstat

H1

H2

H3

H4

H5

H6

O1 medv

B1 B2

0.0

0.1

0.2

zn dis
ch

as
ind

us

pt
ra

tio ag
e rm ra

d
cr

im lst
at no

x
bla

ck ta
x

Im
po

rt
an

ce

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

crim

zn

indus

chas

nox

rm

age

dis

rad

tax

ptratio

black

lstat

H1

H2

H3

H4

H5

H6

O1 medv

B1 B2

FIGURE 3.36: Visualizing the Boston neural network results.

complex features (e.g. edges) describing an image, with each new concept building up a
hierarchy of increasing levels of abstraction. Obtaining this hierarchy of concepts can be
seen as a kind of representation learning, i.e. we are trying to infer a new and more useful
representation of what we observe by building a hierarchy of abstract concepts that describe
these observations. The key to learning these deep representations was a seminal work by
Hinton et al. (2006) that presented the idea of using a greedy layerwise unsupervised method
to learn a hierarchy of features one level at a time. At each level an unsupervised feature
learning method was used to create new features based on those of previous levels. This was
achieved by learning weights of a deep (many levels) neural network. The outcome of this
feature representation learning stage was a set of layers that were used as a starting point
for learning a predictive model, e.g. an ANN.

From a simplistic point a view we can look at standard ANNs as a kind of shallow neural
network containing just a few layers, while with deep learning neural networks we have
many more layers (Schmidhuber, 2014). Deep learning neural networks (DLNNs) have been
applied to many domains and also to different tasks. Here we will focus on the application to
predictive tasks, also known as supervised learning tasks. Deep learning experts do not agree
at which depth an ANN starts to become deep as opposed to the usual shallow networks
we have seen before (Schmidhuber, 2014). Moreover, it is not clear which depth should be
chosen for a given problem. As frequently is the case in predictive modeling, one has to
try and compare different alternatives to reach a good solution. One potential drawback of
DLNNs is that they basically increase the space of possible alternatives a lot, thus increasing
the size of the model selection problem.

In R several packages were recently introduced that allow one to obtain DLNNs. Ex-
amples include the implementation available in package h2o (Aiello et al., 2016), package
mxnet 31, package darch (Drees, 2013), or package deepnet (Rong, 2014). In our simple

31https://github.com/dmlc/mxnet/tree/master/R-package

164 Data Mining with R: Learning with Case Studies

illustrations we will use the implementation available in the H2O32 open source machine
learning platform. This is a very fast an scalable platform with interfaces to many languages,
including R by means of the package h2o. This package includes several other predictive
modeling techniques that you may also wish to explore, particularly if you are facing very
large scale problems. Here we are simply going to provide very basic examples of how to
use their deep learning neural network model.

After installing the package the first step is to start an instance of H2O.

> library(h2o)
> h2oInstance <- h2o.init(ip="localhost") # start H2O instance locally

Function h2o.init() ca be used to start H2O instances. In this simple illustrative
example we are running a local instance, but much more complex setups are available
(check the documentation of the package for illustrations). We are using all defaults for this
H2O instance as this is just an illustration. Once we have the instance up and running we
can obtain models in H2O. The following code starts by loading the Iris dataset into H2O,
creating an H2OFrame object, and then learns a deep feed-forward multi-layer ANN using
this data.

> data(iris)
> set.seed(1234)
> rndSample <- sample(1:nrow(iris), 100)
> trH <- as.h2o(iris[rndSample,],"trH")
> tsH <- as.h2o(iris[-rndSample,],"tsH")
> mdl <- h2o.deeplearning(x=1:4, y=5, training_frame=trH)
> preds <- h2o.predict(mdl,tsH)[,"predict"]

Function as.h2o() can be used to import a local data frame into the H2O instance.
After doing this for the train and test sets we use the function h2o.deeplearning() for
obtaining the model. This function does not use the standard formula interface. We specify
the training data through parameter training_frame and then we use the parameters x
and y to indicate the columns with the predictors and the target variables, respectively.
Finally, function h2o.predict() can be used to obtain the predictions that are provided
as a matrix with a column with the predicted class (the one we are selecting), and other
columns with the estimated probabilities of each class. With these predicted classes we can
calculate the error rate of the model,

> (cm <- table(as.vector(preds), as.vector(tsH$Species)))

setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 1
virginica 0 1 16

> 100*(1-sum(diag(cm))/sum(cm))

[1] 4

Note the need to convert both the predicted classes and the true values into vectors as
they are both H2OFrame objects.

32http://www.h2o.ai/

Introduction to Data Mining 165

The following is a small example of applying a similar strategy for a regression task,
using the Boston Housing dataset,

> library(h2o)
> h2oInstance <- h2o.init(ip="localhost") # start H2O instance locally
> data(Boston,package="MASS")
> rndSample <- sample(1:nrow(Boston), 354)
> trH <- as.h2o(Boston[rndSample,],"trH")
> tsH <- as.h2o(Boston[-rndSample,],"tsH")
> mdl <- h2o.deeplearning(x=1:13, y=14, training_frame=trH,
+ hidden=c(100,100,100, 100), epochs=500)
> preds <- as.vector(h2o.predict(mdl,tsH))

In the above example we have used the parameter hidden to specify the number of
neurons on each hidden layer (four in this example). Moreover, we have also used the
parameter epoch to specify the number of iterations of the convergence process.

Note that in the case of regression there are no associated probabilities so the result of
the h2o.predict() function only contains a single column. With these predictions we can
calculate the error as usual,

> mean(abs(preds-as.vector(tsH$medv)))

[1] 2.206557

Further readings on neural networks and deep learning
The book by Rojas (1996) is a general reference on neural networks. The work of McCulloch and Pitts (1943)
presents the first model of an artificial neuron. This work was generalized by Ronsenblatt (1958) and Minsky and
Papert (1969). The back-propagation algorithm, the most frequently used weight updating method, although
frequently attributed to Rumelhart et al. (1986), was, according to Rojas (1996), invented by Werbos (1974,
1996). Regarding deep learning a good introduction is the article by Bengio (2009). Other good tutorial articles
are the works by Bengio et al. (2012) and Schmidhuber (2014). The web page http://deeplearning.net/ is a
great source of information on this recent research area including many pointers to documentation and software.

3.4.5.5 Model Ensembles

Ensembles are one of the most successful approaches to predictive analytics. In a nutshell,
an ensemble is a set of models that together solve a concrete problem. The individual models
are usually called the base learners and each of them is able to solve the predictive task being
addressed. The main idea of ensembles is that of being able to capitalize on particularities
distinguishing each base learner so that the aggregation of the models is able to perform
better than each of them individually. In order to stimulate these gains one of the key
aspects is the issue of diversity among ensemble members. The most frequent setting of
ensembles is to use the same type of base learners (i.e. using the same modeling approach)
that is applied to slightly different variants of the original data. These ensembles are usually
knowns as homogeneous ensembles. Other types of ensembles use a diverse set of modeling
tools leading to heterogeneous ensembles.

There are strong theoretical studies that somehow explain why ensembles are so suc-
cessful (e.g. Dietterich (2000)). Still, intuitively it is easy to understand that for complex
problems it is difficult to obtain a single model that is able to “explain” all the observa-
tions of the problem. In this context, it seems logical to think that averaging over different
perspectives of the observations will usually lead to better performance. In terms of the-
oretical analysis one of the key explanations revolves around the notion of bias-variance

166 Data Mining with R: Learning with Case Studies

decomposition of the error of a model. This decomposition results from understanding that
the errors of predictive models have two main components: (i) the bias component is the
part of the error that is due to the poor ability of the model to fit the observed data; while
(ii) the variance component has to do with the sensibility of the model to the given training
data. Different modeling techniques are more susceptible to one or the other of these causes
of prediction errors. For instance, models that make strong assumptions on the functional
form of the unknown function we are trying to approximate (e.g. linear models) may have a
higher bias component if these assumptions are not completely accurate. On the other hand,
models that are very flexible in terms of the functional form tend to suffer more from the
problem of overfitting, thus being more sensitive to small variations in the available train-
ing sample, that may lead to rather different models. There is a well-known bias-variance
tradeoff. In effect, decreasing the bias by adjusting more to the training sample will most
probably lead to a higher variance — the overfitting phenomenon — while decreasing the
variance by being less sensitive to the given training data will most probably have as a
consequence a higher bias. Ensembles are able to reduce both components, which explains
their success. By using as base models techniques with a high variance component we ob-
tain models that are able to explain very accurately (often too much due to overfitting) the
training sample provided. However, by using slightly different training samples to obtain
each individual model, and then averaging over these models, we are able to reduce the
variance of the overall set of models in spite of the individual models suffering from this
problem.

In our necessarily short overview of this area we will focus on some of the most suc-
cessful ensemble techniques. One of the first successful examples of an ensemble was bag-
ging (Breiman, 1996). This is a very simple idea based on the usage of tree-based models as
base learners. Bagging (Bootstrap Aggregating) is a method that obtains a set of k mod-
els using different bootstrap samples of the given training data. For each model a sample
with replacement of the same size as the available data is obtained. This means that for
each model there is a small proportion of the examples that will be different. If the base
learner has a high variance (i.e. is very sensitive to variations on the training sample), this
will ensure diversity among the k models. In this context, bagging should be applied using
base learners with high variance as it is the case of tree-based models, particularly if not
post-pruned.

Bagging is implemented in several R packages. An example is the implementation avail-
able in the package adabag (Alfaro et al., 2013). Below you can find a simple example of
applying the function bagging() of this package,

> library(adabag)
> data(iris)
> set.seed(1234)
> rndSample <- sample(1:nrow(iris), 100)
> tr <- iris[rndSample,]
> ts <- iris[-rndSample,]
> m <- bagging(Species ~ ., tr, mfinal=500)
> ps <- predict(m,ts)
> names(ps)

[1] "formula" "votes" "prob" "class" "confusion" "error"

> ps$confusion

Observed Class
Predicted Class setosa versicolor virginica

setosa 12 0 0

Introduction to Data Mining 167

versicolor 0 20 1
virginica 0 1 16

> ps$error*100 # percentage of errors

[1] 4

The parameter mfinal controls the number of trees that is obtained, i.e. the number of
base models in the ensemble. The predict() method of the obtained models produces a list
with several components including the confusion matrix and the corresponding error rate.
One drawback of the facilities of this package is that it is only able to handle classification
tasks. For regression tasks we can use the implementation of bagging available in the package
ipred (Peters and Hothorn, 2015). The following is an example of using it with the Boston
dataset,

> library(ipred)
> data(Boston,package='MASS')
> set.seed(1234)
> sp <- sample(1:nrow(Boston),354)
> tr <- Boston[sp,]
> ts <- Boston[-sp,]
> m <- bagging(medv ~ ., tr, nbagg=500)
> ps <- predict(m, ts)
> mean(abs(ps-ts$medv))

[1] 2.930425

The function bagging() of package ipred uses the parameter nbagg to control the num-
ber of trees/models. This implementation uses the trees obtained by the function rpart()
of the package rpart. It is possible to control the growth and pruning of these trees through
some parameters of this bagging() function.

Breiman has evolved the general idea of bagging leading to the well-known and widely
successful technique of random forests (Breiman, 2001). The general idea is similar in the
sense that random forests are a set of k tree-based models, each obtained using a different
bootstrap sample of the original dataset. The main difference to bagging resides in the way
the trees are obtained. In order to generate even more variability among the individual
models forming the ensemble, random forests grow each tree using a random component in
terms of the predictors used. More specifically, as we have seen in Section 3.4.5.2 (page 145),
trees are obtained with a recursive partitioning algorithm that includes a step designed to
select the best test for each tree node. In “normal” trees this selection involves comparing
the possible splits over all predictor variables. In random forests this search for the best
split is carried out over a random subset of these variables. Moreover, this random selection
is done at each node of the tree. The effect of this is that random forests use trees grown
not only with different observations but also using different predictors, thus increasing the
diversity of the individual models when compared to bagging. Random forests are currently
among the most successful prediction models over a wide range of tasks.

In R there are several implementations of random forests. The main one, based on the
original code by Leo Breiman, is available in the package randomForest (Liaw and Wiener,
2002). Its usage is fairly standard as the following simple example, using the Breast Cancer
dataset available in the package mlbench, tries to illustrate,

168 Data Mining with R: Learning with Case Studies

> library(randomForest)
> library(DMwR2)
> data(BreastCancer, package="mlbench")
> bc <- cbind(knnImputation(BreastCancer[,-c(1,11)]), # column 1 is an ID
+ Class=BreastCancer$Class)
> set.seed(1234)
> rndSample <- sample(1:nrow(bc), 500)
> tr <- bc[rndSample,]
> ts <- bc[-rndSample,]
> m <- randomForest(Class ~ ., tr, ntree=750)
> ps <- predict(m, ts)
> (cm <- table(ps, ts$Class))

ps benign malignant
benign 114 1
malignant 7 77

> 100*(1-sum(diag(cm))/sum(cm)) # the error rate

[1] 4.020101

The application of random forests to this particular task required some pre-processing
stages. Specifically, we had to use some strategy to handle unknown values that this dataset
contains, because this implementation of random forests is not able to use datasets with
missing data. We have used the function knnImputation() from our book package for this
purpose (we have eliminated the first column of the dataset because it was a useless patient
ID). Regarding the function randomForest() we have used the parameter ntree to indicate
the number of trees forming the ensemble. The function also includes another important
parameter that controls the feature sampling process we have described above. This is the
goal of parameter mtry that can be set to the number of features to randomly select at each
node, when growing the trees.

Both bagging and random forests are examples of what are usually known as ensembles
of independent models. In this type of ensemble each individual model is obtained indepen-
dently of the others. This is an interesting property from a computational perspective. In
effect, given the number of models typically included in ensembles, the computational cost of
applying these approaches to very large datasets can be too high. Having independent base
models means that in theory all of them could be obtained at the same time, i.e. these mod-
els are highly prone to parallel computation strategies. Packages taking advantage of these
strategies for obtaining random forests include for instance, the package Rborist (Selig-
man, 2016) that provides an implementation of these models that can take advantage of
multicore architectures and GPUs; the package randomForestSRC (Ishwaran and Ko-
galur, 2016); or the implementation available in the package h2o (Aiello et al., 2016) that
we have already mentioned when describing deep learning in R.

There is another class of ensembles known as coordinated models, where each member
of the ensemble is dependent on the others. Boosting algorithms belong to this class of
models. Boosting (Schapire, 1990) was originally developed with the goal of answering the
question: can a set of weak learners form a single strong learner? In this question a “weak”
learner is a model that alone is unable to correctly approximate the unknown predictive
function. Boosting algorithms work by iteratively creating a strong learner by adding at
each iteration a new weak learner to make the ensemble. Weak learners are added with
weights that reflect the learner’s accuracy. After each addition the data is re-weighted such

Introduction to Data Mining 169

that cases that are still poorly predicted by the current set of models, gain more weight.
This means that each new weak learner will focus on the errors of the previous ones.

AdaBoost (Adaptive Boosting) (Freund and Shapire, 1996) is one of the most well-known
and successful boosting algorithms. It consists of an iterative process where new models are
added to form an ensemble. It is adaptive in the sense that at each new iteration of the
algorithm, the new models are built to try to overcome the errors made in the previous
iterations. At each iteration the weights of the training cases are adjusted so that cases that
were wrongly predicted get their weight increased to make new models focus on accurately
predicting them. AdaBoost was originally created for classification tasks although variants
for regression also exist, as we will see. AdaBoost produces a model that can be seen as an
additive model where each term is a base model,

H(xi) =
∑
k

wkhk(xi) (3.54)

where wk is the weight of the weak model hk(xi).
The AdaBoost algorithm starts by assigning the same weight to all training cases

(d1(xi) = 1/N , where N is the sample size). At iteration r the algorithm builds the weak
model hr(xi) such that this model minimizes the weighted training error. This error is given
by e =

∑
i dr(xi)I(yi 6= hr(xi)), where dr(xi) is the weight of case 〈xi, yi〉 at iteration r.

The weight of the weak model hr(xi) is calculated by,

wr = 1
2 ln

(
1− e
e

)
(3.55)

After obtaining the weak model at iteration r and the respective weight, the next itera-
tion receives the same data sample but with the weights of the cases changed to reflect the
failures of the current set of models. More specifically, the case weights for iteration r + 1
are updated by,

dr+1(xi) = dr(xi)
exp(−wrI(yi 6= hr(xi)))

Zr
(3.56)

where Zr is a normalization factor chosen to make all dr+1 sum up to one.
Once again there are several implementations of boosting in R. The package adabag that

we have seen before also contains the function boosting() that provides an implementation
of AdaBoost.M1 (Freund and Shapire, 1996) and of another boosting algorithm named
SAMME (Zhu et al., 2009). The following is a simple illustration of its usage,

> library(adabag)
> data(iris)
> set.seed(1234)
> rndSample <- sample(1:nrow(iris), 100)
> tr <- iris[rndSample,]
> ts <- iris[-rndSample,]
> m1 <- boosting(Species ~ ., tr, mfinal=500) # AdaBoost.M1
> ps1 <- predict(m1,ts)
> ps1$confusion

Observed Class
Predicted Class setosa versicolor virginica

setosa 12 0 0
versicolor 0 20 1
virginica 0 1 16

170 Data Mining with R: Learning with Case Studies

> ps1$error*100

[1] 4

> m2 <- boosting(Species ~ ., tr, coeflearn="Zhu", mfinal=500) # SAMME
> ps2 <- predict(m2,ts)
> ps2$confusion

Observed Class
Predicted Class setosa versicolor virginica

setosa 12 0 0
versicolor 0 20 1
virginica 0 1 16

> ps2$error*100

[1] 4

Gradient boosting (Friedman, 2002, 1999) is a boosting algorithm based on the idea of
steepest-descent minimization establishing connections between boosting and optimization.
Like other boosting algorithms it builds a model with an additive form as in Equation 3.54.
At each iteration of gradient boosting we add a new weak learner that tries to overcome the
errors of the current model ensemble. In gradient boosting this new weak learner is obtained
by trying to fit the residuals (errors) of the current ensemble. This means that this model is
trained with a dataset formed by the cases {〈xi, ri〉}, where ri = −∂L(yi, f(xi))/∂f(xi)
and L(.) is a chosen loss function. The gradients for the most common loss functions
are easy to obtain. For instance for the squared loss function 1

2 [yi − f(xi)]2 the value
of −∂L(yi, f(xi))/∂f(xi) is yi − f(xi). Friedman (1999) has proposed the method named
gradient boosting machine that follows these ideias and can be used to address several types
of predictive tasks, including regression and classification.

The gradient boosting machine is implemented in package gbm (Ridgeway, 2015). The
implementation provided in this package closely follows the original code by Friedman but
it adds a few extra features. The following is a short example for the Boston dataset,

> library(gbm)
> data(Boston,package='MASS')
> set.seed(1234)
> sp <- sample(1:nrow(Boston),354)
> tr <- Boston[sp,]
> ts <- Boston[-sp,]
> m <- gbm(medv ~ ., data=tr, n.trees=5000)

Distribution not specified, assuming gaussian ...

> ps <- predict(m, ts, n.trees=5000)
> mean(abs(ps-ts$medv))

[1] 3.069492

Function gbm() can be used to obtain models using the gradient boosting machine. A
first small note on the fact that, contrary to most modeling functions in R, this particuar
function does not take the training data as the second argument, so we had to specify the
parameter by name in the above code. The second parameter is actually distribution that
allows the user to specify the loss function used in the gradient calculations. The default is to

Introduction to Data Mining 171

infer it from the type of the target variable, which in the above example leads to a Gaussian
distribution that corresponds to the quadratic loss function we have mentioned before. You
should check the help page of the gbm() function for other alternatives. Parameter n.trees
allows you to indicate the number of weak learners in the model. The function includes
many more parameters that allow fine tuning of the behavior of the model. When using the
model for prediction you must specify how many of the trees you wish to use through the
parameter n.trees of the predict method.

The following example illustrates the application of the function gbm() to a classification
task, as well as other details of this function.

> data(iris)
> set.seed(1234)
> rndSample <- sample(1:nrow(iris), 100)
> tr <- iris[rndSample,]
> ts <- iris[-rndSample,]
>
> m <- gbm(Species ~ ., data=tr, n.trees=10000,
+ cv.folds=5, n.cores=4)

Distribution not specified, assuming multinomial ...

> (best <- gbm.perf(m, plot.it=FALSE, method="cv"))

[1] 3035

> ps <- predict(m, ts, n.trees=best, type="response")[,,1]
> ps <- as.factor(colnames(ps)[max.col(ps)])
> (cm <- table(ps, ts$Species))

ps setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 1
virginica 0 1 16

> 100*(1-sum(diag(cm))/sum(cm)) # the error rate

[1] 4

With more than two classes, as in the case of Iris, the default for the parameter dis-
tribution is “bernoulli”33. In the above example we have set a large number of trees, and
have also used the facilities provided by the package for parallel computation on multicore
machines. We have indicated through parameter n.cores that we allow the function to use
4 cores of our processor34. We have also used parameter cv.folds to obtain cross validation
estimates of the true prediction error of the model for the different number of trees. This
allows us to use the function gbm.perf() to obtain the number of trees (from 1 to 10000
we have set in the parameter n.trees of gbm()) that gives the best predictive performance
according to these cross validation estimates35. Finally, we use this best number of trees
to call the predict method and obtain the final predictions. This required a bit more post-

33You may check the gbm package vignette for the mathematical details of the loss functions correspond-
ing to each distribution.

34Please adjust this to your own hardware.
35Note the parameter plot.it of function gbm.perf() that if set to TRUE will show a graph with the error

for the different alternatives - try it.

172 Data Mining with R: Learning with Case Studies

processing. With type="response" you get the predicted class probabilities for each test
case. Unfortunately, if you want to get the label of the most probable class you need to do
it yourself. We have obtained this using the function max.col() that returns the position
of the maximum for each row of a matrix.

We can use the function summary() applied to the model to obtain information on the
importance of the different features.

> summary(m, plotit=FALSE)

var rel.inf
Petal.Length Petal.Length 65.542710
Petal.Width Petal.Width 28.518834
Sepal.Width Sepal.Width 4.928013
Sepal.Length Sepal.Length 1.010442

Argument plotit=FALSE avoids a plot with the same information. Variables are pre-
sented by decreasing relevance influence (i.e. feature importance).

Another interesting feature is the marginal plots that allow you to study how the vari-
ation on the values of a certain predictor variable will influence the value predicted by the
model. The following code shows (c.f. Figure 3.37) the marginal plot between the variable
Petal.Length (the third predictor in Iris) and the predicted class probabilities,

> plot(m, i.var=3, type="response")
> legend("topleft",c("setosa","versicolor","virginica"),
+ col=1:3,lty=1)

The graph in Figure 3.37 shows a very marked mapping between the values of
Petal.Length and the class probabilities estimated by the gradient boosting machine. This
somehow explains why the previous call to summary() clearly indicated this feature as the
most relevant.

Further readings on ensembles
The book by Zhou (2012) is an interesting general reference on the foundations of ensembles. The article by
Dietterich (2000) is another interesting reference on this area. Specifically on gradient boosting, the article by
Friedman (2002) provides a good summary.

3.5 Evaluation
One of the key issues for a successful data mining project is to be able to correctly

evaluate the performance of the proposed models. Reliable estimates of the performance
are of utmost importance when it comes to deciding to deploy your models into production.
Failing to provide these reliable estimates may eventually lead to disappointing results that
may seriously compromise the application of data mining in the organization.

In this section we will focus on the evaluation of one particular type of metric — the
predictive performance. Still, some of the things we discuss in this section will be applicable
to other types of metrics.

Estimating the predictive performance of a model (or set of models) involves the follow-
ing main issues:

Introduction to Data Mining 173

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Petal.Length

P
re

di
ct

ed
 c

la
ss

 p
ro

ba
bi

lit
y

setosa
versicolor
virginica

FIGURE 3.37: Marginal plot of Petal.Length.

• A predictive task: trying to approximate an unknown function Y = f(x) that maps
the values of a set of predictors into a target variable value (can be a classification or
a regression problem, depending on the type of Y)

• A (training) dataset {< xi, yi >}Ni=1: with known values of this mapping

• Performance evaluation criterion(a): metric(s) of predictive performance (e.g. error
rate or mean squared error)

In this context, our goal is to decide how to obtain reliable estimates of the predictive
performance of any solutions we consider to solve the task using the available dataset.

The issue of the reliability of the estimates has to do with the problem of statistical
estimation. The key question is whether the values of predictive performance we obtain
have a high probability of being observed again, when we apply the same solutions to new
samples of the data. Calculating the predictive performance of a model by applying it to the
same data used to obtain the model is unreliable. The level of unreliability is proportional
to the capacity of the models to overfit the given data. Models that have a higher ability
to adjust to the given sample incur the risk of overfitting the sample and thus will obtain
a very good score if evaluated on this same data. This however, will hardly occur with a
different sample of data.

In this context, a golden rule of predictive performance evaluation is:

Always evaluate the models on unseen data.

This is the best way of obtaining a reliable estimate of the expected prediction error
of a model on the unknown data distribution. A simple method of implementing this idea

174 Data Mining with R: Learning with Case Studies

is to split the available data into two random partitions, as we have done in the previous
section when presenting different modeling techniques: (i) a training set used to develop the
models; and (ii) a test set to calculate their predictive performance. However, we should
try to make sure this random splitting is repeated several times to increase the statistical
reliability of the estimation process. With several repetitions we get a set of scores that we
can then average to obtain a sample mean prediction error that can be seen as an estimate
of the true population prediction error. Moreover, we can complement this estimate with
the respective standard error.

An experimental methodology should allow us to obtain several prediction error scores
that we can use to calculate the sample mean prediction error, E = 1

k

∑k
i=1 Ei, and also the

respective standard error of this estimate, SE(E) = sE√
k
, where sE is the sample standard

deviation of E measured as
√

1
k−1

∑k
i=1(Ei − E)2. In the next subsections we will describe

a few examples of common experimental methodologies that can be used to obtain reliable
estimates of the prediction error of the models.

In R there are several packages that provide facilities to carry out this sort of experiment
with the goal of estimating and comparing the predictive performance of different models.
Examples include the package caret (Kuhn, 2016) or the package mlr (Bischl et al., 2016).
In our description we will use the package performanceEstimation (Torgo, 2014b). This
package provides a highly general infrastructure for this type of experiments. The infras-
tructure is generic in the sense that it can be used to estimate the values of any performance
metrics, for any workflow (solution) on different predictive tasks, namely, classification, re-
gression, and time series tasks. The package also includes several standard workflows that
allow users to easily set up their experiments limiting the amount of work and information
they need to supply.

To use the package performanceEstimation the user needs to specify: (i) the pre-
dictive task(s) to use in the estimation experiment; (ii) the workflow(s) used to solve the
task(s); and (iii) the estimation task, that includes the specification of the evaluation met-
ric(s) and the methodology to use to obtain reliable estimates of this(ese) metric(s).

3.5.1 The Holdout and Random Subsampling
The holdout method consists of randomly dividing the available data sample in two sub-

sets: one used for training the model, and the other for testing/evaluating it. A frequently
used proportion is 70% for training and 30% for testing. If we have a small data sample there
is the danger of either having too small a test set (unreliable estimates as a consequence),
or removing too much data from the training set (worse model than what could be obtained
with the available data). In this context, it is not surprising that this method is typically
only used for very large data samples, and it is actually the preferred method in these
situations. Still, we should remark that this method only leads to one single estimate as
there is one single split.

A small variation of this idea, that is usually known as random subsampling, consists
of repeating the random split on train and test partitions several times, thus leading to a
method that obtains a set of scores, as many as the amount of times we repeat the random
split.

The following is a small illustration of using package performanceEstimation to es-
timate the error rate of an SVM on the Iris dataset using the holdout method,

> library(performanceEstimation)
> library(e1071)
> data(iris)

Introduction to Data Mining 175

> r <- performanceEstimation(PredTask(Species ~ ., iris),
+ Workflow(learner="svm"),
+ EstimationTask(metrics="err",method=Holdout(hldSz=0.3))
+)

PERFORMANCE ESTIMATION USING HOLD OUT

** PREDICTIVE TASK :: iris.Species

++ MODEL/WORKFLOW :: svm
Task for estimating err using
1 x 70 % / 30 % Holdout
Run with seed = 1234

Iteration : 1

> summary(r)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating err using
1 x 70 % / 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: iris.Species
* Workflows :: svm

-> Task: iris.Species
*Workflow: svm

err
avg 0.02222222
std NA
med 0.02222222
iqr 0.00000000
min 0.02222222
max 0.02222222
invalid 0.00000000

The example above illustrates several new concepts related to the package perfor-
manceEstimation. The main function is performanceEstimation(), and it takes 3 main
arguments specifying: (i) the task(s); (ii) the workflow(s); and (iii) the estimation task. A
task is created with PredTask() by indicating the formula and the dataset. Using func-
tion Workflow() you specify the solution to the task(s) that you wish to evaluate. In this
simplest form you are using a standard workflow provided by the package performanceEs-
timation. This workflow applies the modeling function whose name you supply through
parameter learner, to the training set and then uses the predict() function to obtain
the predictions of the resulting model for the test set. This sort of simple workflow is the
most frequent, but as we will see later, further steps can be added to this standard work-
flow without having to write your own workflow functions, which you can for maximum
flexibility. Function EstimationTask() allows you to specify the metrics that you wish to
estimate and the method used for obtaining the estimates. In the above example we specify

176 Data Mining with R: Learning with Case Studies

the error rate as metric and the holdout with a test size of 30% randomly selected rows, as
the estimation methodology.

Function summary() can be applied to the object resulting from running the experiments
to obtain an overview of the estimation results. In the above example, given that the holdout
does not include several repetitions of the train/test split, we only get one score and thus
some of the statistics do not make sense.

The following is an example of random subsampling, this time for estimating the mean
squared error of a random forest on the Boston regression task,

> library(performanceEstimation)
> library(randomForest)
> data(Boston, package="MASS")
> r <- performanceEstimation(PredTask(medv ~ ., Boston),
+ Workflow(learner="randomForest"),
+ EstimationTask(metrics="mse",
+ method=Holdout(nReps=3,hldSz=0.3))
+)

PERFORMANCE ESTIMATION USING HOLD OUT

** PREDICTIVE TASK :: Boston.medv

++ MODEL/WORKFLOW :: randomForest
Task for estimating mse using
3 x70 %/ 30 % Holdout
Run with seed = 1234

Iteration : 1 2 3

> summary(r)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating mse using
3 x70 %/ 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: Boston.medv
* Workflows :: randomForest

-> Task: Boston.medv
*Workflow: randomForest

mse
avg 14.012785
std 7.899818
med 11.742487
iqr 7.651238
min 7.496696
max 22.799171
invalid 0.000000

The Holdout() function has a parameter (nReps) that allows you to specify how many
random train/test splits you want, which leads to what we know as random subsampling.

Introduction to Data Mining 177

FIGURE 3.38: k-Fold cross validation.

3.5.2 Cross Validation
k-Fold cross validation (CV) is one of the most common methods to estimate the predic-

tive performance of a model. It consists of repeating k times a train/test cycle, but where
the test set is carefully chosen instead of randomly selected as in k repetitions of random
subsampling. Figure 3.38 provides an illustration of the process. We start by randomly re-
shuffling the training data to avoid any ordering effects. Then we split the dataset into k
equal-sized partitions. These will be the k test sets (in orange in the figure). For each of
the test sets the respective training set will be formed by the remaining k − 1 partitions
(dark yellow in the figure). The k−fold cross validation estimate will be the average of the
k individual scores obtained on each test partition.

k−fold CV is frequently the procedure selected for estimating the performance of a
model. It is the recommendation for mid-sized datasets (few hundreds to few thousand
cases). Sometimes we repeat the process several times and average these repetitions to
increase the reliability of the estimates.

Package performanceEstimation includes this methodology as one of the possible
estimation methods. The following is an example of its usage for estimating the performance
of a set of variants of a regression tree in the Boston dataset,

> library(performanceEstimation)
> library(DMwR2)
> data(Boston, package="MASS")
> r <- performanceEstimation(
+ PredTask(medv ~ ., Boston),
+ workflowVariants(learner="rpartXse",
+ learner.pars=list(se=c(0,0.25,0.5,1,2))),
+ EstimationTask(metrics=c("mse","mae"),

178 Data Mining with R: Learning with Case Studies

+ method=CV(nReps=3,nFolds=10))
+)

PERFORMANCE ESTIMATION USING CROSS VALIDATION

** PREDICTIVE TASK :: Boston.medv

++ MODEL/WORKFLOW :: rpartXse.v1
Task for estimating mse,mae using
3 x 10 - Fold Cross Validation
Run with seed = 1234

Iteration :******************************

++ MODEL/WORKFLOW :: rpartXse.v2
Task for estimating mse,mae using
3 x 10 - Fold Cross Validation
Run with seed = 1234

Iteration :******************************

++ MODEL/WORKFLOW :: rpartXse.v3
Task for estimating mse,mae using
3 x 10 - Fold Cross Validation
Run with seed = 1234

Iteration :******************************

++ MODEL/WORKFLOW :: rpartXse.v4
Task for estimating mse,mae using
3 x 10 - Fold Cross Validation
Run with seed = 1234

Iteration :******************************

++ MODEL/WORKFLOW :: rpartXse.v5
Task for estimating mse,mae using
3 x 10 - Fold Cross Validation
Run with seed = 1234

Iteration :******************************

> rankWorkflows(r, top=3)

$Boston.medv
$Boston.medv$mse

Workflow Estimate
1 rpartXse.v1 19.33560
2 rpartXse.v4 19.54624
3 rpartXse.v3 19.98751

$Boston.medv$mae
Workflow Estimate

1 rpartXse.v1 2.937393

Introduction to Data Mining 179

2 rpartXse.v2 3.029241
3 rpartXse.v3 3.077736

Trying different parameter variants of a model or a set of models is a frequent task an
analyst often needs to carry out. Function workflowVariants() is designed to help with
this task. It can be used to automatically generate a vector of Workflow objects without
having to create all of them through the function Workflow() and typing all their details.
Essentially it works by allowing the user to indicate vectors of values instead of concrete
values in some parameters of theWorkflow constructor. For instance, in the example above,
in the parameter of Workflow() that allows us to indicate the learning parameters to be
used when calling the specified model (the parameter learner.pars), we are indicating that
the parameter se (a parameter of the learner rpartXse() that sets the level of pruning),
takes a vector of values. These values are interpreted as alternatives and thus the function
workflowVariants() will generate as many workflows as there are variants. In case you
indicate sets of values for more than one parameter, the function will generate as many
workflows as there are combinations of the specified values. This is particularly handy
when you are searching for the best variant of an algorithm that contains many possible
parameters.

In terms of the estimation task, the above code uses 3 repetitions of a 10-fold CV process,
to obtain estimates for both mean squared and absolute errors.

Finally, we have used the function rankWorkflows() to obtain the top 3 workflows for
each of the metrics. You may be curious about the characteristics of the workflow that
achieved the best results. Function getWorkflow() can be used with this purpose,

> getWorkflow("rpartXse.v1", r)

Workflow Object:
Workflow ID :: rpartXse.v1
Workflow Function :: standardWF

Parameter values:
learner.pars -> se=0
learner -> rpartXse

As we can observe this is a regression tree with best estimated error, i.e. the 0-SE tree
(c.f. Section 3.4.5.2).

We may also explore the results of the estimation experiments visually (c.f. Figure 3.39)
as follows,

> plot(r)

You get a boxplot for each workflow with the distribution of the scores obtained on each
repetition (the concrete individual scores are shows as red dots).

3.5.3 Bootstrap Estimates
The bootstrap is another frequently used methodology for obtaining estimates of the

predictive performance of a model. The bootstrap is based on the concept of sampling with
replacement. This technique can be explained with the simple example of drawing x balls
from a closed bag containing x balls. In sampling with replacement, after picking a ball
from the bag we put it again inside the bag, which means that the next ball we take may
actually be the same. Bootstrap consists of taking k random samples with replacement of
size N , where N is the size of the available dataset. This means that the k samples will have

180 Data Mining with R: Learning with Case Studies

Boston.medv

l

l

20

40

60

2

3

4

m
se

m
ae

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

rpartX
se.v4

rpartX
se.v5

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

FIGURE 3.39: The results of a 10-fold CV estimation experiment.

the same size as the initial dataset but will contain “repeated” rows of this dataset. It can
actually be shown that on average each bootstrap sample will contain 63.2% of the rows in
the original dataset. For each bootstrap sample the rows that were not used will form the
respective test set. This means that we obtain the model with the bootstrap sample (that
will have size N) and obtain the score by applying this model on the test set formed with
the rows of the original dataset not present in the training set. ε0 bootstrap estimates are
calculated as the average of the k scores obtained by the process we have described. An
alternative are the 0.632 bootstrap estimates. These consist of a weighted average between
the ε0 estimates and the resubstitution estimate. This latter is obtained by applying the
model to the full dataset and then testing it on the same full set. The 0.632 estimate is then
obtained as 0.368εr + 0.632ε0, where εr is the resubstitution estimate.

Bootstrap estimates are typically obtained using a large number of repetitions of the
random sampling (typically 100-200 repetitions). This method is considered one of the best
options for small datasets (less than a few hundred cases).

The package performanceEstimation contains an implementation of both ε0 and
0.632 bootstrap estimates. The following is an example of its application to the Iris dataset
(we have hidden the output of the performanceEstimation() as there are too many vari-
ants and repetitions),

> library(performanceEstimation)
> library(DMwR2)
> library(e1071)
> data(iris)
> data(BreastCancer, package="mlbench")

Introduction to Data Mining 181

> bc <- cbind(knnImputation(BreastCancer[,-c(1,11)]),
+ Class=BreastCancer$Class)
> r <- performanceEstimation(
+ c(PredTask(Species ~ ., iris),
+ PredTask(Class ~ ., bc)),
+ workflowVariants(learner="svm",
+ learner.pars=list(cost=c(1,5,10),
+ gamma=c(0.01,0.001))),
+ EstimationTask(metrics="acc",
+ method=Bootstrap(nReps=200,type=".632"))
+)

In this example we have included two different prediction tasks. Function
performanceEstimation() allows you to provide a vector of PredTask objects in its
first argument36. As workflows we have indicated six variants of an SVM. Finally, the esti-
mation task consists of using .632 bootstrap (200 repetitions) to estimate the accuracy of
these alternative workflows.

We can check the best workflows for each task as follows,

> topPerformers(r , maxs=TRUE)

$iris.Species
Workflow Estimate

acc svm.v3 0.964

$bc.Class
Workflow Estimate

acc svm.v3 0.967

Function topPerformers() will show the workflow that obtained the best score on each
metric, for each predictive task. The notion of “best” depends on the evaluation metric.
For accuracy “best” means maximum, while for instance, for error rate “best” would mean
minimum. The function assumes minimization by default, but you can use the parameter
maxs to specify a different criterion for each metric.

3.5.4 Recommended Procedures
In previous sections we have described a few of the existing and most frequently used

methods of estimating the predictive performance of a modeling approach. This section
provides a few guidelines on this important step of the data mining workflow.

Our recommendations for classification or regression tasks can be summarized as follows:

• Small datasets (less than a few hundred observations) - use 100-200 repetitions of a
bootstrap procedure.

• Average-sized datasets (less than a few thousand cases) - use a few repetitions of
10-fold cross validation.

• Large datasets - use Holdout (70%-30% split) or a few repetitions of random subsam-
pling.

36Please note that they must be the same type of tasks; in this example both are classification tasks.

182 Data Mining with R: Learning with Case Studies

Although there are other alternative methodologies (and we will see some of them in
the case studies to be addressed in Part II of the book), these are reasonable defaults that
you can use. Obviously, some of these decisions are dependent on the computing power
you have available for carrying out these experiments and also the number of tasks and/or
workflows. In this context, it is also important to be aware that several of the R func-
tions include parallel computation options that may allow you to improve the efficiency
of your workflows. An example is the performanceEstimation() function, which has the
possibility of taking advantage of parallel computation backends ranging from the simple
local parallelization using the different cores of multicore processors, to more sophisticated
settings using computer clusters. Check the help page of this function for further details.

In terms of results analysis sometimes it is important to check the statistical significance
of the observed differences between the performance of the alternative workflows you may
have considered to solve some task(s). Demsar (2006) provides a well-acknowledged study
of this subject. In the following description we mostly follow the recommendations of this
study. We are going to distinguish between two basic setups: (i) comparing several workflows
on a single predictive task; and (ii) comparing them over multiple tasks. For the former the
accepted procedure involves using the Wilcoxon signed rank statistical test to compare the
scores of the different workflows. This is a non-parametric statistical hypothesis test that
can be used to make paired comparisons of two population mean ranks. It is preferable to
the also used t-Student paired test on this type of experimental comparisons because most
experimental methods break some of the assumptions of this latter test. In this context, we
can use the Wilcoxon signed rank test to check the statistical significance of the differences
between the performance of any pair of workflows. For the second setup, where we are
comparing several workflows over a set of predictive tasks, the recommendations in Demsar
(2006) is to proceed in two stages. First we use a Friedman test to check the validity of
the null hypothesis that all workflows are equivalent and so their rankings across the tasks
are equal. If we can not reject this hypothesis with some selected level of confidence then
we stop here, concluding that we can not reject the hypothesis that all workflows perform
equally. Otherwise, we can proceed to the second step. If we are interested in all paired
comparisons among all pairs of workflows then we should use a Nemenyi post-hoc test to
check the null hypothesis that there is no significant difference among the ranks of a certain
pair of workflows. If instead we are interested in all paired comparisons against a certain
baseline workflow, then we should use the Bonferroni-Dunn post-hoc test to check the null
hypothesis that there is no significant difference among the ranks of a certain workflow and
the baseline.

The package performanceEstimation includes function pairedComparisons() that
can be used to perform these and other statistical tests based on the outcome of the
performanceEstimation() function. The package also includes some visual representations
of the outcome of these tests, namely through CD diagrams (Demsar, 2006). In several of
the case studies we will address in Part II of the book we will illustrate the usage of these
facilities.

3.6 Reporting and Deployment
Once we are confident on the quality of our data mining procedures we need to com-

municate them. This frequently involves: (i) some sort of reporting to other people within
some organization; and/or (ii) trying to deploy the outcome of our data mining workflow

Introduction to Data Mining 183

into production stages. While these steps are sometimes not considered very related to data
mining, but more about communication abilities or standard software engineering in the
case of deployment, the fact is that these are critical steps for the successful adoption of
data mining technologies.

In this context, and given that R includes some packages that were designed to facilitate
these important steps, we will provide a short overview of these functionalities.

3.6.1 Reporting Through Dynamic Documents
Reporting can be a key element for a successful data mining project. Being able to cor-

rectly and effectively communicate the outcome of your analysis is a crucial step for its
acceptance. This communication can occur at different stages of your data mining project
and it may involve different types of people. They can be technically-oriented (e.g. other
collaborators of the data mining project), or non-technical people (e.g. management). What-
ever is the case it is important to have tools that facilitate your task to efficiently report
your results.

Classical approaches to reporting involve using software tools that are different from
the tools you use for data mining (in our case R). This creates a large potential for ineffi-
ciencies and human errors. In effect, these software tools are typically word processing and
presentation tools that normally do not have easy ways of communicating with data mining
software. This means that a large part of your data mining results will be sent to these
reporting tools through manually copy-pasting steps, or manually creating results files that
are then inserted in your documents. All this is highly tedious and time-consuming, but
also seriously prone to error. Moreover, if any changes are required to your report then you
typically need to re-do all (or at least some of) these manual steps. This reporting workflow
means that the analysis and the reporting are separate and someone needs to spend time
in making sure they are in-sync to avoid reporting inaccuracies. Other drawbacks of this
workflow are that it makes sharing your work with other members of the team difficult and
it is also hard to re-use your reporting steps for other tasks. Sharing is difficult because
the connection between what you report to other members of the team and what you have
really implemented to obtain these results, is through a series of manual steps to send your
results from the analysis tool into the reporting tool. This means your report does not “con-
tain” your solution and if someone wants to replicate your analysis or pickup from where
you are, then you need another effort for communicating the real analysis that lead to the
results seen in the report. On the other hand, re-use is hard because a large part of what
you see in the report involved manual steps that are not easily automated (e.g. frequent use
of graphical user interface operations).

Due to all these “problems” with this classical approach, most modern data mining tools
include reporting facilities that try to address these and other issues. R is not an exception.
In this section we will describe a particular approach that is available in R that is based
on the interesting concept of dynamic documents. These documents mix data analysis steps
with descriptive text. They are executable by a computer program that produces the final
document that you will use to communicate with the end-users. Dynamic documents solve
most of the problems we have described before! In effect, by including the analysis steps
together with the descriptive text, in a single place, we make sure that what we show to the
audience is the real result of some concrete analysis steps with no possibility of reporting
errors because there are no manual steps in transforming the analysis into the results — all
is done by a computer program. This means that if the analysis contains an error this will
show up in the final document, and moreover, whatever appears in this final document is
supported by some concrete analysis steps that you can easily share with others for them
to replicate your analysis, if necessary.

184 Data Mining with R: Learning with Case Studies

The idea of dynamic documents is strongly related to the concept of literate program-
ming described by Knuth (1984). The usage of dynamic reports involves the following steps:
(i) the analyst writes the dynamic report that includes both the analysis steps and the text
to communicate to the audience; (ii) using a specific software tool the dynamic document
is parsed separating the analysis parts from the descriptive parts; (iii) the same tool “ex-
ecutes” the analysis steps and grabs the results re-inserting them in the places where the
respective analysis steps were, thus producing the final report.

R has several packages that implement this concept. Still, the framework provided by
package knitr (Xie, 2015)37 has recently emerged as the most effective. This is a general
package that implements the literate programming concept supporting different document
formats, including LATEX, HTML and Markdown, as well as different programming lan-
guages to implement the analysis steps. As output format you can have knitr produce a
wide range of common formats, like PDF, HTML or Word documents, to name just a
few. For instance, this book you are now reading was fully produced using knitr, using
LATEX and R as the sources of the original dynamic document.

In our brief description of how to use knitr we will focus on a concrete type of dynamic
document that uses R markdown as the source document format. Files in R markdown are
normal text files that include R code together with text formated in Markdown. This is
a very simple markup language that was designed to easily produce Internet content.

You create R markdown files in any standard text editor by writing your text using
short annotation tags to format it. Moreover, you can use some special tags to delimit parts
that contain R code that carries out some analysis steps you are describing, known as code
chunks. For instance, writing **hello** in your R markdown dynamic document will make
the word hello appear in bold-face in the final document. There several other annotation
tags that allow you to implement the most common formatting procedures (e.g. lists of
items, section headings, etc.). The Web page http://rmarkdown.rstudio.com/ contains
extensive information on this document format as well as useful summaries of the main
tags38.

Figure 3.40 shows a simple example of an R markdown dynamic document (left side)
and the resulting final document (right side), in this case an HTML document that you can
read on any standard Web browser. The dynamic document starts with an optional heading
(lines 1 to 6) where some meta information about the document is included. In this case
the author name, the title and date of the document, and the type of output for the final
document. In case you are using RStudio to produce your R markdown document, which I
recommend, all this is automatically filled in by answering a few questions on a dialog box
that appears when you select to create a new R markdown report. As you can observe both
the author and the title information are adequately inserted in the final document.

Going back to the source document you may observe some “special” parts that are shown
in light gray. These are code chunks that are delimited by special tags (e.g. lines 8 and 10 for
the first code chunk). Once again if you are using RStudio you will have a button on the text
editor that allows you to insert a new code chunk without having to type these delimiters.
You may also have noticed that these chunks have some options on the first delimiter. These
chunk options control the way they are executed by R. The default (without any option, just
the letter “r”) tells knitr that the chunk code is to be executed by R39 and creates two parts
in the final document for each code chunk: (i) one with the R code of the chunk properly
formatted; and (ii) the other with the result of running the code in the chunk. Chunk
options can be used to change this default behavior. For instance, the option echo=FALSE

37http://yihui.name/knitr/
38http://www.rstudio.com/wp-content/uploads/2016/03/rmarkdown-cheatsheet-2.0.pdf
39If instead you type “python” you can type Python code in your chunk that will be executed by a Python

interpreter to produce the final results in the document.

Introduction to Data Mining 185

FIGURE 3.40: An example of an R markdown document and the final result.

(e.g. first code chunk) hides the code from the final document, though still executing it and
showing its results (if it produces any). On the other hand, if you just want to show a piece
of R code without executing it you can use the chunk option eval=FALSE. These and many
other options that you may browse at http://yihui.name/knitr/options/, can be used
to control what R does with the chunks in your dynamic document.

On line 12 you have an example of how to create a first-level heading using the character
(further #’s will create other level headings). You may also have noticed that the first
paragraph (line 14) includes some special text, called inline code, delimited by ‘r ... ‘.
These are pieces of R code, typically expressions or function calls that you want R to evaluate
and return the result that is shown in the document. With inline code you may avoid having
to change the document due to some minor changes in your data. For instance, if the Iris
data frame grows (e.g. someone adds information on a few more plants), you will not have
to touch the report, you just need to re-compile it, which in RStudio consists of clicking a
button. Moreover, these sort of constructs help in making your reports more general and
more re-usable.

Producing the final report from the source R markdown text in RStudio can be achieved
by a simple click of the appropriate button in the text editor. In other environments you
will have to run the render() function on the dynamic report source file, as the following
example shows,

> library(rmarkdown)
> render("myreport.Rmd")

This function also accepts other arguments that can control the output that is gen-
erated, which can be used instead of the YALM heading information we have seen in the
example shown in Figure 3.40. For instance, the following function call with the same source
document would generate a Word docx file named “myreport.docx”,

186 Data Mining with R: Learning with Case Studies

> render("myreport.Rmd", output_format="word_document")

There are many more features provided by knitr dynamic reports that the above exam-
ple did not tackle. For instance, there are ways of handling bibliographic references, special
formatting of tables or the introduction of equations. We strongly advice you to browse
through the Web pages of R markdown40 to check these and other more advanced features.
Moreover, you should be aware that it is equally easy to create presentation slides or dash-
boards using R markdown. The process is very similar with a few specificities of these types
of outputs.

A final note on a recent feature of dynamic documents called interactive documents. This
is an extension of R markdown documents that allows you to include some graphical widgets
in these documents that provide the user with ways of interacting with the documents
changing the resulting output as a result of this interaction. For instance, you may show
a plot in your document and have some drop-down menu or some slider shown beside the
plot that allows the user to change the plot dynamically. You should be aware that this
is only feasible when the output is an HTML document, although this can be either a
report or a presentation. More information about this interesting feature is available at
http://rmarkdown.rstudio.com/authoring_shiny.html .

3.6.2 Deployment through Web Applications
Deploying the results of your data mining workflow is frequently a task that is highly

dependent on the software infrastructure of your organization, particularly if you want
to integrate your “tools” with other existing tools. In those cases that is mostly a soft-
ware engineering task that will require strong communication/collaboration with the soft-
ware engineering team of the target organization. Nevertheless, in some cases this integra-
tion/communication is not required and we can provide our tools to end-users through a
simpler process: Web applications.

Web applications are client-server software tools that allow the end-user to run the ap-
plications in a standard Web browser without having to install any extra software in their
computer. They are becoming highly trendy due to some of their advantages over more
standard applications. Among these advantages we can quote: (i) no complex installation
and upgrading processes; (ii) “no” requirements from the client side (simply a compatible
browser); (iii) cross-platform compatibility; or (iv) extensions to other devices (smartphones,
tablets, etc.). Nevertheless, they also have some drawbacks, like: (i) some sacrifice in terms
of usability when compared to traditional applications due to the user interface limitations
associated with the Web; (ii) potential problems with Internet connectivity; or (iii) con-
cerns with privacy due to the usage of the Web for communicating potentially sensitive
information/data.

Shiny41 is a Web application framework for R. It has a very intuitive and simple workflow
that allows developing web applications very easily. It allows you to deploy your data mining
results produced with R through a web application. Shiny is developed by RStudio and thus
it is not surprising to observe that is very well integrated with recent versions of RStudio
integrated development environment.

To create Shiny web applications you need to install the package shiny (Chang et al.,
2016). The basic building blocks of a Shiny web application are two files named “ui.R”
and “server.R”. These files should be stored in a separate directory, whose name will be
the name of the web application. The file ui.R takes care of the interaction with the user,

40http://rmarkdown.rstudio.com/
41http://shiny.rstudio.com/

Introduction to Data Mining 187

i.e. the user interface elements, while file server.R implements the server-side logic of your
application, i.e. the actual work that produces the results that you want to show in the
browser of the user.

Once you have these two files created and stored in a separate directory you may run
your application either by pressing the corresponding button in the editor of RStudio if you
are using this environment, or by issuing the following commands at R prompt:

> library(shiny)
> runApp("myAppFolderName")

Let us see a small example of a very simple web application that shows a conditioned
boxplot of one of the predictors of the Iris dataset. The application allows the user to
select the predictor and as a result it shows the distribution of this variable conditioned by
Species, using boxplots. The following is the code in the ui.R file that controls the user
interface of this simple application:

library(shiny)
data(iris)

shinyUI(fluidPage(
titlePanel("Exploring the Iris dataset"),
sidebarLayout(

sidebarPanel(
selectInput("var",

"Select a Predictor Variable:",
choices=colnames(iris)[1:4])

),
mainPanel(

plotOutput("condBP")
)

)
))

This script essentially defines the layout of the web application and also creates the user
interface elements (in this case a simple drop-down menu and a plot). This layout is defined
through function shinyUI(). In this case we are selecting a certain type of web page through
function fluidPage() and then adding several elements to this page. More specifically, a
title panel at the top (through function titlePanel()) and then a side-bar layout (through
function sidebarLayout()). This latter part of the interface consists of a sidebar panel
(function sidebarPanel()) where we will include a drop-down menu using the function
selectInput(), and then a main panel (function mainPanel()) containing the respective
conditioned boxplot that will be “created” in the server side script. Note that most user
interface elements have names so that we can check or change their content. These elements
will be distinguished between input elements, like for instance the drop-down menu widget
named “var”; and output elements, like the plot named “condBP” that will be shown in the
main panel. As we will see, in the server side we will check the values selected by the user
on the input elements and will produce results to be shown through the output elements in
the user interface.

The script with the server side logic (server.R) for this simple application is the fol-
lowing,

188 Data Mining with R: Learning with Case Studies

FIGURE 3.41: A simple example of a Shiny web application.

library(shiny)
data(iris)

shinyServer(
function(input, output)

{
output$condBP <- renderPlot(

{
form <- as.formula(paste(input$var,"~ Species"))
boxplot(form,iris,ylab=input$var,

main=paste("Distribution of",input$var,
"for the different Species"))

}
)

}
)

The server side logic defines a function using shinyServer() that receives two lists as
arguments: (i) the list named input that contains as many named components as there
are interface elements in the user interface, allows you to check the user selections on these
elements; and (ii) the list named output where you can change the content of the output
elements that are shown in the user interface. In this case our web application has an input
element named var containing the selection of the user in the drop-down menu, and it has
an output element named condBP that is supposed to be a plot that will be shown on the
main panel of the application.

If you run this simple application you will get in your browser the interface shown in
Figure 3.41.

A key aspect of web applications is the concept of reactive output. This has to do with
content in web applications that is dependent on user interaction with the application
through the widgets. Having reactive output in a page involves two steps: (i) including the
object content in the page (in ui.R); and (ii) telling Shiny how to get the object content
(in server.R). If the object value depends on the value of some Shiny widget(s) you have
reactive output.

Output functions tell Shiny where to display the content of an R object in the page. These
functions have names ending in ...Output(). For instance, in the example in Figure 3.41
the plot was placed in the main panel using the function plotOutput() in ui.R. Before these

Introduction to Data Mining 189

objects are placed in the page through these functions you need to tell Shiny what their
content is in server.R. You do this by assigning their content to the respective component
in the list output (check in the above example to see how the boxplot was created in
the script server.R). To carry out this assignment you use specific functions for building
content. These functions have names starting with render...(). For instance, in the above
example we have assigned to the component of output with the plot (condBP) the content
produced by function renderPlot(). This function transforms an R plot in the respective
content that can be placed in the Web page. There are several of these functions for different
types of R objects.

The components of the list input contain the values of the widgets. The type of value
depends on the widget. For instance, a dateRangeInput() widget will produce a vector
with two values, whilst a numericInput() widget will produce a single value. Shiny has
many widgets that you can include in your web application for creating your user interface.
You may get a list of these widgets together with illustrative code at the web page http:
//shiny.rstudio.com/gallery/widget-gallery.html.

We have described a few of the key elements of Shiny web applications. To build more
sophisticated applications you will obviously need more knowledge of Shiny. For more details
we strongly recommend that you check the excellent tutorials available at http://shiny.
rstudio.com/tutorial/.

http://taylorandfrancis.com

Part II

Data Mining Case Studies

191

http://taylorandfrancis.com

Chapter 4
Predicting Algae Blooms

This case study will provide concrete illustrations of some basic tasks of data mining:
data pre-processing, exploratory data analysis, and predictive model construction. For this
initial case study we have selected a small problem by data mining standards. Namely, we
are addressing the problem of predicting the frequency occurrence of several harmful algae
in water samples. If you are not familiar with the R language and you have not read the
short introduction provided in Chapter 2, you may feel the need to review that chapter as
you work through this case study.

4.1 Problem Description and Objectives
High concentrations of certain harmful algae in rivers constitute a serious ecological

problem with a strong impact not only on river life forms, but also on water quality. Being
able to monitor and perform an early forecast of algae blooms is essential to improving the
quality of rivers.

With the goal of addressing this prediction problem, several water samples were collected
in different European rivers at different times during a period of approximately one year.
For each water sample, different chemical properties were measured as well as the frequency
of occurrence of seven harmful algae. Some other characteristics of the water collection
process were also stored, such as the season of the year, the river size, and the river speed.

One of the main motivations behind this application lies in the fact that chemical moni-
toring is cheap and easily automated, while the biological analysis of the samples to identify
the algae that are present in the water involves microscopic examination, requires trained
manpower, and is therefore both expensive and slow. As such, obtaining models that are
able to accurately predict the algae frequencies based on chemical properties would facilitate
the creation of cheap and automated systems for monitoring harmful algae blooms.

Another objective of this study is to provide a better understanding of the factors
influencing the algae frequencies. Namely, we want to understand how these frequencies
are related to certain chemical attributes of water samples as well as other characteristics
of the samples (like season of the year, type of river, etc.).

193

194 Data Mining with R: Learning with Case Studies

4.2 Data Description
The data available for this problem was collected in the context of the ERUDIT1 research

Network and used in the COIL 1999 international data analysis competition. It is available
from several sources, such as in the UCI Machine Learning Repository of datasets.2

There are two main datasets for this problem. The first consists of data for 200 water
samples. To be more precise, each observation in the available datasets is in effect an ag-
gregation of several water samples collected from the same river over a period of 3 months,
during the same season of the year.

Each observation contains information on 11 variables. Three of these variables are
nominal and describe the season of the year when the water samples to be aggregated
were collected, as well as the size and speed of the river in question. The eight remaining
variables are values of different chemical parameters measured in the water samples forming
the aggregation, namely:

• Maximum pH value

• Minimum value of O2 (oxygen)

• Mean value of Cl (chloride)

• Mean value of NO−3 (nitrates)

• Mean value of NH+
4 (ammonium)

• Mean of PO3−
4 (orthophosphate)

• Mean of total PO4 (phosphate)

• Mean of chlorophyll

Associated with each of these parameters are seven frequency numbers of different harm-
ful algae found in the respective water samples. No information is given regarding the names
of the algae that were identified.

The second dataset contains information on 140 extra observations. It uses the same
basic structure but it does not include information concerning the seven harmful algae
frequencies. These extra observations can be regarded as a kind of test set. The main goal
of our study is to predict the frequencies of the seven algae for these 140 water samples.
This means that we are facing a predictive data mining task. This is one among the diverse
set of problems tackled in data mining as we have seen in Chapter 3. In this type of task our
main goal is to obtain a model that allows us to predict the value of a certain target variable
given the values of a set of predictor variables. This model may also provide indications on
which predictor variables have a larger impact on the target variable; that is, the model
may provide a comprehensive description of the factors that influence the target variable.

4.3 Loading the Data into R
We will consider two forms of getting the data into R: (1) one by simply taking advantage

of the package accompanying the book that includes data frames with the datasets ready
for use; and (2) the other by going to the book Web site, downloading the text files with
the data, and then loading them into R. The former is obviously much more practical. We
include information on the second alternative for illustrative purposes on how to load data
into R from text files.

1http://www.erudit.de/erudit/.
2http://archive.ics.uci.edu/ml/.

Predicting Algae Blooms 195

If you want to follow the easy path, you simply load the book package,3 and you imme-
diately have a data frame named algae available for use. This data frame contains the first
set of 200 observations mentioned above.

> library(dplyr)
> data(algae, package="DMwR2")
> algae

A tibble: 200 × 18
season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4
<fctr> <fctr> <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 winter small medium 8.00 9.8 60.800 6.238 578.000 105.000 170.000
2 spring small medium 8.35 8.0 57.750 1.288 370.000 428.750 558.750
3 autumn small medium 8.10 11.4 40.020 5.330 346.667 125.667 187.057
4 spring small medium 8.07 4.8 77.364 2.302 98.182 61.182 138.700
5 autumn small medium 8.06 9.0 55.350 10.416 233.700 58.222 97.580
6 winter small high 8.25 13.1 65.750 9.248 430.000 18.250 56.667
7 summer small high 8.15 10.3 73.250 1.535 110.000 61.250 111.750
8 autumn small high 8.05 10.6 59.067 4.990 205.667 44.667 77.434
9 winter small medium 8.70 3.4 21.950 0.886 102.750 36.300 71.000
10 winter small high 7.93 9.9 8.000 1.390 5.800 27.250 46.600
... with 190 more rows, and 8 more variables: Chla <dbl>, a1 <dbl>,
a2 <dbl>, a3 <dbl>, a4 <dbl>, a5 <dbl>, a6 <dbl>, a7 <dbl>

Note that if, as in the above code, you load the dplyr package before loading the data,
then you get a data frame table object instead of a standard data frame, with the added
benefits like for instance improved printing of the object contents. We recommend you do
this although it is not mandatory for carrying out the rest of the code.

Alternatively, you may use the text files available in the “Data” section of the book
Web site. The “Training data” link contains the 200 water samples in a file named “Anal-
ysis.txt”, while the “Test data” link points to the “Eval.txt” file that contains the 140 test
samples. There is an additional link that points to a file (“Sols.txt”) that contains the algae
frequencies of the 140 test samples. This last file will be used to check the performance of
our predictive models and will be taken as unknown information for now. The files have the
values for each observation in a different line. Each line of the training and test files contains
the values of the variables (according to the description given in Section 4.2) separated by
spaces. Unknown values are indicated with the string “XXXXXXX”.

The first thing to do is to download the three files from the book Web site and store
them in some directory on your hard disk (preferably on the current working directory of
your running R session, which you may check issuing the command getwd() at the prompt).

After downloading the data files into a local directory, we can start by loading into R the
data from the “Analysis.txt” file (the training data, i.e. the data that will be used to obtain
the predictive models). To read the data from the file it is sufficient to issue the following
command:4

> algae <- read.table('Analysis.txt',
+ header=FALSE,
+ dec='.',
+ col.names=c('season','size','speed','mxPH','mnO2','Cl',

3Please note that you will have to install the package as it does not come with the standard installation
of R. Check Section 2.1 (page 3) to know how to do this.

4We assume that the data files are in the current working directory of R. If not, use the command
“setwd()” to change this, or use the “Change dir...” option in the “File" menu of Windows versions.

196 Data Mining with R: Learning with Case Studies

+ 'NO3','NH4','oPO4','PO4','Chla','a1','a2','a3','a4',
+ 'a5','a6','a7'),
+ na.strings=c('XXXXXXX'))

Note that we have not used the functions from package readr (Wickham and Fran-
cois, 2015b) that we introduced in Section 3.2.2.1. The functions of this package are very
useful and fast in many contexts but they achieve this by making some compromises in
terms of assumptions on the regularity of the text files. This package includes the function
read_table() that we could try to use to read this text file. However, this function does
not allow for lines with arbitrary number of spaces separating each column value in the text
file. Sometimes this is not the case and then you need to resort to the standard R function to
read datasets from text files, like the above read.table() function. They work in a similar
way to the functions of the package readr but they use different parameter names and are
more flexible in some situations at the cost of some lack of efficiency.

The parameter header=FALSE indicates that the file to be read does not include a
first line with the variables names. Argument dec=’.’ states that the numbers use the
’.’ character to separate decimal places. These two previous parameter settings could have
been omitted as we are using their default values. Parameter col.names allows us to provide
a vector with the names to give to the variables whose values are being read. Finally,
na.strings serves to indicate a vector of strings that are to be interpreted as unknown
values. These values are represented internally in R by the value NA, as mentioned in
Section 2.5.

R has several other functions that can be used to read data contained in text files.
You may wish to type “?read.table” to obtain further information on this and other
related functions. Moreover, R has a manual that you may want to browse named “R Data
Import/Export”; it describes the different possibilities R includes for reading data from
other applications.

The result of the instruction above is a data frame. You may transform this into a data
frame table (tibble) as follows:

> tibble::as_tibble(algae)

Note that we have used the function as_tibble() from package tibble (Wickham et al.,
2016) to obtain the tibble object. This function belongs to that package so we could have
started by loading the package (using library(tibble)) and then using the function as
usual. Above we just show an alternative that is practical when you simply want to use
one function from a package and will need nothing else from it. In those situations it is
frequently more convenient to use the above construct that allows you to use the function
provided you refer its “origin” using the construct packageName::functionName.

4.4 Data Visualization and Summarization
Given the lack of further information on the problem domain, it is wise to investigate

some of the statistical properties of the data, so as to get a better grasp of the problem.
Even if that was not the case, it is always a good idea to start our analysis with some kind
of exploratory data analysis similar to the one we will show below.

A first idea of the statistical properties of the data can be obtained through a summary
of its descriptive statistics:

Predicting Algae Blooms 197

> summary(algae)

season size speed mxPH mnO2
autumn:40 large :45 high :84 Min. :5.600 Min. : 1.500
spring:53 medium:84 low :33 1st Qu.:7.700 1st Qu.: 7.725
summer:45 small :71 medium:83 Median :8.060 Median : 9.800
winter:62 Mean :8.012 Mean : 9.118

3rd Qu.:8.400 3rd Qu.:10.800
Max. :9.700 Max. :13.400
NA's :1 NA's :2

Cl NO3 NH4 oPO4
Min. : 0.222 Min. : 0.050 Min. : 5.00 Min. : 1.00
1st Qu.: 10.981 1st Qu.: 1.296 1st Qu.: 38.33 1st Qu.: 15.70
Median : 32.730 Median : 2.675 Median : 103.17 Median : 40.15
Mean : 43.636 Mean : 3.282 Mean : 501.30 Mean : 73.59
3rd Qu.: 57.824 3rd Qu.: 4.446 3rd Qu.: 226.95 3rd Qu.: 99.33
Max. :391.500 Max. :45.650 Max. :24064.00 Max. :564.60
NA's :10 NA's :2 NA's :2 NA's :2

PO4 Chla a1 a2
Min. : 1.00 Min. : 0.200 Min. : 0.00 Min. : 0.000
1st Qu.: 41.38 1st Qu.: 2.000 1st Qu.: 1.50 1st Qu.: 0.000
Median :103.29 Median : 5.475 Median : 6.95 Median : 3.000
Mean :137.88 Mean : 13.971 Mean :16.92 Mean : 7.458
3rd Qu.:213.75 3rd Qu.: 18.308 3rd Qu.:24.80 3rd Qu.:11.375
Max. :771.60 Max. :110.456 Max. :89.80 Max. :72.600
NA's :2 NA's :12

a3 a4 a5 a6
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
Median : 1.550 Median : 0.000 Median : 1.900 Median : 0.000
Mean : 4.309 Mean : 1.992 Mean : 5.064 Mean : 5.964
3rd Qu.: 4.925 3rd Qu.: 2.400 3rd Qu.: 7.500 3rd Qu.: 6.925
Max. :42.800 Max. :44.600 Max. :44.400 Max. :77.600

a7
Min. : 0.000
1st Qu.: 0.000
Median : 1.000
Mean : 2.495
3rd Qu.: 2.400
Max. :31.600

This simple instruction immediately gives us a first overview of the statistical properties
of the data.5 In the case of nominal variables (which are represented by factors in R data
frames), it provides frequency counts for each possible value.6 For instance, we can observe
that there are more water samples collected in winter than in the other seasons. For numeric
variables, R gives us a series of statistics like their mean, median, quartiles information and
extreme values. These statistics provide a first idea of the distribution of the variable values
(we return to this issue later on). In the event of a variable having some unknown values,
their number is also shown following the string NAs. By observing the difference between

5As mentioned in Section 3.4.1.1, an interesting alternative with similar objectives is the function
describe() in package Hmisc (Harrell Jr, 2009).

6Actually, if there are too many, only the most frequent are shown.

198 Data Mining with R: Learning with Case Studies

0.0

0.3

0.6

0.9

6 7 8 9 10
mxPH

de
ns

ity

FIGURE 4.1: The histogram of variable mxPH.

medians and means, as well as the inter-quartile range (3rd quartile minus the 1st quartile),7
we can get an idea of the skewness of the distribution and also its spread. Still, most of the
time, this information is better captured graphically. Let us see an example:

> library(ggplot2)
> ggplot(algae,aes(x=mxPH)) + geom_histogram(aes(y=..density..))

This instruction shows us the histogram of the variable mxPH. The result appears in
Figure 4.1. With aes(y=..density..) we get probabilities for each interval of values,8
while omitting this setting would give us frequency counts.

Figure 4.1 tells us that the values of variable mxPH apparently follow a distribution very
near the normal distribution, with the values nicely clustered around the mean value. A
more precise check of this hypothesis can be obtained using normal Q-Q plots. The function
qqPlot(), in the car (Fox, 2009) package, obtains this type of plot, the result of which is
shown in Figure 4.2, together with a slightly more sophisticated version of the histogram.
The graphs were obtained with the following code:

7If we order the values of a variable, the 1st quartile is the value below which there are 25% of the
data points, while the 3rd quartile is the value below which there are 75% of the cases, thus implying that
between these two values we have 50% of our data. The inter-quartile range is defined as the 3rd quartile
minus the 1st quartile, thus being a measure of the spread of the variable around its central value (larger
values indicate larger spread).

8The areas of the rectangles should sum to one (and not the height of the rectangles as some people
might expect).

Predicting Algae Blooms 199

−3 −2 −1 0 1 2 3

6
7

8
9

Normal QQ plot of maximum pH

norm quantiles

al
ga

e$
m

xP
H

0.0

0.3

0.6

0.9

6 7 8 9 10

The Histogram of mxPH (maximum pH)

−3 −2 −1 0 1 2 3

6
7

8
9

Normal QQ plot of maximum pH

norm quantiles

FIGURE 4.2: An “enriched” version of the histogram of variable extitMxPH (left) together
with a normal Q-Q plot (right).

> ggplot(algae,aes(x=mxPH)) +
+ geom_histogram(aes(y=..density..)) +
+ geom_density(color="red") + geom_rug() +
+ ggtitle("The Histogram of mxPH (maximum pH)") +
+ xlab("") + ylab("")
> library(car)
> qqPlot(algae$mxPH,main='Normal QQ plot of maximum pH',ylab="")

The code starts by obtaining the first graph, which is again a histogram of the variable
mxPH, except that this time we specify an empty X-axis label and we change the title of
the graph. Moreover, on top of the histogram we also add other geometric objects (geoms in
ggplot2 jargon), namely an object providing a smooth version of the histogram (a kernel
density estimate of the distribution of the variable) and also a rug that plots (as vertical
dashes) the real values of the variable near the X-axis, thus allowing easy spotting of outliers.
For instance, we can observe that there are two values significantly smaller than all others.
This kind of data inspection is very important as it may identify possible errors in the data
sample, or even help to locate values that are so awkward that they may only be errors, or at
least we would be better off by disregarding them in posterior analysis. The second graph
shows a Q-Q plot obtained with the qqPlot() function, which plots the variable values
against the theoretical quantiles of a normal distribution (solid red line). The function also
plots an envelope with the 95% confidence interval of the normal distribution (red dashed
lines). As we can observe, there are several low values of the variable that clearly break the
assumptions of a normal distribution with 95% confidence.

Another example (Figure 4.3) showing this kind of data inspection can be achieved with
the following instructions, this time for variable oPO4 :

> ggplot(algae,aes(x=factor(0),y=oPO4)) +
+ geom_boxplot() + geom_rug() +
+ geom_hline(aes(yintercept=mean(algae$oPO4, na.rm = TRUE)),
+ linetype=2,colour="red") +
+ ylab("Orthophosphate (oPO4)") + xlab("") + scale_x_discrete(breaks=NULL)

200 Data Mining with R: Learning with Case Studies

l

l

l

l

l

l

l

l

l
l

lll

l

0

200

400

O
rt

ho
ph

os
ph

at
e

(o
P

O
4)

FIGURE 4.3: An “enriched” box plot for orthophosphate.

This call to ggplot() draws a box plot of variable oPO4. As mentioned in Section 3.4.1.2
(page 96), box plots provide a quick summarization of some key properties of a continuous
variable distribution. Namely, there is a box whose vertical limits are the 1st and 3rd
quartiles of the variable. This box has a horizontal line inside that represents the median
value of the variable. Let r be the inter-quartile range. There are two vertical lines starting
from the middle of the box. The bottom (upper) line stops at the lower (upper) whisker,
calculated as the lowest (highest) value that is within 1.5×IQR from the 1st (3rd) quartile.
The dots below or above these vertical lines represent observations that are extremely low
(high) compared to all others, and are usually considered outliers. This means that box
plots give us plenty of information regarding not only the central value and spread of the
variable, but also eventual outliers.

We also added to the boxplot a rug showing the concrete values of the variable and a
horizontal red dashed line9 at the mean value of the variable, which is obtained using the
function mean(). By comparing this line with the line inside the box indicating the median,
we can conclude that the presence of several outliers has distorted the value of the mean as
a statistic of centrality (i.e., indicating the more common value of the variable).

The analysis of Figure 4.3 tells us that the variable oPO4 has a distribution of the
observed values clearly concentrated on low values, thus with a positive skew. In most of
the water samples, the value of oPO4 is low, but there are several observations with high
values, and even with extremely high values.

Sometimes when we encounter outliers, we are interested in inspecting the observations
that have these “strange” values. We will show two ways of doing this. First, let us do it

9The argument linetype=2 is used to obtain a dashed line.

Predicting Algae Blooms 201

graphically. R base plots allow some form of interaction that facilitates identifying points
in a graph that you are interested10. For instance, if we plot the values of variable NH4, we
notice a very large value. We can identify the respective water sample using the following
code:

> plot(algae$NH4, xlab = "")
> abline(h = mean(algae$NH4, na.rm = T), lty = 1)
> abline(h = mean(algae$NH4, na.rm = T) + sd(algae$NH4, na.rm = T), lty = 2)
> abline(h = median(algae$NH4, na.rm = T), lty = 3)
> identify(algae$NH4)

The first instruction plots all values of the variable. The calls to the abline() func-
tion draw three informative lines, one with the mean value, another with the mean plus
one standard deviation, and the other with the median. They are not necessary for this
identification task. The last instruction is interactive and allows the user to click on the
plotted dots with the left mouse button. For every clicked dot, R will write the respective
row number in the algae data frame.11 The user can finish the interaction by clicking the
right mouse button.

If we want to inspect the respective observations in the algae data frame, then we better
proceed in the following way:

> plot(algae$NH4, xlab = "")
> clickedRows <- identify(algae$NH4)
> algae[clickedRows,]

As you may have guessed before, the function identify(), returns as a result the
number of the rows corresponding to the clicked points in the graph and thus we may take
advantage of this fact to index the algae data frame, thus obtaining the full information
on these observations.

We can also perform this inspection without graphics, as shown below:

> library(dplyr)
> filter(algae, NH4 > 19000)

This instruction illustrates another form of filtering a data frame, using the facilities of
the dplyr package.

Let us now explore a few examples of another type of data inspection. Suppose we
would like to study the distribution of the values of, say, algal a1. We could use any of the
possibilities discussed before. However, if we wanted to study how this distribution depends
on other variables, new tools are required.

As we have seen in Section 3.4.1.2 conditioned plots are graphical representations that
depend on a certain factor. Factors are nominal variables with a set of finite values. For
instance, we can obtain a set of box plots for the variable a1, for each value of the variable
size (see Figure 4.4). Each of the box plots was obtained using the subset of water samples
that have a certain value of the variable size. These graphs allow us to study how this
nominal variable may influence the distribution of the values of a1. The following code
would obtain such box plots,

10The ggplot2 package infra-structure currently does not provide these facilities.
11The position where you click relative to the point determines the side where R writes the row number.

For instance, if you click on the right of the dot, the row number will be written on the right.

202 Data Mining with R: Learning with Case Studies

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0

25

50

75

small medium large
River Size

A
lg

al
 A

1

FIGURE 4.4: A conditioned box plot of Algal a1.

> ggplot(algae,aes(x=size,y=a1)) + geom_boxplot() +
+ xlab("River Size") + ylab("Algal A1")

If you run this code you will notice that you get a slightly different graph than that
shown in Figure 4.4. The reason is that the ordering of the values of the river size factor
variable is not what you expect. You would naturally expect the values to go from small to
large and not the opposite. By default the ordering of factor values is done alphabetically
by R. Sometimes this is not what we want and in these situations we better “rebuild” the
factors telling R what is the ordering of values we want. Actually, this “problem” of un-
natural ordering of the factor values occurs in all three nominal variables of this dataset.
Let us solve the problem for all of them,

> library(forcats)
> algae <- mutate(algae,
+ size=fct_relevel(size,c("small","medium","large")),
+ speed=fct_relevel(speed,c("low","medium","high")),
+ season=fct_relevel(season,c("spring","summer","autumn","winter")))

We have used the function fct_relevel() from package forcats (Wickham, 2016) to
set the order of the levels of the nominal variables (factors) the way it makes sense for us.
After this code you should be able to obtain the graph shown in Figure 4.4.

Figure 4.4 allows us to observe that higher frequencies of algal a1 are expected in smaller
rivers, which can be valuable knowledge.

An interesting variant of this type of plot that gives us more information on the distri-
bution of the variable being plotted, are violin plots. Let us see an example of its use with
the same algal a1 against the size of rivers:

Predicting Algae Blooms 203

l
l

l l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l
l

l

l

l

l

l

l

l

l

lllll
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll l

l

l

l

l

ll
l

ll

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l ll

l

l

l

l

l
l

l
l

l

l

l
ll

l ll

l

l

l

l

l

l

l l
l

l
ll

l

l

l

l
l

l

l

l

l

ll

l

0

25

50

75

small medium large
River Size

A
lg

al
 A

1

FIGURE 4.5: A conditioned violin plot of Algal a1.

> ggplot(algae,aes(x=size,y=a1)) +
+ geom_violin() + geom_jitter() + xlab("River Size") + ylab("Algal A1")

The result of this call is shown in Figure 4.5. The white areas represent the distribution
of a1 for each of the river sizes. The areas are made to have the same size and thus wider
regions represent ranges of values that have larger weight in terms of the distribution of
the values. For instance we can observe that for rivers of medium size most values of a1
are packed near zero, while for smaller rivers the values are more spread across the range
(thinner violin). We have also used the function geom_jitter() to include the concrete
values as dots. Compared to geom_point() that we could have used instead, this function
randomly jitters the points in the horizontal axis to try to avoid over-plotting of points.

Conditioned plots are not restricted to nominal variables, nor to a single factor. You can
carry out the same kind of conditioning study with continuous variables as long as you pre-
viously “discretize” them. Let us see an example by observing the behavior of the frequency
of algal a3 conditioned by season and mnO2, the latter being a continuous variable. Figure
4.6 shows such a graph and the code to obtain it is the following:

> data2graph <- filter(algae,!is.na(mnO2)) %>%
+ mutate(minO2=cut(mnO2, quantile(mnO2,c(0,0.25,.5,.75,1)), include.lowest=TRUE))
> ggplot(data2graph,aes(x=a3,y=season, color=season)) + geom_point() +
+ facet_wrap(~ minO2) +
+ guides(color=FALSE)

The first instruction builds the data to be used on the graph. We first filter out the
rows that have an NA in the continuous variable we want to use in the graph. These values

204 Data Mining with R: Learning with Case Studies

l

l

l

l

l

ll

l

l

l

l

l

l ll

l

ll

l

ll l

l l

l

l l l

ll

l

l

l

l

l

ll

l

l l ll

l

l

l

l

l

l

l

l

l

l

l

l l

ll

l

l

l ll

l

l

ll

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l l

ll

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l l

l

l

l

l l

l

l l

ll

ll

l

l

l

lll l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

ll

l

ll l

l

l

l

ll

l

l

ll

l

ll

l

l l

ll

ll l

[1.5,7.73] (7.73,9.8]

(9.8,10.8] (10.8,13.4]

spring

summer

autumn

winter

spring

summer

autumn

winter

0 10 20 30 40 0 10 20 30 40
a3

se
as

on

FIGURE 4.6: A conditioned dot plot of Algal a3 using a continuous variable.

would cause problems in the subsequent instructions and in the graph.12 We then create
a new column in the data frame, named minO2 that is a discretized version of the orginal
continuous variable mnO2. The discretization is carried out by function cut() that picks
a set of numeric values and allows the user to specify either the number of intervals into
which to discretize the range of these values, or instead specifying the break points where
to split the range into intervals. We have used this second option by means of the outcome
of the quantile() function to obtain these break points. This function obtains quantiles
of any sample of values. A quantile x is a value below which there are x% of the values
in the sample. The way we have specified the quantiles to obtain, makes sure we get four
intervals each containing 25% of the original values of the variable mnO2. As we have seen
in Section 3.3.2.2 (page 63), there are ways of discretizing numeric variables that we could
have also used to produce the graph. Finally, the second instruction plots the graph that
is a dot plot of a3 against season, conditioned (using faceting of the package ggplot2) by
the newly created factor, minO2.

12Later, in Section 4.5 we will see a better solution to this.

Predicting Algae Blooms 205

4.5 Unknown Values
There are several water samples with unknown values in some of the variables. This

situation, rather common in real-world problems, may preclude the use of certain techniques
that are not able to handle missing values.

Whenever we are handling a dataset with missing values, we can follow several strategies.
The most common are:

• Remove the cases with unknowns.

• Fill in the unknown values with the most frequent values.

• Fill in the unknown values by exploring the correlations between variables.

• Fill in the unknown values by exploring the similarity between cases.

• Use tools that are able to handle these values.

The last alternative is the most restrictive, as it limits the set of tools one can use. Still,
it may be a good option whenever we are confident in the merit of the strategies used by
those data mining tools to handle missing values.

In the following subsections we will show examples of how to implement these strategies
in R. If you decide to try the code given in these sections, you should be aware that they
are not complementary. This means that as you go into another method of dealing with
missing values, you should read in again the original data to have all the unknown cases
again, as each section handles them in a different way. The easiest form of doing this is to
execute the following code:

> library(DMwR2)
> library(dplyr)
> data(algae)

Note that the two library loading instructions are not necessary if you have executed
them before when following the previous sections. If that is the case simply re-load the data
with the third instruction.

4.5.1 Removing the Observations with Unknown Values
The option of removing the cases with unknown values is very easy to implement, and

can also be a reasonable choice when the proportion of cases with unknowns is small with
respect to the size of the available dataset.

Before eliminating all observations with at least one unknown value in some variable, it
is always wise to have a look, or at least count them:

> filter(algae, !complete.cases(algae))

A tibble: 16 × 18
season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4
<fctr> <fctr> <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 autumn small high 6.80 11.1 9.000 0.630 20 4.000 NA
2 spring small high 8.00 NA 1.450 0.810 10 2.500 3.000
3 winter small low NA 12.6 9.000 0.230 10 5.000 6.000

206 Data Mining with R: Learning with Case Studies

4 winter small high 6.60 10.8 NA 3.245 10 1.000 6.500
5 spring small medium 5.60 11.8 NA 2.220 5 1.000 1.000
6 autumn small medium 5.70 10.8 NA 2.550 10 1.000 4.000
7 spring small high 6.60 9.5 NA 1.320 20 1.000 6.000
8 summer small high 6.60 10.8 NA 2.640 10 2.000 11.000
9 autumn small medium 6.60 11.3 NA 4.170 10 1.000 6.000
10 spring small medium 6.50 10.4 NA 5.970 10 2.000 14.000
11 summer small medium 6.40 NA NA NA NA NA 14.000
12 autumn small high 7.83 11.7 4.083 1.328 18 3.333 6.667
13 winter medium high 9.70 10.8 0.222 0.406 10 22.444 10.111
14 spring large low 9.00 5.8 NA 0.900 142 102.000 186.000
15 winter large high 8.00 10.9 9.055 0.825 40 21.083 56.091
16 winter large medium 8.00 7.6 NA NA NA NA NA
... with 8 more variables: Chla <dbl>, a1 <dbl>, a2 <dbl>, a3 <dbl>,
a4 <dbl>, a5 <dbl>, a6 <dbl>, a7 <dbl>

The function complete.cases() produces a vector of Boolean values with as many
elements as there are rows in the algae data frame, where an element is true if the
respective row is “clean" of NA values (i.e., is a complete observation). Thus the above
instruction shows the water samples with some NA value because the ’!’ operator performs
logical negation, as was mentioned before.

In order to remove these 16 water samples from our data frame, we can simply do

> algae <- na.omit(algae)

Even if we decide not to use this drastic method of removing all cases with some unknown
value, we can remove some observations because the number of unknown values is so high
that they are almost useless, and even complex methods of filling in these values will be too
unreliable. Note that if you have executed the previous command, you should read in the
data again, as this instruction has removed all the unknowns, so the next statements would
not make sense! Looking at the cases with unknowns we can see that both the samples 62
and 199 have six of the eleven explanatory variables with unknown values. In such cases, it
is wise to simply ignore these observations by removing them:

> data(algae, package="DMwR2") # only necessary if you executed the above na.omit()
> algae <- algae[-c(62, 199),]

In problems where the visual inspection of all the cases with unknowns is unfeasible due
to their number, we need to be able to find the rows with a large number of NAs. The
following code gives you the number of unknown values in each row of the algae dataset:

> apply(algae, 1, function(x) sum(is.na(x)))

The function apply() belongs to a set of very powerful functions of R. These functions
are sometimes known as meta-functions and allow applying other functions to objects under
certain conditions. In the case of the function apply(), we can use it to apply any function
to one of the dimensions of a multidimensional object. Using the apply() function we are
executing a function on all rows of the data frame.13 This function, specified on the third
argument of apply(), will be called with each row of the data frame. The function we have
provided is in this case a temporary function. It is temporary because it only exists within

13The 1 on the second argument stands for the first dimension of the object in the first argument, i.e.,
the rows.

Predicting Algae Blooms 207

the call of the apply(). Alternatively, we could have supplied the name of a “normal”
function. The temporary function basically calculates the number of NAs on the object
x, its argument. It takes advantage of the fact that a true value in R is equivalent to
the number 1, and the false to the value 0, which means that when you sum a vector of
Boolean values, you obtain the number of trues that exist in the vector.

Based on this code we can create a function that gives us the rows in algae that have a
certain number of unknowns. Such a function is available in the book package and you can
use it as follows:

> data(algae, package="DMwR2")
> manyNAs(algae, 0.2)

[1] 62 199

The call to data() is only necessary if you have previously removed the rows that
have lots of unknowns. The manyNAs() function gives you the row numbers that, in this
case, have more than 20% of the columns with an NA. In the second argument you can
alternatively supply the exact number of columns that you want to consider as the limit.
So, an alternative to the code given before that does not require you to know the number
of the rows with lots of unknowns is

> algae <- algae[-manyNAs(algae),]

In this case we have used the default value of the second argument of manyNAs(), which
is 0.2.

4.5.2 Filling in the Unknowns with the Most Frequent Values
An alternative to eliminating the cases with unknown values is to try to find the most

probable value for each of these unknowns, frequently known as missing value imputation.
Again, several strategies can be followed, with different trade-offs between the level of ap-
proximation and the computational complexity of the method.

The simplest and fastest way of filling in the unknown values is to use some statistic
of centrality. These statistics reflect the most frequent value of a variable distribution; thus
they are a natural choice for this strategy. Several statistics of centrality exist, like the
mean, the median, the mode, etc. The choice of the most adequate value depends on the
distribution of the variable. For approximately normal distributions, where all observations
are nicely clustered around the mean, this statistic is the best choice. However, for skewed
distributions, or for variables with outliers, the mean can be disastrous. Skewed distributions
have most values clustered near one of the sides of the range of values of the variable; thus
the mean is clearly not representative of the most common value. On the other hand,
the presence of outliers (extreme values) may distort the calculation of the mean,14 thus
leading to similar representativeness problems. Therefore, it is not wise to use the mean
without a previous inspection of the distribution of the variable using, for instance, some
of the graphical tools of R (e.g., Figure 4.2). For skewed distributions or for variables with
outliers, the median is a better statistic of centrality.

For instance, the sample algae[48,] does not have a value in the variable mxPH. As
the distribution of this variable is nearly normal (compare with Figure 4.2) we could use
its mean value to fill in the “hole”. This could be done by

14The mean of the vector c(1.2,1.3,0.4,0.6,3,15) is 3.583.

208 Data Mining with R: Learning with Case Studies

> algae[48, "mxPH"] <- mean(algae$mxPH, na.rm = TRUE)

where the function mean() gives the mean value of any vector of numbers, and na.rm=TRUE
disregards any NA values in this vector from the calculation.15

Most of the time we will be interested in filling in all unknowns of a column instead of
working on a case-by-case basis as above. Let us see an example of this with the variable
Chla. This variable is unknown on 12 water samples. Moreover, this is a situation where the
mean is a very poor representative of the most frequent value of the variable. In effect, the
distribution of Chla is skewed to lower values, and there are a few extreme values that make
the mean value (13.971) highly unrepresentative of the most frequent value. Therefore, we
will use the median to fill in all the unknowns in this column,

> algae[is.na(algae$Chla), "Chla"] <- median(algae$Chla, na.rm = TRUE)

In order to automate this process you may use the function centralImputation(),
available in the book package. This function fills in all unknowns in a dataset using a
statistic of centrality. The function uses by default the median for numeric columns and the
most frequent value (the mode) for nominal variables. You may apply it as follows:

> data(algae, package="DMwR2")
> algae <- algae[-manyNAs(algae),]
> algae <- centralImputation(algae)

While the presence of unknown values may impair the use of some methods, filling in
their values using a strategy as above is usually considered a bad idea. This simple strategy,
although extremely fast, and thus appealing for large datasets, may introduce a large bias in
the data, which can influence our posterior analysis. However, unbiased methods that find
the optimal value to fill in an unknown are extremely complex and may not be adequate
for some large data mining problems.

4.5.3 Filling in the Unknown Values by Exploring Correlations
An alternative for getting less biased estimators of the unknown values is to explore the

relationships between variables. For instance, using the correlation between the variables
values, we could discover that a certain variable is highly correlated with mxPH, which
would enable us to obtain other, more probable values for the sample number 48, which has
an unknown on this variable. This could be preferable to using the mean as we did above.

To obtain the variables correlation we can issue the command,

> cor(algae[, 4:18], use = "complete.obs")

The function cor() produces a matrix with the correlation values between the vari-
ables (we have avoided the first 3 variables/columns because they are nominal). The
use="complete.obs" setting tells R to disregard observations with NA values in this cal-
culation. Values near 1 (−1) indicate a strong positive (negative) linear correlation between
the values of the two respective variables. Other R functions could then be used to approxi-
mate the functional form of this linear correlation, which in turn would allow us to estimate
the values of one variable from the values of the correlated variable.

The result of this cor() function is not very legible but we can put it through the
function symnum() to improve this:

15Without this ‘detail’ the result of the call would be NA because of the presence of NA values in this
column.

Predicting Algae Blooms 209

> symnum(cor(algae[,4:18],use="complete.obs"))

mP mO Cl NO NH o P Ch a1 a2 a3 a4 a5 a6 a7
mxPH 1
mnO2 1
Cl 1
NO3 1
NH4 , 1
oPO4 . . 1
PO4 . . * 1
Chla . 1
a1 . . . 1
a2 . . 1
a3 1
a4 . . 1
a5 1
a6 . . . 1
a7 1
attr(,"legend")
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1

This symbolic representation of the correlation values is more legible, particularly for
large correlation matrices. Probably even more interesting is to visualize the correlation
matrix. Package corrplot (Wei, 2013) provides a series of interesting functions with this
purpose. Here is an example of its usage with the result shown in Figure 4.7:

> library(corrplot)
> cm <- cor(algae[,4:18], use="complete.obs")
> corrplot(cm, type="upper", tl.pos="d")
> corrplot(cm, add=TRUE, type="lower", method="number",
+ diag=FALSE, tl.pos="n", cl.pos="n")

The graph is obtained in two steps (two calls to the function corrplot()), the first
drawing the upper right part of the graph, and the second producing the bottom left part
with the correlation values. This function has many more parameter settings that you can
use to produce different visual representation of these correlation matrices.

In our data, the correlations are in most cases irrelevant. However, there are two ex-
ceptions: between variables NH4 and NO3, and between PO4 and oPO4. These two latter
variables are strongly correlated (above 0.9). The correlation between NH4 and NO3 is less
evident (0.72) and thus it is risky to take advantage of it to fill in the unknowns. Moreover,
assuming that you have removed the samples 62 and 199 because they have too many un-
knowns, there will be no water sample with unknown values on NH4 and NO3. With respect
to PO4 and oPO4, the discovery of this correlation16 allows us to fill in the unknowns on
these variables. In order to achieve this we need to find the form of the linear correlation
between these variables. This can be done as follows:

> data(algae, package="DMwR2")
> algae <- algae[-manyNAs(algae),]
> lm(PO4 ~ oPO4, data = algae)

16According to domain experts, this was expected because the value of total phosphates (PO4) includes
the value of orthophosphate (oPO4).

210 Data Mining with R: Learning with Case Studies

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
mxPH

mnO2

Cl

NO3

NH4

oPO4

PO4

Chla

a1

a2

a3

a4

a5

a6

a7

−0.17

0.13

−0.13

−0.09

0.16

0.18

0.39

−0.27

0.33

0.03

−0.25

−0.02

−0.08

−0.09

−0.28

0.1

−0.09

−0.42

−0.49

−0.17

0.28

−0.1

−0.25

−0.32

0.17

0.16

−0.12

0.23

0.07

0.39

0.46

0.15

−0.36

0.09

0.09

0.12

0.17

0.18

−0.03

0.72

0.14

0.17

0.14

−0.24

0.02

−0.08

−0.03

0.22

0.55

0.09

0.23

0.21

0.09

−0.13

−0.03

−0.1

0.23

0.03

0.41

−0.02

0.91

0.13

−0.42

0.15

0.03

0.3

0.15

0.03

0.05

0.27

−0.49

0.16

0.07

0.3

0.19

0.08

0.11

−0.28

0.38

−0.05

−0.08

−0.06

0.02

0.02

−0.29

−0.15

−0.04

−0.3

−0.28

−0.21

0.03

−0.17

−0.16

−0.12

0.05

0.01

−0.11

−0.17

0.06

−0.11

−0.09

0.04

0.4

−0.03−0.01

FIGURE 4.7: A visualization of a correlation matrix.

Call:
lm(formula = PO4 ~ oPO4, data = algae)

Coefficients:
(Intercept) oPO4

42.897 1.293

The function lm() can be used to obtain linear models of the form Y = β0 + β1X1 +
. . .+βnXn. We will describe this function in detail in Section 4.6. The linear model we have
obtained tells us that PO4 = 42.897 + 1.293 × oPO4. With this formula we can fill in the
unknown values of these variables, provided they are not both unknown.

After removing the sample 62 and 199, we are left with a single observation with an
unknown value on the variable PO4 (sample 28); thus we could simply use the discovered
relation to do the following:

> algae[28, "PO4"] <- 42.897 + 1.293 * algae[28, "oPO4"]

However, for illustration purposes, let us assume that there were several samples with
unknown values on the variable PO4. How could we use the above linear relationship to fill
all the unknowns? The best way would be to create a function that would return the value
of PO4 given the value of oPO4, and then apply this function to all unknown values:

> data(algae, package="DMwR2")
> algae <- algae[-manyNAs(algae),]
> fillPO4 <- function(oP) ifelse(is.na(oP),NA,42.897 + 1.293 * oP)

Predicting Algae Blooms 211

> algae[is.na(algae$PO4), "PO4"] <- sapply(algae[is.na(algae$PO4), "oPO4"], fillPO4)

We first create a function called fillPO4() with one argument, which is assumed to
be the value of oPO4. Given a value of oPO4, this function returns the value of PO4
according to the discovered linear relation (try issuing “fillPO4(6.5)”). This function is
then applied to all samples with unknown value on the variable PO4. This is done using
the function sapply(), another example of a meta-function. This function has a vector as
the first argument and a function as the second. The result is another vector with the same
length, with the elements being the result of applying the function in the second argument
to each element of the given vector. This means that the result of this call to sapply() will
be a vector with the values to fill in the unknowns of the variable PO4. The last assignment
is yet another example of the use of function composition. In effect, in a single instruction
we are using the result of the function is.na() to index the rows in the data frame, and
then to the result of this data selection we are applying the function fillPO4() to each of
its elements through function sapply().

The study of the linear correlations enabled us to fill in some new unknown values.
Still, there are several observations left with unknown values. We can try to explore the
correlations between the variables with unknowns and the nominal variables of this problem.
We can use conditioned histograms with this objective. For instance, Figure 4.8 shows an
example of such a graph. This graph was produced as follows:

> library(ggplot2)
> library(forcats)
> algae <- mutate(algae,
+ size=fct_relevel(size,c("small","medium","large")),
+ speed=fct_relevel(speed,c("low","medium","high")),
+ season=fct_relevel(season,c("spring","summer","autumn","winter")))
> ggplot(algae, aes(x=mxPH)) + geom_histogram(binwidth=0.5) + facet_wrap(~ season)

This instruction obtains a histogram of the values of mxPH for the different values of
season. Each histogram is built using only the subset of observations with a certain season
value. We have changed the order of the factors again because you have most probably
loaded again the original data in the package that includes the factors with the values
ordered alphabetically.

Notice that the histograms in Figure 4.8 are rather similar, thus leading us to conclude
that the values of mxPH are not seriously influenced by the season of the year when the
samples were collected. If we try the same thing using the size of the river, we can observe
a tendency for smaller rivers to show lower values of mxPH. We can extend our study of
these dependencies using several nominal variables. For instance,

> ggplot(algae, aes(x=mxPH)) + geom_histogram(binwidth=0.5) +
+ facet_wrap(size ~ speed)

shows the variation of mxPH for all combinations of size and speed of the rivers. It is
curious to note that there is no information regarding small rivers with low speed.17 The
single sample that has these properties is exactly sample 48, the one for which we do not
know the value of mxPH !

Another alternative used to obtain similar information but now with the concrete values
of the variable is

17Actually, if you have executed the instruction given before to fill in the value of mxPH with the mean
value of this variable, this is not true any more!

212 Data Mining with R: Learning with Case Studies

spring summer

autumn winter

0

5

10

15

20

0

5

10

15

20

6 7 8 9 6 7 8 9
mxPH

co
un

t

FIGURE 4.8: A histogram of variable mxPH conditioned by season.

> ggplot(algae, aes(x=mxPH, y=size, color=size)) + geom_point() +
+ facet_wrap(~speed) + geom_jitter(height = 0.4)

The result of this instruction is shown in Figure 4.9. The geom_jitter() function was
used to perform a small random permutation of the values in the Y-direction to avoid
plotting observations with the same values over each other, thus losing some information
on the concentration of observations with some particular value.

This type of analysis could be carried out for the other variables with unknown values.
Still, this is a tedious process because there are too many combinations to analyze. Never-
theless, this is a method that can be applied in small datasets with few nominal variables.

4.5.4 Filling in the Unknown Values by Exploring Similarities between
Cases

Instead of exploring the correlation between the columns (variables) of a data set, we
can try to use the similarities between the rows (observations) to fill in the unknown values.
We will illustrate this method to fill in all unknowns with the exception of the two samples
with too many NAs. Let us again read in the data to override the code of the previous
sections (assuming you have tried it).

> data(algae, package="DMwR2")
> algae <- algae[-manyNAs(algae),]

The approach described in this section assumes that if two water samples are similar,

Predicting Algae Blooms 213

l lllll ll ll llll l

ll lll l lll llll lll l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

ll l
l

l

l

l

l

ll

l

l

l

l

l llll lll ll llll lll l lll ll ll l

ll llllllll ll l lllll l llll lllllllll lll

ll l ll lll ll l lll lllll l

l

l

l

l

l

l

ll

l

l

llll

l

l

l
l

ll

l l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l l

l

l

l

l

l
l

l
ll

l
l
l

l l

ll

l

l

l

l

l

l

l
l ll

l

l

l

l
l

l

ll
l

l

llllll ll ll llll ll llll ll l ll ll llllllllll lll lll

llllll lllll lll ll l lll l llll ll ll ll lll

ll ll lll

l

ll

l

l

l

l

l
ll

ll

l

l

l

l
l

ll

l l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

ll

ll

l

l

l
l
l

l
l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l
l

l

l

l

ll

l
l

l
l

l

low medium high

small

medium

large

6 7 8 9 6 7 8 9 6 7 8 9
mxPH

si
ze

size
ll

ll

ll

small

medium

large

FIGURE 4.9: The values of variable mxPH by river size and speed.

and one of them has an unknown value in some variable, there is a high probability that this
value is similar to the value of the other sample. In order to use this intuitively appealing
method, we need to define the notion of similarity. This notion is usually defined using a
metric over the multivariate space of the variables used to describe the observations, as we
have seen in Section 3.4.3.1 (page 119).

The method we describe below will use the Euclidean distance (Equation 3.11 on
page 119) to find the ten most similar cases of any water sample with some unknown
value in a variable, and then use their values to fill in the unknown. We will consider two
ways of using their values. The first simply calculates the median of the values of the ten
nearest neighbors to fill in the gaps. In case of unknown nominal variables (which do not
occur in our algae data set), we would use the most frequent value (the mode) among the
neighbors. The second method uses a weighted average of the values of the neighbors. The
weights decrease as the distance to the case of the neighbors increases. We use a Gaussian
kernel function to obtain the weights from the distances. If one of the neighbors is at dis-
tance d from the case to fill in, its value will enter the weighted average with a weight given
by

w(d) = e−d (4.1)
This idea is implemented in function knnImputation() available in the book package.

The function uses a variant of the Euclidean distance to find the k nearest neighbors of any
case. This variant allows the application of the function to datasets with both nominal and
continuous variables. The used distance function was described in Equation 3.13 on page 120.
These distances are calculated after standardizing the numeric values (c.f. Equation 3.1 on
page 62).

214 Data Mining with R: Learning with Case Studies

Let us now see how to use the knnImputation() function:

> algae <- knnImputation(algae, k = 10)

In case you prefer to use the strategy of using the median values for filling in the
unknowns, you could use the call

> algae <- knnImputation(algae, k = 10, meth = "median")

In summary, after these simple instructions we have the data frame free of NA values,
and we are better prepared to take full advantage of several R functions.

In terms of deciding which of the methods for filling in unknowns that were described in
the previous sections should be used, the answer is domain dependent most of the time. The
method of exploring the similarities between cases seems more rational, although it suffers
from some problems. These include the possible existence of irrelevant variables that may
distort the notion of similarity, or even excessive computational complexity for extremely
large datasets. Still, for these large problems we can always use random samples to calculate
the similarities.

Further readings on handling unknown values
The book Data Preparation for Data Mining by Pyle (1999) is an extensive source of information on all issues
of preparing data for data mining, and includes handling missing values. The book Predictive Data Mining by
Weiss and Indurkhya (1999) is another good source of information on data preparation in general, and unknown
values in particular.

4.6 Obtaining Prediction Models
The main goal of this case study is to obtain predictions for the frequency values of the

seven algae in a set of 140 water samples. Given that these frequencies are numbers, we are
facing a regression task.18 In simple words, this task consists of trying to obtain a model
relating the values of a numerical variable with the values of a set of other explanatory
variables. This model can be used either to predict the value of the target variable for
future observations of the explanatory variables, or to provide a better understanding of
the interactions among the variables in our problem. More extensive explanations of this
instance of Predictive Analytics can be found in Section 3.4.5 (page 140).

In this section we will initially explore two different predictive models that could be
applied to the algae domain: multiple linear regression and regression trees. Our choice was
mainly guided by illustrative purposes in the context of this book, and not as a consequence
of some formal model selection step. Still, these models are two good alternatives for re-
gression problems as they are quite different in terms of their assumptions regarding the
“shape” of the regression function being approximated and they are easy to interpret and
fast to run on any computer. This does not mean that in a real data mining scenario we
should not try other alternatives and then use some form of model selection to select one
or more of them for the final predictions on our 140 test samples. In Section 4.7 we will
do this for the current case study. For more information on model selection in general you
should check Section 3.5 (page 172).

18Actually, as we want to predict seven values for each water sample, we can handle this problem as seven
different regression problems.

Predicting Algae Blooms 215

The models we are going to try handle missing values in a different way. While the
implementation of linear regression available in R is not able to use datasets with unknown
values, the implementation of regression trees handles these values internally. As such, we
will follow a different path concerning the preparation of the data before model construction.
For linear regression we will use one of the techniques described in Section 4.5 for pre-
processing the data so that we can use these models. Regarding regression trees we will use
the original 200 water samples.19

In the analysis we are going to carry out, we will assume that we do not know the true
values of the target variables for the 140 test samples. Still, we have these values and in
the end we will use them to get a final feedback on the value of the models we are going to
obtain.

4.6.1 Multiple Linear Regression
Multiple linear regression is among the most used statistical data analysis techniques.

These models obtain an additive function relating a target variable to a set of predictor
variables. This additive function is a sum of terms of the form βi × Xi, where Xi is a
predictor variable and βi is a number.

As mentioned before, there is no predefined way of handling missing values for this type
of modeling technique. As such, we will use the data resulting from applying the method of
exploring the similarities among the training cases to fill in the unknowns (see Section 4.5.4).
Nevertheless, before we apply this method, we will remove water samples number 62 and
199 because, as mentioned before, they have six of the eleven predictor variables missing.
The following code obtains a data frame without missing values:

> data(algae, package="DMwR2")
> algae <- algae[-manyNAs(algae),]
> clean.algae <- knnImputation(algae, k = 10)

After executing this code we have a data frame, clean.algae, that has no missing
variable values.

Let us start by learning how to obtain a linear regression model for predicting the
frequency of one of the algae.

> lm.a1 <- lm(a1 ~ ., data = clean.algae[, 1:12])

The function lm() obtains a linear regression model. The first argument of this function20

indicates the functional form of the model. In this example, it states that we want a model
that predicts the variable a1 using all other variables present in the data, which is the
meaning of the dot character. For instance, if we wanted a model to predict a1 as a function
of the variables mxPH and NH4, we should have indicated the model as “a1 ∼ mxPH +
NH4”. There are other variants of this model specification language, called formulas in R, as
we have seen in previous chapters. The data parameter sets the data sample to be used to
obtain the model.21

The result of the function is an object that contains the linear model information. We
can obtain more details on the linear model with the following instruction:

19Actually, we will remove two of them because they have too many missing values.
20Actually, of most functions used to obtain models in R.
21We have indicated the 11 explanatory variables plus the column respecting algal a1.

216 Data Mining with R: Learning with Case Studies

> summary(lm.a1)

Call:
lm(formula = a1 ~ ., data = clean.algae[, 1:12])

Residuals:
Min 1Q Median 3Q Max

-37.679 -11.893 -2.567 7.410 62.190

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.942055 24.010879 1.788 0.07537 .
seasonspring 3.726978 4.137741 0.901 0.36892
seasonsummer 0.747597 4.020711 0.186 0.85270
seasonwinter 3.692955 3.865391 0.955 0.34065
sizemedium 3.263728 3.802051 0.858 0.39179
sizesmall 9.682140 4.179971 2.316 0.02166 *
speedlow 3.922084 4.706315 0.833 0.40573
speedmedium 0.246764 3.241874 0.076 0.93941
mxPH -3.589118 2.703528 -1.328 0.18598
mnO2 1.052636 0.705018 1.493 0.13715
Cl -0.040172 0.033661 -1.193 0.23426
NO3 -1.511235 0.551339 -2.741 0.00674 **
NH4 0.001634 0.001003 1.628 0.10516
oPO4 -0.005435 0.039884 -0.136 0.89177
PO4 -0.052241 0.030755 -1.699 0.09109 .
Chla -0.088022 0.079998 -1.100 0.27265

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.65 on 182 degrees of freedom
Multiple R-squared: 0.3731,Adjusted R-squared: 0.3215
F-statistic: 7.223 on 15 and 182 DF, p-value: 2.444e-12

Before we analyze the information provided by the function summary() when applied to
linear models, let us say something about how R handled the three nominal variables. When
using them as shown above, R will create a set of auxiliary variables.22 Namely, for each
factor variable with k levels, R will create k − 1 auxiliary variables. These variables have
the values 0 or 1. A value of 1 means that the associated value of the factor is “present”,
and that will also mean that the other auxiliary variables will have the value 0. If all k − 1
variables are 0, then it means that the factor variable has the remaining kth value. Looking
at the summary presented above, we can see that R has created three auxiliary variables for
the factor season (seasonspring, seasonsummer, and seasonwinter). This means that if
we have a water sample with the value “autumn” in the variable season, all three auxiliary
variables will be set to zero.

The application of the function summary() to a linear model gives some diagnostic
information concerning the obtained model. First of all, we have information concerning
the residuals (i.e., the errors) of the fit of the linear model to the used data. These residuals
should have a mean zero and should have a normal distribution (and obviously be as small
as possible!).

For each coefficient (variable) of the multiple regression equation, R will show its value

22Often called dummy variables.

Predicting Algae Blooms 217

and also its standard error (an estimate of the variability of these coefficients). In order to
check the importance of each coefficient, we can test the hypothesis that each of them is
null, that is, H0 : βi = 0. To test this hypothesis, the t-test is normally used. R calculates
a t value, which is defined as the ratio between the coefficient value and its standard error,
that is, βi

sβi
. R will show us a column (Pr(>|t|)) associated with each coefficient with the

level at which the hypothesis that the coefficient is null is rejected. Thus a value of 0.0001
means that we are 99.99% confident that the coefficient is not null. R marks each test with a
symbol corresponding to a set of common confidence levels used for these tests. In summary,
only for the coefficients that have some symbol in front of them can we reject the hypothesis
that they may be null with at least 90% confidence.

Another piece of relevant diagnostics information outputted by R are the R2 coefficients
(multiple and adjusted). These indicate the degree of fit of the model to the data, that is,
the proportion of variance in the data that is explained by the model. Values near 1 are
better (almost 100% explained variance) — while the smaller the values, the larger the lack
of fit. The adjusted coefficient is more demanding as it takes into account the number of
parameters of the regression model.

Finally, we can also test the null hypothesis that there is no dependence of the target
variable on any of the explanatory variables, that is, H0 : β1 = β2 = . . . = βm = 0. The
F -statistic can be used for this purpose by comparing it to a critical value. R provides the
confidence level at which we are sure to reject this null hypothesis. Thus a p-level of 0.0001
means that we are 99.99% confident that the null hypothesis is not true. Usually, if the
model fails this test (e.g., with a p value that is considered too high, for example, higher
than 0.1), it makes no sense to look at the t-tests on the individual coefficients.

Some diagnostics may also be checked by plotting a linear model. In effect, we can issue a
command like plot(lm.a1) to obtain a series of successive plots that help in understanding
the performance of the model. One of the graphs simply plots each fitted target variable
value against the respective residual (error) of the model. Larger errors are usually marked
by adding the corresponding row number to the dot in the graph, so that you can inspect
the observations if you wish. Another graph shown by R is a normal Q-Q plot of the errors
that helps you check if they follow a normal distribution23 as they should.

The proportion of variance explained by this model is not very impressive (around
32.0%). Still, we can reject the hypothesis that the target variable does not depend on the
predictors (the p value of the F test is very small). Looking at the significance of some of
the coefficients, we may question the inclusion of some of them in the model. There are
several methods for simplifying regression models. In this section we will explore a method
usually known as backward elimination.

We will start our study of simplifying the linear model using the anova() function.
When applied to a single linear model, this function will give us a sequential analysis of
variance of the model fit. That is, the reductions in the residual sum of squares (the total
error of the model) as each term of the formula is added in turn. The result of this analysis
for the model obtained above is shown below.

> anova(lm.a1)

Analysis of Variance Table

Response: a1
Df Sum Sq Mean Sq F value Pr(>F)

season 3 85 28.2 0.0905 0.9651944
size 2 11401 5700.7 18.3088 5.69e-08 ***

23Ideally, all errors would be in a straight line in this graph.

218 Data Mining with R: Learning with Case Studies

speed 2 3934 1967.2 6.3179 0.0022244 **
mxPH 1 1329 1328.8 4.2677 0.0402613 *
mnO2 1 2287 2286.8 7.3444 0.0073705 **
Cl 1 4304 4304.3 13.8239 0.0002671 ***
NO3 1 3418 3418.5 10.9789 0.0011118 **
NH4 1 404 403.6 1.2963 0.2563847
oPO4 1 4788 4788.0 15.3774 0.0001246 ***
PO4 1 1406 1405.6 4.5142 0.0349635 *
Chla 1 377 377.0 1.2107 0.2726544
Residuals 182 56668 311.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These results indicate that the variable season is the variable that least contributes to
the reduction of the fitting error of the model. Let us remove it from the model:

> lm2.a1 <- update(lm.a1, . ~ . - season)

The update() function can be used to perform small changes to an existing linear model.
In this case we use it to obtain a new model by removing the variable season from the lm.a1
model. The summary information for this new model is given below:

> summary(lm2.a1)

Call:
lm(formula = a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla, data = clean.algae[, 1:12])

Residuals:
Min 1Q Median 3Q Max

-36.460 -11.953 -3.044 7.444 63.730

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.9532874 23.2378377 1.934 0.05458 .
sizemedium 3.3092102 3.7825221 0.875 0.38278
sizesmall 10.2730961 4.1223163 2.492 0.01358 *
speedlow 3.0546270 4.6108069 0.662 0.50848
speedmedium -0.2976867 3.1818585 -0.094 0.92556
mxPH -3.2684281 2.6576592 -1.230 0.22033
mnO2 0.8011759 0.6589644 1.216 0.22561
Cl -0.0381881 0.0333791 -1.144 0.25407
NO3 -1.5334300 0.5476550 -2.800 0.00565 **
NH4 0.0015777 0.0009951 1.586 0.11456
oPO4 -0.0062392 0.0395086 -0.158 0.87469
PO4 -0.0509543 0.0305189 -1.670 0.09669 .
Chla -0.0841371 0.0794459 -1.059 0.29096

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.57 on 185 degrees of freedom
Multiple R-squared: 0.3682,Adjusted R-squared: 0.3272
F-statistic: 8.984 on 12 and 185 DF, p-value: 1.762e-13

Predicting Algae Blooms 219

The fit has improved a bit (32.8%) but it is still not too impressive. We can carry out a
more formal comparison between the two models by again using the anova() function, but
this time with both models as arguments:

> anova(lm.a1,lm2.a1)

Analysis of Variance Table

Model 1: a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +
PO4 + Chla

Model 2: a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 +
Chla

Res.Df RSS Df Sum of Sq F Pr(>F)
1 182 56668
2 185 57116 -3 -447.62 0.4792 0.6971

This function performs an analysis of variance of the two models using an F -test to assess
the significance of the differences. In this case, although the sum of the squared errors has
decreased (−448), the comparison shows that the differences are not significant (a value of
0.6971 tells us that with only around 30% confidence we can say they are different). Still,
we should recall that this new model is simpler. In order to check if we can remove more
coefficients, we would again use the anova() function, applied to the lm2.a1 model. This
process would continue until we have no candidate coefficients for removal. However, to
simplify our backward elimination process, R has a function that performs all process for
us.

The following code creates a linear model that results from applying the backward
elimination method to the initial model we have obtained (lm.a1):24

> final.lm <- step(lm.a1)

The function step() uses the Akaike Information Criterion to perform a model search.
The search uses backward elimination by default, but with the parameter direction you
may use other algorithms (check the help page of this function for further details).

We can obtain the information on the final model by

> summary(final.lm)

Call:
lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[,

1:12])

Residuals:
Min 1Q Median 3Q Max

-28.874 -12.732 -3.741 8.424 62.926

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.28555 20.96132 2.733 0.00687 **
sizemedium 2.80050 3.40190 0.823 0.41141
sizesmall 10.40636 3.82243 2.722 0.00708 **
mxPH -3.97076 2.48204 -1.600 0.11130

24We have omitted the output of the step() function for space reasons.

220 Data Mining with R: Learning with Case Studies

Cl -0.05227 0.03165 -1.651 0.10028
NO3 -0.89529 0.35148 -2.547 0.01165 *
PO4 -0.05911 0.01117 -5.291 3.32e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.5 on 191 degrees of freedom
Multiple R-squared: 0.3527,Adjusted R-squared: 0.3324
F-statistic: 17.35 on 6 and 191 DF, p-value: 5.554e-16

The proportion of variance explained by this model is still not very interesting. This kind
of proportion is usually considered a sign that the linearity assumptions of this modeling
approach may be inadequate for the domain.

Further readings on multiple linear regression models
Linear regression is one of the most used statistics techniques. As such, most statistics books will include a
chapter on this subject. Still, specialized books should be used for deeper analysis. Two extensive books are the
ones by Drapper and Smith (1981) and Myers (1990). These books should cover most of the topics you will ever
want to know about linear regression.

4.6.2 Regression Trees
Let us now look at a different kind of regression model available in R. Namely, we will

learn how to obtain a regression tree (e.g., Breiman et al., 1984) to predict the value of the
frequencies of algal a1. As these models handle data sets with missing values, we only need
to remove samples 62 and 199 for the reasons mentioned before. In this section we will briefly
describe the main concepts behind regression trees and how to apply these models to our
case study data. Further information on tree-based models can be found in Section 3.4.5.2
(page 145) where they were described in more detail.

The instructions necessary to obtain a regression tree are presented below:

> library(rpart)
> data(algae, package="DMwR2")
> algae <- algae[-manyNAs(algae),]
> rt.a1 <- rpart(a1 ~ ., data = algae[, 1:12])

The first instruction loads the rpart (Therneau and Atkinson, 2010) package that im-
plements regression trees in R. The last instruction obtains the tree. Note that this function
uses the same schema as the lm() function to describe the functional form of the model.
The second argument of rpart() indicates which data to use to obtain the tree.

The content of the object rt.a1 object is the following:

> rt.a1

n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) PO4>=43.818 147 31279.120 8.979592

4) Cl>=7.8065 140 21622.830 7.492857

Predicting Algae Blooms 221

8) oPO4>=51.118 84 3441.149 3.846429 *
9) oPO4< 51.118 56 15389.430 12.962500
18) mnO2>=10.05 24 1248.673 6.716667 *
19) mnO2< 10.05 32 12502.320 17.646870

38) NO3>=3.1875 9 257.080 7.866667 *
39) NO3< 3.1875 23 11047.500 21.473910

78) mnO2< 8 13 2919.549 13.807690 *
79) mnO2>=8 10 6370.704 31.440000 *

5) Cl< 7.8065 7 3157.769 38.714290 *
3) PO4< 43.818 51 22442.760 40.103920

6) mxPH< 7.87 28 11452.770 33.450000
12) mxPH>=7.045 18 5146.169 26.394440 *
13) mxPH< 7.045 10 3797.645 46.150000 *

7) mxPH>=7.87 23 8241.110 48.204350
14) PO4>=15.177 12 3047.517 38.183330 *
15) PO4< 15.177 11 2673.945 59.136360 *

A regression tree is a hierarchy of logical tests on some of the explanatory variables.
Tree-based models automatically select the more relevant variables; thus, not all variables
need to appear in the tree. A tree is read from the root node that is marked by R with
the number 1. R provides some information about the data in this node. Namely, we can
observe that we have 198 samples (the overall training data used to obtain the tree) at
this node, that these 198 samples have an average value for the frequency of algal a1 of
16.99, and that the deviance25 from this average is 90401.29. Each node of a tree has two
branches. These are related to the outcome of a test on one of the predictor variables. For
instance, from the root node we have a branch (tagged by R with “2)”) for the cases where
the test “PO4≥43.818” is true (147 samples); and also a branch for the 51 remaining cases
not satisfying this test (marked by R with “3)”). From node 2 we have two other branches
leading to nodes 4 and 5, depending on the outcome of a test on Cl. This testing goes on
until a leaf node is reached. These nodes are marked with asterisks by R. At these leaves
we have the predictions of the tree. This means that if we want to use a tree to obtain a
prediction for a particular water sample, we only need to follow a branch from the root
node to a leaf, according to the outcome of the tests for this sample. The average target
variable value found at the leaf we have reached is the prediction of the tree.

We can also obtain a graphical representation of the tree. This can be done by succes-
sively applying the functions plot() and text() to the tree. These functions have several
parameters to control the visualization of the tree. A much more practical alternative is
to use the functions provided by package rpart.plot (Milborrow, 2015). This package in-
cludes the function prp() that produces nice and highly flexible graphical representation of
the trees produced by the function rpart(). Applying it to the obtained tree (with some
parameter tweaking), we obtain the result shown in Figure 4.10.

> library(rpart.plot)
> prp(rt.a1,extra=101,box.col="orange",split.box.col="grey")

The summary() function can also be applied to tree objects. This will produce a lot
of information concerning the tests on the tree, the alternative tests that could be consid-
ered, and also the surrogate splits. These last splits are part of the strategy used in rpart
regression trees to handle unknown values.

As we have mentioned in in Section 3.4.5.2, trees are usually obtained in two steps.
Initially, a large tree is grown, and then this tree is pruned by deleting bottom nodes through

25The sum of squared differences from the average.

222 Data Mining with R: Learning with Case Studies

PO4 >= 44

Cl >= 7.8

oPO4 >= 51

mnO2 >= 10

NO3 >= 3.2

mnO2 < 8

mxPH < 7.9

mxPH >= 7 PO4 >= 15

3.8
n=84 42%

6.7
n=24 12%

7.9
n=9 5%

14
n=13 7%

31
n=10 5%

39
n=7 4%

26
n=18 9%

46
n=10 5%

38
n=12 6%

59
n=11 6%

yes no

FIGURE 4.10: A regression tree for predicting algal a1.

a process of statistical estimation. This process has the goal of avoiding overfitting. This has
to do with the fact that an overly large tree will fit the training data almost perfectly, but
will be capturing spurious relationships of the given dataset (overfitting it), and thus will
perform badly when faced with a new data sample for which predictions are required. The
overfitting problem occurs in many modeling techniques, particularly when the assumptions
regarding the function to approximate are more relaxed. These models, although having a
wider application range (due to these relaxed criteria), suffer from this overfitting problem,
thus requiring a posterior, statistically based estimation step to preclude this effect.

The function rpart() that we have used to obtain our tree only grows the tree, stopping
when certain criteria are met. Namely, the tree stops growing whenever (1) the decrease in
the deviance goes below a certain threshold; when (2) the number of samples in the node
is less than another threshold; or when (3) the tree depth exceeds another value. These
thresholds are controlled by the parameters cp, minsplit, and maxdepth, respectively. If
we want to avoid the overfitting problem we should always check the validity of these default
criteria. This can be carried out through a process of post-pruning the obtained tree.

The rpart package implements a pruning method called cost complexity prun-
ing (Breiman et al., 1984). This method uses the values of the parameter cp that R calculates
for each node of the tree. The pruning method tries to estimate the value of cp that en-
sures the best compromise between predictive accuracy and tree size. Given a tree obtained
with the rpart() function, R can produce a set of sub-trees of this tree and estimate their
predictive performance. This information can be obtained using the function printcp() :26

26You can obtain similar information in graphical form using plotcp(rt.a1).

Predicting Algae Blooms 223

> printcp(rt.a1)

Regression tree:
rpart(formula = a1 ~ ., data = algae[, 1:12])

Variables actually used in tree construction:
[1] Cl mnO2 mxPH NO3 oPO4 PO4

Root node error: 90401/198 = 456.57

n= 198

CP nsplit rel error xerror xstd
1 0.405740 0 1.00000 1.00996 0.13033
2 0.071885 1 0.59426 0.70253 0.11269
3 0.030887 2 0.52237 0.69007 0.11504
4 0.030408 3 0.49149 0.71433 0.11890
5 0.027872 4 0.46108 0.72874 0.12022
6 0.027754 5 0.43321 0.71352 0.11833
7 0.018124 6 0.40545 0.70953 0.11719
8 0.016344 7 0.38733 0.72854 0.11454
9 0.010000 9 0.35464 0.75211 0.11483

The tree returned by the rpart() function is the last tree of this list (tree 9). This
tree has a cp value of 0.01 (the default value of this parameter), includes nine tests, and
has a relative error (compared to the root node) of 0.35464. However, R estimates, using
an internal process of ten-fold cross-validation, that this tree will have an average relative
error27 of 0.75211 ± 0.11483. Using the information provided by these more reliable esti-
mates of performance, which avoid the overfitting problem, we can observe that we would
theoretically be better off with the tree number 3, which has a lower estimated relative error
(0.69007). An alternative selection rule is to choose the best tree according to the 1-SE rule.
This consists of looking at the cross-validation error estimates (“xerror” columns) and their
standard deviations (“xstd” column). In this case the 1-SE tree is the smallest tree with
error less than 0.69007+0.11504 = 0.80511, which in this case is the tree number 2 with 1
test and an estimated error of 0.70253. If we prefer this tree to the one suggested by R, we
can obtain it using the respective cp value:28

> rt2.a1 <- prune(rt.a1, cp = 0.08)
> rt2.a1

n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.29 16.996460
2) PO4>=43.818 147 31279.12 8.979592 *
3) PO4< 43.818 51 22442.76 40.103920 *

27It is important to note that you may have obtained different numbers on the columns ‘xerror’ and ‘xstd’.
The cross-validation estimates are obtained using a random sampling process, meaning that your samples
will probably be different and thus the results will also differ.

28Actually, any value that is between its cp value and the one of the tree above it.

224 Data Mining with R: Learning with Case Studies

As we have mentioned before the book package includes the function rpartXse() that
automates this process and takes as an argument the se value, defaulting to 1:

> (rt.a1 <- rpartXse(a1 ~ ., data = algae[, 1:12]))

n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.29 16.996460
2) PO4>=43.818 147 31279.12 8.979592 *
3) PO4< 43.818 51 22442.76 40.103920 *

R also allows a kind of interactive pruning of a tree through the function snip.rpart().
This function can be used to generate a pruned tree in two ways. The first consists of
indicating the number of the nodes (you can obtain these numbers by printing a tree object)
at which you want to prune the tree:

> first.tree <- rpart(a1 ~ ., data = algae[, 1:12])
> snip.rpart(first.tree, c(4, 7))

n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) PO4>=43.818 147 31279.120 8.979592

4) Cl>=7.8065 140 21622.830 7.492857 *
5) Cl< 7.8065 7 3157.769 38.714290 *

3) PO4< 43.818 51 22442.760 40.103920
6) mxPH< 7.87 28 11452.770 33.450000
12) mxPH>=7.045 18 5146.169 26.394440 *
13) mxPH< 7.045 10 3797.645 46.150000 *

7) mxPH>=7.87 23 8241.110 48.204350 *

Note that the function returns a tree object like the one returned by the rpart()
function, which means that you can store your pruned tree using something like
my.tree <- snip.rpart(first.tree,c(4,7)).

Alternatively, you can use snip.rpart() in a graphical way. First, you plot the tree,
and then you call the function without the second argument. If you click the mouse on some
node, R prints on its console some information about the node. If you click again on that
node, R prunes the tree at that node.29 You can go on pruning nodes in this graphical way.
You finish the interaction by clicking the right mouse button. The result of the call is again
a tree object. Please note that this graphical pruning procedure cannot unfortunately, be
used with the prp() function. Instead you need to used the more “standard” (but not so
nice) way of obtaining a graphical representation of the tree,

> plot(first.tree)
> text(first.tree)
> snip.rpart(first.tree)

29Note that the plot of the tree is not updated, so you will not see the pruning being carried out in the
graphics window.

Predicting Algae Blooms 225

4.7 Model Evaluation and Selection
In Section 4.6 we saw two examples of prediction models that could be used in this case

study. The obvious question is which one should we use for obtaining the predictions for
the seven algae of the 140 test samples? To answer this question, one needs to specify some
preference criteria over the space of possible models; that is, we need to specify how we will
evaluate the performance of the models.

Several criteria exist for evaluating (and thus comparing) models. Among the most
popular are criteria that calculate the predictive performance of the models. Still, other
criteria exist such as the model interpretability, or even the model computational efficiency,
that can be important for very large data mining problems.

The predictive performance of regression models is obtained by comparing the predic-
tions of the models with the real values of the target variables, and calculating some average
error measure from this comparison. One such measure is the mean absolute error (MAE).
Let us see how to obtain this measure for our two models (linear regression and regression
trees). The first step is to obtain the model predictions for the set of cases where we want to
evaluate it. To obtain the predictions of any model in R, one uses the function predict().
This general function receives a model and a test dataset and retrieves the corresponding
model predictions:

> lm.predictions.a1 <- predict(final.lm, clean.algae)
> rt.predictions.a1 <- predict(rt.a1, algae)

These two statements collect the predictions of the models obtained in Section 4.6 for
alga a1. Note that we have used the clean.algae data frame with linear models, because
of the missing values.

Having the predictions of the models, we can calculate their mean absolute error as
follows:

> (mae.a1.lm <- mean(abs(lm.predictions.a1 - algae[["a1"]])))

[1] 13.10681

> (mae.a1.rt <- mean(abs(rt.predictions.a1 - algae[["a1"]])))

[1] 8.480619

Another popular error measure is the mean squared error (MSE). This measure can be
obtained as follows:

> (mse.a1.lm <- mean((lm.predictions.a1 - algae[["a1"]])^2))

[1] 295.5407

> (mse.a1.rt <- mean((rt.predictions.a1 - algae[["a1"]])^2))

[1] 161.9202

This latter statistic has the disadvantage of not being measured in the same units as
the target variable, and thus being less interpretable from the user perspective. Even if we
use the MAE statistic, we can ask ourselves the question of whether the scores obtained

226 Data Mining with R: Learning with Case Studies

by the models are good or bad. An alternative statistic that provides a reasonable answer
to this question is the normalized mean squared error (NMSE). This statistic calculates a
ratio between the performance of our models and that of a baseline predictor, usually taken
as the mean value of the target variable:

> (nmse.a1.lm <- mean((lm.predictions.a1-algae[['a1']])^2)/
+ mean((mean(algae[['a1']])-algae[['a1']])^2))

[1] 0.6473034

> (nmse.a1.rt <- mean((rt.predictions.a1-algae[['a1']])^2)/
+ mean((mean(algae[['a1']])-algae[['a1']])^2))

[1] 0.3546432

The NMSE is a unitless error measure with values usually ranging from 0 to 1. If your
model is performing better than this very simple baseline predictor, then the NMSE should
clearly be less than 1. The smaller the NMSE, the better. Values greater than 1 mean that
your model is performing worse than simply always predicting the average for all cases!
Further details on evaluation metrics can be found in Section 3.4.5.1 (page 141).

It is also interesting to have some kind of visual inspection of the predictions of the
models. A possibility is to use a scatter plot of the errors. Figure 4.11 shows an example of
this type of analysis for the predictions of our two models, and it was produced with the
following code:

> library(ggplot2)
> dg <- data.frame(lm.a1=lm.predictions.a1,
+ rt.a1=rt.predictions.a1,
+ true.a1=algae[["a1"]])
> ggplot(dg,aes(x=lm.a1,y=true.a1)) +
+ geom_point() + geom_abline(slope=1,intercept=0,color="red") +
+ ggtitle("Linear Model")
> ggplot(dg,aes(x=rt.a1,y=true.a1)) +
+ geom_point() + geom_abline(slope=1,intercept=0,color="red") +
+ ggtitle("Regression Tree")

Looking at Figure 4.11 we can observe that the models have rather poor performance
in several cases. In the ideal scenario that they make correct predictions for all cases, all
the points in the plots should lie on the red lines, which were obtained with the call to
geom_abline(). These lines cross the origin of the plots and represent the points where
the X-coordinate is equal to the Y-coordinate. Given that each point in the plots obtains
its coordinates from the predicted and truth values of the target variable, if these values
were equal, the points would all be placed on this ideal line. As we observe, that is not the
case at all! We can check which is the sample number where a particularly bad prediction
is made with the function identify(), which can be used to let the user interactively click
on the dots in a graph. Unfortunately, this type of interaction is not possible with ggplot2
graphs, so we resort to the standard graphics in this case,

> plot(lm.predictions.a1,algae[['a1']],main="Linear Model",
+ xlab="Predictions",ylab="True Values")
> abline(0,1,col="red")
> algae[identify(lm.predictions.a1,algae[['a1']]),]

Predicting Algae Blooms 227

l
l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

ll

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l
l

l

l

l

l

l

l

l

l

ll ll l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l l

l

l

l
l

l l
l

ll

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l
ll

l

l

l ll

l

l

l

l

l
l

l
l

l

l

l
l l

lll

l

l

l

l

l

l

ll
l

l
l l

l

l

l

l
l

l

l

l

l

l

l

0

25

50

75

0 20 40
lm.a1

tr
ue

.a
1

Linear Model

l
l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

ll

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l
l

l

l

l

l

l

l

l

l

lllll
l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
lll

l

l

l
l

ll
l

l l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l
ll

l

l

l ll

l

l

l

l

l
l
l
l

l

l

l
ll
lll

l

l

l

l

l

l

ll
l

l
ll

l

l

l

l
l

l

l

l

l

l

l

0

25

50

75

20 40 60
rt.a1

tr
ue

.a
1

Regression Tree

FIGURE 4.11: Errors scatter plot.

Using this code and after finishing the interaction with the graphics window by right-
clicking on the graph, you should see the rows of the algae data frame corresponding to
the clicked points — because we are using the vector returned by the identify() function
to index the algae data frame.

Looking at Figure 4.11 (left) with the predictions of the linear model, we can see that
this model predicts negative algae frequencies for some cases. In this application domain,
it makes no sense to say that the occurrence of an alga in a water sample is negative (at
most, it can be zero). As such, we can take advantage of this domain knowledge and use
this minimum value as a form of improving the linear model performance:

> sensible.lm.predictions.a1 <- ifelse(lm.predictions.a1 < 0, 0, lm.predictions.a1)
> (mae.a1.lm <- mean(abs(lm.predictions.a1 - algae[["a1"]])))

[1] 13.10681

> (smae.a1.lm <- mean(abs(sensible.lm.predictions.a1 - algae[["a1"]])))

[1] 12.48276

We have used the function ifelse() to achieve this effect. This function has three
arguments. The first is a logical condition, the second is the result of the function call when
the condition is true, while the third argument is the result when the condition is false.
Notice how this small detail has improved the performance of our model.

According to the performance measures calculated previously, one should prefer the
regression tree to obtain the predictions for the 140 test samples as it obtained a lower
NMSE. However, there is a trap in this reasoning. Our goal is to choose the best model for
obtaining the predictions on the 140 test samples. As we do not know the target variable
values for those samples, we have to estimate which of our models will perform better on
these test samples. The key issue here is to obtain a reliable estimate of a model performance
on data for which we do not know the true target value. Calculating the performance metrics
using the training data (as we did before) is unreliable because the obtained estimates are
biased. In effect, there are models that can easily obtain zero prediction error on the training
data. However, this performance will hardly generalize over new samples for which the target
variable value is unknown. This phenomenon is usually known as overfitting the training

228 Data Mining with R: Learning with Case Studies

data, as mentioned previously. Thus, to select a model, one needs to obtain more reliable
estimates of the model’s performance on unseen data. k-fold cross-validation (k-fold CV)
is among the most frequently used methods for obtaining these reliable estimates for small
datasets like our case study. This method can be briefly described as follows. Obtain k
equally sized and random subsets of the training data. For each of these k subsets, build
a model using the remaining k − 1 sets and evaluate this model on the kth subset. Store
the performance of the model and repeat this process for all remaining subsets. In the
end, we have k performance measures, all obtained by testing a model on data not used
for its construction, and that is the key issue. The k-fold cross-validation estimate is the
average of these k measures. A common choice for k is 10. Sometimes we even repeat the
overall k-fold CV process several times to get even more reliable estimates. Further details
on this important issue of methodologies for obtaining reliable estimates of the predictive
perfomance of a model were given in Section 3.5 (page 172).

In general, we can say that when facing a predictive task, we have to make the following
decisions:

• Select the alternative models to consider (the models can actually be parameter vari-
ants of the same algorithm) for the predictive task(s) we want to address.

• Select the evaluation metrics that will be used to compare the models.

• Choose the experimental methodology for obtaining reliable estimates of these metrics.

As we have seen in Section 3.5, the package performanceEstimation (Torgo, 2014a)
provides and infrastructure designed specifically for these model comparison and selection
problems. It implements several different estimation methods, including cross-validation.
The package includes the function performanceEstimation() that can be used to carry
out this type of experiments. This function has three main parameters: (1) the predictive
tasks to use in the comparison, (2) the alternative approaches to consider for these tasks,
and (3) the estimation task specification. We will illustrate its use by comparing a linear
model with several variants of regression trees, on the algae dataset.

We will assume that we want to use the NMSE as the evaluation metric of our regression
trees and linear models. Moreover, we will use 5 repetitions of a 10-fold cross validation
process to estimate the scores of this statistic of the different approaches we will consider.
The following code runs this estimation process for 4 models: a linear regression model and
3 variants (different pruning levels) of a regression tree.

> library(performanceEstimation)
> res <- performanceEstimation(
+ PredTask(a1 ~ ., algae[, 1:12], "a1"),
+ c(Workflow(learner="lm",pre="knnImp",post="onlyPos"),
+ workflowVariants(learner="rpartXse",learner.pars=list(se=c(0,0.5,1)))),
+ EstimationTask(metrics="nmse",method=CV(nReps=5,nFolds=10))
+)

As mentioned previously, the first argument should be a vector (or a single one, which is a
vector of length 1) with the predictive tasks to be used in the experimental comparison. Each
task is specified as PredTask(<formula>,<data frame>,<label>), with <label> being an
optional name to give to the task. The second argument of performanceEstimation()
contains a vector of workflows. As mentioned before we call a workflow to a solution of
a predictive task. This typically will include the call to some learning algorithm (e.g. a
regression tree) but it can also include some data pre-processing steps, or any other steps

Predicting Algae Blooms 229

that the user considers to be useful to solve the task. In package performanceEstima-
tion there are two main types of workflows: (i) standard workflows; and (ii) user-defined
workflows. The former are ready-to-use workflows that will cover most set-ups of the users
of this package, whilst the latter are for specific set-ups where the user wants some specific
solution to be applied. We will see examples of the user-defined workflows in the other case
studies of this book. Here we are using standard workflows. A workflow is created with the
constructor Workflow(). The first argument of this function is the name of the workflow
to use, which can be omitted if this is the standard workflow provided by the package,
as is done in the example above. This standard workflow (implemented through function
standardWF()) accepts several arguments that can be used to specify your solution to the
task. A key parameter is the learner where you can indicate the name of the R function
implementing your learning algorithm. Standard workflows include other arguments that
allow you to specify other settings of your approach, like the parameters to be used when
calling the learning algorithm, eventual pre-processing functions to be applied to the data
before learning, or even post-processing functions to be applied to the predictions of the
learner. In the above code we see an example where we are using the standard workflow with
the linear regression learning algorithm (function lm()), we are using the function knnImp()
to fill in the unknown values of the data using a k-nearest neighbor approach, and we are
post-processing the predictions of the linear model with the function onlyPos() that ba-
sically truncates any negative predicted value to zero, as we have done before, because we
know algae frequencies can not be negative.

In the above code we have also used the function workflowVariants(). This auxiliary
function facilitates the specification of several variants of a workflow without having to
type in all their details. The result of this function is a set of workflows, each resulting
from some variation of the parameters of a workflow. In this case we are generating these
variants by saying that all are variants of the same learning algorithm (rpartXse in this
case), with three different settings of the parameter se of this learner. This means the
above function call will generate three workflows, each with a different value of the se
learning parameter of the function rpartXse(). Any parameter that we provide with a
vector as value will be assumed to be a source for variants generation. If more than one
parameter is supplied with a vector, the function workflowVariants() will generate as
many workflows as there are combinations of the values of the different parameters. Check
the help page of function workflowVariants() to get more details and examples (or the
PDF accompanying package performanceEstimation). In summary, the above call will
carry out an experimental comparison involving 4 different workflows: a linear regression
model and three variants of a regression tree (with different levels of pruning).

The final argument of the function performanceEstimation() specifies the estimation
tasks. This involves essentially deciding which metrics are to be estimated and which esti-
mation method should be used. The specification of this estimation task is done through
function EstimationTask().

The result of this call is a complex object containing all information concerning the
experimental comparison. The package performanceEstimation provides several utility
functions to explore this information. For instance, the following provides a summary of the
results of the comparison:

> summary(res)

== Summary of a Cross Validation Performance Estimation Experiment ==

Task for estimating nmse using
5 x 10 - Fold Cross Validation

230 Data Mining with R: Learning with Case Studies

Run with seed = 1234

* Predictive Tasks :: a1
* Workflows :: lm, rpartXse.v1, rpartXse.v2, rpartXse.v3

-> Task: a1
*Workflow: lm

nmse
avg 0.7087223
std 0.1641574
med 0.6902144
iqr 0.1573738
min 0.4675652
max 1.2261698
invalid 0.0000000

*Workflow: rpartXse.v1
nmse

avg 0.6037975
std 0.2548283
med 0.5431126
iqr 0.3034833
min 0.1890749
max 1.3156177
invalid 0.0000000

*Workflow: rpartXse.v2
nmse

avg 0.6443387
std 0.2230355
med 0.6375429
iqr 0.3111928
min 0.2146359
max 1.1222208
invalid 0.0000000

*Workflow: rpartXse.v3
nmse

avg 0.6728360
std 0.2218169
med 0.6451861
iqr 0.3418516
min 0.2804985
max 1.1222208
invalid 0.0000000

As can be seen, one of the variants of the regression tree achieves the best average NMSE
score. Whether the difference is statistically significant with respect to the other alterna-
tives is a question we will address later in this section. We can also obtain a visualization
(Figure 4.12) of these results as follows:

> plot(res)

The performanceEstimation() function assigns a label to each model variant. In case

Predicting Algae Blooms 231

a1

l

l

l

l

l

0.5

1.0

nm
se

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

FIGURE 4.12: Visualization of the cross-validation results.

you want to know the specific parameter settings corresponding to any label, you can
proceed as follows:

> getWorkflow("rpartXse.v1", res)

Workflow Object:
Workflow ID :: rpartXse.v1
Workflow Function :: standardWF

Parameter values:
learner.pars -> se=0
learner -> rpartXse

We can carry out a similar comparative experiment for all seven prediction tasks we are
facing at the same time. The following code implements that idea:

> DSs <- sapply(names(algae)[12:18],
+ function(x,names.attrs) {
+ f <- as.formula(paste(x, "~ ."))
+ PredTask(f, algae[,c(names.attrs,x)], x, copy=TRUE)
+ },
+ names(algae)[1:11])
> res.all <- performanceEstimation(
+ DSs,
+ c(Workflow(learner="lm", pre="knnImp", post="onlyPos"),
+ workflowVariants(learner="rpartXse", learner.pars=list(se=c(0,0.5,1)))),
+ EstimationTask(metrics="nmse" ,method=CV(nReps=5, nFolds=10)))

232 Data Mining with R: Learning with Case Studies

a1 a2 a3 a4 a5 a6 a7

l
lll

l

l
ll

l

l

l

l

l

ll

l

l

l
l l

l

l

l
l

l l

l

llll

l

l

l
l

l

ll

l

l
l

l
l
l

llll llll

l

l

l

l

l

l
l

l

l

ll llllllllll llllllllll

l
l

l

l

ll

ll

ll

ll

l

ll llll

l

l

l

l

l

l

llll

l

l

l

lll
llll llll

l

l

l

l

l

l

ll

l

l

l

l

l

lll lll

0

5

10

15

20

nm
se

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

lm

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s
Cross Validation Performance Estimation Results

FIGURE 4.13: Visualization of the cross-validation results on all algae.

For space reasons we have omitted the output of the above commands. This code starts
by creating the vector of predictive tasks to use in the comparisons, that is, the seven
prediction tasks. For this we need to create a formula for each problem. We have obtained
this formula creating a string by concatenating the name of the column of each target
variable with the string “∼ .”. The resulting string is then transformed into an R formula
using the function as.formula(). With this formula we can create the respective PredTask
object. You may have noticed the copy=TRUE argument in the call to the constructor. It
is necessary because the data for each of the tasks is created on the fly and we do not
have a separate object for each task, thus we need to copy the data into the PredTask
object to keep it “permanent”. Having created the vector of tasks we have used the function
performanceEstimation() as before, with the single difference that this time we have
carried out five repetitions of the tenfold cross-validation process for increased statistical
significance of the results. Depending on the power of your computer, this code may take a
while to run.

In Figure 4.13 we show the results of the models for the different algae on the CV
process. The figure was obtained with,

> plot(res.all)

As we can observe, there are several very bad results; that is, NMSE scores clearly
above 1, which is the baseline of being as competitive as predicting always the average
target variable value for all test cases! If we want to check which is the best model for each
problem, we can use the function topPerformers():

Predicting Algae Blooms 233

> topPerformers(res.all)

$a1
Workflow Estimate

nmse rpartXse.v1 0.604

$a2
Workflow Estimate

nmse rpartXse.v3 1.034

$a3
Workflow Estimate

nmse rpartXse.v2 1

$a4
Workflow Estimate

nmse rpartXse.v2 1

$a5
Workflow Estimate

nmse lm 0.934

$a6
Workflow Estimate

nmse lm 0.936

$a7
Workflow Estimate

nmse rpartXse.v3 1

The output of this function (a list with as many components as there are tasks) confirms
that, with the exception of alga 1, the results are rather disappointing. The variability of
the results (see Figure 4.13) provides good indications that this might be a good candidate
for an ensemble approach. Ensembles are model construction methods that basically try
to overcome some limitations of individual models by generating a large set of alternative
models and then combining their predictions. There are many approaches to obtain en-
sembles that differ not only in the way the diversity of models is obtained (e.g., different
training samples, different variables, different modeling techniques, etc.), but also in how
the ensemble prediction is reached (e.g., voting, averaging, etc.). Further details on ensem-
ble models were provided in Section 3.4.5.5 (page 165). Random forests (Breiman, 2001)
are regarded as one of the more competitive examples of ensembles. They are formed by a
large set of tree-based models (regression or classification trees). Each tree is fully grown (no
post-pruning); and at each step of the tree growing process, the best split for each node is
chosen from a random subset of attributes. Predictions for regression tasks are obtained by
averaging the predictions of the trees in the ensemble. The R package randomForest (Liaw
and Wiener, 2002) implements these ideas on the function randomForest(). The following
code repeats the previous cross-validation experiment, this time including three variants
of random forests, each with a different number of trees in the ensemble. We have again
omitted the output for space reasons.

> library(randomForest)
> res.all <- performanceEstimation(
+ DSs,

234 Data Mining with R: Learning with Case Studies

+ c(Workflow(learner="lm", pre="knnImp",post="onlyPos"),
+ workflowVariants(learner="rpartXse",
+ learner.pars=list(se=c(0,0.5,1))),
+ workflowVariants(learner="randomForest", pre="knnImp",
+ learner.pars=list(ntree=c(200,500,700)))),
+ EstimationTask(metrics="nmse",method=CV(nReps=5,nFolds=10)))

Using the function rankWorkflows() we can confirm the advantages of the ensemble
approach:

> rankWorkflows(res.all, top=3)

$a1
$a1$nmse

Workflow Estimate
1 randomForest.v1 0.5484773
2 randomForest.v2 0.5492354
3 randomForest.v3 0.5498515

$a2
$a2$nmse

Workflow Estimate
1 randomForest.v3 0.7759238
2 randomForest.v2 0.7763979
3 randomForest.v1 0.7839276

$a3
$a3$nmse

Workflow Estimate
1 randomForest.v3 0.9992762
2 rpartXse.v2 1.0000000
3 rpartXse.v3 1.0000000

$a4
$a4$nmse

Workflow Estimate
1 randomForest.v1 0.9847430
2 randomForest.v3 0.9884407
3 randomForest.v2 0.9940180

$a5
$a5$nmse

Workflow Estimate
1 randomForest.v3 0.7844936
2 randomForest.v2 0.7852387
3 randomForest.v1 0.7913406

$a6
$a6$nmse

Workflow Estimate

Predicting Algae Blooms 235

1 randomForest.v2 0.9095273
2 randomForest.v3 0.9103364
3 randomForest.v1 0.9208936

$a7
$a7$nmse

Workflow Estimate
1 rpartXse.v3 1.000000
2 randomForest.v3 1.181581
3 randomForest.v2 1.183661

In effect, for most problems the best score is obtained by some variant of a random
forest. Still, the results are not always very good, in particular for alga 7. The output of
the function rankWorkflows() does not tell us whether the difference between the scores
of these best models and the remaining alternatives is statistically significant; that is, what
is the confidence that with another random sample of data we get a similar outcome? The
function pairedComparisons() from the package performanceEstimation provides this
information. It carries out a series of statistical tests that can be used to check the statistical
validity of certain hypotheses concerning the observed differences among the performance of
the different workflows. In the case of the above comparison, and according to the work by
Demsar (2006), the adequate procedure when we have several workflows being compared on
a series of tasks is to use the Friedman test to check that we can reject the null hypothesis
that all workflows perform equally on a set of predictive tasks, and if this is rejected then
proceed with a post-hoc test. If the goal is to compare all workflows against each other we
use the post-hoc Nemenyi test, whilst if the objective is to compare a series of workflows
against some baseline we use the post-hoc Bonferroni-Dunn test. More information on this
topic was given in Section 3.5.4 (page 181).

The following code shows how to obtain the results of these tests using the infrastructure
of package performanceEstimation,

> p <- pairedComparisons(res.all,baseline="randomForest.v3")
> p$nmse$F.test

$chi
[1] 27.35204

$FF
[1] 11.20376

$critVal
[1] 0.6524015

$rejNull
[1] TRUE

> p$nmse$BonferroniDunn.test

$critDif
[1] 3.046397

$baseline
[1] "randomForest.v3"

236 Data Mining with R: Learning with Case Studies

$rkDifs
lm rpartXse.v1 rpartXse.v2 rpartXse.v3

3.8571429 4.7142857 3.2142857 2.3571429
randomForest.v1 randomForest.v2

1.1428571 0.7142857

$signifDifs
lm rpartXse.v1 rpartXse.v2 rpartXse.v3

TRUE TRUE TRUE FALSE
randomForest.v1 randomForest.v2

FALSE FALSE

The function pairedComparisons() uses the information contained in the object with
the outcome of the experimental comparisons to carry out a series of statistical tests. In
case you also supply a baseline workflow, the tests are carried out “against” this baseline.
In the above example we are setting this baseline to the variant of random forest that seems
to be the best over all seven algae. Our idea is to check whether the difference between the
performance of this random forest and the other alternative workflows is statistically sig-
nificant or not. This means that we are comparing a baseline against a series of alternatives
on a set of tasks. As such, we first use the Friedman test to check if we can reject the null
hypothesis that there is no difference among the alternative worklows. The outcome of the
function pairedComparisons() is a list with as many components as there are evaluation
metrics (in this case a single one, NMSE). For each metric, we have another list whose
components are the statistical tests. These tests in turn typically return as result another
list with different values used in the test. For instance, the second statement above shows
the outcome of the Friedman test (component name F.test) for the NMSE metric. This is
a list with the values of the statistics used in the test, but most importantly, the outcome
of the test, i.e. whether we can reject the null hypothesis or not. As we can observe in
this case we can reject the null hypothesis that the performance of the workflows is not
different. In this context, we can proceed to the post-hoc Bonferroni-Dunn test as we want
to compare the other workflows against our baseline. The last statement above presents
the outcome of this test. As we can see, the difference between the baseline random forest
and other variants can not be considered statistically significant with 95% confidence (the
default confidence level used by the function pairedComparisons(), which is changeable
through parameter p.value). Still, we can reject with 95% confidence, the hypothesis that
the performance of the baseline is the same as the performance of two of the regression
trees and the linear regression model. In summary, we are confident enough to say that
our baseline is better than the linear model and two of the regression trees on these seven
regression tasks. Nevertheless, we can not reject the hypothesis that its performance is not
better than that of the other workflows (at least with 95% confidence).

This type of analysis can also be carried out visually through CD diagrams. Figure 4.14
presents the Bonferroni-Dunn CD diagram corresponding to the statistical tests described
before. The figure was obtained using function CDdiagram.BD() as follows:

> CDdiagram.BD(p)

The diagram presents each workflow with a different colored line, the baseline having
the name in bold. The lines of the workflows lead to a position in the X axis corresponding
to the average ranking position of the respective workflow across all tasks involved in the
comparison. This means for instance that, in Figure 4.14 the workflow “randomforest.v1”
has an average rank of ≈ 3 across the seven tasks. From the line corresponding to the
baseline workflow we have a horizontal thick black line whose length corresponds to the

Predicting Algae Blooms 237

rpartXse.v3

randomForest.v1

randomForest.v2

randomForest.v3

lm

rpartXse.v1

rpartXse.v2

Critical Difference = 3; Baseline = randomForest.v3

8 7 6 5 4 3 2 1
Average Rank

FIGURE 4.14: The CD Diagram for comparing all workflows against randomforest.v3.

critical difference in average ranks that, according to the Bonferroni-Dunn test, is necessary
for being significantly different from the baseline. All lines that are outside of this length
correspond to workflows whose average rank is considered significantly different from the
baseline, and their names are presented in italics.

4.8 Predictions for the Seven Algae
In this section we will see how to obtain the predictions for the seven algae on the 140

test samples. Section 4.7 described how to proceed to choose the best models to obtain these
predictions. The procedure used consisted of obtaining unbiased estimates of the NMSE for
a set of models on all seven predictive tasks, by means of a cross-validation experimental
process.

The main goal in this data mining problem is to obtain seven predictions for each of the
140 test samples. Each of these seven predictions will be obtained using the model that our
cross-validation process has indicated as being the “best” for that task. This will be one
of either the models shown by our call to the rankWorkflows() function in the previous
section. Namely, it will be one of the random forest variants.

Let us start by obtaining these models using all the available training data so that we
can apply them to the test set. The following code obtains the best workflows for each of
the seven algae:

> wfs <- sapply(taskNames(res.all),
+ function(t) topPerformer(res.all,metric="nmse",task=t))
> wfs[["a1"]]

Workflow Object:
Workflow ID :: randomForest.v1
Workflow Function :: standardWF

238 Data Mining with R: Learning with Case Studies

Parameter values:
learner.pars -> ntree=200
learner -> randomForest
pre -> knnImp

> wfs[["a7"]]

Workflow Object:
Workflow ID :: rpartXse.v3
Workflow Function :: standardWF

Parameter values:
learner.pars -> se=1
learner -> rpartXse

We use the function taskNames() to obtain a vector with the names of the seven pre-
diction tasks and then for each of these names we apply a function that essentially uses
the function topPerformer() to obtain the workflow that is the best at a certain task on a
given metric. As a result the object wfs will be a list with each 7 objects of classWorkflow.
Function runWorkflow() can be used to apply any of these workflows to some given train
and test sets. As a result this function will return the outcome of this application, which
depends on the author of the workflow. In our case we were using the standard workflows
implemented by function standardWF() of the package peformanceEstimation. This
workflow returns as a result a list with several components, among which the predictions of
the learned model for the given test set.

We are now ready to obtain the matrix with the predictions of the best workflows for
the entire test set:

> full.test.algae <- cbind(test.algae, algae.sols)
> pts <- array(dim = c(140,7,2),
+ dimnames = list(1:140, paste0("a",1:7), c("trues","preds")))
> for(i in 1:7) {
+ res <- runWorkflow(wfs[[i]],
+ as.formula(paste(names(wfs)[i],"~.")),
+ algae[,c(1:11,11+i)],
+ full.test.algae[,c(1:11,11+i)])
+ pts[,i,"trues"] <- res$trues
+ pts[,i,"preds"] <- res$preds
+ }

We start by putting the test cases and the respective solutions in a single data frame.
Then we create an array (pts) with 3 dimensions that will store all information on the
application of the models to make predictions for the seven algae. It is like having two
matrices of 140 × 7 (where 140 is the number of test cases and 7 the number of algae
predicted for each test case). The first of these matrices contains the true values of the algae,
whilst the second contains the predictions of our workflows. For instance, if we wanted to
know the prediction and true values for algae “a1” and “a3” on the first 3 test cases we
could obtain them as follows:

> pts[1:3,c("a1","a3"),]

, , trues

a1 a3

Predicting Algae Blooms 239

1 1.2 1.9
2 1.2 0.0
3 7.0 6.5

, , preds

a1 a3
1 3.495208 4.707276
2 13.951108 3.450281
3 12.717983 6.846536

This array was filled in by successively applying the best workflows for each of the 7
algae using function runWorkflow(). For this we had to build an adequate formula for each
predictive task as well as using the correct columns of the original data to obtain the model.
The result of the call to runWorkflow() (actually a call to standardWF() that is the specific
workflow we are using) is a list that contains, among others, the components trues and
preds, with the true and predicted values, respectively.

Using the information stored in the array (pts) we can compare the predictions with
the real values to obtain some feedback on the quality of our approach to this prediction
problem. The following code calculates the NMSE scores of our models on the seven algae:

> avg.preds <- apply(algae[,12:18], 2, mean)
> apply((pts[,,"trues"] - pts[,,"preds"])^2, 2 ,sum) /
+ apply((scale(pts[,,"trues"], avg.preds, FALSE))^2, 2, sum)

a1 a2 a3 a4 a5 a6 a7
0.4739169 0.8608667 0.7749362 0.7259074 0.7154015 0.8113643 1.0000000

We first obtained the predictions of the baseline model used to calculate the NMSE,
which in our case consists of predicting the average value of the target variable. Then
we proceed to calculate the NMSEs for the seven models/algae. This is done on a single
statement that may seem a bit complex at first but as soon as you understand it, we are
sure you will be amazed by its simplicity and compactness. The scale() function can be
used to normalize a data set. It works by subtracting the second argument from the first
and then dividing the result by the third, unless this argument is FALSE, as is the case
above. In this example we are thus using it to subtract a vector (the average target value
of all seven algae) from each line of a matrix.

The results that we obtained are in accordance with the cross-validation estimates ob-
tained previously. They confirm the difficulty in obtaining good scores for alga 7, while for
the other problems the results are slightly more competitive, in particular for alga 1.

In summary, with a proper model selection phase, we were able to obtain interesting
scores for these prediction problems.

4.9 Summary
The main goal of this first case study was to familiarize the reader with the use of R for

data mining. For this purpose we used a small problem — at least by data mining standards.
We described how to perform some of the most basic data analysis tasks in R.

If you are interested in knowing more about the international data analysis competition

240 Data Mining with R: Learning with Case Studies

that was behind the data used in this chapter, you can browse through the competition
Web page,30 or read some of the papers of the winning solutions (Bontempi et al., 1999;
Chan, 1999; Devogelaere et al., 1999; Torgo, 1999b) to compare the data analysis strategies
followed by these authors.

In terms of data mining, this case study has provided information on

• Data visualization

• Descriptive statistics

• Strategies to handle unknown variable values

• Regression tasks

• Evaluation metrics for regression tasks

• Multiple linear regression

• Regression trees

• Model selection/comparison through k-fold cross-validation

• Model ensembles and random forests

We hope that by now you are more acquainted with the interaction with R, and also
familiarized with some of its features. Namely, you should have learned some techniques for

• Loading data from text files

• How to obtain descriptive statistics of datasets

• Basic visualization of data

• Handling datasets with unknown values

• How to obtain some regression models

• How to use the obtained models to obtain predictions for a test set

Further cases studies will give you more details on these and other data mining tech-
niques.

30http://www.erudit.de/erudit/competitions/ic-99/.

Chapter 5
Predicting Stock Market Returns

This second case study tries to move a bit further in terms of the use of data mining
techniques. We will address some of the difficulties of incorporating data mining tools and
techniques into a concrete business problem. The specific domain used to illustrate these
problems is that of automatic stock trading systems. We will address the task of building
a stock trading system based on prediction models obtained with daily stock quotes data.
Several models will be tried with the goal of predicting the future returns of the S&P 500
market index. These predictions will be used together with a trading strategy to reach a
decision regarding the market orders to generate. This chapter addresses several new data
mining issues, among which are (1) how to handle prediction problems with a time ordering
among data observations (also known as time series), and (2) an example of the challenges
of translating model predictions into decisions and actions in real-world applications.

5.1 Problem Description and Objectives
Stock market trading is an application domain with a large potential for data mining.

In effect, the existence of an enormous amount of historical data suggests that data mining
can provide a competitive advantage over human inspection of these data. On the other
hand, there are researchers claiming that the markets adapt so rapidly in terms of price
adjustments that there is no space to obtain profits in a consistent way. This is usually
known as the efficient markets hypothesis. This theory has been successively replaced by
more relaxed versions that leave some space for trading opportunities due to temporary
market inefficiencies.

The general goal of stock trading is to maintain a portfolio of assets based on buy and
sell orders. The long-term objective is to achieve as much profit as possible from these
trading actions. In the context of this chapter we will constrain a bit more this general
scenario. Namely, we will only “trade” a single security, actually a market index. Given
this security and an initial capital, we will try to maximize our profit over a future testing
period by means of trading actions (Buy, Sell, Hold). Our trading strategy will use as a basis
for decision making the indications provided by the result of a data mining process. This
process will consist of trying to predict the future evolution of the index based on a model
obtained with historical quotes data. Thus our prediction model will be incorporated in a
trading system that generates its decisions based on the predictions of the model. Our overall
evaluation criteria will be the performance of this trading system, that is, the profit/loss
resulting from the actions of the system as well as some other statistics that are of interest
to investors. This means that our main evaluation criteria will be the operational results
of applying the knowledge discovered by our data mining process and not the predictive
accuracy of the models developed during this process.

As it should be obvious, our goal is not to provide you with an automatic stock trading

241

242 Data Mining with R: Learning with Case Studies

system that will make you rich! The concrete application is merely used as a vehicle for
addressing relevant data mining problems and providing illustrations on how to solve these
problems using R. At most, our proposals can be regarded as a good starting point if you
are serious about trying to use data mining tools for trading in the stock markets.

5.2 The Available Data
In our case study we will concentrate on trading the S&P 500 market index. Daily data

concerning the quotes of this security are freely available in many places, for example, the
Yahoo finance site.1

The data we will use is available in the book package. Once again we will explore other
means of getting the data as a form of illustrating some of the capabilities of R. Moreover,
some of these other alternatives will allow you to apply the concepts learned in this chapter
to data more recent than the one packaged at the time of writing this book.

In order to get the data through the book R package, it is enough to issue

> library(xts)
> data(GSPC, package="DMwR2")
> first(GSPC)

GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume
1970-01-02 92.06 93.54 91.79 93 8050000

GSPC.Adjusted
1970-01-02 93

> last(GSPC)

GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume
2016-01-25 1906.28 1906.28 1875.97 1877.08 4401380000

GSPC.Adjusted
2016-01-25 1877.08

The first statement loads the package xts (Ryan and Ulrich, 2014) that implements the
time series classes we use to store the daily quotes data. We then load an object, GSPC,2
of class xts that contains the daily quotes of S&P500. Finally, we show the first and last
observations of our data, which tells us that we have roughly 45 years of daily quotes.

At the book Web site,3 you can find these data in comma separated values (CSV) file
format. For illustration purposes we will also illustrate how to read in this file into R.
Nevertheless, for the purpose of replicating the solutions you will see in the next sections
the easiest path is to use the procedure shown above of loading the data from the book
package.

For the sake of completeness we will also mention yet another way of getting this data
into R, which consists of downloading it directly from the Web. If you choose to follow this
path, you should remember that you will probably be using a larger dataset than the one
used in the analysis carried out in this book, which means that some results may be slightly
different.

1http://finance.yahoo.com.
2ˆGSPC is the ticker ID of S&P 500 at Yahoo finance from where the quotes were obtained.
3http://www.fc.dcc.up.pt/~ltorgo/DMwR2.

Predicting Stock Market Returns 243

Whichever source you choose to use, the daily stock quotes data includes information
regarding the following properties:

• Date of the stock exchange session

• Open price at the beginning of the session

• Highest price during the session

• Lowest price

• Closing price of the session

• Volume of transactions

• Adjusted close price4

5.2.1 Reading the Data from the CSV File
As we have mentioned before, at the book Web site you can find different sources con-

taining the data to use in this case study. If you decide to use the CSV file, you will download
a file whose first lines look like this:

"Index" "GSPC.Open" "GSPC.High" "GSPC.Low" "GSPC.Close" "GSPC.Volume" "GSPC.Adjusted"
1970-01-02 92.059998 93.540001 91.790001 93 8050000 93
1970-01-05 93 94.25 92.529999 93.459999 11490000 93.459999
1970-01-06 93.459999 93.809998 92.129997 92.82 11460000 92.82
1970-01-07 92.82 93.379997 91.93 92.629997 10010000 92.629997
1970-01-08 92.629997 93.470001 91.989998 92.68 10670000 92.68

Assuming you have downloaded the file and have saved it with the name “sp500.csv” on
the current working directory of your R session, you can load it into R and create an xts
object with the data, as follows:

> library(xts)
> GSPC <- as.xts(read.zoo("sp500.csv", header = TRUE))

The function read.zoo() of package zoo5 (Zeileis and Grothendieck, 2005) reads a CSV
file and transforms the data into a zoo object assuming that the first column contains the
time tags. The function as.xts() coerces the resulting object into an object of class xts.

5.2.2 Getting the Data from the Web
Another alternative way of getting the S&P 500 quotes is to use the free service provided

by Yahoo finance.
An easy way of downloading the daily quotes from this site is to use the function

getSymbols() from package quantmod (Ryan, 2009). This is an extra package that you
should install before using it. It provides several facilities related to financial data analysis
that we will use throughout this chapter. Function getSymbols() in conjunction with other
functions of this package provide a rather simple but powerful way of getting quotes data
from different data sources. Let us see some examples of its use:

4This is basically the closing price adjusted for stock splits, dividends/distributions, and rights offerings.
5You may wonder why we did not load the package zoo with a call to the library() function. The reason

is that this was already done when we loaded the package xts because it depends on the package zoo.

244 Data Mining with R: Learning with Case Studies

> library(quantmod)
> GSPC <- getSymbols("^GSPC",auto.assign=FALSE)

The function getSymbols() receives on the first argument a set of symbol names and
will fetch the quotes of these symbols from different web sources or even local databases,
returning by default an xts object with the same name as the symbol,6 which will silently
be created in the working environment. If you want to decide the name of the object storing
the data you may proceed as above, where we assigned the function result to this object
and used auto.assign=FALSE. The function has many parameters that allow more control
over some of these issues. As you can verify, the returned object does not cover the same
period as the data coming with our book package. The get the same data period we can do:

> GSPC <- getSymbols("^GSPC",from="1970-01-02",to="2016-01-25",auto.assign=FALSE)

The package quantmod provides several other functions that allow you to download,
for instance, exchange rate data, or financial information of companies. Explore the help
page of the package for information on this and other facilities.

5.3 Defining the Prediction Tasks
Generally speaking, our goal is to have good forecasts of the future price of the S&P

500 index so that profitable orders can be placed on time. This general goal should allow
us to easily define what to predict with our models—it should resort to forecast the future
values of the price time series. However, it is easy to see that even with this simple task we
immediately face several questions, namely, (1) which of the daily quotes? or (2) for which
time in the future? Answering these questions may not be easy and usually depends on how
the predictions will be used for generating trading orders.

5.3.1 What to Predict?
The trading strategies we will describe in Section 5.5.1 assume that we obtain a predic-

tion of the tendency of the market in the next few days. Based on this prediction, we will
place orders that will be profitable if the tendency is confirmed in the future.

Let us assume that if the prices vary more than p%, we consider this worthwhile in
terms of trading (e.g., covering transaction costs). In this context, we want our prediction
models to forecast whether this margin is attainable in the next k days.7 Please note that
within these k days we can actually observe prices both above and below this percentage.
This means that predicting a particular quote for a specific future time t+ k might not be
the best idea. In effect, what we want is to have a prediction of the overall dynamics of the
price in the next k days, and this is not captured by a particular price at a specific time. For
instance, the closing price at time t+ k may represent a variation much lower than p%, but
it could have been preceded by a period of prices representing variations much higher than
p% within the window t · · · t+ k. So, what we want in effect is to have a good prediction of
the overall tendency of the prices in the next k days.

We will describe a variable, calculated with the quotes data, that can be seen as an

6Eventually pruned from invalid characters for R object names.
7We obviously do not want to be waiting years to obtain the profit margin.

Predicting Stock Market Returns 245

indicator (a value) of the tendency in the next k days. The value of this indicator should be
related to the confidence we have that the target margin p will be attainable in the next k
days. At this stage it is important to note that when we mention a variation of p%, we mean
above or below the current price. The idea is that positive variations will lead us to buy,
while negative variations will trigger sell actions. The indicator we are proposing resumes
the tendency as a single value, positive for upward tendencies, and negative for downward
price tendencies.

Let the daily average price be approximated by

P̄i = Ci +Hi + Li
3 (5.1)

where Ci, Hi and Li are the close, high, and low quotes for day i, respectively.
Let Vi be the set of k percentage variations (often called arithmetic returns) of today’s

close to the following k days average prices :

Vi =
{
P̄i+j − Ci

Ci

}k
j=1

(5.2)

Our indicator variable is the total sum of the variations in this set whose absolute value
is above our target margin p%:

Ti =
∑
{v ∈ Vi : v > p% ∨ v < −p%} (5.3)

The general idea of the variable T is to signal k-days periods that have several days
with average daily prices clearly above the target variation. High positive values of T mean
that there are several average daily prices that are p% higher than today’s close. Such
situations are good indications of potential opportunities to issue a buy order, as we have
good expectations that the prices will rise. On the other hand, highly negative values of
T suggest sell actions, given the prices will probably decline. Values around zero can be
caused by periods with “flat” prices or by conflicting positive and negative variations that
cancel each other.

The following function implements this simple indicator:

> T.ind <- function(quotes, tgt.margin = 0.025, n.days = 10) {
+ v <- apply(HLC(quotes), 1, mean)
+ v[1] <- Cl(quotes)[1]

+ r <- matrix(NA, ncol = n.days, nrow = NROW(quotes))
+ for (x in 1:n.days) r[, x] <- Next(Delt(v, k = x), x)

+ x <- apply(r, 1, function(x) sum(x[x > tgt.margin | x < -tgt.margin]))

+ if (is.xts(quotes)) xts(x, time(quotes)) else x
+ }

The function starts by obtaining the average price calculated according to Equation 5.1.
The function HLC() extracts the High, Low, and Close quotes from a quotes object. We
then obtain the returns of the next n.days days with respect to the current close price.
The Next() function allows one to shift the values of a time series in time (both forward
or backward). The Delt() function can be used to calculate percentage or log returns of a
series of prices. Finally, the T.ind() function sums up the large absolute returns, that is,
returns above the target variation margin, which we have set by default to 2.5%.

246 Data Mining with R: Learning with Case Studies

1850

1900

1950

2000

2050

2100

last(GSPC, "3 months") [2015−11−02/2016−01−25]

1850

1900

1950

2000

2050

2100
Last 1877.079956
 AvgPrice (on = 1) :1886.443

 tgtRet () :
−0.174

−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2

Nov 02
2015

Nov 09
2015

Nov 16
2015

Nov 23
2015

Nov 30
2015

Dez 07
2015

Dez 14
2015

Dez 21
2015

Dez 28
2015

Jan 04
2016

Jan 11
2016

Jan 19
2016

Jan 25
2016

FIGURE 5.1: S&P500 on the last 3 months and our T indicator.

We can get a better idea of the behavior of this indicator in Figure 5.1, which was
produced with the following code:

> candleChart(last(GSPC,'3 months'),theme='white', TA=NULL)
> avgPrice <- function(p) apply(HLC(p),1,mean)
> addAvgPrice <- newTA(FUN=avgPrice,col=1,legend='AvgPrice')
> addT.ind <- newTA(FUN=T.ind,col='red', legend='tgtRet')
> addAvgPrice(on=1)
> addT.ind()

The function candleChart() draws candlestick graphs of stock quotes. These graphs
represent the daily quotes by a colored box and a vertical bar. The bar represents the High
and Low prices of the day, while the box represents the Open-Close amplitude. The color of
the box indicates if the top of the box is the Open or the Close price, that is, if the prices
declined (orange in Figure 5.1) or rose (green in our graphs) across the daily session. We
have added to the candlestick graph two indicators: the average price (on the same graph
as the candlesticks because it has a similar scale) and our T indicator (below). The function
newTA() can be used to create new plotting functions for indicators that we wish to include
in candlestick graphs. The return value of this function is a plotting function!8 This means
that the objects addT.ind and addAvgPrice can be called like any other R function. This
is done on the last two instructions. Each of them adds an indicator to the initial graph
produced by the candleChart() function. The function addAvgPrice() was called with
the parameter on set to 1, which means that the indicator will be plotted on the first graph
window; that is, the graph where the candlesticks are. The function addT.ind() was not
called with this argument, leading to a new graph below the candlesticks. This is what
makes sense in the case of our indicator, given the completely different scale of values.

As you can observe in Figure 5.1, the T indicator achieves the highest values when
there is a subsequent period of positive variations. Obviously, to obtain the value of the
indicator for time i, we need to have the quotes for the following 10 days, so we are not
saying that T anticipates these movements. This is not the goal of the indicator. Its goal

8You can confirm that by issuing class(addT.ind) or by typing the name of the object (without the
parenthesis) to obtain its contents.

Predicting Stock Market Returns 247

is to summarize the observed future behavior of the prices into a single value and not to
predict this behavior!

In our approach to this problem we will assume that the correct trading action at time
t is related to what our expectations are concerning the evolution of prices in the next
k days. Moreover, we will describe this future evolution of the prices by our indicator T .
The correct trading signal at time t will be “buy” if the T score is higher than a certain
threshold, and will be “sell” if the score is below another threshold. In all other cases, the
correct signal will be do nothing (i.e., “hold”). In summary, we want to be able to predict
the correct signal for time t. On historical data we will fill in the correct signal for each
day by calculating the respective T scores and using the thresholding method just outlined
above.

5.3.2 Which Predictors?
We have defined an indicator (T) that summarizes the behavior of the price time series in

the next k days. Our data mining goal will be to predict this behavior. The main assumption
behind trying to forecast the future behavior of financial markets is that it is possible to
do so by observing the past behavior of the market. More precisely, we are assuming that
if in the past a certain behavior p was followed by another behavior f , and if that causal
chain happened frequently, then it is plausible to assume that this will occur again in the
future; and thus if we observe p now, we predict that we will observe f next. We are
approximating the future behavior (f), by our indicator T . We now have to decide on how
we will describe the recent prices pattern (p in the description above). Instead of using again
a single indicator to describe these recent dynamics, we will use several indicators, trying
to capture different properties of the price time series to facilitate the forecasting task.

The simplest type of information we can use to describe the past are the recent observed
prices. Informally, that is the type of approach followed in several standard time series mod-
eling approaches. These approaches develop models that describe the relationship between
future values of a time series and a window of past q observations of this time series. We will
try to enrich our description of the current dynamics of the time series by adding further
features to this window of recent prices.

Technical indicators are numeric summaries that reflect some properties of the price time
series. Despite their debatable use as tools for deciding when to trade, they can nevertheless
provide interesting summaries of the dynamics of a financial time series. The amount of
technical indicators available can be overwhelming. In R we can find a very good sample of
them, thanks to the package TTR (Ulrich, 2009).

The indicators usually try to capture some properties of the prices series, such as if they
are varying too much, or following some specific trend, etc. In our approach to this problem,
we will not carry out an exhaustive search for the indicators that are most adequate to our
task. Still, this is a relevant research question, and not only for this particular application.
It is usually known as the feature selection problem, and can informally be defined as the
task of finding the most adequate subset of available input variables for a modeling task.
The existing approaches to this problem can usually be cast in two groups: (1) feature filters
and (2) feature wrappers. The former are independent of the modeling tool that will be used
after the feature selection phase. They basically try to use some statistical properties of the
features (e.g., correlation) to select the final set of features. The wrapper approaches include
the modeling tool in the selection process. They carry out an iterative search process where
at each step a candidate set of features is tried with the modeling tool and the respective
results are recorded. Based on these results, new tentative sets are generated using some
search operators, and the process is repeated until some convergence criteria are met that
will define the final set.

248 Data Mining with R: Learning with Case Studies

We will use a simple approach to select the features to include in our model. The idea is
to illustrate this process with a concrete example and not to find the best possible solution
to this problem, which would require other time and computational resources. We will define
an initial set of features and then use a technique to estimate the importance of each of
these features. Based on these estimates we will select the most relevant features.

We will center our analysis on the Close quote, as our buy/sell decisions will be made
at the end of each daily session. The initial set of features will be formed by several past
returns on the Close price. The h-days (arithmetic) returns,9 or percentage variations, can
be calculated as

Ri−h = Ci − Ci−h
Ci−h

(5.4)

where Ci is the Close price at session i.
We have included in the set of candidate features ten of these returns by varying h from

1 to 10. Next, we have selected an illustrative set of technical indicators, from those available
in the package TTR — namely, the Average True Range (ATR), which is an indicator of
the volatility of the series; the Stochastic Momentum Index (SMI), which is a momentum
indicator; the Welles Wilder’s Directional Movement Index (ADX); the Aroon indicator
that tries to identify starting trends; the Bollinger Bands that compare the volatility over
a period of time; the Chaikin Volatility; the Close Location Value (CLV) that relates the
session Close to its trading range; the Arms’ Ease of Movement Value (EMV); the MACD
oscillator; the Money Flow Index (MFI); the Parabolic Stop-and-Reverse; and the Volatility
indicator. More details and references on these and other indicators can be found in the
respective help pages of the functions implementing them in the package TTR. Most of
these indicators produce several values that together are used for making trading decisions.
As mentioned before, we do not plan to use these indicators for trading. As such, we have
carried out some post-processing of the output of the TTR functions to obtain a single
indicator score for each one. The following functions implement this process:

> library(TTR)
> myATR <- function(x) ATR(HLC(x))[,'atr']
> mySMI <- function(x) SMI(HLC(x))[, "SMI"]
> myADX <- function(x) ADX(HLC(x))[,'ADX']
> myAroon <- function(x) aroon(cbind(Hi(x),Lo(x)))$oscillator
> myBB <- function(x) BBands(HLC(x))[, "pctB"]
> myChaikinVol <- function(x) Delt(chaikinVolatility(cbind(Hi(x),Lo(x))))[, 1]
> myCLV <- function(x) EMA(CLV(HLC(x)))[, 1]
> myEMV <- function(x) EMV(cbind(Hi(x),Lo(x)),Vo(x))[,2]
> myMACD <- function(x) MACD(Cl(x))[,2]
> myMFI <- function(x) MFI(HLC(x), Vo(x))
> mySAR <- function(x) SAR(cbind(Hi(x),Cl(x))) [,1]
> myVolat <- function(x) volatility(OHLC(x),calc="garman")[,1]

The variables we have just described form our initial set of predictors for the task of
forecasting the future value of the T indicator. We will try to reduce this set of 22 variables
using a feature selection method. Random forests (Breiman, 2001) were used in Section 4.7
to obtain predictions of algae occurrences. Random forests can also be used to estimate the
importance of the variables involved in a prediction task. Informally, this importance can
be estimated by calculating the percentage increase in the error of the random forest if we
remove each variable in turn. In a certain way this resembles the idea of wrapper filters as

9Alternatively you could use log returns defined as log(Ci/Ci−h).

Predicting Stock Market Returns 249

it includes a modeling tool in the process of selecting the features. However, this is not an
iterative search process and moreover, we will use other predictive models to forecast T ,
which means that the set of variables selected by this process is not optimized for these
other models, and in this sense we are going to use this method more like a filter approach.

In our approach to this application, we will split the available data into two separate
sets: (1) one used for constructing the trading system; and (2) other to test it. The first set
will be formed by the first 35 years of quotes of S&P 500. We will leave the remaining data
(around 10 years) for the final test of our trading system. In this context, we must leave
this final test set out of this feature selection process to ensure unbiased results.

We will use a period between 1995 and 2005 (the last 10 years of the training data)
for this feature selection process. The code to obtain the respective random forest is the
following:

> library(randomForest)
> data.model <- specifyModel(T.ind(GSPC) ~ Delt(Cl(GSPC),k=1:10) +
+ myATR(GSPC) + mySMI(GSPC) + myADX(GSPC) + myAroon(GSPC) +
+ myBB(GSPC) + myChaikinVol(GSPC) + myCLV(GSPC) +
+ CMO(Cl(GSPC)) + EMA(Delt(Cl(GSPC))) + myEMV(GSPC) +
+ myVolat(GSPC) + myMACD(GSPC) + myMFI(GSPC) + RSI(Cl(GSPC)) +
+ mySAR(GSPC) + runMean(Cl(GSPC)) + runSD(Cl(GSPC)))
> set.seed(1234)
> rf <- buildModel(data.model,method='randomForest',
+ training.per=c("1995-01-01","2005-12-30"),
+ ntree=1000, importance=TRUE)

The code given above starts by specifying and obtaining the data to be used for modeling
using the function specifyModel(). This function creates a quantmod object that contains
the specification of a certain abstract model (described by a formula). This specification
may refer to data coming from different types of quantmod data sources, some of which may
even not be currently in the memory of the computer. The function will take care of these
cases using getSymbols() to obtain the necessary data. This results in a very handy form
of specifying and getting the data necessary for your subsequent modeling stages. Moreover,
for symbols whose source is the Web, you can later use the obtained object (data.model
in our case) as an argument to the function getModelData(), to obtain a refresh of the
object including any new quotes that may be available at that time. Again, this is quite
convenient if you want to maintain a trading system that should be updated with new
quotes information.

The function buildModel() uses the resulting model specification and obtains a
model with the corresponding data and a concrete learning system. Through parameter
training.per, you can specify the data that should be used to obtain the model. This
function currently contains wrappers for several learning tools,10 among which are random
forests. In case you wish to use a model not contemplated by buildModel(), you may obtain
the data using the function modelData(), and use it with your favorite modeling function,
as shown in the following illustrative example:

> ex.model <- specifyModel(T.ind(IBM) ~ Delt(Cl(IBM), k = 1:3))
> data <- modelData(ex.model, data.window = c("2009-01-01", "2009-08-10"))

The obtained data object is a standard zoo object, which can be easily cast into a matrix
or data frame, for use as a parameter of any modeling function, as the following artificial11

example illustrates:
10Check its help page to know which ones.
11Do not run it as this is a “fake” modeling tool.

250 Data Mining with R: Learning with Case Studies

myChaikinVol.GSPC
Delt.Cl.GSPC.k.1.10.Delt.1.arithmetic
EMA.Delt.Cl.GSPC
RSI.Cl.GSPC
Delt.Cl.GSPC.k.1.10.Delt.2.arithmetic
myBB.GSPC
Delt.Cl.GSPC.k.1.10.Delt.7.arithmetic
Delt.Cl.GSPC.k.1.10.Delt.6.arithmetic
Delt.Cl.GSPC.k.1.10.Delt.8.arithmetic
Delt.Cl.GSPC.k.1.10.Delt.4.arithmetic
CMO.Cl.GSPC
Delt.Cl.GSPC.k.1.10.Delt.3.arithmetic
Delt.Cl.GSPC.k.1.10.Delt.5.arithmetic
myCLV.GSPC
Delt.Cl.GSPC.k.1.10.Delt.9.arithmetic
Delt.Cl.GSPC.k.1.10.Delt.10.arithmetic
myEMV.GSPC
myAroon.GSPC
myADX.GSPC
myMFI.GSPC
runSD.Cl.GSPC
mySMI.GSPC
mySAR.GSPC
runMean.Cl.GSPC
myMACD.GSPC
myATR.GSPC
myVolat.GSPC

0 10 20 30 40 50

rf@fitted.model

%IncMSE

FIGURE 5.2: Variable importance according to the random forest.

> m <- myFavouriteModellingTool(ex.model@model.formula, as.data.frame(data))

Notice how we have indicated the model formula. The “real” formula is not exactly
the same as the one provided in the argument of function specifyModel(). This latter
formula is used to fetch the data, but the “real” formula should use whichever columns and
respective names the specifyModel() call has generated. This information is contained in
the slot model.formula of the quantmod object generated by that function.

Notice that on this small artificial example we have mentioned a ticker (IBM) for which
we currently had no data in memory. The specifyModel() function takes care of that by
silently fetching the quotes data from the Web using the getSymbols() function. All this
is done in a transparent way to the user and you may even include symbols in your model
specification that are obtained from different sources.

Returning to our feature selection problem, notice that we have included the param-
eter importance=TRUE so that the random forest estimates the variable importance. For
regression problems, the R implementation of random forests estimates variable importance
with two alternative scores. The first is the percentage increase in the error of the forest if
we remove each variable in turn. This is measured by calculating the increase in the mean
squared error of each tree on an out-of-bag sample when each variable is removed. This
increase is averaged over all trees in the forest and normalized with the standard error.
The second score has to do with the decrease in node impurity that is accountable with
each variable, again averaged over all the trees. We will use the first score as it is the one
mentioned in the original paper on random forests (Breiman, 2001). After obtaining the
model, we can check the importance of the variables as follows:

> varImpPlot(rf@fitted.model, type = 1)

The result of this function call is given in Figure 5.2. The arguments to the varImpPlot()
function are the random forest and the score we wish to plot (if omitted both are plotted) -
in this case we have selected (with type=1) the percentage increase in the error of the forest.
The generic function buildModel() returns the obtained model as a slot (fitted.model)
of the quantmod object it produces as a result.

At this stage we need to decide on a threshold of the importance score to select only a

Predicting Stock Market Returns 251

subset of the features. Looking at the results in the figure and given that this is a simple
illustration of the concept of using random forests for selecting features, we will use the
value of 30 as the threshold as there seems to be a clear difference in scores of the features
above and below this value:

> imp <- importance(rf@fitted.model, type = 1)
> rownames(imp)[which(imp > 30)]

[1] "myATR.GSPC" "mySMI.GSPC" "myADX.GSPC"
[4] "myAroon.GSPC" "myEMV.GSPC" "myVolat.GSPC"
[7] "myMACD.GSPC" "myMFI.GSPC" "mySAR.GSPC"

[10] "runMean.Cl.GSPC" "runSD.Cl.GSPC"

The function importance() obtains the concrete scores (in this case the first score) for
each variable, which we then filter with our threshold to obtain the names of the variables
that we will use in our modeling attempts. Using this information we can obtain our final
dataset as follows:

> data.model <- specifyModel(T.ind(GSPC) ~ myATR(GSPC) + mySMI(GSPC) + myADX(GSPC) +
+ myAroon(GSPC) + myEMV(GSPC) + myVolat(GSPC) +
+ myMACD(GSPC) + myMFI(GSPC) + mySAR(GSPC) +
+ runMean(Cl(GSPC)) + runSD(Cl(GSPC)))

5.3.3 The Prediction Tasks
In the previous section we have obtained a quantmod object (data.model) containing

the specification of the data we plan to use with our predictive models. This data has as a
target the value of the T indicator and as predictors a series of other variables that resulted
from a feature selection process. We have seen in Section 5.3.1 that our real goal is to
predict the correct trading signal at any time t. How can we do that, given the data we
have generated in the previous section? We will explore two paths to obtain predictions for
the correct trading signal.

The first alternative is to use the T value as the target variable and try to obtain models
that forecast this value using the predictor’s information. This is a multiple regression task
similar to the ones we considered in the previous chapter. If we follow this path, we will
then have to “translate” our model predictions into trading signals. This means to decide
upon the thresholds on the predicted T values that will lead to either of the three possible
trading actions. We will carry out this transformation using the following values:

signal =

 sell if T < −0.1
hold if − 0.1 ≤ T ≤ 0.1
buy if T > 0.1

(5.5)

The selection of the values 0.1 and −0.1 is purely heuristic and we can also use other
thresholds. Still, these values mean that during the 10-day period used to generate the
T values, there were at least four average daily prices that are 2.5% above the current
close (4× 0.025 = 0.1). If you decide to use other values, you should consider that too high
absolute values will originate fewer signals, while too small values may lead us to trade on too
small variations of the market, thus incurring a larger risk. Function trading.signals(),
available in the book package, can carry out this transformation of the numeric T values
into a factor with three possible values: “s”, “h”, and “b”, for sell, hold and buy actions,
respectively.

252 Data Mining with R: Learning with Case Studies

The second alternative prediction task we will consider consists of predicting the signals
directly. This means to use as a target variable the “correct” signal for day d. How do we
obtain these correct signals? Again using the T indicator and the same thresholds used
in Equation 5.5. For the available historical data, we obtain the signal of each day by
calculating the T value using the following 10 days and using the thresholds in Equation 5.5
to decide on the signal. The target variable in this second task is nominal. This type of
prediction problem is known as a classification task.12

The xts package infrastructure is geared toward numeric data. The data slots of xts
objects must be either vectors or matrices, thus single mode data. This means it is not
possible to have one of the columns of our training data as a nominal variable (a factor in
R), together with all the numeric predictors. We will overcome this difficulty by carrying
out all modeling steps outside the xts framework. This is easy and not limiting, as we will
see. The infrastructure provided by xts is mostly used for data sub-setting and plotting,
but the modeling stages do not need these facilities.

The following code creates all the data structures that we will use in the subsequent
sections for obtaining predictive models for the two tasks.

> ## The regression task
> Tdata.train <- as.data.frame(modelData(data.model,
+ data.window=c('1970-01-02','2005-12-30')))
> Tdata.eval <- na.omit(as.data.frame(modelData(data.model,
+ data.window=c('2006-01-01','2016-01-25'))))
> Tform <- as.formula('T.ind.GSPC ~ .')
> ## The classification task
> buy.thr <- 0.1
> sell.thr <- -0.1
> Tdata.trainC <- cbind(Signal=trading.signals(Tdata.train[["T.ind.GSPC"]],
+ buy.thr,sell.thr),
+ Tdata.train[,-1])
> Tdata.evalC <- cbind(Signal=trading.signals(Tdata.eval[["T.ind.GSPC"]],
+ buy.thr,sell.thr),
+ Tdata.eval[,-1])
> TformC <- as.formula("Signal ~ .")

The Tdata.train and Tdata.eval (and their classification variants) are data frames
with the data to be used for the training and evaluation periods, respectively. We have
used data frames as the basic data structures to allow for mixed mode data that is required
in the classification tasks. For these tasks we replace the target value column with the
corresponding signals that were generated using the trading.signals() function. The
evaluation data frames will be left out of all model selection and comparison processes we
will carry out. They will be used in the final evaluation of the “best” models we select. The
call to na.omit() is necessary to avoid NAs at the end of the data frames caused by lack of
future data to calculate the T indicator.

5.3.4 Evaluation Criteria
The prediction tasks described in the previous section can be used to obtain models that

will output some form of indication regarding the future market direction. This indication
will be a number in the case of the regression tasks (the predicted value of T), or a direct
signal in the case of classification tasks. Even in the case of regression tasks, we have seen
that we will cast this number into a signal by a thresholding mechanism. In Section 5.5 we

12Some statistics schools use the term “discrimination tasks" instead.

Predicting Stock Market Returns 253

will describe several trading strategies that use these predicted signals to act on the market,
i.e. that will transform these predicted signals into concrete market orders.

In this section we will address the question of how to evaluate the signal predictions of
our models. We will not consider the evaluation of the numeric predictions of the T indicator.
Due to the way we are using these numeric predictions, this evaluation is a bit irrelevant.
One might even question whether it makes sense to have these regression tasks, given that
we are only interested in the trading signals. We have decided to maintain these numeric
tasks because different trading strategies could take advantage of the numeric predictions,
for instance, to decide which amount of money to invest when opening a position. For
example, T values much higher than our thresholds for acting (T > 0.1 for buying and
T < −0.1 for selling) could lead to stronger investments.

The evaluation of the signal predictions could be carried out by measuring the error
rate, defined as

err = 1
N

N∑
i=1

L0/1(yi, ŷi) (5.6)

where ŷi is the prediction of the model for test case i, which has true class label yi, and
L0/1 is known as the 0/1 loss function:

L0/1(yi, ŷi) =
{

1 if ŷi 6= yi
0 if ŷi = yi

(5.7)

One often uses the complement of this measure, known as accuracy, given by acc = 1− err.
These two statistics basically compare the model predictions to what really happened

to the markets in the k future days.
The problem with accuracy (or error rate) is that it turns out not to be a good measure

for this type of problem. In effect, there will be a very strong imbalance between the three
possible outcomes, with a strong prevalence of hold signals over the other two, as big move-
ments in prices are rare phenomena in financial markets.13 This means that the accuracy
scores will be dominated by the performance of the models on the most frequent outcome
that is hold. This is not very interesting for trading. We want to have models that are
accurate at the rare signals (buy and sell). These are the ones that lead to market actions
and thus potential profit—the final goal of this application.

Financial markets forecasting is an example of an application driven by rare events.
Event-based prediction tasks are usually evaluated by the precision and recall metrics that
focus the evaluation on the events, disregarding the performance of the common situations
(in our case, the hold signals). Precision can be informally defined as the proportion of
event signals produced by the models that are correct. Recall is defined as the proportion of
events occurring in the domain that are signaled as such by the models. These metrics can
be easily calculated with the help of confusion matrices that sum up the results of a model
in terms of the comparison between its predictions and the true values for a particular test
set. Table 5.1 shows an example of a confusion matrix for our domain, where for instance,
the entry nb,h is the number of times on the test set a model predicted a hold signal when
the true value was a buy.

With the help of Table 5.1 we can formalize the notions of precision and recall for this
problem, as follows:

Prec = ns,s + nb,b
N.,s +N.,b

(5.8)

13This obviously depends on the target profit margin you establish; but to cover the trading costs, this
margin should be large enough, and this rarity will be a fact.

254 Data Mining with R: Learning with Case Studies

TABLE 5.1: A Confusion Matrix for the Prediction of Trading Signals.
Predictions

sell hold buy
True
Values

sell ns,s ns,h ns,b Ns,.
hold nh,s nh,h nh,b Nh,.
buy nb,s nb,h nb,b Nb,.

N.,s N.,h N.,b N

Rec = ns,s + nb,b
Ns,. +Nb,.

(5.9)

We can also calculate these statistics for particular signals by obtaining the precision
and recall for sell and buy signals, independently; for example,

Precb = nb,b
N.,b

(5.10)

Recb = nb,b
Nb,.

(5.11)

Precision and recall are often “merged” into a single statistic, called the F−measure (Ri-
jsbergen, 1979), given by

F =
(
β2 + 1

)
· Prec ·Rec

β2 · Prec+Rec
(5.12)

where 0 ≤ β ≤ 1, controls the relative importance of recall to precision.

5.4 The Prediction Models
In this section we will explore some models that can be used to address the prediction

tasks defined in the previous section. The selection of models was mainly guided by the fact
that these techniques are well known by their ability to handle highly nonlinear modeling
tasks. That is the case in our domain. Still, many other methods could have been applied
to this problem. Any thorough approach to this domain would necessarily require a larger
comparison of more alternatives. In the context of this book, such exploration does not
make sense due to its costs in terms of space and computation power required.

5.4.1 How Will the Training Data Be Used?
Complex time series problems frequently exhibit different regimes, such as periods with

strong variability followed by more “stable” periods, or periods with some form of system-
atic tendency. These types of phenomena are often called non-stationarities and can cause
serious problems to several modeling techniques due to their underlying assumptions. It is
reasonably easy to see, for instance by plotting the price time series, that this is the case of
our data. There are several strategies we can follow to try to overcome the negative impact
of these effects. For instance, several transformation techniques can be applied to the orig-
inal time series to eliminate some of the effects. The use of percentage variations (returns)

Predicting Stock Market Returns 255

instead of the original absolute price values is such an example. Other approaches include
using the available data in a more selective way. Let us suppose we are given the task of
obtaining a model using a certain period of training data and then testing it in a subsequent
period. The standard approach would use the training data to develop the model that would
then be applied to obtain predictions for the testing period. If we have strong reasons to
believe that there are regime shifts, using the same model during all testing period may not
be the best idea, particularly if during this period there is some regime change that can
seriously damage the performance of the model. In these cases it is often better to change
or adapt the model using more recent data that better captures the current regime of the
data.

In time series problems there is an implicit (time) ordering among the test cases. In this
context, it makes sense to assume that when we are obtaining a prediction for time i, all test
cases with time tag k < i already belong to the past. This means that it is safe to assume
that we already know the values of the time series of these past test cases and, moreover,
that we can safely use this information. So, if at some time m of the testing period we
are confident that there is a regime shift in the time series, then we can incorporate the
information of all test cases occurring before m into the initial training data, and with this
refreshed training set that contains observations of the “new” regime, somehow update our
predictive model to improve the performance on future test cases. One form of updating
the model could be to change it in order to take into account the new training cases. These
approaches are usually known as incremental learners as they adapt the current model to
new evidence instead of starting from scratch. There are not so many modeling techniques
that can be used in this way, particularly in R. In this context, we will follow the other
approach to the updating problem, which consists of re-learning a new model with the
new updated training set. This is obviously more expensive in computational terms and
may even be inadequate for applications where the data arrives at a very fast pace and
for which models and decisions are required almost in real-time. This is rather frequent in
applications addressed in a research area usually known as data streams. In our application,
we are making decisions on a daily basis after the market closes, so speed is not a key
issue.14 Assuming that we will use a re-learn approach, we have essentially two forms of
incorporating the new cases into our training set. The growing window approach simply
adds them to the current training set, thus constantly increasing the size of this set. The
eventual problem of this approach lies in the fact that as we are assuming that more recent
data is going to be helpful in producing better models, we may also consider whether the
oldest part of our training data may already be too outdated and in effect, contributing to
decreasing the accuracy of the models. Based on these considerations, the sliding window
approach deletes the oldest data of the training set at the same time it incorporates the
fresher observations, thus maintaining a training set of constant size.

Both the growing and the sliding window approaches involve a key decision: when to
change or adapt the model by incorporating fresher data. There are essentially two ways of
answering this question. The first involves estimating this time by checking if the perfor-
mance of our current model is starting to degrade. If we observe a sudden decrease in this
performance, then we can take this as a good indication of some form of regime shift. The
main challenge of these approaches lies in developing proper estimates of these changes in
performance. We want to detect the change as soon as possible but we do not want to over-
react to some spurious test case that our model missed. Another simpler approach consists
of updating the model on a regular time basis, that is, every w test cases, we obtain a new
model with fresher data. In this case study we follow this simpler method.

Summarizing, for each model that we will consider, we will apply it using three different

14It could be if we were trading in real-time, that is, intra-day trading.

256 Data Mining with R: Learning with Case Studies

approaches: (1) single model for all test period, (2) growing window with a fixed updating
step of w days, and (3) sliding window with the same updating step w. Figure 5.3 illustrates
the three approaches.

w

The Problem

One shot testing

Sliding window

training data test data

w

Growing window

1 single model applied over all test period

FIGURE 5.3: Three forms of obtaining predictions for a test period.

Further readings on regime changes
The problem of detecting changes of regime in time series data is a subject studied for a long time in an area
known as statistic process control (e.g., Oakland, 2007), which uses techniques like control charts to detect break
points in the data. This subject has been witnessing an increased interest with the impact of data streams (e.g.,
Gama and Gaber, 2007) in the data mining field. Several works (e.g., Gama et al., 2004; Kifer et al., 2004;
Klinkenberg, 2004) have addressed the issues of how to detect the changes of regime and also how to learn
models in the presence of these changes. A good survey on this area is the work by Gama et al. (2014).

5.4.2 The Modeling Tools
In this section we briefly describe the modeling techniques we will use to address our

prediction tasks and illustrate how to use them in R.

5.4.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are frequently used in financial forecasting (e.g., De-
boeck, 1994) because of their ability to deal with highly nonlinear problems. The package
nnet (Venables and Ripley, 2002) is one of the several packages in R that implements feed-
forward neural nets. This type of neural network is among the most used and also what we
will be applying.

ANNs are formed by a set of computing units (the neurons) linked to each other. Each
neuron executes two consecutive calculations: a linear combination of its inputs, followed
by a nonlinear computation of the result to obtain its output value that is then fed to
other neurons in the network. Each of the neuron connections has an associated weight.
Constructing an artificial neural network consists of establishing an architecture for the
network and then using an algorithm to find the weights of the connections between the
neurons.

Feed-forward artificial neural networks have their neurons organized in layers. The first
layer contains the input neurons of the network. The training observations of the problem
are presented to the network through these input neurons. The final layer contains the
predictions of the neural network for any case presented at its input neurons. In between,
we usually have one or more “hidden” layers of neurons. The weight updating algorithms,
such as the back-propagation method, try to obtain the connection weights that optimize a

Predicting Stock Market Returns 257

certain error criterion, that is, trying to ensure that the network outputs are in accordance
with the cases presented to the model. This is accomplished by an iterative process of
presenting several times the training cases at the input nodes of the network, and after
obtaining the prediction of the network at the output nodes and calculating the respective
prediction error, updating the weights in the network to try to improve its prediction error.
This iterative process is repeated until some convergence criterion is met. A more detailed
explanation of ANNs was given at Section 3.4.5.4 (page 158).

Feed-forward ANNs with one hidden layer can be easily obtained in R using a function
of the package nnet (Venables and Ripley, 2002). The networks obtained by this function
can be used for both classification and regression problems and thus are applicable to both
our prediction tasks (see Section 5.3.3).

ANNs are known to be sensitive to different scales of the variables used in a prediction
problem. In this context, it makes sense to transform the data before giving them to the
network, in order to avoid eventual negative impacts on the performance. In our case we
will standardize the data with the goal of making all variables have a mean value of zero
and a standard deviation of one. As we have seen before, this can be easily accomplished
by subtracting the values of each variable by the respective sample mean and dividing the
result by the sample standard deviation.

The function scale() can be used to carry out this transformation for our data. Below
you can find a very simple illustration of how to obtain and use this type of ANN in R:

> set.seed(1234)
> library(nnet)
> ## The first column is the target variable
> norm.data <- data.frame(T.ind.GSPC=Tdata.train[[1]],scale(Tdata.train[,-1]))
> nn <- nnet(Tform, norm.data[1:1000,], size = 5, decay = 0.01,
+ maxit = 1000, linout = TRUE, trace = FALSE)
> preds <- predict(nn, norm.data[1001:2000,])

By default, the function nnet() sets the initial weights of the links between neurons
with random values in the interval [−0.5 · · · 0.5]. This means that two successive runs of
the function with exactly the same arguments can actually lead to different solutions. To
ensure you get the same results as we present below, we have added a call to the function
set.seed() that initializes the random number generator to some seed number. This en-
sures that you will get exactly the same ANN as the one we report here. In this illustrative
example we have used the first 1,000 cases to obtain the network and tested the model
on the following 1,000. After normalizing our training data, we call the function nnet()
to obtain the model. The first two parameters are the usual of any modeling function in
R: the functional form of the model specified by a formula, and the training sample used
to obtain the model. We have also used some of the parameters of the nnet() function.
Namely, the parameter size allows us to specify how many nodes the hidden layer will
have. There is no magic recipe on which value to use here. One usually tries several values
to observe the network behavior. Still, one frequently uses a value smaller than the number
of predictors of the problem. The parameter decay controls the weight updating rate of the
back-propagation algorithm. Again, trial and error is your best friend here. Finally, the pa-
rameter maxit controls the maximum number of iterations the weight convergence process
is allowed to use, while the linout=TRUE setting tells the function that we are handling a
regression problem. The trace=FALSE is used to avoid some of the output of the function
regarding the optimization process.

The function predict() can be used to obtain the predictions of the neural network for
a set of test data.

Let us evaluate the results of the ANN for predicting the correct signals for the test set.

258 Data Mining with R: Learning with Case Studies

We do this by transforming the numeric predictions into signals and then evaluate them
using the statistics presented in Section 5.3.4.

> sigs.nn <- trading.signals(preds,0.1,-0.1)
> true.sigs <- trading.signals(Tdata.train[1001:2000, "T.ind.GSPC"], 0.1, -0.1)
> sigs.PR(sigs.nn,true.sigs)

precision recall
s 0.2809917 0.1931818
b 0.3108108 0.2857143
s+b 0.2973978 0.2373887

Function trading.signals() transforms numeric predictions into signals, given the
buy and sell thresholds, respectively. The function sigs.PR(), also from our book package,
obtains a matrix with the precision and recall scores of the two types of events, and overall.
These scores show that the performance of the ANN is not brilliant. In effect, you get rather
low precision scores, and also not so interesting recall values. The latter are not so serious
as they basically mean lost opportunities and not costs. On the contrary, low precision
scores mean that the model gave wrong signals rather frequently. If these signals are used
for trading, this may lead to serious losses of money.

ANNs can also be used for classification tasks. For these problems the main difference
in terms of network topology is that instead of a single output unit, we will have as many
output units as there are values of the target variable (sometimes known as the classes).
Each of these output units will produce a probability estimate of the respective class value.
This means that for each test case, an ANN can produce a set of probability values, one for
each possible class value.

The use of the nnet() function for these tasks is very similar to its use for regression
problems. The following code illustrates this, using our training data:

> set.seed(1234)
> library(nnet)
> norm.data <- data.frame(Signal=Tdata.trainC$Signal,scale(Tdata.trainC[,-1]))
> nn <- nnet(Signal ~ ., norm.data[1:1000,], size = 10, decay = 0.01,
+ maxit = 1000, trace = FALSE)
> preds <- predict(nn, norm.data[1001:2000,], type = "class")

The type="class" argument is used to obtain a single class label for each test case
instead of a set of probability estimates. With the network predictions we can calculate the
model precision and recall as follows:

> sigs.PR(preds, norm.data[1001:2000, 1])

precision recall
s 0.3607595 0.3238636
b 0.3267974 0.3105590
s+b 0.2250804 0.2077151

The precision and recall scores are similar to the ones obtained in the regression task.

Further readings on neural networks in financial markets
The book by Zirilli (1997) is a good and easy reading book. The collection of papers entitled “Artificial Neural
Networks Forecasting Time Series” (Rogers and Vemuri, 1994) is another example of a good source of references.
Part I of the book by Deboeck (1994) provides several chapters devoted to the application of neural networks to
trading.

Predicting Stock Market Returns 259

5.4.2.2 Support Vector Machines

Support vector machines (SVMs)15 are modeling tools that, as ANNs, can be applied to
both regression and classification tasks. SVMs have been witnessing increased attention from
different research communities based on their successful application to several domains and
also their strong theoretical background. Vapnik (1995, 1998) and Cristianini and Shawe-
Taylor (2000) are essential references for SVMs. Smola and Schölkopf (2004, 1998) published
an excellent tutorial giving an overview of the basic ideas underlying SVMs for regression.
In R we have several implementations of SVMs available, among which we can refer to the
package kernlab by Karatzoglou et al. (2004) with several functionalities available, and
also the function svm() on package e1071 by Dimitriadou et al. (2009).

The basic idea behind SVMs is that of mapping the original data into a new, high-
dimensional space, where it is possible to apply linear models to obtain a separating hyper
plane, for example, separating the classes of the problem, in the case of binary classification
tasks. The mapping of the original data into this new space is carried out with the help of the
so-called kernel functions. These functions are interesting because when applied to any pair
of cases in the original space produce a value that is equal to the dot product of these cases in
the new (and extremely large) space. Dot products play an essential role in the optimization
process that SVMs use to obtain their solution. Calculating dot products in these high-
dimensionality spaces where SVMs project the data, is computationally expensive. In this
context, the equivalence provided by kernel functions is very interesting because it allows
avoiding these extra computation costs.16 SVMs are thus linear machines operating on this
new and very large space where linear separation is possible. Section 3.4.5.3 (page 151)
provides a more detailed explanation of SVMs for both regression and classification tasks.

We will now provide very simple examples of the use of this type of models in R. We
start with the regression task for which we will use the function provided in the package
e1071:

> set.seed(1234)
> library(e1071)
> sv <- svm(Tform, Tdata.train[1:1000,], gamma = 0.001, cost = 100)
> s.preds <- predict(sv, Tdata.train[1001:2000,])
> sigs.svm <- trading.signals(s.preds, 0.1, -0.1)
> true.sigs <- trading.signals(Tdata.train[1001:2000, "T.ind.GSPC"], 0.1, -0.1)
> sigs.PR(sigs.svm, true.sigs)

precision recall
s 0.375 0.017045455
b NaN 0.000000000
s+b 0.375 0.008902077

In this example we have used the svm() function with most of its default parameters
with the exception of the parameters gamma and cost. In this context, the function uses a
radial basis kernel function

K(x,y) = exp
(
−γ × ‖x− y‖2) (5.13)

where γ is a user parameter that in our call we have set to 0.001 (function svm() uses as
default 1/ncol(data)).

The parameter cost indicates the cost of the violations of the margin17. You may wish
to explore the help page of the function to learn more details on these and other parameters.

15Extensive information on this class of models can be obtained at http://www.kernel-machines.org.
16Using kernel functions in place of the expensive dot products is usually known as the kernel trick.
17Check Section 3.4.5.3 for explanations of this concept of margin.

260 Data Mining with R: Learning with Case Studies

As we can observe, the SVM model achieves a considerably better score than the ANN
in terms of precision, although with a much lower recall. Moreover, the SVM model never
predicted a buy signal and thus the errors in calculating the precision for these signals and
the zero in the respective recall.

Next, we consider the classification task, this time using the kernlab package for illus-
tration purposes:

> library(kernlab)
> ksv <- ksvm(Signal ~ ., Tdata.trainC[1:1000,], C = 10)
> ks.preds <- predict(ksv, Tdata.trainC[1001:2000,])
> sigs.PR(ks.preds, Tdata.trainC[1001:2000, 1])

precision recall
s 0.2386364 0.2386364
b 0.3421053 0.1614907
s+b 0.2698413 0.2017804

We have used the C parameter of the ksvm() function of package kernlab, to specify a
different cost of constraints violations, which by default is 1. Apart from this we have used
the default parameter values, which for classification involves, for instance, using the radial
basis kernel. Once again, more details can be obtained in the help pages of the ksvm()
function.

5.4.2.3 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (Friedman, 1991) are an example of an additive
regression model (Hastie and Tibshirani, 1990). The main idea behind generalized additive
models is that a complex function may be decomposed in an additive way such that each
term has a simpler form. The main advantage/motivation of this decomposition lies on
the fact that additive models are generally considered very interpretable as you can easily
understand the contribution of each term towards the predictions of the model. Generalized
additive models can be described by the following general equation,

r(x) = α+
a∑
i=1

fi(Xi) (5.14)

where the fi’s are univariate functions.
These models can be further generalized over functions with more than one variable.

The model parameters are frequently obtained through the backfitting algorithm (Friedman
and Stuetzle, 1981).

Multivariate adaptive regression splines (MARS) models are an instance of these ap-
proaches. A MARS model has the following general form:

mars (x) = c0 +
k∑
i=1

ci ×Bi(x) (5.15)

where the ci’s are constants and the Bi’s are basis functions.
The basis functions usually take one of the following forms: (i) the constant 1 (for the

intercept); (ii) a hinge function with the form max(0, X − k) or max(0, k − X), where
k are constants; or (iii) a product of two or more hinge functions, which try to capture
the interactions between two or more variables. Figure 5.4 shows an example of two hinge
functions.

MARS models are built in two phases: the forward and backward passes. In the forward

Predicting Stock Market Returns 261

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.5

1
.0

1
.5

xs

h
p

max(0,x−3.5)

max(0,3.5−x)

FIGURE 5.4: An example of two hinge functions with the same threshold.

pass the algorithm tries to add new terms to the model. It starts with an intercept (mean
of the target variable) and then iteratively keeps adding new basis function terms until a
certain termination criterion is met. In the backward pass the algorithm tries to remove
each term in turn, using a cross validation criterion to compare and select alternatives.

MARS models have been implemented in at least two packages within R. Package
mda (Leisch et al., 2009) contains the function mars(), while package earth (Milbor-
row, 2009) has the function earth() that also implements this methodology. This latter
function has the advantage of following a more standard R schema in terms of modeling
functions, by providing a formula-based interface. It also implements several other facilities
not present in the other package and thus it will be our selection.

The following code applies the function earth() to the financial regression task we have
been using:

> library(earth)
> e <- earth(Tform, Tdata.train[1:1000,])
> e.preds <- predict(e, Tdata.train[1001:2000,])
> sigs.e <- trading.signals(e.preds, 0.1, -0.1)
> true.sigs <- trading.signals(Tdata.train[1001:2000, "T.ind.GSPC"], 0.1, -0.1)
> sigs.PR(sigs.e, true.sigs)

precision recall
s 0.2894737 0.2500000
b 0.3504274 0.2546584
s+b 0.3159851 0.2522255

The results are slightly better than the ones obtained with SVMs for classification, with
precision scores around 30%, and recall approximately 25%.

You can also have more information on the obtained model using the function
summary(),

> summary(e)

Call: earth(formula=Tform, data=Tdata.train[1:1000,])

262 Data Mining with R: Learning with Case Studies

coefficients
(Intercept) 0.5241811
h(myATR.GSPC-2.56817) 1.2724353
h(-61.825-mySMI.GSPC) 0.0594203
h(myADX.GSPC-40.6215) -0.0104803
h(50.657-myADX.GSPC) -0.0025279
h(myADX.GSPC-50.657) 0.0823181
h(0.204717-myVolat.GSPC) -0.5105416
h(myVolat.GSPC-0.204717) -5.6100523
h(myVolat.GSPC-0.271459) 5.6725474
h(mySAR.GSPC-74.7031) -0.0693496
h(87.944-mySAR.GSPC) -0.0575104
h(mySAR.GSPC-87.944) 0.0800171
h(runMean.Cl.GSPC-79.265) 0.2074780
h(81.942-runMean.Cl.GSPC) 0.1058493
h(runMean.Cl.GSPC-81.942) -0.2185753

Selected 15 of 18 terms, and 6 of 11 predictors
Termination condition: Reached nk 23
Importance: myVolat.GSPC, runMean.Cl.GSPC, myATR.GSPC, mySMI.GSPC, ...
Number of terms at each degree of interaction: 1 14 (additive model)
GCV 0.01470628 RSS 13.86568 GRSq 0.3536668 RSq 0.38939

This gives you an idea of the functional form (involving the hinge functions) of the
obtained model as well as some diagnostic measures (for which you can obtain even more
detail with the function plot() applied to the model). Finally, you may get more detailed
information on the importance assigned by the algorithm to the variables with the following:

> evimp(e, trim=FALSE)

nsubsets gcv rss
myVolat.GSPC 13 100.0 100.0
runMean.Cl.GSPC 13 100.0 100.0
myATR.GSPC 12 96.7 96.4
mySMI.GSPC 11 81.5 82.4
mySAR.GSPC 7 44.1 47.7
myADX.GSPC 5 57.8> 58.5>
myAroon.GSPC-unused 0 0.0 0.0
myEMV.GSPC-unused 0 0.0 0.0
myMACD.GSPC-unused 0 0.0 0.0
myMFI.GSPC-unused 0 0.0 0.0
runSD.Cl.GSPC-unused 0 0.0 0.0

You get the variables ordered by decreasing importance and, with trim=FALSE, you can
also see which variables are completely discarded from the model (the ones with their named
appended by “unused”).

MARS is only applicable to regression problems so we do not show any example for the
classification task.18

Further readings on multivariate adaptive regression splines

18Actually, as you may see in one of the package vignettes that come with the package earth that you
can plugin the earth() function into the fda() function of package mda to solve a kind of non-linear
discriminant (which is a classification method), but we will not use this approach here.

Predicting Stock Market Returns 263

The definitive reference on MARS is the original journal article by Friedman (1991). This is a very well-written
article providing all details concerning the motivation for the development of MARS, that curiously have to do
with problems with tree-based models, as well as the techniques used in the system. The article also includes
quite an interesting discussion section by other scientists that provides other views of this work.

5.5 From Predictions into Actions
This section will address the issue of how will we use the signal predictions obtained

with the modeling techniques described previously. Given a set of signals output by some
model there are many ways we can use them to act on the market.

5.5.1 How Will the Predictions Be Used?
In our case study we will assume we will be trading in future markets. These markets

are based on contracts to buy or sell a commodity on a certain date in the future at the
price determined by the market at that future time. The technical details of these contracts
are beyond the scope of this book. Still, in objective terms, this means that our trading
system will be able to open two types of trading positions: long and short. Long positions
are opened by buying a commodity at time t and price p, and selling it at a later time
t + x. It makes sense to open such positions when we have the expectation that the price
will rise in the future, thus allowing us to make some profit with that transaction. On short
positions, we sell the security at time t with price p with the obligation of buying it in
the future. This is possible thanks to a borrowing schema whose details you can find in
appropriate documents (e.g., Wikipedia). These types of positions allow us to make profit
when the prices decline as we will buy the security at a time later than t. Informally, we
can say that we will open short positions when we believe the prices are going down, and
open long positions when we believe the prices are going up.

Given a set of signals, there are many ways we can use them to trade in future markets.
We will describe a few plausible trading strategies that we will be using and comparing in
our experiments with the models. Due to space and time constraints, it is not possible to
explore this important issue further. Still, the reader is left with some plausible strategies
and with the means to develop and try other possibilities.

The mechanics of the first trading strategy we are going to use are the following. First,
all decisions will be taken at the end of the day, that is, after knowing all daily quotes of
the current session. Suppose that at the end of day t, our models provide evidence that the
prices are going down, that is, predicting a low value of T or a sell signal. If we already
have a position opened, the indication of the model will be ignored. If we currently do not
hold any opened position, we will open a short position by issuing a sell order. When this
order is carried out by the market at a price pr sometime in the future, we will immediately
post two other orders. The first is a buy limit order with a limit price of pr−p%, where p%
is a target profit margin. This type of order is carried out only if the market price reaches
the target limit price or below. This order expresses what our target profit is for the short
position just opened. We will wait 10 days for this target to be reached. If the order is not
carried out by this deadline, we will buy at the closing price of the 10th day. The second
order is a buy stop order with a price limit pr + l%. This order is placed with the goal
of limiting our eventual losses with this position. The order will be executed if the market
reaches the price pr + l%, thus limiting our possible losses to l%.

264 Data Mining with R: Learning with Case Studies

If our models provide indications that the prices will rise in the near future, with high
predicted T values or buy signals, we will consider opening a long position. This position
will only be opened if we are currently out of the market. With this purpose we will post a
buy order that will be accomplished at a time t and price pr. As before, we will immediately
post two new orders. The first will be a sell limit order with a target price of pr+p%, which
will only be executed if the market reaches a price of pr+p% or above. This sell limit order
will have a deadline of 10 days, as before. The second order is a sell stop order with price
pr − l%, which will again limit our eventual losses to l%.

This first strategy can be seen as a bit conservative as it will only have a single position
opened at any time. Moreover, after 10 days of waiting for the target profit, the positions
are immediately closed. We will also consider a more “risky” trading strategy. This other
strategy is similar to the previous one, with the exception that we will always open new
positions if there are signals with that indication, and if we have sufficient money for that.
Moreover, we will wait forever for the positions to reach either the target profit or the
maximum allowed loss.

We will only consider these two main trading strategies with slight variations on the
used parameters (e.g., holding time, expected profit margin, or amount of money invested
on each position). As mentioned, these are simply chosen for illustrative purposes.

5.5.2 Trading-Related Evaluation Criteria
The metrics described in Section 5.3.4 do not translate directly to the overall goal of

this application, which has to do with economic performance. Factors like the economic
results and the risk exposure of some financial instrument or tool are of key importance
in this context. This is an area that alone could easily fill this chapter. The R package
PerformanceAnalytics (Carl and Peterson, 2014) implements many of the existing finan-
cial metrics for analyzing the returns of some trading algorithm as the one we are proposing
in this chapter. We will use some of the functions provided by this package to collect infor-
mation on the economic performance of our proposals. Our evaluation will be focused on
the overall results of the methods, on their risk exposure, and on the average results of each
position hold by the models. In the final evaluation of our proposed system to be described
in Section 5.7, we will carry out a more in-depth analysis of its performance using tools
provided by this package.

With respect to the overall results, we will use (1) the simple net balance between
the initial capital and the capital at the end of the testing period (sometimes called the
profit/loss), (2) the percentage return that this net balance represents, and (3) the excess
return over the buy and hold strategy. This strategy consists of opening a long position at
the beginning of the testing period and waiting until the end to close it. The return over
the buy and hold measures the difference between the return of our trading strategy and
this simple strategy.

Regarding risk-related measures, we will use the Sharpe ratio coefficient, which measures
the return per unit of risk, the latter being measured as the standard deviation of the returns.
We will also calculate the maximum draw-down, which measures the maximum cumulative
successive loss of a model. This is an important risk measure for traders, as any system
that goes over a serious consecutive draw-down is probably doomed to be without money
to run, as investors will most surely be scared by these successive losses and redraw their
money.

Finally, the performance of the positions held during the test period will be evaluated
by their number, the average return per position, and the percentage of profitable positions,
as well as other less relevant metrics.

Predicting Stock Market Returns 265

5.5.3 Putting Everything Together: A Simulated Trader
This section describes how to implement the ideas we have sketched regarding

trading with the signals of our models. Our book package provides the function
trading.simulator(), which can be used to put all these ideas together by carrying out
a trading simulation with the signals of any model. The main parameters of this function
are the market quotes for the simulation period and the model signals for this period. Two
other parameters are the name of the user-defined trading policy function and its list of
parameters. Finally, we can also specify the cost of each transaction and the initial capital
available for the trader. The simulator will call the user-provided trading policy function at
the end of each daily section, and the function should return the orders that it wants the
simulator to carry out. The simulator carries out these orders on the market and records
all activity on several data structures. The result of the simulator is an object of class
tradeRecord containing the information of this simulation. This object can then be used
in other functions to obtain economic evaluation metrics or graphs of the trading activity,
as we will see.

Before proceeding with an example of this type of simulation, we need to provide further
details on the trading policy functions that the user needs to supply to the simulator. These
functions should be written using a certain protocol, that is, they should be aware of how
the simulator will call them, and should return the information this simulator is expecting.

At the end of each daily session d, the simulator calls the trading policy function with
four main arguments plus any other parameters the user has provided in the call to the
simulator. These four arguments are (1) a vector with the predicted signals until day d, (2)
the market quotes (up to d), (3) the currently opened positions, and (4) the money currently
available to the trader. The current position is a matrix with as many rows as there are
open positions at the end of day d. This matrix has four columns: “pos.type” that can be
1 for a long position or −1 for a short position; “N.stocks”, which is the number of stocks
of the position; “Odate”, which is the day on which the position was opened (a number
between 1 and d); and “Oprice”, which is the price at which the position was opened. The
row names of this matrix contain the IDs of the positions that are relevant when we want
to indicate to the simulator that a certain position is to be closed.

All this information is provided by the simulator to ensure the user can define a broad set
of trading policy functions. The user-defined functions should return a data frame with a set
of orders that the simulator should carry out. This data frame should include the following
information (columns): “order”, which should be 1 for buy orders and −1 for sell orders;
“order.type”, which should be 1 for market orders that are to be carried out immediately
(actually at next day open price), 2 for limit orders or 3 for stop orders; “val”, which should
be the quantity of stocks to trade for opening market orders, NA for closing market orders,
or a target price for limit and stop orders; “action”, which should be “open” for orders that
are opening a new position or “close” for orders closing an existing position; and finally,
“posID”, which should contain the ID of the position that is being closed, if applicable.

The following is an illustration of a user-defined trading policy function:

> policy.1 <- function(signals,market,opened.pos,money,
+ bet=0.2,hold.time=10,
+ exp.prof=0.025, max.loss= 0.05
+)
+ {
+ d <- NROW(market) # this is the ID of today
+ orders <- NULL
+ nOs <- NROW(opened.pos)
+ # nothing to do!

266 Data Mining with R: Learning with Case Studies

+ if (!nOs && signals[d] == 'h') return(orders)

+ # First lets check if we can open new positions
+ # i) long positions
+ if (signals[d] == 'b' && !nOs) {
+ quant <- round(bet*money/Cl(market)[d],0)
+ if (quant > 0)
+ orders <- rbind(orders,
+ data.frame(order=c(1,-1,-1),order.type=c(1,2,3),
+ val = c(quant,
+ Cl(market)[d]*(1+exp.prof),
+ Cl(market)[d]*(1-max.loss)
+),
+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)
+)
+)

+ # ii) short positions
+ } else if (signals[d] == 's' && !nOs) {
+ # this is the nr of stocks we already need to buy
+ # because of currently opened short positions
+ need2buy <- sum(opened.pos[opened.pos[,'pos.type']==-1,
+ "N.stocks"])*Cl(market)[d]
+ quant <- round(bet*(money-need2buy)/Cl(market)[d],0)
+ if (quant > 0)
+ orders <- rbind(orders,
+ data.frame(order=c(-1,1,1),order.type=c(1,2,3),
+ val = c(quant,
+ Cl(market)[d]*(1-exp.prof),
+ Cl(market)[d]*(1+max.loss)
+),
+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)
+)
+)
+ }

+ # Now lets check if we need to close positions
+ # because their holding time is over
+ if (nOs)
+ for(i in 1:nOs) {
+ if (d - opened.pos[i,'Odate'] >= hold.time)
+ orders <- rbind(orders,
+ data.frame(order=-opened.pos[i,'pos.type'],
+ order.type=1,
+ val = NA,
+ action = 'close',
+ posID = rownames(opened.pos)[i]
+)
+)
+ }

+ orders
+ }

Predicting Stock Market Returns 267

This policy.1() function implements the first trading strategy we described in Sec-
tion 5.5.1. The function has four parameters that we can use to tune this strategy. These
are the bet parameter, which specifies the percentage of our current money, that we will
invest each time we open a new position; the exp.prof parameter, which indicates the profit
margin we wish for our positions and is used when posting the limit orders; the max.loss,
which indicates the maximum loss we are willing to admit before we close the position, and
is used in stop orders; and the hold.time parameter, which indicates the number of days
we are willing to wait to reach the profit margin. If the holding time is reached without
achieving the wanted margin, the positions are closed.

Notice that whenever we open a new position, we send three orders back to the simulator:
a market order to open the position, a limit order to specify our target profit margin, and
a stop order to limit our losses.

Equivalently, the following function implements our second trading strategy:

> policy.2 <- function(signals,market,opened.pos,money,
+ bet=0.2,exp.prof=0.025, max.loss= 0.05
+)
+ {
+ d <- NROW(market) # this is the ID of today
+ orders <- NULL
+ nOs <- NROW(opened.pos)
+ # nothing to do!
+ if (!nOs && signals[d] == 'h') return(orders)

+ # First lets check if we can open new positions
+ # i) long positions
+ if (signals[d] == 'b') {
+ quant <- round(bet*money/Cl(market)[d],0)
+ if (quant > 0)
+ orders <- rbind(orders,
+ data.frame(order=c(1,-1,-1),order.type=c(1,2,3),
+ val = c(quant,
+ Cl(market)[d]*(1+exp.prof),
+ Cl(market)[d]*(1-max.loss)
+),
+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)
+)
+)

+ # ii) short positions
+ } else if (signals[d] == 's') {
+ # this is the money already committed to buy stocks
+ # because of currently opened short positions
+ need2buy <- sum(opened.pos[opened.pos[,'pos.type']==-1,
+ "N.stocks"])*Cl(market)[d]
+ quant <- round(bet*(money-need2buy)/Cl(market)[d],0)
+ if (quant > 0)
+ orders <- rbind(orders,
+ data.frame(order=c(-1,1,1),order.type=c(1,2,3),
+ val = c(quant,
+ Cl(market)[d]*(1-exp.prof),
+ Cl(market)[d]*(1+max.loss)
+),

268 Data Mining with R: Learning with Case Studies

+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)
+)
+)
+ }

+ orders
+ }

This function is very similar to the previous one. The main difference lies in the fact
that in this trading policy we allow for more than one position to be opened at the same
time, and also there is no aging limit for closing the positions.

Having defined the trading policy functions, we are ready to try our trading simulator.
For illustration purposes we will select a small sample of our data to obtain an SVM, which
is then used to obtain predictions for a subsequent period. We call our trading simulator
with these predictions to obtain the results of trading using the signals of the SVM in the
context of a certain trading policy.

> ## Train and test periods
> start <- 1
> len.tr <- 1000
> len.ts <- 500
> tr <- start:(start+len.tr-1)
> ts <- (start+len.tr):(start+len.tr+len.ts-1)
> ## getting the quotes for the testing period
> data(GSPC)
> date <- rownames(Tdata.train[start+len.tr,])
> marketTP <- GSPC[paste(date,'/',sep='')][1:len.ts]
> ## learning the model and obtaining its signal predictions for the test period
> library(e1071)
> s <- svm(Tform, Tdata.train[tr,], cost=10,gamma=0.01)
> p <- predict(s, Tdata.train[ts,])
> sig <- trading.signals(p, 0.1, -0.1)
> ## now using the simulated trader during the testing period
> t1 <- trading.simulator(marketTP, signals=sig, policy.func='policy.1',
+ policy.pars=list(exp.prof=0.05,bet=0.2,hold.time=30))

Please note that for this code to work, you have to previously create the objects with
the data for modeling, using the instructions given in Section 5.3.3.

In our call to the trading simulator we have selected the first trading policy and have
provided some different values for some of its parameters. We have used the default values
for transaction costs (five monetary units) and for the initial capital (1 million monetary
units). The result of the call is an object of class tradeRecord. We can check its contents
as follows:

> t1

Object of class tradeRecord with slots:

trading: <xts object with a numeric 500 x 5 matrix>
positions: <numeric 8 x 7 matrix>
init.cap : 1e+06
trans.cost : 5

Predicting Stock Market Returns 269

policy.func : policy.1
policy.pars : <list with 3 elements>

> summary(t1)

== Summary of a Trading Simulation with 500 days ==

Trading policy function : policy.1
Policy function parameters:
exp.prof = 0.05
bet = 0.2
hold.time = 30

Transaction costs : 5
Initial Equity : 1e+06
Final Equity : 1019712 Return : 1.97 %
Number of trading positions: 8

Use function "tradingEvaluation()" for further stats on this simulation.

The function tradingEvaluation() can be used to obtain a series of economic indicators
of the performance during this simulation period:

> tradingEvaluation(t1)

NTrades NProf PercProf PL Ret RetOverBH
8.00 5.00 62.50 19712.54 1.97 -4.88

MaxDD SharpeRatio AvgProf AvgLoss AvgPL MaxProf
25630.72 0.04 5.11 -5.00 1.32 5.26
MaxLoss

-5.00

We can also obtain a graphical overview of the performance of the trader using the
function plot() as follows:

> plot(t1,marketTP, theme = "white", name = "SP500")

The result of this command is shown in Figure 5.5.
The results of this trader are not very interesting. Would the scenario be different if we

had used the second trading policy? Let us check:

> t2 <- trading.simulator(marketTP, sig, "policy.2", list(exp.prof = 0.05, bet = 0.3))
> summary(t2)

== Summary of a Trading Simulation with 500 days ==

Trading policy function : policy.2
Policy function parameters:
exp.prof = 0.05
bet = 0.3

Transaction costs : 5
Initial Equity : 1e+06

270 Data Mining with R: Learning with Case Studies

60

70

80

90

100

SP500 [1974−02−04/1976−01−26]

Last 99.68

 Equity () :
1019712.538

960000

980000

1000000

1020000

1040000

1060000

 N.Stocks () :
0.000

−2000

−1000

0

1000

2000

3000

Feb 04
1974

Apr 01
1974

Jun 03
1974

Jul 01
1974

Aug 01
1974

Sep 03
1974

Nov 01
1974

Jan 02
1975

Feb 03
1975

Apr 01
1975

May 01
1975

Jul 01
1975

Aug 01
1975

Oct 01
1975

Nov 03
1975

Jan 02
1976

FIGURE 5.5: The results of trading using Policy 1 based on the signals of an SVM.

Final Equity : 1152332 Return : 15.23 %
Number of trading positions: 37

Use function "tradingEvaluation()" for further stats on this simulation.

> tradingEvaluation(t2)

NTrades NProf PercProf PL Ret RetOverBH
37.00 26.00 70.27 152332.30 15.23 8.38
MaxDD SharpeRatio AvgProf AvgLoss AvgPL MaxProf

67492.23 0.06 4.99 -4.89 2.05 5.26
MaxLoss

-5.00

Using the same exact signals (i.e. not changing anything in the modeling stages), but
with a different trading policy, we got a completely different result! Let us repeat the
experiment with different training and testing periods:

> start <- 2000
> len.tr <- 1000
> len.ts <- 500
> tr <- start:(start + len.tr - 1)
> ts <- (start + len.tr):(start + len.tr + len.ts - 1)
> data(GSPC)
> date <- rownames(Tdata.train[start+len.tr,])
> marketTP <- GSPC[paste(date,'/',sep='')][1:len.ts]
> s <- svm(Tform, Tdata.train[tr,], cost = 10, gamma = 0.01)
> p <- predict(s, Tdata.train[ts,])
> sig <- trading.signals(p, 0.1, -0.1)
> t2 <- trading.simulator(marketTP, sig,
+ "policy.2", list(exp.prof = 0.05, bet = 0.3))
> summary(t2)

Predicting Stock Market Returns 271

== Summary of a Trading Simulation with 500 days ==

Trading policy function : policy.2
Policy function parameters:
exp.prof = 0.05
bet = 0.3

Transaction costs : 5
Initial Equity : 1e+06
Final Equity : 215220.1 Return : -78.48 %
Number of trading positions: 231

Use function "tradingEvaluation()" for further stats on this simulation.

> tradingEvaluation(t2)

NTrades NProf PercProf PL Ret RetOverBH
231.00 29.00 12.55 -784779.95 -78.48 -111.74
MaxDD SharpeRatio AvgProf AvgLoss AvgPL MaxProf

973177.31 0.02 5.19 -2.59 -1.62 5.56
MaxLoss

-4.89

This trader, obtained by the same modeling technique and using the same trading strat-
egy, scored considerably worse. The major lesson to be learned here is: we need reliable
statistical estimates. Do not be fooled by a few repetitions of some experiments, even if
it includes a 2-year testing period. We need more repetitions under different conditions to
ensure some statistical reliability of our results. This is particularly true for time series
models that have to handle different regimes (e.g., periods with rather different volatility
or trend). This is the topic of the next section.

5.6 Model Evaluation and Selection
In this section we will consider how to obtain reliable estimates of the selected evalua-

tion criteria. These estimates will allow us to properly compare and select among different
alternative trading systems.

5.6.1 Monte Carlo Estimates
Time series problems like the one we are addressing bring new challenges in terms of

obtaining reliable estimates of our evaluation metrics. This is caused by the fact that all data
observations have an attached time tag that imposes an ordering among them. This ordering
should be respected with the risk of obtaining estimates that are not reliable. In Chapter 4 we
used the cross-validation method to obtain reliable estimates of some evaluation statistics.
As we have seen in Section 3.5.2 (page 177), this methodology includes a random re-sampling
step that changes the original ordering of the observations. This means that cross-validation
should not be applied to time series problems. Applying this method could mean to test
models on observations that are older than the ones used to obtain them. This is not feasible

272 Data Mining with R: Learning with Case Studies

in reality, and thus the estimates obtained by this process are unreliable and possibly overly
optimistic, as it is easier to predict the past given the future than the opposite.

All other experimental methodologies described in Section 3.5 involve some random step
that may break the implicit ordering of the available dataset. Any estimation process using
time series data should ensure that the models are always tested on data that is more
recent than the data used to obtain the models. This means no random re-sampling of
the observations or any other process that changes the time ordering of the given data.
However, as we have discussed in Section 3.5, any proper estimation process should include
some random choices to ensure the statistical reliability of the obtained estimates. This
involves repeating the estimation process several times under different conditions, preferably
randomly selected. Given a time series dataset spanning from time t to time t+N , how can
we ensure this? First, we have to choose the train+test setup for which we want to obtain
estimates. This means deciding what is the size of both the train and test sets to be used in
the estimation process. The sum of these two sizes should be smaller than N to ensure that
we are able to randomly generate different experimental scenarios with the data that was
provided to us. However, if we select too small a training size, we may seriously impair the
performance of our models. Similarly, small test sets will also be less reliable, particularly
if we suspect there are regime shifts in our problem and we wish to test the models under
these circumstances.

Our dataset includes roughly 35 years of daily quotes. We will evaluate all alternatives
by estimating their performance on a test set of 5 years of quotes, when given 10 years of
training data. This ensures train and test sizes that are sufficiently large; and, moreover, it
leaves space for different repetitions of this testing process as we have 35 years of data.

In terms of experimental methodology, we will use a Monte Carlo experiment to obtain
reliable estimates of our evaluation metrics. Monte Carlo methods rely on random sampling
to obtain their results. We are going to use this sampling process to choose a set of R
points in our 35-year period of quotes. For each randomly selected time point r, we will
use the previous 10 years of quotes to obtain the models and the subsequent 5 years to test
them. At the end of these R iterations we will have R estimates for each of our evaluation
metrics. Each of these estimates is obtained on a randomly selected window of 15 years of
data, the first 10 years used for training and the remaining 5 years for testing. This ensures
that our experiments always respect the time ordering of the time series data. Repeating
the process R times will ensure sufficient variability on the train+test conditions, which
increases the reliability of our estimates. Moreover, if we use the same set of R randomly
selected points for evaluating different alternatives, we can carry out paired comparisons
to obtain statistical confidence levels on the observed differences of mean performance.
Figure 5.6 summarizes the Monte Carlo experimental method. Notice that as we have to
ensure that for every random point r there are 10 years of data before and 5 years after,
this eliminates some of the data from the random selection of the R points.

The function performanceEstimation(), which was used in Chapter 4 for carrying
out k-fold cross-validation experiments, can also be used for this type of Monte Carlo
experiments. In the next section we will use it to obtain reliable estimates of the selected
evaluation metrics for several alternative trading systems.

5.6.2 Experimental Comparisons
This section describes a set of Monte Carlo experiments designed to obtain reliable

estimates of the evaluation criteria mentioned in Sections 5.3.4 and 5.5.2. The base data
used in these experiments are the datasets created at the end of Section 5.3.3.

Each of the alternative predictive models considered in these experiments will be used
in three different model updating setups. These were already described in Section 5.4.1

Predicting Stock Market Returns 273

......
5y10y

5y10y

5y10y

M
on

te
 C

ar
lo

 R
ep

et
iti

on
s

i = 1

i = 2

i = R

period available for sampling
~ 35y

FIGURE 5.6: The Monte Carlo experimental process.

and consist of using a single model for all 5-year testing periods, using a sliding window,
or a growing window. Although package performanceEstimation contains a pre-defined
standard workflow (named timeseriesWF()) that implements these strategies, we will be
writing our own workflow function. The main reason lies on the fact that we will need
several steps that are specific to this concrete application. For instance, we will need to
transform the predictions into trading signals, then decide what to do with these signals
(the trading policy), and finally actually trading on the market using our simulator to get
the results of our workflow in terms of the financial metrics we have selected. All these steps
require specific code so we will need to develop our own workflow, and then supply it to the
function performanceEstimation().

The following code implements our approach (workflow) given a certain train+test pe-
riod that will be generated by the performanceEstimation() function. The function im-
plements different variants of our approach (e.g. slide and growing windows) that can be
selected through specific parameter values of the workflow function. The function will be
called from within the Monte Carlo routines of package performanceEstimation with
different train and test periods according to the schema described in Figure 5.6. When cre-
ating your own workflow functions for using with this package, the main requirements are:
(i) the function should accept in the first three arguments a formula, a training data frame
and a testing data frame; and (ii) should return the result of applying a certain modeling
approach (implemented in the workflow) to these datasets.

> tradingWF <- function(form, train, test,
+ quotes, pred.target="signals",
+ learner, learner.pars=NULL,
+ predictor.pars=NULL,
+ learn.test.type='fixed', relearn.step=30,
+ b.t, s.t,
+ policy, policy.pars,
+ trans.cost=5, init.cap=1e+06)
+ {
+ ## obtain the model(s) and respective predictions for the test set
+ if (learn.test.type == 'fixed') { # a single fixed model
+ m <- do.call(learner,c(list(form,train),learner.pars))
+ preds <- do.call("predict",c(list(m,test),predictor.pars))
+ } else { # either slide or growing window strategies
+ data <- rbind(train,test)
+ n <- NROW(data)
+ train.size <- NROW(train)
+ sts <- seq(train.size+1,n,by=relearn.step)

274 Data Mining with R: Learning with Case Studies

+ preds <- vector()
+ for(s in sts) { # loop over each relearn step
+ tr <- if (learn.test.type=='slide') data[(s-train.size):(s-1),]
+ else data[1:(s-1),]
+ ts <- data[s:min((s+relearn.step-1),n),]

+ m <- do.call(learner,c(list(form,tr),learner.pars))
+ preds <- c(preds,do.call("predict",c(list(m,ts),predictor.pars)))
+ }
+ }

+ ## Getting the trading signals
+ if (pred.target != "signals") { # the model predicts the T indicator
+ predSigs <- trading.signals(preds,b.t,s.t)
+ tgtName <- all.vars(form)[1]
+ trueSigs <- trading.signals(test[[tgtName]],b.t,s.t)
+ } else { # the model predicts the signals directly
+ tgtName <- all.vars(form)[1]
+ if (is.factor(preds))
+ predSigs <- preds
+ else {
+ if (preds[1] %in% levels(train[[tgtName]]))
+ predSigs <- factor(preds,labels=levels(train[[tgtName]]),
+ levels=levels(train[[tgtName]]))
+ else
+ predSigs <- factor(preds,labels=levels(train[[tgtName]]),
+ levels=1:3)
+ }
+ trueSigs <- test[[tgtName]]
+ }

+ ## obtaining the trading record from trading with the signals
+ date <- rownames(test)[1]
+ market <- get(quotes)[paste(date,"/",sep='')][1:length(preds),]
+ tradeRec <- trading.simulator(market,predSigs,
+ policy.func=policy,policy.pars=policy.pars,
+ trans.cost=trans.cost,init.cap=init.cap)

+ return(list(trueSigs=trueSigs,predSigs=predSigs,tradeRec=tradeRec))
+ }

The first part of the workflow takes care of obtaining the model(s) that make the pre-
dictions for the test period. This can be a single model that is applied throughout the full
test period, or can be several models using either growing or sliding windows at a step
controlled by the relearn.step parameter. After this stage we need to get the signals
for this testing period. If the models already had as target the trading signals (parameter
pred.target="signals") this is trivial, otherwise we need to convert the predicted T in-
dicator values into signals. Finally, using these signals, we trade on the simulator during
the test period. The outcome of the workflow is a list with the true and predicted signals
as well as the trading record. These are the elements that are necessary for calculating the
evaluation metrics.

Associated with this user-defined workflow we will also write our own function to obtain
the evaluation metrics that we want to use in our problem. Once again the motivation is
the specificity of our problem that demands for some special metrics not implemented in

Predicting Stock Market Returns 275

the package performanceEstimation. The following function implements our required
evaluation metrics when called with the outcome of the above trading workflow:

> tradingEval <- function(trueSigs,predSigs,tradeRec,...)
+ {
+ ## Signals evaluation
+ st <- sigs.PR(predSigs,trueSigs)
+ dim(st) <- NULL
+ names(st) <- paste(rep(c('prec','rec'),each=3),c('s','b','sb'),sep='.')

+ ## Trading record evaluation
+ tradRes <- tradingEvaluation(tradeRec)
+ return(c(st,tradRes))
+ }

This function calculates the precision and recall of the signals of the model, and also some
trading-related metrics using function tradingEvaluation() that we have seen before. All
these functions were fully described and exemplified in Section 5.5.3.

Having defined specific workflow and evaluation functions we are ready to run our com-
parative experiments. The following code runs the Monte Carlo experiments. We recommend
that you think twice before running this code. Even on rather fast computers, it will take
several days to complete. On the book web page we provide the objects resulting from run-
ning the experiments so that you can replicate the results analysis that will follow, without
having to run these experiments on your computer.

> library(performanceEstimation)
> library(e1071)
> library(earth)
> library(nnet)
> LEARNERS <- c('svm','earth','nnet')
> EST.TASK <- EstimationTask(method=MonteCarlo(nReps=20,
+ szTrain=2540,szTest=1270,
+ seed=1234),
+ evaluator="tradingEval")
> VARS <- list()
>
> VARS$svm <- list(learner.pars=list(cost=c(10,50,150),
+ gamma=c(0.01,0.05)))
> VARS$earth <- list(learner.pars=list(nk=c(10,17),
+ degree=c(1,2),
+ thresh=c(0.01,0.001)))
> VARS$nnet <- list(learner.pars=list(linout=TRUE, trace=FALSE,
+ maxit=750,
+ size=c(5,10),
+ decay=c(0.001,0.01,0.1)))
>
> VARS$learning <- list(learn.test.type=c("fixed","slide","grow"), relearn.step=120)
> VARS$trading <- list(policy=c("policy.1","policy.2"),
+ policy.pars=list(bet=c(0.2,0.5),exp.prof=0.05,max.loss=0.05),
+ b.t=c(0.01,0.05),s.t=c(-0.01,-0.05))
>
> ## Regression (forecast T indicator) Workflows
> for(lrn in LEARNERS) {
+ objName <- paste(lrn,"res","regr",sep="_")

276 Data Mining with R: Learning with Case Studies

+ assign(objName,
+ performanceEstimation(PredTask(Tform,Tdata.train,"SP500"),
+ do.call("workflowVariants",
+ c(list("tradingWF",
+ varsRootName=paste0(lrn,"Regr"),
+ quotes="GSPC",
+ learner=lrn,
+ pred.target="indicator"),
+ VARS[[lrn]],
+ VARS$learning,
+ VARS$trading)
+),
+ EST.TASK,
+ cluster=TRUE) # for parallel computation
+)
+ save(list=objName,file=paste(objName,'Rdata',sep='.'))
+ }
>
> ## Specific settings to make nnet work as a classifier
> VARS$nnet$learner.pars$linout <- FALSE
> VARS$nnet$predictor.pars <- list(type="class")
>
> ## Classification (forecast signal) workflows
> for(lrn in c("svm","nnet")) { # only these because MARS is only for regression
+ objName <- paste(lrn,"res","class",sep="_")
+ assign(objName,
+ performanceEstimation(PredTask(TformC,Tdata.trainC,"SP500"),
+ do.call("workflowVariants",
+ c(list("tradingWF",
+ varsRootName=paste0(lrn,"Class"),
+ quotes="GSPC",
+ learner=lrn,
+ pred.target="signals"),
+ VARS[[lrn]],
+ VARS$learning,
+ VARS$trading)
+),
+ EST.TASK,
+ cluster=TRUE) # for parallel computation
+)
+ save(list=objName,file=paste(objName,'Rdata',sep='.'))
+ }

The first part of the above code (before the first for loop) sets up a series of data struc-
tures holding information on: (i) the learning systems that will be tried; (ii) the estimation
experiment to be carried out; and (iii) the different variants of the workflow parameters
that are to be considered. This last item is obviously far from exhaustive and many more
alternatives could have been considered. In terms of learners we considered SVMs, MARS
and ANNs (again just for illustrative purposes). Regarding experimental settings we used 20
repetitions of a Monte Carlo experiment with 10 years (∼ 2540 daily sessions) of data used
for model development and the subsequent 5 years (∼ 1270 daily sessions) for testing. Note
that we specify our previously defined tradingEval() function to be used for calculating
the evaluation metrics that we are estimating with the experiment.

The first for loop runs the experiments for the workflows based on regression models,

Predicting Stock Market Returns 277

i.e. models that try to forecast the T indicator. We run them in a loop to separate the calls
to each learner. This is done purely due to computation reasons. As the code takes too long
to run we want to avoid some problem with one of the learners to “abort” all experiments.
This way we run one learner at a time and at the end of each learner we save its results in a
separate file19. After finishing this loop we will have 3 files named “smv_res_regr.Rdata”,
“earth_res_regr.Rdata” and “nnet_res_regr.Rdata”. Note that these file names and the
objects they store (whose name is the same without the extension) were obtained program-
matically from the content of the variable that controls the loop (lrn). Because of this the
assignment that stores the results of the call to performanceEstimation() is also “special”.
The left side of an assignment operator must contain the name of the variable where to store
the content calculated in the right side. However, in this case the name of this variable is
contained in a variable (objName) that was constructed programmatically. In this context,
we need to resort to function assign() to carry out the assignment. This function allows
us to specify the name of the left side as the content of another variable (objName in our
case). Also noteworthy is the call to the function workflowVariants() that generates the
different variants of the workflows to be considered for each learner. Again this is done
programmatically through the function do.call() that allows us to “construct” the call
to any function. In this case we are using this function to “attach” the proper arguments
to the workflowVariants() call. These calls to workflowVariants() will generate a large
set of workflow variants (and thus the high computational cost of this code that we have
mentioned above). For instance, for the SVM we will have 3 × 2 parameter variants, but
each of these 6 variants is then combined with 3 learning variants and 2× 2× 2× 2 trading
variants, for a total of 288 workflows involving SVMs in regression tasks. Each of these 288
workflows is applied 20 times with different train and test data splits. And this is just SVM
for regression! So, you are probably starting to understand why this code takes a bit long
to run. You may have noticed that we are calling the function performanceEstimation()
with a fourth argument: cluster=TRUE. This optional parameter allows you to use some
of the parallel computation facilities of R. In this case, the computational speed-ups will
come from running the different repetitions of the Monte Carlo experiment in parallel on
each of the cores of your local CPU (assuming you have a multi-core machine which is
rather standard nowadays). There are other possible configurations, like for instance using
clusters of computers. Check the documentation of package performanceEstimation for
more information on these ways of trying to speed-up large experimental comparisons.

In spite of the large set of alternatives we are considering, we should remark that this is a
tiny sample of all possibilities of tuning that we have mentioned during the description of our
approach to this problem. There were far too many “small” decisions where we could have
followed other paths (e.g., the buy/sell thresholds, other learning systems, etc.). This means
that any serious attempt at this domain of application will require massive computation
resources to carry out a proper model selection. This is clearly outside the scope of this
book. Our aim here is to provide the reader with proper methodological guidance and not
to help find the best trading system for this particular data.

The second for loop follows the same structure but for the approaches that directly
forecast the trading signals through a classification model. This requires a slight change on
the neural network parameters and it also means skipping the MARS models that are not
directly applicable to classification tasks.

19We could even run the code for each learner on different computers.

278 Data Mining with R: Learning with Case Studies

5.6.3 Results Analysis
The code provided in the previous section generates five data files with the ob-

jects containing the results of all variants involving the five learning approaches we
have tried. These data files are named “svm_res_regr.Rdata”, “svm_res_class.Rdata”,
“earth_res_regr.Rdata”, “nnet_res_regr.Rdata”, and “nnet_res_class.Rdata”. Each of
them contains an object with the same name as the file, except for the extension. These
objects are the result of running the function performanceEstimation() and thus are of
class ComparisonResults. Package performanceEstimation contains several functions
that can be used to explore the results they store.

Because you probably did not run the experiments yourself, you can find the files on the
book web page. Download them to your current working directory in your computer and
then use the following commands to load the objects into R:

> load("svm_res_regr.Rdata")
> load("nnet_res_regr.Rdata")
> load("earth_res_regr.Rdata")
> load("svm_res_class.Rdata")
> load("nnet_res_class.Rdata")
> allResults <- mergeEstimationRes(svm_res_regr, earth_res_regr, nnet_res_regr,
+ svm_res_class, nnet_res_class,
+ by="workflows")
> rm(svm_res_regr, earth_res_regr, nnet_res_regr, svm_res_class, nnet_res_class)

After loading each of the individual ComparisonResults objects that resulted from the
experiments we have carried out, we merge them into a single object containing the results
of all workflows with the function mergeEstimationRes(). This is possible because the
individual objects share the same structure, with the exception of the workflows involved,
i.e. they use the same estimation procedure to obtain scores of the same metrics, on the
same tasks. In this context, we merge them by workflows. The function also allows other
types of merges, for instance of objects where we have the same workflows ran separately on
different tasks (though using the same estimation procedure and metrics) and then merge
them by tasks. After merging the objects we may spare some computer memory by removing
the individual objects using function rm().

For each trading system variant, we have measured several statistics of performance.
Some are related to the performance in terms of predicting the correct signals, while others
are related to the economic performance when using these signals to trade. Deciding which
are the best models according to our experiments involves a balance between all these scores.
The selected model(s) may vary depending on which criteria we value the most.

We are going to select a few of them as more important for us and then use them as
the main criteria for comparing the models. Obviously, other selections would be possible
and would probably lead to other conclusions in terms of model selection. Among the signal
prediction statistics, precision is clearly more important than recall for this application. In
effect, precision has to do with the predicted signals, and these drive the trading decisions as
they are the causes for opening positions. Low precision scores are caused by wrong signals,
which means opening positions at the wrong timings. This will most surely lead to high
losses. Recall does not have this cost potential. Recall measures the ability of the models to
capture trading opportunities. If this score is low, it means lost opportunities, but not high
costs caused by wrong decisions. In this context, we will be particularly interested in the
scores of the models for metric “prec.sb”, which measures the overall precision of the buy
and sell signals. Still, we must remember that according to our trading policies (outlined
in Section 5.5.1) not all trading signals will be used, particularly for the first policy, so the
precision scores may not be too high and still reasonable economic results are obtained.

Predicting Stock Market Returns 279

In terms of economic performance, the return of the systems is important (metric named
“Ret” in our experiments), as well as the return over the buy and hold strategy (“Re-
tOverBH” in our experiments). Also important is the percentage of profitable trades, which
should be clearly above 50% (metric “PercProf”). In terms of risk analysis, it is relevant to
look at both the value of the Sharpe Ratio and the Maximum Draw-Down (“MaxDD”).

The function summary() can be applied to the ComparisonResults objects. However,
given the number of workflows and performance metrics, the output would be overwhelming
in this case.

An alternative is to use the function rankWorkflows() provided by the package perfor-
manceEstimation. With this function we can obtain the top workflows for the evaluation
metrics in which we are interested:

> tgtStats <- c('NTrades','prec.sb','Ret','RetOverBH','PercProf',
+ 'MaxDD','SharpeRatio')
> toMax <- c(rep(TRUE,5),FALSE,TRUE)
> rankWorkflows(subset(allResults,
+ metrics=tgtStats,
+ partial=FALSE),
+ top=3,
+ maxs=toMax)

$SP500
$SP500$NTrades

Workflow Estimate
1 svmRegr.v24 985.35
2 svmRegr.v168 960.15
3 svmRegr.v23 958.95

$SP500$prec.sb
Workflow Estimate

1 nnetClass.v1 0.3199433
2 nnetClass.v19 0.3199433
3 nnetClass.v37 0.3199433

$SP500$Ret
Workflow Estimate

1 svmRegr.v138 155.1225
2 svmRegr.v60 82.7015
3 svmRegr.v204 81.3495

$SP500$RetOverBH
Workflow Estimate

1 svmRegr.v138 63.1045
2 svmRegr.v60 -9.3155
3 svmRegr.v204 -10.6670

$SP500$PercProf
Workflow Estimate

1 nnetRegr.v169 63.876
2 nnetRegr.v175 62.751
3 nnetRegr.v176 62.640

$SP500$MaxDD

280 Data Mining with R: Learning with Case Studies

Workflow Estimate
1 nnetClass.v1 12594.36
2 nnetClass.v73 12594.36
3 nnetClass.v145 12594.36

$SP500$SharpeRatio
Workflow Estimate

1 nnetRegr.v177 0.0400
2 nnetRegr.v167 0.0395
3 nnetRegr.v171 0.0385

The function subset() can be applied to ComparisonResults objects to select a part
of the information stored in these objects. In this case we are selecting only a subset of
the estimated metrics. Note the use of partial=FALSE. This makes the subset function
match the exact name of the statistics. Without it the function uses partial matching and
we could eventually catch other metrics with similar names. Finally, we use the function
rankWorkflows() to obtain the top three scores among all trading systems for the metrics
we have selected. The notion of best score varies with each metric. Sometimes we want
the largest values, while for others we want the lowest values. This can be set up by the
parameter maxs of function rankWorkflows(), which lets you specify the metrics for which
best means maximum possible score.

The first thing we notice when looking at these top three results is that all of them involve
either the svm or nnet algorithm, and most of them regression approaches, i.e. approaches
that first predict the T indicator instead of predicting directly the signal. The exceptions
occur on the precision of the signals and on the maximum draw down metrics, where the
classification approaches emerge as the best. If we are curious about the characteristics
of any workflow we may use function getWorkflow() by providing its name in the first
argument and the name of the object with the experiments results in the second:

> getWorkflow("svmRegr.v138",analysisSet)

Workflow Object:
Workflow ID :: svmRegr.v138
Workflow Function :: tradingWF

Parameter values:
learner.pars -> cost=150 gamma=0.05
policy.pars -> bet=0.5 exp.prof=0.0 ...
quotes -> GSPC
learner -> svm
pred.target -> indicator
learn.test.type -> slide
relearn.step -> 120
policy -> policy.2
b.t -> 0.05
s.t -> -0.01

With the goal of making our results analysis more manageable we will create a new
ComparisonResults object with only a subset of the workflows, namely the top 100
workflows according to the previously mentioned main metrics:

> best <- rankWorkflows(subset(allResults,
+ metrics=tgtStats,
+ partial=FALSE),

Predicting Stock Market Returns 281

+ top=100,
+ maxs=toMax)
> bestWFs <- unique(as.vector(sapply(best$SP500,function(x) x$Workflow)))
> analysisSet <- subset(allResults, workflows=bestWFs, partial=FALSE)
> rm(allResults)

Let us take a closer look at the best performers for each of the more important metrics:

> (tps <- topPerformers(subset(analysisSet,metrics=tgtStats,partial=FALSE),
+ maxs=toMax))

$SP500
Workflow Estimate

NTrades svmRegr.v24 985.35
prec.sb nnetClass.v1 0.32
Ret svmRegr.v138 155.123
RetOverBH svmRegr.v138 63.104
PercProf nnetRegr.v169 63.876
MaxDD nnetClass.v1 12594.359
SharpeRatio nnetRegr.v177 0.04

Function topPerformers() gives us a table with the best workflows for each metric.
We can use this information to obtain more detailed information about these workflows on
some of the metrics.

> summary(subset(analysisSet,
+ workflows=tps$SP500[c("prec.sb","Ret","PercProf","MaxDD"),
+ "Workflow"],
+ metrics=tgtStats[-c(1,4,7)],
+ partial=FALSE))

== Summary of a Monte Carlo Performance Estimation Experiment ==

Task for estimating all metrics of the selected evaluation function using
20 repetitions Monte Carlo Simulation using:
seed = 1234
train size = 2540 cases
test size = 1270 cases

* Predictive Tasks :: SP500
* Workflows :: nnetClass.v1, svmRegr.v138, nnetRegr.v169, nnetClass.v1

-> Task: SP500
*Workflow: nnetClass.v1

prec.sb Ret PercProf MaxDD
avg 0.3199433 0.198500 21.7040 12594.36
std 0.2134790 2.048353 28.8249 20844.75
med 0.2329298 0.000000 0.0000 0.00
iqr 0.2459596 0.000000 43.5525 16435.03
min 0.0000000 -4.180000 0.0000 0.00
max 0.6250000 6.280000 75.0000 64942.07
invalid 12.0000000 0.000000 0.0000 0.00

*Workflow: svmRegr.v138

282 Data Mining with R: Learning with Case Studies

prec.sb Ret PercProf MaxDD
avg 0.22493318 155.1225 52.384500 2081116.6
std 0.06968098 390.1813 4.616856 1352582.7
med 0.21721373 16.3600 51.975000 1652147.9
iqr 0.08365744 195.7275 7.060000 1439520.3
min 0.10979548 -92.3400 45.860000 789925.2
max 0.35475352 1519.3300 62.350000 6537727.0
invalid 0.00000000 0.0000 0.000000 0.0

*Workflow: nnetRegr.v169
prec.sb Ret PercProf MaxDD

avg 0.29545145 25.83700 63.87600 248605.8
std 0.09640889 31.57113 10.47377 158502.6
med 0.33147567 21.38500 66.22500 235386.7
iqr 0.15400154 37.89000 12.34750 175996.6
min 0.11247803 -45.33000 40.25000 69260.9
max 0.41073826 77.11000 77.50000 601398.2
invalid 0.00000000 0.00000 0.00000 0.0

*Workflow: nnetClass.v1
prec.sb Ret PercProf MaxDD

avg 0.3199433 0.198500 21.7040 12594.36
std 0.2134790 2.048353 28.8249 20844.75
med 0.2329298 0.000000 0.0000 0.00
iqr 0.2459596 0.000000 43.5525 16435.03
min 0.0000000 -4.180000 0.0000 0.00
max 0.6250000 6.280000 75.0000 64942.07
invalid 12.0000000 0.000000 0.0000 0.00

As you can observe, most of these workflows achieve good performance on one of the
metrics but then are disappointing on others. For instance, while “svmRegr.v138” is the
best in terms of average return it achieves bad scores in terms of maximum draw down and
precision of the signals. Moreover, even in terms of return the results are rather unstable
across the different repetitions with a very high variance (and actually the median return
is significantly lower than the average return).

In this context, we will add some constraints on some of the metrics for a workflow to be
considered as a reasonable candidate solution. Moreover, given the observed instability of
the performance over the different repetitions, we will carry out our model selection looking
at the median performance instead of the mean, as the former is more robust to outlying
scores in some of the repetitions. In terms of constraints, we will require a minimum of
120 trades (roughly two per month on the 5 years testing periods) for a workflow to be
considered. Then we will look at the return and percentage of profitable trades and will
select the top 15 in terms of these metrics. Finally, we will select a small set of workflows
that are either in the top 3 of one of these metrics or are part of the top 15 of both. Here
is the code for finding these workflows:

> ms <- metricsSummary(subset(analysisSet,
+ metrics=c("NTrades","Ret","PercProf"),
+ partial=FALSE),
+ summary="median")[["SP500"]]
> candidates <- subset(analysisSet,
+ workflows=colnames(ms)[which(ms["NTrades",] > 120)],
+ partial=FALSE)
> ms <- metricsSummary(subset(candidates,

Predicting Stock Market Returns 283

+ metrics=c("Ret","PercProf"),
+ partial=FALSE),
+ summary="median")[["SP500"]]
> (sms <- apply(ms,1,function(x) names(x[order(x,decreasing=TRUE)][1:15])))

Ret PercProf
[1,] "nnetRegr.v200" "nnetRegr.v169"
[2,] "svmRegr.v168" "nnetRegr.v167"
[3,] "svmRegr.v204" "nnetRegr.v179"
[4,] "svmRegr.v102" "nnetRegr.v177"
[5,] "svmRegr.v30" "svmRegr.v169"
[6,] "svmRegr.v24" "svmRegr.v175"
[7,] "svmRegr.v174" "nnetRegr.v203"
[8,] "nnetRegr.v211" "nnetRegr.v175"
[9,] "nnetRegr.v213" "nnetRegr.v176"

[10,] "svmRegr.v60" "nnetRegr.v205"
[11,] "nnetRegr.v202" "nnetRegr.v172"
[12,] "svmRegr.v246" "nnetRegr.v173"
[13,] "svmRegr.v36" "nnetRegr.v178"
[14,] "nnetRegr.v175" "nnetRegr.v213"
[15,] "nnetRegr.v203" "nnetRegr.v215"

> (winners <- unique(c(intersect(sms[,1],sms[,2]),sms[1:3,1],sms[1:3,2])))

[1] "nnetRegr.v213" "nnetRegr.v175" "nnetRegr.v203" "nnetRegr.v200"
[5] "svmRegr.v168" "svmRegr.v204" "nnetRegr.v169" "nnetRegr.v167"
[9] "nnetRegr.v179"

> winnersResults <- subset(analysisSet,
+ metrics=tgtStats,workflows=winners,
+ partial=FALSE)

We have used the function metricsSummary() to obtain the median score for the metrics
we have chosen to filter the best workflows. We do a first filtering step on the number of
trades (minimum of 120), creating object candidates. Then we proceed to obtain the names
of the top 15 in terms of median return or median percentage of profitable trades. Finally,
we do the last filtering selecting the best three on each of these two metrics and also all
workflows that are part of the best 15 on both these two metrics, which leads to 9 selected
workflows, all using a regression approach to the problem.

If we apply the summary function to the winnersResults object we may notice that
when compared to the basic Buy and Hold strategy the results are rather disappointing.
Moreover, all 9 approaches achieved a negative return on at least one of the repetitions (all
minimum returns are negative). This means that overall even these best workflows do not
seem very promising and are a bit risky in terms of using them for investment decisions. In
a realistic scenario the recommendation from this model selection stage should be not to
use any of these models.

Nevertheless, we can identify a few workflows that are more interesting than the others,
depending on the profile of the investors. If they follow a more risky strategy they may
eventually prefer “nnetRegr.v200” or “svmRegr.v168”, that have more interesting perfor-
mance in terms of return. More conservative decision makers may prefer “nnetRegr.v175”
or “nnetRegr.v169”, both showing a more consistent performance in terms of percentage of
profitable trades and maximum draw down.

It is also worth considering the question of whether the differences between these work-

284 Data Mining with R: Learning with Case Studies

flows and the remaining alternatives are statistically significant or not. Let us first check
whether the apparent advantage of “nnetRegr.v200” in terms of return is statistically sig-
nificant:

> p <- pairedComparisons(winnersResults,baseline="nnetRegr.v200",maxs=toMax)
> pRetWilcoxonSignedRank.test

, , SP500

MedScore DiffMedScores p.value
nnetRegr.v200 56.685 NA NA
nnetRegr.v213 39.210 17.475 0.1893482
nnetRegr.v175 35.535 21.150 0.3883762
nnetRegr.v203 35.460 21.225 0.3883762
svmRegr.v168 49.105 7.580 0.6215134
svmRegr.v204 48.900 7.785 0.7011814
nnetRegr.v169 21.385 35.300 0.6476555
nnetRegr.v167 33.480 23.205 0.4090977
nnetRegr.v179 30.735 25.950 0.4980087

Function pairedComparisons() allows us to carry out a series of statistical tests based
on the outcome of the experiments. Among these different tests, the one that is more ade-
quate for our setup (one single predictive task with different workflows being applied to the
same train+test partitions), is the Wilcoxon signed rank test (c.f. Section 3.5.4, page 181).
We have specified “nnetRegr.v200” as the baseline model against which all others are com-
pared (paired comparisons). The result of the function is a list with many components with
the results of different tests for each metric. The second statement above presents the results
of the Wilcoxon test. The first row shows the result (median value across the repetitions) of
the baseline in terms of the selected metric (return). The remaining rows show the results
of each alternative, the difference to the median score of the baseline and also the p-value
of the paired comparison against that baseline. As we can observe these p values are too
high which means that we can not reject the hypothesis that the performance of the other
workflows is similar to that of the baseline.

We can carry out a similar test with the representative of the more conservative selec-
tion (“nnetRegr.v175”), looking this time at the maximum drawdown that is an important
measure of the risk of the workflows,

> p <- pairedComparisons(winnersResults,"nnetRegr.v175",maxs=toMax)
> p$MaxDD$WilcoxonSignedRank.test

, , SP500

MedScore DiffMedScores p.value
nnetRegr.v175 190874.9 NA NA
nnetRegr.v213 299346.4 -108471.47 1.678467e-04
nnetRegr.v203 402566.6 -211691.76 8.506775e-04
nnetRegr.v200 550732.9 -359857.96 4.768372e-05
svmRegr.v168 429145.4 -238270.56 7.076263e-04
svmRegr.v204 777845.6 -586970.71 1.335144e-05
nnetRegr.v169 235386.7 -44511.78 8.983173e-01
nnetRegr.v167 289129.3 -98254.37 3.998947e-02
nnetRegr.v179 250383.0 -59508.14 3.117943e-01

As we can observe there are several statistically significant differences. We can use the

Predicting Stock Market Returns 285

signifDiffs() function to filter the results of the pairedComparisons() function, showing
only the differences above a certain confidence,

> sds <- signifDiffs(p,p.limit=0.05,metrics="MaxDD")
> sds$MaxDD$WilcoxonSignedRank.test$SP500

MedScore DiffMedScores p.value
nnetRegr.v175 190874.9 NA NA
nnetRegr.v213 299346.4 -108471.47 1.678467e-04
nnetRegr.v203 402566.6 -211691.76 8.506775e-04
nnetRegr.v200 550732.9 -359857.96 4.768372e-05
svmRegr.v168 429145.4 -238270.56 7.076263e-04
svmRegr.v204 777845.6 -586970.71 1.335144e-05
nnetRegr.v167 289129.3 -98254.37 3.998947e-02

The outcome of this function tells us that this workflow is significantly better than most
of the other workflows in terms of maximum drawdown.

Let us check the characteristics of these two workflows that are based both on a regression
approach using neural networks,

> getWorkflow("nnetRegr.v200", winnersResults)

Workflow Object:
Workflow ID :: nnetRegr.v200
Workflow Function :: tradingWF

Parameter values:
learner.pars -> linout=TRUE maxit=750 size=10 decay=0.001
policy.pars -> bet=0.5 exp.prof=0.05 max.loss=0.05
quotes -> GSPC
learner -> nnet
pred.target -> indicator
learn.test.type -> fixed
relearn.step -> 120
policy -> policy.2
b.t -> 0.01
s.t -> -0.05

> getWorkflow("nnetRegr.v175", winnersResults)

Workflow Object:
Workflow ID :: nnetRegr.v175
Workflow Function :: tradingWF

Parameter values:
learner.pars -> linout=TRUE maxit=750 size=5 decay=0.001
policy.pars -> bet=0.2 exp.prof=0.05 max.loss=0.05
quotes -> GSPC
learner -> nnet
pred.target -> indicator
learn.test.type -> grow
relearn.step -> 120
policy -> policy.2
b.t -> 0.01
s.t -> -0.05

As we can observe, both use the same trading policy function (“policy.2”) with the same

286 Data Mining with R: Learning with Case Studies

buy and sell thresholds. However, while one uses a fixed model strategy, i.e. applying a
single model over all testing window, the other uses a growing window strategy.

In summary, given these results, particularly the lack of statistical significance of the
observed differences, the outcome of this model selection stage should be either to give up
on these models or to invest more time on model tuning to try to obtain workflows with
more convincing results. Given the scope of this book and the main objectives of this case
study we will skip this further tuning step and will select two workflows for the final test
on the 10 years we have left apart with this goal. The idea is to trade using these systems
that represent two different trader profiles (more or less risky) in this final period. Workflow
“nnetRegr.v200” will be used as the representative of a more risky attitude with the goal
of trying to maximize return, while “nnetRegr.v175” will be selected as more adequate for
a more conservative trader in terms of risk.

5.7 The Trading System
This section presents the results obtained by the “best” models in the final evaluation

period, which was left out of the model comparison and selection stages. This period is
formed by 10 years of quotes, and we will apply the selected workflows to trade during this
period using our simulator.

5.7.1 Evaluation of the Final Test Data
In order to apply any of the selected workflows to the evaluation period, we need the

last 10 years before this evaluation period. The reason is that all workflows were obtained
using 10 years of data so we want to have for this final test similar conditions as the ones
used for model selection. This means that the models associated with the workflows will
be obtained with these 10 years of data before the start of the evaluation period and then
will be asked to make their signal predictions for this latter period. These predictions may
actually involve obtaining more models in the case of workflows using windowing schemes.

The following code obtains the evaluation statistics of all 9 workflows we have identified
as the best in the previous section. This is just for illustration purposes as the model
selection stage has identified just two of these as our best bets, so in principle we would
apply only these two during a real test,

> set.seed(1234)
> data <- tail(Tdata.train, 2540) # the last 10 years of the training dataset
> results <- list()
> wfsOut <- list()
> for (name in winners) {
+ sys <- getWorkflow(name, analysisSet)
+ wfsOut[[name]] <- runWorkflow(sys, Tform, data, Tdata.eval)
+ results[[name]] <- do.call("tradingEval",wfsOut[[name]])
+ }
> results <- t(as.data.frame(results))

We start by obtaining the data to be used for training the models (i.e. the last 10 years of
the training set). We then loop over the best workflows and apply them using this training
data and testing on the evaluation period (Tdata.eval). This is done using the function
runWorkflow() that can be used to apply a workflow to a prediction task which is identified

Predicting Stock Market Returns 287

by a formula, a training set, and a test set. After obtaining the result of this application
we use it to calculate our metrics by means of the function tradingEval(). In the end of
the loop we transform the list containing the results of all workflows into a data frame for
easier visualization. Let us inspect the values of some of the main statistics:

> results[, c("NTrades","Ret","RetOverBH","PercProf","MaxDD")]

NTrades Ret RetOverBH PercProf MaxDD
nnetRegr.v213 436 -18.45 -69.94 53.21 471735.8
nnetRegr.v175 579 16.82 -34.66 50.43 410526.5
nnetRegr.v203 666 68.94 17.45 56.31 769322.9
nnetRegr.v200 537 -63.82 -115.31 51.21 836981.2
svmRegr.v168 1473 -36.99 -88.47 50.58 570007.6
svmRegr.v204 997 -79.07 -130.56 50.15 1062361.4
nnetRegr.v169 518 -32.13 -83.61 45.75 385862.8
nnetRegr.v167 548 -15.12 -66.61 49.64 289180.9
nnetRegr.v179 541 8.97 -42.52 56.93 408308.2

As you can confirm, only three of the workflows obtain a positive return over this 10
year evaluation period. Moreover, the workflow our model selection process has identified
as the best in terms of return (“nnetRegr.v200”) has obtained bad results from all possible
perspectives. Still, the results of the more conservative workflow (“nnetRegr.v175”) were
more reasonable. This somehow confirms the uncertainty we have identified in the model
selection stage, with differences not being statistically significant and high variances across
the different repetitions of the process.

Among the selected workflows “nnetRegr.v203” achieved the best scores on this evalu-
ation period. Here are its characteristics:

> getWorkflow("nnetRegr.v203", analysisSet)

Workflow Object:
Workflow ID :: nnetRegr.v203
Workflow Function :: tradingWF

Parameter values:
learner.pars -> linout=TRUE maxit=750 size=5 decay=0.1
policy.pars -> bet=0.5 exp.prof=0.05 max.loss=0.05
quotes -> GSPC
learner -> nnet
pred.target -> indicator
learn.test.type -> fixed
relearn.step -> 120
policy -> policy.2
b.t -> 0.01
s.t -> -0.05

This workflow is very similar to “nnetRegr.v200”. It also uses “policy.2”, and has similar
characteristics in terms of learning parameters (for instance, it also uses a fixed window).
Yet, the results on this 10 year testing period are considerably different showing how small
details may result on a big difference on this application. In effect, timing is key in this
domain and a difference of a single trading signal may have a large economic impact.

We will now illustrate how we can proceed with a deeper analysis of the performance of
this best trading system across the evaluation period.

Figure 5.7 plots the trading record of the system during the evaluation period, and was
obtained as follows:

288 Data Mining with R: Learning with Case Studies

1000

1500

2000

SP500 − final test [2006−01−03/2016−01−08]

Last 1922.030029

 Equity () :
1689362.898

1000000

1200000

1400000

1600000

1800000

 N.Stocks () :
282.000

−4000

−3000

−2000

−1000

0

1000

2000

3000

Jan 03
2006

Jul 03
2006

Jan 03
2007

Jul 02
2007

Jan 02
2008

Jul 01
2008

Jan 02
2009

Jul 01
2009

Jan 04
2010

Jul 01
2010

Jan 03
2011

Jul 01
2011

Jan 03
2012

Jul 02
2012

Jan 02
2013

Jul 01
2013

Jan 02
2014

Jul 01
2014

Jan 02
2015

Jul 01
2015

Dez 31
2015

FIGURE 5.7: The results on the final evaluation period of the “nnetRegr.v203” workflow.

> date <- rownames(Tdata.eval)[1]
> market <- GSPC[paste(date, "/", sep = "")][1:nrow(Tdata.eval),]
> plot(wfsOut[["nnetRegr.v203"]]$tradeRec, market,
+ theme = "white", name = "SP500 - final test")

The analysis of Figure 5.7 reveals that the system was very active during all trading
period, and with the exception of the period of the 2008 crash, its results were mostly
interesting. It is also interesting to note that in spite of a fast growing market a large part
of the time, the workflow has managed to obtain better performance than the buy and hold
strategy.

The packagePerformanceAnalytics(Carl and Peterson, 2014) provides an overwhelm-
ing set of tools for analyzing the performance of any trading system. Here we provide a glance
at some of these tools to obtain better insight into the performance of our trading system.
The tools of this package work on the returns of the strategy under evaluation. The returns
of our strategy can be obtained as follows:

> library(PerformanceAnalytics)
> equityWF <- as.xts(wfsOut[["nnetRegr.v203"]]$tradeRec@trading$Equity)
> rets <- Return.calculate(equityWF)

Please note that the function Return.calculate() does not calculate the percentage
returns we have been using up to now, yet these returns are equivalent to ours by a factor
of 100.

Figure 5.8 shows the cumulative returns of the strategy across all testing period. The
figure was obtained using

Predicting Stock Market Returns 289

2006−01−04 2008−07−01 2011−01−03 2013−07−01 2015−12−31

0.
0

0.
2

0.
4

0.
6

re
tu

rn
s

Cumulative returns of the strategy

FIGURE 5.8: The cumulative returns on the final evaluation period of the
“nnetRegr.v203” system.

> chart.CumReturns(rets, main="Cumulative returns of the workflow", ylab = "returns")

With very short exceptions the workflow consistently achieves positive cumulative re-
turns during all 10 years.

It is frequently useful to obtain information regarding the returns on an annual or even
monthly basis. The package PerformanceAnalytics provides some tools to help with this
type of analysis, namely, the function yearlyReturn():

> yearlyReturn(equityWF)

yearly.returns
2006-12-29 0.07006971
2007-12-31 0.33175485
2008-12-31 -0.18488113
2009-12-31 0.25897205
2010-12-31 0.05322307
2011-12-30 -0.02519987
2012-12-31 -0.08888908
2013-12-31 0.14347341
2014-12-31 0.06562536
2015-12-31 0.02583409
2016-01-08 -0.01205078

As we can see, in spite of the overall interesting return, the fact is that this system had
negative returns on 3 years (the last negative value is irrelevant given that very few days
have passed from 2016). Moreover, two of these years were consecutive (2011 and 2012),
which is not very good, as most investors would be “scared” by such performance of a
trading system.

290 Data Mining with R: Learning with Case Studies

Dez
2006

Dez
2008

Dez
2010

Dez
2012

Dez
2014

−
20

−
10

0
10

20
30

Yearly percentage returns of the trading system

FIGURE 5.9: Yearly percentage returns of the “nnetRegr.v203” system.

Figure 5.9 presents this information graphically and it was obtained as follows,

> plot(100*yearlyReturn(equityWF),
+ main='Yearly percentage returns of the trading system')

The package PerformanceAnalytics also includes similar functions for other type of
periodicity (e.g. monthly returns).

Finally, we present an illustration of some of the tools provided by the package
PerformanceAnalytics concerning the risk analysis of the strategy using the function
table.DownsideRisk():

> table.DownsideRisk(rets)

NA
Semi Deviation 0.0061
Gain Deviation 0.0086
Loss Deviation 0.0089
Downside Deviation (MAR=210%) 0.0113
Downside Deviation (Rf=0%) 0.0061
Downside Deviation (0%) 0.0061
Maximum Drawdown 0.4144
Historical VaR (95%) -0.0139
Historical ES (95%) -0.0230
Modified VaR (95%) -0.0099
Modified ES (95%) -0.0099

This function returns information on several risk measures, among which we find the
percentage maximum draw-down, and also the semi-deviation that is currently accepted
as a better risk measure than the more frequent Sharpe ratio. More information on these
statistics can be found on the help pages of the package PerformanceAnalytics.

Predicting Stock Market Returns 291

Overall, the analysis we have carried out shows that the best workflows according to
our model selection process performed generally bad on the 10 years of the final evaluation
period. The single exception was workflow “nnetRegr.v203” that achieved a more reasonable
performance, although nothing particularly remarkable. Still, we must say that this was
expected. This is a rather difficult problem with far too many variants/possibilities, some
of which we have illustrated in this chapter. It would be rather surprising if the small
set of possibilities we have tried led to a highly successful trading system.20 This was not
the goal of this case study. Our goal was to provide the reader with procedures that are
methodologically sound, and not to carry out an in-depth search for the best trading system
using these methodologies.

5.7.2 An Online Trading System
Let us suppose we are happy with the trading system we have developed. How could

we use it in real-time to trade on the market? In this section we present a brief sketch of a
system with this functionality.

The mechanics of the system we are proposing here are the following. At the end of each
day, the system will be automatically called. The system should (1) obtain whichever new
data is available, (2) carry out any modeling steps that it may require, and (3) generate a
set of orders as output of its call.

Let us assume that the code of the system we want to develop is to be stored on a script
file named “trader.R”. The method to call this program at the end of each day depends on
the operating system you are using. On Unix-based systems there is usually a table named
“crontab” to which we can add entries with programs that should be run on a regular basis
by the operating system. Editing this table can be done at the command line by issuing the
command:

shell> crontab -e

The syntax of the entries in this table is reasonably simple and is formed by a set of
fields that describe the periodicity and finally the command to run. Below you can find an
example that should run our “trader.R” program every weekday by 19:00:

0 19 * * 1-5 /usr/bin/R --vanilla --quiet < /home/xpto/trader.R

The first two entries represent the minute and the hour. The third and fourth are the
day of the month and month, respectively, and an asterisk means that the program should
be run for all instances of these fields. The fifth entry is the weekday, with a 1 representing
Mondays, and the ‘-’ allowing for the specification of intervals. Finally, we have the program
to be run that in this case is a call to R with the source code of our trader.

The general algorithm to be implemented in the “trader.R” program is the following:

- Read in the current state of the trader
- Get all new data available
- Check if it is necessary to re-learn the model (e.g. windowing approaches)
- Obtain the predicted signal for today
- With this signal, call the policy function to obtain the orders
- Output the orders of today

The current state of the trader should be a set of data structures that stores information
20And it would also be surprising if we were to publish such a system!

292 Data Mining with R: Learning with Case Studies

that is required to be memorized across the daily runs of the trader. In our case this should
include the current neural network model, the learning parameters and the training data
used to obtain the model and the associated data model specification, the “age” of the model
(important to know when to re-learn it if using a windowing strategy), and the information
on the trading record of the system until today, as well as its currently open positions. Please
note that the information on the open positions needs to be updated from outside the system
as it is the market that drives the timings for opening and closing positions, contrary to our
simulator where we assumed that all orders are accomplished at the beginning of the next
day. This means that there must be another script program that will change the current
state of the trader as a result of the orders that are executed in the “real” market (things
like the actual price at which an order was carried out, etc.).

Getting the new available data is easy if we have the data model specification. Func-
tion getModelData() can be used to refresh our dataset with the most recent quotes, as
mentioned in Section 5.3.2.

The model will need to be re-learned if the age goes above the relearn.step parameter
that should be memorized in conjunction with all model parameters.

Finally, we have to get a prediction for the signal of today. This means calling the
predict() function with the current model to obtain a prediction for the last row of the
training set, that is, today. Having this prediction, we can call the trading policy function
with the proper parameters to obtain the set of orders to output for today. This should be
the final result of the program.

This brief sketch should provide you with sufficient information for implementing such
an online trading system.

5.8 Summary
The main goal of this chapter was to introduce the reader to a more real application of

data mining. The concrete application that was described involved several new challenges,
namely, (1) handling time series data, (2) dealing with a very dynamic system with possible
changes of regime, and (3) moving from model predictions into concrete actions in the
application domain.

In methodological terms we have introduced you to a few new topics:

• Time series modeling

• Handling regime shifts with windowing mechanisms

• Artificial neural networks

• Support vector machines

• Multivariate adaptive regression splines

• Evaluating time series models with the Monte Carlo method

• Several new evaluation statistics related either to the prediction of rare events or with
financial trading performance

From the perspective of learning R we have illustrated

• How to handle time series data

Predicting Stock Market Returns 293

• How to read data from different sources

• How to obtain several types of models (SVMs, ANNs, and MARS)

• How to use several packages specifically dedicated to financial modeling

• How to use package performanceEstimation to carry out large scale experimental
comparisons between many different model variants

http://taylorandfrancis.com

Chapter 6
Detecting Fraudulent Transactions

The third case study is an instance of the general problem of detecting unusual observations
of a phenomena, that is, finding rare and quite different observations. The driving applica-
tion has to do with transactions of a set of products that are reported by the salespeople
of some company. The goal is to find “strange” transaction reports that may indicate fraud
attempts by some of the salespeople. The outcome of the data mining process will support
posterior auditing activities by the company. Given the limited amount of resources that
can be allocated to this inspection activity, we want to provide a kind of fraud probability
ranking as outcome of the process. These rankings should allow the company to apply its
inspection resources in an optimal way. This general resource-bounded inspection activity
is frequent in many fields, such as credit card transactions, tax declarations inspection,
etc. This chapter addresses several new data mining tasks, namely, (1) outlier or anomaly
detection, (2) clustering, and also (3) semi-supervised prediction models.

6.1 Problem Description and Objectives
Fraud detection is an important area for potential application of data mining techniques

given the economic and social consequences that are usually associated with these illegal
activities. From the perspective of data analysis, frauds are typically associated with unusual
observations as these are activities that are supposed to be deviations from the norm. These
deviations from normal behavior are frequently known as outliers in several data analysis
disciplines. In effect, a standard definition of an outlier is that it is “an observation which
deviates so much from other observations as to arouse suspicions that it was generated
by a different mechanism” (Hawkins, 1980). Further information on methods for detecting
anomalous observations in a dataset can be found in Section 3.4.4 (page 131).

The data we will be using in this case study refers to the transactions reported by
the salespeople of some company. These salespeople sell a set of products of the company
and report these sales with a certain periodicity. The data we have available concerns these
reports over a short period of time. The salespeople are free to set the selling price according
to their own policy and market. At the end of each month, they report back to the company
their transactions. The goal of this data mining application is to help in the task of verifying
the veracity of these reports given past experience of the company that has detected both
errors and fraud attempts in these transaction reports. The help we provide will take the
form of a ranking of the reports according to their probability of being fraudulent. This
ranking will allow to allocate the limited inspection resources of the company to the reports
that our system signals as being more “suspicious”.

295

296 Data Mining with R: Learning with Case Studies

6.2 The Available Data
The data we have available is of an undisclosed source and has been anonymized. Each

of the 401,146 rows of the data table includes information on one report by some salesman.
This information includes his ID, the product ID, and the quantity and total value reported
by the salesman. This data has already gone through some analysis at the company. The
result of this analysis is shown in the last column, which has the outcome of the inspection
of some transactions by the company. Summarizing, the dataset we will be using has the
following columns:

• ID – a factor with the ID of the salesman.

• Prod – a factor indicating the ID of the sold product.

• Quant – the number of reported sold units of the product.

• Val – the reported total monetary value of the sale.

• Insp – a factor with three possible values: ok if the transaction was inspected and
considered valid by the company, fraud if the transaction was found to be fraudulent,
and unkn if the transaction was not inspected at all by the company.

6.2.1 Loading the Data into R
The dataset is available in our book package. To load it is enough to do:

> library(dplyr)
> data(sales, package="DMwR2")

The result is a (large) data frame table (tibble) named sales whose first few rows are
shown below:

> sales

A tibble: 401,146 × 5
ID Prod Quant Val Insp

<fctr> <fctr> <int> <dbl> <fctr>
1 v1 p1 182 1665 unkn
2 v2 p1 3072 8780 unkn
3 v3 p1 20393 76990 unkn
4 v4 p1 112 1100 unkn
5 v3 p1 6164 20260 unkn
6 v5 p2 104 1155 unkn
7 v6 p2 350 5680 unkn
8 v7 p2 200 4010 unkn
9 v8 p2 233 2855 unkn
10 v9 p2 118 1175 unkn
... with 401,136 more rows

Detecting Fraudulent Transactions 297

6.2.2 Exploring the Dataset
To get an initial overview of the statistical properties of the data, we can use the function

summary():1

> summary(sales)

ID Prod Quant Val
v431 : 10159 p1125 : 3923 Min. : 100 Min. : 1005
v54 : 6017 p3774 : 1824 1st Qu.: 107 1st Qu.: 1345
v426 : 3902 p1437 : 1720 Median : 168 Median : 2675
v1679 : 3016 p1917 : 1702 Mean : 8442 Mean : 14617
v1085 : 3001 p4089 : 1598 3rd Qu.: 738 3rd Qu.: 8680
v1183 : 2642 p2742 : 1519 Max. :473883883 Max. :4642955
(Other):372409 (Other):388860 NA's :13842 NA's :1182

Insp
ok : 14462
unkn :385414
fraud: 1270

We have a significant number of products and salespeople, as we can confirm using the
function nlevels():

> nlevels(sales$ID)

[1] 6016

> nlevels(sales$Prod)

[1] 4548

The result of the summary() function reveals several important facts on this data. First
there are a considerable number of unknown values in the columns Quant and Val. This
can be particularly problematic if both happen at the same time, as this would represent
a transaction report without the crucial information on the quantities involved in the sale.
We can easily check if there are such situations:

> filter(sales,is.na(Quant),is.na(Val))

A tibble: 888 × 5
ID Prod Quant Val Insp

<fctr> <fctr> <int> <dbl> <fctr>
1 v29 p808 NA NA unkn
2 v453 p921 NA NA unkn
3 v431 p1035 NA NA unkn
4 v431 p1 NA NA unkn
5 v431 p1 NA NA unkn
6 v1039 p1101 NA NA unkn
7 v1158 p1101 NA NA unkn

1An interesting alternative can be obtained using the function describe() from the extra package Hmisc.
Try it!

298 Data Mining with R: Learning with Case Studies

8 v1183 p1103 NA NA unkn
9 v709 p1125 NA NA ok
10 v426 p1190 NA NA unkn
... with 878 more rows

As you can see, this is a reasonable number of transactions. Given the large total amount
of transactions, one can question whether it would not be better to simply delete these
reports. We will consider this and other alternatives in Section 6.2.3.

Another interesting observation from the results of the summary() function is the distri-
bution of the values in the inspection column. In effect, and as expected, the proportion of
frauds is relatively low, even if we only take into account the reports that were inspected,
which are also a small proportion overall:

> table(sales$Insp)/nrow(sales) * 100

ok unkn fraud
3.605171 96.078236 0.316593

Figure 6.1 shows the number of reports per salesperson. As you can confirm, the numbers
are rather diverse across the salespeople. Figure 6.2 shows the same number but per product.
Again we observe a strong variability. Both figures were obtained with the following code:

> library(ggplot2)
> ggplot(group_by(sales,ID) %>% summarize(nTrans=n()),aes(x=ID,y=nTrans)) +
+ geom_bar(stat="identity") +
+ theme(axis.text.x = element_blank(), axis.ticks.x=element_blank()) +
+ xlab("Salesmen") + ylab("Nr. of Transactions") +
+ ggtitle("Nr. of Transactions per Salesman")
> ggplot(group_by(sales,Prod) %>% summarize(nTrans=n()),aes(x=Prod,y=nTrans)) +
+ geom_bar(stat="identity") +
+ theme(axis.text.x = element_blank(), axis.ticks.x=element_blank()) +
+ xlab("Product") + ylab("Nr. of Transactions") +
+ ggtitle("Nr. of Transactions per Product")

The descriptive statistics of Quant and Val show a rather marked variability. This sug-
gests that the products may be very different from each other and thus it may make sense
to handle them separately. In effect, if the typical prices of the products are too different,
then a transaction report can only be considered abnormal in the context of the reports
of the same product. Still, these two quantities may not be the ideal ones from which to
draw this conclusion. In effect, given the different quantity of products that are sold on each
transaction, it is more correct to carry out this analysis over the unit price instead. This
price can be added as a new column of our data frame:

> sales <- mutate(sales,Uprice=Val/Quant)

The unit price should be relatively constant over the transactions of the same prod-
uct. When analyzing transactions over a short period of time, one does not expect strong
variations of the unit price of the products.

If we check the distribution of the unit price, using for example,

Detecting Fraudulent Transactions 299

0

2500

5000

7500

10000

Product

N
r.

of
 T

ra
ns

ac
tio

ns

Nr. of Transactions per Salesman

FIGURE 6.1: The number of transactions per salesperson.

0

1000

2000

3000

4000

Salesmen

N
r.

of
 T

ra
ns

ac
tio

ns

Nr. of Transactions per Product

FIGURE 6.2: The number of transactions per product.

300 Data Mining with R: Learning with Case Studies

> summary(sales$Uprice)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 8.46 11.89 20.30 19.11 26460.00 14136

we again observe a rather marked variability.
Given these facts, it seems inevitable that we should analyze the set of transactions of

each product individually, looking for suspicious transactions on each of these sets. One
problem with this approach is that some products have very few transactions. In effect, of
the 4,548 products, 982 have less than 20 transactions. Declaring a report as unusual based
on a sample of less than 20 reports may be too risky.

It may be interesting to check what are the top most expensive and cheap products. We
will use the median unit price to represent the typical price at which a product is sold to
avoid unwanted influence of outlying transaction reports (which may be potential frauds).
The following code obtains the information we are looking for:

> prods <- group_by(sales,Prod)
> mpProds <- summarize(prods,medianPrice=median(Uprice,na.rm=TRUE))
> bind_cols(mpProds %>% arrange(medianPrice) %>% slice(1:5),
+ mpProds %>% arrange(desc(medianPrice)) %>% slice(1:5))

A tibble: 5 × 4
Prod medianPrice Prod medianPrice

<fctr> <dbl> <fctr> <dbl>
1 p560 0.01688455 p3689 9204.1954
2 p559 0.01884438 p2453 456.0784
3 p4195 0.03025914 p2452 329.3137
4 p601 0.05522265 p2456 304.8515
5 p563 0.05576406 p2459 283.8119

After grouping the transactions by product ID using the group_by() function we obtain
the median price for each group (i.e. for each product ID). Finally, we obtain the table with
the top and bottom 5 products in terms of median price using the function bind_cols().
This function is used to “glue” together the top 5 and the bottom 5 products. To obtain
these products we have sorted the previously calculated median price per product both in
ascending and descending order, picking the first 5 of these two lists using the slice()
function that allows us to select specific rows of data frame table objects.

We can confirm the completely different price distribution of the cheapest and most
expensive products using a box plot of their unit prices:

> library(ggplot2)
> library(forcats)
> ggplot(filter(sales,Prod %in% c("p3689","p560")),aes(x=fct_drop(Prod),y=Uprice)) +
+ geom_boxplot() + scale_y_log10() +
+ xlab("") + ylab("log10(UnitPrice)")

The %in% operator tests if a value belongs to a set. We have used the function
fct_drop() from package forcats (Wickham, 2016) to focus the graph only on the two
selected products. Without it as the column Prod resulting from the filtering is still a fac-
tor with many possible values, we would get one boxplot() for each level of the factor.
You may wish to check function droplevels() that has similar objectives. The scales of
the prices of the most expensive and cheapest products are rather different. Because of

Detecting Fraudulent Transactions 301

l

l

l

l

1e−01

1e+01

1e+03

p560 p3689

lo
g1

0(
U

ni
tP

ric
e)

FIGURE 6.3: The distribution of the unit prices of the cheapest and most expensive
products.

this, we have used a log scale in the Y-axis of the graph to avoid the values of the cheap-
est product becoming indistinguishable. This effect is obtained by the call to the function
scale_y_log10(), which indicates that the Y -axis is on log scale. The result of this code
is shown in Figure 6.3.

We can carry out a similar analysis to discover which salespeople are the ones who bring
more (less) money to the company,

> ids <- group_by(sales,ID)
> tvIDs <- summarize(ids,totalVal=sum(Val,na.rm=TRUE))
> bind_cols(tvIDs %>% arrange(totalVal) %>% slice(1:5),
+ tvIDs %>% arrange(desc(totalVal)) %>% slice(1:5))

A tibble: 5 × 4
ID totalVal ID totalVal

<fctr> <dbl> <fctr> <dbl>
1 v3355 1050 v431 211489170
2 v6069 1080 v54 139322315
3 v5876 1115 v19 71983200
4 v6058 1115 v4520 64398195
5 v4515 1125 v955 63182215

It may be interesting to note that the top 100 salespeople on this list account for almost
40% of the income of the company, while the bottom 2,000 out of the 6,016 salespeople

302 Data Mining with R: Learning with Case Studies

generate less than 2% of the income. This may provide some insight into eventual changes
that need to be carried out within the company:

> arrange(tvIDs,desc(totalVal)) %>% slice(1:100) %>%
+ summarize(t100=sum(totalVal)) /
+ (summarize(tvIDs,sum(totalVal))) * 100

t100
1 38.33277

> arrange(tvIDs,totalVal) %>% slice(1:2000) %>%
+ summarize(b2000=sum(totalVal)) /
+ (summarize(tvIDs,sum(totalVal))) * 100

b2000
1 1.988716

If we carry out a similar analysis in terms of the quantity that is sold for each product,
the results are even more unbalanced:

> prods <- group_by(sales,Prod)
> qtProds <- summarize(prods,totalQty=sum(Quant,na.rm=TRUE))
> bind_cols(qtProds %>% arrange(desc(totalQty)) %>% slice(1:5),
+ qtProds %>% arrange(totalQty) %>% slice(1:5))

A tibble: 5 × 4
Prod totalQty Prod totalQty

<fctr> <int> <fctr> <int>
1 p2516 535301953 p2442 0
2 p3599 474050752 p2443 0
3 p314 367166615 p1653 108
4 p569 107686551 p4101 202
5 p319 86818285 p3678 405

> arrange(qtProds,desc(totalQty)) %>% slice(1:100) %>%
+ summarize(t100=sum(as.numeric(totalQty))) /
+ (summarize(qtProds,sum(as.numeric(totalQty)))) * 100

t100
1 74.63478

> arrange(qtProds,totalQty) %>% slice(1:4000) %>%
+ summarize(b4000=sum(as.numeric(totalQty))) /
+ (summarize(qtProds,sum(as.numeric(totalQty)))) * 100

b4000
1 8.944681

You may have noticed in the code above the use of the function as.numeric(). This is
required in this case because the sum of the quantities generates too large a number to be
stored as an integer, the original type of the column totalQty. This function will convert
the result to a double thus overcoming this overflow problem.

From the 4,548 products, 4,000 represent less than 10% of the sales volume, with the
top 100 representing nearly 75%. Notice that this information is only useful in terms of

Detecting Fraudulent Transactions 303

the production of the products. In particular, it does not mean that the company should
consider stopping the production of the products that sell too few units. In effect, these
may be more profitable if they have a larger profit margin. Because we do not have any
information on the production costs of the products, we cannot draw any conclusion in
terms of the usefulness in continuing to produce these products that sell so few units, which
may not be the case in terms of consequences of the similar analysis we have carried out
for each salesman.

One of the main assumptions we will be making in our analysis to find abnormal trans-
action reports is that the unit price of any product should follow a near-normal distribution.
This means that we expect that the transactions of the same product will have roughly the
same unit price with some small variability, possibly caused by some strategies of the sales-
people to achieve their commercial goals. In this context, there are some basic statistical
tests that can help us in finding deviations from this normality assumption. An example
is the box plot rule. This rule serves as the basis of outlier identification in the context
of box plots that we have already seen several times in this book. The rule states that an
observation should be tagged as an anomaly high (low) value if it is above (below) the high
(low) whisker, defined as Q3 + 1.5× IQR (Q1 − 1.5× IQR), where Q1 is the first quartile,
Q3 the third quartile, and IQR = Q3 −Q1 the inter-quartile range. This simple rule works
rather well for normally distributed variables, and it is robust to the presence of a few
outliers being based on robust statistics like the quartiles. The following code determines
the number of outliers (according to the above definition) of each product:

> nouts <- function(x) length(boxplot.stats(x)$out)
> noutsProds <- summarise(prods,nOut=nouts(Uprice))

The boxplot.stats() function obtains several statistics that are used in the construc-
tion of box plots. It returns a list with this information. The out component of this list
contains the observations that, according to the box plot rule, are considered outliers. The
above code calculates their number for the transactions of each product. Note that you could
also have used the function bpRule() we have defined in Section 3.4.1.1. The products with
more outliers are the following:

> arrange(noutsProds,desc(nOut))

A tibble: 4,548 × 2
Prod nOut

<fctr> <int>
1 p1125 376
2 p1437 181
3 p2273 165
4 p1917 156
5 p1918 156
6 p4089 137
7 p538 129
8 p3774 125
9 p2742 120
10 p3338 117
... with 4,538 more rows

Using this very simple method, 29,446 transactions are considered outliers, which cor-
responds to approximately 7% of the total number of transactions,

304 Data Mining with R: Learning with Case Studies

> summarize(noutsProds,totalOuts=sum(nOut))

A tibble: 1 × 1
totalOuts

<int>
1 29446

> summarize(noutsProds,totalOuts=sum(nOut))/nrow(sales)*100

totalOuts
1 7.34047

One might question whether this simple rule for identifying outliers would be sufficient
to provide the kind of help we want in this application. In Section 6.4.1.1 we will evaluate
the performance of a small variant of this rule adapted to our application.

There is a caveat to some of the conclusions we have drawn in this section. We have been
using the data independently of the fact that some of the reports were found to be fraudulent
and some others may also be fraudulent although not yet detected. This means that some
of these “conclusions” may be biased by data that is wrong. The problem is that for the
transactions that are tagged as frauds, we do not know the correct values. Theoretically,
the only transactions that we are sure correct are the ones for which the column Insp has
the value OK, but these are just 3.6% of the data. So, although the analysis is correct, the
conclusions may be impaired by low-quality data. This should be taken into account in a
real-world situation so as not to provide advice to the company based on data that includes
errors. Because a complete inspection of the data is impossible, this risk will always exist.
At most we can avoid using the small number of transactions already found to be errors in
all exploratory analysis of the data. Another thing one can do is present the results to the
company and if some result is unexpected to them, carry out a closer analysis of the data that
leads to that surprising result. This means that this sort of analysis usually requires some
form of interaction with the domain experts, particularly when there are doubts regarding
data quality, as is the case in this problem. Moreover, this type of exploratory analysis is
of key importance with low-quality data as many of the problems can be easily spotted at
these stages.

6.2.3 Data Problems
This section tries to address some data quality problems that can be an obstacle to the

application of the techniques we will use later in this chapter.

6.2.3.1 Unknown Values

We start by addressing the problem of unknown variable values. As mentioned in Sec-
tion 4.5 (page 205), there are three main alternative ways of dealing with this problem: (1)
remove the cases, (2) fill in the unknowns using some strategy, or (3) use tools that handle
datasets with this type of value. Considering the tools we will be using in this chapter, only
the first two will be considered.

As mentioned before, the main concern is transactions that have both the value of Quant
and Val missing. Removing all 888 cases may be problematic if this leads to removing most
transactions of some product or salesperson. Let us check this.

We can obtain the salespeople with a larger proportion of transactions with unknowns
on both Val and Quant as follows:

Detecting Fraudulent Transactions 305

> prop.naQandV <- function(q,v) 100*sum(is.na(q) & is.na(v))/length(q)
> summarise(ids,nProbs=prop.naQandV(Quant,Val)) %>% arrange(desc(nProbs))

A tibble: 6,016 × 2
ID nProbs

<fctr> <dbl>
1 v1237 13.793103
2 v4254 9.523810
3 v4038 8.333333
4 v5248 8.333333
5 v3666 6.666667
6 v4433 6.250000
7 v4170 5.555556
8 v4926 5.555556
9 v4664 5.494505
10 v4642 4.761905
... with 6,006 more rows

We have created an auxiliary function that given the values of Quant and Val of the
transactions of a salesman, will calculate the percentage of these that are both NA. Looking
at the results, it seems reasonable to delete these transactions, at least from the perspective
of the salespeople, as they represent a small proportion of their transactions. Moreover, the
alternative of trying to fill in both columns seems much more risky.

With respect to the products, these are the numbers:

> summarise(prods,nProbs=prop.naQandV(Quant,Val)) %>% arrange(desc(nProbs))

A tibble: 4,548 × 2
Prod nProbs

<fctr> <dbl>
1 p2689 39.28571
2 p2675 35.41667
3 p4061 25.00000
4 p2780 22.72727
5 p4351 18.18182
6 p2686 16.66667
7 p2707 14.28571
8 p2690 14.08451
9 p2691 12.90323
10 p2670 12.76596
... with 4,538 more rows

There are several products that would have more than 20% of their transactions removed;
and in particular, product p2689 would have almost 40% of them removed. This seems
clearly to be too much. On the other hand, if we decide to fill in these unknown values,
the only reasonable strategy is to use the information on the “complete” transactions of
the same product. This would mean to fill in 40% of the transactions of a product using
the information of the remaining 60% (or less if some of these have either Quant or Val
unknown). This also seems unreasonable. Luckily, looking at the similarity between the unit
price distribution of the products (see Section 6.2.3.2), we will observe that these products
are, in effect, rather similar to other products. In this context, if we conclude that they have
too few transactions after the removal, we can always join their transactions with the ones
from similar products to increase the statistical reliability of any outlier detection tests. In

306 Data Mining with R: Learning with Case Studies

summary, the option of removing all transactions with unknown values on both the quantity
and the value is the best option we have:

> sales <- filter(sales,!(is.na(Quant) & is.na(Val)))

Let us now analyze the remaining reports with unknown values in either the quantity or
the value of the transaction. We start by calculating the proportion of transactions of each
product that have the quantity unknown:

> prop.nas <- function(x) 100*sum(is.na(x))/length(x)
> summarise(prods,propNA.Q=prop.nas(Quant)) %>% arrange(desc(propNA.Q))

A tibble: 4,548 × 2
Prod propNA.Q

<fctr> <dbl>
1 p2442 100.00000
2 p2443 100.00000
3 p1653 90.90909
4 p4101 85.71429
5 p4243 68.42105
6 p903 66.66667
7 p3678 66.66667
8 p4061 66.66667
9 p3955 64.28571
10 p4313 63.63636
... with 4,538 more rows

The first function we have created will be used for calculating the proportion of unknowns
on a given set of values. It is used in the call to summarise() with the value of the quantities
of the transactions of each product. There are two products (p2442 and p2443) that have
all their transactions with unknown values of the quantity. Without further information it
is virtually impossible to do anything with the transactions of these products because we
are unable to calculate their typical unit price. They are 54 reports, and two of them are
tagged as frauds while another was found to be OK,

> filter(sales, Prod %in% c("p2442","p2443")) %>%
+ group_by(Insp) %>% count()

A tibble: 3 × 2
Insp n

<fctr> <int>
1 ok 1
2 unkn 51
3 fraud 2

This must mean that either the inspectors had more information than given in this
dataset, or we are probably facing typing errors as it seems unfeasible to conclude anything
on these transactions. In this context, we will delete them:

> sales <- droplevels(filter(sales,!(Prod %in% c("p2442", "p2443"))))

Given that we have removed two products from our dataset, we have used the function
droplevels() to update the levels of the Prod factor to reflect this new situation where
the two products removed do not exist any more in the dataset.

Are there salespeople with all the transactions with an unknown quantity?

Detecting Fraudulent Transactions 307

> summarise(ids,propNA.Q=prop.nas(Quant)) %>% arrange(desc(propNA.Q))

A tibble: 6,016 × 2
ID propNA.Q

<fctr> <dbl>
1 v2925 100.00000
2 v4356 100.00000
3 v5537 100.00000
4 v5836 100.00000
5 v6044 100.00000
6 v6058 100.00000
7 v6065 100.00000
8 v2923 90.00000
9 v4368 88.88889
10 v2920 85.71429
... with 6,006 more rows

As you can see, there are several salespeople who have not filled in the information on
the quantity in all their reports. However, in this case the problem is not so serious as with
the products. In effect, as long as we have other transactions of the same products reported
by other salespeople, we can try to use this information to fill in these unknowns using the
assumption that the unit price should be similar. Because of this, we will not delete these
transactions.

We will now carry out a similar analysis for the transactions with an unknown value in
the Val column. First, the proportion of transactions of each product with unknown value
in this column:

> summarise(prods,propNA.V=prop.nas(Val)) %>% arrange(desc(propNA.V))

A tibble: 4,548 × 2
Prod propNA.V

<fctr> <dbl>
1 p2689 39.28571
2 p2675 35.41667
3 p1110 25.00000
4 p4061 25.00000
5 p2780 22.72727
6 p4351 18.18182
7 p4491 18.18182
8 p2707 17.85714
9 p1462 17.77778
10 p1022 17.64706
... with 4,538 more rows

The numbers are reasonable so it does not make sense to delete these transactions as we
may try to fill in these holes using the other transactions. With respect to the salesperson,
the numbers are as follows:

> summarise(ids,propNA.V=prop.nas(Val)) %>% arrange(desc(propNA.V))

A tibble: 6,016 × 2
ID propNA.V

<fctr> <dbl>
1 v5647 37.500000

308 Data Mining with R: Learning with Case Studies

2 v74 22.222222
3 v5946 20.000000
4 v5290 15.384615
5 v4022 13.953488
6 v1237 13.793103
7 v4472 12.500000
8 v975 9.574468
9 v4254 9.523810
10 v2814 9.090909
... with 6,006 more rows

Once again, the proportions are not too high.
At this stage we have removed all reports that had insufficient information to be subject

to a fill-in strategy. For the remaining unknown values, we will apply a method based on
the assumption that transactions of the same products should have a similar unit price. We
will start by obtaining this typical unit price for each product. We will skip the prices of
transactions that were found to be frauds in the calculation of the typical price. For the
remaining transactions we will use the median unit price of the transactions as the typical
price of the respective products:

> tPrice <- filter(sales, Insp != "fraud") %>%
+ group_by(Prod) %>%
+ summarise(medianPrice = median(Uprice,na.rm=TRUE))

Having a typical unit price for each product, we can use it to calculate any of the
two possibly missing values (Quant or Val). This is possible because we currently have no
transactions with both values missing. The following code fills in all the remaining unknown
values:

> noQuantMedPrices <- filter(sales, is.na(Quant)) %>%
+ inner_join(tPrice) %>%
+ select(medianPrice)
> noValMedPrices <- filter(sales, is.na(Val)) %>%
+ inner_join(tPrice) %>%
+ select(medianPrice)
>
> noQuant <- which(is.na(sales$Quant))
> noVal <- which(is.na(sales$Val))
> sales[noQuant,'Quant'] <- ceiling(sales[noQuant,'Val'] /noQuantMedPrices)
> sales[noVal,'Val'] <- sales[noVal,'Quant'] * noValMedPrices

In case you missed it, we have just filled in 12,900 unknown quantity values plus 294
total values of transaction. If you are like me, I am sure you appreciate the compactness
of the above code that carries out all these operations. It is all about indexing! We have
used the function ceiling() to avoid non-integer values of Quant. This function returns
the smallest integer not less than the number given as argument.

Given that we now have all Quant and Val values, we can recalculate the Uprice column
to fill in the previously unknown unit prices:

> sales$Uprice <- sales$Val/sales$Quant

After all these pre-processing steps, we have a dataset free of unknown values. For future
analysis, it makes sense that you save this current state of the sales data frame so that

Detecting Fraudulent Transactions 309

you can restart your analysis from this point, without having to repeat all the steps. You
can save the data frame as follows:

> save(sales, file = "salesClean.Rdata")

The save() function can be used to save any set of objects in a file specified in the
file parameter. Objects saved in these files can be loaded back into R using the load()
function, as shown in Section 6.2.1.

6.2.3.2 Few Transactions of Some Products

There are products with very few transactions. This is a problem because we need to
use the information on these transactions to decide if any of them are unusual. If we have
too few, it is difficult to make this decision with the required statistical significance. In
this context, it makes sense to question whether we can analyze the transactions of some
products together to avoid this problem.

Despite the complete lack of information on the eventual relationships between products,
we can try to infer some of these relationships by observing the similarity between their
distributions of unit price. If we find products with similar prices, then we can consider
merging their respective transactions and analyze them together to search for unusual val-
ues. One way of comparing two distributions is to visually inspect them. Given the number
of products we have, this is unfeasible. An alternative is to compare some statistical prop-
erties that summarize the distributions. Two important properties of continuous variables
distributions are their central tendency and spread. As mentioned before, it is reasonable to
assume that the distribution of the unit price of any product is approximately normal. This
means that although variations in the price occur, they should be nicely packed around the
most common price. However, we have to assume that there will be outlying values, most
probably caused by fraud attempts or errors. In this context, it makes more sense to use
the median as the statistic of centrality and the inter-quartile range (IQR) as the statistic
of spread. These statistics are more robust to the presence of outliers when compared to
the more frequently used mean and standard deviation. We can obtain both statistics for
all transactions of each product as follows:

> ms <- filter(sales,Insp != "fraud") %>%
+ group_by(Prod) %>%
+ summarize(median=median(Uprice,na.rm=TRUE),
+ iqr=IQR(Uprice,na.rm=TRUE),
+ nTrans=n(),
+ fewTrans=ifelse(nTrans>20,FALSE,TRUE))
> ms

A tibble: 4,546 × 5
Prod median iqr nTrans fewTrans

<fctr> <dbl> <dbl> <int> <lgl>
1 p1 11.346154 8.5635799 196 FALSE
2 p2 10.877863 5.6097315 81 FALSE
3 p3 10.000000 4.8090920 31 FALSE
4 p4 9.911243 5.9985297 111 FALSE
5 p5 10.957447 7.1366009 161 FALSE
6 p6 13.223684 6.6851852 63 FALSE
7 p7 4.851453 0.5474666 52 FALSE
8 p8 3.850211 0.7282168 11 TRUE
9 p9 1.941457 0.3431872 38 FALSE

310 Data Mining with R: Learning with Case Studies

lll
lll
l
lll
l
lll
ll
l

l

ll
l

ll

l

ll

l

ll
l
ll
l

ll
l
lll
l
ll
llll
l
lll
lllllllllll
lllllllllllllllllll
l

lllllllllllllllllll
l
lllllllllllllll
lll
l
llllllll
l
ll

l

ll
llll

l

l
l

lllll
l
lll

l
lllllllllll
l

l
l

llllllllllllllllll
l

lllll
llllllllllllllllllll
llllllll
l
ll
lll
ll

l
lllll
lllllllllllllllllllllllllllllllllllllll
l

lllllllllllllllllllllllllllll0

2500

5000

7500

10000

12500

0 2000 4000 6000 8000
Median

IQ
R

fewTrans
l

l

FALSE

TRUE

l

l
l
l
ll

l
l

l

l

l
l

l
l

l

ll

l

l

l
l
l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l
l

ll

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

ll

l

l

l
l

l

l

ll

l

l
l
l
l

l

l

l

l

l ll

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l
l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l l
l

l

ll
l

l

l

l

ll
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

ll

l

l

l

lll

l

l
l

l

l

l

l l

ll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

lll
l

l l
l

l

l
l

l

l l

l

l

l

l

l
l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

ll

l

l

l

l

l
ll

l l

l

l
l

l

l

ll

l

l

l
l

l

l
l
l

l

l

ll

l

l
ll

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l l
lll

l

l

l l
l

l

l l
l
l

l
l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

ll
l

l

l

l

ll

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l l
l

l

l

l

l

l

l l

l

l

l
l

l l

l

l

l

l

l

l l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l
l

l
l

l

l

l

l

ll

l
l l

l l

l
l

l

l

l

l

l

l

l
ll l
ll

l

ll

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l l

l

l

l

l

l

l

l

l

l
l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l

l l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l
l

l

lll

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

ll

ll
l l

l
ll

l
l
l

l

l

l

l
l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l
l

ll

l

l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

lll

l

l

l
l

l

l

l

l
l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l
l

l

ll

lll

l
l

l

ll

l

l

l

l

ll

l l
l

ll

l

l

l

l
l

l

l

l

ll

l

l

ll

l

l

l
l

l

ll

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

ll

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l
l

l

l

l

l
l

l
l
l

l

l

ll

l

l
l

l

ll

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l
l

l

l

l l
l

l

l

ll

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l
l

lll
ll

l

l

l

l

l

l

l
l

l

l l

l
l l
l

l
ll

l

l

lll
l

l

l
l
l
ll

l

l
l

l

l
l

l
ll

l

l

l

l
l

l

l

l

l

l

ll

l

l

ll

l

l

l
l

l

l

l

l

l

l
l

l

ll

l

ll
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l
ll

ll
l

l

l

l

ll
l ll

l

ll
l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l

l
l
l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l
l

l
l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l
l
lll
l

ll
l
l

ll

l

l

ll

l

l
l
ll

l

l

l

ll
l
l

l

l

l

l

l

l

l

l

l
l
ll

l

l

l
ll

l

l

l

l

l

l
l

l

ll

l

l

ll
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l
l
ll
l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l
l

ll
l

l

ll

l

l

l

l

l

ll

l
l

l
ll

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

lll
l

l

l

l

l

l

l

l
l
l

l

ll

l
l

l

ll

l
ll

l

l

l
ll

l
l

l l

l

l

l

l

l
l

l
l

l
ll
ll
l

l

l

l l lll

l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l

l

l

ll

l

l

ll

l

l

l

l

l
ll ll

l

ll

l

l
l

l

l
l

ll

l
l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
ll

l

l
l

l

l
l

l

l

l

l

l

ll
l

l

l

l
l
l

lll

l

l

l

l
l

l

ll

l

l
ll

l

l

l

l

l
l

ll

l

l
l
l
l

l

l

l

l

l

l

l
l

l

l

l l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

ll

l

l
l

l
l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

ll

l

ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

llll

l
l

l

lll

l
l

ll

l

l

ll

l
l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

ll
ll

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l
ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

ll

l

l

ll

l

l l

l

l

l
l

l

l

l

ll

l

l

l

ll

l

l

l

ll

l

l

l

l

ll

l

l

l l
l

l

l

l

ll

l

l

l

l

l

l
ll

l

ll

l

l
l

ll

l
l

l

ll

l

l
l

l

l

l
l

l

l
l
ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

ll

ll
l

l

l

l

l

l
l

l l

l

l

l
l l

l

l

l

ll
l
ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

ll

l

l

l

l

l

l

l l

l

l

l

l l

l

l

l

l

l

l

l

l

ll
l

l l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

ll

l

l

l
l

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l

ll

l
l

l
l
l

l

l

l
l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l
l

l
l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll
l

l l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l
ll l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l
ll l
lll

l

lll

l

l
l

l
l

l l

l
l

l

l

lll

l

l

l

l

l l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

ll

l

l
l

l

l

l

l
l

l

l

l

l
l

l

ll

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l
l
l

l

l

l l

ll

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l
l

l

l l
l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

ll

l

l

l

l

l

l
ll

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

ll

l

l
l

l

l
l

l l

l

l

l
l

ll

l

l
l

l

l
lll

l

l

l l

l

l
l

l

l

l

l

ll

l
l

l

l

ll

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

ll

l

ll

l

l
l

l

l
l

l
l
l

l

l

l

l

l
l

l

l

l
l l

ll

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l
l

l
l
l

l

l

l

l

l l

l

l

l

l

l

l
l

l

ll

ll

ll

l

l

l

l
l

l

l

ll
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l
l

l
ll

l
l

l

l
l

l
l

l

l

l

l l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l l

l

ll

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l
ll
l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l
l

l
l

l

l l

ll
l l

l
l

ll

ll

l

l
l

l

ll

l
l

l
l

l

l

l

l

l

l

ll
l

ll

l

l

l

lll

l

l l

l

l

l
l

l
l

l

l

l

l

l l

l

ll

l

l
l

l
l

l l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l
ll
l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l
l
l

l

l

l
l

l

ll

l

l
l
l

l

ll
l

l

l
l
l

l
l

l
l

l

l

l

l

ll

l

l

l
l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l
l

ll

l
l

l

l

l

ll

l

ll

l

l

l

l l

l

l
l

l

l
ll

l

l
l

l
l

l

l

l

l

ll

l
l

l

l

l

l
l

l
l
l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

ll

ll

l

l

l

l

l

l

ll

l

l
l

ll
l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l
lll

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

llll

l

l

l

l
l

l

l

l
l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l l

l
l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l l
l

l

l

l

l

ll

l
ll

l

l

l

l
ll

l

l

l

l

l l

l

l

l

l

l

ll

l

l

ll

ll
l

l

ll

l

l

l
l

l

ll
l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll
l

l
l

l

l

l
ll

l

ll

l
l
ll

l
l
ll

l

ll

l

l
l
l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

ll

ll

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll l

l

l
l

l

l

l
l

l

l

l
l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l l

l
l

l

ll

l

l

l

ll

l

ll

l l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

ll

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l
l

l

l
l

ll
ll

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

1e−02

1e+00

1e+02

1e+04

1e−01 1e+01 1e+03
log(Median)

lo
g(

IQ
R

) fewTrans
l

l

FALSE

TRUE

FIGURE 6.4: Some properties of the distribution of unit prices.

10 p10 42.232846 33.0267925 38 FALSE
... with 4,536 more rows

You may have noticed that we have also calculated the number of transactions for each
product and have also added a logical value that is true if the product has few transactions
(we have considered the threshold of 20).

The left graph on Figure 6.4 plots each product according to its respective median and
IQR. The graph is difficult to read because a few products have very large values for these
statistics. In particular, product p3689 (the dot at the top right) is clearly different from all
other products of the company. We can overcome this visualization problem using log scales
(right graph in Figure 6.4). On both graphs we have associated the color to the property
of being a product with small number of transactions or not. The figures were obtained as
follows, where the functions scale_y_log10() and scale_x_log10() were used to set log
scales on both axes of the graph:

> ggplot(ms,aes(x=median,y=iqr,color=fewTrans)) +
+ geom_point() +
+ xlab("Median") + ylab("IQR")
> ggplot(ms,aes(x=median,y=iqr,color=fewTrans)) +
+ geom_point() +
+ scale_y_log10() + scale_x_log10() +
+ xlab("log(Median)") + ylab("log(IQR)")

The first thing to note in the right graph of Figure 6.4 is that there are many products
that have approximately the same median and IQR, even taking into account that we are
looking at a log scale. This provides good indications of the similarity of their distributions
of unit price. Moreover, we can see that among the products with few transactions (blue
dots), there are many that are very similar to other products. However, there are also several
products that not only have few transactions but also have a rather distinct distribution of
unit prices. These are clearly the products for which we will have more difficulty in declaring
a transaction as fraudulent.

Despite the virtues of the visual inspection of the distribution properties of the unit

Detecting Fraudulent Transactions 311

prices, formal tests are required to obtain more precision when comparing the distributions
of two products. We will use a nonparametric test to compare the distributions of unit prices,
as these tests are more robust to the presence of outliers. The Kolmogorov-Smirnov test can
be used to compare any two samples to check the validity of the null hypothesis that both
come from the same distribution. This test works by calculating a statistic that measures
the maximum difference between the two empirical cumulative distribution functions. If the
two distributions are similar, this distance should be rather small.

For each of the products that has less than 20 transactions, we will search for the product
with the most similar unit price distribution and then use a Kolmogorov-Smirnov test to
check if the similarity is statistically significant. Carrying out this task for all combinations
of products would be computationally too demanding. Instead, we have decided to take
advantage of the information given by the distribution properties we calculated before (me-
dian and IQR). Namely, for each of the products with few transactions, we have searched
for the product with the most similar median and IQR. Given this similar product, we have
carried out a Kolmogorov-Smirnov test between their respective unit price distributions,
storing the results of this test. The following code obtains a matrix (similar) with the
information on this type of test for each of the products with less than 20 transactions. It
uses the ms object we obtained before with the information on the medians and IQRs of the
unit prices of each product.

> ms <- mutate(ms,smedian=scale(median),siqr=scale(iqr))
> smalls <- which(ms$fewTrans)
> nsmalls <- as.character(ms$Prod[smalls])
> similar <- matrix(NA,length(smalls),7,
+ dimnames=list(nsmalls,
+ c("RowSimProd", "ks.stat", "ks.p", "medP", "iqrP", "medS","iqrS")))
> xprods <- tapply(sales$Uprice, sales$Prod, list)
> for(i in seq_along(smalls)) {
+ d <- scale(ms[,c("smedian","siqr")],
+ c(ms$smedian[smalls[i]],ms$siqr[smalls[i]]),
+ FALSE)
+ d <- sqrt(drop(d^2 %*% rep(1, ncol(d))))
+ stat <- ks.test(xprods[[nsmalls[i]]], xprods[[order(d)[2]]])
+ similar[i,] <- c(order(d)[2], stat$statistic, stat$p.value,
+ ms$median[smalls[i]],ms$iqr[smalls[i]],
+ ms$median[order(d)[2]],ms$iqr[order(d)[2]])
+ }

The code starts by normalizing the data in the object ms to avoid negative scale effects
when calculating the distances. After a few initializations, we have the main loop that goes
over all the products with few transactions. The first two statements in this loop calculate
the distances between the distribution properties of the product under analysis (the current
value of i) and all other products. The resulting object (d) has the values of all these
distances. The second smallest distance is the product that is most similar to the product
being considered. It is the second because the first is the product itself. We note again that
the similarity between the products is being calculated using the information on the median
and IQR of the respective unit prices. The next step is to carry out the Kolmogorov-Smirnov
test to compare the two distributions of unit prices. This is done with a call to the ks.test()
function. This function returns a significant amount of information, among which we have
“extracted” the value of the statistic of the test and the respective significance level. The
value of the statistic is the maximum difference between the two cumulative distribution
functions. Values of the confidence level near 1 indicate strong statistical significance of the

312 Data Mining with R: Learning with Case Studies

null hypothesis that both distributions are equal. Below we show the first few lines of the
resulting similar object:

> head(similar)

RowSimProd ks.stat ks.p medP iqrP medS iqrS
p8 2827 0.4339623 0.06470603 3.850211 0.7282168 3.868306 0.7938557
p18 213 0.2568922 0.25815859 5.187266 8.0359968 5.274884 7.8207052
p38 1044 0.3650794 0.11308315 5.490758 6.4162095 5.651818 6.2436224
p39 3418 0.2214286 0.81418197 7.986486 1.4229755 8.005181 1.5625650
p40 1335 0.3760000 0.04533293 9.674797 1.6104511 9.711538 1.6505602
p47 1387 0.3125000 0.48540576 2.504092 2.5625835 2.413498 2.6402087

The row names indicate the product for which we are obtaining the most similar product.
The first column has information on this latter product. For instance, if we want the product
that is most similar to the first of the products with few transactions we can do the following:

> bind_rows(filter(ms,Prod==rownames(similar)[1]),
+ ms[similar[1,1],])

A tibble: 2 × 7
Prod median iqr nTrans fewTrans smedian siqr

<fctr> <dbl> <dbl> <int> <lgl> <dbl> <dbl>
1 p8 3.850211 0.7282168 11 TRUE -0.09361149 -0.06746071
2 p2829 3.868306 0.7938557 51 FALSE -0.09345463 -0.06709663

After the columns with the Kolmogorov-Smirnov statistic and confidence level, we have
the medians and IQRs of the product and the most similar product, respectively.

We can check how many products have a product whose unit price distribution is sig-
nificantly similar with 90% confidence:

> nrow(similar[similar[, "ks.p"] >= 0.9,])

[1] 140

Or more efficiently,

> sum(similar[, "ks.p"] >= 0.9)

[1] 140

As you see from the 985 products with less than 20 transactions, we have only managed
to find similar products for 140 of them. Nevertheless, this is useful information when it
comes to analyzing which transactions are abnormal. For these 140 products we can include
more transactions into the decision process to increase the statistical significance of our
tests. We will save the similar object in case we decide to use this similarity between
products later:

> save(similar, file = "similarProducts.Rdata")

Detecting Fraudulent Transactions 313

6.3 Defining the Data Mining Tasks
The main goal of this application is to use data mining to provide guidance in the task of

deciding which transaction reports should be considered for inspection as a result of strong
suspicion of being fraudulent. Given the limited and varying resources available for this
auditing task, such guidance should take the form of a ranking of fraud probability.

6.3.1 Different Approaches to the Problem
The available dataset has a column (Insp) that has information on previous inspection

activities. The main problem we have is that the majority of the available reports have
not been audited. From the perspective of the task of deciding whether or not a report is
fraudulent, the value unkn in the Insp variable has the meaning of an unknown variable
value. This value represents the absence of information on whether the transaction is OK
or a fraud. This means that we have two types of observations in our dataset. We have a
(small) set of labeled observations for which we have the description of their characteristics
plus the result of their inspection. We have another (large) set of unlabeled observations
that have not been inspected, that is, have the value unkn in the Insp column. In this
context, there are different types of modeling approaches that can be applied to these data,
depending on which observations we use for obtaining the models.

6.3.1.1 Unsupervised Techniques

In the reports that were not inspected, the column Insp is in effect irrelevant as it
carries no information. For these observations we only have descriptors of the transactions.
This means that these sales reports are only described by a set of variables. This is the
type of data used by unsupervised learning techniques. These methods are named this
way because their goal is not to learn some “concept” with the help of a “teacher” as in
supervised methods. The data used by these latter methods are examples of the concepts
being learned (e.g., the concept of fraud or normal transaction). This requires that the data
is preclassified (labeled) by a domain expert into one of the target concepts. This is not the
case for the set of reports with unknown inspection results. We are thus facing a descriptive
data mining task as opposed to a predictive task, which is the goal of supervised methods.

Clustering is an example of a descriptive data mining technique. Clustering methods
try to find the “natural” groupings of a set of observations by forming clusters of cases
that are similar to each other. The notion of similarity usually requires the definition of a
metric over the space defined by the variables that describe the observations. This metric
is a distance function that measures how far an observation is from another. Cases that
are near to each other are usually considered part of the same natural group of data. More
details on clustering methods was provided in Section 3.4.3 (page 119).

Outlier detection can also be viewed as a descriptive data mining task. Some outlier de-
tection methods assume a certain expected distribution of the data, and tag as outliers any
observations that deviate from this distribution. Another common outlier detection strategy
is to assume a metric over the space of variables and use the notion of distance to tag as out-
liers observations that are “too far” from others. Methods for detecting anomalies/outliers
were described in Section 3.4.4 (page 131).

From the above descriptions we can see that there are strong relationships between
clustering and outlier detection. This is particularly true in methodologies based on the
notion of distance between observations. Outliers are, by definition, rather different cases

314 Data Mining with R: Learning with Case Studies

and thus they should not fit well in groups with other observations because they are too
distant from them. This means that a good clustering of a dataset should not include outliers
in large groups of data. At most, one can expect outliers to be similar to other outliers but
by definition these are rare observations and thus should not form big groups of cases.

The use of unsupervised techniques in our problem involves some restrictions. In effect,
our goal is to obtain an outlier ranking for a set of observations. This ranking is to serve as
a basis for the inspection decisions within the company. This means that the unsupervised
tools we select must be able to identify outliers and also rank them. Section 6.4.1 describes
the unsupervised techniques we have selected to address this data mining task.

6.3.1.2 Supervised Techniques

The set of transactions that were labeled normal or fraudulent (i.e., have been inspected)
can be used with other types of modeling approaches. Supervised learning methods use this
type of labeled data. The goal of these approaches is to obtain a model that relates a
target variable (the concept being learned) with a set of independent variables (predic-
tors, attributes). This model can be regarded as an approximation of an unknown function
Y = f(X1, X2, · · · , Xp) that describes the relationship between the target variable Y and
the predictors X1, X2, · · · , Xp. The task of the modeling technique is to obtain the model
parameters that optimize a certain selected criterion, for example, minimize the prediction
error of the model. This search task is carried out with the help of a sample of observa-
tions of the phenomena under study, that is, it is based on a dataset containing exam-
ples of the concept being learned. These examples are particular instances of the variables
X1, X2, · · · , Xp, Y . If the target variable Y is continuous, we have a (multiple) regression
problem. If Y is a nominal variable, we have a classification problem. Predictive analytics,
which we have described in Section 3.4.5 (page 140), has to do with solving these tasks.

In the case of our dataset, the target variable is the result of the inspection task and can
take two possible values: ok and fraud. This means that our goal is to learn the concepts of
fraudulent and normal reports. We are thus facing a (binary) classification problem. Notice
that the transactions that were not inspected cannot be used in these tasks because we are
unsure whether or not they are frauds. This means that if we want to use a classification
technique to obtain a model to predict whether a given report is or is not a fraud, we can
only use 15,732 of the 401,146 available reports as the training sample.

The classification problem we are facing has a particularity that can impact both the
way we will evaluate the performance of the models and also the models themselves. This
particularity is the fact that among the two possible class values, one is much more frequent
than the other. In effect, from the 15,732 inspected reports, 14,462 are normal transactions
and only the remaining 1,270 (∼ 8%) are examples of frauds. Moreover, this less frequent
concept is, in effect, the most important in this problem as it is related to the aim of the
application: detect frauds. This means that we have to select evaluation criteria that are
able to correctly measure the performance of the models on this less frequent class, and we
should select modeling techniques that are able to cope with datasets with a strong class
imbalance.

The use of classification tools in our problem involves a few adaptations. In effect, we
are interested in obtaining a ranking of the transactions according to their probability of
being frauds. This means that given a test set with new reports, we will use the model to
decide which are the reports to be audited. Some classification algorithms are only able to
output the class label when given a test case. This is not enough for our problem because
it does not establish a ranking among the cases classified as frauds. If these are too many
for the available inspection resources, we are unable to decide which ones to handle. What
we need is a probabilistic classification, that is, the model should not only predict a class

Detecting Fraudulent Transactions 315

label, but also an associated probability of this label. These probabilities allow us to obtain
a ranking of the test cases according to the estimated probability that they are frauds.

6.3.1.3 Semi-Supervised Techniques

Semi-supervised methods are motivated by the observation that for many applications
it is costly to find labeled data—that is, cases for which we have the value of the target
variable. This information usually requires the work of domain experts, which increases
the costs of data collection. On the other hand, unlabeled data is frequently easy to obtain,
particularly with the widespread use of sensors and other types of automatic data collection
devices. In this context, one frequently faces problems with a large proportion of data that is
unlabeled, together with a small amount of labeled data. This is the case of our application,
as we have seen before.

Semi-supervised methods are named this way exactly because they can handle this type
of datasets with both labeled and unlabeled cases. There are usually two different types of
semi-supervised methods. On the one hand, there are semi-supervised classification methods
that try to improve the performance of standard supervised classification algorithms with
the help of the extra information provided by the unlabeled cases. The alternative approach
is given by semi-supervised clustering methods that try to bias the clustering process by
incorporating some form of constraints based on the labeled data in the criteria used to
form the groups.

In semi-supervised clustering, the idea is to use the available labels to bias the clustering
process to include the cases with the same label in the same groups (must-link constraints),
or to keep cases with different labels in different groups (cannot-link constraints). In search-
based semi-supervised clustering, the criteria used to form the clusters is changed to bias
the methods to find the appropriate groups of cases. In similarity-based semi-supervised
approaches, the metric used by the algorithms is optimized to satisfy the constraints imposed
by the labeled data. This means that the notion of distance is “distorted” to reflect the
must-link and cannot-link constraints.

With respect to semi-supervised classification there are many alternative methodologies.
A well-known method is self-training. This is an iterative approach that starts by obtaining
a classification model with the given labeled data. The next step is to use this model to
classify the unlabeled data. The cases for which the model has very high confidence on the
classification are added together with the predicted label to the initial training set, thus aug-
menting it. Using this new set, a new model is obtained and the overall process is repeated
until some convergence criterion is reached or until no classification has sufficient confidence
to be added to the current training set. Another example of semi-supervised classification
models are transductive support vector machines (TSVMs). The goal of TSVMs is to ob-
tain labels for a set of unlabeled data, such that a linear boundary achieves the maximum
margin on both the original labeled data and on the unlabeled data (see Section 5.4.2.2 on
page 127 for more details on SVMs).

Once again we should consider the particular restrictions of our application, namely in
terms of obtaining outlier rankings. This can be accomplished using the same strategies
outlined in the previous sections for unsupervised and supervised methods, depending on
whether we use semi-supervised clustering or semi-supervised classification, respectively.

Further readings on semi-supervised methods
Semi-supervised learning has been receiving an increasing interest by the research community. Good surveys of
the existing work are given in Zhu (2006), Seeger (2002), or Zhu (2005). The book by Chapelle et al. (2006) is
a good reference on this area.

316 Data Mining with R: Learning with Case Studies

6.3.2 Evaluation Criteria
In this section we discuss how to evaluate the models we will develop for this data mining

task. When given a test set of transaction reports, each model will produce a ranking of
these reports that is supposed to provide advice on auditing priorities. This section discusses
how to evaluate this ranking. We will also describe the experimental methodology that will
be used to obtain reliable estimates of the selected evaluation metrics.

Our dataset has the particularity of including both labeled and unlabeled data. In this
application the two situations translate into inspected and non-inspected transaction re-
ports. This increases the difficulty of comparing the models because supervised and unsu-
pervised methods are usually evaluated differently. The rankings obtained by the models
will most probably include both labeled and unlabeled observations, although for a real
test set (one formed with data collected in the future) they will all be unlabeled. Regarding
labeled data, it is easy to evaluate whether or not their inclusion in the set of reports to
inspect is correct. In the case of unlabeled cases, this evaluation is more difficult because
we cannot be sure whether or not these cases are frauds until we actually audit them.

6.3.2.1 Precision and Recall

In this domain, if we are to apply a model to a subset of our available data taken as
a test set, the known frauds within this test set should appear at the top positions of the
auditing ranking suggested by the model. Fraudulent reports are a minority in our data.
Given a number k of reports that our auditing resources allow to inspect, we would like
that among the k top-most positions of the obtained ranking, we only have either frauds
or non-inspected reports. Moreover, we would like to include in these k positions all of the
known fraud cases that exist in the test set.

As we have seen in Sections 5.3.4 (page 252) and 3.4.5.1 (page 141), when our aim is
to predict a small set of rare events (in this case frauds), precision and recall are the ade-
quate evaluation metrics. Given the inspection effort limit k, we can calculate the precision
and recall of the k top-most positions of the ranking produced by a model2. This k limit
determines which reports are to be inspected according to the model. From a supervised
classification perspective, this is equivalent to considering the top k positions as predictions
of the class fraud, while the remaining are normal reports. The value of precision will tell
us what proportion of these k top-most reports are, in effect, labeled as frauds. The value
of recall will measure the proportion of frauds in the test set that are included in these k
top-most positions. We should note that the obtained values are pessimistic. In effect, if
the k top-most positions include unlabeled reports, they will not enter the calculation of
precision and recall. However, if they are inspected, we may find that they are, in effect,
frauds and thus the real values of precision and recall could be higher.

Usually there is a trade-off between precision and recall. For instance, it is quite easy
to achieve 100% recall if all test cases are predicted as events. However, such a strategy
will inevitably also lead to a very low precision. Still, our current application has some
particularities. Given the fact that there will be constraints on the resources invested in
inspection activities, what we really want is to maximize the use of these resources. This
means that if we can spend x hours inspecting reports and in these x hours we are able to
capture all the frauds, we are happy—even if in these x hours we actually inspect several
normal reports, that is, even with a low precision in our ranking. Recall is actually the
key issue in this application. What we want is to be able to achieve 100% recall with the
resources we have available.

2Sometimes known as precision@k and recall@k.

Detecting Fraudulent Transactions 317

6.3.2.2 Lift Charts and Precision/Recall Curves

In the previous section we mentioned calculating the values of precision and recall for a
given inspection effort. It is interesting to check the performance of the models at different
effort levels. Different models may prevail at different levels and this may be useful informa-
tion when comparing them. This is particularly interesting in application scenarios where
the available auditing effort may vary along time. Under these settings we may be interested
in studying the behavior of the models across a range of operating scenarios instead of a
single setup.

Precision/recall (PR) curves are visual representations of the performance of a model in
terms of the precision and recall statistics. The curves are obtained by proper interpolation
of the values of the statistics at different working points. These working points can be given
by different cut-off limits on a ranking of the class of interest provided by the model. In our
case this would correspond to different effort limits applied to the outlier ranking produced
by the models. Iterating over different limits (i.e., inspect more or less reports), we get
different values of precision and recall. PR curves allow this type of analysis.

The package ROCR (Sing et al., 2009) contains several functions that are very useful
for evaluating binary classifiers (i.e., classifiers for two classes problems like ours). This is an
extra package that you should install before trying the code below. The package implements
many evaluation metrics and it includes methods to obtain a wide range of curves. PR curves
can be easily obtained with the functions in this package. The use of this package is rather
simple. We start by obtaining an object of the class prediction using the predictions of the
model and the true values of the test set. This is done with the prediction() function. The
resulting object can be passed as an argument to the function performance() to obtain
several evaluation metrics. Finally, the result of this latter function can be used with the
function plot() to obtain different performance curves. The following code is an illustration
of this process using some example data included in the package:

> library(ROCR)
> data(ROCR.simple)
> pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
> perf <- performance(pred, "prec", "rec")
> plot(perf)

This code plots a PR curve that is shown on the left-most graph of Figure 6.5. The PR
curves produced by the ROCR package have a sawtooth shape. This is usually considered
not too clear and there are methods to overcome this effect. Namely, we can calculate the
interpolated precision Precint for a certain recall level r as the highest precision value found
for any recall level greater than or equal to r:

Precint(r) = max
r′≥r

Prec(r′) (6.1)

where Prec(x) is the precision at a certain recall level x.
If we take a close look at the object returned by the performance() function, we will

see that it has a slot named y.values with the values of the y axis of the graph, that is,
the precision values that are plotted. We can obtain a PR curve without the sawtooth effect
by simply substituting this slot with the values of the interpolated precision according to
Equation 6.1. The following function implements this idea for the general case:

> PRcurve <- function(preds, trues, ...) {
+ require(ROCR, quietly = TRUE)
+ pd <- prediction(preds, trues)

318 Data Mining with R: Learning with Case Studies

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

FIGURE 6.5: Smoothed (right) and non-smoothed (left) precision/recall curves.

+ pf <- performance(pd, "prec", "rec")
+ pf@y.values <- lapply(pf@y.values, function(x) rev(cummax(rev(x))))
+ plot(pf, ...)
+ }

The code uses the function lapply() because the slot y.values is, in effect, a list as it
can include the results of several iterations of an experimental process. We will take advan-
tage of this fact later on this chapter. For each vector of precision values, we calculate the
interpolated precision using the functions cummax() and rev(). The latter simply reverses
a vector, while the cummax() function obtains the cumulative maximum of a set of num-
bers. Try it with a vector of numbers if you have difficulty understanding the concept. The
PRcurve() function is actually included in our book package, so you do not need to type
the above code to use it.

We can apply the PRcurve() function to the example data given above, producing the
right-most graph of Figure 6.5.

> PRcurve(ROCR.simple$predictions, ROCR.simple$labels)

How can we evaluate our outlier ranking models with these types of curves? We will
have a test set with a variable Insp with possible values unkn, ok, and fraud, and a
ranking of the observations in this set, produced by some model. We will require our
models to obtain an outlier score for each observation in the test set. The higher the
score, the higher the confidence of the model that an observation is a fraud. This score
is the source of information for obtaining the ranking of the observations. If we or-
der the test set observations by decreasing outlier score, we can calculate different val-
ues of precision and recall, depending on where we put our inspection effort limit. Set-
ting this limit is equivalent to choosing a threshold on the outlier score above which
we will consider the observations as fraudulent. Let us see a small example. Suppose we
have seven test cases with the values {ok, ok, fraud, unknown, fraud, fraud, unknown}
in the Insp column. Imagine a certain model produces as outlier scores for these ob-
servations the values {0.2, 0.1, 0.7, 0.5, 0.4, 0.3, 0.25}, respectively. If we rank the obser-
vations by these scores, we obtain {fraud, unknown, fraud, fraud, unknown, ok, ok}. If

Detecting Fraudulent Transactions 319

TABLE 6.1: A Confusion Matrix for the Illustrative Example.
Predictions
ok fraud

True
Values

ok 3 1 4
fraud 2 1 3

5 2 7

our inspection limit only allows us to inspect two observations, it would be equiv-
alent to a model “predicting” {fraud, fraud, ok, ok, ok, ok, ok} for the true values
{fraud, unknown, fraud, fraud, unknown, ok, ok}. This, in turn, corresponds to the con-
fusion matrix in Table 6.1 and to the following values of precision and recall calculated
according to that matrix:

Prec = 1
1 + 1 = 0.5 Rec = 1

2 + 1 = 0.3333

Notice that as mentioned in Section 6.3.2.1, we have followed a pessimistic estimate of
precision and recall with respect to the reports that have not been inspected. Because of
this, the prediction of fraud for the report in the second position of the ranking, which has
the value unkn, is considered an error as we are not sure whether or not it is a fraud.

We will use this type of post-processing of the outlier rankings to obtain their scores in
terms of precision and recall as well as the respective PR curves. The curves can be obtained
by varying the inspection threshold, i.e. using the simple example above by inspecting only
the first, second, third, ..., and so on, positions of the ranking produced by the outlier scores
of the model, and for each of these thresholds calculating the respective precision and recall
scores.

Lift charts provide a different perspective of the model predictions. These graphs give
more importance to the values of recall and thus are, in a way, more adequate to our
objectives, as mentioned in the end of Section 6.3.2.1. The x-axis of these graphs is the
value of the rate of positive predictions (RPP), which is the probability that the model
predicts a positive class. This is estimated by the proportion of positive class predictions
divided by the total number of test cases. In the example of Table 6.1, this would have the
value of (1 + 1)/7. In the context of our application, we can look at this statistic as the
proportion of reports selected for inspection. The y-axis of lift charts is the value of recall
divided by the value of RPP.

Lift charts can be obtained with the infrastructure provided by the ROCR package.
The following is an illustrative example of its use with the corresponding lift chart shown
in the left-most graph of Figure 6.6:

> pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
> perf <- performance(pred, "lift", "rpp")
> plot(perf, main = "Lift Chart")

Despite their usefulness lift charts are not exactly what we search for in our particular
application. A more interesting graph would be one that shows the recall values in terms
of the inspection effort that is captured by the RPP. We will call this type of graph the
cumulative recall chart; it can be implemented by the following function thanks to the
ROCR package:

320 Data Mining with R: Learning with Case Studies

Lift Chart

Rate of positive predictions

Li
ft

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Cumulative Recall Chart

Rate of positive predictions

R
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 6.6: Lift (left) and cumulative recall (right) charts.

> CRchart <- function(preds, trues, ...) {
+ require(ROCR, quietly = T)
+ pd <- prediction(preds, trues)
+ pf <- performance(pd, "rec", "rpp")
+ plot(pf, ...)
+ }

Using again the artificial example, we obtain the right-most graph of Figure 6.6:

> CRchart(ROCR.simple$predictions, ROCR.simple$labels,
+ main='Cumulative Recall Chart')

For cumulative recall charts, the nearer the curve of a model is to the top-left corner of
the graph, the better. The CRchart() function is also included in our book package so you
can use it at any time, provided you load the package.

6.3.2.3 Normalized Distance to Typical Price

The measures we have seen in previous sections only evaluate the quality of the rankings
in terms of the labeled reports. They are supervised classification evaluation metrics. The
rankings obtained by the models will most probably also contain unlabeled reports in the
top positions. Are these unlabeled cases correctly positioned in the ranking? We cannot be
sure about this as we have not inspected them. Nevertheless, we can say something about
them. For instance, we can compare their unit price with the typical price of the reports
of the same product. We would expect that the difference between these prices is high, as
this is an indication that something is wrong with the report. In this context, the distance
between the unit price of a report and the typical unit price of the respective product is a
good indicator of the quality of the outlier ranking obtained by a model.

Different products have a different scale of unit prices, as we have seen in Figure 6.4.
To avoid the effects of these differences in our proposed measure of outlier ranking quality,
we will normalize the distance to the typical unit price. We use the IQR to normalize this
distance:

Detecting Fraudulent Transactions 321

NDTPp(u) = |u− Ũp|
IQRp

(6.2)

where Ũp is the typical unit price of the product p, measured by the median unit price of
its transactions, and IQRp is the respective inter-quartile range of the unit prices of that
product.

In our experiments we will use the average value of NDTPp as one of the evaluation
metrics to characterize the performance of the models. The following function calculates
the value of this statistic:

> avgNDTP <- function(toInsp,train,stats) {
+ if (missing(train) && missing(stats))
+ stop('Provide either the training data or the product stats')
+ if (missing(stats)) {
+ stats <- as.matrix(filter(train,Insp != 'fraud') %>%
+ group_by(Prod) %>%
+ summarise(median=median(Uprice),iqr=IQR(Uprice)) %>%
+ select(median,iqr))
+ rownames(stats) <- levels(train$Prod)
+ stats[which(stats[,'iqr']==0),'iqr'] <- stats[which(stats[,'iqr']==0),'median']
+ }

+ return(mean(abs(toInsp$Uprice-stats[toInsp$Prod,'median']) /
+ stats[toInsp$Prod,'iqr']))
+ }

The function receives, as the main argument, the set of transactions that a model selects
for inspection. Then it must receive either the training set to obtain the median and IQR of
each product, or an already prepared data structure with this information, to increase the
computational efficiency of repeated calls to this function. If the training data is received,
the function calculates the median and IQR values of the nonfraudulent transactions of each
product in the training set. It may happen that the IQR is zero, particularly in products
with very few transactions. To avoid division by zero in calculating NDTPp, we have set
the IQR of these cases to the value of the median.

6.3.3 Experimental Methodology
The dataset we are using has a very reasonable size. In this context, it makes sense to

select the Holdout method for our experimental comparisons. This method consists of ran-
domly splitting the available dataset in two partitions (typically in 70%/30% proportions).
One of the partitions is used for obtaining the models, while the other is used for testing
them. The process can eventually be repeated a few times to ensure more reliability, if nec-
essary, leading to what is usually known as random subsampling. The size of our dataset
ensures that the values we obtain are statistically reliable. If we select 30% of the cases for
the test set, this corresponds to 120,343 reports.

One additional difficulty in this situation is the imbalance between the distributions of
the different types of reports, namely on the labeled cases. A normal re-sampling strat-
egy may lead to a test set with a different distribution of the normal/fraudulent reports.
Whenever we have this type of imbalanced class distributions, it is recommended to use a
stratified sampling strategy. This strategy consists of randomly sampling from bags with
the observations of the different classes, ensuring that the obtained sample respects the
distribution of the initial dataset. For instance, if we have 10% of cases of class X and the

322 Data Mining with R: Learning with Case Studies

remaining 90% of another class Y , we will put these observations in two separate bags. If we
want a random stratified sample with 100 cases, we will randomly pick ten cases from the
bag with the X class cases, and the remaining 90 from the bag with the Y s, thus respecting
the original proportions of the classes.

As we have seen in Section 3.5 (page 172), package performanceEstimation provides
an experimental infrastructure that also includes the Holdout estimation procedure. We can
use this method by specifying it in the third argument of the performanceEstimation()
function, where we indicate the metrics and the estimation method. By including a call to
the function Holdout() in the method parameter of the EstimationTask() constructor we
obtain this type of estimate. Parameters nReps and hldSz of the Holdout() function can
be used to indicate the number of repetitions (thus choosing random subsampling if greater
than one) and the size of the holdout, respectively. This function also includes an extra
parameter (strat) that if set to TRUE ensures the procedure uses stratified sampling. We
will use these facilities of package performanceEstimation to obtain reliable estimates of
our selected evaluation metrics. These are precision, recall, and the average NDTP . Given
the specificity of the NDTP metric we need to write our own evaluation function:

> evalOutlierRanking <- function(testSet,rankOrder,Threshold,statsProds,...)
+ {
+ ordTS <- testSet[rankOrder,]
+ N <- nrow(testSet)
+ nF <- if (Threshold < 1) as.integer(Threshold*N) else Threshold
+ cm <- table(c(rep('fraud',nF),rep('ok',N-nF)),ordTS$Insp)
+ prec <- cm['fraud','fraud']/sum(cm['fraud',])
+ rec <- cm['fraud','fraud']/sum(cm[,'fraud'])
+ AVGndtp <- avgNDTP(ordTS[1:nF,],stats=statsProds)
+ return(c(Precision=prec,Recall=rec,avgNDTP=AVGndtp))
+ }

The function requires the user to supply the test set, the ranking proposed by the model
for this set, a threshold specifying the inspection limit effort (either as a percentage or as a
number of reports), and the statistics (median and IQR) of the products.

In Section 6.2.3.2 we observed that the products are rather different, and that some
products have, in effect, few transactions. In this context, we may question whether it makes
sense to analyze the transactions of all products together. An argument in favor of checking
them together is that there is a variable (the product ID) that can be used to discriminate
among the products, and thus the modeling techniques can use the variable if necessary.
Moreover, by putting all transactions together, the models can take advantage of some
eventual relationships among products. Nevertheless, an alternative would be to analyze
each product in turn, ranking its transactions by some outlier score. This would require an
extra step of obtaining the final global ranking from the individual product rankings but
this should be simple. We will experiment with modeling approaches that follow a different
strategy with respect to this issue. From the perspective of the experimental methodology,
we will put all products together. With these transactions we will randomly select a test set
using a stratified holdout strategy. This test set will be given to different modeling techniques
that should return a ranking of these transactions according to their estimated probability
of being frauds. Internally, the models may decide to analyze the products individually or
all together.

Detecting Fraudulent Transactions 323

6.4 Obtaining Outlier Rankings
This section describes the different models we will try with the goal of obtaining outlier

rankings. For each attempt we will estimate its results using a stratified 70%/30% holdout
strategy.

6.4.1 Unsupervised Approaches
6.4.1.1 The Modified Box Plot Rule

In Section 6.2.2 we described the box plot rule, which can be used to detect outliers of
a continuous variable provided it follows a near-normal distribution. This is the case of the
unit price of the products. In this context, one can think of this simple rule as the baseline
method that we can apply to our data.

The application of the box plot rule to detect unusual unit price values of the transactions
of each product will result in the identification of some values as potential outliers. We can
use this rule on each set of transactions of the products appearing in a given test set.
In the end we will have a set of potential outliers for each of the products. We have to
decide how to move from these sets into an outlier ranking of all test sets. This means we
have to distinguish the outliers to be able to rank them. A possibility is to use the idea of
the normalized distance to the typical (median) unit price (NDTP) that we described in
Section 6.3.2.3. This measure can be seen as a variation of the box plot rule because both
use a kind of distance from the central values to decide on the “outlyingness” of a value.
The advantage of the NDTP is that it is a unitless metric and thus we can mix together
the values for the different products and thus produce a global ranking of all test cases.

The idea outlined above can be implemented by the following function that receives a
set of transactions and obtains their ranking order and score:

> BPrule.wf <- function(form,train,test,...) {
+ require(dplyr, quietly=TRUE)
+ ms <- as.matrix(filter(train,Insp != 'fraud') %>%
+ group_by(Prod) %>%
+ summarise(median=median(Uprice),iqr=IQR(Uprice)) %>%
+ select(median,iqr))
+ rownames(ms) <- levels(train$Prod)
+ ms[which(ms[,'iqr']==0),'iqr'] <- ms[which(ms[,'iqr']==0),'median']
+ ORscore <- abs(test$Uprice-ms[test$Prod,'median']) /
+ ms[test$Prod,'iqr']
+ rankOrder <- order(ORscore,decreasing=TRUE)
+ res <- list(testSet=test,rankOrder=rankOrder,
+ probs=matrix(c(ORscore,ifelse(test$Insp=='fraud',1,0)),
+ ncol=2))
+ res
+ }

This workflow function will be called from the performanceEstimation() function. As
any user-defined workflow function this needs to follow some protocol in terms of the pa-
rameters that accepts and also the return value of its execution. In terms of parameters the
performanceEstimation() function requires all user-defined wrokflow functions to accept
as the first three parameters a formula, a training set, and a test set. All remaining param-
eters are specific to the workflow function and there can exist as many as the author of the

324 Data Mining with R: Learning with Case Studies

function needs. In the above example the formula parameter is useless as the solution we
are implementing does not use the values of the target variable, i.e. it is unsupervised. In
the workflow we use the training data to calculate the median and IQR values per product.
These statistics are thenused to obtain the outlier score using the formula of Equation (6.2).
You might eventually feel tempted to think that these statistics could be obtained once us-
ing all available data, but this would be wrong. We are writing a workflow (a solution to
a predictive task) whose solution is based on these statistics. Whatever the result of an
approach to a task, it should only depend on the given training data. If this rule of thumb
is broken then the results of this workflow will inevitably be biased as they would be based
on more information than what was given for training. The above workflow returns a list
with the score mentioned above and the rank order of the test set observations, according
to this score. Given that this method uses the NDTP values to obtain its ranking, it is
foreseeable that it will score very well in terms of the average value of this metric, which
means that it will be a hard baseline to beat!

As a side note, we should remark that this is the place where we could have used
the information on the similarity between products. In effect, for products with very few
transactions, we could consider checking if there is a product that has a distribution of unit
prices that is significantly similar. If there is such a product, we could add its transactions
and thus obtain the estimate of the median and IQR statistics using a larger sample. This
would mean that instead of calculating the median and IQR per product we would need
to “unify” the transactions of products with few transactions with the ones of their most
similar products. This would need to be done before the call to summarise() that calculates
these statistics. We leave this as an exercise for the reader.

We will now evaluate this simple method using the holdout experimental methodology.
To be more precise we will use three repetitions of holdout which correspond to random
subsampling, though we will use the more common holdout term to refer to our approach.
We start by calculating the values of the median and IQR for each product required for
the evaluation of the candidate solutions to this task by the average NDTP score. We will
use all available data for this calculation, as our goal is to have the most precise estimate
of these values to correctly evaluate the outlier ranking capabilities of the models. Because
this global information is not passed to the modeling techniques, this cannot be regarded
as giving information from the test data to the models. It is just a form of obtaining more
reliable estimates of the ability of our models for detecting unusual values — we are using
it for evaluating the models and not for obtaining them.

> library(dplyr)
> globalStats <- as.matrix(filter(sales,Insp != 'fraud') %>%
+ group_by(Prod) %>%
+ summarise(median=median(Uprice),iqr=IQR(Uprice)) %>%
+ select(median,iqr))
> rownames(globalStats) <- levels(sales$Prod)
> globalStats[which(globalStats[,'iqr']==0),'iqr'] <-
+ globalStats[which(globalStats[,'iqr']==0),'median']
> head(globalStats,3)

median iqr
p1 11.34615 8.563580
p2 10.87786 5.609731
p3 10.00000 4.809092

With this information we are ready to run the performanceEstimation() function
to obtain the holdout estimates of the selected statistics for the BPrule.wf workflow. As

Detecting Fraudulent Transactions 325

estimation settings we will use a 70%/30% division of the full dataset using a stratified
sampling strategy, and calculate the precision/recall statistics for a predefined inspection
limit effort of 10% of the test set. This last setting is somewhat arbitrary and any other
threshold could have been selected. The estimates will be obtained based on three repetitions
of this process. A more global perspective of the performance of the system over different
inspection effort limits will be given by the PR and cumulative recall curves.

> library(performanceEstimation)
> bp.res <- performanceEstimation(
+ PredTask(Insp ~ ., sales),
+ Workflow("BPrule.wf"),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3, hldSz=0.3, strat=TRUE),
+ evaluator="evalOutlierRanking",
+ evaluator.pars=list(Threshold=0.1, statsProds=globalStats))
+)

Instead of using the standard workflows provided by the package performanceEsti-
mation, we have specified our own BPrule.wf function that implements the box-plot rule.
Moreover, we are also specifying our own evaluator function (evalOutlierRanking) as we
want special purpose metrics to be calculated. We are using the parameter evaluator.pars
to specify some parameters that should be passed to this evaluator function any time it is
called, in this case the inspection effort (parameter Threshold) and the median and IQR of
the products (parameter statsProds) that are necessary to calculate the average normal-
ized distance to typical price. Notice the specification of the estimation method described
above through function Holdout(), in particular the indication of a stratified sampling
mechanism through parameter strat.

The summary of the results of this experiment can be obtained as follows:

> summary(bp.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using
Stratified 3 x70 %/ 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: BPrule.wf

-> Task: sales.Insp
*Workflow: BPrule.wf

Precision Recall avgNDTP
avg 0.0166583375 0.52631579 11.1748886
std 0.0006505289 0.02055329 0.9004590
med 0.0163251707 0.51578947 10.7913476
iqr 0.0005830418 0.01842105 0.8369579
min 0.0162418791 0.51315789 10.5297012
max 0.0174079627 0.55000000 12.2036171
invalid 0.0000000000 0.00000000 0.0000000

The results of precision and recall are rather low. On average, only 52% of the known
frauds are included in the top 10% reports of the rank produced by the BPrule approach.

326 Data Mining with R: Learning with Case Studies

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 6.7: The PR (left) and cumulative recall (right) curves of the BPrule method.

The low values of recall could mean that the 10% effort was not enough for including all
frauds, but that is not possible given the proportion of frauds in the test set and also the
low values in precision. The extremely low value of precision means that this method is
putting on the top 10% positions mostly unkn or ok cases. In the case of unkn reports, this
is not necessarily bad, as these may actually be fraudulent reports. Given the relatively high
score of NDTP , we can at least be sure that the unit price of these top reports is rather
different from the typical price of the respective products. In effect, an average value of 11.1
for NDTP means that the difference between the unit price of these top ranked reports
and the median price of the reports of the same product is around 11 times the value of
the IQR of these prices. Given that the IQR includes 50% of the reports, this means that
the unit prices of these transactions are rather unusual. In summary, in spite of the poor
results in terms of precision and recall, the score on avgNTPD seems to indicate that this
simple method is able to suggest the inspection of highly unusual transaction reports.

To obtain the PR and cumulative recall charts, we need access to the actual outlier
scores of the method on each holdout repetition, as well as the true “class” labels. The
workflow function we have created (BPrule.wf()) returns these values in the component
probs. All information returned by the workflows for all iterations of the estimation process
is stored by package performanceEstimation functions on the returned results objects.
This allows for posterior inspection/usage as we are planning to do here to produce the
charts. Below you can find an example of this using function getIterationsInfo(). This
function can be used to inspect the results returned on each iteration which are a list. We
extract from the component probs of these lists the information necessary to produce our
charts that are shown in Figure 6.7,

> ps.bp <- sapply(getIterationsInfo(bp.res),function(i) i$probs[,1])
> ts.bp <- sapply(getIterationsInfo(bp.res),function(i) i$probs[,2])
> PRcurve(ps.bp,ts.bp,main="PR curve",avg="vertical")
> CRchart(ps.bp,ts.bp,main='Cumulative Recall curve',avg='vertical')

Both curves are obtained by vertically averaging the curves of each of the three repe-
titions of the holdout process. The cumulative recall chart gives a more global perspective
of the performance of the method. We can observe that the method obtains around 40% of

Detecting Fraudulent Transactions 327

recall with a very low inspection effort. However, to achieve values around 80%, we need to
inspect roughly 30% of the reports.

6.4.1.2 Local Outlier Factors (LOF)

Outlier ranking is a well-studied research topic. Breunig et al. (2000) have developed
the local outlier factor (LOF) system that is usually considered a state-of-the-art outlier
ranking method. The main idea of this method is to try to obtain an outlyingness score for
each case by estimating its degree of isolation with respect to its local neighborhood. The
method is based on the notion of the local density of the observations. Cases in regions with
very low density are considered outliers. The estimates of the density are obtained using the
distances between cases. This method was described in detail in Section 3.4.4.2 (page 133).

Our book package includes an implementation of the LOF algorithm based on the work
by (Acuna et al., 2009). Namely, we provide the function lofactor() that receives as ar-
guments a dataset and the value of k that specifies the size of the neighborhood used in
calculating the LOF of the observations. This implementation of the LOF system is lim-
ited to datasets described by numeric variables. This is, in effect, a frequent limitation for
many modeling algorithms. As we have seen, our dataset includes several nominal variables.
This means that we cannot apply this function directly to our dataset. There are several
ways of overcoming this issue. A first alternative would be to change the source code of
the implementation of LOF so that a mixed-mode distance function is used. There are
several distance functions that can calculate the distance between observations described
by variables of different types. An example is given by the function daisy() in the cluster
package (Maechler et al., 2015). Another alternative consists of re-coding the nominal vari-
ables so that the observations are described by continuous variables only. Any nominal
variable with n possible values can be re-coded into n − 1 binary (0/1) variables. These
variables, frequently called dummy variables, indicate the presence (absence) of any of the
n values. The application of this method to our dataset has a problem. The ID variable
has 6,016 possible values while the variable Prod has 4,546. This means that if we use this
strategy, we will obtain a dataset with 10,566 variables. This is an absurd increase in the
dimensionality of the original data. This method is inadequate for this problem. The third
alternative consists of handling each product individually, as we have done with the BPrule
method. By proceeding this way, not only do we decrease significantly the computational
requirements to handle this problem, but we also eliminate the need for the variable Prod.
Moreover, handling the products separately was always a plausible approach, given the ob-
served differences between them (see Section 6.2.3.2). Nevertheless, we still have to decide
what to do with the information on the salespeople (the variable ID). Eliminating also this
variable would mean assuming the fact that we consider some report unusual is independent
of the salesman reporting it. This assumption does not seem too risky. The fact is that even
if some salesperson is more prone to fraud, this should also be reflected in the unit prices
that the person reports. In this context, the alternative of eliminating both columns and
treating the products separately seems clearly more reasonable than the option of re-coding
the variables. Summarizing, we will apply the LOF algorithm to a dataset of reports de-
scribed only by the unit price. The following function implements a workflow using the
LOF algorithm to produce the rankings of a set of transaction reports:

> LOF.wf <- function(form, train, test, k, ...) {
+ require(DMwR2, quietly=TRUE)
+ ntr <- nrow(train)
+ all <- as.data.frame(rbind(train,test))
+ N <- nrow(all)
+ ups <- split(all$Uprice,all$Prod)

328 Data Mining with R: Learning with Case Studies

+ r <- list(length=ups)
+ for(u in seq(along=ups))
+ r[[u]] <- if (NROW(ups[[u]]) > 3)
+ lofactor(ups[[u]],min(k,NROW(ups[[u]]) %/% 2))
+ else if (NROW(ups[[u]])) rep(0,NROW(ups[[u]]))
+ else NULL
+ all$lof <- vector(length=N)
+ split(alllof,allProd) <- r
+ all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))] <-
+ SoftMax(all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))])

+ res <- list(testSet=test,
+ rankOrder=order(all[(ntr+1):N,'lof'],decreasing=TRUE),
+ probs=as.matrix(cbind(all[(ntr+1):N,'lof'],
+ ifelse(test$Insp=='fraud',1,0))))
+ res
+ }

The workflow starts by merging the train and test datasets and use LOF to rank this
full set of reports. From the ranking obtained we then select the outlier scores of the cases
belonging to the test set. We could have ranked only the test set but this would not use the
information in the training data. The alternative of ranking only the training data would
also not make sense because this is an unsupervised method whose result cannot be used
to make “predictions” for a test set.

The function split() was used to divide the unit prices of this full dataset by product.
The result is a list whose components are the unit prices of the respective products. The for
loop goes over each of these sets of prices and applies the LOF method to obtain an outlier
factor for each of the prices. These factors are collected in a list (r) also organized by product.
We only used the LOF method if there were at least three reports; otherwise all values were
tagged as normal (score 0). After the main loop, the outlier factors obtained are “attached”
to the respective transactions in the data frame all, again using the split() function.
The next statement has the goal of changing the outlier factors into a 0..1 scale. It uses
the function SoftMax() from our book package for this purpose. This function “squashes”
a range of values into this scale. Due to the fact that the lofactor() function produced
some Inf and NaN values for some transactions, we had to constrain the application of the
SoftMax() function.

The next step is to use a holdout process to obtain the estimates of our evaluation
metrics, as done before for the BPrule method. We will use the same settings as before
and, in particular, will use the same random number generator seed to ensure that the
same data partitions are used. All estimation method specification functions of the package
performanceEstimation have a parameter named seed that allows you to set a random
number generator seed. We are using its default value and thus all runs using different
workflows will be applied to the same exact data partitions. We have set the value of the
k parameter of the lofactor() function to 7. Further experiments could be carried out to
tune this parameter. A word of warning before you execute the following code: depending
on your hardware, this may start to take a bit too long, although still on the minutes scale.

> lof.res <- performanceEstimation(
+ PredTask(Insp ~ . , sales),
+ Workflow("LOF.wf", k=7),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3, hldSz=0.3, strat=TRUE),
+ evaluator="evalOutlierRanking",

Detecting Fraudulent Transactions 329

+ evaluator.pars=list(Threshold=0.1, statsProds=globalStats))
+)

The results of the LOF method were the following:

> summary(lof.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using
Stratified 3 x 70 % / 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: LOF.wf

-> Task: sales.Insp
*Workflow: LOF.wf

Precision Recall avgNDTP
avg 0.0221000611 0.69824561 8.7661376
std 0.0006251502 0.01975146 0.9362724
med 0.0220722972 0.69736842 8.4358879
iqr 0.0006246877 0.01973684 0.8915197
min 0.0214892554 0.67894737 8.0397428
max 0.0227386307 0.71842105 9.8227821
invalid 0.0000000000 0.00000000 0.0000000

As you may observe, the values of precision and recall for this 10% inspection effort are
higher than the values obtained by the BPrule method. In particular, the value of recall
has increased from 52% to 69%. However, the value of NDTP has decreased, though a
value near 9 is still an interesting assertion on the degree of outlyingness of the unit prices
of the reports put up front by the LOF method.

A more global perspective can be obtained with the PR and cumulative recall curves.
To enable a better comparison with the BPrule method, we have also plotted the curves
of this method, using the argument add=TRUE to make more than one curve appear on the
same graph (Figure 6.8):

> ps.lof <- sapply(getIterationsInfo(lof.res), function(i) i$probs[,1])
> ts.lof <- sapply(getIterationsInfo(lof.res), function(i) i$probs[,2])
> PRcurve(ps.bp,ts.bp,main="PR curve",lty=1,
+ xlim=c(0,1),ylim=c(0,1),avg="vertical")
> PRcurve(ps.lof,ts.lof,add=TRUE,lty=2,avg='vertical')
> legend('topright',c('BPrule','LOF'),lty=c(1,2))
>
> CRchart(ps.bp,ts.bp,main='Cumulative Recall curve',
+ lty=1,xlim=c(0,1),ylim=c(0,1),avg='vertical')
> CRchart(ps.lof,ts.lof,add=TRUE,lty=2,avg='vertical')
> legend('bottomright',c('BPrule','LOF'),lty=c(1,2))

The analysis of the PR curves (left graph of Figure 6.8), shows that for smaller recall
values, the BPrule generally achieves a considerably higher precision. For values of recall
above 40%, the tendency is inverse although with not so marked differences. In terms of
recall achieved by inspection effort (Figure 6.8, right), we can say that generally the LOF

330 Data Mining with R: Learning with Case Studies

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF

FIGURE 6.8: The PR (left) and cumulative recall (right) curves of the LOF , and BPrule
models.

method dominates the BPrule for inspection efforts below 25% - 30%. For higher inspection
efforts, the differences are not so clear, and the results are rather comparable. Given that
the interest of the company is obviously on lower inspection efforts to decrease its costs
(provided a good recall is achieved), we would say that the LOF method is more interesting.
In effect, with an effort around 15% to 20%, one can capture roughly 70% to 80% of the
frauds. Moreover, we should note that the values of NDTP of LOF were interesting at this
inspection effort of 10%.

6.4.1.3 Clustering-Based Outlier Rankings (ORh)

The next outlier ranking method we consider is based on the results of a clustering
algorithm. The ORh method (Torgo, 2007) uses a hierarchical agglomerative clustering
algorithm to obtain a dendrogram of the given data. Dendrograms are visual representations
of the merging process of these clustering methods. The function hclust() of the base
package stats implements several variants of this type of clustering. The object returned by
this function includes a data structure (merge) that includes information on which cases are
involved in each merging step. The ORh method uses the information in this data structure
as the basis for obtaining outlier rankings. The basic idea is that outliers should offer greater
resistance to be merged and thus, when they are finally merged, the size difference between
the group to which they belong and the group to which they are being merged should be
very large. This reflects the idea that outliers are rather different from other observations,
and thus their inclusion in groups with more “normal” observations should clearly decrease
the homogeneity of the resulting group. Occasionally, outliers are merged at initial stages
with other observations, but only if these are similar outliers. Otherwise, they will only be
merged at later stages of the clustering process and usually with a much larger group of
cases. This is the general idea that is captured by the ORh method. More details on this
methodology were given in Section 3.4.4.2 (page 133).

The function outliers.ranking() of our book package implements this method. The
following function implements a workflow that uses the ORh method to obtain the outlier
scores of a test set of reports:

Detecting Fraudulent Transactions 331

> ORh.wf <- function(form, train, test, ...) {
+ require(DMwR2, quietly=TRUE)
+ ntr <- nrow(train)
+ all <- as.data.frame(rbind(train,test))
+ N <- nrow(all)
+ ups <- split(all$Uprice,all$Prod)
+ r <- list(length=ups)
+ for(u in seq(along=ups))
+ r[[u]] <- if (NROW(ups[[u]]) > 3)
+ outliers.ranking(ups[[u]])$prob.outliers
+ else if (NROW(ups[[u]])) rep(0,NROW(ups[[u]]))
+ else NULL
+ all$orh <- vector(length=N)
+ split(allorh,allProd) <- r
+ all$orh[which(!(is.infinite(all$orh) | is.nan(all$orh)))] <-
+ SoftMax(all$orh[which(!(is.infinite(all$orh) | is.nan(all$orh)))])
+ res <- list(testSet=test,
+ rankOrder=order(all[(ntr+1):N,'orh'],decreasing=TRUE),
+ probs=as.matrix(cbind(all[(ntr+1):N,'orh'],
+ ifelse(test$Insp=='fraud',1,0))))
+ res

+ }

The function is very similar to the one presented previously for the LOF method.
Once again we have used the approach of handling the products individually, primarily for
the same reasons described for the LOF method. Nevertheless, the outliers.ranking()
function can receive as argument a distance matrix of the observations being ranked, instead
of the dataset. This means that we can obtain this matrix using any distance function that
handles mixed-mode data (e.g., function daisy() in package cluster). However, if you
decide to try this you will need large computation resources as clustering such a large
dataset will require a large amount of main memory and also a fast processor. Even using
this approach of handling each product separately, the following code that runs the full
holdout experiments will surely take a while to run on any normal computer.

As with LOF , we have not carried out any thorough exploration of the several parameter
values that the ORh method accepts, simply using its defaults:

> orh.res <- performanceEstimation(
+ PredTask(Insp ~ . , sales),
+ Workflow("ORh.wf"),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3, hldSz=0.3, strat=TRUE),
+ evaluator="evalOutlierRanking",
+ evaluator.pars=list(Threshold=0.1, statsProds=globalStats))
+)

A summary of the results of the ORh method is shown below:

> summary(orh.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using

332 Data Mining with R: Learning with Case Studies

Stratified 3 x70 %/ 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: ORh.wf

-> Task: sales.Insp
*Workflow: ORh.wf

Precision Recall avgNDTP
avg 0.0215725471 0.681578947 8.8744953
std 0.0001442654 0.004558028 0.3911522
med 0.0214892554 0.678947368 8.9422496
iqr 0.0001249375 0.003947368 0.3867260
min 0.0214892554 0.678947368 8.4538922
max 0.0217391304 0.686842105 9.2273443
invalid 0.0000000000 0.000000000 0.0000000

The results of the ORh-based workflow are very similar to the scores obtained with
LOF .

The PR and cumulative recall curves of this method are shown in Figure 6.9, together
with the curves of the other unsupervised methods we have tried previously. The following
code was used to generate these graphs:

> ps.orh <- sapply(getIterationsInfo(orh.res), function(i) i$probs[,1])
> ts.orh <- sapply(getIterationsInfo(orh.res), function(i) i$probs[,2])
> PRcurve(ps.bp,ts.bp,main="PR curve",lty=1,
+ xlim=c(0,1),ylim=c(0,1),avg="vertical")
> PRcurve(ps.lof,ts.lof,add=TRUE,lty=2,avg='vertical')
> PRcurve(ps.orh,ts.orh,add=TRUE,lty=1,col='grey', avg='vertical')
> legend('topright',c('BPrule','LOF','ORh'),lty=c(1,2,1),
+ col=c('black','black','grey'))
>
> CRchart(ps.bp,ts.bp,main='Cumulative Recall curve',
+ lty=1,xlim=c(0,1),ylim=c(0,1),avg='vertical')
> CRchart(ps.lof,ts.lof,add=TRUE,lty=2,avg='vertical')
> CRchart(ps.orh,ts.orh,add=TRUE,lty=1,col='grey',avg='vertical')
> legend('bottomright',c('BPrule','LOF','ORh'),lty=c(1,2,1),
+ col=c('black','black','grey'))

As you can see, the results of the ORh method are comparable to those of LOF in terms
of the cumulative recall curve. However, regarding the PR curve, the ORh system clearly
dominates the score of LOF , with a smaller advantage over BPrule.

6.4.2 Supervised Approaches
In this section we explore several supervised classification approaches to our problem.

Given our goal of obtaining a ranking for a set of transaction reports, we will have to
constrain the selection of models. We will use only systems that are able to produce proba-
bilistic classifications. For each test case, these methods output the probability of belonging
to each of the possible classes. This type of information will allow us to rank the test reports
according to their probability of belonging to our “target” class: the fraudulent reports.

Before describing a few concrete classification algorithms that we will use, we address a
particular problem of our dataset: the imbalanced distribution of the class labels.

Detecting Fraudulent Transactions 333

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF
ORh

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF
ORh

FIGURE 6.9: The PR (left) and cumulative recall (right) curves of the ORh, LOF , and
BPrule models.

6.4.2.1 The Class Imbalance Problem

Our dataset has a very imbalanced proportion of normal and fraudulent reports. The
latter are a clear minority, roughly 8.1% of the inspected reports (i.e., supervised cases).
Problems of this type can create all sorts of difficulties in the task of obtaining predictive
models (Branco et al., 2016b). First, they require proper evaluation metrics as it is well
known that the standard accuracy (or its complement error rate) is clearly inadequate for
these domains. In effect, for our application it would be easy to obtain around 90% accuracy
by predicting that all reports are normal. Given the prevalence of this class, this would get
us to this apparently very high accuracy level. Another problem with class imbalance is that
it has a strong impact on the performance of the learning algorithms that tend to disregard
the minority class given its lack of statistical support. This is particularly problematic in
situations where this minority class is exactly the most relevant class, as is the case in our
domain.

There are several techniques that have been developed with the purpose of helping
the learning algorithms overcome the problems raised by class imbalance. They generally
group in two main families: (1) methods that bias the learning process by using specific
evaluation metrics that are more sensitive to minority class examples; and (2) sampling
methods that manipulate the training data to change the class distribution. In our attempt
to use supervised classification methods in our problem, we will use a method belonging to
this second category.

Several sampling methods have been proposed to change the class imbalance of a dataset.
Under-sampling methods select a small part of the majority class examples and add them to
the minority class cases, thereby building a dataset with a more balanced class distribution.
Over-sampling methods work the other way around, using some process to replicate the
minority class examples. Many variants of these two general sampling approaches exist.
A successful example is the SMOTE method (Chawla et al., 2002). The general idea of
this method is to artificially generate new examples of the minority class using the nearest
neighbors of these cases. Furthermore, the majority class examples are also under-sampled,
leading to a more balanced dataset.

Package UBL (Branco et al., 2016a) implements many alternative methods for address-

334 Data Mining with R: Learning with Case Studies

ing imbalanced target variable distributions for both classification and regression tasks. We
will use the functions provided by this package in our task. Below you may find a simple
illustration of using the implementation of SMOTE provided in this package.

> library(UBL)
> data(iris)
> data <- iris[, c(1, 2, 5)]
> data$Species <- factor(ifelse(data$Species == "setosa", "rare","common"))
> table(data$Species)

common rare
100 50

> newData <- SmoteClassif(Species ~ ., data, C.perc = "balance")
> table(newData$Species)

common rare
75 75

> newData2 <- SmoteClassif(Species ~ ., data, C.perc = list(common = 1,rare = 6))
> table(newData2$Species)

common rare
100 300

This small example uses the iris data to create an artificial dataset with two predictor
variables (for easier visualization) and a new target variable that has an unbalanced class
distribution. The code includes two example calls to the function SmoteClassif() from
package UBL. The function takes in the first two arguments a formula (used to know
which is the target variable) and the imbalanced data. The parameter C.per of the function
controls the way the under- and over-sampling takes place. In the first example we have set
it to the value “balance”. With this value the function tries to balance the classes of the
problem. In the second example we have indicated, for each class, the percentage of over- or
under-sampling we want. If the value is above one the function oversamples the respective
class, otherwise the class is under-sampled.

We can get a better idea of what was done by plotting the original and SMOTE’d
datasets. This is the purpose of the following code, with the results shown in Figure 6.10:

> library(ggplot2)
> ggplot(data,aes(x=Sepal.Length,y=Sepal.Width,color=Species)) +
+ geom_point() + ggtitle("Original Data")
> ggplot(newData2,aes(x=Sepal.Length,y=Sepal.Width,color=Species)) +
+ geom_point() + ggtitle("SMOTE'd Data")

In our experiments with supervised classification algorithms, we will try variants of the
methods using training sets balanced by this SMOTE method.

Further readings on class imbalance
Class imbalance is a well-studied subject. Examples of this research can be found in several workshops on this
specific topic, such as the AAAI’2000 and ICML’2003 Workshops on Imbalanced datasets, or the special issue
on Learning from Imbalanced Datasets in SIGKDD (Chawla et al., 2004). A recent survey of existing work can
be found in Branco et al. (2016b). Class imbalance has implications in several relevant subjects of predictive

Detecting Fraudulent Transactions 335

l

l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

l

l

common

rare

Original Data

ll

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

l
llll

ll
ll l

l

l

ll

lll
ll

l

l
l
ll

l

l

l

l

l
l

l

l

l

l

l ll

l

l l

l

l

l

l

l
l

lll
l

ll

l

l

l

l

l

l

ll

l
ll
ll

l

ll

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

lllll

l
l

l

l

ll

l l
ll

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

lllll

l

l

l

l
l

l
ll

l

l

l
llll

l

l
ll
l

ll

l
ll

llll

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

ll

l

l
l

l
l
l

l

l

l

ll l

l

l
l

l
l

l

l

l

l

l
l

l l
l
l

l

ll
l
ll

ll

l

l

l

l

l
l

l
l

llll

l

l l

l

l

l

ll
ll
l

l
ll

l

l

ll
l
ll

l

lll

l

llll

l

l

l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

l

l

common

rare

SMOTE'd Data

FIGURE 6.10: Using SMOTE to create more rare class examples.

modeling. Examples include the evaluation of prediction models (e.g., Provost and Fawcett (1997, 2001); Provost
et al. (1998)), or cost sensitive learning (e.g., Domingos (1999); Drummond and Holte (2006); Elkan (2001)).
Regarding sampling-based approaches to class imbalance, some reference works include Kubat and Matwin
(1997), Japkowicz (2000), and Weiss and F.Provost (2003), among others. Specifically on SMOTE, the main
references are Chawla et al. (2002) and Chawla et al. (2003).

6.4.2.2 Naive Bayes

Naive Bayes is a probabilistic classifier based on the Bayes theorem that uses very strong
assumptions on the independence between the predictors. These assumptions rarely hold
for real-world problems — and thus the name naive. Nevertheless, this method has been
successfully applied to a large number of real-world applications.

The Bayes theorem specifies that P (A|B) = P (B|A)P (A)
P (B) . Using this theorem, the Naive

Bayes classifier calculates the probability of each class for a given test case as

P (c|X1, · · · , Xp) = P (c)P (X1, · · · , Xp|c)
P (X1, · · · , Xp)

(6.3)

where c is a class and X1, · · · , Xp are the observed values of the predictors for the given test
case.

The probability P (c) can be seen as the prior expectation of the class c. P (X1, · · · , Xp|c)
is the likelihood of the test case given the class c. Finally, the denominator is the probability
of the observed evidence. This equation is calculated for all possible class values to determine
the most probable class of the test case. This decision depends only on the numerator
of the equation, as the denominator will be constant over all classes. This means that
the most probable class for a given test case is the class c that maximizes the expression
P (c)P (X1, · · · , Xp|c).

Using some statistical definitions on conditional probabilities and assuming (naively)
conditional independence between the predictors, we reduce the numerator of the fraction
to

P (c)P (X1, · · · , Xp|c) = P (c)
p∏
i=1

P (Xi|c) (6.4)

336 Data Mining with R: Learning with Case Studies

Naive Bayes implementations estimate these probabilities from the training sample using
relative frequencies. Using these estimates, the method outputs the class probabilities for
each test case according to Equation 6.3.

R has several implementations of the Naive Bayes method. We will use the function
naiveBayes() from package e1071. Package klaR (Weihs et al., 2005) also includes an
implementation of this classifier, together with interesting visualization functions.

The following function implements a workflow for our task that uses Naive Bayes to
obtain the ranking scores of a test set of reports. It uses the inspected reports from the
given training sample to obtain a Naive Bayes model. The outlier ranking is obtained using
the estimated probabilities of the class being fraud:

> NB.wf <- function(form,train,test,...) {
+ require(e1071,quietly=TRUE)
+ sup <- which(train$Insp != 'unkn')
+ data <- as.data.frame(train[sup,c('ID','Prod','Uprice','Insp')])
+ data$Insp <- factor(data$Insp,levels=c('ok','fraud'))
+ model <- naiveBayes(Insp ~ .,data, ...)
+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')], type='raw')
+ rankOrder <- order(preds[,'fraud'], decreasing=TRUE)
+ rankScore <- preds[,'fraud']
+ res <- list(testSet=test,
+ rankOrder=rankOrder,
+ probs=as.matrix(cbind(rankScore,
+ ifelse(test$Insp=='fraud',1,0))))
+ res
+ }

We can obtain the results of this workflow using a call similar to the ones used with the
previous workflows:

> nb.res <- performanceEstimation(
+ PredTask(Insp ~ . , sales),
+ Workflow("NB.wf"),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3,hldSz=0.3,strat=TRUE),
+ evaluator="evalOutlierRanking",
+ evaluator.pars=list(Threshold=0.1,
+ statsProds=globalStats))
+)

The results of the Naive Bayes model for the 10% inspection effort are the following:

> summary(nb.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using
Stratified 3 x70 %/ 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: NBsm.wf

Detecting Fraudulent Transactions 337

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh

FIGURE 6.11: The PR (left) and cumulative recall (right) curves of the Naive Bayes and
ORh methods.

-> Task: sales.Insp
*Workflow: NBsm.wf

Precision Recall avgNDTP
avg 0.013743128 0.43421053 6.3672930
std 0.001082792 0.03421053 0.7743854
med 0.013743128 0.43421053 5.9861039
iqr 0.001082792 0.03421053 0.7004955
min 0.012660336 0.40000000 5.8573920
max 0.014825920 0.46842105 7.2583829
invalid 0.000000000 0.00000000 0.0000000

The scores are considerably worse than the scores obtained previously with the unsu-
pervised methods. They are the worse scores we got till now with any of the methods we
have tried.

Next we obtain the usual curves to get a better overall perspective of the performance
of the model. We compare Naive Bayes with one of the best unsupervised models, ORh:

> ps.nb <- sapply(getIterationsInfo(nb.res), function(i) i$probs[,1])
> ts.nb <- sapply(getIterationsInfo(nb.res), function(i) i$probs[,2])
> PRcurve(ps.nb,ts.nb,main="PR curve",lty=1,
+ xlim=c(0,1),ylim=c(0,1),avg="vertical")
> PRcurve(ps.orh,ts.orh,add=TRUE,lty=2,avg='vertical')
> legend('topright',c('NaiveBayes','ORh'),lty=1,col=c('black','grey'))
>
> CRchart(ps.nb,ts.nb,main='Cumulative Recall curve',
+ lty=1,xlim=c(0,1),ylim=c(0,1),avg='vertical')
> CRchart(ps.orh,ts.orh,add=TRUE,lty=2,avg='vertical')
> legend('bottomright',c('NaiveBayes','ORh'),lty=1,col=c('black','grey'))

The graphs of Figure 6.11 show very clearly that the Naive Bayes method is inferior to
the ORh method for this particular application. Both curves indicate that ORh dominates
over all possible setups.

A possible cause for the poor performance of the Naive Bayes may be the class imbalance

338 Data Mining with R: Learning with Case Studies

of this problem. In Section 6.4.2.1 we discussed several methods for addressing this problem
and, in particular, the SMOTE algorithm. We will now apply the Naive Bayes classifier
using a training set pre-processed using SMOTE. This idea is implemented in the following
workflow function:

> NBsm.wf <- function(form,train,test,C.perc="balance",dist="HEOM",...) {
+ require(e1071,quietly=TRUE)
+ require(UBL,quietly=TRUE)

+ sup <- which(train$Insp != 'unkn')
+ data <- as.data.frame(train[sup,c('ID','Prod','Uprice','Insp')])
+ data$Insp <- factor(data$Insp,levels=c('ok','fraud'))
+ newData <- SmoteClassif(Insp ~ .,data,C.perc=C.perc,dist=dist,...)
+ model <- naiveBayes(Insp ~ .,newData)
+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],type='raw')
+ rankOrder <- order(preds[,'fraud'],decreasing=T)
+ rankScore <- preds[,'fraud']

+ res <- list(testSet=test,
+ rankOrder=rankOrder,
+ probs=as.matrix(cbind(rankScore,
+ ifelse(test$Insp=='fraud',1,0))))
+ res
+ }

The following statement obtains the hold-out estimates for this SMOTE’d version of
Naive Bayes:

> nbs.res <- performanceEstimation(
+ PredTask(Insp ~ ., sales),
+ Workflow("NBsm.wf"),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3,hldSz=0.3,strat=TRUE),
+ evaluator="evalOutlierRanking",
+ evaluator.pars=list(Threshold=0.1,
+ statsProds=globalStats))
+)

The results of this version of the Naive Bayes model for the 10% inspection effort are
the following:

> summary(nbs.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using
Stratified 3 x 70 % / 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: NBsm.wf

-> Task: sales.Insp
*Workflow: NBsm.wf

Detecting Fraudulent Transactions 339

Precision Recall avgNDTP
avg 0.013909712 0.43947368 6.4017351
std 0.001332667 0.04210526 0.8850754
med 0.013909712 0.43947368 6.0882813
iqr 0.001332667 0.04210526 0.8424183
min 0.012577045 0.39736842 5.7160437
max 0.015242379 0.48157895 7.4008803
invalid 0.000000000 0.00000000 0.0000000

These results are almost indistinguishable from the results of the “normal” Naive Bayes.
The scores are only slightly superior but still very far from the best results of the unsuper-
vised models. It seems that despite the over-sampling of the minority class carried out by
SMOTE, Naive Bayes is still not able to correctly predict which are the fraudulent reports.
Let us check the graphs for a more global perspective of the performance of this variant:

> ps.nbs <- sapply(getIterationsInfo(nbs.res), function(i) i$probs[,1])
> ts.nbs <- sapply(getIterationsInfo(nbs.res), function(i) i$probs[,2])
> PRcurve(ps.nb,ts.nb,main="PR curve",lty=1,
+ xlim=c(0,1),ylim=c(0,1), avg="vertical")
> PRcurve(ps.orh,ts.orh,add=TRUE,lty=2, avg='vertical')
> PRcurve(ps.nbs,ts.nbs,add=TRUE,lty=1, col='grey',avg='vertical')
> legend('topright',c('NaiveBayes','ORh','smoteNaiveBayes'),lty=c(1,2,1),
+ col=c('black','black','grey'))
>
> CRchart(ps.nb,ts.nb,main='Cumulative Recall curve',
+ lty=1,xlim=c(0,1),ylim=c(0,1),avg='vertical')
> CRchart(ps.orh,ts.orh,add=TRUE,lty=2,avg='vertical')
> CRchart(ps.nbs,ts.nbs,add=TRUE,lty=1,col='grey',avg='vertical')
> legend('bottomright',c('NaiveBayes','ORh','smoteNaiveBayes'),lty=c(1,2,1),
+ col=c('black','black','grey'))

The graphs of Figure 6.12 confirm the disappointing results of the SMOTE’d version
of Naive Bayes. In effect, it shows the same poor results as the standard Naive Bayes
when compared to ORh and, moreover, its performance is almost always surpassed by the
standard version.

Given these results, we might question whether the fact that we have not split the model
construction by product, as done in the unsupervised methods, may be causing difficulties
with this model. As an exercise you can try to follow this approach with Naive Bayes.
You need to adapt the code used for the unsupervised models that splits the transactions
by product to the Naive Bayes model. An additional difficulty that you will meet, if you
decide to carry out this exercise, is the fact that you will have very few supervised reports
by product. In effect, even without the restriction of being labeled, we have observed that
several products have too few transactions. If we add the restriction of only using the labeled
transactions, this problem will surely increase.

Further readings on Naive Bayes
Naive Bayes is a well-known classification algorithm studied in many research areas. Some interesting additional
references on this topic include the works by Domingos and Pazzani (1997), Rish (2001), Hand and Yu (2001);
and Kononenko (1991).

6.4.2.3 AdaBoost

AdaBoost (Freund and Shapire, 1996) is a learning algorithm that belongs to the class
of ensemble models. These types of models are, in effect, formed by a set of base models

340 Data Mining with R: Learning with Case Studies

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
smoteNaiveBayes

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
smoteNaiveBayes

FIGURE 6.12: The PR (left) and cumulative recall (right) curves for the two versions of
Naive Bayes and ORh methods.

that contribute to the prediction of the algorithm using some form of aggregation. AdaBoost
uses an adaptive boosting method to obtain the set of base models. Boosting is a general
method that can be used to improve the performance of any base algorithm provided it
is better than the random classifier. The construction of the AdaBoost model is obtained
sequentially. Each new member of the sequence is obtained by improving on the errors of the
previous model of the sequence. The improvements are obtained using a weighting schema
that increases the weights of the cases that are incorrectly classified by the previous model.
This means that the base learner is used on different distributions of the training data. After
some number of iterations of this process, the result is a set of base models obtained on
different training samples. This ensemble can be used to obtain predictions for test cases of
the original problem. The predictions are obtained by a weighted average of the predictions
of the individual base models. These weights are defined so that larger values are given to
the last models in the sequence (theoretically the ones with lower error).

The case weighting schema used by AdaBoost is interesting from the perspective of
learning with imbalance class distributions. Even if at the initial iterations the cases of the
minority class are disregarded by the models, their weight is increased and the models are
“forced” to focus on learning them. Theoretically, this should lead the resulting ensemble
to be more accurate at predicting these rare cases.

Further details on ensembles in general and boosting in particular, including AdaBoost,
were given in Section 3.4.5.5 (page 165).

AdaBoost.M1 is a particular instantiation of the AdaBoost method. It uses as base
learners classification trees with a small number of nodes. This method is implemented in
function boosting() of the extra package adabag (Alfaro et al., 2013). Another alternative
is to use an implementation available in the Weka3 data mining software. Weka is an open
source software for data mining and machine learning. This excellent tool provides many
learning algorithms with a nice graphical user interface. Compared to R, it offers several
algorithms that are not available in R, and it offers an easy and nice user interface. R, on the
other hand, offers much more flexibility in terms of software development/prototyping and
many more available modeling tools spanning a much wider set of research areas. Thanks

3http://www.cs.waikato.ac.nz/ml/weka/.

Detecting Fraudulent Transactions 341

to the R extra package RWeka (Hornik et al., 2009), we can easily use most Weka facilities
within R. Installing this package will also install Weka on your computer, provided you
already have Java installed on it. The installation process will complain and give you clear
instructions on what to do if that is not your case. We strongly suggest that after installing
the package, you read its help pages to get an idea of the many methods that are available
through RWeka.

The function AdaBoostM1() provided in package RWeka obtains
AdaBoost.M1 classification models using the Weka implementation of this algorithm. Com-
pared to the implementation of the package adabag, this function is significantly faster to
run, which in reasonably large datasets like ours may pay off depending on the setup. By
default, the Weka implementation uses decision stumps as the base learners. These models
are a special type of classification trees formed by a single test node. That is not the case
of the adabag implementation that uses full trees, and that may explain the differences in
computational efficiency. Several parameters of the function can be changed if required. The
function WOW() allows you to check which parameters are available for a particular Weka
learning algorithm. The following is an example of its use for our target model:

> library(RWeka)
> WOW(AdaBoostM1)

-P <num>
Percentage of weight mass to base training on. (default
100, reduce to around 90 speed up)

Number of arguments: 1.
-Q Use resampling for boosting.
-S <num>

Random number seed. (default 1)
Number of arguments: 1.
-I <num>

Number of iterations. (default 10)
Number of arguments: 1.
-W Full name of base classifier. (default:

weka.classifiers.trees.DecisionStump)
Number of arguments: 1.
-output-debug-info

If set, classifier is run in debug mode and may output
additional info to the console

-do-not-check-capabilities
If set, classifier capabilities are not checked before
classifier is built (use with caution).

Options specific to classifier weka.classifiers.trees.DecisionStump:

-output-debug-info
If set, classifier is run in debug mode and may output
additional info to the console

-do-not-check-capabilities
If set, classifier capabilities are not checked before
classifier is built (use with caution).

The value of some parameter can be changed when we call the respective function with
the help of the parameter control and the function Weka_control(). Here is a small
illustrative example of applying AdaBoostM1() to the well-known iris dataset, using 100
iterations instead of the default 10:

342 Data Mining with R: Learning with Case Studies

> data(iris)
> idx <- sample(150,100)
> model <- AdaBoostM1(Species ~ .,iris[idx,], control=Weka_control(I=100))
> preds <- predict(model,iris[-idx,])
> head(preds)

[1] setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica

> table(preds,iris[-idx,'Species'])

preds setosa versicolor virginica
setosa 18 0 0
versicolor 0 15 1
virginica 0 0 16

The following function implements a workflow using the AdaBoost.M1 algorithm. As
with the Naive Bayes algorithm, we will apply the AdaBoost.M1 method to all transactions
— and not individually by product.

> ab.wf <- function(form,train,test,ntrees=100,...) {
+ require(RWeka,quietly=TRUE)
+ sup <- which(train$Insp != 'unkn')
+ data <- as.data.frame(train[sup,c('ID','Prod','Uprice','Insp')])
+ data$Insp <- factor(data$Insp,levels=c('ok','fraud'))
+ model <- AdaBoostM1(Insp ~ .,data,
+ control=Weka_control(I=ntrees))
+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],
+ type='probability')
+ rankOrder <- order(preds[,"fraud"],decreasing=TRUE)
+ rankScore <- preds[,"fraud"]

+ res <- list(testSet=test,
+ rankOrder=rankOrder,
+ probs=as.matrix(cbind(rankScore,
+ ifelse(test$Insp=='fraud',1,0))))
+ res
+ }

Finally, we have the code to run the hold-out experiments for this workflow:

> ab.res <- performanceEstimation(
+ PredTask(Insp ~ .,sales),
+ Workflow("ab.wf"),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3,hldSz=0.3,strat=TRUE),
+ evaluator="evalOutlierRanking",
+ evaluator.pars=list(Threshold=0.1,
+ statsProds=globalStats))
+)

The results of AdaBoost for the 10% effort are the following:

Detecting Fraudulent Transactions 343

> summary(ab.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using
Stratified 3 x70 %/ 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: ab.wf

-> Task: sales.Insp
*Workflow: ab.wf

Precision Recall avgNDTP
avg 0.0204897551 0.64736842 7.0543305
std 0.0004997501 0.01578947 0.3744884
med 0.0204897551 0.64736842 6.9309492
iqr 0.0004997501 0.01578947 0.3589210
min 0.0199900050 0.63157895 6.7571001
max 0.0209895052 0.66315789 7.4749422
invalid 0.0000000000 0.00000000 0.0000000

These results are among the best we have seen thus far. In effect, these scores compare
well with the best scores we have obtained with both LOF and ORh. Moreover, we note
that this model is using only a very small part of the given reports (the inspected ones) to
obtain its rankings. Despite this, it achieved a robust 64% of recall with a good 7 score in
terms of average NDTP .

The PR and cumulative recall curves can be obtained as before:

> ps.ab <- sapply(getIterationsInfo(ab.res), function(i) i$probs[,1])
> ts.ab <- sapply(getIterationsInfo(ab.res), function(i) i$probs[,2])
> PRcurve(ps.nb,ts.nb,main="PR curve",lty=1,
+ xlim=c(0,1),ylim=c(0,1), avg="vertical")
> PRcurve(ps.orh,ts.orh,add=TRUE,lty=1, color='grey', avg='vertical')
> PRcurve(ps.ab,ts.ab,add=TRUE,lty=2,avg='vertical')
> legend('topright',c('NaiveBayes','ORh','AdaBoostM1'),
+ lty=c(1,1,2),col=c('black','grey','black'))
>
> CRchart(ps.nb,ts.nb,main='Cumulative Recall curve',
+ lty=1,xlim=c(0,1),ylim=c(0,1),avg='vertical')
> CRchart(ps.orh,ts.orh,add=TRUE,lty=1,color='grey',avg='vertical')
> CRchart(ps.ab,ts.ab,add=TRUE,lty=2,avg='vertical')
> legend('bottomright',c('NaiveBayes','ORh','AdaBoostM1'),
+ lty=c(1,1,2),col=c('black','grey','grey'))

The graphs in Figure 6.13 confirm the excellent performance of the AdaBoost.M1 algo-
rithm, particularly in terms of the cumulative recall curve. This curve shows that for most
effort levels, AdaBoost.M1 matches the score obtained by ORh. In terms of precision/recall,
the performance of AdaBoost.M1 is not that interesting, particularly for low levels of recall.
However, for higher recall levels, it clearly matches the precision of the best scores we have
obtained thus far. Moreover, we note that these higher recall levels are exactly what matters
for this application.

Summarizing, we have seen that AdaBoost.M1 is a very competitive algorithm for this

344 Data Mining with R: Learning with Case Studies

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
AdaBoostM1

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
AdaBoostM1

FIGURE 6.13: The PR (left) and cumulative recall (right) curves of the Naive Bayes,
ORh, and AdaBoost.M1 methods.

application. Despite the difficulties of class imbalance, this ensemble method has managed
to achieve top performance with the rankings it produces.

Further readings on boosting
The AdaBoost.M1 algorithm is an example of a wider class of boosting algorithms that try to obtain good
predictive performance using an ensemble of weak learners (learners that are marginally better than random
guessing). The reference work on AdaBoost is the paper by Freund and Shapire (1996). Other important
historical references on boosting are the works by Shapire (1990) and Freund (1990). Some important analyses
can also be found in Breiman (1998), Friedman (2002), and Rätsch et al. (2001). A very good description of
boosting can be found in Chapter 10 of the book by Hastie et al. (2001).

6.4.3 Semi-Supervised Approaches
This section describes an attempt to use both inspected and non-inspected reports to

obtain a classification model to detect fraudulent reports. This means we need some form
of semi-supervised classification method (see Section 6.3.1.3).

Self-training (e.g., Rosenberg et al. (2005); Yarowsky (1995)) is a well-known form of
semi-supervised classification. This approach consists of building an initial classifier using
the given labeled cases. This classifier is then used to predict the labels of the unlabeled
cases in the given training set. The cases for which the classifier has very high confidence
in the predicted label are added to the labeled set, together with their predicted labels.
With this larger dataset, a new classifier is obtained and so on. This iterative process
is continued until some criteria are met. The last classifier is the result of the learning
process. This methodology can be applied to any base classification algorithm, provided it
is able to output some indication of its confidence in the predictions. This is the case of
probabilistic classifiers like the two we described in Section 6.4.2. The self-training method
has three relevant parameters: (1) the base learner, (2) the threshold on the confidence of
classifications that determines which cases are added to the new training set, and (3) the
criteria to decide when to terminate the self-training process. In our book package we have
included a general function (SelfTrain()) that can be used with any probabilistic classifier
to learn a model based on a training set with both labeled and unlabeled cases.

Detecting Fraudulent Transactions 345

Below you can find a simple example that illustrates its use with the Iris dataset. We
have artificially created a few unlabeled examples in this dataset to make semi-supervised
classification potentially useful:

> library(DMwR2)
> library(e1071)
> data(iris)
> set.seed(1234)
> idx <- sample(150, 100)
> tr <- iris[idx,]
> ts <- iris[-idx,]
> nb <- naiveBayes(Species ~ ., tr)
> table(predict(nb, ts), ts$Species)

setosa versicolor virginica
setosa 12 0 0
versicolor 0 21 1
virginica 0 0 16

> trST <- tr
> nas <- sample(100, 90)
> trST[nas, "Species"] <- NA
> func <- function(m, d) {
+ p <- predict(m, d, type = "raw")
+ data.frame(cl = colnames(p)[apply(p, 1, which.max)],
+ p = apply(p, 1, max))
+ }
> nbSTbase <- naiveBayes(Species ~ ., trST[-nas,])
> table(predict(nbSTbase, ts), ts$Species)

setosa versicolor virginica
setosa 12 0 0
versicolor 0 18 2
virginica 0 3 15

> nbST <- SelfTrain(Species ~ ., trST,
+ learner="naiveBayes", learner.pars=list(),
+ pred="func")
> table(predict(nbST, ts), ts$Species)

setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 2
virginica 0 1 15

The above code obtains three different Naive Bayes models. The first (nb) is obtained
with a sample of 100 labeled cases. This set of 100 cases is then transformed in another
set where 90 of the cases were unlabeled by setting the target variable to NA. Using the
remaining ten labeled cases we obtain the second Naive Bayes model (nbSTbase). Finally,
the dataset with the mixed labeled and unlabeled cases is given to the SelfTrain() function
and another model (nbST) obtained. As you can observe, in this small example, the self-

346 Data Mining with R: Learning with Case Studies

trained model is able to almost reach the same level of performance as the initial model
obtained with all 100 labeled cases.

In order to use SelfTrain(), the user must create a function (func() on the code
above) that given a model and a test set is able to return a data frame with two columns
and the same number of rows as the test set. The first column of this data frame contains
the labels predicted for the cases, while the second column has the respective probability of
that classification. This needs to be defined outside the SelfTrain() function because not
all predict methods use the same syntax to obtain probabilistic classifications.

The SelfTrain() function has several parameters that control the iterative process.
Parameter thrConf (defaulting to 0.9) sets the required probability for an unlabeled case
to be merged into the labeled set. Parameter maxIts (default value of 10) allows the user
to indicate a maximum number of self-training iterations, while parameter percFull (de-
fault value of 1) indicates that the process should stop if the labeled set reaches a certain
percentage of the given dataset. The self-training iterative process finishes if either there
are no classifications that reach the required probability level, if the maximum number of
iterations is reached, or if the size of the current labeled training set is already the target
percentage of the given dataset. A final note on the fact that the SelfTrain() function
requires that the unlabeled cases be signaled as such by having the value NA on the target
variable.

We have applied this self-training strategy with the Naive Bayes model as base classifier.
The following functions implement a workflow using this self-trained Naive Bayes model and
run the hold-out experiments with this workflow. A word of warning is in order concerning
the computational resources that are necessary for carrying out these experiments. Depend-
ing on your hardware, this can take some time, although always on the order of minutes (at
least on my average computer):

> pred.nb <- function(m,d) {
+ p <- predict(m,d,type='raw')
+ data.frame(cl=colnames(p)[apply(p,1,which.max)],
+ p=apply(p,1,max)
+)
+ }
>
> nb.st.wf <- function(form,train,test,...) {
+ require(e1071,quietly=TRUE)
+ require(DMwR2, quietly=TRUE)
+ train <- as.data.frame(train[,c('ID','Prod','Uprice','Insp')])
+ train[which(train$Insp == 'unkn'),'Insp'] <- NA
+ train$Insp <- factor(train$Insp,levels=c('ok','fraud'))
+ model <- SelfTrain(form,train,
+ learner='naiveBayes', learner.pars=list(),
+ pred='pred.nb')
+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],
+ type='raw')

+ rankOrder <- order(preds[,'fraud'],decreasing=TRUE)
+ rankScore <- preds[,"fraud"]

+ res <- list(testSet=test,
+ rankOrder=rankOrder,
+ probs=as.matrix(cbind(rankScore,
+ ifelse(test$Insp=='fraud',1,0))))
+ res

Detecting Fraudulent Transactions 347

+ }

> nb.st.res <- performanceEstimation(
+ PredTask(Insp ~ .,sales),
+ Workflow("nb.st.wf"),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3,hldSz=0.3,strat=TRUE),
+ evaluator="evalOutlierRanking",
+ evaluator.pars=list(Threshold=0.1,
+ statsProds=globalStats))
+)

The results of this self-trained model are the following:

> summary(nb.st.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using
Stratified 3 x70 %/ 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: nb.st.wf

-> Task: sales.Insp
*Workflow: nb.st.wf

Precision Recall avgNDTP
avg 0.013521017 0.42719298 7.0820716
std 0.001130846 0.03572879 0.7413338
med 0.013659837 0.43157895 6.7859004
iqr 0.001124438 0.03552632 0.6955485
min 0.012327170 0.38947368 6.5346088
max 0.014576045 0.46052632 7.9257057
invalid 0.000000000 0.00000000 0.0000000

These results are rather disappointing. They are very similar to the results obtained
with a Naive Bayes model learned only on the labeled data. With the exception of the
average NDTP , which has improved slightly, all other statistics are roughly the same, and
thus still far from the best scores we have obtained so far.

Figure 6.14 shows the PR and cumulative recall curves of this model as well as those of
the standard Naive Bayes and ORh methods. They were obtained with the following code:

> ps.nb.st <- sapply(getIterationsInfo(nb.st.res), function(i) i$probs[,1])
> ts.nb.st <- sapply(getIterationsInfo(nb.st.res), function(i) i$probs[,2])
> PRcurve(ps.nb,ts.nb,main="PR curve",lty=1,
+ xlim=c(0,1),ylim=c(0,1), avg="vertical")
> PRcurve(ps.orh,ts.orh,add=TRUE,lty=1, color='grey', avg='vertical')
> PRcurve(ps.nb.st,ts.nb.st,add=TRUE,lty=2,avg='vertical')
> legend('topright',c('NaiveBayes','ORh','NaiveBayes-ST'),
+ lty=c(1,1,2),col=c('black','grey','black'))
>

348 Data Mining with R: Learning with Case Studies

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
NaiveBayes−ST

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
NaiveBayes−ST

FIGURE 6.14: The PR (left) and cumulative recall (right) curves of the self-trained Naive
Bayes, together with the standard Naive Bayes and ORh methods.

> CRchart(ps.nb,ts.nb,main='Cumulative Recall curve',
+ lty=1,xlim=c(0,1),ylim=c(0,1),avg='vertical')
> CRchart(ps.orh,ts.orh,add=TRUE,lty=1,color='grey',avg='vertical')
> CRchart(ps.nb.st,ts.nb.st,add=TRUE,lty=2,avg='vertical')
> legend('bottomright',c('NaiveBayes','ORh','NaiveBayes-ST'),
+ lty=c(1,1,2),col=c('black','grey','grey'))

The graphs confirm the disappointing performance of the self-trained Naive Bayes clas-
sifier. For this particular problem, this semi-supervised classifier is clearly not competitive
even with the standard Naive Bayes model obtained with a considerable smaller dataset.

We have also used the self-training approach with the AdaBoost.M1 algorithm. The
following code describes the workflow function and the respective experiments:

> pred.ada <- function(m,d) {
+ p <- predict(m,d,type='probability')
+ data.frame(cl=colnames(p)[apply(p,1,which.max)],
+ p=apply(p,1,max)
+)
+ }
>
> ab.st.wf <- function(form,train,test,ntrees=100,...) {
+ require(RWeka,quietly=TRUE)
+ require(DMwR2,quietly=TRUE)
+ train <- as.data.frame(train[,c('ID','Prod','Uprice','Insp')])
+ train[which(train$Insp == 'unkn'),'Insp'] <- NA
+ train$Insp <- factor(train$Insp,levels=c('ok','fraud'))
+ model <- SelfTrain(form,train,
+ learner='AdaBoostM1',
+ learner.pars=list(control=Weka_control(I=ntrees)),
+ pred='pred.ada')
+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],
+ type='probability')

Detecting Fraudulent Transactions 349

+ rankOrder <- order(preds[,'fraud'],decreasing=T)
+ rankScore <- preds[,"fraud"]

+ res <- list(testSet=test,
+ rankOrder=rankOrder,
+ probs=as.matrix(cbind(rankScore,
+ ifelse(test$Insp=='fraud',1,0))))
+ res
+ }

> ab.st.res <- performanceEstimation(
+ PredTask(Insp ~ .,sales),
+ Workflow("ab.st.wf"),
+ EstimationTask(metrics=c("Precision","Recall","avgNDTP"),
+ method=Holdout(nReps=3,hldSz=0.3,strat=TRUE),
+ evaluator="evalOutlierRanking",
+ evaluator.pars=list(Threshold=0.1,
+ statsProds=globalStats))
+)

The results of the self-trained AdaBoost for the 10% effort are the following:

> summary(ab.st.res)

== Summary of a Hold Out Performance Estimation Experiment ==

Task for estimating Precision,Recall,avgNDTP using
Stratified 3 x70 %/ 30 % Holdout
Run with seed = 1234

* Predictive Tasks :: sales.Insp
* Workflows :: ab.st.wf

-> Task: sales.Insp
*Workflow: ab.st.wf

Precision Recall avgNDTP
avg 0.021294908 0.67280702 7.9596032
std 0.001087055 0.03434521 0.8194148
med 0.021655839 0.68421053 7.8507389
iqr 0.001041146 0.03289474 0.8139729
min 0.020073297 0.63421053 7.2000624
max 0.022155589 0.70000000 8.8280083
invalid 0.000000000 0.00000000 0.0000000

Although not impressive, these scores represent a slight improvement over the Ad-
aBoost.M1 model obtained using only the labeled data. While precision stayed basically
the same, there were small improvements in recall and average NDTP .

Figure 6.15 shows the curves of this self-trained model, together with the standard
AdaBoost.M1 and ORh methods. The curves were obtained as usual.

> ps.ab.st <- sapply(getIterationsInfo(ab.st.res), function(i) i$probs[,1])
> ts.ab.st <- sapply(getIterationsInfo(ab.st.res), function(i) i$probs[,2])

350 Data Mining with R: Learning with Case Studies

PR curve

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ORh
AdaBoostM1
AdaBoostM1−ST

Cumulative Recall curve

Rate of positive predictions

A
ve

ra
ge

 r
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ORh
AdaBoostM1
AdaBoostM1−ST

FIGURE 6.15: The PR (left) and cumulative recall (right) curves of AdaBoost.M1 with
self-training together with ORh and standard AdaBoost.M1 methods.

> PRcurve(ps.orh,ts.orh,main="PR curve",lty=1,
+ xlim=c(0,1),ylim=c(0,1), avg="vertical")
> PRcurve(ps.ab,ts.ab,add=TRUE,lty=1, color='grey', avg='vertical')
> PRcurve(ps.ab.st,ts.ab.st,add=TRUE,lty=2,avg='vertical')
> legend('topright',c('ORh','AdaBoostM1','AdaBoostM1-ST'),
+ lty=c(1,1,2),col=c('black','grey','black'))
>
> CRchart(ps.orh,ts.orh,main='Cumulative Recall curve',
+ lty=1,xlim=c(0,1),ylim=c(0,1),avg='vertical')
> CRchart(ps.ab,ts.ab,add=TRUE,lty=1,color='grey',avg='vertical')
> CRchart(ps.ab.st,ts.ab.st,add=TRUE,lty=2,avg='vertical')
> legend('bottomright',c('ORh','AdaBoostM1','AdaBoostM1-ST'),
+ lty=c(1,1,2),col=c('black','grey','grey'))

The cumulative recall curve confirms that the self-trained AdaBoost.M1 is among the
best models from the ones we have considered for this fraud detection problem. In particular,
for inspection efforts above 15% it dominates the other systems in terms of the proportion
of frauds that it detects. In terms of precision, the scores are not that interesting, but as we
mentioned before, this is not necessarily bad if the unlabeled reports that the model puts
on higher positions in the ranking are confirmed as frauds after being audited.

6.5 Summary
The main goal of this chapter was to introduce the reader to a new class of data mining

problems: outliers ranking. In particular, we have used a data set that enabled us to tackle
this task from different perspectives. Namely, we used supervised, unsupervised and semi-
supervised approaches to the problem. The application used in this chapter can be regarded
as an instantiation of the general problem of finding unusual observations of a phenomenon

Detecting Fraudulent Transactions 351

having a limited amount of resources. Several real-world applications map into this general
framework, such as detecting frauds in credit card transactions, telecommunications, tax
declarations, etc. In the area of security, there are also several applications of this general
concept of outlier ranking.

In methodological terms we have introduced the reader to a few new topics:

• Outlier detection and ranking

• Clustering methods

• Semi-supervised learning

• Semi-supervised classification through self-training

• Imbalanced class distributions and methods for handling this type of problems

• Naive Bayes classifiers

• AdaBoost classifiers

• Precision/recall and cumulative recall curves

• Holdout experiments

From the perspective of learning R, we have illustrated,

• How to obtain several evaluation statistics and how to visualize them using the ROCR
package

• How to obtain holdout estimates of evaluation metrics

• How to obtain local outlier factors with the LOF method

• How to obtain outlier rankings using the ORh method

• How to fight class imbalance through SMOTE

• How to obtain Naive Bayes classification models

• How to obtain AdaBoost.M1 classifiers

• How to use methods from the Weka data mining system with the RWeka package

• How to apply a classifier to a semi-supervised dataset using self-training

http://taylorandfrancis.com

Chapter 7
Classifying Microarray Samples

The fourth case study is from the area of bioinformatics. Namely, we will address the
problem of classifying microarray samples into a set of alternative classes. More specifically,
given a microarray probe that describes the gene expression levels of a patient, we aim
to classify this patient into a pre-defined set of genetic mutations of acute lymphoblastic
leukemia. This case study addresses several new data mining topics. The main focus, given
the characteristics of this type of dataset, is on feature selection, that is, how to reduce
the number of features that describe each observation. In our approach to this particular
application we will illustrate several general methods for feature selection. Other new data
mining topics addressed in this chapter include k-nearest neighbors classifiers, bootstrap
estimates, and some new variants of ensemble models.

7.1 Problem Description and Objectives
Bioinformatics is one of the main areas of application of R. There is even an associated

project based on R, with the goal of providing a large set of analysis tools for this domain.
The project is called Bioconductor.1 This case study will use the tools provided by this
project to address a supervised classification problem.

7.1.1 Brief Background on Microarray Experiments
One of the main difficulties faced by someone coming from a background outside the

biological sciences is the huge amount of “new” terms used in bioinformatics. In this very
brief background section, we try to introduce the reader to some of the “jargon” in this field
and also to provide some mapping to more “standard” data mining terminology.

The analysis of differential gene expression is one of the key applications of DNA mi-
croarray experiments. Gene expression microarrays allow us to characterize a set of samples
(e.g., individuals) according to their expression levels on a large set of genes. In this area
a sample is thus an observation (case) of some phenomenon under study. Microarray ex-
periments are the means used to measure a set of “variables” for these observations. The
variables here are a large set of genes. For each variable (gene), these experiments measure
an expression value. In summary, a dataset is formed by a set of samples (the cases) for
which we have measured expression levels on a large set of genes (the variables). If these
samples have some disease state associated with them, we may try to approximate the un-
known function that maps gene expression levels into disease states. This function can be
approximated using a dataset of previously analyzed samples. This is an instantiation of su-
pervised classification tasks, where the target variable is the disease type. The observations

1http://www.bioconductor.org.

353

354 Data Mining with R: Learning with Case Studies

in this problem are samples (microarrays, individuals), and the predictor variables are the
genes for which we measure a value (the expression level) using a microarray experiment.
The key hypothesis here is thus that different disease types can be associated with different
gene expression patterns and, moreover, that by measuring these patterns using microarrays
we can accurately predict what the disease type of an individual is.

There are several types of technologies created with the goal of obtaining gene expression
levels on some sample. Short oligonucleotide arrays are an example of these technologies.
The output of oligonucleotide chips is an image that after several pre-processing steps can be
mapped into a set of gene expression levels for quite a large set of genes. The bioconductor
project has several R packages devoted to these pre-processing steps that involve issues like
the analysis of the images resulting from the oligonucleotide chips, normalization tasks, and
several other steps that are necessary until we reach a set of gene expression scores. In this
case study we do not address these initial steps. The interested reader is directed to several
informative sources available at the bioconductor site as well as several books (e.g., Hahne
et al. (2008)).

In this case study, our starting point will be a matrix of gene expression levels that
results from these pre-processing steps. This is the information on the predictor variables
for our observations. As we will see, there are usually many more predictor variables being
measured than samples; that is, we have more predictors than observations. This is a typical
characteristic of microarray datasets. Another particularity of these expression matrices is
that they appear transposed when compared to what is “standard” for datasets. This means
that the rows will represent the predictors (i.e., genes), while the columns are the observa-
tions (the samples). For each of the samples we will also need the associated classification.
In our case this will be an associated type of mutation of a disease. There may also exist
information on other covariates (e.g., sex and age of the individuals being sampled, etc.).

7.1.2 The ALL Dataset
The dataset we will use comes from a study on acute lymphoblastic leukemia (Chiaretti

et al., 2004; Li, 2009). The data consists of microarray samples from 128 individuals with
this type of disease. Actually, there are two different types of tumors among these samples:
T-cell ALL (33 samples) and B-cell ALL (95 samples).

We will focus our study on the data concerning the B-cell ALL samples. Even within this
latter group of samples we can distinguish different types of mutations. Namely, ALL1/AF4,
BCR/ABL, E2A/PBX1, p15/p16 and also individuals with no cytogenetic abnormalities.
In our analysis of the B-cell ALL samples we will discard the p15/p16 mutation as we
only have one sample. Our modeling goal is to be able to predict the type of mutation of
an individual given its microarray assay. Given that the target variable is nominal with 4
possible values, we are facing a supervised classification task.

7.2 The Available Data
The ALL dataset is part of the bioconductor set of packages. To use it, we need to install

at least a set of basic packages from bioconductor. We have not included the dataset in our
book package because the dataset is already part of the R “universe”.

To install a set of basic bioconductor packages and the ALL dataset, we need to carry
out the following instructions that assume we have a working Internet connection:

Classifying Microarray Samples 355

> source("http://bioconductor.org/biocLite.R")
> biocLite()
> biocLite("ALL")

This only needs to be done for the first time. Once you have these packages installed, if
you want to use the dataset, you simply need to do

> library(Biobase)
> library(ALL)
> data(ALL)

These instructions load the Biobase (Gentleman et al., 2004) and the ALL (Gentleman
et al., 2010) packages. We then load the ALL dataset, that creates an object of a special class
(ExpressionSet) defined by Bioconductor. This class of objects contains significant infor-
mation concerning a microarray dataset. There are several associated functions to handle
this type of object. If you ask R about the content of the ALL object, you get the following
information:

> ALL

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 128 samples

element names: exprs
protocolData: none
phenoData

sampleNames: 01005 01010 ... LAL4 (128 total)
varLabels: cod diagnosis ... date last seen (21 total)
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790
Annotation: hgu95av2

The information is divided in several groups. First we have the assay data with the gene
expression levels matrix. For this dataset we have 12,625 genes and 128 samples. The object
also contains a lot of meta-data about the samples of the experiment. This includes the
phenoData part with information on the sample names and several associated co-variates.
It also includes information on the features (i.e., genes) as well as annotations of the genes
from biomedical databases. Finally, the object also contains information that describes the
experiment.

There are several functions that facilitate access to the information in the Expression-
Set objects. We give a few examples below. We start by obtaining some information on the
co-variates associated to each sample:

> pD <- phenoData(ALL)
> varMetadata(pD)

labelDescription
cod Patient ID
diagnosis Date of diagnosis
sex Gender of the patient
age Age of the patient at entry
BT does the patient have B-cell or T-cell ALL

356 Data Mining with R: Learning with Case Studies

remission Complete remission(CR), refractory(REF) or NA. Derived from CR
CR Original remisson data
date.cr Date complete remission if achieved
t(4;11) did the patient have t(4;11) translocation. Derived from citog
t(9;22) did the patient have t(9;22) translocation. Derived from citog
cyto.normal Was cytogenetic test normal? Derived from citog
citog original citogenetics data, deletions or t(4;11), t(9;22) status
mol.biol molecular biology
fusion protein which of p190, p210 or p190/210 for bcr/able
mdr multi-drug resistant
kinet ploidy: either diploid or hyperd.
ccr Continuous complete remission? Derived from f.u
relapse Relapse? Derived from f.u
transplant did the patient receive a bone marrow transplant? Derived from f.u
f.u follow up data available
date last seen date patient was last seen

> table(ALL$BT)

B B1 B2 B3 B4 T T1 T2 T3 T4
5 19 36 23 12 5 1 15 10 2

> table(ALL$mol.biol)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
10 37 5 74 1 1

> table(ALLBT, ALLmol.bio)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
B 0 2 1 2 0 0
B1 10 1 0 8 0 0
B2 0 19 0 16 0 1
B3 0 8 1 14 0 0
B4 0 7 3 2 0 0
T 0 0 0 5 0 0
T1 0 0 0 1 0 0
T2 0 0 0 15 0 0
T3 0 0 0 9 1 0
T4 0 0 0 2 0 0

The first two statements obtain the names and descriptions of the existing co-variates.
We then obtain some information on the distribution of the samples across the two main
co-variates: the BT variable that determines the type of acute lymphoblastic leukemia, and
the mol.bio variable that describes the cytogenetic abnormality found on each sample (NEG
represents no abnormality).

We can also obtain some information on the genes and samples:

> featureNames(ALL)[1:10]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"
[6] "1005_at" "1006_at" "1007_s_at" "1008_f_at" "1009_at"

Classifying Microarray Samples 357

> sampleNames(ALL)[1:5]

[1] "01005" "01010" "03002" "04006" "04007"

This code shows the names of the first 10 genes and the names of the first 5 samples.
As mentioned before, we will focus our analysis of this data on the B-cell ALL cases and

in particular on the samples with a subset of the mutations, which will be our target class.
The code below obtains the subset of data that we will use:

> tgt.cases <- which(ALL$BT %in% levels(ALL$BT)[1:5] &
+ ALL$mol.bio %in% levels(ALL$mol.bio)[1:4])
> ALLb <- ALL[,tgt.cases]
> ALLb

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 94 samples

element names: exprs
protocolData: none
phenoData

sampleNames: 01005 01010 ... LAL5 (94 total)
varLabels: cod diagnosis ... date last seen (21 total)
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790
Annotation: hgu95av2

The first statement obtains the set of cases that we will consider. These are the samples
with specific values of the BT and mol.bio variables. Check the calls to the table() function
we have shown before to see which ones we are selecting. We then subset the original ALL
object to obtain the 94 samples that will enter our study. This subset of samples only
contains some of the values of the BT and mol.bio variables. In this context, we should
update the available levels of these two factors on our new ALLb object:

> ALLb$BT <- factor(ALLb$BT)
> ALLb$mol.bio <- factor(ALLb$mol.bio)

The ALLb object will be the dataset we will use throughout this chapter. It may even-
tually be a good idea to save this object in a local file on your computer, so that you do
not need to repeat these pre-processing steps in case you want to start the analysis from
scratch:

> save(ALLb, file = "myALL.Rdata")

7.2.1 Exploring the Dataset
The function exprs() allows us to access the gene expression levels matrix:

> es <- exprs(ALLb)
> dim(es)

[1] 12625 94

358 Data Mining with R: Learning with Case Studies

The matrix of our dataset has 12,625 rows (the genes/features) and 94 columns (the
samples/cases).

In terms of dimensionality, the main challenge of this problem is the fact that there are far
too many variables (12,625) for the number of available cases (94). With these dimensions,
most modeling techniques will have a hard time obtaining any meaningful result. In this
context, one of our first goals will be to reduce the number of variables, that is, eliminate
some genes from our analysis. To help in this task, we start by exploring the expression
levels data.

The following instruction tells us that most expression values are between 4 and 7:

> summary(as.vector(es))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.985 4.122 5.469 5.624 6.829 14.040

A better overview of the distribution of the expression levels can be obtained graphically.
We will use a function from package genefilter (Gentleman et al., 2010). This package must
be installed before using it. Please notice that this is a Bioconductor package, and these
packages are not installed from the standard R repository. The easiest way to install a
Bioconductor package is through the script provided by this project for this effect:

> source("http://bioconductor.org/biocLite.R")
> biocLite("genefilter")

The first instruction loads the script and then we use it to download and install the
package. We can now proceed with the above-mentioned graphical display of the distribution
of the expression levels, whose results are shown in Figure 7.1,

> library(genefilter)
> library(ggplot2)
> exprVs <- data.frame(exprVal=as.vector(es))
> ds <- data.frame(Stat=c("1stQ","Median","3rdQ","Shorth"),
+ Value=c(quantile(exprVs$exprVal,
+ probs=c(0.25, 0.5, 0.75)),
+ shorth(exprVs$exprVal)),
+ Color=c("red","green","red","yellow"))
> ggplot(exprVs,aes(x=exprVal)) + geom_histogram(fill="lightgrey") +
+ geom_vline(data=ds,aes(xintercept=Value,color=Color)) +
+ geom_text(data=ds,aes(x=Value-0.2,y=0,label=Stat,colour=Color),
+ angle=90,hjust="left") +
+ xlab("Expression Levels") + guides(colour="none", fill="none")

We start by obtaining a data frame containing a few statistics that we will add to a
histogram of the expression levels. Namely, the 1st and 3rd quartiles, the median and the
shorth. This last statistic is a robust estimator of the centrality of a continuous distribution
that is implemented by the function shorth() of package genefilter. It is calculated as
the mean of the values in a central interval containing 50% of the observations (i.e., the
inter-quartile range). We use geom_histogram() to obtain the histogram of the expression
levels and then use geom_vline() and geom_text() to add vertical lines and text labels
for each statistic, respectively. As we can observe from the figure, the gene expression levels
are reasonably packaged around the centrality statistics, with a few large values.

Are the distributions of the gene expression levels of the samples with a particular
mutation different from each other? The following code answers this question:

Classifying Microarray Samples 359

1s
tQ

M
ed

ia
n

3r
dQ

S
ho

rt
h

0

25000

50000

75000

100000

5 10
Expression Levels

co
un

t

FIGURE 7.1: The distribution of the gene expression levels.

> sapply(levels(ALLb$mol.bio),
+ function(x) summary(as.vector(es[, which(ALLb$mol.bio == x)])))

ALL1/AF4 BCR/ABL E2A/PBX1 NEG
Min. 2.266 2.195 2.268 1.985
1st Qu. 4.141 4.124 4.152 4.111
Median 5.454 5.468 5.497 5.470
Mean 5.621 5.627 5.630 5.622
3rd Qu. 6.805 6.833 6.819 6.832
Max. 14.030 14.040 13.810 13.950

As we see, things are rather similar across these subsets of samples and, moreover, they
are similar to the global distribution of expression levels. As an exercice you may try to
produce a graph that shows several plots similar to that shown in Figure 7.1, one for each
mutation, using ggplot facets.

7.3 Gene (Feature) Selection
Feature selection is an important task in many data mining problems. The general

problem is to select the subset of features (variables) of a problem that is more relevant for
the analysis of the data we plan to carry out. This can be regarded as an instantiation of the
more general problem of deciding the weights (importance) of the features in the subsequent

360 Data Mining with R: Learning with Case Studies

modeling stages. Generally, there are two types of approaches to feature selection: (1) filters
and (2) wrappers. As mentioned in Section 3.3.4.2 (page 82) the former use statistical
properties of the features to select the final set, while the latter include the data mining tools
in the selection process. Filter approaches are carried out in a single step, while wrappers
typically involve a search process where we iteratively look for the set of features that is more
adequate for the data mining tools we are applying. Feature wrappers have a clear overhead
in terms of computational resources. They involve running the full filter+model+evaluate
cycle several times until some convergence criteria are met. This means that for very large
data mining problems, they may not be adequate if time is critical. Yet, they will find a
solution that is theoretically more adequate for the used modeling tools. The strategies we
use and describe in this section can be seen as filter approaches.

7.3.1 Simple Filters Based on Distribution Properties
The first gene filtering methods we describe are based on information concerning the

distribution of the expression levels. This type of experimental data usually includes several
genes that are not expressed at all or show very small variability. The latter property means
that these genes can hardly be used to differentiate among samples. Moreover, this type of
microarray usually has several control probes that can be safely removed from our analysis.
In the case of this study, which uses Affymetrix U95Av2 microarrays, these probes have their
names starting with the letters “AFFX”. In our analysis we will need annotation data of this
Affymetrix set so we need package hgu95av2.db (Carlson, 2016) from the Bioconductor
project, which can be installed as follows

> source("https://bioconductor.org/biocLite.R")
> biocLite("hgu95av2.db")

We can get an overall idea of the distribution of the expression levels of each gene across
all individuals with the following graph. We will use the median and inter-quartile range
(IQR) as the representatives of these distributions. The following code obtains these scores
for each gene and plots their resulting values on the graph shown in Figure 7.2:

> rowIQRs <- function(em)
+ rowQ(em,ceiling(0.75*ncol(em))) - rowQ(em,floor(0.25*ncol(em)))
> library(ggplot2)
> dg <- data.frame(rowMed=rowMedians(es), rowIQR=rowIQRs(es))
> ggplot(dg,aes(x=rowMed, y=rowIQR)) + geom_point() +
+ xlab("Median expression level") + ylab("IQR expression level") +
+ ggtitle("Main Characteristics of Genes Expression Levels")

The function rowMedians() from package Biobase obtains a vector of the medians per
row of a matrix. This is an efficient implementation of this task. A less efficient alternative
would be to use the function apply().2 The rowQ() function is another efficient implemen-
tation provided by this package with the goal of obtaining quantiles of a distribution from
the rows of a matrix. The second argument of this function is an integer ranging from 1
(that would give us the minimum) to the number of columns of the matrix (that would
result in the maximum). In this case we are using this function to obtain the IQR by sub-
tracting the 3rd quartile from the 1st quartile. These statistics correspond to 75% and 25%
of the data, respectively. We have used the functions floor() and ceiling() to obtain the
corresponding order in the number of values of each row. Both functions take the integer

2As an exercise, time both alternatives using function system.time() to observe the difference.

Classifying Microarray Samples 361

lll

l

l

l

l

l l

l

l
l

l

l
l

l

ll

l

l
l

l

l

l

l
lll l

l

ll
l

l

l

l
l

l l

l

l

l

l

l
l

l

ll

l

l

l
ll

l
l

l

l

l

l
l

l

l l

l

ll

l

l

l

l

l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

ll

l

l
l

l

l
l

l l ll
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
ll l

l l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l
l

l ll
l

l

l

ll

l l

ll

l

l
l l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l
ll

l l

ll

l

l
l

l
l

l
ll l

l

l

l

l

l

l
l l

l

l

l

l

l
ll

l

l

l

l

l

l

ll

l l

l

l
l

l

l ll

l

l

l

l

l

l
l

l

l

l

l

l
l

ll
l

l

l

l
l

l

l

l

l

l

ll ll

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l ll l l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l
ll l

ll

l

l
l

l l
l

l
l

l

l

l

l
l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

ll

l l

l

ll

l

l

l l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l l
l l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l
l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l l

l

l

l

l

l

l
l

l

l

l
l

l
l

l

l

l
ll

l
l

l

l

l

l

l l

l

l l

l
l

l

l

l

l

ll

l
l

l l

l
l

l

l
l

l

l l

ll ll
l

l

l

l

ll
l

ll

l

l

l

l

l

l l
ll

l

l

l

l l
l

ll
l

l

l

l

l

l

ll

l
ll

l l l

l

ll

l

l
l

l

l l

l

l

l

l

ll
l

l

l

l
l

l

l

l

ll

l
l l

l

l

l

l

l
l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l l

l

l

l

l

l

ll

l

l l
ll

l

l

l

l

l

l

l

ll

l
l

l

l
l

l
l

l
l

l
l

l

ll l
l l

l

l

l

l

l

l

l l
l

l
l

l

ll

l
l

l
l l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l l

l

l

l

l

l

l

l
l

l l l
l

l

l

ll
l l

l

l
l

l

l

ll l
l

l

l

l
ll

l

l

lll l

l

l

l

l

l

l

l
ll

l
l

l

l
l

l
l

l
ll

ll

l

l
l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l l

l
l

l

ll

l

l

l
l

l
l

l l
l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l l
l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l
ll

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l
l

l

l

l

l

l

l l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l l
l

l
l

l

ll

l

l
l

l
ll

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l ll ll

l

l

ll
l

l

l

l

l

l

l

l
l

l

l

l l

l
l

l
ll l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

ll l ll l

l

l
l

l l
l

l
l l

l

l

l

l

l ll
l

l
ll

l

l

l l

l

ll l
l ll

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

ll l
l

l

l
l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l
l

l
l l

l
l

l

l

l

l

l

l

l

l

l
l

l l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l
l

l
l

l

l

l

lll l

l

l l
l

ll
lll

l

l

l

l l ll
l

l
l

l
ll l

l

l

l

l
l

l

ll

l

l
l

l

ll

l l
l

lll l
l

l

l

l

l

l
l
ll

l l
l

l
l

l

l

l
l

l
l

l
l

ll
l

l
l

l

l

l
ll

ll l
ll

l

l
ll

l
l

l

l l
l

l
l lll

l

l

l ll
ll

l
l l

l l

l

ll
l l

l

ll
l l l

l
l

l

l

l

l

l

l l

l l
l ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

ll ll
l

l

l l
l l

lll l

l

l

l lll l
l

l

l

l

l
lll

l

l

l

l

l

l

ll

l

l

l

l
l l

l
l

l

ll l

l

l

l

l

l l

l
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l l
l

l
l

l

l

l

l

l

l
l ll

l

l

l

l

l
ll

l
l

l

l
l

l

l

l

l l

l
l ll l

l
l l

l

lll
l

l

l

l
ll

l

ll

l l
l

l

l

l
l

l
l

l

l l

l

l
l

l

l

l
l

l

l

l ll

l
l

l
l

l

lll l

l

l

l

l

l
l

l

l l

l
l

ll
l

l

l l l

l

l

l l

l
l l

l

l
ll

l

l
l

l
l ll
l

l

l
lll

l

l l l
l

l ll
l

l

l

l l
l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

ll ll
l l

l
l

l

l
ll

l
l

l

l
l

l ll

l

l

ll

l
l ll l

l

l
l

l

l

l

l
l l l

l
l

l
l

ll l
l

l
l

l

l l

l
l

l
l

l

ll
l l

l

l
l

l

l

l

ll l
l

l

l
l

l
l l

l l
l

l

l
ll

l

l

l

ll
ll l

l

ll

l

ll

l

l

l

l

l

l

l
l

l

l

l l
l

l

l

l

ll

l

l

l

l

l l

l

l l l
l

l

l

l
l

l

l
l

l
l

l

l

ll
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

ll

l

l l

l

l

ll

l

l
l

l

l

l

l

l
l

l

l
l

l l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l l
l

l
l l
l l

l

l

l l

l

l
l ll

l

ll

l
l

l

l

l

l

l

l

l
l

l

l

ll
l

l

l
l

l
l

l
l

l

l
l

l
l

l
l

ll

l

l

l

l

l

l l
ll

l
l

l l l
l

l
l

l

l
l

l

l l

l
l

l l l
l l

l

l
l

l l
ll

l l

l

ll l
l

l

l
l

l

l
l l

l
l

ll l
l

l

l
l

l

l

l

l
l

l

l

l l
ll l

ll

l

l

l

l

l
l

l

l

l
l

l

ll

l l
l l

l

l

l

l l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l ll

l

l

ll
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
ll

ll l

l

l

l
l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l l l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l l

l
ll

ll

l

l

l

l

ll

l

l

l

l

l

ll

l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

ll
l

l

ll

l

l

l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
ll

l
l ll

l

l

l

l

l
l

l

l

l
l

l
l

l l
l

l

l

l
l ll

lll
l

l

l

l
l l

l
l l l

llll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

ll

l

l
l

l

l

l
l

l

l

l

l
l

l

l

ll

l

l
l

l
l

l

l

l

l
l

l
ll l

l
ll

l l
l

l l
l

ll

l l

l

l

l

l
l l

ll

l

l
l

l l

l

l

l
l ll

l

lll

l

l

l

l

lll ll
l

l
l

l l

l
l

l

l

l

l

l
ll
l

l

l
l

l
l

l

l
ll

ll
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l lll

l

l

l
l

l l
l

l

l

ll

l

l
ll

l l
l

l
lll

l

l l

l

l l
ll

l

l l
l

l
l

l

l

ll ll l
l lll

l ll

l

l
l

l

l l
l

l

l

l
l

l

l
l

ll
l

l

l l

l
l

l

l

l

l

l

l

l l

l l

l l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l l l

l
l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l
l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l l

l
l

l l
l

l
l

l

l

l

ll

l

l l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
ll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

ll
l

l
l

l

l

l l

l l

l
ll

l

l l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l
ll l l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

lll

l
l

l
l

l l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l
l

l

l
l

ll
l

l

l
l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l
l

l

l

l

l

l

l

ll
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l l

l
l ll

l

l

l

l

l

l

l

ll
l

l
l

l

l
l

l l
l l

l
l

l
l

l l l l

l

l
l

l

ll
l

l

ll
l

l

l
l

l ll
l

l
l

l

l

l

l
l

l
l

l

l

l
l

l

l

l l
l

l

l

l

l
l

l

l

ll ll

l

l
ll

l

l
ll

l

l
l l l

l

l

l
ll l

l

l

l

l

l l
l

l

l
l

l ll
ll l

l

l

l

l

l

l

l

l
l

l

l
l

ll ll

l
lll ll

l
l

ll

l l

l
l

l

l l
l

l

ll
l

l
l

l
l

l
l

l

ll

l

l

l

l

l
lll

l

l

l

l
l

l

l

l

l
l l ll

ll
ll

l

l
l

l

l

l

l l

l
l

l
l

l l ll
l

ll
l

l
l

l
l

ll

l
ll

l
l ll

l

ll
l

l ll
ll

l l
lll

ll

ll

l l

l

l l

l

l

l

l

l

l

l l
l

l

l

l

l l
l

l

l

l
l

l

l

l l
l

l

l l l
l

l

l

l
l

l

l

l

l
l

l

l
l

l

ll

l

l

l l

l

l

l l

l

l
l

l

l

l

l

ll

l l

l
l

l

l

l
ll

l
l

l l

l l

l

l

l

l l

l

ll

l

l

l

l
l

l

l

l

l

l

ll

l

l

l lll
ll

l

l

l

l
l l

l

l l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l
l

l

l

l

l

l
l

l

l

ll

l

l l

l

l
l

l

l

l
l l

l
ll

l

l l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l ll
l

l

l
l

l

l
l

l

l

lll

l l

l

l

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l
l

l
l

l

l

l

l
l

l

l

ll l

l

l

l

ll

l

l

l

l

l

l

l
l

l l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l l

l

l
l

l l

l

l

l
l

l

l

l

l

l
l

l

ll
l

l

l
l

l
l

l

l

l

l

l

l
l

lll

l

l
l

l

l

ll
l

l

l

l

l

l
ll lll

l

l

l
l

l l

l l
l

l
l

l l

l

l

l
l

l

l

l

l

l

l

l
lll

l
l ll l

l

l
l

l l

l

l
l

l l
l

l l
l

l
ll

l

l
ll
l

l
l

l

l l
l

l

l

l

l

l

l
llll

l

l
l

l

l

l

l

l l l
l

l

l
l

l

l l l
l

ll
l

l

l

ll l ll

l

l

l

l

l

ll

l

l

ll l
l

l

ll l

l

l l

l

l

l
l

l

l

lll
l

l l l

l

ll
l

l

l

l

l

l
l

l
l lll l

l
l

l

ll

l

l

ll

l

l ll
l

l

l

ll
l

l
l l

l

l

l

l
ll

l
l

l

l
l

l

l

l

l l

l

l

l
l

l

l l
ll

l

l

l l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l ll
l

ll

l
l

l

l

l

l ll
l

l

l

l

ll

l

l

l

l

l
l

l

l

l
l

l

ll

l

l
l

l

l

l

l
l

l

l

l
l l

l

l
l

l

l

l

l

l l l

l

l

l

l ll

l

l

l
l

l l l

l

l

l

l
l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

ll

l
l l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l
ll

l

l

l

l
l

l
l

l

l

l l

l

ll

l

l

l

l l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

ll
l

l
l

l

ll

ll l

l

l

l

l

l

l

l

l l

l

l l
l

l ll

l

l

l

l

l
l

l

l l

l

l
l

l

ll
l

l
l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l
l l

l
l

l

l

l

l
l

ll

l
ll

l
l l

l
l

l

ll

ll

l

l

l l
l

l
l l

l
l

l l

l

l
l

l
l

l

ll

l

l

l

l

l

l

ll

l
l

l l l
l

l

l

l

l

l

l

l
l

l

l ll
l l

l l
lllll

ll

ll ll

l

l
l

l l

l

l
l l

l

l

l

ll
l

l

l
l

l l

l

lll

l

l
l

l l

lll l
l l

l

l

l

ll ll ll l ll

l
l ll l

l

l

l
ll ll

l

l

ll

l

ll l l
l

l

ll

l l

l
l

l

l

ll

l l
l l

l

l

l l

l
l

l
l

l
l

l l
l

l
ll l l

l

l

l
l l

l
l

l
l

l l

l

l

l l
l l

l

l
l

l l l

l
l

lll
ll l ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l l

l

l

l

ll

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l ll

l

l

l

l
l

l
l l

l
l

l

l

l

l
l l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l
l

l

ll

l

l l

l

l

l

l

ll
l

l

l
l

ll
l

l
ll

l

l l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l ll

l

l l
l ll

l
l

l

l
l
l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l l

l l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l l

l
l

l
l

l

l

ll
l

l

l

l

lll

l

l

l

ll

l

l

l
l

l
l

l

l
l

l l

l

l

l

l
l l

l

l
l

llll
l

l

l

l

l

l
l

l
l

l
l l

l
l

l
l

l

l

llll

l

l

l
lll ll

l

l

l

l
ll

l
ll

l

l

l

l

l

l
l

l
l

l

ll
l

l
l

l

l

l
ll l

l
l l

l l

l
lll

l

l
lll l

ll ll

l l

l

l

l ll

ll
ll lll l

ll
l

l
l

l

l

l
l

l

l

l

ll
l

l
l

l
l lll

l

ll l
l

l

l
l

l

l
l

l ll
lllll

l

ll
l

l
ll

l

l

l l
ll

l

ll

l
l

l l

l

l l
ll

l ll l

l

l

l

llll l
l l

l l
l

l
l

ll

l

l

l

l
l

l
l

lll
ll

l

l

l
l

l

ll
ll l

l
l

l
l l

l ll
l

ll
l

l

l

l

ll

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l l

ll
l l

ll l
l

ll
l
l

l

l

l

l
l

l

l
l

l

l

l
l
l

l

l

l

l

l

l l
l

l

l

l

l
l

l

lll

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

lll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

ll

l

l

l

l

l

l

l

l

l

ll

l
l

l

l
l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l
l

l l

l

l l
ll

l

l

l l

l

l

l

ll

l ll

l

l
l

l l
l

l
ll ll

l
l

l

l l
l

l

l l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l
l

l

l

l

l

ll l
l

l

l
l

l

l l

l

l

l

ll l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l
ll

l

l
l

l

l

l

l
l

l

l

l
l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l
ll

l
l l

l

l
lll

l ll
l

l l l
l

l

l
l l

l

l

l

l

ll

l

l

l

l
l

l
l

l

l

l

l

l
l l

l
l

l
l

l

l
l

l
l

l l

l

lll ll

l
l

l

l

l

l l

l
l

l

l
l

l
lll

l

l

ll

l

l
ll

l

l

l

l
l l

l

l
l

l

l l

l
l

l

l l
l

l
l

l
l

l

l

l

l l
l

l

l

l
l l

l

l

ll

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l l

l

l l

l

l

l

l

ll

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

ll l
l

l

l

l
l

l

ll

l

l

l

l
l

l

l

lll l

l

l l
l

l
l

l l

l l
l

l

l

ll

l

l

l l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll l
l

l
l

l

l

l

l

l
l

l

l l

l

l

l

l
l

l

l

ll

l

l

l

l
l

l

l

l
l ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l
l

l

l

l
l l

l

l

l

l

l

l

l
l

l

l
l

l
ll

l

l

l

l
l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

lll
l

l
l

l l

l
l

l l l

l
l

ll l

l l
l

l

l

l ll

l

l

l
l

l
lll

l

l

l l

l
l

l

l
ll

l

l

l
l

ll l
l

l

l
l

l

l

l

l

l

l

ll
l

l
l

l

l

l

l

ll

l

l
l l

l
l

l
ll

l
l l

ll

l
l l

ll
l

l

l
l

ll l
ll

l l

l

l
l

l

l
l ll

l

l l
ll

l

ll

l l

l

l

l
l

lll
l l
l l l

l
ll

l

l
ll

ll
l

l

ll ll
l l l

l
ll

l
ll l

l

l

l
l l

ll
l

lll l

l

l
l

l

l

l

l

l

ll
l l

l

l l

ll

l
l

ll

l

l
l

l

l

l
l l

l

l

l

l

l

l

l

ll

l l

l

l

l

ll
l

ll

l ll
lll

l
l

l
lll

l
l

l
l

l

l
l

l ll l
l l

l

l

l

l

l
l

l

l

l

lll

l

l

l
l

l
l

l

l

l

l
ll

ll

ll
l

l

l

l

l

l

l

l

l

l
l

l l

l

l
l

l
l

l

l

l

l

l

l

l ll

l

l
l

l

l

l
l l

l

l

l l
l

l

l

ll
l

l
l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l

l l

l

l

l
l

l

l

l

l

l
ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l l

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l

l
l

l

l

l
l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

lll

l

l
l l

l

l

l
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l l

l

l

l

l

l
l

l
l

l

l

l

l

l l l

l
llll

l

l
l

l

l

l

l
l l

l

l

l
l l

l

lll

l

ll l
l

l

l

l l
l l ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l l
l

ll
l

l
l

l

l

l
l

l

l
l

l
ll l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l
ll

l

l

l
l

l

l

l

l

ll

ll

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
ll

ll
ll

l
l l

l

l l

l

l

ll l
l

ll

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l l l

l

l

l

l
l

l
l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l l

l

l
l

l

l

l

l

l

l l

l

l l

l
l

l

l
l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

lll

l
l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l
l

ll

l

l
l

l

l

l l

l

l

l

l

l

l
l

l

l

l l l

l

l

l
l

l

l ll l l
l

ll

l

l

l l l l

l

l

l

l
l l

l

l
l

ll
l

l l

l
l

l

l

l
l

l

l

l

l
l

l
l ll

l

l

lll
l

l

l
l

ll
l

l

l
l l

l

l

l l l

l

l
l

l

l

l

l

l
l

l
l

l

l
l

l

l

l
l

l
l

l

l
l

l

l

l

ll
l

l

ll

l

l

ll
l l

l
l

l

l
ll

l
ll

l
lll

l

l
l

l

l

l ll
l l ll
l

l
lll l

l
l

ll
l l

l

l

ll

l

ll
l

l

l

l
l
l

l

l

l

l

l
l

l l

l

l

ll
l l
l

l

l

l

l

l
l

l

l
l

ll

l
l
l

ll l l
l

l

l
lll

l

l

l

l

ll
l l

l
l

l

l
l

l
l

l

l

l l
l

l

ll

l

l

l

l

l
l l

l

l

l

l ll
l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l
l

l

l l

l

l

l
l

l

l

l
l

ll

l

ll

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l
l

lll

l
l

l

l

l

l
ll

l

l

l

l

l
l

l

l
l

l

l
l

l
l

l
l

lll

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

ll
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

ll

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l
l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l l

l

l

l

ll

l

l

l

l

l

l

l l
l

l

l

l ll
lll

l

l

l
l

l

l

l

l

l

l
ll

l
l

l
l

ll
ll

l l

l

l

l
l

l

l

l
l

l

l

ll

l

l

l

lll l
l

l
l

l

l
l

l

l

ll

l

l

l
l

l

l

l
l ll

l

l
ll

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l
l
l

l

ll

l

l

l

l

l
l l

l

l

l

l
ll

l

ll

l

l
l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l l l

l

l

l

l

l

l

l

l

l
l

ll ll
l l

l
l
l

l

l

l

l
l

l
l

ll
l

l

l l

l

l l

l
l

l

l

l

l

l
l

l

l

l l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l l

l l

l

l l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l
ll

l

l

l

l

l

l

ll

l l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

ll

ll

l
l

l ll l
ll ll

l

ll

l
ll

l

l l
l

l

l

l

ll
l

l

l l

l

l

l
l

l

ll

l
l l

ll l
l

l

l

l

lll
l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l
lll l

l

l
l

l

ll
l lll

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l
l

l l
l l

l

l

l

ll

ll
l

l
ll l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l
l ll

l

l

l

l

l l

l
l

l

ll

l

l
l

l

l
l

l

l

l
l

l

l

l

l

ll

l

ll

l

l

ll

l

l

l

l

l ll l

l

l

l

l

l

ll
ll

l

l

l l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
ll

l
l

l

l

l

l
l l ll l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l l

l

l

ll

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l
l

l

l

l ll

l

l

l

l

l

l

l

l

l
l

ll lll
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l

ll

l

ll
l

l

l

l l

l

l

l ll
ll

l
l

l
l

l

l
l

l

l l
l

l

l l

l

l
l

l
ll

l l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l
l

l

ll

l

l

l

l

l

l

l

l

l l l

ll

l
l

l

l

ll
l

l

l
l

l

l l

l
l
l l

l

l

l

l

l

l
l l

l
l

l ll

l

l

l
l

l

l

lll

l

l

l l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l ll

l
ll

l

l

l

ll

l

ll
l

l

l
l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l l
l

l l
ll

l

l

l

l
l

l

l

ll

l
l l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l
l

l l

l

l

l

l

l

l

ll

l
l

l

l

l

l
l

l

l

l
ll

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

ll

l

l

l

l

l

l

l
l l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll l

l

l

l

l

l

l

l

l

ll

l
l

l
l

l l

l

l

l
ll

l

ll l
l l

l

l

l
ll

ll
l
l

l
l

l

l l
l

l
l

l

l

ll l
l

l

l

l
l

l

ll

l

l

ll

l

l

l

l l ll
l

l

l
l

l

l

l

l
l

l

l

l

l

l l
l

l
ll l ll

l

l

l l

l

l

l
l

l

l

l ll
l l ll

l

l

l

l

l

l

ll

l

l

l

ll

l

l
l

l
l l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

ll

ll

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

ll

ll

l

l
l

l

ll

l
l

l l
l

l

l
ll

l

l

l

l

l

ll
l

l

l
l

l

l

l
ll

l

ll
l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

ll

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

ll

l

l

ll

l
l

l

l
l

l

l
l

l

l

l

ll

l

l

l

ll
l

l

ll

l

l

l

l

l

l
l

ll ll

l

l

l

l

l

l

l

l

l l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

lll

l

l

l
l

l

l

l

l

l

l

l

lll

ll

ll
l

ll

l
l

l
l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l l

l

l

l l
lll

l
ll

l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l
l

ll

l

l
l

l

l
l

l

ll

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l

l

l
l l

l
l

l

ll
ll

l
l

l

l

l

ll

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l l l
l l

l

l

l

ll l

l

l l

l

l
l l

l
l

l

l

l

ll

l

l

l

l
l

l

l

ll

l

l

l

l
l

l
l

l l

l

l

l l

l

l
l

l

l
ll l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

ll l

l l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l
l

l

l

l

l
l

l

l

l ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

ll
l

l

l

l
l

l

l

l

l l l

l

l
lll

l

l

l
l

l

l
l

l

l

ll

l
l

l

l

l

l
l

l l
ll

l

l

l
l

l l
l

l
l

l

l

l
l

l

l

l

l

l

l
ll

l
l

l

l

l

l
ll

l
ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l ll

ll

l
ll

ll

l ll

l

l

l

l l
l l

l

l

l

l

l

l l
l

l

l
l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

ll

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l
l

ll
l

l

l

l

l

l l

l

l

l
l

l

l

l

l
l

l l

l

l

l

l

l

l

ll

l

l

l
l l

ll

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l
ll l

l

l

l

l

l
ll

l

l

l

l
l

l

l

l

l

ll l

l

l

l

l

l

l
ll l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l l
l

l

l

l
ll

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l
l l

l
l

l

l
l

ll

l
l

l

l

l
ll

l

l

l

l

l
l

l

l

l
l

l
l l

l
l

l

l

l

l

l

l

ll
l

l
l

l l
ll

l

l

l

l

l ll

ll

l

l

l
l

l l

l

l
l

l
l
l

l

l

l

l

l l
l

l

ll l lll

l

l
l

l ll l lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l ll

l

l

l

l

l
ll

ll

l
l

l

l

ll
l l

l

l

l

l
l

l

l

l
l

l

l
l

l

l l

l
l

l

l

l

l

l

l

l

l

l
l

l ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

ll
l
l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

llll ll
l

l

l l

ll

l
ll l

l

l

l

l

l l
l

l

l
l

ll
ll

l

l

l

l

l

l

l

ll l l

l

l

l

l

l

ll

ll

ll
l l

l

l
l

l

l

l l
l

l

l

l

l

l
ll

l

ll

l
l

l
l

l
l

l
l

l

ll l

l l
l

l
l l

l

l

l

l l
l

l

l

l

ll l
l
l

l ll

l

l

l

l
l

l

l

l

l

l
ll l l

l
l

l
l

l

l
l

l

l

l

l

l
l l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l lll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l ll

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

ll

l
lll

l

l

l

l l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l
l l

l

l

l
l

l

l

l
l

ll

l

l

l
lll

l
ll

l
l

l

l

l

l
l

l
l

l

l l

l

l
l l

l l

l l

l

l
l

l

l
l

lll
l

l

l

l

l

l
ll

l ll
l

l

l

l

l

l l
l l

l

l

l

l

l

ll l

l

l

l

ll
l l

l

ll

l

l
l

l

l

l
l

l

l

ll
l

l

l l

ll
l

l
l

l l

l

l

ll

l

l

l
l

l ll

l

l
l ll

l

l
l

l
l

l

l

l
l

l

l

l

l
l l
l

l
l

l

ll

l

l
l

l ll
ll

l

l
l

l

l

l

l
l

l

l
l

l

ll

l

l

l

ll
l

l
l

l

l

l

l

l
l

l

l

l l

l

l l

l
l

l

l
ll

l
l

l

l
l l

l
l

l

ll

l

l

l
l l l

ll ll
l

l

l

ll l l

l

l

ll

ll

l
ll

l

l
ll

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l l

l

l

l

l

l

l

l l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l ll

l

l
l

l

l

l l

ll lll

l

l
l

l

l

l
l

l

l

l l

l
l

l

l

l

l

l
l

l
l

l

l

l

ll l
ll

l

l

l

l

l

ll
l

l l

l

ll
l

l

l
l

l l

ll

ll
l

l
l

l

l

l

l

l

l

l

l
l l

l

l

l

ll

l

l

l

l

ll

l

l

l

ll
l ll

l

l l

l

l

l

l

l

l

ll
l

l

l ll

l

l
l

l

l

l
l

l

l

ll

l

l

l
l l

l

l

l

l
l

l l

l

l

l

l

l

ll
l

l

l ll
l

l

l

l

l
l

l
l

l

l
l l
l

l

l

l

l

l
l l

l

ll
l

l

l

l

l

l

l

l

l

l

l
ll l

l

l

l

l

ll
l

l

l

l

l
l

l
l

l l

l

ll

l

l

l

l
l

l

l

l

l
l l l

l

l
ll

l
l
l

l l

l

l

l

l

l l

l

l
l l l

ll l

l

l

l

l

l

l

l

l
l

l
l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

lll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l l

l

l

l

l

l

l
l

ll l

l

l

l l
l

l

l

l

l

l l l

l

l

l

l
l l

ll

l

l
l

l
l

l

l

l l
l l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l
l

l
l l l

ll
l

l

l
l

l
l

ll

l

l

l
l

l

l
l

l

l

l

l
l

l

l
l

l
l

l
l

l ll

l

l

l l l l

l

l
l l

l

l

l
l

l
l

l l
l

l

l

l

ll l
ll

l
l

l
l

l

l
l

l

l

l

l l

l

l

l

l
l

l
l

l
l lll

l

l
l

l

l
l

l

l

l

l

l l

l

l

l

l

l l

l
l

l
l

l

l
l

l

l

l

l

l

l

ll

l
l

l

l

l

l ll
ll

l
ll ll l l

l

l l
l

l
l

l

l

l

l
l

l
l ll

l

l
l

l

ll

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l l

l
l

l

l

l

ll

l

l
l

l
l

l

l
l

l

l

l

l l
l

l l

l

l

l
l

l

l
l

l l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l l

l
l

l

l l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

ll

l

l
l

l

l
l

l

l l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

ll
l

l

l

l

l

l

l
l

l

l

l

ll
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l
l

l

ll

l
l
ll

ll

l
l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

lll
l

l

l

l
l

l

l

l

l l
l

l

l
l

l

l

l
l

l

l

l
l

ll

l

l

l

ll

ll

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l
ll l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l

l

l

l
l

l l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

ll

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l
l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

ll l

l

l
l

l

l
l

l

l
l l

l

ll

l
l

l

l

l

l

l l

l

l

l

l l

l

l

l

l
l

l
l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll

l
l

l

l

l

l
l

l
ll

l

l
l

l

l

l
l

ll
l

l

l l
ll

l

l
l

l
l

l
l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l l

l
l

l l

l

l

l

l

l

l

ll l

l

ll
l

l

l

l

l

l
l ll

l

l

l

l
ll

l

l

l

l

l

ll

l
l

l

l l

l

l
l

l

l

l

l

l

l
l

l
lll

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

ll

l
l

l

l

ll

l

l
l

l

l

l

l

l

l

l
l

l
l

ll
l

l
ll

l
l

l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l l

l
l l

l
l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l l

l

l
l

l

l

ll

l

l

ll

l

l

l

l

l
l

l ll

l

l

ll
ll

l

l

l

l l
l

l

l

l

l
l

l

l ll
l

l l

l

l

l

l

l

l

l

l l
l

l
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l ll

l

l

l

l
l

l

l

l l

l

l

l

l l

l

l ll

l
l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l l l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l
l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

ll

l
l

l

l

l

l l

l
l

l

ll

l

l

l l
ll

ll

l

l

ll
l

l

l
l

l

l

l
l

ll
l

l
l

l

l

l
l

l

l

l

l

l

l
l

l l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l
l

ll ll

l
l

l

l l

l

ll

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll
l

l

ll

l

l

l

l l
l

l

l

l ll l
l

l

l

l l

ll

ll
l
ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l
ll

l

l

l
l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l
l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l
l

l

ll

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l l
l

l

l
l

l l l
l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

ll

ll

l

l

l
l

l

l

l
l

l

ll

l

l

l
l

l

l
l l

l

l

ll

l

l

l

l
l

l

ll

l
l

l
ll

l

l

l
l

l

l

ll
l

l

l
l

l

l

l
l

l

l

l

l

l

l l

l

l

l
l

l

ll

l
l

l

l

l l
l

l

l

ll
l

l

l

l

lll

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l
l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l
ll

l
ll l

l

l

l
l

l
ll

l ll

l

l

l l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l l

l

l

l
l

l

l l
l

l
l

l

l

l
l

l
l

l

l

l

ll
ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l
l

ll
l

l

l

l

l l

ll
l

l l

l

l

ll

l

l

l

l
l

l l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

ll
l

l

l

l

ll

l

ll

l

l

l

l

l

l l

l

l l
lll

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l l
ll

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l
l

l

l l

l

l l

l

l
l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
ll ll

l

l

l
l

l

ll
l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l
l

l
l l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l
l

l
l

l

l

l l

l
l

l

l

l

l

l

l l

l

ll

l

ll

l

l

l

l

l

l l

l
l

l
l

ll

l

l

l

l
l

l

ll

l l

l

l

l

l
ll

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

ll

l

l
l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l ll

l

l

l

l
l

l
l

l l

l
l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l
l l

l

l
l

l

l
l

l

l

l
l ll

l

ll

ll

ll l
l

l
l

l

l

0

2

4

5 10
Median expression level

IQ
R

 e
xp

re
ss

io
n

le
ve

l

Main Characteristics of Genes Expression Levels

FIGURE 7.2: The median and IQR of the gene expression levels.

part of a floating point number, although with different rounding procedures. Experiment
with both to see the difference. Using the function rowQ(), we have created the function
rowIQRs() to obtain the IQR of each row.

Figure 7.2 provides interesting information. Namely, we can observe that a large pro-
portion of the genes have very low variability (IQRs near 0). As mentioned above, if a
gene has a very low variability across all samples, then it is reasonably safe to conclude
that it will not be useful in discriminating among the different types of mutations of B-
cell ALL. This means that we can safely remove these genes from our classification task.
We should note that there is a caveat on this reasoning. In effect, we are looking at the
genes individually. This means that there is some risk that some of these genes with low
variability, when put together with other genes, could actually be useful for the classifi-
cation task. Still, the gene-by-gene approach that we will follow is the most common for
these problems as exploring the interactions among genes with datasets of this dimension is
not easy. Nevertheless, there are methods that try to estimate the importance of features,
taking into account their dependencies. That is the case of the RELIEF method (Kira and
Rendel, 1992; Kononenko et al., 1997) for which you may find an implementation in pack-
age CORElearn (Robnik-Sikonja and Savicky, 2015). More information on this and other
packages was given in Section 3.3.4.2 (page 82).

We will use a heuristic threshold based on the value of the IQR to eliminate some of
the genes with very low variability. Namely, we will remove any genes with a variability
that is smaller than 1/5 of the global IQR. The function nsFilter() from the package
genefilter can be used for this type of filtering:

362 Data Mining with R: Learning with Case Studies

> library(genefilter)
> resFilter <- nsFilter(ALLb,
+ var.func=IQR,
+ var.cutoff=IQR(as.vector(es))/5,
+ feature.exclude="^AFFX")
> resFilter

$eset
ExpressionSet (storageMode: lockedEnvironment)
assayData: 3943 features, 94 samples

element names: exprs
protocolData: none
phenoData

sampleNames: 01005 01010 ... LAL5 (94 total)
varLabels: cod diagnosis ... mol.bio (22 total)
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790
Annotation: hgu95av2

$filter.log
$filter.log$numDupsRemoved
[1] 2858

$filter.log$numLowVar
[1] 4654

$filter.log$numRemoved.ENTREZID
[1] 1151

$filter.log$feature.exclude
[1] 19

As you see, we are left with only 3,943 genes from the initial 12,625. This is a rather
significant reduction. Nevertheless, we are still far from a dataset that is “manageable” by
most classification models, given that we only have 94 observations.

The result of the nsFilter() function is a list with several components. Among these
we have several containing information on the removed genes, and also the component eset
with the “filtered” ExpressionSet class object. We can update our ALLb and es objects
with the filtered object:

> ALLb <- resFilter$eset
> es <- exprs(ALLb)
> dim(es)

[1] 3943 94

7.3.2 ANOVA Filters
If a gene has a distribution of expression values that is similar across all possible values

of the target variable, then it will not be very useful to discriminate among these values.
Our next approach builds on this idea. We will compare the mean expression level of genes

Classifying Microarray Samples 363

across the subsets of samples belonging to a certain B-cell ALL mutation, that is, the mean
conditioned on the target variable values. Genes for which we have high statistical confidence
of having the same mean expression level across the groups of samples belonging to each
mutation will be discarded from further analysis.

Comparing means across more than two groups can be carried out using an ANOVA
statistical test. In our case study, we have four groups of cases, one for each of the gene
mutations of B-cell ALL we are considering. Filtering of genes based on this test is rather
easy in R, thanks to the facilities provided by the genefilter package. We can carry out
this type of filtering as follows:

> f <- Anova(ALLb$mol.bio, p = 0.01)
> ff <- filterfun(f)
> selGenes <- genefilter(exprs(ALLb), ff)
> sum(selGenes)

[1] 746

The function Anova() creates a new function for carrying out ANOVA filtering. It re-
quires a factor that determines the subgroups of our dataset and a statistical significance
level. The resulting function is stored in the variable f. The filterfun() function works
in a similar manner. It generates a filtering function that can be applied to an expression
matrix. This application is carried out with the genefilter() function that produces a
vector with as many elements as there are genes in the given expression matrix. The vector
contains logical values. Genes that are considered useful according to the ANOVA statistical
test have the value TRUE. As you can see, there are only 746. Finally, we can use this vector
to filter our ExpressionSet object.

Next we update our data structures to include only these selected genes:

> ALLb <- ALLb[selGenes,]
> ALLb

ExpressionSet (storageMode: lockedEnvironment)
assayData: 746 features, 94 samples

element names: exprs
protocolData: none
phenoData

sampleNames: 01005 01010 ... LAL5 (94 total)
varLabels: cod diagnosis ... mol.bio (22 total)
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790
Annotation: hgu95av2

> es <- exprs(ALLb)
> dim(es)

[1] 746 94

Figure 7.3 shows the median and IQR of the genes selected by the ANOVA test. The
figure was obtained as follows:

364 Data Mining with R: Learning with Case Studies

l

l

l

l
l

l

l

l

l

ll

l
ll

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

lll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

1

2

3

4

5.0 7.5 10.0 12.5
Median expression level

IQ
R

 e
xp

re
ss

io
n

le
ve

l

Distribution Properties of the Selected Genes

FIGURE 7.3: The median and IQR of the final set of genes.

> dg <- data.frame(rowMed=rowMedians(es), rowIQR=rowIQRs(es))
> ggplot(dg,aes(x=rowMed, y=rowIQR)) + geom_point() +
+ xlab("Median expression level") + ylab("IQR expression level") +
+ ggtitle("Distribution Properties of the Selected Genes")

The variability in terms of IQR and the median that we can observe in Figure 7.3
provides evidence that the genes are expressed in different scales of values. Several modeling
techniques are influenced by problems where each case is described by a set of variables using
different scales. Namely, any method relying on distances between observations will suffer
from this type of problem as distance functions typically sum up the differences between
variable values. In this context, variables with a higher average value will end up having
a larger influence on the distance between observations. To avoid this effect, it is usual
to standardize the data. This transformation consists of subtracting the typical value of
the variables and dividing the result by a measure of spread. Given that not all modeling
techniques are affected by this data characteristic we will leave this transformation to the
modeling stages, making it depend on the tool to be used.

7.3.3 Filtering Using Random Forests
The expression level matrix resulting from the ANOVA filter is already of manageable

size, although we still have many more features than observations. In effect, in our mod-
eling attempts described in Section 7.4, we will apply the selected models to this matrix.
Nevertheless, one can question whether better results can be obtained with a dataset with

Classifying Microarray Samples 365

a more “standard” dimensionality. In this context, we can try to further reduce the number
of features and then compare the results obtained with the different datasets.

Random forests can be used to obtain a ranking of the features in terms of their usefulness
for a classification task. In Section 5.3.2 (page 112) we saw an example of using random
forests to obtain a ranking of importance of the variables in the context of a prediction
problem.

Random forests can be used to obtain a ranking of the genes as follows,

> library(randomForest)
> dt <- data.frame(t(es), Mut = ALLb$mol.bio)
> dt$Mut <- droplevels(dt$Mut)
> set.seed(1234)
> rf <- randomForest(Mut ~ ., dt, importance = TRUE)
> imp <- importance(rf)
> rf.genes <- rownames(imp)[order(imp[,"MeanDecreaseAccuracy"],
+ decreasing = TRUE)[1:30]]

We construct a training set by adding the mutation information to the transpose of the
expression matrix.3 We then obtain a random forest with the parameter importance set to
TRUE to obtain estimates of the importance of the variables. The function importance()
is used to obtain the relevance of each variable. This function actually returns several
scores on different columns, according to different criteria and for each class value. We
select the column with the variable scores measured as the estimated mean decrease in
classification accuracy when each variable is removed in turn. We order the values of this
score in decreasing order and select the highest 30 of these scores, obtaining the names of
the corresponding genes.

We may be curious about the expression level distribution of theses 30 genes across the
different mutations. We can obtain the median level for these top 30 genes as follows:

> sapply(rf.genes, function(g) tapply(dt[, g], dt$Mut, median))

X1635_at X40504_at X1467_at X37015_at X1674_at X34699_at
ALL1/AF4 7.302814 3.218079 3.708985 3.752649 3.745752 4.253504
BCR/ABL 8.693082 4.924310 4.239306 4.857105 5.833510 6.315966
E2A/PBX1 7.562676 3.455316 3.411696 6.579530 3.808258 6.102031
NEG 7.324691 3.541651 3.515020 3.765741 4.244791 6.092511

X39837_s_at X37027_at X37225_at X40202_at X40480_s_at X34850_at
ALL1/AF4 6.633188 9.118515 5.220668 8.550639 6.414368 5.426653
BCR/ABL 7.374046 9.421987 3.460902 9.767293 8.208263 6.898979
E2A/PBX1 6.708400 6.688977 7.445655 7.414635 6.722296 5.928574
NEG 6.878846 7.408175 3.387552 7.655605 7.362318 6.327281

X34210_at X1307_at X36873_at X41470_at X40454_at X41237_at
ALL1/AF4 5.641130 3.368915 7.040593 9.616743 4.007171 10.94079
BCR/ABL 9.204237 4.945270 3.490262 5.205797 3.910912 12.11895
E2A/PBX1 8.198781 4.678577 3.634471 3.931191 7.390283 11.35610
NEG 8.791774 4.863930 3.824670 4.157748 3.807652 11.93624

X40795_at X32378_at X1914_at X37951_at X37981_at X37579_at
ALL1/AF4 3.867134 8.703860 7.066848 3.418433 6.170311 7.614200
BCR/ABL 4.544239 9.694933 3.935540 3.881780 6.882755 8.231081
E2A/PBX1 4.151637 10.066073 3.761856 3.461861 8.080002 9.494368
NEG 3.909532 9.743168 4.032755 3.419113 7.423079 8.455750

X36617_at X32434_at X41191_at X36275_at X36638_at X37105_at

3Remember that expression matrices have genes (variables) on the rows.

366 Data Mining with R: Learning with Case Studies

l lll l
l

l
l

l

l
l

l
l l

l
l

l

l

l
l

llll

l ll
l

l
lll

l

l

ll
l

l

l

l

l
ll

l

l

l l

l

l
l

l

l

llll

l

l l
l

l
l
ll

l
l
ll

l
l
l

l

lll

l

ll
l
l

l
l
ll llll

ll

ll l
l

l

l

l
l

ll l lll

l

l

ll l
l

ll
ll
l
l

l

l

l

l

X1307_at X1467_at X1616_at X1635_at X1674_at X32116_at

X34210_at X34699_at X35162_s_at X36638_at X36873_at X37015_at

X37027_at X37039_at X37225_at X37579_at X37951_at X37981_at

X38994_at X39424_at X39631_at X39837_s_at X39929_at X40202_at

X40454_at X40480_s_at X40504_at X40795_at X41237_at X41470_at

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
MEDIAN expression level

IQ
R

 e
xp

re
ss

io
n

le
ve

l

Mutation

l
l
l
l

ALL1/AF4

BCR/ABL

E2A/PBX1

NEG

FIGURE 7.4: The median and IQR of the gene expression levels across the mutations.

ALL1/AF4 6.438007 3.317480 6.314058 3.618819 9.811828 6.845719
BCR/ABL 7.480436 5.339625 4.459709 6.259073 8.486446 6.493001
E2A/PBX1 6.627934 3.668714 4.325834 3.635956 6.259730 6.740213
NEG 6.561701 3.226766 4.369366 3.749953 5.856580 6.298859

We can observe several interesting differences between the median expression level across
the types of mutations, which provides a good indication of the discriminative power of
these genes. We can obtain even more detail by graphically inspecting the median and
inter-quartile ranges of the expression levels of these genes for the 94 samples:

> library(tidyr)
> library(dplyr)
> d <- gather(dt[,c(rf.genes,"Mut")],Gene,ExprValue,1:length(rf.genes))
> dat <- group_by(d,Mut,Gene) %>%
+ summarise(med=median(ExprValue), iqr=IQR(ExprValue))
> ggplot(dat, aes(x=med,y=iqr,color=Mut)) +
+ geom_point(size=6) + facet_wrap(~ Gene) +
+ labs(x="MEDIAN expression level",y="IQR expression level",color="Mutation")

The graph obtained with this code is shown in Figure 7.4. We observe that there are
several genes with marked differences in expression level across the different mutations. For
instance, there are obvious differences in expression level at gene X41470_at (bottom right
panel) between ALL1/AF4 and the other mutations. The same happens with gene X4045_at
for mutation E2A/PBX1, among other less marked differences. To obtain this graph we used

Classifying Microarray Samples 367

the function gather() of the tidyr package. This function puts the original expression data
in a format that is easier for summarization using package dplyr.

7.3.4 Filtering Using Feature Clustering Ensembles
The approach described in this section uses a clustering algorithm to obtain 30 groups

of variables that are supposed to be similar. These 30 variable clusters will then be used to
obtain an ensemble classification model where m models will be obtained with 30 variables,
each one randomly chosen from one of the 30 clusters.

Ensembles are learning methods that build a set of predictive models and then classify
new observations using some form of averaging of the predictions of these models. They are
known for often outperforming the individual models that form the ensemble. Ensembles
are based on some form of diversity among the individual models. There are many forms of
creating this diversity. It can be through different model parameter settings or by different
samples of observations used to obtain each model, for instance. Another alternative is to
use different predictors for each model in the ensemble. The ensembles we use in this section
follow this latter strategy. This approach works better if the pool of predictors from which
we obtain different sets is highly redundant. We will assume that there is some degree of
redundancy on our set of features generated by the ANOVA filter. We will try to model this
redundancy by clustering the variables. Clustering methods are based on distances, in this
case distances between variables. Two variables are near (and thus similar) to each other
if their expression values across the 94 samples are similar. By clustering the variables we
expect to find groups of genes that are similar to each other. The Hmisc package contains
a function that uses a hierarchical clustering algorithm to cluster the variables of a dataset.
The name of this function is varclus(). We can use it as follows:

> library(Hmisc)
> vc <- varclus(t(es))
> clus30 <- cutree(vc$hclust, 30)
> table(clus30)

clus30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

18 34 30 22 34 35 19 16 40 52 19 22 17 24 30 26 20 17 18 21 43 30 32 14 23
26 27 28 29 30
28 18 17 11 16

We used the function cutree() to obtain a clustering formed by 30 groups of variables.
We then checked how many variables (genes) belong to each cluster. Based on this clustering
we can create sets of predictors by randomly selecting one variable from each cluster. The
reasoning is that members of the same cluster will be similar to each other and thus somehow
redundant.

The following function facilitates the process by generating one set of variables via
randomly sampling from the selected number of clusters (defaulting to 30):

> getVarsSet <- function(cluster,nvars=30,seed=NULL,verb=FALSE) {
+ if (!is.null(seed)) set.seed(seed)

+ cls <- cutree(cluster,nvars)
+ tots <- table(cls)
+ vars <- c()
+ vars <- sapply(1:nvars,function(clID)
+ {

368 Data Mining with R: Learning with Case Studies

+ if (!length(tots[clID])) stop('Empty cluster! (',clID,')')
+ x <- sample(1:tots[clID],1)
+ names(cls[cls==clID])[x]
+ })
+ if (verb) structure(vars,clusMemb=cls,clusTots=tots)
+ else vars
+ }
> getVarsSet(vc$hclust)

[1] "X40127_at" "X745_at" "X35694_at" "X187_at" "X34877_at"
[6] "X39929_at" "X32156_at" "X39738_at" "X32724_at" "X38980_at"

[11] "X38732_at" "X33772_at" "X245_at" "X33283_at" "X34362_at"
[16] "X1453_at" "X34850_at" "X36412_s_at" "X38748_at" "X37213_at"
[21] "X36275_at" "X36795_at" "X32824_at" "X506_s_at" "X33999_f_at"
[26] "X40745_at" "X38158_at" "X41559_at" "X1616_at" "X36550_at"

> getVarsSet(vc$hclust)

[1] "X40505_at" "X40409_at" "X1635_at" "X37981_at" "X41498_at"
[6] "X39837_s_at" "X40323_at" "X39650_s_at" "X40495_at" "X32621_at"

[11] "X39377_at" "X34335_at" "X36493_at" "X32963_s_at" "X174_s_at"
[16] "X39781_at" "X539_at" "X33325_at" "X35670_at" "X37304_at"
[21] "X809_at" "X40575_at" "X34785_at" "X38956_at" "X41146_at"
[26] "X40425_at" "X33429_at" "X33920_at" "X33528_at" "X39135_at"

Each time we call this function, we will get a “new” set of 30 variables. Using this
function it is easy to generate a set of datasets formed by different predictors and then
obtain a model using each of these sets. In Section 7.4 we present a function that obtains
ensembles using this strategy.

Further readings on feature selection
Feature selection is a well-studied topic in many disciplines. Good overviews and references of the work in

the area of data mining can be obtained in Liu and Motoda (1998), Chizi and Maimon (2005), and Wettschereck
et al. (1997). Further information and references can be obtained in Section 3.3.4.2 (page 82).

7.4 Predicting Cytogenetic Abnormalities
This section describes our modeling attempts for the task of predicting the type of

cytogenetic abnormalities of the B-cell ALL cases.

7.4.1 Defining the Prediction Task
The data mining problem we are facing is a predictive task. More precisely, it is a

classification problem. Predictive classification consists of obtaining models designed with
the goal of forecasting the value of a nominal target variable using information on a set of
predictors. The models are obtained using a set of labeled observations of the phenomenon
under study, that is, observations for which we know both the values of the predictors and
of the target variable.

In this case study our target variable is the type of cytogenetic abnormality of a B-cell

Classifying Microarray Samples 369

ALL sample. In our selected dataset, this variable will take four possible values: ALL1/AF4,
BCR/ABL, E2A/PBX1, and NEG. Regarding the predictors, they will consist of a set of selected
genes for which we have measured an expression value. In our modeling attempts we will
experiment with different sets of selected genes, based on the study described in Section 7.3.
This means that the number of predictors (features) will vary depending on these trials.
Regarding the number of observations, they will consist of 94 cases of B-cell ALL.

7.4.2 The Evaluation Metric
The prediction task is a multi-class classification problem. Predictive classification mod-

els are usually evaluated using the error rate or its complement, the accuracy. Nevertheless,
there are several alternatives, such as the area under the ROC curve, pairs of measures
(e.g., precision and recall), and also measures of the accuracy of class probability estimates
(e.g., the Brier score). The package ROCR provides a good sample of these measures.

The selection of the evaluation metric for a given problem often depends on the goals of
the user. This is a difficult decision that is often impaired by incomplete information such as
the absence of information on the costs of misclassifying a class i case with class j (known
as the misclassification costs).

In our case study we have no information on the misclassification costs, and thus we
assume that it is equally serious to misclassify, for instance, an E2A/PBX1 mutation as NEG,
as it is to misclassify ALL1/AF4 as BCR/ABL. Moreover, we have more than two classes, and
generalizations of ROC analysis to multi-class problems are not so well established, not to
mention recent drawbacks discovered in the use of the area under the ROC curve (Hand,
2009). In this context, we will resort to the use of the standard accuracy that is measured
as

acc = 1− 1
N

N∑
i=1

L0/1(yi, ŷi) (7.1)

where N is the size of test sample, and L0/1() is a loss function defined as

L0/1(yi, ŷi) =
{

0 if yi = ŷi
1 otherwise (7.2)

7.4.3 The Experimental Procedure
The number of observations of the dataset we will use is rather small: 94 cases. In

this context, the more adequate experimental methodology to obtain reliable estimates of
the error rate is either the bootstrap or the Leave-One-Out Cross-Validation (LOOCV).
LOOCV is a special case of the k-fold cross-validation experimental methodology that we
have used before, namely, when k equals the number of observations. Briefly, LOOCV con-
sists of obtaining N models, where N is the dataset size, and each model is obtained using
N − 1 cases and tested on the observation that was left out. Package performanceEs-
timation also includes this method as one of the estimation methods you may specify in
the definition of the estimation task. The bootstrap is another method that is frequently
used with small samples as is the case of our problem. It essentially consists of drawing a
random sample with replacement of the same size of the original dataset. As the sample
is drawn with replacement it means that some cases will appear repeated while others will
not be drawn. These latter will form the test set where we will apply the model obtained
with the former. This random sampling is typically repeated a large number of times (e.g.
100 or 200). The bootstrap estimate is obtained by the average of the scores obtained in

370 Data Mining with R: Learning with Case Studies

these repetitions. Package performanceEstimation provides two implementations of the
bootstrap estimation method: ε0 and .632 bootstrap (details on Section 3.5.3, page 179).
Below is a small illustration of ε0 bootstrap with the Iris dataset:

> library(performanceEstimation)
> library(DMwR2)
> data(iris)
> exp <- performanceEstimation(
+ PredTask(Species ~ ., iris),
+ Workflow(learner="rpartXse", predictor.pars=list(type="class")),
+ EstimationTask(metrics="acc",method=Bootstrap(nReps=100)))

> summary(exp)

== Summary of a Bootstrap Performance Estimation Experiment ==

Task for estimating acc using
100 repetitions of e0 Bootstrap experiment
Run with seed = 1234

* Predictive Tasks :: iris.Species
* Workflows :: rpartXse

-> Task: iris.Species
*Workflow: rpartXse

acc
avg 0.94488494
std 0.02534310
med 0.94736842
iqr 0.03569024
min 0.87931034
max 1.00000000
invalid 0.00000000

7.4.4 The Modeling Techniques
As discussed before, we will use three different datasets that differ in the predictors that

are used. One will have all genes selected by an ANOVA test, while the other two will select
30 of these genes. All datasets will contain 94 cases of B-cell ALL. With the exception of
the target variable, all information is numeric.

To handle this problem we have selected three different modeling techniques. Two of
them have already been used before in this book. They are random forests and support
vector machines (SVMs). They are recognized as some of the best off-the-shelf prediction
methods. The third algorithm we will try on this problem is new. It is a method based on
distances between observations, known as k-nearest neighbors.

The use of random forests is motivated by the fact that these models are particularly
adequate to handle problems with a large number of features. This property derives from the
algorithm used by these methods that randomly selects subsets of the full set of features of
a problem. Regarding the use of k-nearest neighbors, the motivation lies on the assumption
that samples with the same mutation should have a similar gene “signature,” that is, should
have similar expression values on the genes we use to describe them. The validity of this

Classifying Microarray Samples 371

assumption is strongly dependent on the genes selected to describe the samples. Namely,
they should have good discrimination properties across the different mutations. As we will
see below, k-nearest neighbors methods work by assessing similarities between cases, and
thus they seem adequate for this assumption. Finally, the use of SVMs is justified with the
goal of trying to explore nonlinear relationships that may eventually exist between gene
expression and cytogenetic abnormalities.

Both random forests and support vector machines were described in previous chapters.
Detailed information on random forests and other types of ensembles was presented in Sec-
tion 3.4.5.5 (page 165). SVMs, on the other hand, were described in detail in Section 3.4.5.3
(page 151).

The k-nearest neighbors algorithm belongs to the class of so-called lazy learners. This
type of techniques do not actually obtain a model from the training data. They simply
store this dataset. Their main work happens at prediction time. Given a new test case, its
prediction is obtained by searching for similar cases in the training data that was stored.
The k most similar training cases are used to obtain the prediction for the given test case. In
classification problems, this prediction is usually obtained by voting and thus an odd number
for k is desirable. However, more elaborate voting mechanisms that take into account the
distance of the test case to each of the k neighbors are also possible. For regression, instead
of voting we have an average of the target variable values of the k neighbors.

This type of model is strongly dependent on the notion of similarity between cases. This
notion is usually defined with the help of a metric over the input space defined by the pre-
dictor variables. This metric is a distance function that can calculate a number representing
the “difference” between any two observations. There are many distance functions, but a
rather frequent selection is the Euclidean distance function that is defined as

d(xi,xj) =

√√√√ p∑
k=1

(Xi,k −Xj,k)2 (7.3)

where p is the number of predictors, and xi and xj are two observations.
These methods are thus very sensitive to both the selected metric and also to the presence

of irrelevant variables that may distort the notion of similarity. Moreover, the scale of the
variables should be uniform; otherwise we might underestimate some of the differences in
variables with lower average values.

The choice of the number of neighbors (k) is also an important parameter of these
methods. Frequent values include the numbers in the set {1, 3, 5, 7, 11}, but obviously these
are just heuristics. However, we can say that larger values of k should be avoided because
there is the risk of using cases that are already far away from the test case. Obviously, this
depends on the density of the training data. Too sparse datasets incur more on this risk.
As with any learning model, the “ideal” parameter settings can be estimated through some
experimental methodology.

In R, the package class (Venables and Ripley, 2002) includes the function knn() that
implements this idea. Below is an illustrative example of its use on the Iris dataset:

> library(class)
> data(iris)
> idx <- sample(1:nrow(iris), as.integer(0.7 * nrow(iris)))
> tr <- iris[idx,]
> ts <- iris[-idx,]
> preds <- knn(tr[, -5], ts[, -5], tr[, 5], k = 3)
> table(preds, ts[, 5])

372 Data Mining with R: Learning with Case Studies

preds setosa versicolor virginica
setosa 13 0 0
versicolor 0 9 0
virginica 0 2 21

As you see, the function knn() uses a nonstandard interface. The first argument is the
training set with the exception of the target variable column. The second argument is the
test set, again without the target. The third argument includes the target values of the
training data. Finally, there are several other parameters controlling the method, among
which the parameter k determines the number of neighbors. We can create a small function
that enables the use of this method in a more standard formula-type interface:

> kNN <- function(form, train, test, stand = TRUE, stand.stats = NULL, ...) {
+ require(class, quietly = TRUE)
+ tgtCol <- which(colnames(train) == as.character(form[[2]]))
+ if (stand) {
+ if (is.null(stand.stats))
+ tmp <- scale(train[, -tgtCol], center = TRUE, scale = TRUE)
+ else tmp <- scale(train[, -tgtCol], center = stand.stats[[1]],
+ scale = stand.stats[[2]])
+ train[, -tgtCol] <- tmp
+ ms <- attr(tmp, "scaled:center")
+ ss <- attr(tmp, "scaled:scale")
+ test[, -tgtCol] <- scale(test[, -tgtCol], center = ms, scale = ss)
+ }
+ knn(train[, -tgtCol], test[, -tgtCol], train[, tgtCol], ...)
+ }

> preds.stand <- kNN(Species ~ ., tr, ts, k = 3)
> table(preds.stand,ts[, 5])

preds.stand setosa versicolor virginica
setosa 13 0 0
versicolor 0 10 2
virginica 0 1 19

> preds.notStand <- kNN(Species ~ ., tr, ts, stand = FALSE, k = 3)
> table(preds.notStand, ts[, 5])

preds.notStand setosa versicolor virginica
setosa 13 0 0
versicolor 0 9 0
virginica 0 2 21

This function allows the user to indicate if the data should be standardized prior to
the call to the knn() function. This is done through parameter stand. In the example
above, you see two examples of its use. A third alternative is to provide the centrality and
spread statistics as a list with two components in the argument stand.stats. If this is not
done, the function will use the means as centrality estimates and the standard deviations
as statistics of spread. In our experiments we will use this facility to call the function with
medians and IQRs. The function kNN() is actually included in our book package so you do
not need to type its code.

Classifying Microarray Samples 373

Further readings on k-nearest neighbors
The standard reference on this type of methods is the work by Cover and Hart (1967). Good overviews can be
found in the works by Aha et al. (1991) and Aha (1997). Deeper analysis can be found in the PhD theses by
Aha (1990) and Wettschereck (1994). A different, but related, perspective of lazy learning is the use of so-called
local models (Nadaraya, 1964; Watson, 1964). Good references on this vast area are Atkeson et al. (1997) and
Cleveland and Loader (1995).

7.4.5 Comparing the Models
This section describes the process we have used to compare the selected models using a

bootstrap estimation procedure.
In Section 7.3, we have seen examples of several feature selection methods. We have used

some basic filters to eliminate genes with low variance and also control probes. Next, we
applied a method based on the conditioned distribution of the expression levels with respect
to the target variable. This method was based on an ANOVA statistical test. Finally, from
the results of this test we tried to further reduce the number of genes using random forests
and clustering of the variables. With the exception of the first simple filters, all other
methods depend somehow on the target variable values. We may question whether these
filtering stages should be carried out before the experimental comparisons, or if we should
integrate these steps into the processes being compared. If our goal is to obtain an unbiased
estimate of the classification accuracy of our methodology on new samples, then we should
include these filtering stages as part of the workflows being evaluated and compared. Not
doing so would mean that the estimates we obtain are biased by the fact that the genes
used to obtain the models were selected using information of the test set. In effect, if we use
all the dataset to decide which genes to use, then we are using information on this selection
process that should be unknown as it is part of the test data. In this context, we will include
part of the filtering stages within the user-defined workflow functions that implement the
models we will compare.

The approaches we will compare involve different alternative feature selection proce-
dures and also different classification tools to apply to the resulting filtered datasets. More
specifically, we will consider in terms of feature selection: (i) using the genes resulting from
the ANOVA filtering; (ii) applying the random forest filtering on top of the ANOVA result;
and (iii) applying the filtering based on ensembles of clustered variables after the ANOVA
filtering. Each of these three strategies will be combined with different classification tools.

The following function implements the approach involving creating an ensemble of mod-
els, each applied to a different set of predictor variables. This function will be called from
within the function that implements our workflow (the solution to the prediction task) that
we will present later.

> varsEnsemble <- function(tgt,train,test,
+ fs.meth,
+ baseLearner,blPars,
+ predictor,predPars,
+ verb=FALSE)
+ {
+ require(Hmisc,quietly=TRUE)
+ v <- varclus(as.matrix(train[,-which(colnames(train)==tgt)]))
+ varsSets <- lapply(1:fs.meth[[3]],function(x)
+ getVarsSet(v$hclust,nvars=fs.meth[[2]]))

+ preds <- matrix(NA,ncol=length(varsSets),nrow=NROW(test))
+ for(v in seq(along=varsSets)) {

374 Data Mining with R: Learning with Case Studies

+ if (baseLearner=='knn')
+ preds[,v] <- do.call("kNN",
+ c(list(as.formula(paste(tgt,
+ paste(varsSets[[v]],
+ collapse='+'),
+ sep='~')),
+ train[,c(tgt,varsSets[[v]])],
+ test[,c(tgt,varsSets[[v]])]),
+ blPars)
+)
+ else {
+ m <- do.call(baseLearner,
+ c(list(as.formula(paste(tgt,
+ paste(varsSets[[v]],
+ collapse='+'),
+ sep='~')),
+ train[,c(tgt,varsSets[[v]])]),
+ blPars)
+)
+ preds[,v] <- do.call(predictor,
+ c(list(m,test[,c(tgt,varsSets[[v]])]),
+ predPars))
+ }
+ }

+ ps <- apply(preds,1,function(x)
+ levels(factor(x))[which.max(table(factor(x)))])
+ factor(ps,
+ levels=1:nlevels(train[,tgt]),
+ labels=levels(train[,tgt]))
+ }

The first arguments of this function are the name of the target variable, the training set,
and the test set. The next argument (fs.meth) is a list containing the sets of variable names
(the obtained clusters) from which we should sample a variable to generate the predictors of
each member of the ensemble. We then have two arguments (baseLearner and blPars) that
provide the name of the function that implements the learner to be used on each member
of the ensemble and respective list of learning parameters. Finally, we have the name of the
function to be used to obtain the predictions of the model and its parameters. The result of
the function is the set of predictions of the ensemble for the given test set. These predictions
are obtained by a voting mechanism among the members of the ensemble. The difference
between the members of the ensemble lies only in the predictors that are used, which are
determined by the fs.meth parameters. These sets result from a variable clustering process,
as mentioned in Section 7.3.4.

Given the similarity of the tasks to be carried out by each of the classification algorithms,
we have created a single user-defined workflow function that will receive as one of the
parameters the learner that is to be used. The function ALLb.wf() that we present below
implements this idea:

> ALLb.wf <- function(form, train, test,
+ learner, learner.pars=NULL,
+ predictor="predict",predictor.pars=NULL,
+ featSel.meth = "s2",
+ available.fsMethods=list(s1=list("all"),s2=list('rf',30),

Classifying Microarray Samples 375

+ s3=list('varclus',30,50)),
+ .model=FALSE,
+ ...)
+ {
+ ## The characteristics of the selected feature selection method
+ fs.meth <- available.fsMethods[[featSel.meth]]

+ ## The target variable
+ tgt <- as.character(form[[2]])
+ tgtCol <- which(colnames(train)==tgt)

+ ## Anova filtering
+ f <- Anova(train[,tgt],p=0.01)
+ ff <- filterfun(f)
+ genes <- genefilter(t(train[,-tgtCol]),ff)
+ genes <- names(genes)[genes]
+ train <- train[,c(tgt,genes)]
+ test <- test[,c(tgt,genes)]
+ tgtCol <- 1

+ ## Specific filtering
+ if (fs.meth[[1]]=='varclus') {
+ pred <- varsEnsemble(tgt,train,test,fs.meth,
+ learner,learner.pars,
+ predictor,predictor.pars,
+ list(...))

+ } else {
+ if (fs.meth[[1]]=='rf') {
+ require(randomForest,quietly=TRUE)
+ rf <- randomForest(form,train,importance=TRUE)
+ imp <- importance(rf)
+ rf.genes <- rownames(imp)[order(imp[,"MeanDecreaseAccuracy"],
+ decreasing = TRUE)[1:fs.meth[[2]]]]
+ train <- train[,c(tgt,rf.genes)]
+ test <- test[,c(tgt,rf.genes)]
+ }

+ if (learner == 'knn')
+ pred <- kNN(form,train,test,
+ stand.stats=list(rowMedians(t(as.matrix(train[,-tgtCol]))),
+ rowIQRs(t(as.matrix(train[,-tgtCol])))),
+ ...)
+ else {
+ model <- do.call(learner,c(list(form,train),learner.pars))
+ pred <- do.call(predictor,c(list(model,test),predictor.pars))
+ }

+ }

+ return(list(trues=responseValues(form,test), preds=pred,
+ model=if (.model && learner!="knn") model else NULL))

+ }

376 Data Mining with R: Learning with Case Studies

This user-defined workflow will be called from within the package performanceEs-
timation bootstrap routines for each iteration of the process. The workflow function ac-
cepts the formula, train and test sets as the first three arguments, which are mandatory
for any workflow function in the context of the infra-structure provided by package per-
formanceEstimation. After these we have the parameters specifying the learning and
prediction stages. Finally, we have parameters featSel.meth and available.fsMethods
that let the user select one feature selection approach from within a set of alternatives. By
default these alternatives are: (i) “s1” that represents using all features obtained after the
ANOVA filtering; (ii) “s2” that involves using a random forest to select the top 30 features
according to mean decrease in accuracy; and (iii) “s3” for using the variable clustering en-
semble approach based on 50 models each build using 30 predictors randomly chosen from
30 clusters of the original features. On top of these three alternatives in terms of feature
filtering we will also consider several parameter variants for each of the classification al-
gorithms we will try. The following list holds all variants that are to be considered in our
estimation experiments:

> vars <- list()
> vars$randomForest <- list(learner.pars=list(ntree=c(500,750,1000),
+ mtry=c(5,15)),
+ preditor.pars=list(type="response"))
> vars$svm <- list(learner.pars=list(cost=c(1,100),
+ gamma=c(0.01,0.001,0.0001)))
> vars$knn <- list(learner.pars=list(k=c(3,5,7),
+ stand=c(TRUE,FALSE)))
> vars$featureSel <- list(featSel.meth=c("s1", "s2", "s3"))

This means that we will compare 6 (3×2) parameter variants of random forests combined
with the 3 alternative feature selection methods (thus a total of 18 variants using random
forests as classifiers), plus another 18 variants based on SVMs and 18 variants based on
the k-nearest neighbor classifier. Each of these 54 alternatives will have their classification
accuracy estimated through 100 repetitions of a bootstrap experiment. This estimation
process will take a long time to compute. In this context, we do not recommend that you
run the following experiments unless you are aware of this temporal constraint. The objects
resulting from this experiment are available at the book Web page so that you are able to
proceed with the rest of the analysis without having to run all these experiments. The code
to run the full experiments is the following:

> library(performanceEstimation)
> library(class)
> library(randomForest)
> library(e1071)
> library(genefilter)
> load('myALL.Rdata') # loading the previously saved object with the data
>
> es <- exprs(ALLb)
>
> ## simple filtering
> ALLb <- nsFilter(ALLb,
+ var.func=IQR,var.cutoff=IQR(as.vector(es))/5,
+ feature.exclude="^AFFX")
> ALLb <- ALLb$eset
>
> ## the source dataset after the basic filtering

Classifying Microarray Samples 377

> dt <- data.frame(t(exprs(ALLb)),Mut=ALLb$mol.bio)
>
> set.seed(1234)
> ## The learners to evaluate
> TODO <- c('knn','svm','randomForest')
> for(td in TODO) {
+ assign(td,
+ performanceEstimation(
+ PredTask(Mut ~ .,dt,'ALL'),
+ do.call('workflowVariants',
+ c(list('ALLb.wf',learner=td,varsRootName=td),
+ vars[[td]],
+ vars$featureSel
+)
+),
+ EstimationTask(metrics="acc",method=Bootstrap(nReps=100)),
+ cluster=TRUE
+)
+)
+ save(list=td,file=paste(td,'Rdata',sep='.'))
+ }

The code starts by applying the simple filtering that eliminates the control probes and
the genes with very small variability. The remaining genes form the dataset that is use to
run the bootstrap experiments that estimate the accuracy of the different workflows we
are considering for the task of predicting the type of mutation. The main part of the code
consists of a loop that goes through the three classification algorithms. This means we run
separately the variants of each of these methods. Given the large number of variants and
also the fact that we are using 100 repetitions of a bootstrap experiment for each variant,
this code takes some time to run. In this context, we have used the cluster=TRUE parameter
setting in the fourth argument of the function performanceEstimation(). This will use all
but one of the cores of the computer where the experiments are being executed, with each
core running one of the iterations in parallel. Depending on the number of cores of your
machine this will lead to a considerable speed-up. At the end of each iteration, the results
of the respective classification algorithm are saved in a file. These files are available at the
book Web site so that you can avoid running all experiments and yet being able to analyse
their results by downloading the files from the site. Assuming they were saved in the current
working directory of your R session, you may load the content of the files as follows:

> ## load results of the exps
> load("knn.Rdata")
> load("svm.Rdata")
> load("randomForest.Rdata")

The results of all variants of a learner are contained in a separate ComparisonResults
object. For instance, if you want to see which were the best SVM variants, you may issue

> rankWorkflows(svm, maxs = TRUE)

$ALL
ALLacc

Workflow Estimate
1 svm.v8 0.8126319
2 svm.v12 0.8112365

378 Data Mining with R: Learning with Case Studies

3 svm.v10 0.8064391
4 svm.v6 0.8046412
5 svm.v7 0.7978988

The function rankWorkflows() takes an object of class ComparisonResults and ob-
tains the best performing variants for each of the statistics that were estimated in the
experimental process. By default, the function assumes that “best” means smaller values.
In case of statistics that are to be maximized, like accuracy, we can use the parameter maxs
as we did above.4

In order to have an overall perspective of all the workflows tried, we can join the three
objects:

> all.trials <- mergeEstimationRes(svm, knn, randomForest, by ="workflows")

With the resulting ComparisonResults object we can check the best overall score of
our trials:

> rankWorkflows(all.trials, top=10, maxs = TRUE)

$ALL
ALLacc

Workflow Estimate
1 svm.v8 0.8126319
2 svm.v12 0.8112365
3 knn.v7 0.8084350
4 knn.v8 0.8084350
5 knn.v9 0.8084350
6 knn.v10 0.8084350
7 knn.v11 0.8084350
8 knn.v12 0.8084350
9 svm.v10 0.8064391
10 svm.v6 0.8046412

Surprisingly, no random forest variant appears in the top 10 solutions. The top score is
obtained by a variant of the SVM method. Let us check its characteristics:

> getWorkflow("svm.v8", all.trials)

Workflow Object:
Workflow ID :: svm.v8
Workflow Function :: ALLb.wf

Parameter values:
learner.pars -> cost=100 gamma=0.01
learner -> svm
featSel.meth -> s2

This variant uses 30 genes filtered by a random forest (the “s2” strategy), and uses an
SVM with parameter settings of 100 for cost and 0.01 for gamma. It is also interesting
to observe that among the top 10 scores, only the last one (“svm.v6”) does not use the
30 genes filtered with a random forest. How to obtain that information programatically
without having to run the above getWorkflow() function by hand on all 10 workflows?
The following code shows you how to do this:

4In case we measure several statistics, some that are to be minimized and others maximized, the param-
eter maxs accepts a vector of Boolean values, as many as there are statistics in the estimation task.

Classifying Microarray Samples 379

ALL

l

l l l l l l

l l

l

l

l

0.6

0.7

0.8

0.9

acc

svm
.v8

svm
.v12

knn.v7

knn.v8

knn.v9

knn.v10

knn.v11

knn.v12

svm
.v10

svm
.v6

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Bootstrap Performance Estimation Results

FIGURE 7.5: The accuracy results of the top 10 workflows.

> top10WFnames <- rankWorkflows(all.trials, top=10,
+ maxs = TRUE)[["ALL"]][["acc"]][,"Workflow"]
> sapply(top10WFnames, function(WFid) getWorkflow(WFid,all.trials)@pars$featSel.meth)

svm.v8 svm.v12 knn.v7 knn.v8 knn.v9 knn.v10 knn.v11 knn.v12 svm.v10
"s2" "s2" "s2" "s2" "s2" "s2" "s2" "s2" "s2"

svm.v6
"s1"

We first use the output of function rankWorkflows() to obtain the names of the top
10 workflows. For each of these names we apply the function getWorkflow() to obtain the
respective workflow object, from which we extract the slot containing the learner param-
eters (slot pars of these objects), which is a list, where we finally obtain the value of the
featSel.meth parameter. As you can observe, only the last workflow uses the “s1” feature
selection method, i.e. uses all genes resulting from the simple filtering.

Figure 7.5 shows the results of these top 10 workflows on the 100 iterations of the
bootstrap estimation procedure. The figure was obtained with,

> plot(subset(all.trials,workflows=top10WFnames))

We can observe that the results of the different workflows seem very similar. We may
obtain a more formal answer to the question of whether the score of the winning workflow
is significantly better than the scores of the other workflows in the top 10 as follows,

380 Data Mining with R: Learning with Case Studies

> ps <- pairedComparisons(subset(all.trials,workflows=top10WFnames),baseline="svm.v8")
> psaccWilcoxonSignedRank.test

, , ALL

MedScore DiffMedScores p.value
svm.v8 0.8235294 NA NA
svm.v12 0.8235294 0.000000000 0.7000463
knn.v7 0.8169856 0.006543766 0.7941389
knn.v8 0.8169856 0.006543766 0.7941389
knn.v9 0.8169856 0.006543766 0.7941389
knn.v10 0.8169856 0.006543766 0.7941389
knn.v11 0.8169856 0.006543766 0.7941389
knn.v12 0.8169856 0.006543766 0.7941389
svm.v10 0.8086312 0.014898200 0.2240278
svm.v6 0.8055556 0.017973856 0.4055620

As you see, there are no statistically significant differences among these 10 workflows.
We have used the Wilcoxon signed rank test for this, as this experiment only includes a
single prediction task. This test allowed us to make paired comparisons between the different
workflows and the top scorer.

Sometimes we are interested in checking the behavior of a certain workflow on one par-
ticular iteration of these estimation experiments (maybe because the scores of the workflow
at that iteration are unusual). For instance, we could try to obtain the confusion matrix
of some workflow on one iteration. To obtain confusion matrices (see page 142) we need
to know what the actual predictions of the models are. Our user-defined workflow function
(ALLb.wf) returns this information. We can inspect the true and predicted class labels for
any of the iterations of the bootstrap method and obtain the respective confusion matrix
with this information. The following code provides an illustration for a particular iteration:

> iteration <- 1 # any number between 1 and 100 in this case
> itInfo <- getIterationsInfo(all.trials,workflow="svm.v8",it=iteration)
> table(itInfo$trues, itInfo$preds)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG
ALL1/AF4 3 0 0 0
BCR/ABL 0 12 0 3
E2A/PBX1 0 0 0 1
NEG 0 1 1 14

In this example we can observe that the model correctly predicts all cases with the
ALL1/AF4 mutation. Moreover, we can also observe that most of the errors of the model
consist of predicting the class NEG for a case with some mutation, i.e. false negatives which
is not particularly interesting in this application domain. Nevertheless, the reverse also hap-
pens with two samples with no mutation, incorrectly predicted as having some abnormality.

We should remark that the getIterationsInfo() function can be used to obtain any
component of the list returned by one of the workflows involved in the experiment. In
particular, for user-defined workflows it is the user who decides the return value of the
workflow functions, which means that you can include whatever information you think is
useful in the list that results from running the workflow.

Classifying Microarray Samples 381

7.5 Summary
The primary goal of this chapter was to introduce the reader to an important range of

applications of data mining that receives a lot of attention from the R community: bioinfor-
matics. In this context, we explored some of the tools of the project Bioconductor, which
provides a large set of R packages specialized for this type of applications. As a concrete
example, we addressed a bioinformatics predictive task: to forecast the type of genetic mu-
tation associated with samples of patients with B-cell acute lymphoblastic leukemia. Several
classification models were obtained based on information concerning the expression levels
on a set of genes resulting from microarray experiments. In terms of data mining concepts,
this chapter focused on the following main topics:

• Feature selection methods for problems with a very large number of predictors

• Classification methods

• Random forests

• k-Nearest neighbors

• SVMs

• Ensembles using different subsets of predictors

• Bootstrap experiments

With respect to R, we have learned a few new techniques, namely,

• How to handle microarray data

• Using ANOVA tests to compare means across groups of data

• Clustering the variables of a problem

• Obtaining ensembles with models learned using different predictors

• Obtaining k-nearest neighbors models

• Estimating the accuracy of models using bootstrap.

http://taylorandfrancis.com

Bibliography

Acuna, E., members of the CASTLE group at UPR-Mayaguez, and Rico., P. (2009). dprep:
Data preprocessing and visualization functions for classification. R package version 2.1.

Aggarwal, C. C. (2013). Outlier Analysis. Springer.

Aggarwal, C. C. (2015). Data Mining: The Text Book. Springer.

Aggarwal, C. C. and Reddy, C. K., editors (2014). Data Clustering: Algorithms and Appli-
cations. CRC Press.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann.

Aha, D. (1990). A study of instance-based learning algorithms for supervised learning tasks:
Mathematical, empirical, and psychological evaluations. PhD thesis, University of Cali-
fornia at Irvine, Department of Information and Computer Science.

Aha, D. (1997). Lazy learning. Artificial Intelligence Review, 11.

Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms. Machine
Learning, 6(1):37–66.

Aiello, S., Kraljevic, T., Maj, P., and with contributions from the H2O.ai team (2016). h2o:
R Interface for H2O. R package version 3.8.1.3.

Alfaro, E., Gámez, M., and García, N. (2013). adabag: An R package for classification with
boosting and bagging. Journal of Statistical Software, 54(2):1–35.

Atkeson, C. G., Moore, A., and Schaal, S. (1997). Locally weighted learning. Artificial
Intelligence Review, 11:11–73.

Barnett, V. and Lewis, T. (1994). Outliers in statistical data (3rd edition). John Wiley &
Sons.

Beck, M. (2015). NeuralNetTools: Visualization and Analysis Tools for Neural Networks. R
package version 1.4.0.

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and Trends in Machine
Learning, 2(1):1–127.

Bengio, Y., Courville, A. C., and Vincent, P. (2012). Unsupervised feature learning and
deep learning: A review and new perspectives. CoRR, abs/1206.5538.

Bergmeir, C. and Benítez, J. M. (2012). Neural networks in R using the Stuttgart neural
network simulator: RSNNS. Journal of Statistical Software, 46(7):1–26.

Bischl, B., Lang, M., Richter, J., Bossek, J., Judt, L., Kuehn, T., Studerus, E., Kotthoff,
L., and Julia, S. (2016). mlr: Machine Learning in R. R package version 2.8.

383

384 Bibliography

Bontempi, G., Birattari, M., and Bersini, H. (1999). Lazy learners at work: the lazy learning
toolbox. In Proceedings of the 7th European Congress on Intelligent Techniques & Soft
Computing (EUFIT’99).

Borgelt, C. (2003). Efficient implementations of apriori and eclat. In FIMI’03: Proceedings
of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations.

Branco, P., Ribeiro, R. P., and Torgo, L. (2016a). UBL: an R package for utility-based
learning. CoRR, abs/1604.08079.

Branco, P., Torgo, L., and Ribeiro, R. P. (2016b). A survey of predictive modeling on
imbalanced domains. ACM Comput. Surv., 49(2):31:1–31:50.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123–140.

Breiman, L. (1998). Arcing classifiers (with discussion). Annals of Statistics, 26:801–849.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regres-
sion Trees. Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books &
Software.

Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000). LOF: identifying density-based
local outliers. In ACM Int. Conf. on Management of Data, pages 93–104.

Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data
mining and knowlege discovery, 2(2):121–167.

Carl, P. and Peterson, B. G. (2014). PerformanceAnalytics: Econometric tools for perfor-
mance and risk analysis. R package version 1.4.3541.

Carlson, M. (2016). hgu95av2.db: Affymetrix Human Genome U95 Set annotation data
(chip hgu95av2). R package version 3.2.2.

Chambers, J. (2008). Software for Data Analysis: programming with R. Springer.

Chan, R. (1999). Protecting rivers & streams by monitoring chemical concentrations and
algae communities. In Proceedings of the 7th European Congress on Intelligent Tecnhiques
& Soft Computing (EUFIT’99).

Chandola, V., Banerjee, A., and Kumar, V. (2007). Outlier detection: a survey. Techni-
cal Report TR 07-017, Department of Computer Science and Engineering, University of
Minnesota.

Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2016). shiny: Web Application
Framework for R. R package version 0.13.2.

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning. The
MIT Press.

Chawla, N., Japkowicz, N., and Kokz, A. (2004). Sigkdd special issue on learning from
imbalanced datasets.

Chawla, N., Lazarevic, A., Hall, L., and Bowyer, K. (2003). Smote-boost: Improving pre-
diction of the minority class in boosting. In Seventh European Conference on Principles
and Practice of Knowledge Discovery in Databases, pages 107–119.

Bibliography 385

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321—-
357.

Chen, C., Hardle, W., and Unwin, A., editors (2008). Handbook of Data Visualization.
Springer.

Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M., Mandelli, F., Ritz, J., and Foa,
R. (2004). Gene expression profile of adult t-cell acute lymphocytic leukemia identifies
distinct subsets of patients with different response to therapy and survival. Blood, 103(7).

Chizi, B. and Maimon, O. (2005). The Data Mining and Knowledge Discovery Handbook,
chapter Dimension Reduction and Feature Selection, pages 93–111. Springer.

Cleveland, W. (1993). Visualizing Data. Hobart Press.

Cleveland, W. (1995). The Elements of Graphing Data. Hobart Press.

Cleveland, W. and Loader, C. (1995). Smoothing by local regression: Principles and methods
(with discussion). Computational Statistics.

Cortez, P. (2015). rminer: Data Mining Classification and Regression Methods. R package
version 1.4.1.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21–27.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines.
Cambridge University Press.

Deboeck, G., editor (1994). Trading on the edge. John Wiley & Sons.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30.

Dethlefsen, C. and Højsgaard, S. (2005). A common platform for graphical models in R:
The gRbase package. Journal of Statistical Software, 14(17):1–12.

Devogelaere, D., Rijckaert, M., and Embrechts, M. J. (1999). 3rd international compe-
tition: Protecting rivers and streams by monitoring chemical concentrations and algae
communities solved with the use of gadc. In Proceedings of the 7th European Congress
on Intelligent Techniques & Soft Computing (EUFIT’99).

Dietterich, T. G. (2000). Ensemble methods in machine learning. Lecture Notes in Computer
Science, 1857:1–15.

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., , and Weingessel, A. (2009). e1071: Misc
Functions of the Department of Statistics (e1071), TU Wien. R package version 1.5-19.

Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive. In
KDD’99: Proceedings of the 5th International Conference on Knowledge Discovery and
Data Mining, pages 155—-164. ACM Press.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning, 29:103–137.

386 Bibliography

Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised discretiza-
tion of continuous features. In Prieditis, A. and Russell, S., editors, Machine Learning:
Proceedings of the Twelfth International Conference. Morgan Kaufmann Publishers.

Dowle, M., Srinivasan, A., Short, T., with contributions from R Saporta, S. L., and
Antonyan, E. (2015). data.table: Extension of Data.frame. R package version 1.9.6.

Drapper, N. and Smith, H. (1981). Applied Regression Analysis. John Wiley & Sons, 2nd
edition.

Drees, M. (2013). Implementierung und analyse von tiefen architekturen in r. Master’s
thesis, Fachhochschule Dortmund.

Drummond, C. and Holte, R. (2006). Cost curves: An improved method for visualizing
classifier performance. Machine Learning, 65(1):95–130.

Elkan, C. (2001). The foundations of cost-sensitive learning. In IJCAI’01: Proceedings
of 17th International Joint Conference of Artificial Intelligence, pages 973–978. Morgan
Kaufmann Publishers Inc.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proceedings of 2nd International
Conference on Knowledge Discovery and Data Mining (KDD-96).

Feinerer, I. and Hornik, K. (2015). tm: Text Mining Package. R package version 0.6-2.

Feng, L., Nowak, G., Welsh, A. H., and O’Neill, T. J. (2014). imputeR: A General Imputation
Framework in R. R package version 1.0.0.

Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press.

Fox, J. (2009). car: Companion to Applied Regression. R package version 1.2-16.

Freund, Y. (1990). Boosting a weak learning algorithm by majority. In Proceedings of the
Third Annual Workshop on Computational Learning Theory.

Freund, Y. and Shapire, R. (1996). Experiments with a new boosting algorithm. In Pro-
ceedings of the 13th International Conference on Machine Learning. Morgan Kaufmann.

Friedman, J. (1991). Multivariate adaptive regression splines. The Annals of Statistics,
19(1):1–144.

Friedman, J. (2002). Stochastic gradient boosting. Comput. Stat. Data Anal., 38(4):367–
378.

Friedman, J. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the Amer-
ican Statistical Association, 76(376):817–823.

Friedman, J. H. (1999). Greedy function approximation: A gradient boosting machine.
Technical report, Department of Statistics, Stanford University.

Fritsch, S., Guenther, F., and following earlier work by Marc Suling (2012). neuralnet:
Training of neural networks. R package version 1.32.

Gagolewski, M. and Tartanus, B. (2015). R package stringi: Character string processing
facilities.

Bibliography 387

Gama, J. and Gaber, M., editors (2007). Learning from data streams. Springer.

Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004). Learning with drift detection.
In Bazzan, A. and Labidi, S., editors, Advances in Artificial Intelligence-SBIA 2004,
volume 3171 of Lecture Notes in Computer Science, pages 286–295. Springer.

Gama, J. a., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey
on concept drift adaptation. ACM Comput. Surv., 46(4):44:1–44:37.

Gentleman, R., Carey, V., Huber, W., and Hahne, F. (2010). genefilter: genefilter: methods
for filtering genes from microarray experiments. R package version 1.28.2.

Gentleman, R. C., Carey, V. J., Bates, D. M., et al. (2004). Bioconductor: Open software
development for computational biology and bioinformatics. Genome Biology, 5:R80.

Goethals, B. and Zaki, M. (2004). Advances in frequent itemset mining imple mentations:
Report on fimi’03. SIGKDD Explorations, 6(1):109–117.

Grolemund, G. andWickham, H. (2011). Dates and times made easy with lubridate. Journal
of Statistical Software, 40(3):1–25.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182.

Hahne, F., Huber, W., Gentleman, R., and Falcon, S. (2008). Bioconductor Case Studies.
Springer.

Hahsler, M., Buchta, C., Gruen, B., and Hornik, K. (2016). arules: Mining Association
Rules and Frequent Itemsets. R package version 1.4-1.

Hahsler, M. and Chelluboina, S. (2016). arulesViz: Visualizing Association Rules and Fre-
quent Itemsets. R package version 1.1-1.

Han, J., Kamber, M., and Pei, J. (2012). Data Mining: concepts and techniques (3rd edition).
Morgan Kaufmann Publishers.

Hand, D. and Yu, K. (2001). Idiot’s Bayes - not so stupid after all? International Statistical
Review, 69(3):385–399.

Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area
under the roc curve. Machine Learning, 77(1):103–123.

Harrell Jr, F. E. (2009). Hmisc: Harrell Miscellaneous. R package version 3.7-0. With
contributions from many other users.

Harrell Jr., F. E., with contributions from Charles Dupont, and many others. (2015). Hmisc:
Harrell Miscellaneous. R package version 3.17-0.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning:
data mining, inference and prediction. Springer.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning:
data mining, inference and prediction (2nd edition). Springer.

Hawkins, D. M. (1980). Identification of Outliers. Chapman and Hall.

388 Bibliography

Hennig, C. (2015). fpc: Flexible Procedures for Clustering. R package version 2.1-10.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554.

Hodge, V. and Austin, J. (2004). A survey of outlier detection methodologies. Artif. Intell.
Rev., 22(2):85–126.

Hornik, K., Buchta, C., and Zeileis, A. (2009). Open-source machine learning: R meets
Weka. Computational Statistics, 24(2):225–232.

Hothorn, T., Hornik, K., and Zeileis, A. (2006). Unbiased recursive partitioning: A condi-
tional inference framework. Journal of Computational and Graphical Statistics, 15(3):651–
674.

Hu, Y., Murray, W., Shan, Y., and Australia. (2015). Rlof: R Parallel Implementation of
Local Outlier Factor(LOF). R package version 1.1.1.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299–314.

Ishwaran, H. and Kogalur, U. (2016). Random Forests for Survival, Regression and Classi-
fication (RF-SRC). R package version 2.1.0.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical
Learning with Applications in R. Springer.

Japkowicz, N. (2000). The class imbalance problem: Significance and strategies. In Proceed-
ings of the 2000 International Conference on Artificial Intelligence (IC-A1’2000):Special
Track on Inductive Learning.

Kahle, D. and Wickham, H. (2013). ggmap: Spatial visualization with ggplot2. The R
Journal, 5(1):144–161.

Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab – an S4 package for
kernel methods in R. Journal of Statistical Software, 11(9):1–20.

Kifer, D., Ben-David, S., and Gehrke, J. (2004). Detecting change in data streams. In
VLDB 04: Proceedings of the 30th International Conference on Very Large Data Bases,
pages 180–191. Morgan Kaufmann.

Kira, K. and Rendel, L. (1992). The feature selection problem : Traditional methods and
a new algorithm. In Proc. Tenth National Conference on Artificial Intelligence, pages
129–134. MIT Press.

Kira, K. and Rendell., L. (1992). A practical approach to feature selection. In Sleeman, D.
and Edwards, P., editors, Proceeedings of International Conference on Machine Learning,
pages 368–377. Morgan Kaufmann.

Klima, G. (2016). FCNN4R: Fast Compressed Neural Networks for R. R package version
0.6.2.

Klinkenberg, R. (2004). Learning drifting concepts: example selection vs. example weighting.
Intelligent Data Analysis, 8(3):281–300.

Knuth, D. E. (1984). Literate programming. The Computer Journal (British Computer
Society), 27(2):97–111.

Bibliography 389

Komsta, L. (2011). outliers: Tests for outliers. R package version 0.14.

Kononenko, I. (1991). Semi-naive bayesian classifier. In EWSL-91: Proceedings of the
European working session on learning on Machine learning, pages 206–219. Springer-
Verlag New York, Inc.

Kononenko, I. and Kukar, M. (2007). Machine Learning and Data Mining: introduction to
principles and algorithms. Horwood Publishing.

Kononenko, I., Simec, E., and Robnik-Sikonja, M. (1997). Overcoming the myopia of in-
duction learning algorithms with relieff. Applied Intelligence, 17(1):39–55.

Kubat, M. and Matwin, S. (1997). Addressing the curse of imbalanced training sets: one-
sided selection. In Proceedings of the Fourteenth International Conference on Machine
Learning, pages 179–186.

Kuhn, M. (2016). caret: Classification and Regression Training. R package version 6.0-68.

Leisch, F. and Dimitriadou, E. (2010). mlbench: Machine Learning Benchmark Problems.
R package version 2.1-1.

Leisch, F., Hornik, K., and Ripley., B. D. (2009). mda: Mixture and flexible discriminant
analysis, S original by Trevor Hastie and Robert Tibshirani. R package version 0.3-4.

Li, X. (2009). ALL: A data package. R package version 1.4.7.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News,
2(3):18–22.

Lichman, M. (2013). UCI machine learning repository.

Liu, H. and Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2015). cluster:
Cluster Analysis Basics and Extensions. R package version 2.0.3 — For new features, see
the ’Changelog’ file (in the package source).

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–133.

Milborrow, S. (2009). earth: Multivariate Adaptive Regression Spline Models, derived from
mda:mars by Trevor Hastie and Rob Tibshirani. R package version 2.4-0.

Milborrow, S. (2015). rpart.plot: Plot ’rpart’ Models: An Enhanced Version of ’plot.rpart’.
R package version 1.5.3.

Minsky, M. and Papert, S. (1969). Perceptrons: an introduction to computational geometry.
MIT Press.

Murrell, P. (2006). R Graphics. Chapman & Hall/CRC.

Myers, R. (1990). Classical and modern regression with applications. Duxbury Press, 2nd
edition.

Nadaraya, E. (1964). On estimating regression. Theory of Probability and its Applications,
9:141–142.

390 Bibliography

Nieweglowski, L. (2013). clv: Cluster Validation Techniques. R package version 0.3-2.1.

Oakland, J. (2007). Statistical Process Control, 6th edition. Butterworth-Heinemann.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B.,
Simpson, G. L., Solymos, P., Stevens, M. H. H., andWagner, H. (2016). vegan: Community
Ecology Package. R package version 2.3-5.

Pebesma, E. (2012). spacetime: Spatio-temporal data in r. Journal of Statistical Software,
51(7):1–30.

Pebesma, E. and Bivand, R. (2005). Classes and methods for spatial data in r. R News,
5(2).

Peters, A. and Hothorn, T. (2015). ipred: Improved Predictors. R package version 0.9-5.

Provost, F. and Fawcett, T. (1997). Analysis and visualization of classifier performance:
Comparison under imprecise class and cost distributions. In KDD’97: Proceedings of the
3rd International Conference on Knowledge Discovery and Data Mining, pages 43–48.
AAAI Press.

Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments. Ma-
chine Learning, 42(3).

Provost, F., Fawcett, T., and Kohavi, R. (1998). The case against accuracy estimation for
comparing induction algorithms. In Proc. 15th International Conf. on Machine Learning,
pages 445–453. Morgan Kaufmann, San Francisco, CA.

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.

Quinlan, R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Publishers.

R Core Team (2015a). foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat,
Weka, dBase, ... R package version 0.8-66.

R Core Team (2015b). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

R Special Interest Group on Databases (2014). DBI: R Database Interface. R package
version 0.3.1.

Rätsch, G., Onoda, T., and Müller, K. (2001). Soft margins for adaboost. Machine Learning,
42(3):287–320.

Ridgeway, G. (2015). gbm: Generalized Boosted Regression Models. R package version 2.1.1.

Rijsbergen, C. V. (1979). Information Retrieval. Dept. of Computer Science, University of
Glasgow, 2nd edition.

Rish, I. (2001). An empirical study of the naive bayes classifier. In IJCAI 2001 Workshop
on Empirical Methods in Artificial Intelligence.

Robnik-Sikonja, M. and Kononenko, I. (2003). Theoretical and empirical analysis of relieff
and rrelieff. Machine Learning Journal, 53:23–69.

Robnik-Sikonja, M. and Savicky, P. (2015). CORElearn: Classification, Regression and
Feature Evaluation. R package version 1.47.1.

Bibliography 391

Roger S. Bivand, Edzer Pebesma, V. G.-R. (2013). Applied spatial data analysis with R
(2nd ed.). Springer.

Rogers, R. and Vemuri, V. (1994). Artificial neural networks forecasting time series. IEEE
Computer Society Press.

Rojas, R. (1996). Neural Networks. Springer-Verlag.

Romanski, P. and Kotthoff, L. (2014). FSelector: Selecting attributes. R package version
0.20.

Rong, X. (2014). deepnet: deep learning toolkit in R. R package version 0.2.

Ronsenblatt, F. (1958). The perceptron: a probabilistic models for information storage and
organization in the brain. Psychological Review, 65:386–408.

Rosenberg, C., Hebert, M., and Schneiderman, H. (2005). Semi-supervised self-training of
object detection models. In Proc. of the 7th IEEE Workshop on Applications of Computer
Vision, pages 29–36. IEEE Computer Society.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math., 20:53–65.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal representations by
error propagation. In et. al., D. R., editor, Parallel distributed processing, volume 1. MIT
Press.

Ryan, J. A. (2009). quantmod: Quantitative Financial Modelling Framework. R package
version 0.3-13.

Ryan, J. A. and Ulrich, J. M. (2014). xts: eXtensible Time Series. R package version 0.9-7.

Sarkar, D. (2010). lattice: Lattice Graphics. R package version 0.18-3.

Schapire, R. (1990). Strength of weak learnability. Machine Learning, 5:197–227.

Schölkopf, B. and Smola, A. (2002). Learning with Kernels. MIT Press.

Schloerke, B., Crowley, J., Cook, D., Briatte, F., Marbach, M., Thoen, E., and Elberg, A.
(2016). GGally: Extension to ggplot2. R package version 1.0.1.

Schmidhuber, J. (2014). Deep learning in neural networks: An overview. CoRR,
abs/1404.7828.

Seeger, M. (2002). Learning with labeled and unlabeled data. Technical report, Institute
for Adaptive and Neural Computation, University of Edinburgh.

Seligman, M. (2016). Rborist: Extensible, Parallelizable Implementation of the Random
Forest Algorithm. R package version 0.1-1.

Shapire, R. (1990). The strength of weak learnability. Machine Learning, 5:197–227.

Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2009). ROCR: Visualizing the
performance of scoring classifiers. R package version 1.0-4.

392 Bibliography

Smola, A. and Schölkopf, B. (2004). A tutorial on support vector regression. Stat. Comput.,
14:199–222.

Smola, A. J. and Schölkopf, B. (1998). A tutorial on support vector regression. In Neuro-
COLT Technical Report TR-98-030.

Steele, J. and Iliinsky, N., editors (2010). Beautiful Visualization: Looking at Data through
the Eyes of Experts (Theory in Practice). O’Reilly Media.

Takens, F. (1981). Detecting strange attractors in turbulance. In Rand, D. and Young, L.,
editors, Lecture notes in mathematics, volume 898, pages 366–381. Springer.

Therneau, T. M. and Atkinson, B. (2010). rpart: Recursive Partitioning. R port by Brian
Ripley. R package version 3.1-46.

Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit region.
Economic Geography, 46.

Torgo, L. (1999a). Inductive Learning of Tree-based Regression Models. PhD thesis, Faculty
of Sciences, University of Porto.

Torgo, L. (1999b). Predicting the density of algae communities using local regression trees.
In Proceedings of the 7th European Congress on Intelligent Techniques & Soft Computing
(EUFIT’99).

Torgo, L. (2007). Resource-bounded fraud detection. In et. al, N., editor, Proceedings of
the 13th Portuguese Conference on Artificial Intelligence (EPIA’07), LNAI. Springer.

Torgo, L. (2014a). An infra-structure for performance estimation and experimental com-
parison of predictive models in r. CoRR, abs/1412.0436.

Torgo, L. (2014b). An infra-structure for performance estimation and experimental com-
parison of predictive models in r. CoRR, abs/1412.0436.

Tufte, E. (2001). The Visual Display of Quantitative Information, 2nd Edition. Graphics
Pr.

Ulrich, J. (2009). TTR: Technical Trading Rules. R package version 0.20-1.

Urbanek, S. and Arnold, T. (2015). iotools: I/O Tools for Streaming. R package version
0.1-12.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.

Vapnik, V. (1998). Statistical Learning Theory. John Wiley and Sons.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New
York, fourth edition. ISBN 0-387-95457-0.

Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian Journal of Statis-
tics, Series A, 26:359–372.

Wei, T. (2013). corrplot: Visualization of a correlation matrix. R package version 0.73.

Weihs, C., Ligges, U., Luebke, K., and Raabe, N. (2005). klar analyzing german business
cycles. In Baier, D., Decker, R., and Schmidt-Thieme, L., editors, Data Analysis and
Decision Support, pages 335–343, Berlin. Springer-Verlag.

Bibliography 393

Weiss, G. and F.Provost (2003). Learning when training data are costly: The effect of class
distribution on tree induction. Journal of Artificial Intelligence Research, 19:315–354.

Weiss, S. and Indurkhya, N. (1999). Predictive data mining. Morgan Kaufmann.

Werbos, P. (1974). Beyond regression - new tools for prediction and analysis in the behavioral
sciences. PhD thesis, Harvard University.

Werbos, P. (1996). The roots of backpropagation - from observed derivatives to neural
networks and political forecasting. John Wiley & Sons.

Wettschereck, D. (1994). A study of distance-based machine learning algorithms. PhD
thesis, Oregon State University.

Wettschereck, D., Aha, D., and Mohri, T. (1997). A review and empirical evaluation of
feature weighting methods for a class of lazzy learning algorithms. Artificial Intelligence
Review, 11:11–73.

Whickam, H. (2014). Advanced R. The R Series. Chapman & HallCRC.

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York.

Wickham, H. (2014). Tidy data. The Journal of Statistical Software, 59.

Wickham, H. (2015a). readxl: Read Excel Files. R package version 0.1.0.

Wickham, H. (2015b). stringr: Simple, Consistent Wrappers for Common String Operations.
R package version 1.0.0.

Wickham, H. (2015c). tidyr: Easily Tidy Data with ‘spread()‘ and ‘gather()‘ Functions. R
package version 0.3.1.

Wickham, H. (2016). forcats: Tools for Working with Categorical Variables (Factors). R
package version 0.1.0.

Wickham, H. and Francois, R. (2015a). dplyr: A Grammar of Data Manipulation. R package
version 0.4.3.

Wickham, H. and Francois, R. (2015b). readr: Read Tabular Data. R package version 0.2.2.

Wickham, H., Francois, R., and Müller, K. (2016). tibble: Simple Data Frames. R package
version 1.1.

Wilkinson, L. (2005). The Grammar of Graphics. Springer, 2nd edition edition.

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods.
In Proc. of the 33rd Annual Meeting of the Association for Computational Linguistics
(ACL), pages 189–196.

Zaki, M., Parthasarathy, S., Ogihara, M., and Li, W. (1997). New algorithms for fast discove
ry of association rules. Technical Report 651, Computer Science Department, University
of Rochester.

Zeileis, A. and Grothendieck, G. (2005). zoo: S3 infrastructure for regular and irregular
time series. Journal of Statistical Software, 14(6):1–27.

394 Bibliography

Zhou, Z.-H. (2012). Ensemble Methods, foundations and algorithms. CRC Press.

Zhu, J., Zou, H., Rosset, S., and Hastie, T. (2009). Multi-class adaboost. Statistics and Its
Interface, 2:349–360.

Zhu, X. (2005). Semi-supervised learning with graphs. PhD thesis, School of Computer
Science, Carnegie Mellon University.

Zhu, X. (2006). Semi-supervised literature survey. Technical Report TR 1530, University
of Wisconsin-Madison.

Zirilli, J. (1997). Financial prediction using neural networks. Thomson Computer Press.

Subject Index

Accuracy, 253, 369
AdaBoost, 339–344
Akaike information criterion, 219
Apriori algorithm, 111
Arrays, 28–29

arithmetic, 29
creating, 28
recycling, 29
sub-setting, 28

Artificial neural networks, see Neural net-
works

Association rules, 111
AUC, 369

Big data, 78
Bioconductor, 353

installing, 354
installing packages, 358

Blocks of instructions, 14
Bonferroni-Dunn test, 235
Boosting, 339
Boostrap, 179
Bootstrap, 369, 373–380
Box plot rule, 303
Box plots, 199

conditioned, 201

Candlestick graphics, 246
Classes and methods, 40–41

classes, 40
generic functions, 41
inheritance, 41
methods, 40
polymorphism, 41
slots, 41
the @ operator, 41

Classification tasks, 141, 252
Classification trees, 146

Gini index, 146
graphical representation, 150
pruning, 148

1-SE rule, 149

Clustering analysis, 313
Clustering methods, 121

dendrograms, 127, 330
hierarchical agglomerative, 330

Clustering validation, 123
Conditioned plots, 100, 201
Confusion matrices, 142, 253, 319, 380
Continuous variables

discretizing, 204
Correlation, 208

calculating, 208
nominal variables, 211

Cross-tabulation, see Frequency tables
Cross-validation, 177, 228–237
Cumulative recall charts, 319

Data frames, 32–36
creating, 32
dimensions, 35
entering data, 35
extending, 34
naming columns, 35
number of columns, 35
number of rows, 35
querying, 33
sub-setting, 33

Data streams, 255
Dates

time zones, 57
DBSCAN, 130
Decision stumps, 341
Deep learning, 163
Deployment, 186
Descriptive data mining, 313
Discrete wavelets, 70
Distance metrics, 119–121, 313, 371

calculating, 311
Euclidean, 371
mixed mode, 327

Dummy variables, 216, 327
Dynamic reports, 183

395

396 Subject Index

Ensemble learning, 165–172, 233, 339, 367
bagging, 166
boosting, 168
random forests, 167

Error rate, 142, 253, 369
Errors scatter plot, 226
Excess return, 264
ExpressionSet objects, 355

F measure, 254
Factors, 19–21, 201

count occurrences, 20
creating, 19
levels, 19

Feature selection, 82–86, 247, 359–368
ANOVA test, 362
feature clustering ensembles, 366
filters, 82, 247, 359
principal components, 85
random forests, 248, 364
RELIEF, 84, 361
wrappers, 82, 247, 359

Frequency tables, 20, 21
Friedman test, 235
Function composition, 24
Functions

creating, 13
Future markets, 263

buy limit orders, 263
buy stop orders, 263
long positions, 263
sell limit orders, 264
sell stop orders, 264
short positions, 263

Graphics devices, 96
Growing window, 255

Histograms, 198
conditioned, 211

Holdout experiments, 174, 321–322

Imbalanced classes, 314, 333–335
over-sampling, 333
SMOTE, 333
under-sampling, 333

Incremental learners, 255
Index vectors

character, 25
empty, 25
integer, 24
logical, 24

negative indexes, 25
Interactive identification of cases, 226
ISO:8601 time format, 67

k-means clustering, 122
k-nearest neighbors, 371–372
Kernel density estimate, 199
Kolmogorov-Smirnov tests, 311

Leave-one-out CV, 369
Lift charts, 319
Linear regression, 214–220

adjusted r=Adjusted R2, 217
ANOVA tests, 217
diagnostic information, 216
graphical diagnostics, 217
model simplification, 217, 219
model updating, 218
nominal variables, 216
obtaining, 215
predictions, 225
proportion of variance, 217
r=R2, 217
summary, 215
summary(), 218, 219

Lists, 30–32
components, 30
concatenating, 31
creating, 30
extending, 31
named components, 31
number of components, 31
removing components, 31
subsetting, 30
unflattening, 32

Local Outlier factors (LOF), 137
Locales, 48

Marginal frequencies, see Frequency ta-
bles

Markdown, see R Markdown
Matrices, 26–28

creating, 26
naming, 28
sub-setting, 26

Matrix algebra, 29
Maximum drawdown, 264
Mean absolute deviation, see Mean abso-

lute error
Mean absolute error, 225
Mean squared error, 225, 250

Subject Index 397

Model formulas, 215
Model selection criteria, 225
Monte Carlo estimates, 272–286
Multivariate adaptive regression splines,

260–263

NA value, 17, 196
Naive Bayes, 335–339
Nemenyi test, 235
Neural networks, 158–165, 256–258

backpropagation, 160
feed-forward, 160
graphical representation, 162
hidden layers, 160
obtaining, 161

Non-stationary time series, 254
Normal distribution, 23, 198

QQ plots, 198
Normalization, see Standardization
Normalized distance to typical price, 320
Normalized Mean Squared Error, 226

ORh, 330
Outlier detection, 313
Outliers, 199, 200

identification, 201
Overfitting, 221, 227

Packages
adabag, 340
ALL, 355
Biobase, 355, 360
car, 198
class, 371
cluster, 327
dplyr, 366
dprep, 327
e1071, 336
earth, 261
genefilter, 358, 361
Hmisc, 297, 367
installing, 8
kernlab, 259
klaR, 336
mda, 261
nnet, 257
PerformanceAnalytics, 264, 288
quantmod, 243
ROCR, 317, 369
RWeka, 341
tidyr, 366

TTR, 247
updating, 9
zoo, 243

Precision, 253, 316
Precision/recall curves, 317
Predictive modeling, 141
Probabilistic classifiers, 314
Profit/loss, 264

R
command prompt, 2
entering commands, 2
executing commands in a file, 42
help mailing lists, 1
help system, 9
installing, 7
installing add-on packages, see Pack-

ages, installing
loading objects, 42
quitting, 8
running, 7
saving objects, 42
saving the workspace, 42

R Markdown, 184
R objects

basic data types, 11
class, 40
listing, 12
methods, 40
removing, 12
slots, 41
valid variable names, 12

R operators
@, 41
%in%, 300
arithmetic, 12
assignment, 11
logical, 24
sequence, 22

Random forests, 233, 248
Random sequences, see Sequences, ran-

dom
Random subsampling experiments, 174
Reading data from a text file, 195
Recall, 253, 316
Recursive partitioning algorithm, 146
Recycling rule, 19, 22, 24
Regime shift, 254
Regression tasks, 141, 251
Regression trees, 150, 214, 220–224

cost complexity pruning, 222

398 Subject Index

graphical representation, 150, 221
model interpretation, 221
obtaining, 220
overfitting, 221
predictions, 225
pruning, 148, 221
1-SE rule, 149, 223
interactive, 224
set of sub-trees, 222

stopping criteria, 222
summary, 221

Regular expressions, 60
Relative frequencies, see Frequency tables
Reliable performance estimates, 227
Reporting, see Dynamic reports
ROC analysis, 369

Self-training, 344–350
Semi-supervised learning, 315
Sequences, 22

of factors, 23
of integers, 22
of reals, 22
random, 23
with repetitions, 22

Sharpe ratio, 264
Shiny apps, see Deployment
Shorth, 358
Similarity, 313, 371
Sliding window, 255
Spatial data, 70

visualization, 72
Standardization, 213, 257, 311, 363
Statistics of centrality, 207, 309, 358, 372
Stratified samples, 321
Student t distribution, 23
Summary statistics, 196
Supervised learning, 313, 314
Support vector machines, 151–158, 259–

260, 315
formulation, 152
kernel trick, 155
obtaining, 157
regression, 156

T indicator, 244
tbl objects, 36–40
Technical indicators, 247
Text mining, 74–77

bag of words, 74
TF-IDF, 74

Time delay embedding, 68
Trading simulator, 265
Trading strategies, 263
Type coercion, 16

Unknown values, 60, 205–214
imputation strategies, 205

Unsupervised learning, 313

Vectorization, 18–19
Vectors, 16–18

adding elements, 17
arithmetic, 18
creating, 16
empty vector, 17
indexing, 17
length, 16
naming elements, 25
recycling, 19
removing elements, 18
sub-setting, 24

Violin plots, 202

Web sites
CRAN mirrors, 8
R, 7
R mailing lists, 1
this book, 2

Weka, 340
Working directory

changing, 42
checking, 42

Index of Data Mining Topics

Data collection and business understand-
ing, 45–52

data sets, 45–46
data types, 46
importing data, 46–52

Data mining workflow, 44
Data pre-processing, 53–86

behavioral information, 65
case dependencies, 65
space dependencies, 70
time dependencies, 66

contextual information, 65
creating new variables, 65, 244–247
data cleaning, 53–61
dimensionality reduction, 78
sampling rows, 78
variable selection, 82

discretization, 63
feature selection, 82–86, 247–251,

359–368
handling dates, 56
normalization, 62
standardization, 62, 213, 257
string processing, 58
text data, 74
tidy data, 53
unknown values, 60, 205–214, 304–

309
Data summarization, 87–95, 196–204, 358

basic statistics, 196, 297–304
comparing distributions, 309–312
correlation, 208
inter-quartile range, 198, 200, 309,

360
measures of centrality, 88, 309
measures of spread, 90, 309
outliers, 92

Data visualization, 95–111, 196–204
bar plot, 97, 298
box plot, 99, 199, 300
candlestick graphs, 246

conditioned box plot, 101, 202
conditioned dot plot, 203
conditioned graphs, 100
conditioned histogram, 101, 211
conditioned strip plot, 211
dot plot, 203
histogram, 99, 198, 358
interacting with plots, 201, 226
level plot, 365
log scales, 300
parallel coordinate plot, 106
Q-Q plot, 198
scatter plot, 102
scatter plot matrices, 105
violin plot, 202

Deployment, 186–189
Descriptive models

LOF , 137, 327–330
ORh, 136, 330–332
anomaly detection, 131–141
multi-variate methods, 134
univariate methods, 133

association rules, 111–118
Apriori, 111
visualization, 116

box plot rule, 93, 303, 323–327
clustering, 118–131
distance metrics, 119

clustering of variables, 367
DBSCAN, 130, 134
density-based clustering, 130
hierarchical agglomerative clustering,

330, 367
hierarchical clustering, 127
partitioning clustering, 121
semi-supervised clustering, 140

Evaluation criteria, 142–145
NDTP , 320
accuracy, 142, 253, 369
AUC, 369

399

400 Index of Data Mining Topics

Brier score, 369
confusion matrix, 142, 253
correlation, 144
cost-benefit matrices, 142
cumulative recall charts, 319
error rate, 142, 253
errors scater plot, 226
F-measure, 144, 254
financial trading criteria, 264, 269–

271, 288–291
lift charts, 319
mean absolute error, 144, 225
mean average percentage error, 144
mean squared error, 144, 225
misclassification costs, 369
normalized mean absolute error, 144
normalized mean squared error, 144,

226
precision, 143, 253, 316, 369
precision/recall curves, 317–319
rate of positive predictions, 319
recall, 143, 253, 316, 369
root mean squared error, 144
total utility, 143

Evaluation methodologies, 172–182
bootstrap, 179–181, 369–370, 373–

380
CD diagrams, 236
cross-validation, 177–179, 228–237
hold-out, 174–177, 321–322
Monte Carlo, 271–286
random subsampling, 174–177
recommendations, 181
significance of differences, 235
stratified samples, 321

Modeling tasks
class imbalance, 138
SMOTE, 333

classification, 251, 314
class imbalance, 253, 314, 333–335

clustering, 313
outlier detection, 313
regression, 214–239
semi-supervised classification, 140,

315
semi-supervised clustering, 140, 315
time series forecasting, 254–263
growing window, 255
regime shift, 254
sliding window, 255

Predictive analytics, 141–172
Predictive models

AdaBoost, 169, 339–344
artificial neural networks, 158–165,

256–258
ensembles, 165–172
gradient boosting machines, 170
k-nearest neighbors, 371–372
multiple linear regression, 215–220
multivariate adaptive regression splines,

260–263
Naive Bayes, 335–339
random forests, 167, 233
regression trees, 220–224
self-training, 315, 344–350
support vector machines, 151–158,

259–260
tree-based models, 145–151

Reporting, 183–186

Index of R Functions

abline(), 201, 226
abs(), 225, 227
AdaBoostM1(), 341
addAvgPrice(), 246
addT.ind(), 246
aes(), 97
aggregate(), 89, 92, 95
Anova(), 363
anova(), 217, 219
apply(), 63, 206, 215, 360
arrange(), 90
array(), 28
as(), 113
as.formula(), 232
as.h2o(), 164
as.integer(), 215
as.numeric(), 302
as.xts(), 243
as_tibble(), 37, 196
assign(), 277
attach(), 34

bagging(), 166, 167
barplot(), 97
bbox(), 72
bind_cols(), 113, 300
boosting(), 169, 340
boxplot(), 100, 101, 300
boxplot.stats(), 303
bpRule(), 133, 303
buildModel(), 249, 250
by(), 89, 95

c(), 16, 31
candleChart(), 246
cbind(), 27, 203
CDdiagram.BD(), 236
ceiling(), 308, 360
centralImputation(), 208
centralValue(), 90
clara(), 126, 127
classificationMetrics(), 145

colnames(), 28
complete.cases(), 92, 205, 206, 215
content(), 75
coord_flip(), 98
coordinates(), 72
cor(), 208
Corpus(), 75
corrplot(), 209
CRchart(), 320
CRS(), 71
cummax(), 318
cut(), 64, 113, 203, 204
cut2(), 64, 65
cutree(), 128, 367

daisy(), 121, 327, 331
data.frame(), 32, 33, 35, 36
dateRangeInput(), 189
dbConnect(), 50
dbDisconnect(), 50
dbDriver(), 50
dbGetQuery(), 50
dbHasCompleted(), 50
dbscan(), 131, 136
dbSendQuery(), 50
dbUnloadDriver(), 50
Delt(), 245
density(), 198
desc(), 89
describe(), 94, 197, 297
designdist(), 120
detach(), 34
dev.off(), 97
diana(), 129
dim(), 26, 35
DirSource(), 75
dist(), 120
dmy_hms(), 57
do.call(), 277
DocumentTermMatrix(), 76
droplevels(), 300, 306

401

402 Index of R Functions

earth(), 261, 262
edit(), 35
element_blank(), 100
embed(), 69
EstimationTask(), 176, 229, 322
exists(), 13
exprs(), 357

facet_grid(), 102
facet_wrap(), 104, 203
factor(), 19
fct_collapse(), 135
fct_drop(), 300
fct_relevel(), 202
fda(), 262
fetch(), 50
filter(), 39
filterfun(), 363
findAssocs(), 77
findFreqTerms(), 76
floor(), 360
fluidPage(), 187
for(), 126, 215
force_tz(), 58
fread(), 49
funs(), 89

garson(), 162
gather(), 54–56, 366
gbm(), 170, 171
gbm.perf(), 171
genefilter(), 363
geom_abline(), 226
geom_bar(), 98
geom_boxplot(), 100, 101, 199, 202
geom_histogram(), 99, 358
geom_hline(), 199
geom_jitter(), 202, 203, 212
geom_point(), 102, 203
geom_rug(), 199
geom_text(), 358
geom_violin(), 202
geom_vline(), 358
get_map(), 73
getIterationsInfo(), 326, 380
getModelData(), 249, 292
getSymbols(), 243, 244, 249, 250
getwd(), 42, 195
getWorkflow(), 179, 231, 280, 378, 379
ggmap(), 73
ggpairs(), 105

ggplot(), 97, 199, 200, 202, 203
ggtitle(), 98
gl(), 23
group_by(), 89, 94, 300
grubbs.test(), 133

h2o.deeplearning(), 164
h2o.init(), 164
h2o.predict(), 164, 165
hclust(), 127, 136, 330
head(), 115
help(), 9
help.start(), 9
hist(), 99, 198
histogram(), 211
HLC(), 245
Holdout(), 177, 322, 325

I(), 33
identify(), 201, 226, 227
ifelse(), 227
importance(), 251, 365
inspect(), 76, 116
install.packages(), 8
installed.packages(), 8
IQR(), 91
is.na(), 15, 92, 203, 210, 215

jitter(), 198
jpeg(), 97

kmeans(), 122
kNN(), 372
knn(), 371, 372
knnImp(), 229
knnImputation(), 168, 213
ks.test(), 311
ksvm(), 260

lapply(), 318
legend(), 104
length(), 14, 16, 31
lines(), 198
lm(), 209, 215, 220, 229
load(), 42, 309
loadings(), 85
lofactor(), 137, 138, 327, 328
ls(), 12

mainPanel(), 187
manyNAs(), 207, 220
margin.table(), 21

Index of R Functions 403

mars(), 261
matrix(), 26
max(), 13, 91
max.col(), 172
mdy(), 57
mean(), 88, 200, 207, 208, 225–227
median(), 88, 208
mergeEstimationRes(), 278
metricsSummary(), 283
min(), 91
mmetric(), 145
mode(), 16
modelData(), 249, 252
month(), 57
mutate_each(), 113
myd(), 57

n(), 89
na.omit(), 206, 252
naiveBayes(), 336
names(), 25, 35, 215
ncol(), 35
newTA(), 246
Next(), 245
nlevels(), 297
nnet(), 161, 162, 257, 258
nrow(), 35, 205
nsFilter(), 361, 362
numericInput(), 189

objects(), 12
OlsonNames(), 58
one_of(), 113
onlyPos(), 229
outliers.ranking(), 136, 330, 331

pairedComparisons(), 182, 235, 236,
284, 285

pairs(), 105
palette(), 104
pam(), 125–127
pamk(), 126
par(), 226
parse_integer(), 61
paste0(), 59
pdf(), 96
performance(), 145, 317
performanceEstimation(), 175, 180–182,

228–230, 232, 272, 273, 277, 278,
322–324, 377

Pipe operator(), 40

plot(), 41, 97, 102, 104, 117, 124, 127,
201, 221, 226, 262, 269, 317

plotnet(), 162
plotOutput(), 188
PRcurve(), 318
predict(), 150, 151, 167, 175, 225, 257,

292
prediction(), 317
PredTask(), 175, 228
princomp(), 85
princp(), 222
print(), 37
print.tbl_df(), 37
printcp(), 222
prop.table(), 21
prp(), 150, 221, 224
prune(), 223
prune.rpart(), 149

q(), 8
qqPlot(), 198
quantile(), 91, 92, 203, 204

randomForest(), 168, 233
range(), 91
rankWorkflows(), 179, 234, 235, 237,

279, 280, 377, 379
rbind(), 27
read.csv.raw(), 49
read.table(), 52, 195, 196, 215
read.zoo(), 243
read_csv(), 47, 80
read_csv2(), 47
read_delim(), 48, 54
read_excel(), 52
read_lines(), 59
read_table(), 196
rect.hclust(), 128
regressionMetrics(), 145
removeSparseTerms(), 77
render(), 185
renderPlot(), 189
rep(), 22
return(), 14, 210
Return.calculate(), 288
rev(), 318
rm(), 12, 278
rnorm(), 14, 23
rowIQRs(), 360
rowMedians(), 360
rownames(), 28

404 Index of R Functions

rowQ(), 360
rpart(), 149, 150, 167, 220–224
rpartXse(), 149, 150, 179, 224, 229
rug(), 198
runWorkflow(), 238, 239, 286

sample(), 10, 13, 78
sample.int(), 78
sapply(), 210
save(), 42, 309
save.image(), 42
scale(), 62, 63, 239, 257
scale_x_discrete(), 199
scale_x_log10(), 310
scale_y_log10(), 301, 310
sd(), 91
select(), 39, 63, 113
selectInput(), 187
SelfTrain(), 344–346
separate(), 55, 56
seq(), 22
set.seed(), 150, 162, 257
setwd(), 42
shinyServer(), 188
shinyUI(), 187
shorth(), 358
sidebarLayout(), 187
sidebarPanel(), 187
signifDiffs(), 285
sigs.PR(), 258
silhouette(), 124
slice(), 300
SmoteClassif(), 334
snip.rpart(), 224
SoftMax(), 328
sort(), 215
source(), 42
Spatial coordinates(), 70
SpatialPointDataFrame(), 71
specifyModel(), 249, 250
split(), 328
spread(), 55
sqrt(), 14
src_mysql(), 51
standardWF(), 229, 238, 239
step(), 219
stop(), 15
str_c(), 59
str_replace_all(), 60
str_split_fixed(), 59
str_trim(), 60

str_view(), 60
str_view_all(), 60
stripplot(), 211
subset(), 34, 39, 115, 280
summarise(), 88, 89, 91, 306, 324
summarise_each(), 89
summary(), 63, 72, 93, 95, 172, 176, 196,

216, 221, 261, 279, 297, 298
svm(), 157, 259
switch(), 15
symnum(), 208
Sys.getenv(), 67
Sys.time(), 80, 81
system.time(), 360

T.ind(), 245
table(), 20, 97, 357
table.DownsideRisk(), 290
taskNames(), 238
text(), 221
theme(), 100
tibble(), 36
timeseriesWF(), 273
titlePanel(), 187
tm_map(), 76
topPerformer(), 238
topPerformers(), 181, 232, 281
trading.signals(), 251, 252, 258
trading.simulator(), 265
tradingEval(), 276, 287
tradingEvaluation(), 269, 275

ungroup(), 89
unite(), 56
unlist(), 32
update(), 218
url(), 58

var(), 14, 91
varclus(), 367
varImpPlot(), 250
vegdist(), 120
View(), 39

wday(), 57
Weka_control(), 341
which(), 215
while(), 50
with_tz(), 57
Workflow(), 175, 179, 229
workflowVariants(), 179, 229, 277
WOW(), 341

Index of R Functions 405

xlab(), 99
xts(), 66, 67

year(), 57
yearlyReturn(), 289
ymd(), 57, 66
ymd_hms(), 57

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Acknowledgments
	List of Figures
	List of Tables
	1:Introduction
	1.1 How to Read This Book
	1.2 Reproducibility

	I R and Data Mining
	2: Introduction to R
	2.1 Starting with R
	2.2 Basic Interaction with the R Console
	2.3 R Objects and Variables
	2.4 R Functions
	2.5 Vectors
	2.6 Vectorization
	2.7 Factors
	2.8 Generating Sequences
	2.9 Sub-Setting
	2.10 Matrices and Arrays
	2.11 Lists
	2.12 Data Frames
	2.13 Useful Extensions to Data Frames
	2.14 Objects, Classes, and Methods
	2.15 Managing Your Sessions

	3: Introduction to Data Mining
	3.1 A Bird’s Eye View on Data Mining
	3.2 Data Collection and Business Understanding
	3.2.1 Data and Datasets
	3.2.2 Importing Data into R
	3.2.2.1 Text Files
	3.2.2.2 Databases
	3.2.2.3 Spreadsheets
	3.2.2.4 Other Formats

	3.3 Data Pre-Processing
	3.3.1 Data Cleaning
	3.3.1.1 Tidy Data
	3.3.1.2 Handling Dates
	3.3.1.3 String Processing
	3.3.1.4 Dealing with Unknown Values

	3.3.2 Transforming Variables
	3.3.2.1 Handling Different Scales of Variables
	3.3.2.2 Discretizing Variables

	3.3.3 Creating Variables
	3.3.3.1 Handling Case Dependencies
	3.3.3.2 Handling Text Datasets

	3.3.4 Dimensionality Reduction
	3.3.4.1 Sampling Rows
	3.3.4.2 Variable Selection

	3.4 Modeling
	3.4.1 Exploratory Data Analysis
	3.4.1.1 Data Summarization
	3.4.1.2 Data Visualization

	3.4.2 Dependency Modeling using Association Rules
	3.4.3 Clustering
	3.4.3.1 Measures of Dissimilarity
	3.4.3.2 Clustering Methods

	3.4.4 Anomaly Detection
	3.4.4.1 Univariate Outlier Detection Methods
	3.4.4.2 Multi-Variate Outlier Detection Methods

	3.4.5 Predictive Analytics
	3.4.5.1 Evaluation Metrics
	3.4.5.2 Tree-Based Models
	3.4.5.3 Support Vector Machines
	3.4.5.4 Artificial Neural Networks and Deep Learning
	3.4.5.5 Model Ensembles

	3.5 Evaluation
	3.5.1 The Holdout and Random Subsampling
	3.5.2 Cross Validation
	3.5.3 Bootstrap Estimates
	3.5.4 Recommended Procedures

	3.6 Reporting and Deployment
	3.6.1 Reporting Through Dynamic Documents
	3.6.2 Deployment through Web Applications

	II Case Studies
	4: Predicting Algae Blooms
	4.1 Problem Description and Objectives
	4.2 Data Description
	4.3 Loading the Data into R
	4.4 Data Visualization and Summarization
	4.5 Unknown Values
	4.5.1 Removing the Observations with Unknown Values
	4.5.2 Filling in the Unknowns with the Most Frequent Values
	4.5.3 Filling in the Unknown Values by Exploring Correlations
	4.5.4 Filling in the Unknown Values by Exploring Similarities between Cases

	4.6 Obtaining Prediction Models
	4.6.1 Multiple Linear Regression
	4.6.2 Regression Trees

	4.7 Model Evaluation and Selection
	4.8 Predictions for the Seven Algae
	4.9 Summary

	5: Predicting Stock Market Returns
	5.1 Problem Description and Objectives
	5.2 The Available Data
	5.2.1 Reading the Data from the CSV File
	5.2.2 Getting the Data from the Web

	5.3 Defining the Prediction Tasks
	5.3.1 What to Predict?
	5.3.2 Which Predictors?
	5.3.3 The Prediction Tasks
	5.3.4 Evaluation Criteria

	5.4 The Prediction Models
	5.4.1 How Will the Training Data Be Used?
	5.4.2 The Modeling Tools
	5.4.2.1 Artificial Neural Networks
	5.4.2.2 Support Vector Machines
	5.4.2.3 Multivariate Adaptive Regression Splines

	5.5 From Predictions into Actions
	5.5.1 How Will the Predictions Be Used?
	5.5.2 Trading-Related Evaluation Criteria
	5.5.3 Putting Everything Together: A Simulated Trader

	5.6 Model Evaluation and Selection
	5.6.1 Monte Carlo Estimates
	5.6.2 Experimental Comparisons
	5.6.3 Results Analysis

	5.7 The Trading System
	5.7.1 Evaluation of the Final Test Data
	5.7.2 An Online Trading System

	5.8 Summary

	6: Detecting Fraudulent Transactions
	6.1 Problem Description and Objectives
	6.2 The Available Data
	6.2.1 Loading the Data into R
	6.2.2 Exploring the Dataset
	6.2.3 Data Problems
	6.2.3.1 Unknown Values
	6.2.3.2 Few Transactions of Some Products

	6.3 Defining the Data Mining Tasks
	6.3.1 Different Approaches to the Problem
	6.3.1.1 Unsupervised Techniques
	6.3.1.2 Supervised Techniques
	6.3.1.3 Semi-Supervised Techniques

	6.3.2 Evaluation Criteria
	6.3.2.1 Precision and Recall
	6.3.2.2 Lift Charts and Precision/Recall Curves
	6.3.2.3 Normalized Distance to Typical Price

	6.3.3 Experimental Methodology

	6.4 Obtaining Outlier Rankings
	6.4.1 Unsupervised Approaches
	6.4.1.1 The Modified Box Plot Rule
	6.4.1.2 Local Outlier Factors (LOF)
	6.4.1.3 Clustering-Based Outlier Rankings (ORh)

	6.4.2 Supervised Approaches
	6.4.2.1 The Class Imbalance Problem
	6.4.2.2 Naive Bayes
	6.4.2.3 AdaBoost

	6.4.3 Semi-Supervised Approaches

	6.5 Summary

	7: Classifying Microarray Samples
	7.1 Problem Description and Objectives
	7.1.1 Brief Background on Microarray Experiments
	7.1.2 The ALL Dataset

	7.2 The Available Data
	7.2.1 Exploring the Dataset

	7.3 Gene (Feature) Selection
	7.3.1 Simple Filters Based on Distribution Properties
	7.3.2 ANOVA Filters
	7.3.3 Filtering Using Random Forests
	7.3.4 Filtering Using Feature Clustering Ensembles

	7.4 Predicting Cytogenetic Abnormalities
	7.4.1 Defining the Prediction Task
	7.4.2 The Evaluation Metric
	7.4.3 The Experimental Procedure
	7.4.4 The Modeling Techniques
	7.4.5 Comparing the Models

	7.5 Summary

	Bibliography
	Subject Index
	Index of Data Mining Topics
	Index of R Functions

